
Developing xml interfaces for COBOL

applications

���

ii Developing xml interfaces for COBOL applications

Contents

Chapter 1. Introduction to XML Services

for the Enterprise 1

Introduction to XML Services for the Enterprise . . 1

Restrictions and limitations 2

Chapter 2. Creating a web service

interface with the Web Services

Enablement wizard 5

Data structures 5

COBOL Import Properties 6

Generation Options 7

Web Services in CICS 9

IMS SOAP Gateway 10

File, data set or member selection 12

Chapter 3. XML to COBOL mapping

tools 15

XML to COBOL mapping concepts 15

Mapping sessions 16

Elementary item and XSD simple type element

mapping 17

Elementary item and XML instance document

element mapping 17

Elementary item and DTD element mapping . . 18

Isomorphic and non-isomorphic simple mapping 18

Mapping repeating items 19

Automatic group mapping 20

Mapping XML model group elements 21

Using mapping session files 21

Locales and code pages 21

Chapter 4. Mapping XML to COBOL . . 25

Creating a mapping session file 25

Editing a mapping session file 26

Generating mapping code 27

Chapter 5. XML Converter Diagnostics 29

Chapter 6. Setting preferences for XML

Services for the Enterprise 31

Chapter 7. Batch Processor 33

Creating and populating options files 33

Starting the batch processor 34

Container.xml 35

GenerationSpec 36

GenerationSpecArray 37

Container.xml sample 38

Schema for Container.xml 38

PlatformProperties.xml 38

CodegenProperty 39

CodegenPropertyArray 43

ConnectionProperty 43

ConnectionPropertyArray 44

ImportProperty 44

ImportPropertyArray 46

Platform 47

PlatformArray 48

PlatformProperties.xml sample 49

Schema for PlatformProperties.xml 49

ServiceSpecification.xml 50

ConverterSpecIn 51

ConverterSpecOut 52

CorrelatorSpec 52

DriverSpec 54

EISProject 55

EISService 55

InputMessage 56

InputOutputMessage 57

ItemSelection 58

ItemSelectionArray 59

Operation 60

OperationProperty 61

OperationPropertyArray 62

OutputMessage 62

RedefinesArray 63

RedefineSelection 64

ServiceProperty 64

ServicePropertyArray 66

WSBindSpec 66

XsdSpecIn 68

XsdSpecOut 68

XseSpec 69

ServiceSpecification.xml sample 70

Schema for ServiceSpecification.xml 71

Chapter 8. Mapping reference 77

Mapping reference information 78

COBOL language types 79

XML and COBOL type compatibility 80

XML and COBOL structure compatibility 83

XML types derived from COBOL 84

Isomorphic and non-isomorphic element mapping 87

Chapter 9. The CICS catalog manager

example application 89

The base application 89

Installing and setting up the base application . . . 89

Creating and defining the VSAM data sets . . . 90

Defining the 3270 interface 91

Completing the installation 91

Web service support for the example application . . 91

Configuring code page support 92

Installing Web service support 92

Configuring the example application 96

Configuring the Web client 97

Running the example application 100

 iii

Running the example application with the BMS

interface 100

The Web service enabled application 101

Using XML Services for the Enterprise to create

and deploy CICS Web services artifacts 105

Artifacts necessary to enable a web service

under CICS 106

Creating Web services artifacts for CICS . . . 107

Deploying the Web services artifacts to CICS 108

Enabling the catalog example for web services

using WebSphere Developer 109

Generating web services artifacts for the

inquireSingle web service 110

Installing and deploying the InquireSingle web

service 111

Combined Interface Definition DFH0XCP1 . . . 111

Components of the base application 112

The catalog manager program 113

BMS presentation manager 117

Data handler 117

Dispatch manager 117

Order dispatch endpoint 117

Stock manager 118

Application configuration 118

File Structures and Definitions 118

Catalog file 118

Configuration file 118

Chapter 10. XML Sevices for the

Enterprise tools and IMS SOAP

Gateway 121

Overview of IMS SOAP Gateway 121

Enabling IMS applications for Web services with

IMS SOAP Gateway 121

Generating Web services artifacts for IMS SOAP

Gateway 122

iv Developing xml interfaces for COBOL applications

Chapter 1. Introduction to XML Services for the Enterprise

XML Services for the Enterprise tools let you easily adapt COBOL-based business applications so that

they become web services and can process and produce XML messages. This new kind of interface to a

called application allows (for example) an Internet user to access an existing CICS® or IMS™ application.

The tools also can help you to embed a COBOL application in a larger system that uses XML for data

interchange.

The XML Services for the Enterprise tools consist of:

v The Web Services Enablement wizard that allows to generate a new web service interface. Typically,

this is called ″bottom-up″ approach since the existing COBOL application is at the ″bottom″ of the new

Web services creation process.

v The XML to COBOL mapping tools that allow to map an existing web service interface or an XML data

definition to the existing COBOL program. Typically, this is called ″meet-in-the-middle″ approach, since

the exiting Web services definition ″meets″ or ″maps″ to the existing COBOL interface.

v The Batch processor that allows to run generate the web service interface in unattended (″batch″)

mode. The Batch processor currently supports the ″bottom-up″ Web services creation. The functionality

of the Batch processor is equivalent to those of the Web Services Enablement wizard described above.

In most cases, you can leave the existing business application as is, so that other existing programs that

supply COBOL data (rather than XML) can access the COBOL program as before. Restrictions apply,

however, as described later.

Related concepts

XML to COBOL mapping tools

Batch Processor

Related tasks

Creating a web service interface with the Web Services Enablement wizard

Setting preferences for XML Services for the Enterprise

Mapping XML to COBOL

Creating a mapping session file

Editing a mapping session file

Starting the batch processor

Related reference

Mapping reference

Introduction to XML Services for the Enterprise

XML Services for the Enterprise tools let you easily adapt COBOL-based business applications so that

they become web services and can process and produce XML messages. This new kind of interface to a

called application allows (for example) an Internet user to access an existing CICS or IMS application.

The tools also can help you to embed a COBOL application in a larger system that uses XML for data

interchange.

The XML Services for the Enterprise tools consist of:

 1

v The Web Services Enablement wizard that allows to generate a new web service interface. Typically,

this is called ″bottom-up″ approach since the existing COBOL application is at the ″bottom″ of the new

Web services creation process.

v The XML to COBOL mapping tools that allow to map an existing web service interface or an XML data

definition to the existing COBOL program. Typically, this is called ″meet-in-the-middle″ approach, since

the exiting Web services definition ″meets″ or ″maps″ to the existing COBOL interface.

v The Batch processor that allows to run generate the web service interface in unattended (″batch″)

mode. The Batch processor currently supports the ″bottom-up″ Web services creation. The functionality

of the Batch processor is equivalent to those of the Web Services Enablement wizard described above.

In most cases, you can leave the existing business application as is, so that other existing programs that

supply COBOL data (rather than XML) can access the COBOL program as before. Restrictions apply,

however, as described later.

Related concepts

XML to COBOL mapping tools

Batch Processor

Related tasks

Creating a web service interface with the Web Services Enablement wizard

Setting preferences for XML Services for the Enterprise

Mapping XML to COBOL

Creating a mapping session file

Editing a mapping session file

Starting the batch processor

Related reference

Mapping reference

Restrictions and limitations

General restrictions:

v Each XML schema definition must be based on a single data declaration. (The definition for input and

output may be the same.)

v The data declarations must not include objects, pointers, or procedure pointers.

v If a called COBOL program receives data by way of a user interface (by displaying a CICS map, for

example), you must take the user interaction out of that program; the called COBOL must be invoked

programmatically rather by a user interface.

v If you wish a COBOL program to send an XML message, you need to change the logic of that

program:

– The caller must invoke an output converter to create an XML message from the COBOL data that is

required by the called program

– The caller then includes the resulting XML string (not the COBOL data) in the call to the called

program

For inbound message processing the following statements are true:

v User defined entity references in an internal or external DTD are not supported.

v For DBCS (double-byte character set), only XML documents encoded in Unicode (UTF-16 or UTF-8) are

supported.

2 Developing xml interfaces for COBOL applications

v The entire XML message must be scanned. No way exists to trigger end of parsing when, for example,

input is acquired or specific element is seen.

v XML element attributes are ignored.

v Error handling is provided by LE exceptions with following limitations:

– No error counts are provided.

– The diagnostic level is ″flag(e).″ (Exceptions are thrown by the converter for a predefined set of

errors: LE exceptions, conversion exceptions thrown by functions NUMVAL(C), and conversion

errors defined by the converter

For outbound message generation the following statements are true:

v In character content only trailing blanks are removed. In numeric content leading and trailing blanks

are removed, and leading zeros are removed except the last significant zero before the decimal point

(or decimal comma).

v Creating XML element attributes is not supported.

v XML declaration is no longer included in the generated messages. This makes it possible to include the

XML in the SOAP message body.

v Error handling is provided by LE exceptions with following limitations:

– No error counts are provided.

– The diagnostic level is ″flag(e).″ (Exceptions are thrown by the converter for a predefined set of

errors: LE exceptions and conversion errors defined by the converter.)

The following data structure limitations exist:

v PICTURE N USAGE NATIONAL (UTF-16) data types are allowed with Unicode input or output.

v Pictures N and G usage DISPLAY-1 (DBCS) are allowed with Unicode input or output.

v If the minimum number of occurrences of an ODO group is 0 (occurs 0 to n times), the XML Schema

generated by the XML Enablement tool will erroneously have a minOccurs attribute of 1.

v COBOL data types including POINTER, COMP-X, INDEX, and PROCEDURE-POINTER are not

supported. However, they can reside elsewhere in the COBOL file.

v COBOL level 66 and level 77 records terminate the data structure of the CICS transaction. The COBOL

importer does not consider these to be part of the data structure.

v Hexadecimal binary values cannot be attributed to nonnumeric literals. They cannot reside in the data

structures that are imported by the COBOL importer. However, they can reside elsewhere in the

COBOL file. Alternatively, you can convert the hexadecimal value to a char string for PIC X or to a

decimal number for PIC 9.

v The figurative constants LOW-VALUES(S), HIGH-VALUES(S), and NULL are not supported. They

cannot reside in the data structures to be imported by the COBOL importer, but they can reside

elsewhere in the COBOL file.

v Object-oriented extensions to COBOL 85 are not supported. For example, OBJECT-REFERENCE is not

supported. These extensions cannot reside in the data structures to be imported by the COBOL

importer. They will prevent the COBOL file from being imported correctly. They can, however, reside

elsewhere in the COBOL file.

Related concepts

XML to COBOL mapping tools

Related tasks

Creating a web service interface with the Web Services Enablement wizard

Setting preferences for XML Services for the Enterprise

Chapter 1. Introduction to XML Services for the Enterprise 3

Mapping XML to COBOL

Creating a mapping session file

Editing a mapping session file

Related reference

Mapping reference

4 Developing xml interfaces for COBOL applications

Chapter 2. Creating a web service interface with the Web

Services Enablement wizard

The Web Services Enablement wizard lets you create a web services interface for an existing COBOL

business function or application.

To use the tool, do as follows:

1. In the Navigator view, right-click on a COBOL file and select Enable Web service->Generate

enablement components...

2. Work through the pages of the wizard:

v “Data structures”

v “COBOL Import Properties” on page 6

v “Generation Options” on page 7

v “IMS SOAP Gateway” on page 10

v “Web Services in CICS” on page 9

v “File, data set or member selection” on page 12

Related concepts

Introduction to XML Services for the Enterprise

XML to COBOL mapping tools

Related tasks

Setting preferences for XML Services for the Enterprise

Mapping XML to COBOL

Creating a mapping session file

Editing a mapping session file

Related reference

Mapping reference

Data structures

The data structures have been imported from the language source. Select the inbound and outbound data

structures.

Inbound data structure

Select the Inbound data structure tab to identify the data structure items that you want to expose as the

content for the inbound XML message.

Outbound data structure

Select the Outbound data structure tab to identify the data structure items that you want to expose as the

content for the outbound XML message.

 5

Change COBOL Options

Select the Change COBOL Options button to modify the current COBOL importer option settings.

Related concepts

Introduction to XML Enablement for the Enterprise

XML to COBOL mapping tools

Related tasks

Creating a web service interface with the Web Services Enablement wizard

Setting preferences for XML Enablement for the Enterprise

Mapping XML to COBOL

Creating a mapping session file

Editing a mapping session file

Related reference

Mapping reference

Web Services in CICS

COBOL Import Properties

Generation Options

IMS SOAP Gateway

File, data set or member selection

COBOL Import Properties

Use the COBOL Import Properties window to specify the platform properties. See the compiler options

reference in the COBOL Programming guide for details on specific options.

Platform

Specifies the target generation platform. Select the appropriate value from the pull down list.

Code Page Selection

Specifies the code page for the locale. Select the appropriate value from the popup window. See

Supported code pages (CCSIDs).

Floating point format

Specifies the floating point format. Select the appropriate value from the pull down list.

endian

Select the appropriate value from the available options.

Remote integer endian

Select the appropriate value from the available options.

External decimal sign

Select the appropriate value from the available options.

Specify the COBOL options

QUOTE

Select the appropriate value from the available options.

TRUNC

Select the appropriate value from the available options.

NSYMBOL

Select the appropriate value from the available options.

6 Developing xml interfaces for COBOL applications

Compile time locale name

Specifies the compile time locale. Select the appropriate value from the pull down list.

 Please see Locale and code pages for additional information.

ASCII code pages

Specifies the ASCII code page. Select the appropriate value from the pull down list.

Error messages language

Specifies the default language for the error messages. Select the appropriate value from

the pull down list.

Currency sign

Specifies the currency sign. Enter the appropriate value in the space provided.

SOSI Select the checkbox to enable SOSI.

COLLSEQ

Select the appropriate value from the available options.

NCOLLSEQ

Select the appropriate value from the available options.

File Extension Support

Specify the file extension support. To change the value, select support for a specific file

extension and then, using the pulldown arrow, select the new value from the pull down

list.

To set the defaults for the values on the COBOL Import properties page, select Window > Preferences,

then expand Importer, then select COBOL.

Related concepts

Introduction to XML Enablement for the Enterprise

XML to COBOL mapping tools

JCA documentation

Related tasks

Creating a web service interface with the Web Services Enablement wizard

Setting preferences for XML Enablement for the Enterprise

Mapping XML to COBOL

Creating a mapping session file

Editing a mapping session file

COBOL Importer

Related reference

Mapping reference

Web Services in CICS

Data structures

Generation Options

IMS SOAP Gateway

File, data set or member selection

Generation Options

At the Generation options page, specify characteristics of the generated files:

XML Converter Options

Chapter 2. Creating a web service interface with the Web Services Enablement wizard 7

Converter type

Specify one of the following driver types to generate based on the environment you are

targeting for deployment:

v Batch, TSO and USS

v IMS SOAP Gateway

v SOAP for CICS

v Web Services in CICS

Specify identification attributes

Program name

Specify the stem of the program name that is included in the IDENTIFICATION

DIVISION of each generated COBOL program. If you type ACCT, for example,

the wizard identifies the input converter program as ACCTI, the output converter

program as ACCTO, and the driver as ACCTD

Author name

Specify the value to be included in the AUTHOR paragraph of each generated

COBOL program.

Business program name

Specifies the existing business program that the XML converters call. This is the

program that you are enabling for processing and/or producing XML messages

(to act as a web service, for example.)

Specify character encodings

Inbound code page

Specify the code page for encoding the XML input message.

Host code page

Specify the code page for the z/OS® host system.

Outbound code page

Specify the code page for encoding the XML output message

WSDL and XSD Options

Specify the WSDL properties

Endpoint URI:

Specify the web service endpoint URI. This URI is used in the binding section of

the WSDL file. In the case of the SOAP binding, this URI is generated into the

content of the soap:address element.

Specify XML Schema properties

Inbound namespace

Specify the XML namespace you want the Inbound converter to use

Note: By default, the source program name and a character designator I for

inbound is used. You can override the default by editing the text in the field.

Outbound namespace

Specify the XML namespace you want the Outbound converter to use

Note: By default, the source program name and a character designator O for

outbound is used. You can override the default by editing the text in the field.

 To set defaults for the Enable Web Services wizard, select Window > Preferences, then expand XML

Services for the Enterprise and Enable Web Service Wizard, then select COBOL Generator.

8 Developing xml interfaces for COBOL applications

Related concepts

Introduction to XML Enablement for the Enterprise

XML to COBOL mapping tools

Related tasks

Creating a web service interface with the Web Services Enablement wizard

Setting preferences for XML Enablement for the Enterprise

Mapping XML to COBOL

Creating a mapping session file

Editing a mapping session file

Related reference

Mapping reference

Web Services in CICS

Data structures

COBOL Import Properties

IMS SOAP Gateway

File, data set or member selection

Web Services in CICS

WSBind Properties

Specify targets for the WSBind file

WSBind file folder

Specify the path for the folder containing the WSBind file. Use the Browse button

to select an existing folder.

WSBind file name

Specify the name of the WSBind file. To specify a file name, enter the file name in

the area provided.

Note: Do not add an extension to the file name. The extension .wsbind is

automatically appended to the file name.

Overwrite WSBind file

Select this checkbox to allow the Enable Web Services wizard to overwrite the

WSBind file if it exists.

Specify CICS application program properties

Program interface

Specify whether the CICS application program communicates via a

DFHCOMMAREA or CONTAINER. Select the appropriate value from the pull

down list.

Container name

If the CICS application program communicates via a CONTAINER, you must

specify container name.

Advanced WSBind Properties

Specify web services properties

Local URI

Specify the desired local URI to for the web service, for example,

″/exampleApp/InquireSingle″. Note that this URI is different from the location of

Chapter 2. Creating a web service interface with the Web Services Enablement wizard 9

the web service for example, http://server:port[local URI]. If you do not specify

this property it will have to be defined at install time during manual creation of

the web service resource definitions in CICS.

Pipeline name

Specify the name of the CICS PIPELINE resource under which this web service

should be installed. If you do not specify this property it will have to be defined

at install time during manual creation of the web service resource definitions in

CICS.

WSDL HFS file path

Specify the full HFS path to the WSDL file that CICS should use for validation of

SOAP request and response messages, for example,

″/u/svltest/pickup/inquireSingle.wsdl″. If you do not specify this property it can

be defined at install time during manual creation of the web service resource

definitions in CICS.

Related concepts

Introduction to XML Enablement for the Enterprise

XML to COBOL mapping tools

Related tasks

Creating an XML interface with XML Enablement for the Enterprise

Setting preferences for XML Enablement for the Enterprise

Mapping XML to COBOL

Creating a mapping session file

Editing a mapping session file

Related reference

Mapping reference

Data structures

COBOL Import Properties

Generation Options

IMS SOAP Gateway

File, data set or member selection

IMS SOAP Gateway

When you select IMS, the IMS SOAP Gateway window prompts you for the following IMS SOAP

Gateway Correlator properties.

Correlator properties

Specify the SOAP properties

SOAPAction

Specifies the Soap Action. The default is the data source file name (no extension)

concatenated with ″urn″. For example, urn:source file name.

Specify targets for the correlator

Correlator file folder

Specify the Correlator file folder.

Correlator file name

Specify the Correlator file name.

10 Developing xml interfaces for COBOL applications

Overwrite correlator file

Select this checkbox to allow subsequent generations to overwrite the contents of

a previously generated correlator file.

Specify integration properties

Socket timeout

Specifies how long (in milliseconds) the SOAP Gateway waits for a response from

IMS Connect.

Execution timeout

Specify how long (in milliseconds) the IMS Connect waits for a response from

IMS.

LTERM name

Specify IMS specific properties that you provide. You can set the value of this

property if the client application wants to provide an LTERM override name. This

name is in the IMS application program’s I/O PCB, with the intent that the IMS

application makes logic decisions based on the override value.

Connection bundle name

Specify the name of the connection bundle the web service uses to connect to

IMS. Connection bundles are defined in the connection specification XML file

maintained by the IMS SOAP Gateway and can be updated using the IMS SOAP

Gateway Deployment tool

Adapter type

Specify the adapter that is used for data transformation. You can choose the given

value or enter an alphanumeric value up to 8 characters in length.

Related concepts

Introduction to XML Enablement for the Enterprise

XML to COBOL mapping tools

Related tasks

Creating a web service interface with the Web Services Enablement wizard

Setting preferences for XML Enablement for the Enterprise

Mapping XML to COBOL

Creating a mapping session file

Editing a mapping session file

Related reference

Mapping reference

Web services in CICS

Data structures

COBOL Import Properties

Generation Options

File, data set or member selection

Chapter 2. Creating a web service interface with the Web Services Enablement wizard 11

File, data set or member selection

At the File, data set, or member selection page, either accept the default values or specify file names and

locations:

XML Converters

Select targets for the XML Converters and Converter Driver

Converter folder

Specifies the path for the folder containing the Converter. Use the Browse button

to select an existing folder.

Converter driver file name

Specifies the name of the Converter driver file. To specify a file name, select the

checkbox and enter the file name in the area provided.

Note: Do not add an extension to the file name. The extension .cbl is

automatically appended to the file name.

Inbound Converter file name

Specifies the name of the Inbound Converter file. To specify a file name, select the

checkbox and enter the file name in the area provided.

Note: Do not add an extension to the file name. The extension .cbl is

automatically appended to the file name.

Outbound Converter file name

Specifies the name of the Outbound Converter file. To specify a file name, select

the checkbox and enter the file name in the area provided.

Note: Do not add an extension to the file name. The extension .cbl is

automatically appended to the file name.

Generate all to driver

Select this checkbox to generate all of the COBOL files to the driver.

Overwrite files without warning

Select this checkbox to allow the wizard to overwrite existing files without

warning.

Select targets for the XML Schemas and Web Services Definition Language

Specify web services properties

WSDL folder

Specifies the path for the folder containing the WSDL file. Use the Browse button

to select an existing folder.

WSDL file name

Specifies the name of the WSDL file. To specify a file name, select the checkbox

and enter the file name in the area provided.

Note: Do not add an extension to the file name. The extension .wsdl is

automatically appended to the file name.

Inbound XSD file name

Specifies the name of the Inbound XSD file. To specify a file name, select the

checkbox and enter the file name in the area provided.

Note: Do not add an extension to the file name. The extension .xsd is

automatically appended to the file name.

12 Developing xml interfaces for COBOL applications

Outbound XSD file name

Specifies the name of the Outbound XSD file. To specify a file name, select the

checkbox and enter the file name in the area provided.

Note: Do not add an extension to the file name. The extension .xsd is

automatically appended to the file name.

Overwrite files without warning

Select this checkbox to allow the Enable Web Services wizard to overwrite

existing files without warning.

Related concepts

Introduction to XML Enablement for the Enterprise

XML to COBOL mapping tools

Related tasks

Creating a web service interface with the Web Services Enablement wizard

Setting preferences for XML Enablement for the Enterprise

Mapping XML to COBOL

Creating a mapping session file

Editing a mapping session file

Related reference

Mapping reference

Web Services in CICS

Data structures

COBOL Import Properties

Generation Options

IMS SOAP Gateway

Chapter 2. Creating a web service interface with the Web Services Enablement wizard 13

14 Developing xml interfaces for COBOL applications

Chapter 3. XML to COBOL mapping tools

XML to COBOL Mapping tools allow you to enable existing COBOL applications to process and produce

XML documents when the XML documents do not identically match the COBOL data items in terms of

names or even data types. This situation occurs, for example, when the XML documents are derived from

sources other than the target COBOL data structure.

After defining the mappings, you can generate converter and driver programs. The converters are

generated in COBOL and their function is to transform the content of the mapped XML elements to the

content of COBOL data items and the content of COBOL data items to the content of mapped XML

elements. A sample COBOL converter driver program is also generated that illustrates how to invoke the

converters in conjunction with the existing COBOL program.

These tools are very useful when, for example, one company acquires or merges with one or more other

companies, and intends to merge and consolidate various parts of the enterprise information systems

(EIS) resulting from the merger or acquisition. The interfaces between various enterprise applications

most likely do not precisely match. Another use of the mapping tools is when an existing enterprise

application is required to process an XML document described by a schema originating from a third

party such as a standards committee.

The XML to COBOL mapping editor allows you to map one or more existing source XML documents to

an existing target COBOL data structure and inversely, from a source COBOL data structure to an existing

target XML document. Specifically, elements of the XML documents can be mapped visually to COBOL

data items.

Related concepts

XML to COBOL mapping concepts

Related tasks

Mapping XML to COBOL

Creating a mapping session file

Editing a mapping session file

Related reference

Mapping reference

XML to COBOL mapping concepts

Mapping of the XML elements to COBOL data items is achieved based on specific COBOL and XML data

models. In particular:

v The COBOL data model for a given data structure is expressed as an instance of the COBOL Common

Application Metamodel (CAM)

v The XML data model for a given data structure is expressed as an instance of the XML Schema model

(whether it is an XML document, WSDL types definition, XML Schema or its DTD representation.)

Therefore, you can perform mappings on the following types of files:

v WSDL documents (extension must be .wsdl)

v XML instance documents (extension must be .xml)

 15

v XML schema (XSD) documents (extension must be .xsd)

v XML document type declaration (DTD) files (extension must be .dtd)

v COBOL source files (extensions must be .cbl, .cob, .ccp, .cpy)

COBOL files, both original source files and files generated by the tool can be located on remote systems

such as PDS members on z/OS. Other files can only reside on the workstation.

Related concepts

XML to COBOL mapping tools

Related tasks

Mapping XML to COBOL

Creating a mapping session file

Editing a mapping session file

Related reference

Mapping reference

Mapping sessions

In a web service or XML-enabled enterprise application, XML data can flow in and out of a COBOL

program. Therefore, with respect to the direction of the data flow, the inbound mapping applies to an XML

document entering the COBOL program and the outbound mapping applies to the XML document leaving

the COBOL program. In a generic case inbound and outbound mappings are different. Creation of

mappings is referred to as mapping session. During a mapping session a single mapping session file is

produced, which contains mapping metadata (information). This mapping metadata represents such

information as names of the source files (such as a COBOL file or an XML document) for the mapped

entities, location of the mapped elements and items within those files etc. Inbound and outbound sessions

have separate session files. You start a mapping session by running the Mapping session wizard and

creating a mapping session file. You can then open and customize mapping session files by using the

Mapping editor.

