
0

Understanding IBM Cognos
TM1 Performance and

Scalability
Session Number 3180

John van den Berg, IBM

1

© Copyright IBM Corporation 2010. All rights reserved.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule

Contract with IBM Corp.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES

ONLY. WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE

INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS” WITHOUT WARRANTY OF

ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT

PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM

SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE

RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION. NOTHING CONTAINED IN THIS

PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR

REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND

CONDITIONS OF ANY AGREEMENT OR LICENSE GOVERNING THE USE OF IBM PRODUCTS AND/OR

SOFTWARE.

IBM, the IBM logo, ibm.com, IBM Cognos, and IBM Cognos TM1 are trademarks or registered trademarks of International

Business Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked terms are

marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S.

registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also

be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at

“Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml

.

Disclaimer

http://www.ibm.com/legal/copytrade.shtml

2

1. Categorize TM1 application types and performance components

– Identify roadblocks to high performance

– Describe how to go over, around or through roadblocks by:

• Leveraging released TM1 9.5.x performance capabilities

• And, deploying model and process techniques

2. Illustrate high levels of TM1 performance being achieved today

3. Describe a methodology for achieving high performance in your TM1

environment

Goals for Today

High-Lights recent TM1 Improvement

3

Agenda

• Follow an “Amalgamated” Case Study for improving query, contribution

and operations performance across a TM1 application

– Before – what were the symptoms and causes of bad

performance?

– After – What improvements could be achieved?

– Take-Aways

• Present a general application methodology to achieve a high

performance TM1 application

4

Amalgamated Case Study
Could this be you?

An all too common story. Things started out great…

• I built a POC model:

– Got some specifications

– Created Dimensions and Cubes and some rules

– Wrote some TI processes to load some sample data

– Created Cubeviews, Reports and Input screens

• Queries and Inputs: everything ran fast

• I worked with the team to set SLAs for response times and system

availability

• And the implementation began

5

Amalgamated Case Study
Symptoms

But as the Go Live date approached…

• As we neared our implementation target performance started to lag (a lot):

– For some users, some of the time, queries that used to be instant were

now running 5, 10, 15 or many more seconds.

– Looking in TM1Top I saw my planning users began stacking up behind

these slow queries.

– Some users query and update performance was always much slower

– Server startup and Nightly processing are extending too long, I‟m not

meeting my availability SLA

– My users are losing faith, my manager is not happy.

– Oh yeah, the application‟s memory consumption has really grown, do I

have sufficient RAM on my server?

• What happened? Why? What do we do?

6

Amalgamated Case Study
First Step to Better Performance – Fix Query Times

Fully loading the model with data has exposed several design

inefficiencies. Indicative symptoms are significantly slower query

times and significantly increased memory consumption.

• Likely Causes:

– Non-optimal cube dimension order

– OVERFEEDING

– Unnecessary calculations

7

Amalgamated Case Study
Fix Query Times – Optimize Dimension Order

• Reordering cube dimensions may give you an easy one time significant

memory reduction and increased query efficiency

8

• OVERFEEDING = Many, many (, many) useless, wasted calculations

• Simple sample:

FEEDERS;

[‘Sales’]=>DB(‘ProfitLossCube’, !product, !timeperiod,

‘All Geographies’, ‘Sales Amount’);

• Feeder statements should be as precision as possible:

FEEDERS;

[‘Sales’]=>DB(‘ProfitLossCube’, !product, !timeperiod,

ATTRS(‘Customer’, !customer, ‘Geog’),

‘Sales Amount’);

Amalgamated Case Study
Fix Query Times - OVERFEEDING

Danger

9

Amalgamated Case Study
Fix Query Times - Unnecessary calculations

• TM1 rules are fast, but straight dimensional aggregation is much faster.

• High level queries can require millions of low level calculations.

• Whenever possible remove or replace unnecessary calculations &

consolidations:

– For example:

• If your time dimension contains years and periods before or after your

useful data (actual or planning) remove the extraneous time periods.

• If you have useless top level consolidations (often „All Years‟ in a time

dimension serves no purpose) remove them. They just invite

unneeded aggregation and force unneeded calculation.

– Replace “one time only” rules calculations that will never be

changed by user input with “stored” calculations where possible.

Removing these on-demand calculations can improve some query

times by orders of magnitude!

10

Take Aways & Tips

The fundamental key to TM1 performance is query speed. Always

consider the following:

• Size of Model (dimension size and order, data volume)

• Nature and Complexity of calculations

Keys to Performance

• Always Optimize Dimension Order

• Optimize Rules

– Avoid using Rules for “static” calculations

– Beware OVERFEEDING!

11

Amalgamated Case Study
Second Step – Deal with Object Contention

Inconsistent query times. Readers blocking Writers. Writers blocking each

other. Strangest of all Readers blocking Readers…

• Understand the TM1 locking and object dependency model

– Readers block writers at the Cube/Dimension level

– TM1 Cube Rules create multi-cube dependencies and multi-cube locks

– Some Read operations require Write locks

• Work around locking by separating components that will be accessed

concurrently by many users.

