R ET8 WebSphere Developer Debugger for zSeries

Version 6.0.1

#

Debugging MVS COBOL
with calls to a C program and C++ DLL

L[N WebSphere Developer Debugger for zSeries

Version 6.0.1

Y

N

Y/ TRR
ory

Debugging MVS COBOL
with calls to a C program and C++ DLL

Note
FBefore using this information and the product it supports, read the information in Notices at the end of this book.

© Copyright International Business Machines Corporation 2005. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Debugging MVS COBOL with calls to a C program and C++
DLL

Objectives

™

This tutorial will guide you through the launch of a debug session for a sample MVS™ COBOL
application which calls a separately-compiled C subroutine. Parameters are passed by reference. The C
module, in turn, calls two entry points in a C++ DLL.

Description

To debug the application, complete the following steps:
1. [Prepare to debug]

2. |Get accustomed to the user interface]

3. [Debug the application]

Part 1: Preparing to debug

This tutorial assumes that you have a basic knowledge of MVS, creating an MVS dataset, adding/editing
dataset members, MVS JCL, and submitting an MVS job.

Sample code for the application that this tutorial describes is provided with WebSphere® Developer
Debugger for zSeries®. You can compile this sample code on the zSeries machine and then create a JCL
for it. Ensure that the JCL references the host name of the client machine that you have installed
WebSphere Developer Debugger for zSeries on and the daemon port number that you have set in the
WebSphere Developer Debugger for zSeries user interface. Submit the JCL on the zSeries machine to
begin the debug session on the client machine.

© Copyright IBM Corp. 2005

When you launch the debugger, its welcome experience will appear. Close the welcome panel to see the
debugger user interface. After you launch the debug session, the user interface will look like this:

IBM WebSphere Developer Debugger for zSeries g@

File Run - Memory Monitors Warisbles Window Help

fSFDebug & = O || EE manitars 52 Breakp-:ints|Mc-duIes| =g
LN R I +RXRRLEDIDH BES

= E com.ibm,debug.load [Compiled Application]
& Platform: O5(390(R) Connection: 9.26,177.141:1717
=g Thread:1 (Runna_lgle)
=]
Program: S&MPLE1

g Process:

fSFTSWDDZ.SAMPLEI.LISTING(SAMPLEI) b =0
Line 1 Column 1 Insert
I———+————1————+————2————+————3————+————tl————+————
» 1 IDENTIFICATICON DIVIZICH. @
2 PROGRAM-ID. SAMPLEL. 09= Yariables 53 . Registers @[~ =0
3
™)
€] | B
3 Memory E2 . Debug Console| i '=,_,'| 4>‘t::| B G:D = =0
Memary d= Memary Renderings <

Plonitare

[| | | |

Note: If you receive a message indicating that the environment is not yet fully initialized, click OK to
close it.

Part 2: Get accustomed to the user interface

The WebSphere Developer Debugger for zSeries user interface contains a variety of views that are
tailored to help you with typical debugging tasks. These views include:

¢ The Debug view, which allows you to manage the debug session. The Debug view is where you issue
run, step, and terminate commands.

* The Breakpoints view, which contains a list of breakpoints that you have set. You can also set
breakpoints in this view.

* The Monitors view, which displays a list of variables and expressions that you have added for
monitoring. The Variables view displays all current variables and expressions. If you are interested in
working with particular variables, the Monitors view is a convenient place to do so.

* The Debug Console, which displays output from Debug Tool for z/OS®. You can also enter commands
to Debug Tool for z/OS from the Debug Console.

* The editor, which displays source for your program at the current execution point. You can set
statement breakpoints from the editor, as well as issuing run to location and jump to location actions.

As you are following this tutorial, you are encouraged to look at all of the views in the debugger user
interface so you can get accustomed to the user interface. To see a view that is hidden. select its tab. In
addition, select the main menu bar items during the tutorial. There you will see a variety of debug
actions, as well as options to open debug preferences, the debugger welcome page, and the help.

2 IBM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++ DLL

Part 3: Debugging the application

This section will walk you through some basic debug functions. You will set breakpoints, issue step
commands, work with source, and examine variables (values for variables may not appear exactly as
illustrated).
1. Begin by going to the Breakpoints view. In the view, add a load breakpoint for library SAMPL1D by
right-clicking in the view and selecting Add Breakpoint > Load from the pop-up menu:

Monitors | ©e Breakpoints £ Modules| =0

X%@>-w|DpEST
=3
Add Breakpoint Entry...
Address. ..
Waktch..,
¥ Load... %
O Skakement. ..
X Stop Ak Al Function Entries
; = - - =
H 5= Brs =5 3 g
1
5E]

2. Once in the Add a Load Breakpoint wizard, enter SAMPL1D in the Library name field:

Add a Load Breakpoint

Required information

Sets a breakpoint to stop execution when a dynamically loaded
library is loaded

Library name: |SAMPL1D

= Back | Mext = | Cancel |

Click Finish to set the breakpoint.

3. Go the Debug view and click Resume (3). The debugger will stop at the load breakpoint that you
set.

4. Now look at the editor and you will see that the program is stopped at line 19 in the C subroutine:

#,3.\,tswddz'l,samplel'l,samplls.src &3 =B
Line 19 Column 1 Insert Browse
H———+————1————+————2————+————3————+————4————+————5————+————6————+
17 double apr = .00001E400 * *percent;: h]
15 double penalty;
» 19 ro = caleRate (bhalance, apr, *days, &Spenalty)
Z0 rc = applyBules (balance, ¥days, &penalty):;
z1 ¥*interest = penalty * 100; 1
22 H
23 return: [v]
&l I | (]

5. Click Step Return (_g) in the Debug view and then view the results in the editor:

Debugging MVS COBOL with calls to a C program and C++ DLL 3

%5 TSWDDZ.SAMPLELLISTING(SAMPLEL) 53 =0

Line 33 Column 1 Insert Erowse
B+l BB G E o f———4
» 33 COMPUTE PEMNALTY-OWIMG(CUST-INDEX)] = RESTLT» |

34 ADD PENALTY-OWING(CUST-INDEX) TO BALANCE-C

35

36 INIT-CUSTOMERS.

a7 MOVE "Sprat, Jack" TO CUSTHNAME (1) .