Because the mapping file contains links to the COBOL and XML files relative to the workbench project,

these links may not resolve correctly when you move the mapping file. Use caution when moving the

mapping file from the directory where it was created (relative to the workbench project) or when

importing already existing mapping files into the workbench. In general, moving or importing the

mapping file will only work if the file is moved or imported into a similar directory structure (relative to

the workbench project) with similar subdirectory names.

The inbound mapping session starts when you select an XML related file (WSDL, XML, XSD or DTD) as

your source file. This selection will define the selection of your target file as being of COBOL type.

The outbound mapping session starts when you select a COBOL file as your source file. This selection will

define the selection of your target file as being of XML-related type (WSDL, XML, XSD or DTD).

Related concepts

XML to COBOL mapping concepts

XML to COBOL mapping tools

Related tasks

16 Developing xml interfaces for COBOL applications

Mapping XML to COBOL

Creating a mapping session file

Editing a mapping session file

Related reference

Mapping reference

Elementary item and XSD simple type element mapping

During the inbound mapping session, you specify which COBOL data items at runtime will receive data

from specific elements of the inbound XML document. In a one-to-one mapping, you can map a single

simple-type sender element to a single target receiver. This is a simple mapping. You cannot map multiple

senders to multiple receivers. These many-to-many mappings are not supported by the mapping tools.

During the outbound mapping session, you specify which simple-type XML receiver elements will receive

data from specific COBOL sender items. The outbound session only allows a one-to-one type mapping.

When XML elements (of built-in or user-derived simple types) are mapped to the COBOL elementary

data items in both inbound and outbound mapping, the senders and receivers must be compatible with

one another. For details on this type compatibility, see the related reference link below.

In both inbound and outbound sessions you can only map XML elements. You cannot map XML

attributes or other entities.

Related concepts

XML to COBOL mapping concepts

XML to COBOL mapping tools

Related tasks

Mapping XML to COBOL

Creating a mapping session file

Editing a mapping session file

Related reference

Mapping reference

Elementary item and XML instance document element mapping

Because it is impossible, in a generic case, to precisely determine types of elements based on an XML

instance document content, the mapping tools allow mappings between any XML instance document

elements and any COBOL data type described in COBOL language types. See the related reference below

for further details.

Related concepts

XML to COBOL mapping concepts

XML to COBOL mapping tools

Related tasks

Mapping XML to COBOL

Creating a mapping session file

Editing a mapping session file

Chapter 3. XML to COBOL mapping tools 17

Related reference

Mapping reference

Elementary item and DTD element mapping

Since Document Type Declarations (DTD) describe a very broad set of XML elements, the mapping tools

allow mappings between any DTD elements that are described as PCDATA and any COBOL data type

described in COBOL language types. See the related reference below for further details.

Related concepts

XML to COBOL mapping concepts

XML to COBOL mapping tools

Related tasks

Mapping XML to COBOL

Creating a mapping session file

Editing a mapping session file

Related reference

Mapping reference

Isomorphic and non-isomorphic simple mapping

The term ″isomorphic″ (as used here) means the following:

v Each composed element (in other words, an element containing other elements) of the XML instance

document starting from the root has one and only one corresponding COBOL group item whose

nesting depth is identical to the nesting depth of its XML equivalent

and

v Each non-composed element (in other words, an element that does not contain other elements) in the

XML instance document starting from the top has one and only one corresponding COBOL elementary

item whose nesting depth is identical to the nesting level of its XML equivalent and whose memory

address at runtime can be uniquely identified.

The mapping tools define all other COBOL data structure/XML instance document pairs as

non-isomorphic structures.

Isomorphic simple mapping is a simple mapping of COBOL items and XML elements that have both of the

following properties:

v They belong to XML documents and COBOL groups that are identical in shape (isomorphic)

v With respect to the location of the structure, the mapping relates two isomorphic elements.

Isomorphic mapping can also exist between isomorphic subsets of otherwise non-isomorphic structures.

Non-isomorphic simple mapping is a simple mapping of COBOL items and XML elements belonging to XML

documents and COBOL groups that are not identical in shape (non-isomorphic). Non-isomorphic

mapping can also be created between non-isomorphic elements of isomorphic structures.

Mapping between non-isomorphic structures can be isomorphic if it maps corresponding elements of

isomorphic subsets.

18 Developing xml interfaces for COBOL applications

Both isomorphic and non-isomorphic simple mapping are supported for inbound and outbound

mapping. See the related reference link below for examples of isomorphic and non-isomorphic mapping

in Isomorphic and non- isomorphic element mapping.

Related concepts

XML to COBOL mapping concepts

XML to COBOL mapping tools

Related tasks

Mapping XML to COBOL

Creating a mapping session file

Editing a mapping session file

Related reference

Mapping reference

Mapping repeating items

Elementary repeating items of the COBOL structure can only be mapped to the XML repeating elements

that have the same number of occurrences. Multi-dimensional arrays (also called ″Nested tables″ in

COBOL) can be mapped only to an isomorphic XML structure. Repeating items can be mapped only

when the following conditions are true:

v Nested tables and the XML structure must have the same number of dimensions

v Each dimension must occur the same number of times

v Structures of each dimension are isomorphic

You cannot map individual dimensions of arrays.

Additionally, simple COBOL ″Occurs Depending On″ (ODO) repeating elementary and group items can

be mapped to XML documents with the following restrictions (derived from the COBOL language

requirements):

v If an ODO item is mapped to an XML element, the corresponding ODO object must also be mapped

v In the XML document, the element mapped to the COBOL ODO object item must appear before the

XML element that is mapped to the corresponding COBOL ODO subject.

Note that the mapping editor will only check the ODO item requirement when you create the ODO

mapping. If you later remove the ODO item mapping and leave the ODO itself mapped, the results of

running the generated code will be unpredictable.

Related concepts

XML to COBOL mapping concepts

XML to COBOL mapping tools

Related tasks

Mapping XML to COBOL

Creating a mapping session file

Editing a mapping session file

Related reference

Chapter 3. XML to COBOL mapping tools 19

Mapping reference

Automatic group mapping

In an automatic group mapping, groups of XML elements (user-defined complex types) can be mapped to

groups of COBOL elementary items (COBOL group items). If you create a mapping between an XML

complex type and a COBOL group item in an inbound session, the child elements of the XML complex

types will be automatically matched to the subordinate COBOL items. For the outbound session, you can

map COBOL groups to XML complex types in a similar way. You cannot use automatic group mapping

on groups that have any elementary items that are already mapped.

You can invoke the automatic group mapping function by selecting ’Match Mapping’ action on the

pop-up action menu in the Mapping Editor or from the Mapping pull-down menu on the Mapping

Editor toolbar.

For automatic group mappings, the structure of COBOL group items must be compatible with the

structure of XML complex types. Mapped groups are considered structurally compatible if the following

conditions are met:

1. The XML instance document and the COBOL data structure it is being mapped to meet the following

requirements:

a. A composed element is an element containing other elements. Each composed element of the XML

instance document starting from the root has one and only one corresponding COBOL group item

whose nesting depth is identical to the nesting depth of its XML equivalent.

b. A non-composed element is an element that does not contain other elements. Each non-composed

element in the XML instance document starting from the top has one and only one corresponding

COBOL elementary item whose nesting depth is identical to the nesting level of its XML

equivalent and whose memory address at runtime can be uniquely identified.

c. For the inbound mapping, the innermost complex type contains at least one simple type

compatible in type with that of its COBOL mapped item.

d. For the outbound mapping, every XML complex type must contain the same number of simple

types compatible with that of their COBOL mapped items.
2. The mapped COBOL group does not contain subordinate redefining items. (The mapped group itself

can be a redefining item)

3. The mapped COBOL group does not contain OCCURS DEPENDING ON constructs.

Automatic group mappings are always one-to-one.

Top-level mapping

When you create the mapping session file, the top-level object shown on the XML side is an XML node

associated with the source or target XML document. The top-level COBOL object on the COBOL side is

the COBOL file containing level 01 data structure that you selected in the Mapping session wizard.

Related concepts

XML to COBOL mapping concepts

XML to COBOL mapping tools

Related tasks

Mapping XML to COBOL

Creating a mapping session file

Editing a mapping session file

Related reference

20 Developing xml interfaces for COBOL applications

Mapping reference

Mapping XML model group elements

XML model group elements except for disjunction (or choice) will be mapped without regard to the

specified constraint. In other words, the generated code will not perform any validation on whether, for

example, XML elements that are part of sequence arrive in the inbound converter in the order specified

by the XML schema’s sequence constraint.

During the mapping session, you can map XML elements that are part of the choice group to COBOL

items just as described above for other XML elements. The mapping editor user interface provides

facilities to select a specific choice element.

Related concepts

XML to COBOL mapping concepts

XML to COBOL mapping tools

Related tasks

Mapping XML to COBOL

Creating a mapping session file

Editing a mapping session file

Related reference

Mapping reference

Using mapping session files

You can use the mapping session files outside of the mapping editor session to generate the COBOL

conversion programs and drivers. You can also start generation by invoking an action from the Mapping

editor menu. In case of the inbound mapping session, the result will be an inbound converter and its

associated driver program. In case of the outbound mapping session the outbound converter and its

associated driver are generated.

Related concepts

XML to COBOL mapping concepts

XML to COBOL mapping tools

Related tasks

Mapping XML to COBOL

Creating a mapping session file

Editing a mapping session file

Related reference

Mapping reference

Locales and code pages

Supported locales and code pages

COBOL for Windows® uses the POSIX-defined locale conventions. Locale value syntax: ll

_CC.codepageID where

Chapter 3. XML to COBOL mapping tools 21

v ll -> A lowercase two-letter ISO language code

v CC - > An uppercase two-letter ISO country code

v codepageID -> The code page to be used for native DISPLAY and DISPLAY-1 data

When specifying locale and code page information, you must code a valid value for the locale name (ll

CC) and a valid code page (codepageID) that corresponds to the locale name, as shown in the Locale and

code pages table below.

You can use the characters that are represented in a supported code page in COBOL names, data

definitions, literals, and comments. The locale in effect determines the code page for compiling source

programs (including alphanumeric literal values). That is, the code page that is used for compilation is

based on the locale setting at compile time. Thus, the evaluation of literal values in the source program is

handled with the locale in effect at compile time.

The default value for Compile time Locale name is en_US. The default value for the ASCII code page is

IBM-1252.

Note: In the table below, for a given locale name, the last ASCII code page listed in the set is the default.

The following table shows the locales that COBOL for Windows supports and the code pages that are

valid for each locale.

The first column, Locale name, shows the valid combinations of ISO language code and ISO country code

(language_COUNTRY) that are supported. The second column show the associated language, and the

third column shows the associated country or area.

The fourth column, ASCII code pages, shows the ASCII code pages that are valid as the code page ID for

the locale with the corresponding language_COUNTRY value.

 Locale name Language Country or area ASCII code pages Language group

ar_AA Arabic Arabic Countries IBM-864, IBM-1256 Arabic

be_BY Byelorussian Belarus IBM-866, IBM-1251 Latin 5

bg_BG Bulgarian Bulgaria IBM-855, IBM-1251 Latin 5

ca_ES Catalan Spain IBM-850, IBM-1252 Latin 1

cs_CZ Czech Czech Republic IBM-852, IBM-1250 Latin 2

da_DK Danish Denmark IBM-437, IBM-850, IBM-1252 Latin 1

de_CH German Switzerland IBM-437, IBM-850, IBM-1252 Latin 1

de_DE German Germany IBM-437, IBM-850, IBM-1252 Latin 1

el_GR Greek Greece IBM-1253 Greek

en_AU English Australia IBM-437, IBM-1252 Latin 1

en_BE English Belgium IBM-850, IBM-1252 Latin 1

en_GB English United Kingdom IBM-437, IBM-850, IBM-1252 Latin 1

en_JP English Japan IBM-437, IBM-850, IBM-1252 Latin 1

en_US English United States IBM-437, IBM-850, IBM-1252 Latin 1

en_ZA English South Africa IBM-437, IBM-1252 Latin 1

es_ES Spanish Spain IBM-437, IBM-850, IBM-1252 Latin 1

fi_FI Finnish Finland IBM-437, IBM-850, IBM-1252 Latin 1

fr_BE French Belgium IBM-437, IBM-850, IBM-1252 Latin 1

fr_CA French Canada IBM-863, IBM-850, IBM-1252 Latin 1

22 Developing xml interfaces for COBOL applications

Locale name Language Country or area ASCII code pages Language group

fr_CH French Switzerland IBM-437, IBM-850, IBM-1252 Latin 1

fr_FR French France IBM-437, IBM-850, IBM-1252 Latin 1

hr_HR Croatian Croatia IBM-852, IBM-1250 Latin 2

hu_HU Hungarian Hungary IBM-852, IBM-1250 Latin 2

is_IS Icelandic Iceland IBM-861, IBM-850, IBM-1252 Latin 1

it_CH Italian Switzerland IBM-850, IBM-1252 Latin 1

it_IT Italian Italy IBM-437, IBM-850, IBM-1252 Latin 1

iw_IL Hebrew Israel IBM-862, IBM-1255 Hebrew

ja_JP Japanese Japan IBM-943 Ideographic

languages

ko_KR Korean Korea, Republic of IBM-1363 Ideographic

languages

lt_LT Lithuanian Lithuania IBM-1257 Lithuanian

lv_LV Latvian Latvia IBM-1257 Latvian

mk_MK Macedonian Macedonia, IBM-855, IBM-1251 Latin 5

nl_BE Dutch Belgium IBM-437, IBM-850, IBM-1252 Latin 1

nl_NL Dutch Netherlands IBM-437, IBM-850, IBM-1252 Latin 1

no_NO Norwegian Norway IBM-437, IBM-850, IBM-1252 Latin 1

pl_PL Polish Poland IBM-852, IBM-1250 Latin 2

pt_BR Portuguese Brazil IBM-850, IBM-1252 Latin 1

pt_PT Portuguese Portugal IBM-860, IBM-850, IBM-1252 Latin 1

ro_RO Romanian Romania IBM-852, IBM-850, IBM-1250 Latin 2

ru_RU Russian Russian

federation

IBM-866, IBM-1251 Latin 5

sh_SP Serbian (Latin) Serbia IBM-852, IBM-1250 Latin 2

sk_SK Slovak Slovakia IBM-852, IBM-1250 Latin 2

sl_SL Slovenian Slovenia IBM-852, IBM-1250 Latin 2

sq_AL Albanian Albania IBM-850, IBM-1252 Latin 1

sv_SE Swedish Sweden IBM-437, IBM-850, IBM-1252 Latin 1

th_TH Thai Thailand IBM-874 Thai

tr_TR Turkish Turkey IBM-857, IBM-1254 Turkish

uk_UA Ukranian Ukraine IBM-866, IBM-1251 Latin 5

zh_CN Chinese

(simplified)

China IBM-1386 Ideographic

languages

zh_TW Chinese

(traditional)

Taiwan IBM-950 Ideographic

languages

Chapter 3. XML to COBOL mapping tools 23

24 Developing xml interfaces for COBOL applications

Chapter 4. Mapping XML to COBOL

The steps that you would typically take to map your XML files to COBOL and generate converter and

driver files are as follows

1. Switch to the Resource perspective

2. Create a project and a folder to hold your existing WSDL, XML, XSD, DTD, COBOL, and, possibly,

generated converter and driver files.

3. Select the folder and create a new XML to COBOL mapping. Using the XML to COBOL mapping

session wizard (Mapping wizard), create a new XML to COBOL mapping session file to specify or

import your source file and target file, identify the root element for any of DTD or XML files that you

specified, identify the COBOL data structure.

4. In the XML to COBOL mapping editor (Mapping editor), map the source and target structures by

mapping nodes.

5. Generate the converters and the drivers using the XML to COBOL mapping converter generator

wizard (Converter generator wizard).

After you generate your converters and drivers you can deploy and run them in conjunction with the

existing COBOL application similar to the converters generated by the Web Service Enablement wizard.

Note: None of the code generated from the mapping tools will perform any type or structure validation

beyond what is described in the documentation.

After you complete these mapping tasks, you are ready to generate conversion code.

Related concepts

XML to COBOL mapping tools

Related tasks

Creating a web service interface with the Web Services Enablement wizard

Creating a mapping session file

Editing a mapping session file

Generating mapping code

Related reference

Mapping reference

Creating a mapping session file

The first task you must complete to map XML to COBOL is to create a new mapping session file. You can

use the XML to COBOL mapping session wizard (Mapping wizard) to create the mapping session file. In

this wizard, you specify or import your source file and target file, identify the root element for any of

DTD or XML files that you specified, and identify the COBOL data structure.

To create a mapping session file:

1. Launch the Mapping wizard. Select File > New > Other... > XML Services for Enterprise > XML to

COBOL mapping.

2. Select the folder that will contain the mapping session file. The mapping session file is a file

containing mapping metadata.

 25

3. Type the name of the mapping session file, for example: CBLMap.cmx. Your filename must have

extension .cmx. Click Next.

4. Select a WSDL, DTD, XSD, XML, or a COBOL file that you want to use as source file. If you want to

use files that are not currently in the workbench, click Import File and fill in the fields in the Import

wizard as necessary. Any files that you import will be listed in the Workbench Files list; you can now

add them to the Selected Files list. When you have selected your source file, click Next.

Note: You can only select dissimilar files as input and output. In other words if you selected COBOL

as input you can only select WSDL, DTD, XSD, or XML as output and, if you selected WSDL, DTD,

XSD or XML as input, you can only select COBOL as output. See the related link below for valid

combinations.

5. Select a COBOL, WSDL, DTD, XSD or an XML file that you want to use as your target file. If you

want to use a file that is not currently in the workbench, click Import File and fill in the fields in the

Import wizard as necessary. Any file that you import will be listed in the Workbench Files list; you

can now select it as the target file. When you have selected your target file, click Next.

6. Select the appropriate source and target items:

v If you selected WSDL, DTD, XSD, XML as source (inbound session), select one of the root elements

from the list that was imported from the XML file to serve as the source and select a top level

COBOL data structure which will serve as the target.

v If you selected COBOL as source (outbound session), select a COBOL data structure from the list to

serve as source and select an XML root element to serve as the target.
7. Click Finish. The XML to COBOL mapping editor opens automatically. You are now ready to edit the

mapping session file.

Related concepts

XML to COBOL mapping tools

Related tasks

Mapping XML to COBOL

 Editing a mapping session file

Generating mapping code

Related reference

Mapping reference

Editing a mapping session file

The second task you must complete to map XML to COBOL is to edit an existing mapping session file.

You use the XML to COBOL mapping editor (Mapping editor) to map the source and target structures by

mapping nodes.

Complete the following instructions to create mappings between source XML elements and target COBOL

data items, an inbound session:

1. Open either the Resource or the XML perspective (other perspectives may also work).

2. Open your XML to COBOL mapping session file. As described above, the mapping editor opens

automatically upon finishing the new mapping session wizard. For existing mapping session files

(.cmx files), you can use standard Eclipse opening mechanism (e.g. double-click) on the file to open

the XML to COBOL mapping editor.

3. Select an element in the source view.

4. Select a COBOL data item in the target view.

26 Developing xml interfaces for COBOL applications

5. Right-click and select Create Mapping.

6. Alternatively to steps 2-4 you can drag and drop the source XML element selection to the target

COBOL data item. The mapping will be created automatically.

Note: The Create Mapping action and the drag/drop operation is disabled for incompatible items.

Use the CTRL key to select more than one element in the source or in the target.

To create mappings between source COBOL data items and target XML elements, an outbound session:

1. Open your XML to COBOL mapping session file as described above.

2. Select a COBOL data item in the source view.

3. Select an XML element in the target view.

4. Right-click and select Create Mapping.

5. Alternatively to steps 2-4 you can drag and drop the source COBOL item selection to the target XML

element. The mapping will be created automatically.

In order to assist you in determining the data types of XML elements and COBOL data items, the type

information will appear as a tooltip when you move the mouse pointer over the element or the data item.

Note that if the mapping session file is not in sync with the source files that it references, the mapping

editor will generate an error message. This can happen, for example, if you changed the content of the

mapped data structure without re-generating the mapping.

Related concepts

XML to COBOL mapping tools

Related tasks

Mapping XML to COBOL

Creating a mapping session file

Generating mapping code

Related reference

Mapping reference

Generating mapping code

When your goal is to map XML to COBOL, you need to generate COBOL converters and drivers that

correspond to a particular mapping session. In the case of the inbound session, an inbound converter and

its associated driver are generated. In the case of an outbound session, an outbound converter and its

driver are generated. The naming convention for the driver and converter programs is the same as in the

Web Service Enablement wizard. Code generation options are also the same as in the Web Service

Enablement wizard .

To generate mapping code:

v Invoke the mapping converter generator wizard. Select Mapping -> Generate mapping code from

within the mapping editor view toolbar. Alternatively, right mouse click on the mapping session file

and select Enable XML -> Generate Mapping Code. The mapping converter generator wizard opens.

v The first and second pages gather information about locations and names of the target files. Enter

target folder name and the names for the converter file and the driver file or accept the defaults. By

Chapter 4. Mapping XML to COBOL 27

default the inbound converter name is formed by concatenating the original COBOL source file and a

character ″I″. The default outbound converter file name is formed by concatenating the original

COBOL source file and a character ″O″.

Note: If no elements/items were mapped in the mapping session, the Next and Finish buttons will be

disabled and an informational message will be displayed. If some elements were mapped, you will be

able to proceed to the next page.
Click Next to proceed to the XML converter options page or click Finish to accept default values for

the rest of the wizard.

v On the XML converter options page specify the generation options for the converters. These are the

same options as in the Web Service Enablement wizard. Click Finish.

v Similar to the Web Service Enablement wizard, either an inbound converter and a driver or an

outbound converter and its driver are generated.

Related concepts

XML to COBOL mapping tools

Related tasks

Creating a web service interface with the Web Services Enablement wizard

Mapping XML to COBOL

Creating a mapping session file

Editing a mapping session file

Related reference

Mapping reference

28 Developing xml interfaces for COBOL applications

Chapter 5. XML Converter Diagnostics

The XML Services for the Enterprise (XSE) generated outbound converters attempt to patch up data in

outbound data structures so that a legal XML message can be produced.

By default the outbound converter filters characters from the data structure that are illegal in an XML

document. Using the XML Services for the Enterprise COBOL generator preferences page, you can

configure this behavior for debugging and performance purposes. From the WebSphere® Developer for

zSeries® desktop Window->preferences->XML Services for the Enterprise->Enable Web Service

Wizard->COBOL Generator]

On the preferences page, lists two options that are associated with converter filters.

v Filter characters illegal in XML 1.0 (outbound)

The default for this option is on. The outbound converter scans both non-numeric and numeric data in

the data structure and converts to an EBCDIC, ASCII or UNICODE space (depending on the outbound

codepage), any character that is illegal in an XML document according to the XML 1.0 specification.

For numerics, the scan is done after the number is converted to a textual representation.

v Halt on characters illegal in XML 1.0 (outbound)

This option is turned off by default. The outbound converter scans both non-numeric and numeric

data in the data structure and returns an exception if characters illegal in XML 1.0 are found. For

numerics, the scan is done after the number is converted to a textual representation.

If illegal non-numeric data is found, a message stating that the Data structure to XML conversion could

not complete because the content of a non-numeric member of the data structure contained characters

that are not legal in an XML document.

If illegal numeric data is found, a message stating that the Data structure to XML conversion could not

complete because the content of a numeric member of the data structure is invalid.

You can select only one of these options at a time or, you can select neither option for maximum

performance of the outbound converter.

Note: Disabling both options provides no protection against including illegal characters in the XML

document produced by the outbound converter.

 29

30 Developing xml interfaces for COBOL applications

Chapter 6. Setting preferences for XML Services for the

Enterprise

To set preferences for XML Services for the Enterprise, do as follows:

1. Click Window > Preferences, then expand XML Services for the Enterprise and Enable Web Service

Wizard, then click COBOL Generator

2. Specify defaults for settings used in XML Services for the Enterprise:

a. In the Program name prefix field, specify the stem of the program name that is included in the

IDENTIFICATION DIVISION of each generated COBOL program. If you type ACCT, for example,

the wizard identifies the input converter program as ACCTI, the output converter program as

ACCTO, and the driver as ACCTD

b. In the Author name field, specify the value to be included in the AUTHOR paragraph of each

generated COBOL program.

c. In the Inbound code page list box, select the code page for encoding the XML input message

d. In the Host code page list box, select the code page for the z/OS host system

e. In the Outbound code page list box, select the code page for encoding the XML output message
3. Specify advanced generation options:

a. Select the check box for Decimal Point is Comma if you wish the XML converter to interpret a

comma and a period in numeric data as follows:

v A comma is a decimal point

v A period is a thousand separator
Clear the check box for the opposite effect, as is true by default:

v A comma is a thousand separator

v A period is a decimal point
b. Select the check box for Generate minimum hierarchy in XML Schemas if you wish the XML

converter to reduce the data structure hierarchy when it is not needed to uniquely identify each

element.

When there are elements with the same tag name, the name of the element that occurs later in the

document will be prefixed with enough of its parent tags to produce a unique name. This

provides efficiency for message processing clients, reducing the number and complexity of objects

that need to be instantiated.

Clear the check box to create the full data structure hierarchy.

If you require both hierarchical and flat XML messages, run the generation step twice, with and

without this option selected.

c. Select the check box for Generate groups in XML Schemas if you wish the XML converter to

include groups in the generated XML schemas.

Clear the check box to include group ″contents″ inline instead of using group references. This is

useful for applications which do not support the use of groups and group references in XML

schemas.

The two forms of the schema are functionally equivalent, but if you require both kinds, run the

generation step twice, with and without this option selected.

d. Select the check box for Filter characters illegal in XML 1.0 (outbound) if you wish to scan both

non-numeric and numeric data in the data structure and convert any character that is illegal in an

XML document to an EBCDIC, ASCII or UNICODE space (depending on the outbound codepage).

e. Select the check box for Halt on characters illegal in XML 1.0 (outbound) if you wish to scan both

non-numeric and numeric data in the data structure and receive an exception if characters illegal

in XML 1.0 are found.

