
WebSphere® WebSphere Developer Debugger for zSeries

Debugging MVS COBOL

with calls to a C program and C++ DLL

Version 6.0.1

���

WebSphere® WebSphere Developer Debugger for zSeries

Debugging MVS COBOL

with calls to a C program and C++ DLL

Version 6.0.1

���

Note

Before using this information and the product it supports, read the information in Notices at the end of this book.

© Copyright International Business Machines Corporation 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Debugging MVS COBOL with calls to a C program and C++

DLL

Objectives

This tutorial will guide you through the launch of a debug session for a sample MVS™ COBOL

application which calls a separately-compiled C subroutine. Parameters are passed by reference. The C

module, in turn, calls two entry points in a C++ DLL.

Description

To debug the application, complete the following steps:

1. Prepare to debug.

2. Get accustomed to the user interface.

3. Debug the application.

Part 1: Preparing to debug

This tutorial assumes that you have a basic knowledge of MVS, creating an MVS dataset, adding/editing

dataset members, MVS JCL, and submitting an MVS job.

Sample code for the application that this tutorial describes is provided with WebSphere® Developer

Debugger for zSeries®. You can compile this sample code on the zSeries machine and then create a JCL

for it. Ensure that the JCL references the host name of the client machine that you have installed

WebSphere Developer Debugger for zSeries on and the daemon port number that you have set in the

WebSphere Developer Debugger for zSeries user interface. Submit the JCL on the zSeries machine to

begin the debug session on the client machine.

© Copyright IBM Corp. 2005 1

When you launch the debugger, its welcome experience will appear. Close the welcome panel to see the

debugger user interface. After you launch the debug session, the user interface will look like this:

Note: If you receive a message indicating that the environment is not yet fully initialized, click OK to

close it.

Part 2: Get accustomed to the user interface

The WebSphere Developer Debugger for zSeries user interface contains a variety of views that are

tailored to help you with typical debugging tasks. These views include:

v The Debug view, which allows you to manage the debug session. The Debug view is where you issue

run, step, and terminate commands.

v The Breakpoints view, which contains a list of breakpoints that you have set. You can also set

breakpoints in this view.

v The Monitors view, which displays a list of variables and expressions that you have added for

monitoring. The Variables view displays all current variables and expressions. If you are interested in

working with particular variables, the Monitors view is a convenient place to do so.

v The Debug Console, which displays output from Debug Tool for z/OS®. You can also enter commands

to Debug Tool for z/OS from the Debug Console.

v The editor, which displays source for your program at the current execution point. You can set

statement breakpoints from the editor, as well as issuing run to location and jump to location actions.

As you are following this tutorial, you are encouraged to look at all of the views in the debugger user

interface so you can get accustomed to the user interface. To see a view that is hidden. select its tab. In

addition, select the main menu bar items during the tutorial. There you will see a variety of debug

actions, as well as options to open debug preferences, the debugger welcome page, and the help.

2 IBM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++ DLL

Part 3: Debugging the application

This section will walk you through some basic debug functions. You will set breakpoints, issue step

commands, work with source, and examine variables (values for variables may not appear exactly as

illustrated).

 1. Begin by going to the Breakpoints view. In the view, add a load breakpoint for library SAMPL1D by

right-clicking in the view and selecting Add Breakpoint > Load from the pop-up menu:

 2. Once in the Add a Load Breakpoint wizard, enter SAMPL1D in the Library name field:

Click Finish to set the breakpoint.

 3. Go the Debug view and click Resume (

). The debugger will stop at the load breakpoint that you

set.

 4. Now look at the editor and you will see that the program is stopped at line 19 in the C subroutine:

 5. Click Step Return (

) in the Debug view and then view the results in the editor:

Debugging MVS COBOL with calls to a C program and C++ DLL 3

6. Set a breakpoint on line 32. To do this, right-click on the editor marker bar to the left of line 32 and

select Add Breakpoint from the pop-up menu:

 7. The breakpoint indicator appears in the Breakpoints view and to the left of the line in the editor. The

check mark on the breakpoint indicator signifies that the breakpoint is installed. The filled

breakpoint indicator (and check mark in the box to the left of the breakpoint in the Breakpoints

view) indicates that the breakpoint is enabled.

4 IBM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++ DLL

8. Click Resume (

) and you will see that program execution stops and the editor displays line 32:

Debugging MVS COBOL with calls to a C program and C++ DLL 5

9. Add variables VAR1, VAR2, VAR3, and RESULT to the Monitors view. To do this, highlight the variable in

the editor, right-click, and select Monitor Expression from the pop-up menu:

Repeat this for the all of the variables (VAR1, VAR2, VAR3, and RESULT).