38 MOVE 5.000 To AFR(1).

39 MOVE 100.00 TO BALAMCE-CWING(1) . ™
< >

6. Set a breakpoint on line 32. To do this, right-click on the editor marker bar to the left of line 32 and
select Add Breakpoint from the pop-up menu:

35 TSWODZ. SAMPLEL LISTING(SAMPLEL) 52 =B
Line 3Z Column 31 Insert Browse
————+————1————+————2————+————3=———+————‘1————+————5————+————6————+
31 MOVE DAYS-3INCE-PAID|(CUST-INDEX) T VAERS. i)
S CALL "CALCPEN®"™ TUSING WAR1, WARZ, WAR3, RE:
Add Breakpoint =
L COMPUTE PENALTY-OWING (CUST-INDEX) = RESTLI
Jump Ta Location ADD PENALTY-OWING (CUST-INDEX) TO BALLNCE-C

Run To Location

INIT-CUSTOMERS.
MOVE "Sprat, Jack" TO CUSTHAME (1) . v

7. The breakpoint indicator appears in the Breakpoints view and to the left of the line in the editor. The
check mark on the breakpoint indicator signifies that the breakpoint is installed. The filled
breakpoint indicator (and check mark in the box to the left of the breakpoint in the Breakpoints
view) indicates that the breakpoint is enabled.

4 IBM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++ DLL

@ IBM WebSphere Developer Debugger for zSeries ‘._HE"
File Run - Breakpoinks Memory Wariables Window Help

%5 Debug 52 [o s | I TR | : HE == O || Mornitors (00 Ereakpoints 3 Modules| =
(=13, com.ibm. debug.load [Compiled Application] 4 & &8 o W | i | = Q;D ‘

E@ Platform: OS/390(R) Connection: 9.26,177.141:1792
; E""m@ Thread:1 (Runnable)

.= SAMPLE1 : 01

5-----,.‘3 Process: 426544283 Program: SAMPLEL

2 Statement [TSWDDZ SAMPLEL LISTING(SAMPLEL}:32]
-2 Load [SAMPLID]

35 TSWDDZ.SAMPLED . LISTING(SAMPLEL) 52 =0
Line 33 Column 1 Insert Erowse
I———+————1————+————2————+————3————+————4————+————5————+————6————+
31 MOVE DAYS-SINCE-PAID (CUST-INDEX) TO VARZ. h]
2 a2 CALL "CALCPEN™ USING VAR1, VARZ, VARI, RES
» 33 COMPUTE PENALTY-OUWING (CUST-INDEX) = RESULT
34 ADD PENALTY-OWING (CUST-INDEZX) TO BALANCE-O (9= Yariables 23 Reqisters i =
& CUSTOMERS
36 INIT-CUSTOMERS. YAR1 = +0000010000
a7 MOVE "Sprat, Jack” TO CUSTHMAME (1). M VAR = 40000005000
(=] i | (2] YARS = +0000000014
RESLLT = +0000000000
[Memary £2 . Debug Consale =l ‘,_,f| a4 | [l <=.=4> ¥ =0

[Mermary & i i Memary Renderings g i

Fnnitare

8. Click Resume (g) and you will see that program execution stops and the editor displays line 32:

Debugging MVS COBOL with calls to a C program and C++ DLL 5

IBM WebSphere Developer Debugger for zSeries g@
File Run - Breakpoinks Memory Wariables Window Help
%5 Debug 52 [l & I TR 45~ 7 O ||Manitars | ® Breakpainks 52 . Modules =g
= Ecom.ibm.debug.load [Compiled application] W SE = B v
= Platform: OS/390(R) Connection: 9.26,177.141:1792 : Kol 2w i =
= B Thread:1 (Runmable) [l Statement [TSWDDZ.SAMPLEL LISTING{SAMPLEL}:32]
=I-n] '
= SAMPLEL : 01 B.# Load[5AMFLID]
p.- Process: 426844288 Program: SAMPLEL
%5 TSWDDZ. SAMPLE1 LISTING(SAMPLEL) 52 =B
Line 32 Column 1 Insert Browse
I———+————1————+————2————+————3————+————‘1————+————5————+————6————+
31 MOVE DAYS-SINCE-PAID(CUST-INDEX) TO VARS. i)
») CALL "™CALCPEM"™ USING VAR1, VARZ, WAiARS, RES
&) COMPUTE PENALTY-OWING (CUST-INDEX) = REZSULT
34 ADD PEMALTY-OWING (CUST-INDEX) TO BALAMCE-O-—||60= varisbles &7 . Registers kg~ =0
= +.® CUSTOMERS
6 IHIT=CUSTONERS -) || @y var1 = +o001234887
_ 37 MOVE "Sprat, Jack" TO CUSTHMAME (1) . [v] @, VAR2 — 40000004750
%] A &, vARS = +0000000030
@ RESULT = -+0000000000
3 Memary 52 . Debug Consale it ll=%| BBl|E ™~ T O
[Mermary Memary Renderings
tanitare " w