 31

4. Select Apply or, if you wish to restore the settings to the default values, Select Restore Defaults

Related concepts

Introduction to XML Services for the Enterprise

Related tasks

Creating a web service interface with the Web Services Enablement wizard

32 Developing xml interfaces for COBOL applications

Chapter 7. Batch Processor

The batch processor is a command-line interface for creating enterprise web services descriptions (WSDL)

and message converters for CICS and IMS applications. You communicate generation options to the

processor in options files. This tool is useful if you need to create many services from many COBOL

source files.

You have three files in which to provide the necessary options to the batch processor:

v Container.xml

v PlatformProperties.xml

v ServiceSpecification.xml

The reason for specifying most of the options in XML files is to allow automation of the options

generation by customization tools such as WSED converter and service generation wizards.

Related tasks

Creating and populating options files

Starting the batch processor

Related references

Container.xml

PlatformProperties.xml

ServiceSpecification.xml

Creating and populating options files

Follow these steps to create the environment and populate the options in the properties files for the batch

processor:

1. Create a directory to hold the batch processor input files. The remaining steps refer to this directory

as your input directory.

2. In the PlatformProperties.xml file, set the default options properties that reflect your target run-time

environment.

You can copy the sample file (PlatformProperties.xml) to your input directory from the following

location within the directory where WebSphere Developer is installed:

wdz\wstools\eclipse\plugins\com.ibm.etools.xmlent.batch_6.0.0\Samples

If you use this sample, modify it with a text editor (or a specialized XML editor) to suit your purpose.

3. In the ServiceSpecification.xml file, put the options properties for generating the specific sets of

converters and service definitions. You can also override certain options specified in the platform

properties file.

You can copy the sample file to your input directory from the following location within the directory

where WebSphere Developer is installed and rename the file as desired:

wdz\wstools\eclipse\plugins\com.ibm.etools.xmlent.batch_6.0.0\Samples

You can then edit the new file with a text editor (or a specialized XML editor) and set the options.

4. In the Container.xml file, specify the options that globally affect the generation of converters and of

service definitions. You can also specify the locations of platform properties files and files that control

options for generating individual sets of converters and service definitions.

 33

You can copy the sample file Container.xml to your input directory from the following location within

the directory where WebSphere Developer is installed and rename the file as desired:

wdz\wstools\eclipse\plugins\com.ibm.etools.xmlent.batch_6.0.0\Samples

Open the resulting file with a text editor (or a specialized XML editor) and set the appropriate

PlatformProperties.xml and, for each individual set of converter and service definition generation

options (ServiceSpecification.xml) files that you created in the previous step, add a GenerationSpec

element that references the file that you created.

When you have finished creating your options files, you can start the batch processor.

Related concepts

Batch processor

Related tasks

Starting the batch processor

Related references

Container.xml

PlatformProperties.xml

ServiceSpecification.xml

Starting the batch processor

The batch processor is a command-line interface for creating enterprise web services descriptions (WSDL)

and message converters for CICS and IMS applications.

Before you run the batch processor, close any running WebSphere Developer instance that uses the target

workspace.

Start the batch processor by entering the following command from the command line (or executing it

from a script):

xsebatch -s languageFile [-c | -w serviceName] | [-c -w serviceName]

 -f containerFile [-d workspace] [-e WS_installdir] [-verbose] [-version]

 [-overwrite=yes|no]

In this command, languageFile is the name of the language source file that contains the message

definition. You can override this name by using the message specification option in the

ServiceSpecification.xml file.

You specify either the -c parameter or the -w parameter or both, as follows:

v -c causes the set of language converters, the driver, and XML schemas to be generated. You can

override this option by using the generateConverters and the generateSeparateXSD options in the

Container.xml file and in the ServiceSpecification.xml file. The option generateSeparateXSD=true will

produce XSD files only if -c (or generateConverters=true) is specified.

v -w serviceName causes the service definition files to be generated using the specified name for the web

service. You can override this option by using the generateWSDL option in the Container.xml file and

in the ServiceSpecification.xml file. The value of this parameter can be overridden by the value

attribute of the EISService element in the ServiceSpecification.xml file. The default value is set to

″esvc″.

34 Developing xml interfaces for COBOL applications

The variable containerFile is the name of the Container.xml file that holds the generation options. Most of

the content of items in this file are optional, but a few are required and must be specified.

The following parameters are optional:

v -d workspace is the fully qualified path of the workspace to be used for the import . If this path is not

specified, the default is taken from the environment variable called %workspace%. If that environment

variable is not set, the default is set to %eclipse_root%\workspace

v -e WS_installdir is the eclipse subdirectory of the directory in which WebSphere Developer is installed.

If not specified, the default is taken from the environment variable %eclipse_root%. If that environment

variable is not set, the default is set to: C:\Program Files\IBM\Rational\SDP\6.0\eclipse

Note: If the directory names contain spaces (for example, c:\test one\WDZ) you need to put these

names in double quotes (for example, ″c:\test one\WDZ″). You need to use the double quotes only

when specifying values for command line parameters -d and -e. If you use environment variables, omit

double quotes for these values. Do not use a trailing backslash (’\’) in any of the pathnames for the -d

and -e options and the %workspace% and %eclipse_root% environment variables.

v -verbose causes the diagnostic messages to be printed to the console.

v -version causes the version, release and modification information to be printed to the console.

v -overwrite when set to ″yes″ (the default) causes the tool to write over all the generated files. If set to

″no″ a new file name is generated for each file that exists. The new name of the file will contain an

integer number as suffix which will be incremented for each duplicate file until a unique name is

found (For example, myfile12o.xsd). Overwriting converters and the XSD file can be further refined by

the value of the overwrite attribute of the file generation specification elements of the XseSpec group

described in Reference: Elements in XML Schemas for batch processing.

All other generation options are specified in XML files (either directly in the container file or in the XML

files that the container file contains).

You can see the progress of the xsebatch command in the console along with any error messages.

After the xsebatch program has finished running, restart WebSphere Developer to view the generated

files in the workspace, or browse the file system with Windows Explorer.

Related concepts

Batch processor

Related tasks

Creating and populating options files

Related references

Container.xml

PlatformProperties.xml

ServiceSpecification.xml

Container.xml

Container.xml is one of the options files for batch processing to create enterprise web services

descriptions (WSDL) and message converters for CICS and IMS applications.

Chapter 7. Batch Processor 35

Purpose

Container.xml contains the generation options and references to the Platform.xml and

ServiceSpecification.xml file.

Elements

Most of the content of items in this file is optional, but a few items are required. You can use the

following elements in the Container.xml document:

v GenerationSpec

v GenerationSpecArray

Sample

The Container.xml sample illustrates the use of applicable elements and their attributes.

Schema

The schema for Container.xml provides the structure for the contents of the Container.xml document.

Related concepts

Batch processor

Related tasks

Creating and populating options files

Starting the batch processor

Related references

PlatformProperties.xml

ServiceSpecification.xml

GenerationSpec

Use this element to provide information about the ServiceSpecification.xml file, which specifies the

options for generating individual sets of converters and web service definition (WSDL) files.

Contained by

GenerationSpecArray

Contains

None

Attributes

 Name Required? Default Description

name Yes none Specifies the location

of the

ServiceSpecification.xml

file.

36 Developing xml interfaces for COBOL applications

Example

<GenerationSpecArray

 platformProperties="Platform.xml">

 <GenerationSpec name="ServiceSpecification.xml"/>

</GenerationSpecArray>

GenerationSpecArray

Use this top-level element of the Container.xml document to provide information that globally affects the

generation of converters and service definitions. This element is required.

Contained by

None

Contains

GenerationSpec

Attributes

 Name Required? Values Default Description

platform No OS390

Note: OS390 is the

currently supported

value. Other values

are reserved for

future use.

OS390 Specifies the target generation platform.

platformProperties Yes Specifies the location of the platform

property file. The path can be relative

(as in ./PlatformProperties.xml) or

absolute.

generateConverters No true | false false Specifies whether to generate the

converter set (inbound and outbound

converters, driver). Note that the ″false″

setting of this attribute will cause the

generateSeparateXSD to be forced to

″false″.

generateSeparateXSD No true | false false Specifies whether to generate a separate

set of XML schemas that define the

message (inbound and outbound). Note

that the ″false″ setting of this attribute

is enforced if the generateConverters

attribute is set to false and is

meaningful only if generateWSDL is set

to true. A value of false specifies that

the service definition file contains an

embedded schema.

generateWSDL No true | false false Specifies whether to generate a service

definition.

Chapter 7. Batch Processor 37

Example

<GenerationSpecArray generateConverters="true"

 generateSeparateXSD="true"

 generateWSDL="true"

 platformProperties="Platform.xml">

 <GenerationSpec name="ServiceSpecification.xml"/>

</GenerationSpecArray>

Container.xml sample

<?xml version="1.0" encoding="UTF-8"?>

<GenerationSpecArray generateConverters="true"

 generateSeparateXSD="true"

 generateWSDL="true"

 platform="OS390"

 platformProperties="Platform.xml"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 <GenerationSpec name="ServiceSpecification.xml"/>

 <GenerationSpec name="ServiceSpecification2.xml"/>

</GenerationSpecArray>

Related references

Container.xml

Schema for Container.xml

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="GenerationSpec">

 <xsd:complexType>

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="GenerationSpecArray">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="1" ref="GenerationSpec"/>

 </xsd:sequence>

 <xsd:attribute name="platform" type="xsd:string" use=" optional"/>

 <xsd:attribute name="platformProperties" type="xsd:string" use="required"/>

 <xsd:attribute name="generateConverters" type="xsd:boolean" use="optional"/>

 <xsd:attribute name="generateSeparateXSD" type="xsd:boolean" use="optional"/>

 <xsd:attribute name="generateWSDL" type="xsd:boolean" use="optional"/>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

Related references

Container.xml

PlatformProperties.xml

PlatformProperties.xml is one of the options files for batch processing to create enterprise web services

descriptions (WSDL) and message converters for CICS and IMS applications.

38 Developing xml interfaces for COBOL applications

Purpose

PlatformProperties.xml has the default options properties that reflect your target run-time environment.

The options affect, for example, the processing of the language types (such as COBOL data types) that are

used in producing XML schema descriptions of web service messages that are based on that language

type.

Elements

You can use the following elements in the PlatformProperties.xml document:

v CodegenProperty

v CodegenPropertyArray

v ConnectionProperty

v ConnectionPropertyArray

v ImportProperty

v ImportPropertyArray

v Platform

v PlatformArray

Sample

The PlatformProperties.xml sample illustrates the use of applicable elements and their attributes.

Schema

The schema for PlatformProperties.xml provides the structure for the contents of the

PlatformProperties.xml document.

Related concepts

Batch processor

Related tasks

Creating and populating options files

Starting the batch processor

Related references

Container.xml

ServiceSpecification.xml

CodegenProperty

Use this element in the PlatformProperties.xml document to specify the properties for generating the

converter code, or in the ServiceSpecification.xml document to override the code generation properties

that you set in PlatformProperties.xml.

Contained by

CodegenPropertyArray

Chapter 7. Batch Processor 39

Contains

None

Attributes

Start the value of the name attribute with com.ibm.etools.xmlent.ui. The valid pairs of names and values

for COBOL are as follows:

 Name Values Default Description

name GEN_PROG_NAME The generated program name. It must be

formed according to COBOL language rules.

The default is set to the COBOL copybook (or

source program) file name shortened to 7

characters and converted to uppercase.

value See Description

name GEN_AUTH_NAME The generated author name. It must be formed

according to COBOL language rules. value WSED

name GEN_IN_CP_LIST Code page for the inbound (input) message.

See Supported code pages (CCSIDs). value 1140

name GEN_CP_LIST Code page for the host converter program. See

Supported code page combinations. value 1140

name GEN_OUT_CP_LIST Code page for the outbound (output) message.

See Supported code page combinations. value 1140

name GEN_DEC_COMMA Property to control the format of the decimal

fraction separator. If this option is set to true,

the decimal fraction separator is set to be a

comma.

value true | false false

name GEN_XSD_GROUPS Property to control generation of groups in the

XML schema. If this option is set to true, the

XML schema can contain schema groups and

grouprefs.

value true | false false

name GEN_FLAT_GEN Property to control whether generated XML

schemas have flat or hierarchical structure. If

this option is set to true, the generators are set

to generate flat schemas.

value true | false false

Note: If you are generating artifacts for the IMS SOAP Gateway, you must specify UTF-8 (value=″1208″)

as Code page for the inbound (input) message (GEN_IN_CP_LIST) and UTF-8 (value=″1208″) as Code

page for the outbound (output) message (GEN_OUT_CP_LIST). Any other values are not allowed and

will cause a runtime error if specified.

Example

<CodegenPropertyArray type="Cobol">

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_PROG_NAME" value="XCNV"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_AUTH_NAME" value="WSED"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_IN_CP_LIST" value="1140"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_CP_LIST" value="1140"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_OUT_CP_LIST" value="1140"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_DEC_COMMA" value=" false"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_FLAT_GEN" value=" false"/>

</CodegenPropertyArray>

40 Developing xml interfaces for COBOL applications

Supported code pages (CCSIDs)

 CCSIDs Description

813 ISO 8859-7 Greek / Latin

819 ISO 8859-1 Latin 1 / Open Systems

920 ISO 8859-9 Latin 5 (ECMA-128, Turkey TS-5881)

930 Japanese EBCDIC (Katakana-based)

933 Korean EBCDIC

935 Simplified Chinese EBCDIC

937 Traditional Chinese EBCDIC

939 Japanese EBCDIC (Latin-based)

1047 Latin 1 / Open Systems

1200 Unicode, UTF-16

1208 Unicode, UTF-8

1364 Korean EBCDIC, including Euro

1371 Traditional Chinese EBCDIC, including Euro

1388 Simplified Chinese EBCDIC, including GBK and GB18030

1390 Japanese EBCDIC (Katakana-based), including Euro

1399 Japanese EBCDIC (Latin-based), including Euro

5026 Japanese EBCDIC (Katakana-based), subset of 930

5035 Japanese EBCDIC (Latin-based), subset of 939

01140, 00037 USA, Canada, etc. Euro Country Extended Code Page

(ECECP), Country Extended Code Page

01141, 00273 Austria, Germany ECECP, CECP

01142, 00277 Denmark, Norway ECECP, CECP

01143, 00278 Finland, Sweden ECECP, CECP

01144, 00280 Italy ECECP, CECP

01145, 00284 Spain, Latin America (Spanish) ECECP, CECP

01146, 00285 UK ECECP, CECP

01147, 00297 France ECECP, CECP

01148, 00500 International ECECP, CECP

01149, 00871 Iceland ECECP, CECP

Related references

CodegenProperty

Supported code page combinations

 Inbound Host Outbound

813 813 813, 1200, 1208

819 819 819, 1200, 1208

920 920 920, 1200, 1208

1047 1047 1047, 1200, 1208

Chapter 7. Batch Processor 41

Inbound Host Outbound

01140, 00037 01140, 00037 37, 1140, 1200, 1208

01141, 00273 01141, 00273 273, 1141, 1200, 1208

01142, 00277 01142, 00277 277, 1142, 1200, 1208

01143, 00278 01143, 00278 278, 1143, 1200, 1208

01144, 00280 01144, 00280 280, 1144, 1200, 1208

01145, 00284 01145, 00284 284, 1145, 1200, 1208

01146, 00285 01146, 00285 285, 1146, 1200, 1208

01147, 00297 01147, 00297 297, 1147, 1200, 1208

01148, 00500 01148, 00500 500, 1148, 1200, 1208

01149, 00871 01149, 00871 871, 1149, 1200, 1208

1200, 1208 01140, 00037 37, 1140, 1200, 1208

1200, 1208 01141, 00273 273, 1141, 1200, 1208

1200, 1208 01142, 00277 277, 1142, 1200, 1208

1200, 1208 01143, 00278 278, 1143, 1200, 1208

1200, 1208 01144, 00280 280, 1144, 1200, 1208

1200, 1208 01145, 00284 284, 1145, 1200, 1208

1200, 1208 01146, 00285 285, 1146, 1200, 1208

1200, 1208 01147, 00297 297, 1147, 1200, 1208

1200, 1208 01148, 00500 500, 1148, 1200, 1208

1200, 1208 01149, 00871 871, 1149, 1200, 1208

1200, 1208 930 1200, 1208

1200, 1208 933 1200, 1208

1200, 1208 935 1200, 1208

1200, 1208 937 1200, 1208

1200, 1208 939 1200, 1208

1200, 1208 1364 1200, 1208

1200, 1208 1371 1200, 1208

1200, 1208 1388 1200, 1208

1200, 1208 1390 1200, 1208

1200, 1208 1399 1200, 1208

1200, 1208 5026 1200, 1208

1200, 1208 5035 1200, 1208

Note: For the IMS SOAP Gateway, only UTF-8 (value 1208) as Code page for the inbound (input)

message and UTF-8 (value 1208) as Code page for the outbound (output) message are supported. Any

other values are not allowed and will cause a runtime error if specified.

Related references

CodegenProperty

42 Developing xml interfaces for COBOL applications

CodegenPropertyArray

Use this element to specify the programming language for the code to be generated and as the container

for the code generation properties for the converter. You can use this element in either

PlatformProperties.xml or ServiceSpecification.xml. If you use it in both documents, the specification in

ServiceSpecification.xml overrides the specification in PlatformProperties.xml.

Contained by

EISService (in ServiceSpecification.xml)

Platform (in PlatformProperties.xml)

Contains

CodegenProperty

Attributes

 Name Required? Values Default Description

type No Cobol

Note: Cobol is

the currently

supported value.

Other values are

reserved for

future use.

Cobol Specifies the programming language.

Example

<CodegenPropertyArray type="Cobol">

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_PROG_NAME" value="XCNV"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_AUTH_NAME" value="WSED"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_IN_CP_LIST" value="1140"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_CP_LIST" value="1140"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_OUT_CP_LIST" value="1140"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_DEC_COMMA" value=" false"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_FLAT_GEN" value=" false"/>

</CodegenPropertyArray>

ConnectionProperty

Use this element in the PlatformProperties.xml document to specify the properties for a server

connection, or in the ServiceSpecification.xml document to override the server connection properties that

you set in PlatformProperties.xml. This element is required in the PlatformProperties.xml document.

Contained by

ConnectionPropertyArray

Contains

None

Chapter 7. Batch Processor 43

Attributes

 Name Values Required? Description

name Yes Specifies connection

protocol and location

of the web service.

value See Description

Examples

<ConnectionProperty name="connectionURI" value="http://winmvsn0.cpit.hursley.ibm.com:8888/CICS/XMLS/DFHWSDSH/ACTDSOAP"/>

<ConnectionProperty name="connectionURI" value="http://localhost:8080/imssoap/services/IMSPHBKPort"/ >

ConnectionPropertyArray

Use this element as the container for connection properties in either PlatformProperties.xml or

ServiceSpecification.xml. If you use it in both documents, the specification in ServiceSpecification.xml

overrides the specification in PlatformProperties.xml. This element is optional in both files.

Contained by

EISService (in ServiceSpecification.xml)

Platform (in PlatformProperties.xml)

Contains

ConnectionProperty

Attributes

None

Example

<ConnectionPropertyArray>

 <ConnectionProperty name="connectionURI"

 value="http://winmvsn0.cpit.hursley.ibm.com:8888/CICS/XMLS/DFHWSDSH/ACTDSOAP"/>

</ConnectionPropertyArray>

ImportProperty

Use this element to provide information about the compiler options as appropriate for the programming

language that you specify in the ImportPropertyArray element. You can use this element in the

ServiceSpecification.xml document to override the compiler options that you set in

PlatformProperties.xml. If you want to generate language converters, you are required to specify this

element in the PlatformProperties.xml document.

Contained by

ImportPropertyArray

Contains

None

44 Developing xml interfaces for COBOL applications

Attributes

Start the value of the name attribute with com.ibm.etools.cobol. Note that if you are generating language

converters, the defaults do not apply: You must specify all of the properties. The valid pairs of names

and values for COBOL are as follows:

 Name Values Default Description

name COBOL_TRUNC Specifies the setting of the COBOL TRUNC

compile-time option. value STD | OPT | BIN STD

name COBOL_NSYMBOL Specifies the setting of the COBOL NSYMBOL

compile-time option. value NATIONAL | DBCS NATIONAL

name COBOL_QUOTE Specifies the setting of the COBOL QUOTE

compile-time option. value DOUBLE | SINGLE DOUBLE

name COBOL_EXTENSION_CBL Specifies the default extension behavior. A file

is assumed to be a complete COBOL program

if it has the extension of .cbl, .ccp or .cob. A file

is assumed to be a copy book if it has the

extension .cpy. If the file is a copybook member

then it should consist of only one or more 01

data structures or 01 or 77 elementary data

item definition. The user can change the

default extension behavior by setting it to ″FP″

or ″DS″.

value FP | DS FP (FP - Full program,

DS - Only data structures

)

name COBOL_EXTENSION_CCP Specifies the default extension behavior. A file

is assumed to be a complete COBOL program

if it has the extension of .cbl, .ccp or .cob. A file

is assumed to be a copy book if it has the

extension .cpy. If the file is a copybook member

then it should consist of only one or more 01

data structures or 01 or 77 elementary data

item definition. The user can change the

default extension behavior by setting it to ″FP″

or ″DS″.

value FP | DS FP (FP - Full program,

DS - Only data structures

)

name COBOL_EXTENSION_COB Specifies the default extension behavior. A file

is assumed to be a complete COBOL program

if it has the extension of .cbl, .ccp or .cob. A file

is assumed to be a copy book if it has the

extension .cpy. If the file is a copybook member

then it should consist of only one or more 01

data structures or 01 or 77 elementary data

item definition. The user can change the

default extension behavior by setting it to ″FP″

or ″DS″.

value FP | DS FP (FP - Full program,

DS - Only data structures

)

name COBOL_EXTENSION_CPY Specifies the default extension behavior. A file

is assumed to be a complete COBOL program

if it has the extension of .cbl, .ccp or .cob. A file

is assumed to be a copy book if it has the

extension .cpy. If the file is a copybook member

then it should consist of only one or more 01

data structures or 01 or 77 elementary data

item definition. The user can change the

default extension behavior by setting it to ″FP″

or ″DS″.

value FP | DS FP (FP - Full program,

DS - Only data structures

)

Chapter 7. Batch Processor 45

Name Values Default Description

name COBOL_COMPILE_TIME_LOCALE Specifies the index number for the locale. From

the Locale and code pages table, you can

determine the index number by counting the

row number of the locale name you are

interested in. For example:

 1 - ar_AA

14 - en_US

50 - zh_TW

Please see Locale and code pages for additional

information.

value 1 through 50 14

name COBOL_ASCII_CODEPAGE Specifies the code page for a locale. From

Locale and code pages table, the rightmost

code-page entry in ASCII code pages column

is the default for a given locale name.

For example: for locale en_US, the Locale and

code pages table specifies:

Locale name: en_US

Language: English

Country or area: United States

ASCII code pages: IBM-437, IBM-850, IBM-1252

Language group: Latin 1

for the en_US locale, the values for

COBOL_ASCII_CODEPAGE correspond to the

ASCII code pages as follows:

2 - IBM-437

1 - IBM-850

0 - IBM-1252

value 0 | 1 | 2 0

name COBOL_ERROR_MSGS_LANG Specifies the language used to display the

syntax errors.

The values correspond to the languages as

follows:

 0 - en_US 1 - ja_JP 2 - zh_TW

 3 - zh_CN 4 - ko_KR 5 - it_IT

 6 - fr_FR 7 - es_ES 8 - de_DE

 9 - pt_BR

The default is en_US. To change this value, use

the preferences page.

value 0 through 9 0

Example

<ImportPropertyArray type="Cobol">

 <ImportProperty name="com.ibm.etools.cobol.COBOL_TRUNC" value="STD"/>

 <ImportProperty name="com.ibm.etools.cobol.COBOL_NSYMBOL" value="DBCS"/>

 <ImportProperty name="com.ibm.etools.cobol.COBOL_QUOTE" value="DOUBLE"/>

</ImportPropertyArray>

ImportPropertyArray

Use this element to specify the programming language for the file to be imported and as the container for

import properties. You can use this element in the ServiceSpecification.xml document to override the

programming language that you set in PlatformProperties.xml. If you want to generate language

converters, you are required to specify this element in the PlatformProperties.xml document.

46 Developing xml interfaces for COBOL applications

Contained by

EISProject (in ServiceSpecification.xml)

Platform (in PlatformProperties.xml)

Contains

ImportProperty

Attributes

 Name Required? Values Default Description

type Yes Cobol

Note: Cobol is the

currently supported

value. Other values

are reserved for

future use.

Cobol Specifies the programming language.

Example

<ImportPropertyArray type="Cobol">

 <ImportProperty name="com.ibm.etools.cobol.COBOL_TRUNC" value="STD"/>

 <ImportProperty name="com.ibm.etools.cobol.COBOL_NSYMBOL" value="DBCS"/>

 <ImportProperty name="com.ibm.etools.cobol.COBOL_QUOTE" value="DOUBLE"/>

</ImportPropertyArray>

Platform

Use this element to specify the platform for which the web service will be generated and as a container

for properties that affect global service generation options.

Contained by

PlatformArray

Contains

ImportPropertyArray, ConnectionPropertyArray, CodegenPropertyArray

Attributes

 Name Required? Values Default Description

name Yes OS390

Note: OS390 is the

currently supported

value. Other values

are reserved for

future use.

OS390 Specifies the target generation platform.