10. The variables will display in the Monitors view:

6 IBM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++ DLL

11. Click Step Into (

) in the Debug view until program execution stops at line 3 (calcRate) in the

editor.

12. Look at the editor to see that program execution has stopped at the calcRate entry point in the DLL:

13. Next, you will add monitors for the balance, apr, days, and *charge variables. This time, you will

add the monitor directly from the Monitors view. Click the Monitor Expression icon at the top of

the view:

This will open the Monitor Expression dialog box. In the dialog box, enter the variable in the field

and click OK:

Repeat this for all of the variables (balance, apr, days, and *charge).

14. After you have added the variables to the Monitors view, they will be displayed in the view in a list:

Debugging MVS COBOL with calls to a C program and C++ DLL 7

Compare the values of corresponding variables from the C subroutine to those in the C++ DLL and

you will see that they match.

15. Click Step Into (

) in the Debug view.

16. Add the rate variable to the Monitors view as you did in previous steps. Then, set a breakpoint on

the line 6:

17. Next, you will run to line 8 and then examine the value of rate. To do this, select line 8 and then

right-click on line 8 in the editor and choose Run To Location:

18. Examine the value of rate in the Monitors view. You will see that its value has changed. To indicate

the change, a delta triangle will appear on the variable indicator:

8 IBM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++ DLL

19. Click Step Into (

) in the Debug view.

20. Now the value of *charge will indicate a change:

21. Next, you will add a statement breakpoint on the first executable line (line 17) of applyRules

function in the DLL. However, this time you will make the breakpoint conditional - you will set it to

trigger on the third time the statement is executed. First, let’s have a look at the applyRules function.

Go to the Modules view and expand the SAMPL1D tree node and its sub-elements until you see the

applyRules function. Double-click applyRules:

When you double-click the entry in the Modules view, the editor displays the function with the

entry highlighted. Single-click on line 17 to select the line.

22. Now, we will add the conditional statement breakpoint. Right-click in Breakpoints view and select

Add Breakpoint > Statement from the pop-up menu:

Debugging MVS COBOL with calls to a C program and C++ DLL 9

23. In the resulting Add a Statement Breakpoint dialog box, you will see that the Executable, Object,

and Source (optional) fields are pre-filled with the appropriate information. Make sure that the

Statement field entry is 17 and then click Next:

24. Now you are in the Optional parameters page of the Add a Statement Breakpoint wizard. This page

allows you to set conditions for the breakpoint. We are going to set the breakpoint to trigger on the

third time that the statement is executed (we want to see what happens in the fourth execution and

we have already gone through this statement once). To do this, change the value of the From field to

3 and click Finish:

10 IBM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++

DLL

When entering optional breakpoint parameters, the fields in the wizard page are:

v From: Enter the first breakpoint encounter you want the debugger to stop on. For example, if you

want the debugger to skip over the breakpoint the first five times it is encountered, enter ″6″.

v To: Enter the last breakpoint encounter you want the debugger to stop on. For example, if you

want it to start ignoring the breakpoint after the 20th encounter, enter ″20″. To have it always stop

on the breakpoint, enter ″Infinity″.

v Every: Enter the frequency with which you want the debugger to stop on this breakpoint. For

example, if you want it to stop on only one out of every four it encounters, enter ″4″.

v Expression: You can enter an expression into this field. The execution of the program stops at the

breakpoint only if the condition specified in this field tests true (any non-zero value is considered

true).
25. Since we are done with some of the breakpoints that we have been working with, we will delete

them. Select all breakpoints except the statement breakpoints for lines 17 and 32. To select multiple

breakpoints, use the keyboard Ctrl or Shift keys. Right-click the selection and choose Remove from

the pop-up menu:

26. Click Resume (

) and you will see that program execution stops and the editor displays line 32:

Debugging MVS COBOL with calls to a C program and C++ DLL 11

27. Click Step Over (

) in the Debug view and then click Resume (

).

28. Execution halts at the conditional breakpoint that you set earlier. Have a look at the Monitors view

and you will see that the values of the balance, apr, days, *charge, and rate variables are Not

allocated. This is correct as those variables are being monitored in the scope of the other function in

this DLL.

29. Now, let’s run to line 23. In the editor, right-click the marker bar to the left of line 23 and select Run

To Location from the pop-up menu:

12 IBM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++

DLL

30. Next, go the Variables view and observe the values of the variables after running to line 23 (since

charge is an address, its value may be different on your machine than in this screen capture):

31. Now you can dereference the charge variable. To do this, right-click the variable in the Variables

view and select Dereference Pointer from the pop-up menu:

Debugging MVS COBOL with calls to a C program and C++ DLL 13

After choosing this action, you will see the dereferenced pointer added to the list in the Variables

view:

32. Next, let’s examine the if statement at the current execution point:

Click Step Over (

) in the Debug view three times and then have a look at the Variables view and

the editor:

14 IBM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++

DLL

Notice that the three conditions evaluate to true.