9. Add variables VAR1, VAR2, VAR3, and RESULT to the Monitors view. To do this, highlight the variable in
the editor, right-click, and select Monitor Expression from the pop-up menu:

% TSWDDZ, SAMPLE1 LISTING(SAMPLEL) &3 =08
Line 32 Column 47 Insert Browse
M R i - . L e .
27 UPDATE-OWING. A
=] MOVE 0O TO RESULT.
29 COMPUTE WAR1 = BALAMNCE-OWING(CUST-INDEX) + 100.
30 COMPUTE WARZ = APRE(CUST-INDEZX) * 1000.
31 MOVE DAYA-3INCE-PAID (CUST-INLDEXE) TO WARS.
» 32 CALL M"CALCFEN"™ U3ING Wam* rtrrmo rrame mmsmmee
33 COMPUTE PENALTY-OWING(c CndText..
a4 ADDL PENALTY-OWING (CU3T-
35 Find Function ar Entry Point. .. Ckrl+F12
36 INIT-CUSTOMERS.
r "
37 MOVE "Sprat, Jack®™ TO C Remave Breakpoint
38 MOVE 5.000 To APE(1). Disble Breakpoint
39 MOVE 100.00 TO BALAMCE- ;ddW teh B nt
40 MOVE 14 TO DATS-3INCE-P S B T s
41 MOVE O TO PENALTY-OWING Jymp To Location
ra Fun To Location
Monitar gxlﬁssion
i 3
G Mernary &4 Debug Console Monitor Mefftary
IMemary Monitars Ja IMemary Renderings Change Text File...
Switch Yiew 3

I
Repeat this for the all of the variables (VAR1, VAR2, VAR3, and RESULT).
10. The variables will display in the Monitors view:

6

IBM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++ DLL

[manitors 22 Breakp-:ints|r\'1c-dules| =0

TRELEBEELIBE
@ WARL = +0001234567
@ yARZ = +0000004750
@ YAR3 = +0000000030
@ RESULT = +0000000000

11. Click Step Into (5_) in the Debug view until program execution stops at line 3 (calcRate) in the
editor.

12. Look at the editor to see that program execution has stopped at the calcRate entry point in the DLL:

%‘5.'l,tswddz'l,sample1'|,samp|1d.src by =0
Line 3 Column 1 Insert Browse
R e B T —_— . £ L i B
1 #include <math. h> ~
2
» 3 extern "C" int Export calcRate(double balance, doubl
4 int days, double * cb
5 {
[doukble rate = 0;
7 rate = pow(l.0E+00 + {apr / 3.65E+0Z2), days) —-1.0EAd
=1 *charge = balance ¥ rate; U
-
(<] 1 | (2]

13. Next, you will add monitors for the balance, apr, days, and *charge variables. This time, you will
add the monitor directly from the Monitors view. Click the Monitor Expression icon at the top of
the view:

EF monitors 2 Breakpc-ints| i =B
FRELDEE L BS

@ yaR3 = +0000000035
@ RESULT = +0000000000

This will open the Monitor Expression dialog box. In the dialog box, enter the variable in the field
and click OK:

Monitor Expression
I balance| LI

Evaluation Conkext

File: TSWDDZ.SAMPLEL SRC{SAMPLID)
Line: 3

Wigw: Source

Thread: 1

oK I Cancel |

Repeat this for all of the variables (balance, apr, days, and *charge).

14. After you have added the variables to the Monitors view, they will be displayed in the view in a list:

Debugging MVS COBOL with calls to a C program and C++ DLL 7

[manitors 22 Breakpoints | Modules =B

FTRELED L BS
VAR = +0001 234567
WARZ = +0000004750
WARS = 40000000030
RESULT = +0000000000
balance = 1.23456700000000000E+04
apr = 4.75000000000000000E-02
days = 30
*charge = 8,70010009498585700E-48

(N N N NN NN

Compare the values of corresponding variables from the C subroutine to those in the C++ DLL and
you will see that they match.

15. Click Step Into (5.) in the Debug view.
16. Add the rate variable to the Monitors view as you did in previous steps. Then, set a breakpoint on

the line 6:
%‘:‘F Atswddzisamplelisamplid.sre 22 =0
Line & Column 1 Insert
| ., e i, A .- -

#include <math.h:>

[#]

1
2 =
3 extern "C" int _Export calcRate(dDu]E
4 L2
5

int
{
! — Touble rate = 0;
LI GRS te = pow(l.0E+00 + (apr / 3.65E
Jump Tao Location! harge = halance ¥ rate; i
o -
Fun To Location 3] —

17. Next, you will run to line 8 and then examine the value of rate. To do this, select line 8 and then
right-click on line 8 in the editor and choose Run To Location:

:ﬁfﬁ.\,tswddz'l,sample1'|,samp|1d.src xS =08
Line & Column 9 Insert
e B i —i-—-<cdd B i L
1 ginclude <math.h> |
z
&) extern "C" int Export calcRate (dow
4 int
5 i
» & double rate = 0;
7 rate = pow(l.0E+00 + (apr / 3.6SE|(S
3 PO R SR T S
q Find Text...
10
11 Find Function or Enkry Point, .. CbrHF12
12 Add Breakpoint jrules tg"
Add Watch Breakpoint. .. I
14
15 Jumnp To Location +ve hbal:
16 Run Ta Location d.
17 [}\& £ (30 »
158 Manitar Expression 1ze)) 4
— Manitar Memory » |
£3 I— 2
Change Text File..,
Swikch Wiew 3
A Memare 57 - -z 7 = 0

18. Examine the value of rate in the Monitors view. You will see that its value has changed. To indicate
the change, a delta triangle will appear on the variable indicator:

8 IBM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++ DLL

[manitars 22 Breakpoints | Modules =B

T XBRLEE L BS
@ YARL = 0001234567
@ yaRZ = 40000004750
@ YARS3 = +0000000030
@ RESULT = 0000000000
@ balance = 1,23456700000000000E+04
) apr = 4.75000000000000000E-02
@ days=a0
] *charge = 8,70010009498585700E-48
0& rate = 3,91148554626097300E-03

19. Click Step Into (5.) in the Debug view.
20. Now the value of *charge will indicate a change:

[manitars 22 Breakpoints | Modules =B

FTRELEED L BS
VARl = 40001234567
WARZ = +0000004750
WARS = 40000000030
RESULT = +0000000000
balance = 1.23456700000000000E+04
apr = 4.75000000000000000E-02
days = 30
By, *charge = 4,8289909763907 7 100E4+-01
@ rate = 3.91143554626097300E-03

(N N N NN NN

21. Next, you will add a statement breakpoint on the first executable line (line 17) of applyRules
function in the DLL. However, this time you will make the breakpoint conditional - you will set it to
trigger on the third time the statement is executed. First, let’s have a look at the applyRules function.
Go to the Modules view and expand the SAMPL1D tree node and its sub-elements until you see the
applyRules function. Double-click applyRules:

—+,

Monitors | Breakpaints | 51 Modules 52 E &~ d

- & SAMPLID
] '|=_=| TSWDDZ, SAMPLEL. SRC{SAMPLID)
=1-[Z] .\ tswddz \sample1isamplid,src
@ applyRules

& calcrate

- & SAMPLE1
+-57 saMPLEL
+-F7 TSWDDZ SAMPLEL, SRC(SAMPLLS)

When you double-click the entry in the Modules view, the editor displays the function with the
entry highlighted. Single-click on line 17 to select the line.

22. Now, we will add the conditional statement breakpoint. Right-click in Breakpoints view and select
Add Breakpoint > Statement from the pop-up menu:

Debugging MVS COBOL with calls to a C program and C++ DLL 9

Monitors | @@ Breakpoints &3 Modules| =g

REPAN N BEE YT

== B S AMPLEL LIS TING SAMPLEL Y 32] |
=) Goto File DZ SAMPLE1,SRCESAMPLIDY:6]
Add Breakpoink ¥ Erkry...
Address. .,
—————— watch...
%] Load...
[Disable Statement. .. I
Wi
3 Remgve Stop Ak Al Function Entries
g Remave A
Select all
| EE| Sopy
Cl= rs| %) +E 0 Y = O

23. In the resulting Add a Statement Breakpoint dialog box, you will see that the Executable, Object,
and Source (optional) fields are pre-filled with the appropriate information. Make sure that the
Statement field entry is 17 and then click Next:

Add a Statement Breakpoint

Required information

Sets a breakpoint to stop execution at a specific source line

[Defer breakpaint until executable is lnaded
Executable

| SAMPLID =l

Chiject
| TSWDDZ. SAMPLEL,SRC(SAMPLLD) |

Sourcefoptional):
I JAbswddzisamplelsamplld. sec LI

Statement:

e

Einish | Cancel |

= Back

24. Now you are in the Optional parameters page of the Add a Statement Breakpoint wizard. This page
allows you to set conditions for the breakpoint. We are going to set the breakpoint to trigger on the
third time that the statement is executed (we want to see what happens in the fourth execution and
we have already gone through this statement once). To do this, change the value of the From field to
3 and click Finish:

10 1BM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++
DLL

Add a Statement Breakpoint

Optional parameters

fMake the breakpoint conditional upon the Following parameters

Frequency

Fromm: |3

To: I Infinity

Every: | 1

Expression: I

< Back, | [det = | Cancel |

When entering optional breakpoint parameters, the fields in the wizard page are:

+ From: Enter the first breakpoint encounter you want the debugger to stop on. For example, if you
want the debugger to skip over the breakpoint the first five times it is encountered, enter "6".

* To: Enter the last breakpoint encounter you want the debugger to stop on. For example, if you
want it to start ignoring the breakpoint after the 20th encounter, enter "20". To have it always stop
on the breakpoint, enter "Infinity”.

* Every: Enter the frequency with which you want the debugger to stop on this breakpoint. For
example, if you want it to stop on only one out of every four it encounters, enter "4".

* Expression: You can enter an expression into this field. The execution of the program stops at the
breakpoint only if the condition specified in this field tests true (any non-zero value is considered
true).

25. Since we are done with some of the breakpoints that we have been working with, we will delete
them. Select all breakpoints except the statement breakpoints for lines 17 and 32. To select multiple
breakpoints, use the keyboard Ctrl or Shift keys. Right-click the selection and choose Remove from
the pop-up menu:

Monitors | @@ Breakpoints &3 Modules| =g
RRE#-w|D|BEER Y

B Statement [TSWDOZ, SAMPLEL, LISTING(SAMPLEL):32]

[Fl.2 Statement [TSWDDZ.SAMPLEL, SRC{SAMPLID):17]

.2 [stat - SRC{SAMPLID)E]

£ Lo

o

Add Breakpoint *

%)
[Disable
% Remove
%Remove all %
(9= Yariables 7 = i?s;t Al o+t @~ =0
® rate=1 .
? charge { =

26. Click Resume (jp) and you will see that program execution stops and the editor displays line 32:

Debugging MVS COBOL with calls to a C program and C++ DLL 11

27.