Example

<PlatformArray>

<Platform name="OS390">

 <ImportPropertyArray type="Cobol">

 <ImportProperty name="com.ibm.etools.cobol.COBOL_TRUNC" value="STD"/>

 <ImportProperty name="com.ibm.etools.cobol.COBOL_NSYMBOL" value="DBCS"/>

Chapter 7. Batch Processor 47

<ImportProperty name="com.ibm.etools.cobol.COBOL_QUOTE" value="DOUBLE"/>

 </ImportPropertyArray>

 <ConnectionPropertyArray>

 <ConnectionProperty name="connectionURI"

 value="http://winmvsn0.cpit.hursley.ibm.com:8888/CICS/XMLS/DFHWSDSH/ACTDSOAP"/>

 </ConnectionPropertyArray>

 <CodegenPropertyArray type="Cobol">

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_PROG_NAME" value="XCNV"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_AUTH_NAME" value="WSED"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_IN_CP_LIST" value="1140"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_CP_LIST" value="1140"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_OUT_CP_LIST" value="1140"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_DEC_COMMA" value=" false"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_FLAT_GEN" value=" false"/>

 </CodegenPropertyArray>

</Platform>

</PlatformArray>

PlatformArray

This top-level element of the PlatformProperties.xml document provides information about the target

run-time environment.

Contained by

None

Contains

Platform

Attributes

None

Example

<PlatformArray>

<Platform name="OS390">

 <ImportPropertyArray type="Cobol">

 <ImportProperty name="com.ibm.etools.cobol.COBOL_TRUNC" value="STD"/>

 <ImportProperty name="com.ibm.etools.cobol.COBOL_NSYMBOL" value="DBCS"/>

 <ImportProperty name="com.ibm.etools.cobol.COBOL_QUOTE" value="DOUBLE"/>

 </ImportPropertyArray>

 <ConnectionPropertyArray>

 <ConnectionProperty name="connectionURI"

 value="http://winmvsn0.cpit.hursley.ibm.com:8888/CICS/XMLS/DFHWSDSH/ACTDSOAP"/>

 </ConnectionPropertyArray>

 <CodegenPropertyArray type="Cobol">

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_PROG_NAME" value="XCNV"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_AUTH_NAME" value="WSED"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_IN_CP_LIST" value="1140"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_CP_LIST" value="1140"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_OUT_CP_LIST" value="1140"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_DEC_COMMA" value=" false"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_FLAT_GEN" value=" false"/>

 </CodegenPropertyArray>

</Platform>

</PlatformArray>

48 Developing xml interfaces for COBOL applications

PlatformProperties.xml sample

<PlatformArray>

<Platform name="OS390">

 <ImportPropertyArray type="Cobol">

 <ImportProperty name="com.ibm.etools.cobol.COBOL_TRUNC" value="STD"/>

 <ImportProperty name="com.ibm.etools.cobol.COBOL_NSYMBOL" value="DBCS"/>

 <ImportProperty name="com.ibm.etools.cobol.COBOL_QUOTE" value="DOUBLE"/>

 </ImportPropertyArray>

 <ConnectionPropertyArray>

 <ConnectionProperty name="connectionURI"

 value="http://winmvsn0.cpit.hursley.ibm.com:8888/CICS/XMLS/DFHWSDSH/ACTDSOAP"/>

 </ConnectionPropertyArray>

 <CodegenPropertyArray type="Cobol">

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_PROG_NAME" value="XCNV"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_AUTH_NAME" value="WSED"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_IN_CP_LIST" value="1140"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_CP_LIST" value="1140"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_OUT_CP_LIST" value="1140"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_DEC_COMMA" value=" false"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_FLAT_GEN" value=" false"/>

 </CodegenPropertyArray>

</Platform>

</PlatformArray>

Related references

PlatformProperties.xml

Schema for PlatformProperties.xml

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="CodegenProperty">

 <xsd:complexType>

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 <xsd:attribute name="value" type="xsd:string" use="required"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="CodegenPropertyArray">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="1" ref="CodegenProperty"/>

 </xsd:sequence>

 <xsd:attribute name="type" type="xsd:string" use="required"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="ConnectionProperty">

 <xsd:complexType>

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 <xsd:attribute name="value" type="xsd:string" use="required"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="ConnectionPropertyArray">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="1" ref="ConnectionProperty"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="ImportProperty">

 <xsd:complexType>

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 <xsd:attribute name="value" type="xsd:string" use="required"/>

 </xsd:complexType>

 </xsd:element>

Chapter 7. Batch Processor 49

<xsd:element name="ImportPropertyArray">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="1" ref="ImportProperty"/>

 </xsd:sequence>

 <xsd:attribute name="type" type="xsd:string" use="required"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="Platform">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="1" ref="ImportPropertyArray"/>

 <xsd:element maxOccurs="1" minOccurs="0" ref="ConnectionPropertyArray"/>

 <xsd:element maxOccurs="1" minOccurs="0" ref="CodegenPropertyArray"/>

 </xsd:sequence>

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="PlatformArray">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="1" ref="Platform"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

Related references

PlatformProperties.xml

ServiceSpecification.xml

ServiceSpecification.xml is one of the options files for batch processing to create enterprise web services

descriptions (WSDL) and message converters for CICS and IMS applications.

Purpose

ServiceSpecification.xml has the options for generating specific sets of converters and service definitions.

In this file you can also override certain options that you specified in the PlatformProperties.xml file.

Elements

You can use the following elements in the ServiceSpecification.xml document:

v CodegenProperty

v CodegenPropertyArray

v ConnectionProperty

v ConnectionPropertyArray

v ConverterSpecIn

v ConverterSpecOut

v CorrelatorSpec

v DriverSpec

v EISProject

v EISService

v ImportProperty

v ImportPropertyArray

v InputMessage

50 Developing xml interfaces for COBOL applications

v InputOutputMessage

v Operation

v OperationProperty

v OperationPropertyArray

v OutputMessage

v RedefinesArray

v RedefineSelection

v ServiceProperty

v ServicePropertyArray

v XsdSpecIn

v XsdSpecOut

v XseSpec

Sample

The ServiceSpecification.xml sample illustrates the use of applicable elements and their attributes.

Schema

The schema for ServiceSpecification.xml provides the structure for the contents of the

ServiceSpecification.xml document.

Related concepts

Batch processor

Related tasks

Creating and populating options files

Starting the batch processor

Related references

Container.xml

PlatformProperties.xml

ConverterSpecIn

Use this element of the ServiceSpecification.xml document to specify the generation options for the

inbound converter.

Contained by

XseSpec

Contains

None

Chapter 7. Batch Processor 51

Attributes

 Name Required? Values Default Description

fileName No See Description Data source file

name concatenated

with ″I″

Specifies the name of the output file.

overwrite No true | false true Specifies whether to overwrite the

output file if it exists.

programName No See Description Value of

CodegenProperty

GEN_PROG_NAME

concatenated with

″I″

Specifies the program name of the

main program entry.

Example

<ConverterSpecIn fileName="DFH0CSTDI.cbl" overwrite="true" programName="XCNVI"/>

ConverterSpecOut

Use this element of the ServiceSpecification.xml document to specify the generation options for the

outbound converter.

Contained by

XseSpec

Contains

None

Attributes

 Name Required? Values Default Description

fileName No See Description Data source file

name concatenated

with ″O″

Specifies the name of the output file.

overwrite No true | false true Specifies whether to overwrite the

output file if it exists.

programName No See Description Value of

CodegenProperty

GEN_PROG_NAME

concatenated with

″O″

Specifies the program name of the

main program entry.

Example

<ConverterSpecOut fileName="DFH0CSTDO.cbl" overwrite="true" programName="XCNVO"/>

CorrelatorSpec

Use this element of the ServiceSpecification.xml document to specify the generation options for the

correlator information. The correlator file is used by the IMS SOAP Gateway.

52 Developing xml interfaces for COBOL applications

Contained by

XseSpec

Contains

None

Attributes

 Name Required? Values Default Description

AdapterType No See Description IBM® COBOL XML

Adapter

Specifies the adapter that is used for

data transformation. You can choose

the given value or enter an

alphanumeric value up to 8

characters in length.

connectionBundleName No See Description N/A Provides the name of the connection

bundle the web service uses to

connect to IMS. Connection bundles

are defined in the connection

specification XML file maintained by

the IMS SOAP Gateway and can be

updated using the IMS SOAP

Gateway Deployment tool

executionTimeout No See Description 0 Specifies the time that the IMS

Connect waits for a response from

IMS. Valid range: 0-3600000 (in

milliseconds).

fileName No See Description Data source file

name concatenated

with ″xml″

Specifies the name of the output file.

ltermName No See Description None specifies the IMS Specific property

provided by the user. You can set the

value of this property if the client

application wants to provide an

LTERM override name. This name is

in the IMS application program’s I/O

PCB, with the intent that the IMS

application makes logic decisions

based on the override value.

overwrite No true | false true Specifies whether to overwrite the

output file if it exists.

soapAction No See Description Data source file

name (no

extension) prefixed

with ″urn″

Specifies the SOAP action.

socketTimeout No See Description 0 Specifies the time that the SOAP

Gateway waits for a response from

IMS Connect. Valid range: Positive

integer (in milliseconds).

Example

<CorrelatorSpec fileName="IMSPHBK.xml"overwrite="true"soapAction="urn:IMSPHBK" socketTimeout="0" executionTimeout="0" con

Chapter 7. Batch Processor 53

DriverSpec

Use this element to specify the programming language for the code to be generated and as the container

for the code generation properties for the converter. You can use this element in either

PlatformProperties.xml or ServiceSpecification.xml. If you use it in both documents, the specification in

ServiceSpecification.xml overrides the specification in PlatformProperties.xml.

Contained by

XseSpec

Contains

None

Attributes

 Name Required? Values Default Description

fileName No See Description Data source file

name concatenated

with ″D″

Specifies the name of the output file.

overwrite No true | false true Specifies whether to overwrite the

output file if it exists.

programName No See Description Value of

CodegenProperty

GEN_PROG_NAME

concatenated with

″D″

Specifies the program name of the

main program entry.

businessPgmName No See Description Data source file

name up to 8

characters. If the

name is longer

than 8 characters

only the first 8

characters will be

used to form the

default. The

specified name

must follow

COBOL

conventions for the

program name.

Specifies the existing business

program that the XML converters

call. This is the program that you are

enabling for processing and/or

producing XML messages (to act as a

web service, for example.)

driverType No BATCH |

SOAP_FOR_CICS

|

WEB_SERVICES_CICS

|

IMS_SOAP_GATEWAY

SOAP_FOR_CICS Specifies the type of drivers and

converters to generate for a specific

subsystem (such as CICS, IMS, TSO).

BATCH: Basic converter and driver

types running in batch, under TSO or

USS SOAP_FOR_CICS: Converters

and drivers to be deployed into a

SOAP for CICS runtime

WEB_SERVICES_CICS: Converters

and drivers to be deployed into a

CICS Web services runtime

IMS_SOAP_GATEWAY: Converters

and drivers to be deployed into a

IMS SOAP Gateway runtime

54 Developing xml interfaces for COBOL applications

Example

<DriverSpec fileName="IMSPHBKD.cbl" driverType="IMS_SOAP_GATEWAY" programName="XCNVD" businessPgmName="IMSPHBK" />

EISProject

Use this top-level element of the ServiceSpecification.xml document to provide information about the web

service.

Contained by

None

Contains

CodegenPropertyArray, EISService, ImportPropertyArray

Attributes

 Name Required? Values Default Description

name No See Description EISProject Specifies the name of the project that

contains the generated files. If the

project does not exist, it will be

created automatically.

Example

<EISProject name="CICSSample">

 <!-- Use the ImportPropertyArray to override values from PlatformProperties.xml -->

 <ImportPropertyArray type="Cobol">

 <ImportProperty name="com.ibm.etools.cobol.COBOL_TRUNC" value="BIN" />

 <ImportProperty name="com.ibm.etools.cobol.COBOL_NSYMBOL" value="DBCS" />

 <ImportProperty name="com.ibm.etools.cobol.COBOL_QUOTE" value="DOUBLE" />

 </ImportPropertyArray>

 <CodegenPropertyArray type="Cobol">

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_PROG_NAME" value="XCNV"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_AUTH_NAME" value="WSED"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_IN_CP_LIST" value="1140"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_CP_LIST" value="1140"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_OUT_CP_LIST" value="1140"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_DEC_COMMA" value=" false"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_FLAT_GEN" value=" false"/>

 </CodegenPropertyArray>

 <EISService name="CustomerInfo" type="CICS" targetNameSpace="http://cics.sample"

 generateConverters="true"

 generateSeparateXSD="false"

 generateWSDL="true"

 portType="myPortType" >

 </EISService>

</EISProject>

EISService

Use this element of the ServiceSpecification.xml document to provide information about the web service

and as a container for the required Operation container and, optionally, for the ConnectionPropertyArray

and the ServicePropertyArray.

Contained by

EISProject

Chapter 7. Batch Processor 55

Contains

ConnectionPropertyArray, Operation, ServicePropertyArray

Attributes

 Name Values Default Description

name See Description The default is taken

from the xsebatch

command line

parameter -w.

Specifies the name of the web service. The

name of the web services definition file

(WSDL) that is generated uses this name.

generateConverters true | false false Specifies whether to generate the converter

set (inbound and outbound converters,

driver).

generateSeparateXSD true | false false Specifies whether to generate a separate set

of XML schemas that define the message

(inbound and outbound). Note that the

″false″ setting of this attribute is meaningful

only if generateWSDL is set to true. A value

of false specifies that the service definition

file contains an embedded schema.

generateWSDL true | false false Specifies whether to generate a service

definition.

targetNamespace See Description svcNS Specifies the URL of the target namespace.

type CICS | IMS CICS Specifies the relevant subsystem.

targetFilesURI See Description Value of

targetNamespace, if

specified. Otherwise it

is set to

file://target.files

Specifies the URI of the location where the

output files will be generated, relative to the

top level project.

Example

<EISProject name="CICSSample">

 <EISService name="CustomerInfo" type="CICS" targetNamespace="http://cics.sample"

 targetFilesURI="file://my.files"

 generateConverters="true"

 generateSeparateXSD="false"

 generateWSDL="true" >

 </EISService>

</EISProject>

InputMessage

Use this element to define messages for ONE-WAY operations or REQUEST_RESPONSE

(SOLICIT_RESPONSE) operations if the input and output messages are of different types. Note that for

ONE_WAY operations, you are allowed to specify only the InputMessage. OutputMessage is not allowed

and will cause unpredictable results during the generation process.

Contained by

Operation

Contains

ItemSelectionArray

56 Developing xml interfaces for COBOL applications

Attributes

 Name Required? Values Default Description

name No See Description esvc Specifies a name for the messages for

the WSDL file.

importDirectory No See Description The input directory Specifies the directory for the source

file.

importFile Yes (unless the

-s command

line option is

specified)

See Description The name provided

in the xsebatch

command-line

parameter -s.

Specifies the file name that contains the

data definition to be used in creating

the web service operation message

types.

Note: Only COBOL data definitions are

supported and are subject to the

restrictions that are specified in

WebSphere Developer documentation.

nativeTypeName No See Description For COBOL, the

name of the first

available level 01

data item name.

Specifies the name of the data type that

is to be imported from the importFile,

such as DFHCOMMAREA for a CICS

COBOL application. An error message

is generated on the console if a parse of

the importFile does not identify the

nativeTypeName as a valid data type.

Example

 <InputMessage name="PhoneBookRequest" importDirectory="." importFile="Ex01z.cbl" nativeTypeName="input-msg">

 <RedefinesArray>

 <RedefineSelection redefine="input-msg.redParent.redefd" useRedefinition="input-msg.redParent.redefd2"/>

 </RedefinesArray>

 <ItemSelectionArray>

 <ItemSelection itemName="input-msg.redParent"/>

 <ItemSelection itemName="input-msg.in-extn"/>

 <ItemSelection itemName="input-msg.in-zip"/>

 <ItemSelection itemName="input-msg.in-ll"/>

 </ItemSelectionArray>

 </InputMessage>

InputOutputMessage

Use this element to define messages for REQUEST-RESPONSE operations if the input and output

messages are of the same type.

Contained by

Operation

Contains

ItemSelectionArray

Attributes

 Name Required? Values Default Description

name No See Description esvc Specifies a name for the messages for

the WSDL file.

importDirectory No See Description The input directory Specifies the directory for the source

file.

Chapter 7. Batch Processor 57

Name Required? Values Default Description

importFile Yes (unless the

-s command

line option is

specified)

See Description The name provided

in the xsebatch

command-line

parameter -s.

Specifies the file name that contains the

data definition to be used in creating

the web service operation message

types.

Note: Only COBOL data definitions are

supported and are subject to the

restrictions that are specified in

WebSphere Developer documentation.

nativeTypeName No See Description For COBOL, the

name of the first

available level 01

data item name.

Specifies the name of the data type that

is to be imported from the importFile,

such as DFHCOMMAREA for a CICS

COBOL application. An error message

is generated on the console if a parse of

the importFile does not identify the

nativeTypeName as a valid data type.

Example

 <InputOutputMessage name="PhoneBookMsg" importDirectory="." importFile="Ex01z.cbl" nativeTypeName="input-msg">

 <RedefinesArray>

 <RedefineSelection redefine="input-msg.redParent.redefd" useRedefinition="input-msg.redParent.redefd2"/>

 </RedefinesArray>

 <ItemSelectionArray>

 <ItemSelection itemName="input-msg.redParent"/>

 <ItemSelection itemName="input-msg.in-extn"/>

 <ItemSelection itemName="input-msg.in-zip"/>

 <ItemSelection itemName="input-msg.in-ll"/>

 </ItemSelectionArray>

 </InputOutputMessage>

ItemSelection

Use this element to select individual data item in the COBOL structure.

The selection rules apply as follows:

v When any item is selected, all parent group items containing the selected item are automatically

selected

v If a selected item contains the REDEFINES clause, it must also be specified in the RedefineSelection

element for this message specification

v When any group item is selected all its children are automatically selected (any items that contain the

REDEFINES clause are also subject to the preceding rule)

v When an ODO (variable size repeating) item is selected, its ODO object (count variable) must also be

selected. Otherwise the results produced by the generated artifacts are undefined

v ItemSelection elements can appear in any order within ItemSelectionArray

v The value of the ItemSelection attribute must specify the data item name prefixed by dot-separated

parent group names.

v The values of the ItemSelection attributes are not case-sensitive. For example, specifying

itemName=″FoO.bAr″ is equivalent to specifying itemName=″fOo.BaR″

v If none of the selected items appear in the data structure, the results produced by the generated

artifacts are undefined.

Contained by

ItemSelectionArray

58 Developing xml interfaces for COBOL applications

Contains

None

Attributes

 Name Required? Values Default Description

name itemName Yes Specifies the name of the data item to

be selected.

value none

The value of the attribute must specify the item name prefixed a dot-separated parent names as shown in

the example.

Example

For the following COBOL data structure

01 INPUT-MSG.

 02 IN-LL PICTURE S9(3) COMP.

 02 IN-ZZ PICTURE S9(3) COMP.

 02 IN-TRCD PICTURE X(10).

 02 IN-CMD PICTURE X(8).

 02 IN-NAME1 PICTURE X(10).

 02 redParent.

 03 redefd.

 04 IN-NAME2 PICTURE X(10).

 03 redefd2 redefines redefd.

 04 IN-NAME2R PICTURE X(10).

 02 IN-EXTN PICTURE X(10).

 02 IN-EXTNR redefines in-extn PICTURE X(10).

 02 IN-ZIP PICTURE X(7).

you can specify the following item selections:

<ItemSelection>

 <ItemSelection itemName="input-msg.redParent"/>

 <ItemSelection itemName="input-msg.in-extn"/>

 <ItemSelection itemName="input-msg.in-zip"/>

 <ItemSelection itemName="input-msg.in-ll"/>

</ItemSelectionArray>

Note that if you want to specify redefd2 redefinition in the redParent group, you will need to specify the

following RedefinesArray:

<RedefinesArray>

 <RedefineSelection redefine="input-msg.redParent.redefd" useRedefinition="input-msg.redParent.redefd2"/>

</RedefinesArray>

otherwise redefd items will be selected by default.

ItemSelectionArray

Use this element as the container for individual data item selections in the COBOL structure.

If the this element is not specified the default element selection rules apply as follows:

v If nativeTypeName of the message specification is not given, the first available LEVEL 01 structure and

all its children are automatically selected according to any rules specified in the RedefineSelection

section and ItemSelection section.

Chapter 7. Batch Processor 59

v If nativeTypeName of the message specification is given, it is assumed to be a LEVEL 01 structure and

all its children are automatically selected according to any rules specified in the RedefineSelection

section and ItemSelection section.

v If the RedefineSelectionArray is given, the items from that array will override the default REDEFINES

behavior (See RedefineSelection and ItemSelection section for more information)

Contained by

InputMessage, InputOutputMessage, OutputMessage

Contains

ItemSelection

Attributes

None

Example

<ItemSelectionArray>

 <ItemSelection itemName="input-msg.redParent"/>

 <ItemSelection itemName="input-msg.in-extn"/>

 <ItemSelection itemName="input-msg.in-zip"/>

 <ItemSelection itemName="input-msg.in-ll"/>

</ItemSelectionArray>

Operation

Use this element to specify the type of operation and as the container for operation properties. Note that

only one operation is allowed per service. Specifying more than one operation may cause an invalid

WSDL to be generated.

Contained by

EISService

Contains

OperationPropertyArray, InputOutputMessage, InputMessage, OutputMessage, XseSpec

Attributes

 Name Required? Values Default Description

name Yes See Description The name attribute

for the EISService

element concatenated

with ″Operation″

Specifies the name of the operation in

the WSDL file.

type Yes REQUEST_RESPONSE

|

SOLICIT_RESPONSE

| ONE_WAY |

NOTIFICATION

REQUEST_RESPONSE Specifies whether to generate the

converter set (inbound, outbound,

converters, and driver).

REQUEST_RESPONSE and SOLICIT_RESPONSE operations cause an inbound and an outbound

converter, a driver (if the generateConverters option is in effect), and an inbound and outbound schema

(if the generateSeparateXSD option is in effect) to be generated. A NOTIFICATION operation causes an

60 Developing xml interfaces for COBOL applications

outbound converter, a driver (if the generateConverters option is in effect), and an outbound schema (if

the generateSeparateXSD option is in effect) to be generated. A ONE_WAY operation causes an inbound

converter, a driver (if the generateConverters option is in effect), and an inbound schema (if the

generateSeparateXSD option is in effect) to be generated.

Example

<Operation name="getCustomerInfo" type="REQUEST_RESPONSE">

 <OperationPropertyArray>

 <OperationProperty name="soapOpStyle" value="document" />

 <OperationProperty name="soapBindingStyle" value="document" />

 <OperationProperty name="soapBodyUse" value="literal" />

 </OperationPropertyArray>

 <InputOutputMessage name="CustomerDetails" importDirectory="." importFile="DFH0ACTD.cbl"

 nativeTypeName="DFHCOMMAREA">

 <RedefinesArray>

 <RedefineSelection redefine="name.info" useRedefinition="name.last-name"/>

 <RedefineSelection redefine="address.zip-code" useRedefinition="province"/>

 </RedefinesArray>

 </InputOutputMessage>

 <XseSpec>

 <DriverSpec fileName=""DFH0CSTDD.cbl" driverType="IMS SOAP Gateway" programName="XCNVD" businessPgmName="
 <ConverterSpecIn fileName="DFH0CSTDI.cbl" overwrite="true"

 programName="XCNVI"/>

 <ConverterSpecOut fileName="DFH0CSTDO.cbl" overwrite="true"

 programName="XCNVO"/>

 <XsdSpecIn fileName="DFH0CSTDI.xsd overwrite="true"

 targetNamespace="http://www.DFH0CSTDI.com/schemas/DFH0CSTDIInterface"

 xsdNamespace="http://www.w3.org/2001/XMLSchema"

 localNamespace="http://www.DFH0CSTDI.com/schemas/DFH0CSTDIInterface"

 xsdPrefix="cbl"

 xsdElemName="dfhcommarea"/>

 <XsdSpecOut fileName="DFH0CSTDO.xsd" overwrite="true"

 targetNamespace="http://www.DFH0CSTDO.com/schemas/DFH0CSTDOInterface"

 xsdNamespace="http://www.w3.org/2001/XMLSchema"

 localNamespace="http://www.DFH0CSTDO.com/schemas/DFH0CSTDOInterface"

 xsdPrefix="cbl"

 xsdElemName="dfhcommarea"/>

 </XseSpec>

</Operation>

OperationProperty

Use this element to specify the properties for an operation.

Contained by

OperationPropertyArray

Contains

None

Attributes

 Name Values Required? Default Description

name soapOpStyle No Specifies the SOAP operation style. The

value must match the soapBindingStyle

in ServiceSpecification.xml.

value document | rpc document

name soapBodyUse No Specifies use of encoding style for SOAP

body.

value literal | encoded literal

Chapter 7. Batch Processor 61

Name Values Required? Default Description

name soapAction No Specifies the URI for the optional SOAP

action.

value URI none

Note: If you are generating artifacts for IMS SOAP Gateway you must specify soapAction property, for

example ″urn:IMSPHBK″. It should match the soapAction value in the CorrelatorSpec property. If you

don’t specify this property or if it does not match the CorrelatorSpec, it will cause a runtime error.

Example

<OperationPropertyArray>

 <OperationProperty name="soapOpStyle" value="document" />

 <OperationProperty name="soapBodyUse" value="literal" />

 <OperationProperty name="soapAction" value="urn:myaction" />

</OperationPropertyArray>

OperationPropertyArray

Use this element as the container for operation properties.

Contained by

Operation

Contains

OperationProperty

Attributes

None

Example

<OperationPropertyArray>

 <OperationProperty name="soapOpStyle" value="document" />

 <OperationProperty name="soapBindingStyle" value="document" />

 <OperationProperty name="soapBodyUse" value="literal" />

</OperationPropertyArray>

OutputMessage

Use this element to define messages for NOTIFICATION operations or REQUEST_RESPONSE

(SOLICIT_RESPONSE) operations if the input and output messages are of different types. Note that for

NOTIFICATION operations, you are allowed to specify only the OutputMessage. InputMessage is not

allowed and will cause unpredictable results during the generation process.

Contained by

Operation

Contains

ItemSelectionArray

62 Developing xml interfaces for COBOL applications

Attributes

 Name Required? Values Default Description

name No See Description esvc Specifies a name for the messages for

the WSDL file.

importDirectory No See Description The input directory Specifies the directory for the source

file.

importFile Yes (unless the

-s command

line option is

specified)

See Description The name provided

in the xsebatch

command-line

parameter -s.