33. Now, let’s change the value of a variable. In the Variables view, right-click days and select Change

Value from the pop-up menu:

This will open the Set Value dialog box. Use this dialog box to change the value of days to 89:

After you click OK, you will see that the value of the variable has changed and the variable

indicator will have a delta symbol to the next of it:

Debugging MVS COBOL with calls to a C program and C++ DLL 15

34. Now, let’s step out of the if statement. To do this, select Step Over (

) or Step Into (

) twice in

the Debug view (this will move the execution pointer out of the if statement). Then, jump to line 23

and reevaluate the if statement. To do this, right-click the marker bar to the left of line 23 in the

editor and select Jump To Location from the pop-up menu:

After issuing the jump to location action, line 23 will be highlighted in the editor (this is the current

execution point):

35. Examine the if statement again. Click Step Over (

) in the Debug view and have a look at the

Variables view and the editor:

16 IBM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++

DLL

This time, the if statement evaluates as false.

36. Change the value of *charge to zero:

Debugging MVS COBOL with calls to a C program and C++ DLL 17

37. Step Return (

) in the Debug view. This will bring you back to the C subroutine after the call to

applyRules:

38. Click Step Return again. You will then be in the COBOL mainline after the call to CALCPEN:

39. Now, let’s add CUSTOMERS to the Monitors view. To do this, launch the Monitor Expression dialog

box from the Monitors view:

18 IBM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++

DLL

40. In the Monitors view, expand CUSTOMERS and then CUSTNAME and BALANCE-OWING:

41. Now, click Step Over (

) in the Debug view and you will be at line 34 in the COBOL source:

42. Click Step Over over again and you will notice that CUSTOMERS.CUSTREC.BALANCE-OWING.SUB(4) did

not change. Its value is still 1.00:

Debugging MVS COBOL with calls to a C program and C++ DLL 19

43. Now, change the representation of CUSTOMERS.CUSTREC.BALANCE-OWING.SUB(4) to hexadecimal. To do

this, right-click the entry in the Monitors view and select Change representation > Hexadecimal

from the pop-up menu:

20 IBM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++

DLL

This will change the value of the entry to a proper signed 7.2 packed decimal 1:

44. Congratulations! You have completed the tutorial and you can now terminate the debug session. To

do this, click the Terminate icon in the Debug view. Alternatively, right-click the debug target and

you will see other terminate options.

Debugging MVS COBOL with calls to a C program and C++ DLL 21

Summary

In this sample, you have learned how to use WebSphere Developer Debugger for zSeries to perform some

basic debug actions on a sample MVS COBOL application.

22 IBM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++

DLL

Notices

Portions based on Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma, Richard

Helm, Ralph Johnson and John Vlissides, Copyright (c) 1995 by Addison-Wesley Publishing Company,

Inc. All rights reserved.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP

Schedule Contract with IBM® Corp.

This information was developed for products and services offered in the U.S.A. IBM may not offer the

products, services, or features discussed in this documentation in other countries. Consult your local IBM

representative for information on the products and services currently available in your area. Any

reference to an IBM product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product, program, or service that

does not infringe any IBM intellectual property right may be used instead. However, it is the user’s

responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this

documentation. The furnishing of this documentation does not give you any license to these patents. You

can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR CONDITIONS OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

© Copyright IBM Corp. 2005 23

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

Intellectual Property Dept. for Rational Software

IBM Corporation

20 Maguire Road

Lexington, Massachusetts 02421-3112

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this documentation and all licensed material available for it are

provided by IBM under terms of the IBM Customer Agreement, IBM International Program License

Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples may include the names of individuals, companies, brands,

and products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates

programming techniques on various operating platforms. You may copy, modify, and distribute these

sample programs in any form without payment to IBM, for the purposes of developing, using, marketing

or distributing application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or

function of these programs. You may copy, modify, and distribute these sample programs in any form

without payment to IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. (C)

Copyright IBM Corp. 2000, 2005. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

24 IBM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++

DLL

Programming interface information

Programming interface information is intended to help you create application software using this

program.

General-use programming interfaces allow you to write application software that obtain the services of

this program’s tools.

However, this information may also contain diagnosis, modification, and tuning information. Diagnosis,

modification and tuning information is provided to help you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a programming interface

because it is subject to change.

Trademarks and service marks

See http://www.ibm.com/legal/copytrade.shtml.

Notices 25

http://www.ibm.com/legal/copytrade.shtml

26 IBM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++

DLL

����

Printed in USA

	Debugging MVS COBOL with calls to a C program and C++ DLL
	Notices