ﬁ-TSWDDZ.SAMPLEI.LISTING(SF\MF‘LEI) &4 = d
Line 32 Coalumn 9 Insert Erowse
-—+———=1————+————2————+————3————+————4————+————5————+————6———-
29 COMPUTE VARl = BALANCE—OIJING(CUST—INDEX)h]
30 COMPUTE VARZ = APR(CUST-INDEX) * 1000.
31 MOVE DAYS-3INCE-FAID (CUST-INDEX) TO WARS
» 32| CALL M"CALCPEN'"™ UIING WAR1, WARZ, VAR3I, R
33 COMPUTE PENALTY-OWING (CUST-INDEX) = ERESU
34 ALD PENALTY-OWING(CUST-IMNDEX) TO BALANCEH
515
36 INIT-CUSTOMERS.
37 MOVE "Zprat, Jack" TO CUSTHNAME (1) .
35 MOVE 5.000 To AFR(1). M
& | I | (]

Click Step Over (=) in the Debug view and then click Resume (g).

28. Execution halts at the conditional breakpoint that you set earlier. Have a look at the Monitors view
and you will see that the values of the balance, apr, days, *charge, and rate variables are Not
allocated. This is correct as those variables are being monitored in the scope of the other function in

this DLL.

IBM WebSphere Developer Debugger for zSeries

BEX]

File Run - Memory Monitors Warisbles Window Help

[E==c

%7 Debug &3 13 o | S TR |

=104 cam.ibm.debug.load [Compiled application]
“a
=& Platform: 03390k} Connection: 9.26.177.141:1792
= Thread:1 {Runnable)
applyRules : 03
calcPenalty : 02
SAMPLEYL ;01
b | Process: 426844258 Program: SAMPLEL

L= manitars 23 Breakpc-ints|M-:dules| = O

FRRWEBE| L B

@ yaR1 = +0000000100

@ yaRZ = 40000012125

@ YAR3 = +0000000050

@ RESULT = +0000000000

&, balance = EQAZ302E Mot allocated
&, apr = EQAZ302E Mot allocated

&, days = EQAZ302E Mot allocated
&, *charge = EQAZ30ZE Mok allocated
, frate = EQAZ30ZE Mot allocated!

f‘:ﬁ Jtswddzlsampleisamplid.src &2 =B
Line 17 Column 1 Insert Browse
I———+————1————+————2————+————3————+————4————+————5————+————6————+
» 17 if (((5.0E+03 > balance] && (30 >= days)]] [~]
18 || (0.0E400 >= bhalance)) {
19 *charge = 0.0E+00;
Z0 H
21 A% oapply minimum service charge if +we balance Iil
2z /% and at least 90 days old.
23 if ([({0.0E400 < balance] &£ (90 <= days]) v
[(_] i | m
3 memary 52 . Debug Consale i ‘,_,f| 24 | [l <=.=4> ¥ =0
[Mermary & B % Memary Renderings g i

Fnnitare

(9= Yariables 23
@ charge = 0x19CEE3Z0
® days=190
@ balance = 1.00000000000000000E-00

Reqisters = =

29. Now, let’s run to line 23. In the editor, right-click the marker bar to the left of line 23 and select Run

12
DLL

To Location from the pop-up menu:

IBM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++

f‘:ﬁ Atswddzlsampledisamplid.src 23 =B

Line 17 Column 1 Insert
B—+-—1—-——4————2-— G- —f————4————f———-5
16 /% and at least 30 days old. |
» 17 if ({(5.0E+03 > halance] && (30 ==
1a || (0.0E+00 >= balance)) |
19 *charge = 0.0E+00;
zZ0 i
21 /% apply minimum service charge if
22 A% and at least 90 days old. 5
24 if [{(0.0E+00 < halance] £& (90 <= |
Add Breakpoint €& (1.0E+00 » *charge]) |

Jump Ta Location *charge = 1.0E+00;

Run To Location

30. Next, go the Variables view and observe the values of the variables after running to line 23 (since
charge is an address, its value may be different on your machine than in this screen capture):

(%)= yariables 3 Reqisters tosk§ Y T O
@ charge = 0x19CBE320
@ days=10

@ balance = 1.00000000000000000E+00

31. Now you can dereference the charge variable. To do this, right-click the variable in the Variables
view and select Dereference Pointer from the pop-up menu:

{#)= Variables 23 Reqisters @~ =0

e

® days—4 Select Al
® balance = [[=] Copy varisbles

Dereference Pointer
Change representatii% 4
3

Monitor Memory
Find Yariable...
@& Change Yalue. ..

Ox19CEE320 Filter Locals. ..

3t
= ?v

Monitor Local Yariable

Debugging MVS COBOL with calls to a C program and C++ DLL 13

After choosing this action, you will see the dereferenced pointer added to the list in the Variables

()= yariables 32 Reqisters tosk§ Y T O

@ charge = 0x19CBE320

@ days=10

@ hbalance = 1.00000000000000000E+00
@ Hcharge) = 3.0343555402046 7500E-02

3.03435554029467500E-02

view:
32. Next, let’s examine the if statement at the current execution point:

f!f*.Itswddz'l,samplellsamplld.src X =B
Line 23 Column 1 Insert
I———+————1————+————2————+————3————+————‘1————+————5
18 || (0.0E+00 >= halance]] { |&)
19 #*charge = 0.0E+00; b |
za i
21 f* apply minimum service charge if
Z2 f* and at least 20 days old.
» I 23 if (((0.0E+00 < balance) && (90 <=
24 &£ (1.0E+00 > *charge)) |
Z5 *charge = 1.0E400;
Z6 i
27 return (0] ; —
-
< 2

Click Step Over (.) in the Debug view three times and then have a look at the Variables view and
the editor:

()= yariables 32 Reqisters tosk§ Y T O

@ days = 90
@ balance = 1,00000000000000000E+00
® *(charge) = 3.03435554029467500E-02

O0x19CEE3Z0

14 1BM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++
DLL

33.

fn‘r‘* Atswddzisamplelisamplid.src &2 =g

Line 25 Column 1 Insert Browse

I———+————1————+————2————+————3————+————4————+————5————+——-
18 || (0.0E+00 >= kbalance)] { [~
19 *charge = 0.0E400;
20 i
21 J* apply minimun service charge if +we bals
22 J* and at least 90 days old.
23 if (({({0.0E+00 < balance] && (20 <= days))
24 &£& (1.0E+400 > *charge)) |

» 25 *oharge = 1.0E+00;

26 1
27 returnil) ;

3 1) | (2]

Notice that the three conditions evaluate to true.