Specifies the file name that contains the

data definition to be used in creating

the web service operation message

types.

Note: Only COBOL data definitions are

supported and are subject to the

restrictions that are specified in

WebSphere Developer documentation.

nativeTypeName No See Description For COBOL, the

name of the first

available level 01

data item name.

Specifies the name of the data type that

is to be imported from the importFile,

such as DFHCOMMAREA for a CICS

COBOL application. An error message

is generated on the console if a parse of

the importFile does not identify the

nativeTypeName as a valid data type.

Example

 <OutputMessage name="PhoneBookReply" importDirectory="." importFile="Ex01z.cbl" nativeTypeName="output-msg">

 <RedefinesArray>

 <RedefineSelection redefine="output-msg.redParent.redefd" useRedefinition="output-msg.redParent.redefd2"/>

 </RedefinesArray>

 <ItemSelectionArray>

 <ItemSelection itemName="output-msg.redParent"/>

 <ItemSelection itemName="output-msg.in-extn"/>

 <ItemSelection itemName="output-msg.in-zip"/>

 <ItemSelection itemName="output-msg.in-ll"/>

 </ItemSelectionArray>

 </OutputMessage>

RedefinesArray

Use this element as the container for REDEFINE item selections for COBOL.

Note: The default behavior for redefinitions when there are REDEFINES in the data but the

RedefinesArray element is omitted is to use the original definition of the items.

Contained by

InputMessage, InputOutputMessage, OutputMessage

Contains

RedefineSelection

Attributes

None

Chapter 7. Batch Processor 63

Example

<RedefinesArray>

 <RedefineSelection redefine="name.info" useRedefinition="name.last-name"/>

 <RedefineSelection redefine="address.zip-code" useRedefinition="province"/>

</RedefinesArray>

RedefineSelection

Use this element to select redefinitions for an item.

Contained by

RedefinesArray

Contains

None

Attributes

If necessary for uniqueness, qualify the data item names using the period-separated notation. For

example, use name info from the following data structure.

1 name.

 2 info pic x(100).

 2 last-name redefines info pic x(100).

 Name Values Required? Default Description

name redefine No Specifies the name of the data item to be

redefined.

Note: Redefinitions of redefined items

are not supported.

value none

name useRedefinition No Specifies the name of the data item to be

used. value none

Example

<RedefinesArray>

 <RedefineSelection redefine="name.info" useRedefinition="name.last-name"/>

 <RedefineSelection redefine="address.zip-code" useRedefinition="province"/>

</RedefinesArray>

ServiceProperty

Use this element to specify the properties for a service.

Contained by

ServicePropertyArray

Contains

None

64 Developing xml interfaces for COBOL applications

Attributes

 Name Values Required? Default Description

name portName No Specifies the name of the port element

in the WSDL file. value QNAME The name attribute

for the EISService

element (or if it is

not specified, the

value of -w

parameter from the

xsebatch command

line invocation)

concatenated with

the upper-cased

value of the type

attribute of the

EISService element.

name portType No Specifies the name of the port type

element in the WSDL file. value QNAME The name attribute

for the EISService

element (or if it is

not specified, the

value of -w

parameter from the

xsebatch command

line invocation)

concatenated with

the lower-cased

value of the type

attribute of the

EISService element.

name bindingName No Specifies the name of the binding

element in the WSDL file. value QNAME The name attribute

for the EISService

element (or if it is

not specified, the

value of -w

parameter from the

xsebatch command

line invocation)

concatenated with

the upper-cased

value of the type

attribute of the

EISService element

concatenated with

the word ″Binding″.

name soapTransport No Specifies the value for the transport

attribute of the binding element in the

WSDL file.

value URI http://schemas.xmlsoap.org/soap/http

name soapBindingStyle No Specifies the value of the style attribute

of binding element in the WSDL file.

The value must match the

soapOpStyle.in Operation properties.

value document | rpc document

Chapter 7. Batch Processor 65

Name Values Required? Default Description

name serviceName No Specifies the value of the name attribute

of service element in the WSDL file. value QNAME The name attribute

for the EISService

element (or if it is

not specified, the

value of -w

parameter from the

xsebatch command

line invocation)

concatenated with

the upper-cased

value of the type

attribute of the

EISService element

concatenated with

the word ″Service″.

Example

<ServicePropertyArray>

 <ServiceProperty name="bindingName" value="myBinding" />

 <ServiceProperty name="bindingType" value="SOAP" />

 <ServiceProperty name="soapTransport" value="http://schemas.xmlsoap.org/soap/http" />

 <ServiceProperty name="soapBindingStyle" value="document" />

</ServicePropertyArray>

ServicePropertyArray

Use this element as a container for the properties for a service.

Contained by

EISService

Contains

ServiceProperty

Attributes

None

Example

<ServicePropertyArray>

 <ServiceProperty name="bindingName" value="myBinding" />

 <ServiceProperty name="bindingType" value="SOAP" />

 <ServiceProperty name="soapTransport" value="http://schemas.xmlsoap.org/soap/http" />

 <ServiceProperty name="soapBindingStyle" value="document" />

</ServicePropertyArray>

WSBindSpec

Use this element of the ServiceSpecification.xml document to specify the generation options for the

Vendor WSBind file.

The Vendor WSBind file is used to install a new web service under CICS Transaction Server version 3.1

(and later). In order to generate a WSBind file, the driverType attribute in the DriverSpec element should

be set to ’WEB_SERVICES_CICS’.

66 Developing xml interfaces for COBOL applications

Contained by

XseSpec

Contains

None

Attributes

 Name Required? Values Default Description

fileName No See Description Data source file

name concatenated

with ″.wsbind″

Specifies the name of the output file.

overwrite No true | false true Specifies whether to overwrite the

output file if it exists.

pgmint No 2 | 1 2

(DFHCOMMAREA)

Specify whether the CICS application

program communicates via a

DFHCOMMAREA (2) or CONTAINER

(1).

contid No (Yes, if pgmint

is set to

CONTAINER)

See Description None If the CICS application program

(specified in businessPgmName

attribute of the DriverSpec element)

communicates via a CONTAINER,

specify the name of the CONTAINER

expected by program.

uri No See Description See Description Desired local URI to for the web

service, for example,

″/exampleApp/InquireSingle″. Note:

this is different that the location of the

web service for example,

http://server:port[local URI]. If you do

not specify this property it will have to

be defined at install time during

manual creation of the web service

resource definitions in CICS.

pipeline No See Description See Description The name of the CICS PIPELINE

resource under which this web service

should be installed. If you do not

specify this property it will have to be

defined at install time during manual

creation of the web service resource

definitions in CICS.

wsdlloc No See Description See Description Full HFS path to the WSDL file that

CICS should use for validation of SOAP

request and response messages, for

example,

″/u/svltest/pickup/inquireSingle.wsdl″.

If you do not specify this property it

can be defined at install time during

manual creation of the web service

resource definitions in CICS.

Example

<WSBindSpec fileName="DFH0XCMN.wsbind" overwrite="true" pgmint="2" uri="/exampleApp/InquireSingle " pipeline="PIPE8070" w

Chapter 7. Batch Processor 67

XsdSpecIn

Use this element of the ServiceProperties.xml document to specify the generation options for the XML

schema that corresponds to the input data structure.

Contained by

XseSpec

Contains

None

Attributes

 Name Required? Values Default Description

fileName No See Description Data source file

name concatenated

with ″I″

Specifies the name of the output file.

overwrite No true | false true Specifies whether to overwrite the

output file if it exists.

localNamespace No See Description http://www.w3.org/2001/XMLSchema

Note: Inbound

namespaces have no

effect on the code

generated in the

inbound converter.

Specifies the local namespace.

targetNamespace No See Description For a data source file

name foo:

http://www.fooI.com/schemas/fooIInterface

Specifies the target namespace.

xsdElemName No See Description Value of the

nativeTypeName

attribute in the

message specification

Specifies the global element name for

the schema.

xsdNamespace No See Description Value of the

nativeTypeName

attribute in the

message specification

Specifies the xsd namespace.

xsdPrefix No See Description cbl Specifies the xsd namespace prefix.

Example

<XsdSpecIn fileName="DFH0CSTDI.xsd" overwrite="true"

 targetNamespace="http://www.DFH0CSTDI.com/schemas/DFH0CSTDIInterface"

 xsdNamespace="http://www.w3.org/2001/XMLSchema"

 localNamespace="http://www.DFH0CSTDI.com/schemas/DFH0CSTDIInterface"

 xsdPrefix="cbl"

 xsdElemName="dfhcommarea"/>

XsdSpecOut

Use this element of the ServiceProperties.xml document to specify the generation options for the XML

schema that corresponds to the output data structure.

Contained by

XseSpec

68 Developing xml interfaces for COBOL applications

Contains

None

Attributes

 Name Required? Values Default Description

fileName No See Description Data source file

name concatenated

with ″O″

Specifies the name of the output file.

overwrite No true | false true Specifies whether to overwrite the

output file if it exists.

localNamespace No See Description http://www.w3.org/2001/XMLSchema Specifies the local namespace.

targetNamespace No See Description For a data source file

name foo:

http://www.fooO.com/schemas/fooIInterface

Specifies the target namespace.

xsdElemName No See Description Value of the

nativeTypeName

attribute in the

message specification

Specifies the global element name for

the schema.

xsdNamespace No See Description Value of the

nativeTypeName

attribute in the

message specification

Specifies the xsd namespace.

xsdPrefix No See Description cbl Specifies the xsd namespace prefix.

Example

<XsdSpecOut fileName="DFH0CSTDO.xsd" overwrite="true"

 targetNamespace="http://www.DFH0CSTDO.com/schemas/DFH0CSTDOInterface"

 xsdNamespace=http://www.w3.org/2001/XMLSchema

 localNamespace=http://www.DFH0CSTDO.com/schemas/DFH0CSTDOInterface

 xsdPrefix="cbl"

 xsdElemName="dfhcommarea"/>

XseSpec

Use this element as the container for specifying generation options for the set of converters, driver, and

XSD files.

Contained by

Operation

Contains

ConverterSpecIn, ConverterSpecOut, XsdSpecIn, XsdSpecOut, CorrelatorSpec, DriverSpec

Attributes

None

Example

<XseSpec>

 <DriverSpec fileName=""DFH0CSTDD.cbl" driverType="IMS SOAP Gateway" programName="XCNVD" businessPgmName="Ex01" />
 <ConverterSpecIn fileName="DFH0CSTDI.cbl" overwrite="true" programName="XCNVI"/>

Chapter 7. Batch Processor 69

<ConverterSpecOut fileName="DFH0CSTDO.cbl" overwrite="true" programName="XCNVO"/>

 <XsdSpecIn fileName="DFH0CSTDI.xsd" overwrite="true"

 targetNamespace="http://www.DFH0CSTDI.com/schemas/DFH0CSTDIInterface"

 xsdNamespace="http://www.w3.org/2001/XMLSchema"

 localNamespace="http://www.DFH0CSTDI.com/schemas/DFH0CSTDIInterface"

 xsdPrefix="cbl"

 xsdElemName="dfhcommarea" />

 <XsdSpecOut fileName="DFH0CSTDO.xsd" overwrite="true"

 targetNamespace="http://www.DFH0CSTDO.com/schemas/DFH0CSTDOInterface"

 xsdNamespace="http://www.w3.org/2001/XMLSchema"

 localNamespace="http://www.DFH0CSTDO.com/schemas/DFH0CSTDOInterface"

 xsdPrefix="cbl"

 xsdElemName="dfhcommarea" />

</XseSpec>

ServiceSpecification.xml sample

<EISProject name="CICSSample">

 <!-- Use the ImportPropertyArray to override values from PlatformProperties.xml -->

 <ImportPropertyArray type="Cobol">

 <ImportProperty name="com.ibm.etools.cobol.COBOL_TRUNC" value="STD" />

 <ImportProperty name="com.ibm.etools.cobol.COBOL_NSYMBOL" value="DBCS" />

 <ImportProperty name="com.ibm.etools.cobol.COBOL_QUOTE" value="DOUBLE" />

 </ImportPropertyArray>

 <CodegenPropertyArray type="Cobol">

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_PROG_NAME" value="XCNV"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_AUTH_NAME" value="WSED"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_IN_CP_LIST" value="1140"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_CP_LIST" value="1140"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_OUT_CP_LIST" value="1140"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_DEC_COMMA" value=" false"/>

 <CodegenProperty name="com.ibm.etools.xmlent.ui.GEN_FLAT_GEN" value=" false"/>

 </CodegenPropertyArray>

 <EISService name="CustomerInfo" type="CICS" targetNamespace="http://cics.sample" generateConverters="true" generate
 <!-- Use the ConnectionPropertyArray to override values from PlatformProperties.xml -->

 <ConnectionPropertyArray>

 <ConnectionProperty name="connectionURI" value="http://winmvsn0.cpit.hursley.ibm.com:8888/CICS/XMLS
 </ConnectionPropertyArray>

 <ServicePropertyArray>

 <ServiceProperty name="bindingName" value="myBinding" />

 <ServiceProperty name="soapTransport" value="http://schemas.xmlsoap.org/soap/http" />

 <ServiceProperty name="soapBindingStyle" value="document" />

 </ServicePropertyArray>

 <Operation name="getCustomerInfo" type="REQUEST_RESPONSE">

 <OperationPropertyArray>

 <OperationProperty name="soapOpStyle" value="document" />

 <OperationProperty name="soapBodyUse" value="literal" />

 <OperationProperty name="soapAction" value="http://example.com/getCustomerInfo" />

 </OperationPropertyArray>

 <InputOutputMessage name="CustomerDetails" importDirectory="." importFile="DFH0ACTD.cbl" nativeType
 <RedefinesArray>

 <RedefineSelection redefine="name.info" useRedefinition="name.last-name"/>

 <RedefineSelection redefine="address.zip-code" useRedefinition="province"/>

 </RedefinesArray>

 </InputOutputMessage>

 <XseSpec>

 <DriverSpec fileName=""DFH0CSTDD.cbl" driverType="IMS SOAP Gateway" programName="XCNVD" businessP
 <ConverterSpecIn fileName="DFH0CSTDI.cbl" overwrite="true" programName="XCNVI"/>

 <ConverterSpecOut fileName="DFH0CSTDO.cbl" overwrite="true" programName="XCNVO"/>

 <XsdSpecIn fileName="DFH0CSTDI.xsd"

 overwrite="true"

 targetNamespace="http://www.DFH0CSTDI.com/schemas/DFH0CSTDIInterface"

 xsdNamespace="http://www.w3.org/2001/XMLSchema"

 localNamespace="http://www.DFH0CSTDI.com/schemas/DFH0CSTDIInterface"

70 Developing xml interfaces for COBOL applications

xsdPrefix="cbl"

 xsdElemName="dfhcommarea"

 />

 <XsdSpecOut fileName="DFH0CSTDO.xsd"

 overwrite="true"

 targetNamespace="http://www.DFH0CSTDO.com/schemas/DFH0CSTDOInterface"

 xsdNamespace="http://www.w3.org/2001/XMLSchema"

 localNamespace="http://www.DFH0CSTDO.com/schemas/DFH0CSTDOInterface"

 xsdPrefix="cbl"

 xsdElemName="dfhcommarea"

 />

 </XseSpec>

 </Operation>

 </EISService>

</EISProject>

Related references

ServiceSpecification.xml

Schema for ServiceSpecification.xml

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="ConnectionProperty">

 <xsd:complexType>

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 <xsd:attribute name="value" type="xsd:string" use="required"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="ConnectionPropertyArray">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="1" ref="ConnectionProperty"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="ConverterSpecIn">

 <xsd:complexType>

 <xsd:attribute name="fileName" type="xsd:string" use="optional"/>

 <xsd:attribute name="overwrite" type="xsd:boolean" use="optional"/>

 <xsd:attribute name="programName" type="xsd:string" use="optional"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="ConverterSpecOut">

 <xsd:complexType>

 <xsd:attribute name="fileName" type="xsd:string" use="optional"/>

 <xsd:attribute name="overwrite" type="xsd:boolean" use="optional"/>

 <xsd:attribute name="programName" type="xsd:string" use="optional"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="CorrelatorSpec">

 <xsd:complexType>

 <xsd:attribute name="fileName" type="xsd:string" use="optional"/>

 <xsd:attribute name="overwrite" type="xsd:boolean" use="optional"/>

 <xsd:attribute name="soapAction" type="xsd:string" use="optional"/>

 <xsd:attribute name="adapterType" type="xsd:string" use="optional"/>

 <xsd:attribute name="connectionBundleName" use="optional">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="20"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:attribute>

 <xsd:attribute name="socketTimeout" type="xsd:nonNegativeInteger" use="optional"/>

 <xsd:attribute name="executionTimeout" use="optional">

Chapter 7. Batch Processor 71

<xsd:simpleType>

 <xsd:restriction base="xsd:nonNegativeInteger">

 <xsd:maxInclusive value="3600000"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:attribute>

 <xsd:attribute name="ltermName" use="optional">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="8"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:attribute>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="WSBindSpec">

 <xsd:complexType>

 <xsd:attribute name="fileName" type="xsd:string" use="optional"/>

 <xsd:attribute name="overwrite" type="xsd:boolean" use="optional"/>

 <xsd:attribute name="pgmint" type="xsd:int" use="optional"/>

 <xsd:attribute name="contid" type="xsd:string" use="optional"/>

 <xsd:attribute name="uri" type="xsd:string" use="optional"/>

 <xsd:attribute name="pipeline" type="xsd:string" use="optional"/>

 <xsd:attribute name="wsdlloc" type="xsd:string" use="optional"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="DriverSpec">

 <xsd:complexType>

 <xsd:attribute name="driverType" type="xsd:string" use="optional"/>

 <xsd:attribute name="fileName" type="xsd:string" use="optional"/>

 <xsd:attribute name="overwrite" type="xsd:boolean" use="optional"/>

 <xsd:attribute name="programName" type="xsd:string" use="optional"/>

 <xsd:attribute name="businessPgmName" type="xsd:string" use="optional"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="EISProject">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="1" minOccurs="0" ref="ImportPropertyArray"/>

 <xsd:element maxOccurs="1" minOccurs="0" ref="CodegenPropertyArray"/>

 <xsd:element maxOccurs="unbounded" minOccurs="1" ref="EISService"/>

 </xsd:sequence>

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="EISService">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="1" minOccurs="0" ref="ServicePropertyArray"/>

 <xsd:element maxOccurs="1" minOccurs="0" ref="ConnectionPropertyArray"/>

 <xsd:element ref="Operation"/>

 </xsd:sequence>

 <xsd:attribute name="generateConverters" type="xsd:boolean" use="optional"/>

 <xsd:attribute name="generateSeparateXSD" type="xsd:boolean" use="optional"/>

 <xsd:attribute name="generateWSDL" type="xsd:boolean" use="optional"/>

 <xsd:attribute name="name" type="xsd:string" use="optional"/>

 <xsd:attribute name="targetNamespace" type="xsd:string" use="optional"/>

 <xsd:attribute name="type" type="xsd:string" use="optional"/>

 <xsd:attribute name="targetFilesURI" type="xsd:string" use="optional"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="ImportProperty">

 <xsd:complexType>

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 <xsd:attribute name="value" type="xsd:string" use="required"/>

 </xsd:complexType>

 </xsd:element>

72 Developing xml interfaces for COBOL applications

<xsd:element name="ImportPropertyArray">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="1" ref="ImportProperty"/>

 </xsd:sequence>

 <xsd:attribute name="type" type="xsd:string" use="optional"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="ServiceProperty">

 <xsd:complexType>

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 <xsd:attribute name="value" type="xsd:string" use="required"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="ServicePropertyArray">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="1" ref="ServiceProperty"/>

 </xsd:sequence>

 <xsd:attribute name="type" type="xsd:string" use="optional"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="CodegenProperty">

 <xsd:complexType>

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 <xsd:attribute name="value" type="xsd:string" use="required"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="CodegenPropertyArray">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="1" ref="CodegenProperty"/>

 </xsd:sequence>

 <xsd:attribute name="type" type="xsd:string" use="optional"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="InputMessage">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="1" minOccurs="0" ref="RedefinesArray"/>

 <xsd:element maxOccurs="1" minOccurs="0" ref="ItemSelectionArray"/>

 </xsd:sequence>

 <xsd:attribute name="importDirectory" type="xsd:string" use="optional"/>

 <xsd:attribute name="importFile" type="xsd:string" use="required"/>

 <xsd:attribute name="name" type="xsd:string" use="optional"/>

 <xsd:attribute name="nativeTypeName" type="xsd:string" use="optional"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="InputOutputMessage">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="1" minOccurs="0" ref="RedefinesArray"/>

 <xsd:element maxOccurs="1" minOccurs="0" ref="ItemSelectionArray"/>

 </xsd:sequence>

 <xsd:attribute name="importDirectory" type="xsd:string" use="optional"/>

 <xsd:attribute name="importFile" type="xsd:string" use="required"/>

 <xsd:attribute name="name" type="xsd:string" use="optional"/>

 <xsd:attribute name="nativeTypeName" type="xsd:string" use="optional"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="ItemSelection">

 <xsd:complexType>

 <xsd:attribute name="itemName" type="xsd:string" use="required"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="ItemSelectionArray">

 <xsd:complexType>

Chapter 7. Batch Processor 73

<xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="1" ref="ItemSelection"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="Operation">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="1" minOccurs="0" ref="OperationPropertyArray"/>

 <xsd:choice>

 <xsd:sequence>

 <xsd:element ref="InputOutputMessage"/>

 <xsd:element maxOccurs="1" minOccurs="0" ref="XseSpec"/>

 </xsd:sequence>

 <xsd:sequence>

 <xsd:element ref="InputMessage"/>

 <xsd:element maxOccurs="1" minOccurs="0" ref="XseSpec"/>

 </xsd:sequence>

 <xsd:sequence>

 <xsd:element ref="OutputMessage"/>

 <xsd:element maxOccurs="1" minOccurs="0" ref="XseSpec"/>

 </xsd:sequence>

 </xsd:choice>

 </xsd:sequence>

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 <xsd:attribute name="type" type="xsd:string" use="required"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="OperationProperty">

 <xsd:complexType>

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 <xsd:attribute name="value" type="xsd:string" use="required"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="OperationPropertyArray">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="1" ref="OperationProperty"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="OutputMessage">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="1" minOccurs="0" ref="RedefinesArray"/>

 <xsd:element maxOccurs="1" minOccurs="0" ref="ItemSelectionArray"/>

 </xsd:sequence>

 <xsd:attribute name="importDirectory" type="xsd:string" use="optional"/>

 <xsd:attribute name="importFile" type="xsd:string" use="required"/>

 <xsd:attribute name="name" type="xsd:string" use="optional"/>

 <xsd:attribute name="nativeTypeName" type="xsd:string" use="optional"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="RedefineSelection">

 <xsd:complexType>

 <xsd:attribute name="redefine" type="xsd:string" use="required"/>

 <xsd:attribute name="useRedefinition" type="xsd:string" use="required"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="RedefinesArray">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="1" ref="RedefineSelection"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="XsdSpecIn">

74 Developing xml interfaces for COBOL applications

<xsd:complexType>

 <xsd:attribute name="fileName" type="xsd:string" use="optional"/>

 <xsd:attribute name="localNamespace" type="xsd:string" use="optional"/>

 <xsd:attribute name="overwrite" type="xsd:boolean" use="optional"/>

 <xsd:attribute name="targetNamespace" type="xsd:string" use="optional"/>

 <xsd:attribute name="xsdElemName" type="xsd:string" use="optional"/>

 <xsd:attribute name="xsdNamespace" type="xsd:string" use="optional"/>

 <xsd:attribute name="xsdPrefix" type="xsd:string" use="optional"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="XsdSpecOut">

 <xsd:complexType>

 <xsd:attribute name="fileName" type="xsd:string" use="optional"/>

 <xsd:attribute name="localNamespace" type="xsd:string" use="optional"/>

 <xsd:attribute name="overwrite" type="xsd:boolean" use="optional"/>

 <xsd:attribute name="targetNamespace" type="xsd:string" use="optional"/>

 <xsd:attribute name="xsdElemName" type="xsd:string" use="optional"/>

 <xsd:attribute name="xsdNamespace" type="xsd:string" use="optional"/>

 <xsd:attribute name="xsdPrefix" type="xsd:string" use="optional"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="XseSpec">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="DriverSpec"/>

 <xsd:element maxOccurs="1" minOccurs="0" ref="ConverterSpecIn"/>

 <xsd:element maxOccurs="1" minOccurs="0" ref="ConverterSpecOut"/>

 <xsd:element maxOccurs="1" minOccurs="0" ref="XsdSpecIn"/>

 <xsd:element maxOccurs="1" minOccurs="0" ref="XsdSpecOut"/>

 <xsd:element maxOccurs="1" minOccurs="0" ref="CorrelatorSpec"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

Related references

ServiceSpecification.xml

Chapter 7. Batch Processor 75

76 Developing xml interfaces for COBOL applications

Chapter 8. Mapping reference

The following mapping reference topics are included in this section:

v Mapping reference information

v COBOL language types

v XML and COBOL type compatibility

v XML and COBOL structure compatibility

v XML types derived from COBOL

v Isomorphic and non-isomorphic element mapping

Related concepts

Introduction to XML Services for the Enterprise

XML to COBOL mapping tools

Related tasks

Creating a web service interface with the Web Services Enablement wizard

Setting preferences for XML Services for the Enterprise

Mapping XML to COBOL

Creating a mapping session file

Editing a mapping session file

 77

Mapping reference information

 Table 1. The values of the fundamental facets for each vbuilt-inv XML Schema datatype.

Datatype ordered bounded cardinality numeric

primitive

string false false countably infinite false

boolean false false finite false

float total true finite true

double total true finite true

decimal total false countably infinite true

duration partial false countably infinite false

dateTime partial false countably infinite false

time partial false countably infinite false

date partial false countably infinite false

gYearMonth partial false countably infinite false

gYear partial false countably infinite false

gMonthDay partial false countably infinite false

gDay partial false countably infinite false

gMonth partial false countably infinite false

hexBinary false false countably infinite false

base64Binary false false countably infinite false

anyURI false false countably infinite false

QName false false countably infinite false

NOTATION false false countably infinite false

78 Developing xml interfaces for COBOL applications

Table 1. The values of the fundamental facets for each vbuilt-inv XML Schema datatype. (continued)

Datatype ordered bounded cardinality numeric

derived

normalizedString false false countably infinite false

token false false countably infinite false

language false false countably infinite false

IDREFS false false countably infinite false

ENTITIES false false countably infinite false

NMTOKEN false false countably infinite false

NMTOKENS false false countably infinite false

Name false false countably infinite false

NCName false false countably infinite false

ID false false countably infinite false

IDREF false false countably infinite false

ENTITY false false countably infinite false

integer total false countably infinite true

nonPositiveInteger total false countably infinite true

negativeInteger total false countably infinite true

long total true finite true

int total true finite true

short total true finite true

byte total true finite true

nonNegativeInteger total false countably infinite true

unsignedLong total true finite true

unsignedInt total true finite true

unsignedShort total true finite true

unsignedByte total true finite true

positiveInteger total false countably infinite true

COBOL language types

The COBOL language types are described in the Enterprise COBOL Language reference manual and are

comprised of the following classes and categories:

Chapter 8. Mapping reference 79

Table 2. COBOL Language type classes and categories

Level of item Class Category

Elementary Alphabetic Alphabetic

Numeric Numeric

Internal floating-point

External floating-point

Alphanumeric Numeric-edited

Alphanumeric-edited

Alphanumeric

DBCS

National National

Group Alphanumeric Alphabetic

Numeric

Internal floating-point

External floating-point

Numeric-edited

Alphanumeric-edited

Alphanumeric

DBCS

National

XML and COBOL type compatibility

In order for your mapping selection to be valid, the COBOL elementary items and XML elements you are

trying to match must have similar (compatible) types. In other words, the COBOL data class or category

of the mapped item should match the data category of the XML elements. For example, a COBOL

numeric item should only be matched with an XML element which could be described by a built-in

numeric XML schema type. The following table describes relationship between COBOL data classes and

categories and the XML Schema types. Note that you cannot map COBOL data items that do not have

category and class (for example, PROCEDURE POINTER).

80 Developing xml interfaces for COBOL applications

Table 3. Mapping of built-in XML types to COBOL data classes and categories

XML Datatype

COBOL data Class or

Category

Default Inbound

Conversion

Default Outbound

Conversion1

primitive

string

Alphabetic,

Alphanumeric, National,

DBCS, Numeric, Numeric

edited2

MOVE, NUMVAL MOVE

boolean Alphabetic, Numeric MOVE, NUMVAL MOVE

float Numeric, Numeric-edited MOVE, NUMVAL MOVE

double Numeric, Numeric-edited MOVE, NUMVAL MOVE

decimal Numeric, Numeric-edited MOVE, NUMVAL MOVE

duration Alphanumeric, National N/A N/A

dateTime Alphanumeric, National N/A N/A

time Alphanumeric, National N/A N/A

date Alphanumeric, National N/A N/A

gYearMonth Alphanumeric, National N/A N/A

gYear Alphanumeric, National N/A N/A

gMonthDay Alphanumeric, National N/A N/A

gDay Alphanumeric, National N/A N/A

gMonth Alphanumeric, National N/A N/A

hexBinary Alphanumeric, National N/A N/A

base64Binary Alphanumeric, National N/A N/A

anyURI Alphanumeric, National N/A N/A

QName Alphanumeric, National N/A N/A

NOTATION Alphanumeric, National N/A N/A

Chapter 8. Mapping reference 81

Table 3. Mapping of built-in XML types to COBOL data classes and categories (continued)

XML Datatype

COBOL data Class or

Category

Default Inbound

Conversion

Default Outbound

Conversion1

derived

normalizedString

Alphabetic,

Alphanumeric, National

N/A N/A

token

Alphabetic,

Alphanumeric, National

N/A N/A

language

Alphabetic,

Alphanumeric, National

N/A N/A

IDREFS

Alphabetic,

Alphanumeric, National

N/A N/A

ENTITIES

Alphabetic,

Alphanumeric, National

N/A N/A

NMTOKEN

Alphabetic,

Alphanumeric, National

N/A N/A

NMTOKENS

Alphabetic,

Alphanumeric, National

N/A N/A

Name

Alphabetic,

Alphanumeric, National

N/A N/A

NCName

Alphabetic,

Alphanumeric, National

N/A N/A

ID

Alphabetic,

Alphanumeric, National

N/A N/A

IDREF

Alphabetic,

Alphanumeric, National

N/A N/A

ENTITY

Alphabetic,

Alphanumeric, National

N/A N/A

integer

Numeric, Alphanumeric2,

Numeric-edited

MOVE, NUMVAL MOVE

nonPositiveInteger

Numeric, Alphanumeric2,

Numeric-edited

MOVE, NUMVAL MOVE

negativeInteger

Numeric, Alphanumeric2,

Numeric-edited

MOVE, NUMVAL MOVE

long

Numeric, Alphanumeric2,

Numeric-edited

MOVE, NUMVAL MOVE

int

Numeric, Alphanumeric2,

Numeric-edited

MOVE, NUMVAL MOVE

short

Numeric, Alphanumeric2,

Numeric-edited

MOVE, NUMVAL MOVE

byte

Numeric, Alphanumeric2,

Numeric-edited

MOVE, NUMVAL MOVE

nonNegativeInteger

Numeric, Alphanumeric2,

Numeric-edited

MOVE, NUMVAL MOVE

unsignedLong

Numeric, Alphanumeric2,

Numeric-edited

MOVE, NUMVAL MOVE

unsignedInt

Numeric, Alphanumeric2,

Numeric-edited

MOVE, NUMVAL MOVE

unsignedShort

Numeric, Alphanumeric2,

Numeric-edited

MOVE, NUMVAL MOVE

unsignedByte

Numeric, Alphanumeric2,

Numeric-edited

MOVE, NUMVAL MOVE

82 Developing xml interfaces for COBOL applications

Table 3. Mapping of built-in XML types to COBOL data classes and categories (continued)

XML Datatype

COBOL data Class or

Category

Default Inbound

Conversion

Default Outbound

Conversion1

positiveInteger

Numeric,

Alphanumeric2,

Numeric-edited

MOVE, NUMVAL MOVE

1The mapping tools will not enforce matching rules for user-defined simple XML schema types that

are derived by constraint. For example, if for a base=″int″, the user defined type has a constraint of

minInclusive value=″-99″ we may not be able to enforce the minInclusive constraint.

2 Valid MOVEs between numeric and non-numeric types in XML and COBOL follow the rules

described in the COBOL Language Reference Manual

XML and COBOL structure compatibility

You can match subordinate elementary COBOL group items to simple type elements of XML complex

types.

Table 3 shows XML structure derivation from COBOL groups.

 Table 4. XML and COBOL structure matching

COBOL structure Matching XML structure

COBOL Redefine Will always be defined as a group. If it is the outermost type then it will also be typed.

<complexType name="RedefinedElementName+_">

 <xsd:group ref="RedefinedElementName+_"/>

</complexType>

If it is a contained redefine then

<xsd:group name="RedefinedElementName+_">

 <xsd:choice>

 </xsd:choice>

</xsd:complexType>

If the contained group is an array then it will also be typed.

COBOL Group Will always be defined as a group. If it is the outermost type then it will also be typed.

<complexType name="DFHCOMMAREA">

 <xsd:group ref="DFHCOMMAREA"/>

</complexType>

If it is a contained group then

<xsd:group name="Mygroup">

 <xsd:sequence>

 </xsd:sequence>

</xsd:complexType>

If the contained group is an array then it will also be typed.

Chapter 8. Mapping reference 83

Table 4. XML and COBOL structure matching (continued)

COBOL structure Matching XML structure

COBOL OCCURS - fixed

length array

05 STOCKQUOTES

COMP-1 OCCURS 5

TIMES.

For web services support:

<complexType name="ArrayOfXXXXX">

 <complexContent>

 <restriction base="soapenc:Array">

 <attribute ref="soapenc:arrayType" wsdl:arrayType="xsd:float[5]"/>

 </restriction>

 </complexContent>

</complexType>

For general support:

<element name="STOCKQUOTES" minOccurs="5" maxOccurs="5" type="xsd:float"/>

COBOL OCCURS

DEPENDING ON -

variable length array

(ODO)

<element name="numStockQuotes">

<xsd:simpleType>

<xsd:restriction base="xsd:short">

 <xsd:minInclusive value="00"/>

 <xsd:maxInclusive value="99"/>

</xsd:restriction>

</xsd:simpleType>

</element>

<xsd:element name="stockQuotes">

For web services support:

<complexType name="ArrayOfXXXXX">

 <complexContent>

 <xsd:annotation>

 <xsd:appinfo> <dependingOn>numStockQuotes</dependingOn>

 </xsd:appinfo>

 </xsd:annotation>

 <restriction base="soapenc:Array">

 <attribute ref="soapenc:arrayType" wsdl:arrayType="xsd:float[]"/>

 </restriction>

 </complexContent>

 </complexType>

</element>

For general support:

<element name="STOCKQUOTES" minOccurs="1" maxOccurs="5" type="xsd:float">

<xsd:annotation>

 <xsd:appinfo> <dependingOn>numStockQuotes</dependingOn>

 </xsd:appinfo>

 </xsd:annotation>

</element>

XML types derived from COBOL

The table below shows how XML types are derived from COBOL types by the XML converter generators.

 Table 5. COBOL to XML type derivation

COBOL Type

COBOLUsageValue+

COBOL ModelType

properties Corresponding XSD Type

COBOL Alphabetic Type

05 Fname PIC A(20).)

<xsd:simpleType>

 <restriction base="xsd:string">

 <length value="n"/>

 </restriction>

</simpleType>

84 Developing xml interfaces for COBOL applications

Table 5. COBOL to XML type derivation (continued)

COBOL Type

COBOLUsageValue+

COBOL ModelType

properties Corresponding XSD Type

COBOL Alphanumeric Type <xsd:simpleType>

 <restriction base="xsd:string">

 <length value="n"/>

 </restriction>

</simpleType>

COBOL Numeric Type

display, binary, comp, comp-4,

comp-5 ->display/binary

Display/binary +decimal <xsd:simpleType>

<xsd:restriction base="xsd:decimal">

 <xsd:minInclusive value="xx.x"/>

 <xsd:maxInclusive value="yy.y"/>

</xsd:restriction>

</xsd:simpleType>

Display/binary +~decimal

+ number of nines <= 4 +

sign

<xsd:simpleType>

<xsd:restriction base="xsd:short">

 <xsd:minInclusive value="xx"/>

 <xsd:maxInclusive value="yy"/>

</xsd:restriction>

</xsd:simpleType>

Display/binary +~decimal

+ 4 <number of nines <=

9+ sign

<xsd:simpleType>

<xsd:restriction base="xsd:int">

 <xsd:minInclusive value="xx"/>

 <xsd:maxInclusive value="yy"/>

</xsd:restriction>

</xsd:simpleType>

COBOL Numeric Type

Display, binary, comp, comp-4,

comp-5 ->display/binary

Display/binary +~decimal

+ 9 <number of nines +sign

<xsd:simpleType>

<xsd:restriction base="xsd:long">

 <xsd:minInclusive value="xx"/>

 <xsd:maxInclusive value="yy"/>

</xsd:restriction>

</xsd:simpleType>

Display/binary +~decimal

+ number of nines <= 4 +

no sign

<xsd:simpleType>

<xsd:restriction base="xsd:short">

 <xsd:minInclusive value="xx"/>

 <xsd:maxInclusive value="yy"/>

</xsd:restriction>

</xsd:simpleType>

Display/binary +~decimal

+ 4 <number of nines <=

9+ no sign

<xsd:simpleType>

<xsd:restriction base="xsd:int">

 <xsd:minInclusive value="xx"/>

 <xsd:maxInclusive value="yy"/>

</xsd:restriction>

</xsd:simpleType>

Display/binary +~decimal

+ 9 <number of nines +

nosign

<xsd:simpleType>

<xsd:restriction base="xsd:long">

 <xsd:minInclusive value="xx"/>

 <xsd:maxInclusive value="yy"/>

</xsd:restriction>

</xsd:simpleType>

packed-decimal, comp-3 ->

packedDecimal

packedDecimal <xsd:simpleType>

<xsd:restriction base="xsd:decimal">

 <xsd:minInclusive value="xx.x"/>

 <xsd:maxInclusive value="yy.y"/>

</xsd:restriction>

</xsd:simpleType>

Chapter 8. Mapping reference 85

Table 5. COBOL to XML type derivation (continued)

COBOL Type

COBOLUsageValue+

COBOL ModelType

properties Corresponding XSD Type

comp-1 -> float float <xsd:simpleType>

<xsd:restriction base="xsd:float">

 <xsd:minInclusive value="xx.x"/>

 <xsd:maxInclusive value="yy.y"/>

</xsd:restriction>

</xsd:simpleType>

comp-2 -> double double xsd:simpleType>

<xsd:restriction base="xsd:double">

 <xsd:minInclusive value="xx.x"/>

 <xsd:maxInclusive value="yy.y"/>

</xsd:restriction>

</xsd:simpleType>

COBOL Alphanumeric-edited

Type

<xsd:simpleType>

 <restriction base="string">

 <length value="n"/>

 </restriction>

</simpleType>

COBOL Numeric-edited Type <xsd:simpleType>

 <restriction base="string">

 <length value="n"/>

 </restriction>

</simpleType>

COBOL DBCS Type DBCS <xsd:simpleType>

 <restriction base="string">

 <length value="n"/>

 </restriction>

</simpleType>

COBOL External floating point

Type

<xsd:simpleType>

 <restriction base="string">

 <length value="n"/>

 </restriction>

</simpleType>

COBOL National (Unicode)

Type

Data stored in Unicode

format

COBOL Address Type - not supported -

COBOL Object reference Type - not supported -

COBOL Level 88

05 TXN-Resp-Code PIC X(3)

 88 Business-Code value ″AAA″ THRU ″XXX″

 88 Business-Error value ″XYX″ THRU ″ZYX″

 88 Completed-Code value ″COM″

<xsd:element name="TXN_Resp_Code">

 <xsd:annotation>

 <xsd:appinfo>

<level88>Business_Code value "AAA" THRU "XXX"</level88>

<level88>Business_Error value "XYX" THRU "ZYX"</level88>

<level88>Completed_Code value "COM"</level88>

<level88></level88>

<level88></level88>

 </xsd:appinfo>

 </xsd:annotation>

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:length value="3"/>

 </xsd:restriction>

 </xsd:simpleType>

</xsd:element>

86 Developing xml interfaces for COBOL applications

Isomorphic and non-isomorphic element mapping

The following two sets are isomorphic structures (an XML instance document and a COBOL data

structure) and both have isomorphic element mapping:

The following two non-isomorphic structures (an XML instance document and a COBOL data structure)

have isomorphic subsets and show isomorphic element mapping:

The following two isomorphic structures (an XML instance document and a COBOL data structure) have

non-isomorphic element mapping:

Chapter 8. Mapping reference 87

The following two non-isomorphic structures (an XML instance document and a COBOL data structure)

have non-isomorphic element mapping:

88 Developing xml interfaces for COBOL applications

Chapter 9. The CICS catalog manager example application

The CICS catalog example application is a working COBOL application that is designed to illustrate best

practice when connecting CICS applications to external clients and servers.

The example is constructed around a simple sales catalog and order processing application, in which the

end user can perform these functions:

v List the items in a catalog.

v Inquire on individual items in the catalog.(inquireSingle)

v Order items from the catalog.

The catalog is implemented as a VSAM file.

Installation of the base catalog manager application is covered in the CICS 3.1 Transaction Server

documentation. A web client front end is provided with the catalog manager application. Configuration

of the web client is also described in the CICS 3.1 Transaction Server documentation. The web client calls

multiple web services that are provided by the base catalog example application after it has been enabled

for web services.

The base application

The base application, with its 3270 user interface, provides functions with which you can list the contents

of a stored catalog, select an item from the list, and enter a quantity to order. The application has a

modular design which makes it simple to extend the application to support newer technology, such as

Web services.

Figure 1 shows the structure of the base application.

Installing and setting up the base application

Before you can run the base application you must define and populate two VSAM data sets, and install

two transaction definitions.

BMS
presentation

manager

Catalog
manager

Data
handler
(stub)

Data
handler
(VSAM)

Dispatch
manager

Stock
manager

VSAM

External
dispatch
manager

Figure 1. Structure of the base application

 89

Creating and defining the VSAM data sets

The example application uses two KSDS VSAM data sets to be defined and populated. One data set

contains configuration information for the example application. The other contains the sales catalog.

1. Locate the JCL to create the VSAM data sets. During CICS installation, the JCL is placed in the

hlq.SDFHSAMP library:

v Member DFH$ECNF contains the JCL to generate the configuration data set.

v Member DFH$ECAT contains the JCL to generate the catalog data set.
2. Modify the JCL and access method services commands.

a. Supply a valid JOB card.

b. Supply a suitable high level qualifier for the data set names in the access method services

commands. As supplied, the JCL uses a high level qualifier of HLQ.

The following command defines the catalog file:

DEFINE CLUSTER (NAME(hlq.EXMPLAPP.catname)-

 TRK(1 1) -

 KEYS(4 0) -

 RECORDSIZE(80,80) -

 SHAREOPTIONS(2 3) -

 INDEXED -

) -

 DATA (NAME(hlq.EXMPLAPP.catname.DATA) -

) -

 INDEX (NAME(hlq.EXMPLAPP.catname.INDEX) -

)

where

v hlq is a high level qualifier of your choice

v catname is a name of your choice. The name used in the example application as supplied is

EXMPCAT.

.

The following command defines the configuration file:

DEFINE CLUSTER (NAME(hlq.EXMPLAPP.EXMPCONF)-

 TRK(1 1) -

 KEYS(9 0) -

 RECORDSIZE(350,350) -

 SHAREOPTIONS(2 3) -

 INDEXED -

) -

 DATA (NAME(hlq.EXMPLAPP.EXMPCONF.DATA) -

) -

 INDEX (NAME(hlq.EXMPLAPP.EXMPCONF.INDEX) -

)

where hlq is a high level qualifier of your choice.
3. Run both jobs to create and populate the data sets.

4. Use the CEDA transaction to create a FILE definition for the catalog file.

a. Enter the following: CEDA DEF FILE(EXMPCAT)G(EXAMPLE). Alternatively, you can copy the FILE

definition from CICS supplied group DFH$EXBS.

b. Enter the following additional attributes:

 DSNAME(hlq.EXMPLAPP.EXMPCAT)

 ADD(YES)

 BROWSE(YES)

 DELETE(YES)

 READ(YES)

 UPDATE(YES)

c. Use the default values for all other attributes.

90 Developing xml interfaces for COBOL applications

5. Use the CEDA transaction to create a FILE definition for the configuration file.

a. Enter the following: CEDA DEF FILE(EXMPCONF) G(EXAMPLE). Alternatively, you can copy the FILE

definition from CICS supplied group DFH$EXBS.

b. Enter the following additional attributes:

 DSNAME(hlq.EXMPLAPP.EXMPCONF)

 ADD(YES)

 BROWSE(YES)

 DELETE(YES)

 READ(YES)

 UPDATE(YES)

c. Use the default values for all other attributes.

Defining the 3270 interface

The example application is supplied with a 3270 user interface to run the application and to customize it.

The user interface consists of two transactions, EGUI and ECFG.

Use the CEDA transaction to create TRANSACTION definitions for both transactions.

1. To define transaction EGUI, enter the following: CEDA DEF TRANS (EGUI) G(EXAMPLE) PROG(DFH0XGUI).

2. To define transaction ECFG, enter the following: CEDA DEF TRANS (ECFG) G(EXAMPLE) PROG(DFH0XCFG)

Use the default values for all other attributes.

Note: The correct operation of the example application does not depend on the names of the

transactions, so you can use different names if you wish.
Alternatively, you can copy the TRANSACTION definitions from CICS supplied group DFH$EXBS.

Completing the installation

To complete the installation, install the RDO group that contains your resource definitions.

Enter the following command at a CICS terminal: CEDA I G(EXAMPLE).

The application is now ready for use.

Web service support for the example application

The Web service support extends the example application, providing a Web client front end and two

versions of a Web service endpoint for the order dispatcher component.

The Web client front end and one version of the Web service endpoint are supplied as enterprise archives

(EARs) that will run in the following environments:

v WebSphere Application Server Version 5 Release 1 or later

v WebSphere Studio Application Developer Version 5 Release 1 or later with a WebSphere unit test

environment

v WebSphere Studio Enterprise Developer Version 5 Release 1 or later with a WebSphere unit test

environment

The second version of the Web service endpoint is supplied as a CICS service provider application

program (DFH0XODE).

Chapter 9. The CICS catalog manager example application 91

Configuring code page support

As supplied, the example application uses two coded character sets. You must configure your system to

enable data conversion between the two character sets.

The coded character sets used in the example application are:

CCSID Description

037 EBCDIC Group 1: USA, Canada (z/OS), Netherlands, Portugal, Brazil, Australia, New Zealand)

1208 UTF-8 Level 3

Add the following statements to the conversion image for your z/OS system:

CONVERSION 037,1208;

CONVERSION 1208,037;

Installing Web service support

Before you can run the Web service support for the example application, you must create two HFS

directories, and create and install a number of CICS resource definitions.

Creating the HFS directories

Web service support for the example application requires a shelf directory and a pickup directory in the

Hierarchical File System (HFS).

The shelf directory is used to store the Web service binding files that are associated with WEBSERVICE

resources. Each WEBSERVICE resource is, in turn, associated with a PIPELINE. The shelf directory is

managed by the PIPELINE resource and you should not modify its contents directly. Several PIPELINES

can use the same shelf directory, as CICS ensures a unique directory structure beneath the shelf directory

for each PIPELINE.

The pickup directory is the directory that contains the Web service binding files associated with a

PIPELINE. When a PIPELINE is installed, or in response to a PERFORM PIPELINE SCAN command,

information in the binding files is used to dynamically create the WEBSERVICE and URIMAP definitions

associated with the PIPELINE.

The example application uses /var/cicsts for the shelf directory.

A pipeline will read in an XML pipeline configuration file at install time. It is therefore also useful to

define a directory in which to store these.

Creating the PIPELINE definition

The complete definition of a pipeline consists of a PIPELINE resource and a pipeline configuration file.

The file contains the details of the message handlers that will act on Web service requests and responses

as they pass through the pipeline.

The example application uses the CICS-supplied SOAP 1.1 handler to deal with the SOAP envelopes of

inbound and outbound requests. CICS provides sample pipeline configuration files which you can use in

your service provider and service requester.

More than one WEBSERVICE can share a single PIPELINE, therefore you need define only one pipeline

for the inbound requests of the example application. You must, however, define a second PIPELINE for

the outbound requests as a single PIPELINE cannot be configured to be both a provider and requester

pipeline at the same time.

1. Use the CEDA transaction to create a PIPELINE definition for the service provider.

92 Developing xml interfaces for COBOL applications

a. Enter the following: CEDA DEF PIPE(EXPIPE01) G(EXAMPLE). Alternatively, you can copy the

PIPELINE definition from CICS supplied group DFH$EXWS.

b. Enter the following additional attributes:

STATUS(Enabled)

CONFIGFILE(/usr/lpp/cicsts

 /samples/pipelines/basicsoap11provider.xml)

SHELF(var/cicsts)

WSDIR(/usr/lpp/cicsts/samples/webservices/wsbind/provider/)

Note that the HFS entries are case sensitive and assume a default CICS HFS install root of

/usr/lpp/cicsts.
2. Use the CEDA transaction to create a PIPELINE definition for the service requester.

a. Enter the following: CEDA DEF PIPE(EXPIPE02) G(EXAMPLE). Alternatively, you can copy the

PIPELINE definition from CICS supplied group DFH$EXWS.

b. Enter the following additional attributes:

STATUS(Enabled)

CONFIGFILE(/usr/lpp/cicsts

 /samples/pipelines/basicsoap11requester.xml)

SHELF(var/cicsts)

WSDIR(/usr/lpp/cicsts/samples/webservices/wsbind/requester/)

Note that the HFS entries are case sensitive and assume a default CICS HFS install root of

/usr/lpp/cicsts.

Creating a TCPIPSERVICE

As the client connects to your Web services over an HTTP transport you must define a TCPIPSERVICE to

receive the inbound HTTP traffic.

Use the CEDA transaction to create a TCPIPSERVICE definition to handle inbound HTTP requests.

1. Enter the following: CEDA DEF TCPIPSERVICE(EXMPPPORT) G(EXAMPLE). Alternatively, you can copy the

TCPIPSERVICE definition from CICS supplied group DFH$EXWS.

2. Enter the following additional attributes:

 URM(NONE)

 PORTNUMBER(port) where port is an unused port number in your CICS system.

 PROTOCOL(HTTP)

 TRANSACTION(CWXN)

3. Use the default values for all other attributes.

Dynamically installing the WEBSERVICE and URIMAP resources

Each function exposed as a Web service requires a WEBSERVICE resource to map between the incoming

XML of the SOAP BODY and the COMMAREA interface of the program, and a URIMAP resource that

routes incoming requests to the correct PIPELINE and WEBSERVICE. Although you can use RDO to

define and install your WEBSERVICE and URIMAP resources, you can also have CICS create them

dynamically when you install a PIPELINE resource.

Install the PIPELINE resources. Use the following commands:

 CEDA INSTALL PIPELINE(EXPIPE01) G(EXAMPLE)

 CEDA INSTALL PIPELINE(EXPIPE02) G(EXAMPLE)

When you install each PIPELINE resource, CICS scans the directory specified in the PIPELINE’s WSDIR

attribute (the pickup directory). For each Web service binding file in the directory, that is for each file

with the .wsbind suffix, CICS installs a WEBSERVICE and a URIMAP if one does not already exist.

Existing resources are replaced if the information in the binding file is newer than the existing resources.

Chapter 9. The CICS catalog manager example application 93

When the PIPELINE is later disabled and discarded all associated WEBSERVICE and URIMAP resources

will also be discarded.

If you have already installed the PIPELINE, use the PERFORM PIPELINE SCAN command to initiate the

scan of the PIPELINE’s pickup directory.