Now, let’s change the value of a variable. In the Variables view, right-click days and select Change
Value from the pop-up menu:

()= yariables 32 Registers| E [Y =0
@ charge = 0x19CBE320

@ balance - Select all

® *charge |= Copy Yariables
Change representation *
Find Wariable. ..

G‘& Change D}Iue. "

Filker Locals... 4

Q0
Xy

Monitor Local Variable

This will open the Set Value dialog box. Use this dialog box to change the value of days to 89:
Set Value

Enter a new walue For dawvs:

a9

oK I Cancel |

After you click OK, you will see that the value of the variable has changed and the variable
indicator will have a delta symbol to the next of it:

Debugging MVS COBOL with calls to a C program and C++ DLL 15

()= Variables 23 Reqisters o=@~ T 0O
= 0x19CEBE320

= 1,00000000000000000E+00
@ *(charge) = 3.0343555402946,7500E-02

t=1=]

34. Now, let’s step out of the if statement. To do this, select Step Over (=) or Step Into (5_) twice in
the Debug view (this will move the execution pointer out of the if statement). Then, jump to line 23
and reevaluate the if statement. To do this, right-click the marker bar to the left of line 23 in the
editor and select Jump To Location from the pop-up menu:

f!f*.Itswddz'l,samplel'l,samplld.src X =g
Line 23 Columwn 14 Insert Browse
————+————1———=+————2————+————3————+————4————+————5————+——-
2 17 if (((5.0E+403 > halance) && (30 >= days)] |A
158 || (0.0E400 = halance)) {
i9 *charge = 0.0E400;
20 i
21 ST oapply minimuwn service charge if +ve bals
zz /% and at least 90 days old.
23 h; PO ARAAA 2 leelesani cooi0f <= days])
24 Find Text...
25 LA
» 26 i Find Function or Entry Point... Chr+F12 i
w
Fa Add Breakpoint |
e add Watch Breakpoint.., o
@ Memory 22 . Debug| 2ump To Location [}s (5 Y T8
Fun To Location
Mermary =
Manikare e'}_‘ . R el}-‘
Monikor Expression
Monitor Memary 3

Change Text File...
Siitch Yiew 3

After issuing the jump to location action, line 23 will be highlighted in the editor (this is the current
execution point):

ﬁ? Atswddz\samplel\samplid.sre &3 =0
Line 23 Column 1 Insert Eraowse
I———+————1————+————2————+————3————+————4————+————5————+————6————+
21 £% apply miniwwn service charge if +ve balance |
22 % and at least 20 days old. b |
» I 23 if ([(0.0E+00 < balance] £& (90 <= dawys))
24 £& (1.0E400 » *charge)) §
25 *ocharge = 1.0E+00;
z6 } 3
27 return(0) : ™
3 1 '>" '

35. Examine the if statement again. Click Step Over (s) in the Debug view and have a look at the
Variables view and the editor:

16 1BM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++
DLL

36.

()= Yariables &7 Reqgisters =0

£) 5B ¥
*(charge) = 1.00000000000000000E+00
daws =89
@ balsnce = 1.00000000000000000E+00

ﬁi.\,tswddz'l,samplel'l,samplld.src s =08
Line 27 Column 1 Insert Browse
e . nI-:S i AL -
19 *charge = 0.0E+00;
20 H
21 A% apply winimuwn service charge if +ve halance
ZE /% and at least 20 days old.
23 if ({(0.0E400 < balance] &£ (90 <= days])
24 && (1.0E+00 » *charge)) {
25 *charge = 1.0E+00;
Z6 i
» 27 returm(oy:
28 '
i |

This time, the if statement evaluates as false.
Change the value of *charge to zero:

(9= Yariahles 3 Registers | =0
£) 5B ¥
.a Select all -
Capy Yariables 00
Change representation ¥
Find ‘ariable. ..
Filker Locals. .. 4

1.00000] %Yy

Monitor Local Yariable

Enter a new walue For *(charge):

0,00000000000000000E-+00|

oK I Cancel

Debugging MVS COBOL with calls to a C program and C++ DLL 17

()= Variables 23 Reqisters o=@~ T 0O
€, Ftharge) = 0, 00000000DO0000O00E 00}
@ days=a9
@ balance = 1,00000000000000000E-+00

0. 00000000000000000E4+00

37. Step Return (_z) in the Debug view. This will bring you back to the C subroutine after the call to

applyRules:
ﬁ.'l,tswddz'l,samplel'l,samplls.src i3 =0
Line 21 Column 1 Insert Erowse
I———+————1————+————2————+————3————+————4————+————5————+————6———
15 int rc = 0; ~
16 double balance = 01E+00 * *zents:
17 double apr = .00001E+00 * *percent:
15 double penalty;
19 ro = calcRate (bhalance, apr, *days, &Lpenalty):
20 re = applyBulesbalance, *days, &penalty):
» 21 *interest = penalty * 100:
22
Z3 return;
24 H e
W
< >