When you have installed the PIPELINEs, the following WEBSERVICEs and their associated URIMAPs

will be installed in your system:

 dispatchOrder

 dispatchOrderEndpoint

 inquireCatalog

 inquireSingle

 placeOrder

The names of the WEBSERVICEs are derived from the names of the Web service binding files; the names

of the URIMAPs are generated dynamically. You can view the resources with a CEMT INQUIRE

WEBSERVICE command:

I WEBS

STATUS: RESULTS - OVERTYPE TO MODIFY

 Webs(dispatchOrder) Pip(EXPIPE02)

 Ins Dat(20041203)

 Webs(dispatchOrderEndpoint) Pip(EXPIPE01)

 Ins Uri(£539140) Pro(DFH0XODE) Com Dat(20041203)

 Webs(inquireCatalog) Pip(EXPIPE01)

 Ins Uri(£539141) Pro(DFH0XCMN) Com Dat(20041203)

 Webs(inquireSingle) Pip(EXPIPE01)

 Ins Uri(£539142) Pro(DFH0XCMN) Com Dat(20041203)

 Webs(placeOrder) Pip(EXPIPE01)

 Ins Uri(£539150) Pro(DFH0XCMN) Com Dat(20041203)

The display shows the names of the PIPELINE, the URIMAP, and the target program that is associated

with each WEBSERVICE. Note that in this example, there is no URIMAP or target program displayed for

WEBSERVICE(dispatchOrder) because the WEBSERVICE is for an outbound request.

WEBSERVICE(dispatchOrderEndpoint) represents the local CICS implementation of the dispatch order

service.

Creating the WEBSERVICE resources with RDO

As an alternative to using the PIPELINE scanning mechanism to install WEBSERVICE resources, you can

create and install them using Resource Definition Online (RDO).

Important: If you use RDO to define the WEBSERVICE and URIMAP resources, you must ensure that

their Web service binding files are not in the PIPELINE’s pickup directory.

1. Use the CEDA transaction to create a WEBSERVICE definition for the inquire catalog function of the

example application.

a. Enter the following: CEDA DEF WEBSERVICE(EXINQCWS) G(EXAMPLE).

b. Enter the following additional attributes:

PIPELINE(EXPIPE01)

WSBIND(/usr/lpp/cicsts/samples

 /webservices/wsbind/inquireCatalog.wsbind)

94 Developing xml interfaces for COBOL applications

2. Repeat the preceding step for each of the following functions of the example application.

 Function WEBSERVICE name PIPELINE attribute WSBIND attribute

INQUIRE SINGLE

ITEM

EXINQSWS EXPIPE01 /usr/lpp/cicsts/samples

/webservices/wsbind

/provider/inquireSingle.wsbind

PLACE ORDER EXORDRWS EXPIPE01 /usr/lpp/cicsts/samples

/webservices/wsbind

/provider/placeOrder.wsbind

DISPATCH STOCK EXODRQWS EXPIPE02 /usr/lpp/cicsts/samples

/webservices/wsbind

/requester/dispatchOrder.wsbind

DISPATCH STOCK

endpoint (optional)

EXODEPWS EXPIPE01 /usr/lpp/cicsts/samples

/webservices/wsbind

/provider/dispatchOrderEndpoint.wsbind

Creating the URIMAP resources with RDO

As an alternative to using the PIPELINE scanning mechanism to install URIMAP resources, you can

create and install them using Resource Definition Online (RDO).

Important: If you use RDO to define the WEBSERVICE and URIMAP resources, you must ensure that

their Web service binding files are not in the PIPELINE’s pickup directory.

1. Use the CEDA transaction to create a URIMAP definition for the inquire catalog function of the

example application.

a. Enter the following: CEDA DEF URIMAP(INQCURI) G(EXAMPLE).

b. Enter the following additional attributes:

USAGE(PIPELINE)

HOST(*)

PATH(/exampleApp/inquireCatalog)

TCPIPSERVICE(SOAPPORT)

PIPELINE(EXPIPE01)

WEBSERVICE(EXINQCWS)

2. Repeat the preceding step for each of the remaining functions of the example application. Use the

following names for your URIMAPs:

 Function URIMAP name

INQUIRE SINGLE ITEM INQSURI

PLACE ORDER ORDRURI

DISPATCH STOCK Not required

DISPATCH STOCK endpoint (optional) ODEPURI

a. Specify the following distinct attributes for each URIMAP:

 Function URIMAP name PATH WEBSERVICE

INQUIRE SINGLE

ITEM

INQSURI /exampleApp/inquireSingle EXINQSWS

PLACE ORDER ORDRURI /exampleApp/placeOrder EXORDRWS

DISPATCH STOCK

endpoint (optional)

ODEPURI /exampleApp/dispatchOrder EXODEPWS

b. Enter the following additional attributes, which are the same for all the URIMAPs:

 USAGE(PIPELINE)

Chapter 9. The CICS catalog manager example application 95

HOST(*)

 TCPIPSERVICE(SOAPPORT)

 PIPELINE(EXPIPE01)

Completing the installation

To complete the installation, install the RDO group that contains your resource definitions.

Enter the following command at a CICS terminal: CEDA I G(EXAMPLE).

The application is now ready for use.

Configuring the example application

The base application includes a transaction (ECFG) that you can use to configure the example application.

The configuration transaction uses mixed case information. You must use a terminal that can handle

mixed case information correctly.

The transaction lets you specify a number of aspects of the example application. These include:

v The overall configuration of the application, such as the use of Web services

v The network addresses used by the Web services components of the application

v The names of resources, such as the file used for the data store

v The names of programs used for each component of the application

The configuration transaction lets you replace CICS-supplied components of the example application with

your own, without restarting the application.

1. Enter the transaction ECFG to start the configuration application. CICS displays the following screen:

CONFIGURE CICS EXAMPLE CATALOG APPLICATION

 Datastore Type ==> VSAM STUB|VSAM

 Outbound WebService? ==> NO YES|NO

 Catalog Manager ==> DFH0XCMN

 Data Store Stub ==> DFH0XSDS

 Data Store VSAM ==> DFH0XVDS

 Order Dispatch Stub ==> DFH0XSOD

Order Dispatch WebService ==> DFH0XWOD

 Stock Manager ==> DFH0XSSM

 VSAM File Name ==> EXMPCAT

 Server Address and Port ==> myserver:99999

 Outbound WebService URI ==> http://myserver:80/exampleApp/dispatchOrder

 ==>

 ==>

 ==>

 ==>

 ==>

PF 3 END 12 CNCL

2. Complete the fields.

Datastore Type

Specify STUB if you want to use the Data Store Stub program.

 Specify VSAM if you want to use the VSAM data store program.

96 Developing xml interfaces for COBOL applications

Outbound WebService

Specify YES if you want to use a remote Web service for your Order Dispatch function, that is, if

you want the catalog manager program to link to the Order Dispatch Web service program.

 Specify NO if you want to use a stub program for your Order Dispatch function, that is, if you

want the catalog manager program to link to the Order Dispatch Stub program.

Catalog Manager

Specify the name of the Catalog Manager program. The program supplied with the example

application is DFH0XCMN.

Data Store Stub

If you specified STUB in the Datastore Type field, specify the name of the Data Store Stub

program. The program supplied with the example application is DFH0XSDS.

Data Store VSAM

If you specified VSAM in the Datastore Type field, specify the name of the VSAM data store

program. The program supplied with the example application is DFH0XVDS.

Order Dispatch Stub

If you specified NO in the Outbound WebService field, specify the name of the Order Dispatch

Stub program. The program supplied with the example application is DFH0XSOD.

Order Dispatch WebService

If you specified YES in the Outbound WebService field, specify the name of the program that

functions as a service requester. The program supplied with the example application is

DFH0XWOD.

Stock Manager

Specify the name of the Stock Manager program. The program supplied with the example

application is DFH0XSSM.

VSAM File Name

If you specified VSAM in the Datastore Type field, specify the name of the CICS FILE definition.

The name used in the example application as supplied is EXMPCAT.

Server Address and Port

Outbound WebService URI

If you specified YES in the Outbound WebService field, specify the location of the Web service

that implements the dispatch order function. If you are using the supplied CICS endpoint set this

to: http://myserver:myport/exampleApp/dispatchOrder where myserver and myport are your CICS

server address and port respectively.

Configuring the Web client

Before you can use the Web client, you must configure it to call the appropriate end points in your CICS

system.

1. Enter the following in your Web browser: http://myserver:9080/ExampleAppClientWeb/, where

myserver is the hostname of the server on which the Web service client is installed. The example

application displays the following page:

Chapter 9. The CICS catalog manager example application 97

2. Click the CONFIGURE button to bring up the configuration page. The configuration page is

displayed.

98 Developing xml interfaces for COBOL applications

3. Enter the new endpoints for the Web service. There are three endpoints to configure:

 Inquire catalog

 Inquire item

 Place order
a. In the URLs replace the string ’myCicsServer’ with the name of the system on which your CICS is

running.

b. Replace the port number ’9999’ with the port number configured in the TCPIPSERVICE, in the

example this to 30000.
4. Click the SUBMIT button.

The Web application is now ready to run.

Note: The URL the Web services invoke is stored in an HTTP session. It is therefore necessary to repeat

this configuration step each time a browser is first connected to the client.

Chapter 9. The CICS catalog manager example application 99

Running the example application

You can run the example application in two ways: you can use the BMS interface, and you can use a Web

client.

Running the example application with the BMS interface

The base application can be invoked using its BMS interface.

1. Enter transaction EGUI from a CICS terminal. The example application displays the following menu:

CICS EXAMPLE CATALOG APPLICATION - Main Menu

Select an action, then press ENTER

Action 1. List Items

 2. Order Item Number ____

 3. Exit

F3=EXIT F12=CANCEL

The options on the menu enable you to list the items in the catalog, order an item, or exit the

application.

2. Type 1 and press ENTER to select the LIST ITEMS option. The application displays a list of items in the

catalog.

CICS EXAMPLE CATALOG APPLICATION - Inquire Catalog

Select a single item to order with /, then press ENTER

Item Description Cost Order

0010 Ball Pens Black 24pk 2.90 /

0020 Ball Pens Blue 24pk 2.90 _

0030 Ball Pens Red 24pk 2.90 _

0040 Ball Pens Green 24pk 2.90 _

0050 Pencil with eraser 12pk 1.78 _

0060 Highlighters Assorted 5pk 3.89 _

0070 Laser Paper 28-lb 108 Bright 500/ream 7.44 _

0080 Laser Paper 28-lb 108 Bright 2500/case 33.54 _

0090 Blue Laser Paper 20lb 500/ream 5.35 _

0100 Green Laser Paper 20lb 500/ream 5.35 _

0110 IBM Network Printer 24 - Toner cart 169.56 _

0120 Standard Diary: Week to view 8 1/4x5 3/4 25.99 _

0130 Wall Planner: Eraseable 36x24 18.85 _

0140 70 Sheet Hard Back wire bound notepad 5.89 _

0150 Sticky Notes 3x3 Assorted Colors 5pk 5.35 _

F3=EXIT F7=BACK F8=FORWARD F12=CANCEL

3. Type / in the ORDER column, and press ENTER to order an item. The application displays details of

the item to be ordered.

100 Developing xml interfaces for COBOL applications

CICS EXAMPLE CATALOG APPLICATION - Details of your order

Enter order details, then press ENTER

Item Description Cost Stock On Order

0010 Ball Pens Black 24pk 2.90 0011 000

 Order Quantity: 5

 User Name: CHRISB

 Charge Dept: CICSDEV1

F3=EXIT F12=CANCEL

4. If there is sufficient stock to fulfil the order, enter the following information.

a. Complete the ORDER QUANTITY field. Specify the number of items you want to order.

b. Complete the USERID field. Enter a 1 to 8-character string. The base application does not check the

value that is entered here.

c. Complete the CHARGE DEPT field. Enter a 1 to 8-character string. The base application does not

check the value that is entered here.
5. Press ENTER to submit the order and return to the main menu.

6. Select the EXIT option to end the application.

The Web service enabled application

You can invoke the example application from a Web browser.

1. Enter the following in your Web browser: http://myserver:9080/ExampleAppClientWeb/, where

myserver is the host name of the server on which the Web service client is installed. The example

application displays the following page:

Chapter 9. The CICS catalog manager example application 101

2. Click the INQUIRE button. The example application displays the following page:

3. Enter an item number, and click the SUBMIT button.

102 Developing xml interfaces for COBOL applications

Tip: The base application is primed with item numbers in the sequence 0010, 0020, ... through 0210.

The application displays the following page, which contains a list of items in the catalog, starting with

the item number that you entered.

4. Select the item that you want to order.

a. Click the radio button in the Select column for the item you want to order.

b. Click the SUBMIT button.
The application displays the following page:

Chapter 9. The CICS catalog manager example application 103

5. To place an order, enter the following information.

a. Complete the Quantity field. Specify the number of items you want to order.

b. Complete the User Name field. Enter a 1 to 8-character string. The base application does not check

the value that is entered here.

c. Complete the Department Name field. Enter a 1 to 8-character string. The base application does not

check the value that is entered here.

d. Click the SUBMIT button.

The application displays the following page to confirm that the order has been placed:

104 Developing xml interfaces for COBOL applications

Using XML Services for the Enterprise to create and deploy CICS Web

services artifacts

Web services in CICS provides an interpretive engine that converts XML data to and from data structures.

The interpretive engine does not support all the data constructs and types in the COBOL language

making it necessary for the CICS Web services developer to write additional code or a wrapper to process

unsupported types. The behavior of the interpretive engine is not configurable, whereas a user may have

very specific needs in processing SOAP messages.

A standard interface between CICS combined with a user supplied program that provides XML

conversion to and from data structures is called the ″Vendor″ interface. The Vendor interface allows users

to have pluggable XML conversion. XML converters generated by XML Services for the Enterprise tools

have broader support for data constructs and types. We recommend using these XML converters with the

Vendor Interface. For improved debugging, CICS Transaction Server Version 3.1 treats the compiled

converters as user code which allows debugging should a failure occur. The interpretive engine cannot be

debugged or changed by the user.

New in CICS Transaction Server Version 3.1, is a batch job called DFHLS2WS (Language Structure to

WSDL) which is equivalent to the bottom-up approach of web services development (see Introduction to

XML Services for the Enterprise). XML Services for the Enterprise tools, used in combination with the

Vendor interface as a replacement for DFHLS2WS provide expanded functionality to the end user. This

combination helps a user to enable web service interface with a COBOL data type that is not supported

by the CICS interpretive conversion engine, generally without requiring the user to write any additional

wrapper conversion program.

Chapter 9. The CICS catalog manager example application 105

Related concepts

Artifacts necessary to enable a web service under CICS

Related tasks

Installing web services under CICS

Creating artifacts to enable a web service under CICS

Artifacts necessary to enable a web service under CICS

WSBind file

The WSBind file is a resource that describes to CICS the specifics of the web service. For example, it

contains information about what the system should do to convert an input XML document to a COBOL

data structure and what to do to convert the output COBOL data to the output XML document. XML

Services for the Enterprise tools generate the WSBind file for the Vendor interface. For more information

on the Vendor interface, see Using XML Services for the Enterprise to create and deploy CICS Web

Services artifacts. The WSBind file is an EBCDIC binary file. The extension of the generated WSBind file

is always set to .wsbind.

XML Services for the Enterprise Converters

In the CICS Vendor scenario, CICS delegates conversion of SOAP requests and response messages to

Vendor conversion programs. XML Services for the Enterprise tools generate programs suitable for use

with the CICS Vendor interface. These programs consist of a driver and two XML converters (inbound

and outbound). The XML converters convert an input XML document to a COBOL data structure and

convert the output COBOL data to the output XML document. The driver program manages the

communication between CICS and the XML converters.

WSDL

The WSDL file describes the web service to the web service clients. The WSDL file can also be used by

the CICS system to validate messages received and sent by the web service. The validation can be turned

on and off when the CICS Web service resource is installed or configured. Validation is useful when you

test or debug your web service. Validation will slow down the web service performance and you may

want to turn it off in the production version of the web service.

Note: Make sure that you use WSDL, WSBind file, and the XML converter set all generated from the

same source by XML Services for the Enterprise tools. Do not mix artifacts from other sources or tools.

For example do not use the XML converters with the WSDL file or the WSBind file generated by the

DFHLS2WS batch job (the CICS Web service assistant tool) that comes with CICS Transaction Server

version 3.1.

Related concepts

Introduction to using WebSphere Developer XML Services for the Enterprise

Related tasks

Installing web services under CICS

Creating artifacts to enable a web service under CICS

106 Developing xml interfaces for COBOL applications

Creating Web services artifacts for CICS

This section describes the development steps using XML Services for the Enterprise tools to create the

needed artifacts to install a new web service in CICS. Specifically, it describes how to use Web services

enablement wizard. (You can also achieve these tasks using the Batch Processor).

Locating the CICS application source and copy books

In order to generate the artifacts needed to enable an application as a web service, the Web Services

Enablement wizard must have access to either a complete program or copy book containing the data

structure that is the interface to application.

Since generated artifacts (the XML converters, the driver, the WSBind file and the WSDL file) must be

transferred to a z/OS system, you can use the z/OS projects and system perspectives of WebSphere

Developer to assist with this task. Also if your program source and copy books are located on z/OS you

can access them using z/OS projects perspective. For more information on z/OS perspectives and

projects see Systems, projects, and properties

Create a local project and import the program source files for the CICS program to the project. If the

program source files exist on a remote system, use the remote systems explorer to copy them to your

local project.

Generating Vendor conversion artifacts

In the navigator view, right click on the program source file containing the interface data structure and

select Enable Web Service -> Generate Enablement Components. A Wizard appears with the first page

prompting you to select the inbound and outbound data structures for your application. The first data

structure in the file is automatically selected, so take care that this is the correct choice and select next.

The second page prompts for properties of the generated artifacts and the type of converter. On the XML

Converter Options tab select Web services in CICS from the Converter type drop down menu. Ensure

that the all the codepage entries are set to the codepage of your z/OS system. On the WSDL and XSD

options page enter the Endpoint URI for this web service.

Note: The local portion of the URI (excludes server and port) is used as the default for the local URI in

the Vendor WSBind (for example, /exampleApp/inquireSingle).

Select next.

Next, the vendor WSBind properties page is displayed. If your CICS program communicates via a

container, make sure to change the value of the program interface drop down and enter the name of the

container that the application expects. The Advanced properties tab allows you to specify the needed

information for CICS to auto-install your web service. If you do not specify these properties you will

have to define them at install time during the manual creation of the web service definitions in CICS.

Select next.

The next page solicits the locations and names of the generated artifacts in the file system (except for the

WSBind whose path is specified on the WSBind properties page). You may elect to generate all of the

XML conversion code in one file, while the WSBind, WSDL and XSD must be separate. Deselecting the

check box next to and artifact indicates that you do not want to generate that artifact. For example you

may not want to generate XSD in this scenario, since you will be using the WSDL only if you run with

validation turned on.

Building the XML converters

Chapter 9. The CICS catalog manager example application 107

The XML converters consist of multiple programs that must be compiled and statically linked together

with the converter driver program as the main entry point. Using the z/OS projects perspective create a

remote project that refers to the target system for your web service. This system requires a version of

Enterprise COBOL that supports XML parsing (version 3.1 or later). Copy the XML Converter files to the

remote project. Nominate the converter driver as the main entry point, choose to generate JCL that will

build the converter load module and store it in a PDS or PDSE. The target PDSE should be in the

DFHRPL concatenation of the target CICS region so that CICS can find the load module. Submit the JCL.

Related concepts

Artifacts necessary to enable a web service under CICS

Using XML Services for the Enterprise to create and deploy

CICS

Web Services artifacts

Working with projects

Setting up the data perspective

Systems, projects, and properties

Related tasks

Installing web services under CICS

Creating a z/OS project

Submitting a job and obtaining the output

Related reference

z/OS perspectives

z/OS Projects perspective

Deploying the Web services artifacts to CICS

Setting up a CICS web services provider type PIPELINE

A TCPIPSERVICE resource using the HTTP protocol and listening on the desired port must be created

and installed. First, create a PIPELINE resource that uses the previously created TCPIPRESOURCE.

Within the PIPELINE resource definition, the WSDir or ″pickup″ directory must be defined which enables

auto-install of web services directly from WSBind files. You can find detailed information on setting up a

provider type PIPELINE in the CICS 3.1 documentation.

Moving generated artifacts to the host system

While building the XML converters, we deployed the XML converter load module to the host system.

You now need to transmit the remaining artifacts, the WSBind and WSDL to the WSDir or ″pickup″

directory for the CICS PIPELINE under which the web service will be installed. The ″pickup″ directory

exists in an HFS on the target system. Both the WSBind and WSDL files are sensitive to codepage

translation. Since the WSBind is in EBCDIC and the WSDL declares a UTF-8 encoding declaration, you

must transmit these files in binary mode to the host system.

Auto-installing the web service

After having transmitted the WSBind and WSDL to the PIPELINE pickup directory you may do an

auto-install if all of the fields on the advanced tab of the WSBind properties page in WebSphere

Developer are completed correctly. You may then issue a

CEMT PERFORM PIPELINE(pipelinename) SCAN

108 Developing xml interfaces for COBOL applications

If this completes successfully you should see a new WEBSERVICE resource created by doing a

CEMT INQUIRE WEBSERVICE(*)

The name of the WEBSERVICE is derived from the first 31 characters of the WSBind file name. If you do

a

CEMT INQUIRE URIMAP(*)

you will also see that a URIMAP resource is automatically created. The URIMAP resource maps a local

URI to WEBSERVICE resource. By default full WSDL validation is turned off (for performance reasons).

To turn it on you may do a

CEMT SET WEBSERVICE(webservicename)

and change ″novalidation″ to ″validation″. Doing this causes CICS to use the provided WSDL to do full

validation of SOAP requests and responses related to this particular WEBSERVICE resource. The location

of the WSDL that CICS uses for validation is visible when viewing a WEBSERVICE resource. If the WSDL

specified in the WSBind file is not found at the expected location in the filesystem, the WSDL entry in the

WEBSERVICE resource will be empty or blank.

Manually installing the web service

The manual install is recommended for cases where it is not possible to know all of the necessary details

to populate the advanced tab of the WSBind properties page in WebSphere Developer. The WSBind and

WSDL need to be moved to the pickup directory. The details of creating URIMAP and WEBSERVICE

resources manually are explained in depth in the CICS documentation.

Related concepts

Artifacts necessary to enable a web service under CICS

Using XML Services for the Enterprise to create and deploy

CICS

Web Services artifacts

Related tasks

Creating artifacts to enable a web service under

CICS

Enabling the catalog example for web services using WebSphere

Developer

You can use XML Services for the Enterprise tools in WebSphere Developer to generate XML conversion

artifacts which with the CICS Vendor interface provide conversion services for request and response

SOAP messages for the catalog manager COBOL application.

In this section we will focus on enabling one of the functions of the base application as a web service.

This web service (named inquireSingle) will provide a web service client with the ability to query

individual items in the catalog.

Related concepts

Batch Processor

Related tasks

Creating a web service interface with the Web Services Enablement wizard

Chapter 9. The CICS catalog manager example application 109

Generating web services artifacts for the inquireSingle web service

The copy book containing the combined interface definition for the catalog manager is located in the

CICS samples dataset with member name DFH0XCP1. The inquireSingle web service uses a subset of the

interface definition which can be found in a separate copy book DFH0XCP4.

You can run the Enable Web Service Wizard against either of these copy books, keeping in mind that if

you choose to go with DFH0XCP1 you should make sure on the first page of the wizard in the data

structure selection view to select the redefinition CA-INQUIRE-SINGLE REDEFINES CA-REQUEST-SPECIFIC and

all of its child elements.

Note: filler items will not be visible

One of the benefits of using XML services for the Enterprise tools is support for redefines. You do not

have to factor out your interface definition into separate copy books for each redefinition.

XML services for the Enterprise tools expect that all COBOL data structures imported into the Enable

Web Service wizard have a level 01 containing element declared. You must add the declaration 01

DFH0XCMN to the top of whichever copy book you decide to use. The name of the level 01 is important

in this case so that the root element name used by the XML converters matches what is expected by the

CICS Web Client for the catalog application.

Refer to Locating CICS application source and/or copybooks on how to access the copy books mentioned

above in the WebSphere Developer workspace. Once the source for the copy books is in the workspace

refer to Generating Vendor conversion artifacts for detail on how to generate the the XML converters,

driver, and WSBind and WSDL files, using the following inputs to the Enable Web Service Wizard.

To access the Enable Web Services wizard, [Right Click on DFH0XCP1.cbl and select Enable Web Service

-> Generate enablement components.

Enter the following values (If an input is not specified, accept the default):

Data Structures page

v Inbound data structure : DFH0XCMN

v Redefinition : INQUIRE-SINGLE

v Outbound data structure : DFH0XMCN

v Redefinition : INQUIRE-SINGLE

Generation Options page

v Converter type : ″Web Services for CICS″

v Business program name : ″DFH0XCMN″

v Inbound Codpage : Codepage of your CICS system

v Host Codepage : Codepage of your CICS system

v Outbound Codepage : Codepage of your CICS system

v Endpoint URI: ″http://yourserver:yourport/exampleApp/inquireSingle″

Web Services for CICS page

v WSBind file name : ″inquireSingle″

v PIPELINE name : ″EXPIPE01″

v WSDL HFS file path : ″/u/exampleapp/wsbind/inquireSingle.wsdl″

File, Dataset or Member Selection page

v Converter driver file name : ″DFHXCP4D″

110 Developing xml interfaces for COBOL applications

v Inbound Converter file name : ″DFHXCP4I″

v Outbound Converter file name : ″DFHXCP4O″

v WSDL file name : ″inquireSingle″

Related tasks

Creating a web service interface with the Web Services Enablement wizard

Installing and deploying the InquireSingle web service

After generating the converters in Generating web services artifacts for the inquireSingle web service,

refer to Building the XML converters to build the converters and deploy the load module to host system.

Next refer to Moving generated artifacts to the host system to deploy the WSBind and WSDL files to the

″EXPIPE01″ PIPELINE WSDir (pickup directory). Finally refer to Auto-installing the web service to install

the new web service and check if it is in service. You may then proceed to invoke the inquireSingle web

service from the web client.

Related tasks

Configuring the Web client

Combined Interface Definition DFH0XCP1

>> 01 DFH0XCMN.

 * Catalogue COMMAREA structure

 03 CA-REQUEST-ID PIC X(6).

 03 CA-RETURN-CODE PIC 9(2).

 03 CA-RESPONSE-MESSAGE PIC X(79).

 03 CA-REQUEST-SPECIFIC PIC X(911).

 * Fields used in Inquire Catalog

 03 CA-INQUIRE-REQUEST REDEFINES CA-REQUEST-SPECIFIC.

 05 CA-LIST-START-REF PIC 9(4).

 05 CA-LAST-ITEM-REF PIC 9(4).

 05 CA-ITEM-COUNT PIC 9(3).

 05 CA-INQUIRY-RESPONSE-DATA PIC X(900).

 05 CA-CAT-ITEM REDEFINES CA-INQUIRY-RESPONSE-DATA

 OCCURS 15 TIMES.

 07 CA-ITEM-REF PIC 9(4).

 07 CA-DESCRIPTION PIC X(40).

 07 CA-DEPARTMENT PIC 9(3).

 07 CA-COST PIC X(6).

 07 IN-STOCK PIC 9(4).

 07 ON-ORDER PIC 9(3).

 * Fields used in Inquire Single

 03 CA-INQUIRE-SINGLE REDEFINES CA-REQUEST-SPECIFIC.

 05 CA-ITEM-REF-REQ PIC 9(4).

 05 FILLER PIC 9(4).

 05 FILLER PIC 9(3).

 05 CA-SINGLE-ITEM.

 07 CA-SNGL-ITEM-REF PIC 9(4).

 07 CA-SNGL-DESCRIPTION PIC X(40).

 07 CA-SNGL-DEPARTMENT PIC 9(3).

 07 CA-SNGL-COST PIC X(6).

 07 IN-SNGL-STOCK PIC 9(4).

 07 ON-SNGL-ORDER PIC 9(3).

 05 FILLER PIC X(840).

 * Fields used in Place Order

 03 CA-ORDER-REQUEST REDEFINES CA-REQUEST-SPECIFIC.

 05 CA-USERID PIC X(8).

 05 CA-CHARGE-DEPT PIC X(8).

Chapter 9. The CICS catalog manager example application 111

05 CA-ITEM-REF-NUMBER PIC 9(4).

 05 CA-QUANTITY-REQ PIC 9(3).

 05 FILLER PIC X(888).

Components of the base application

 Table 6. Application components

Memebr name in SDFHSAMP Type Comment

DFH0XCMN Cobol Source Source code for the catalog manager

application

DFH0XVDS Cobol Source Source code for the VSAM data-store

module

DFH0XSDS Cobol Source Source code for the stubbed

data-store module

DFH0XSOD Cobol Source Source code for the stubbed version

of the order dispatch module

DFH0XWOD Cobol Source Source code for the order dispatch

module that makes an outbound Web

service request

DFH0XODE Cobol Source Source code for the stubbed version

of the order dispatch endpoint

DFH0XSSM Cobol Source Source code for the stubbed version

of the stock manager module

DFH0XGUI Cobol Source Source code for the BMS interface

controller application

DFH0XCFG Cobol Source Source code for the application

configuration module

DFH0XCP1 Copybook Cobol copybook definition for catalog

manager inquire and place order

operations

DFH0XCP2 Copybook Cobol copybook definition for

dispatch order and stock manager

operations

DFH0XCP3 Copybook Cobol copybook definition for the

inquire list operation

DFH0XCP4 Copybook Cobol copybook definition for the

inquire single operation

DFH0XCP5 Copybook Cobol copybook definition for the

place order operation

DFH0XCP6 Copybook Cobol copybook definition for the

dispatch order operation

DFH0XCP7 Copybook Cobol copybook definition that is

mapped to a SOAP request for the

dispatch order operation

DFH0XCP8 Copybook Cobol copybook definition that is

mapped to a SOAP response for the

dispatch order operation

DFH0XM1 Copybook Cobol copybook for BMS interface

DFH0XM2U Copybook Customized Cobol copybook for BMS

inquire interface

112 Developing xml interfaces for COBOL applications

Table 6. Application components (continued)

Memebr name in SDFHSAMP Type Comment

DFH0XM3 Copybook Cobol copybook for BMS interface to

configuration module

DFH0XS1 BMS Mapset BMS Mapset for application user

interface

DFH0XS2 BMS Mapset BMS Mapset for the inquire operation

of the application user interface

DFH0XS3 BMS Mapset BMS Mapset for the configuration

module

 Table 7. CICS Resource Definitions

Resource name Resource type Comment

EXAMPLE CICS Resource definition group CICS resource definitions required for

the example application

EGUI TRANSACTION Transaction to invoke program

DFH0XGUI to start the BMS interface

to the application (Customizable)

ECFG TRANSACTION Transaction to invoke the program

DFH0XCFG to start the example

configuration BMS interface

(Customizable)

EXMPCAT FILE File definition of the EXMPCAT

VSAM file for the application catalog

(Customizable)

EXMPCONF FILE File definition of the EXMPCONF

application configuration file.

The catalog manager program

The catalog manager is the controlling program for the business logic of the example application, and all

interactions with the example application pass through it.

To ensure that the program logic is simple, the catalog manager performs only limited type checking and

error recovery.

The catalog manager supports a number of operations. Input and output parameters for each operation

are defined in a single data structure, which is passed to and from the program in a COMMAREA.

COMMAREA structures

* Catalogue COMMAREA structure

 03 CA-REQUEST-ID PIC X(6).

 03 CA-RETURN-CODE PIC 9(2).

 03 CA-RESPONSE-MESSAGE PIC X(79).

 03 CA-REQUEST-SPECIFIC PIC X(911).

 * Fields used in Inquire Catalog

 03 CA-INQUIRE-REQUEST REDEFINES CA-REQUEST-SPECIFIC.

 05 CA-LIST-START-REF PIC 9(4).

 05 CA-LAST-ITEM-REF PIC 9(4).

 05 CA-ITEM-COUNT PIC 9(3).

 05 CA-INQUIRY-RESPONSE-DATA PIC X(900).

 05 CA-CAT-ITEM REDEFINES CA-INQUIRY-RESPONSE-DATA

 OCCURS 15 TIMES.

 07 CA-ITEM-REF PIC 9(4).

 07 CA-DESCRIPTION PIC X(40).

Chapter 9. The CICS catalog manager example application 113

07 CA-DEPARTMENT PIC 9(3).

 07 CA-COST PIC X(6).

 07 IN-STOCK PIC 9(4).

 07 ON-ORDER PIC 9(3).

 * Fields used in Inquire Single

 03 CA-INQUIRE-SINGLE REDEFINES CA-REQUEST-SPECIFIC.

 05 CA-ITEM-REF-REQ PIC 9(4).

 05 FILLER PIC 9(4).

 05 FILLER PIC 9(3).

 05 CA-SINGLE-ITEM.

 07 CA-SNGL-ITEM-REF PIC 9(4).

 07 CA-SNGL-DESCRIPTION PIC X(40).

 07 CA-SNGL-DEPARTMENT PIC 9(3).

 07 CA-SNGL-COST PIC X(6).

 07 IN-SNGL-STOCK PIC 9(4).

 07 ON-SNGL-ORDER PIC 9(3).

 05 FILLER PIC X(840).

 * Fields used in Place Order

 03 CA-ORDER-REQUEST REDEFINES CA-REQUEST-SPECIFIC.

 05 CA-USERID PIC X(8).

 05 CA-CHARGE-DEPT PIC X(8).

 05 CA-ITEM-REF-NUMBER PIC 9(4).

 05 CA-QUANTITY-REQ PIC 9(3).

 05 FILLER PIC X(888).

 * Dispatcher/Stock Manager COMMAREA structure

 03 CA-ORD-REQUEST-ID PIC X(6).

 03 CA-ORD-RETURN-CODE PIC 9(2).

 03 CA-ORD-RESPONSE-MESSAGE PIC X(79).

 03 CA-ORD-REQUEST-SPECIFIC PIC X(23).

 * Fields used in Dispatcher

 03 CA-DISPATCH-ORDER REDEFINES CA-ORD-REQUEST-SPECIFIC.

 05 CA-ORD-ITEM-REF-NUMBER PIC 9(4).

 05 CA-ORD-QUANTITY-REQ PIC 9(3).

 05 CA-ORD-USERID PIC X(8).

 05 CA-ORD-CHARGE-DEPT PIC X(8).

 * Fields used in Stock Manager

 03 CA-STOCK-MANAGER-UPDATE REDEFINES CA-ORD-REQUEST-SPECIFIC.

 05 CA-STK-ITEM-REF-NUMBER PIC 9(4).

 05 CA-STK-QUANTITY-REQ PIC 9(3).

 05 FILLER PIC X(16).

Return codes

Each operation of the catalog manager can return a number of return codes.

 Type Code Explanation

General 00 Function completed without error

Catalog file 20 Item reference not found

21 Error opening, reading, or ending

browse of catalog file

22 Error updating file

Configuration file 50 Error opening configuration file

51 Data store type was neither STUB nor

VSAM

52 Outbound Web service switch was

neither Y nor N

114 Developing xml interfaces for COBOL applications

Type Code Explanation

Remote Web service 30 The EXEC CICS INVOKE

WEBSERVICE command returned an

INVREQ condition

31 The EXEC CICS INVOKE

WEBSERVICE command returned an

NOTFND condition

32 The EXEC CICS INVOKE

WEBSERVICE command returned a

condition other than INVREQ or

NOTFND

Application 97 Insufficient stock to complete order

98 Order quantity was not a positive

number

99 DFH0XCMN received a

COMMAREA in which the

CA-REQUEST-ID field was not set to

one of the following: 01INQC,

01INQS, or 01ORDR

INQUIRE CATALOG operation

This operation returns a list of up to 15 catalog items, starting with the item specified by the caller.

Input parameters

CA-REQUEST-ID

A string that identifies the operation. For the INQUIRE CATALOG command, the string contains

“01INQC”

CA-LIST-START-REF

The reference number of the first item to be returned.

Output parameters

CA-RETURN-CODE

CA-RESPONSE-MESSAGE

A human readable string, containing “num ITEMS RETURNED” where num is the number of items

returned.

CA-LAST-ITEM-REF

The reference number of the last item returned.

CA-ITEM-COUNT

The number of items returned.

CA-CAT-ITEM

An array containing the list of catalog items returned. The array has 15 elements; if fewer than 15

items are returned, the remaining array elements contain blanks.

INQUIRE SINGLE ITEM operation

This operation returns a single catalog item specified by the caller.

Input parameters

CA-REQUEST-ID

A string that identifies the operation. For the INQUIRE SINGLE ITEM command, the string contains

“01INQS”

Chapter 9. The CICS catalog manager example application 115

CA-ITEM-REF-REQ

The reference number of the item to be returned.

Output parameters

CA-RETURN-CODE

CA-RESPONSE-MESSAGE

A human readable string, containing RETURNED ITEM: REF=item-reference’ where item-reference is

the reference number of the returned item.

CA-SINGLE-ITEM

An array containing in its first element the returned catalog item.

PLACE ORDER operation

This operation places an order for a single item. If the required quantity is not available a message is

returned to the user. If the order is successful, a call is made to the Stock Manager informing it what item

has been ordered and the quantity ordered.

Input parameters

CA-REQUEST-ID

A string that identifies the operation. For the PLACE ORDER operation, the string contains ’01ORDR’

CA-USERID

An 8-character user ID which the application uses for dispatch and billing.

CA-CHARGE-DEPT

An 8-character department ID which the application uses for dispatch and billing.

CA-ITEM-REF-NUMBER

The reference number of the item to be ordered.

CA-QUANTITY-REQ

The number of items required.

Output parameters

CA-RETURN-CODE

CA-RESPONSE-MESSAGE

A human readable string, containing ’ORDER SUCCESSFULLY PLACED’.

DISPATCH STOCK operation

This operation places a call to the stock dispatcher program, which in turn dispatches the order to the

customer.

Input parameters

CA-ORD-REQUEST-ID

A string that identifies the operation. For the DISPATCH ORDER operation, the string contains

’01DSPO’

CA-ORD-USERID

An 8-character user ID which the application uses for dispatch and billing.

CA-ORD-CHARGE-DEPT

An 8-character department ID which the application uses for dispatch and billing.

CA-ORD-ITEM-REF-NUMBER

The reference number of the item to be ordered.

CA-ORD-QUANTITY-REQ

The number of items required.

116 Developing xml interfaces for COBOL applications

Output parameters

CA-ORD-RETURN-CODE

NOTIFY STOCK MANAGER operation

This operation takes details of the order that has been placed to decide if stock replenishment is

necessary.

Input parameters

CA-ORD-REQUEST-ID

A string that identifies the operation. For the NOTIFY STOCK MANAGER operation, the string

contains ’01STKO’

CA-STK-ITEM-REF-NUMBER

The reference number of the item to be ordered.

CA-STK-QUANTITY-REQ

The number of items required.

Output parameters

CA-ORD-RETURN-CODE

BMS presentation manager

The presentation manager is responsible for all interactions with the end user via 3270 BMS panels. No

business decisions are made in this program.

Data handler

The data handler provides the interface between the catalog manager and the data store.

The example application provides two versions of the data handler:

v The first version uses a VSAM file as the data store.

v The second version is a dummy program that always returns the same data on an inquire and does not

store the results of any update requests.

Dispatch manager

The dispatch manager is responsible for dispatching the order to the customer once the order has been

confirmed.

The example application provides two versions of the dispatch manager program:

v The first version is a dummy program that returns a correct response to the caller, but takes no other

action.

v The second version is a Web service requester program that makes a request to the endpoint address

defined in the configuration file.

Order dispatch endpoint

The order dispatch program is a Web service provider program that is responsible for dispatching the

item to the customer.

In the example application, the order dispatcher is a dummy program that returns a correct response to

the caller, but takes no other action. It makes it possible for all configurations of the example Web

services to be operable.

Chapter 9. The CICS catalog manager example application 117

Stock manager

The stock manager is responsible for managing the replenishment of the stock.

In the example program, the stock manager is a dummy program that returns a correct response to the

caller, but takes no other action.

Application configuration

The example application includes a program that lets you configure the base application.

File Structures and Definitions

The example application uses two VSAM files: the catalog file which contains the details of all items

stocked and their stock levels, and the configuration file which holds user-selected options for the

application.

Catalog file

The catalog file is a KSDS VSAM file which contains all information relating to the product inventory.

Records in the file have the following structure:

 Name COBOL data type Description

WS-ITEM-REF-NUM PIC 9(4) Item reference number

WS-DESCRIPTION PIC X(40) Item description

WS-DEPARTMENT PIC 9(3) Department identification number

WS-COST PIC ZZZ.99 Item price

WS-IN-STOCK PIC 9(4) Number of items in stock

WS-ON-ORDER PIC 9(3) Number of items on order

Configuration file

The configuration file is a KSDS VSAM file which contains information used to configure the example

application.

The configuration file is a KSDS VSAM file with 3 distinct records.

 Table 8. General information record

Name COBOL data type Description

PROGS-KEY PIC X(9) Key field for the general information

record, containing ’EXMP-CONF’

filler PIC X

DATASTORE PIC X(4) A character string that specifies the

type of data store program to be

used. Values are:

 ’STUB’

 ’VSAM’

filler PIC X

118 Developing xml interfaces for COBOL applications

Table 8. General information record (continued)

Name COBOL data type Description

DO-OUTBOUND-WS PIC X A character that specifies whether the

dispatch manager is make an

outbound Web service request. Values

are:

 ’Y’

 ’N’

filler PIC X

CATMAN-PROG PIC X(8) The name of the catalog manager

program

filler PIC X

DSSTUB-PROG PIC X(8) The name of the dummy data

handler program

filler PIC X

DSVSAM-PROG PIC X(8) The name of the VSAM data handler

program

filler PIC X

ODSTUB-PROG PIC X(8) The name of the dummy order

dispatcher module

filler PIC X

ODWEBS-PROG PIC X(8) The name of the outbound Web

service order dispatcher program

filler PIC X

STKMAN-PROG PIC X(8) The name of the stock manager

program

filler PIC X(10)

 Table 9. Outbound URL record

Name COBOL data type Description

URL-KEY PIC X(9) Key field for the general information

record, containing ’OUTBNDURL’

filler PIC X

OUTBOUND-URL PIC X(255) Outbound URL for the order

dispatcher Web service request

 Table 10. Catalog file information

Name COBOL data type Description

URL-FILE-KEY PIC X(9) Key field for the general information

record, containing ’VSAM-NAME’

filler PIC X

CATALOG-FILE-NAME PIC X(8) Name of the CICS FILE resource

used for the catalog file

Chapter 9. The CICS catalog manager example application 119

120 Developing xml interfaces for COBOL applications

Chapter 10. XML Sevices for the Enterprise tools and IMS

SOAP Gateway

Overview of IMS SOAP Gateway

IMS SOAP Gateway enables IMS applications to be exposed as Web services.

The IMS SOAP Gateway is a lightweight, XML-based connectivity solution that enables IMS applications

to inter-operate outside of the IMS environment through SOAP to provide and request services

independently of platform, environment, application language, or programming model.

You can enable IMS COBOL applications for Web services by using the XML Services for the Enterprise

tools to generate Web service artifacts for IMS COBOL applications. You then deploy these Web service

artifacts to the IMS SOAP Gateway to make an IMS application available as a Web service. Different

types of client applications, such as Microsoft® .NET, Java™, and third-party applications, can then submit

SOAP requests into IMS to drive the business logic of the COBOL applications.

The XML Services for the Enterprise tools generates the Web service artifacts that allow SOAP client

access to the existing IMS applications without requiring modification to the applications. From a COBOL

copybook that describes the input and output message format, the XML Services for the Enterprise tool

generates the following Web service artifacts:

v COBOL converters and driver file, which is a single file that contains the input message COBOL

converter, the output message COBOL converter, and a driver.

v Correlator file, which contains information that enables IMS SOAP Gateway to set IMS properties and

call the IMS application.

v Web Services Description Language (WSDL) file, which describes the Web service interface of the IMS

application so that the client can communicate with the Web service.

The IMS SOAP Gateway can assist an organization in the following areas:

v Enterprise modernization

v Application development

v Business integration

v Web services implementation

For more information about using the IMS SOAP Gateway, including samples, see

http://www.ibm.com/software/data/ims/soap/

Enabling IMS applications for Web services with IMS SOAP Gateway

This topic provides only an overview of the tasks required to enable IMS applications for Web services.

To use IMS SOAP Gateway to create Web services from existing IMS applications, you must have IMS

and IMS Connect configured properly. Fore more information about completing the tasks described in

this topic, see http://www.ibm.com/software/data/ims/soap/.

To enable IMS applications for Web services:

1. Install IMS SOAP Gateway.

2. Configure IMS Connect for IMS SOAP Gateway.

3. Generate the Web services artifacts for an IMS application by using the XML Services for the

Enterprise tools. See “Generating Web services artifacts for IMS SOAP Gateway” on page 122.

 121

http://www.ibm.com/software/data/ims/soap/
http://www.ibm.com/software/data/ims/soap/

4. Deploy the Web service to IMS SOAP Gateway.

5. Copy and compile artifacts in IMS Connect.

6. Create the client application.

7. Run the client application.

Generating Web services artifacts for IMS SOAP Gateway

Use the XML Services for the Enterprise tools to generate the artifacts that are needed to enable existing

IMS COBOL applications for Web services.

To generate the artifacts that are needed to enable existing IMS COBOL applications for Web services,

you must have a COBOL copybook that describes the format of the input and output messages for the

application.

This task is part of the larger task of enabling IMS applications for Web services. Information about

enabling IMS applications for Web services, is available from the IMS SOAP Gateway Web site at

http://www.ibm.com/software/data/ims/soap/. To generate Web services artifacts for IMS SOAP

Gateway:

1. Create a project.

2. Import the COBOL copybook that describes the format of the input and output messages.

3. Start the Enable Web Service wizard:

a. Right-click on the COBOL copybook file.

b. Select Enable Web Services → Generate enablement code.
4. Select the data structures for the inbound and outbound converters:

a. Click Change COBOL Options. The COBOL Import Properties panel displays.

b. In the Platform field, select z/OS.

c. Click Finish. The Data structures panel displays.

d. For the inbound data structure, select the COBOL data structure that corresponds to the input

message of the IMS application.

e. Select the Outbound data structure tab.

f. Select the COBOL data structure that corresponds to the output message of the IMS application.

g. Click Next to continue.
5. Specify generation options:

a. In the Converter type field, select IMS SOAP Gateway.

b. In the Host code page field, select the code page that the host uses. IMS SOAP Gateway supports

only UTF-8 encoding for the inbound and outbound code pages. Therefore, you cannot change

these settings.

c. Specify any additional properties.

d. Select the WSDL and XSD Options tab.

e. In the Endpoint URI field, change the host and port name to the location of IMS SOAP Gateway.

This URI specifies the address of the Web service.

f. Specify any additional properties.

g. Click Next to continue.
6. Specify the IMS SOAP Gateway correlator properties and click Next.

7. Specify location and names of the Web service artifacts.

a. If necessary, change the default location and names of the COBOL converters and driver.

b. Ensure that Generate all to driver is selected.

c. Select the WSDL and XSD tab.

122 Developing xml interfaces for COBOL applications

http://www.ibm.com/software/data/ims/soap/

d. If necessary, change the default location and names of the WSDL file.

e. Ensure that WSDL file name is selected.

f. Optionally, select the inbound and outbound XSD files to be generated. These files are not required

by IMS SOAP Gateway.

g. Click Finish.

The following files are generated:

v COBOL converters and driver file

v Correlator file

v WSDL file

v Inbound and outbound XSD files (optional)

After you create the Web services artifacts, you can deploy the Web service to IMS SOAP Gateway.

Chapter 10. XML Sevices for the Enterprise tools and IMS SOAP Gateway 123

	Contents
	Chapter 1. Introduction to XML Services for the Enterprise
	Introduction to XML Services for the Enterprise
	Restrictions and limitations

	Chapter 2. Creating a web service interface with the Web Services Enablement wizard
	Data structures
	COBOL Import Properties
	Generation Options
	Web Services in CICS
	IMS SOAP Gateway
	File, data set or member selection

	Chapter 3. XML to COBOL mapping tools
	XML to COBOL mapping concepts
	Mapping sessions
	Elementary item and XSD simple type element mapping
	Elementary item and XML instance document element mapping
	Elementary item and DTD element mapping
	Isomorphic and non-isomorphic simple mapping
	Mapping repeating items
	Automatic group mapping
	Mapping XML model group elements
	Using mapping session files
	Locales and code pages

	Chapter 4. Mapping XML to COBOL
	Creating a mapping session file
	Editing a mapping session file
	Generating mapping code

	Chapter 5. XML Converter Diagnostics
	Chapter 6. Setting preferences for XML Services for the Enterprise
	Chapter 7. Batch Processor
	Creating and populating options files
	Starting the batch processor
	Container.xml
	GenerationSpec
	GenerationSpecArray
	Container.xml sample
	Schema for Container.xml

	PlatformProperties.xml
	CodegenProperty
	Supported code pages (CCSIDs)
	Supported code page combinations

	CodegenPropertyArray
	ConnectionProperty
	ConnectionPropertyArray
	ImportProperty
	ImportPropertyArray
	Platform
	PlatformArray
	PlatformProperties.xml sample
	Schema for PlatformProperties.xml

	ServiceSpecification.xml
	ConverterSpecIn
	ConverterSpecOut
	CorrelatorSpec
	DriverSpec
	EISProject
	EISService
	InputMessage
	InputOutputMessage
	ItemSelection
	ItemSelectionArray
	Operation
	OperationProperty
	OperationPropertyArray
	OutputMessage
	RedefinesArray
	RedefineSelection
	ServiceProperty
	ServicePropertyArray
	WSBindSpec
	XsdSpecIn
	XsdSpecOut
	XseSpec
	ServiceSpecification.xml sample
	Schema for ServiceSpecification.xml

	Chapter 8. Mapping reference
	Mapping reference information
	COBOL language types
	XML and COBOL type compatibility
	XML and COBOL structure compatibility
	XML types derived from COBOL
	Isomorphic and non-isomorphic element mapping

	Chapter 9. The CICS catalog manager example application
	The base application
	Installing and setting up the base application
	Creating and defining the VSAM data sets
	Defining the 3270 interface
	Completing the installation

	Web service support for the example application
	Configuring code page support
	Installing Web service support
	Creating the HFS directories
	Creating the PIPELINE definition
	Creating a TCPIPSERVICE
	Dynamically installing the WEBSERVICE and URIMAP resources
	Creating the WEBSERVICE resources with RDO
	Creating the URIMAP resources with RDO
	Completing the installation

	Configuring the example application
	Configuring the Web client
	Running the example application
	Running the example application with the BMS interface
	The Web service enabled application

	Using XML Services for the Enterprise to create and deploy CICS Web services artifacts
	Artifacts necessary to enable a web service under CICS
	Creating Web services artifacts for CICS
	Deploying the Web services artifacts to CICS

	Enabling the catalog example for web services using WebSphere Developer
	Generating web services artifacts for the inquireSingle web service
	Installing and deploying the InquireSingle web service
	Combined Interface Definition DFH0XCP1

	Components of the base application
	The catalog manager program
	COMMAREA structures
	Return codes
	INQUIRE CATALOG operation
	INQUIRE SINGLE ITEM operation
	PLACE ORDER operation
	DISPATCH STOCK operation
	NOTIFY STOCK MANAGER operation

	BMS presentation manager
	Data handler
	Dispatch manager
	Order dispatch endpoint
	Stock manager
	Application configuration

	File Structures and Definitions
	Catalog file
	Configuration file

	Chapter 10. XML Sevices for the Enterprise tools and IMS SOAP Gateway
	Overview of IMS SOAP Gateway
	Enabling IMS applications for Web services with IMS SOAP Gateway
	Generating Web services artifacts for IMS SOAP Gateway