38. Click Step Return again. You will then be in the COBOL mainline after the call to CALCPEN:

%% TSWDDZ. SAMPLEL LISTING(SAMPLEL) 3 =0
Line 33 Column 1 Insert BErouse
H———+————1————+————2————+————3————+————4————+————5————+————s———
2a HOVE O TO RESULT. ry
29 COMPUTE VARl = BALANCE-OWING [CUST-INDEX]
30 COMPUTE WARZ = APR(CUST-INDEX) * 1000.
31 MOVE DAYS-3INCE-PAID (CUST-INDEX) TO VARS
3z CALL "CALCPEN™ USING WiAR1, VARZ, WAR3, F
» | 33 COMPUTE PENALTY-OWING (CUST-INDEX] = RESL
34 ADD PENALTY-OWIMNG (CUST-INDEE) TO BALAMCE
35
36 INIT-CUSTOMERS.
37 MOVE "Zprat, Jack™ TO CUSTHAME (1) . ol
< 2

39. Now, let’s add CUSTOMERS to the Monitors view. To do this, launch the Monitor Expression dialog
box from the Monitors view:

@ Monitor Expression

| CUSTOMERS ~|

Evaluation Conte:xk

File:: TSWDDZ . SAMPLEL LISTING{SAMPLEL)
Line: 33

Vigw: Source

Thread: 1

Cancel

18 IBM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++
DLL

40. In the Monitors view, expand CUSTOME

G5 Monitars £2 Breakpoints | Modules

*FXR%ERE

@ days = EQAZI0ZE Mot allocated
¥ *charge = EQAZ302E Mot allocated
@ ‘rate = EQAZ30ZE Not allocated:
—|-& CUSTOMERS
- CUSTREC
& CUST-INDES = 4
—|-& CUSTMAME
W SUB(1) ='Sprat, Jack !
& SUB(2) = "Quite-Contrary, Mary Mary
@ SUB(3) = Mimble, Jack B.
W SUB(4) = 'Pumpkineater, Peter Peter
& SUB(S) = Muffet, Little Miss
+ APR

BALAMNCE-CWING
SUB(1) = +0000100.00
SUB(Z) = +0012393.95
SUB(3) = 4000001350
SUB(4) = +0000001,00
SUB{S) = -0000200,00
+ - DAYS-SINCE-PAID
@ PEMALTY-OWING

RS and then CUSTNAME and BALANCE-OWING:
=0

AN
=

b

41. Now, click Step Over (s) in the Debug view and you will be at line 34 in the COBOL source:

ﬁTSWDDZ.SF\MF‘LEI.LISTING(SAMF‘LEI) 3 =g
Line 34 Column 1 Insert Erowse
T T L D D -
z9 COMPUTE VARl = BALAMCE-OWING (CUIT-INDEX) |
30 COMPUTE VARZ = APR(CUST-INDEX) * 1000. b |
31 MOVE DAVS-SINCE-PAID (CUST-INDEXE) TO WARSZ
32 CALL "CALCPEN'" USING VAR1, WARZ, VLRI, R
33 COMPUTE PENALTY-OWING(CUST-INDEZ) = REST
34 ALD PENALTY-OWING(CUST-IMNDEX] TO BALALANCE
35
36 INIT-CUSTOMERS.
37 MOVE "Zprat, Jack" TO CUSTHNAME (1) .
38 MOVE 5.000 To AFR(1). |
39 MOVE 100.00 TO BALAMCE-CWING(1). al

42. Click Step Over over again and you will notice that CUSTOMERS . CUSTREC.BALANCE-OWING.SUB(4) did

not change. Its value is still 1.00:

Debugging MVS COBOL with calls to a C program and C++ DLL 19

@ IBM WebSphere Developer Debugger for zSeries Q@E
Fil= Run - Memory Monitors Wariables Window Help
%% Debug 52 [F= & T ® A& % 7 0O | EE Monitors 82 Breakpaints | Madules = O
_ b, . ; S - a - o
EmPIE:TF:fr:-ug;?SQdDEéDJmpizdn:eili:g:-h;nz]s 177.141:1739 - % B8 B
il Runmable) PR e @ days = EQAZ30ZE Mot allacated |~
o = @ *charge = EQAZ3I0ZE Mot allocated
- - @ rate = EQA2302E Mot allocated
. Process: 426544285 Program: SAMPLEL L@ rCaUETOMERS o el
- @ CUSTREC
&, CUST-IMNDEX =5
ﬁ\?TSWDDZ.SAMPLEI.LISTING(SAMPLEI) = = =@ CUSTHAME
_ @ SUR(1) ="'Sprat, Jack '
Line 25 Column 1 Insert Erowse & SUB(2) = "Quite-Cantrary, Mary Mary [
I———+————1————+————2————+————3————+————‘1————+————5————+———-5-_——_ @ SUB(3) ='Mimble, Jack B, '
Z3 FPERFORM INIT-CUSTOMERS. ad] SIB{4) = 'Pumpkineater, Peter Peter !
24 PERFORM UPDATE-OWING @ SUB{S) = "Muffet, Little Miss !
25 VARYING CUST-INDEX FROM 1 EY 1 UNTIL +- @ APR |
Z6 GOBACE. --@ BALAMCE-OWING 1
27 UPDATE-OWING. L @ SIJB(1) = +0000100,00
» 25 MCWE O TO RESULT. L @ SUB(2) = +0012393,95
Z9 COMPUTE WAR1 = BALAWNCE-OWING (CUST-INDEX) @ SUIB(E) = +00000135,50
3a COMPUTE WVARZ = APR(CUST-INDEX) * 1000. & SUR(4) = +0000001,00
31 MCVE DAYS-SINCE-PAID (CUST-INDEX) TO VARS] SUB(S) = -0000200,00
2 iz CALL "CALCPEN" USING VAR1, VARZ, VLR3I, B 4@ DAYS-SINCE-PAID
&S] COMPUTE PENALTY-OWING(CUST-INDEX] = REIUM| + -8 PENALTY-OWING .
:(i): [
()= Yariables &2 Registers i B =
(0 memary &2 Debug Console Cale# =8| BH|E ¥ 7 O] @ *(chargs) = EQa2anZE Not alocated -
[Mermary dh Memary Renderings dh @ vaR1 = +0000000100 E
Monitare @ YARZ = +0000012125 i
@ yARZ = +00000000390 il
EQLZ30ZE Mot allocated

43. Now, change the representation of CUSTOMERS.CUSTREC.BALANCE-OWING.SUB(4) to hexadecimal. To do
this, right-click the entry in the Monitors view and select Change representation > Hexadecimal
from the pop-up menu:

20 IBM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++
DLL

= O || E* monitars &3 Breakpoints | Modules =8
+XBELEBELD LB
@ days = EQAZ302E Mot allacated |
@ *charge = EQAZ30ZE Mot allocated b |
@ rate = EQA2302E Mok allocated
--@ CUSTOMERS
- @ CUSTREC
&, CUST-INDEX =5
=" =@ CUSTHAME
@ SUB(L) ='Sprat, Jack '
@ SUR(Z) = "Quite-Contrary, Mary Mary !
i @ SURE(3) = Mimble, Jack B. '
i @ SUB(4) = Pumpkineater, Peter Peter '
@ SUB(S) = Muffet, Little Miss !
riL +- @ APR
- @ BALANCE-OWING
@ SUB(1) = +0000100.00
] SUB(Z) = +0012393,95
1) @
. o i
VRS @ Eljéifé Edit value
- Bp | +-@ Days-sin = Monitor Expression CErl+5ShifE+
ES;'.]-V- + @ PENALTY, ¥ Remove Monitored Expression
T %Remove all
(9= Variables 3 Reg o
-8 @ *charoe) = EQA] =
1 Hexadecimal Change representation r
v 2 Decimal % ’ X show Type Names
X

— : n
This will change the value of the entry to a proper signed 7.2 packed decimal 1:

[Manikars 3 Breakpoints | Modules = O

+RXRLED|L B
days = EQAZA0ZE Mot allocated ry
*charge = EQAZ30ZE Mot allocated b |
rate = EQAZ30ZE Mok allocated
CUSTOMERS
- @ CUSTREC

@ CUST-INDEX =5
- @ CUSTHAME
SUB(1Y = 'Sprat, Jack !
SUE(Z) = 'Quite-Caontrary, Mary Mary '
SUB(S) = Mimble, Jack B, !
SUB(4) = 'Pumpkineater, Peter Peter !
SUE(S) = Muffet, Little Miss !
R

soow®

>0000@®

[N]

BALANCE-CMWING

® SUE(1) = +0000100,00
@ SUB(Z) = +0012393.05
® SUE(3) = +0000013,50

® 5UE(S) = -0000200.00
® Davs-SINCE-PAID
@ PEMALTY-OWING -
44. Congratulations! You have completed the tutorial and you can now terminate the debug session. To
do this, click the Terminate icon in the Debug view. Alternatively, right-click the debug target and

you will see other terminate options.

Debugging MVS COBOL with calls to a C program and C++ DLL 21

%5 Debug E4 [T CIHES T R & ¥ =08

= L=<L com.ibm.debug.load [Compiled Application]
= Flatform: ©5/390(R) Connection: 9.26,17
=g Thread:1 (Runnable }
= SAMPLEL : 01
po| Process: 4268442858 Program: SAMPLEL

Summary

In this sample, you have learned how to use WebSphere Developer Debugger for zSeries to perform some
basic debug actions on a sample MVS COBOL application.

22 IBM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++
DLL

Notices

Portions based on Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma, Richard
Helm, Ralph Johnson and John Vlissides, Copyright (c) 1995 by Addison-Wesley Publishing Company,
Inc. All rights reserved.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM® Corp.

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this documentation in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user’s
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
documentation. The furnishing of this documentation does not give you any license to these patents. You
can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR CONDITIONS OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

© Copyright IBM Corp. 2005 23

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:
Intellectual Property Dept. for Rational Software

IBM Corporation

20 Maguire Road

Lexington, Massachusetts 02421-3112

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this documentation and all licensed material available for it are
provided by IBM under terms of the IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples may include the names of individuals, companies, brands,
and products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using, marketing
or distributing application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. You may copy, modify, and distribute these sample programs in any form
without payment to IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. (C)
Copyright IBM Corp. 2000, 2005. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

24 1BM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++
DLL

Programming interface information

Programming interface information is intended to help you create application software using this
program.

General-use programming interfaces allow you to write application software that obtain the services of
this program’s tools.

However, this information may also contain diagnosis, modification, and tuning information. Diagnosis,

modification and tuning information is provided to help you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a programming interface
because it is subject to change.

Trademarks and service marks

See |http:/ /www.ibm.com /legal / copytrade.shtmi]

Notices

25

http://www.ibm.com/legal/copytrade.shtml

26 IBM WebSphere WebSphere Developer Debugger for zSeries: Debugging MVS COBOL with calls to a C program and C++
DLL

Printed in USA

	Debugging MVS COBOL with calls to a C program and C++ DLL
	Notices