– Separate cubes by logical function (employee plan, capital plan, driver

based revenue…)

– Use separate cubes to separate read/only users from contribution users

– Separate writers from one another and other readers

• Sandboxes/Personal Workspace capability

12

Concurrency That Has Been Achieved

•US Financial Services ~1,000 Users

•Australian Financial Services ~1,600

Users

•Large Manufacturer: ~1,500 Users

•Large Electronics Company: ~2,500

Users

13

Amalgamated Case Study
Deal with Object Contention – Separate Cubes By Function

• Separate cubes by logical function (employee plan, capital plan, driver

based revenue…)

Labor

Mat‟l

Bulk

Prog

Factors

Pool

Rates

Labor

Rates

Cost

Ext

= Calculation

= Support

= Input

Travel

ODC

14

• Use separate cubes to separate read/only users from contribution users

– Create Read/Only Cubes on separate servers using Rep/Sync

• Built into server functionality

– Create same server Read/Only Cubes

• Limit Cube rules to a minimum by pre-calculating everything at the leaf

level on load. This will produce huge speed improvements for high

level queries and drastically limit the negative impact of query cache

invalidation.

• Update Frequency depends on workflow requirements:

– Update nightly from Input Cubes

– Update slices on demand as part of a workflow submission.

Amalgamated Case Study
Deal with Object Contention – Read/Only Cubes

15

Effect of Read/Only Separation

16

Amalgamated Case Study
Deal with Object Contention - Separate writers from one another

• TM1 9.5.x introduces Sandbox/Personal Workspace. Great new

contribution functionality and writers don‟t lock “base” cubes until they

commit their changes.

– TM1 9.5 introduces Sandboxes

capability.

– TM1 9.5.1 augments with

Personal workspace capability

and Job Queuing

• Prior to TM1 9.5 writer separation can be achieve by “partitioning” input

cubes.

– Complex to implement but significantly decreases object contention

and increases concurrent user activity.

17

Average Transaction Times

0

2

4

6

8

10

12

14

16

18

100 Users 250 Users 500 Users

User Count

A
v

e
r
a

g
e

 T
im

e

9.4.1 FP2 9.5 HS 9.5 HS- Sandboxes

Effect of Separating Writers with 9.5 Sandboxes

• Contribution into sandboxes avoids cube contention until users merge

their sandbox numbers into the base cubes. Queued sandbox commits

(9.5.1) further increase response times.

• Significantly better, more predictable performance is achieved at high

user counts.

18

Amalgamated Case Study
Deal with Object Contention – Readers Blocking Readers

Beware of deployment of TM1 objects that require write locks for read

operations:

– Dynamic Subsets

• Require a write lock to evaluate

• Are in constant need of re-evaluation (particularly in contribution

applications)

• Can be used for nightly updates of “semi-dynamic” subsets.

– User Defined Consolidations and }Rollups

• Queries evaluating UDCs and Rollups can block Logins due to private

object registration write locks

– Where possible, avoid deploying.

19

Take-Aways & Tips

Understand TM1’s object locking model and its impact on user concurrency.

Design for concurrency.

• Account for Object Locking

– Understanding what activities block other activities

– Sandboxes and Personal Workspace

• Job Queuing

– Partitioning of Writers

• Application oriented (Employee Cube vs. CAPEX cube…)

• Physical cube partitioning

Keys to Performance

• Leverage Calculation and Query Cache

– Understanding when cache is invalidated

– Use of “Read Only” cubes

• Replication/Synchronization

• Turbo Integrator based

• Beware Dynamic Subsets and UDCs

20

Amalgamated Case Study
Step Three – Operations Performance & Environmental Factors

With basic query performance corrected and object contention

issues dealt with we still have various operational/environmental

issues to deal with:

• Server Startup Too Slow

• Nightly Loads Too Long

• Do we have the correct Server environment?

– TM1 Server

– TM1Web

• Why are some clients always so slow?

– WAN/LAN

– TM1Web/Contributor

– Excel

21

Keys to Performance

• Multi Threaded Startup (for pre 9.5.1)

– There are some caveats (no conditional feeders)

• Persistent Feeders (TM1 9.5.1)!

– Can decrease startup time by a factor of 10

• Depends on size/use of Feeders

• You still want to optimize your feeders!

– Cautions

• Disk considerations, .FEEDER files can be quite large.

• Major rules file updates will still require a “full” restart.

Amalgamated Case Study
Operations - Server Startup

22

Amalgamated Case Study
Operations – Nightly Loads

Keys to Performance

• Data & Meta Data Import

– “Multi Threaded” data loads

• Imported data must be separate for each thread

• Imported data must overwrite existing cells (no accumulate)

• Batch Mode (BatchUpdateStart, BatchUpdateFinishWait)

– Turn Off Transaction Logging (careful)

– Bulk Load Mode for “big” dimension updates to avoid any chance

of contention and rollback.

23

Amalgamated Case Study
Operations – Nightly Loads & Action Buttons

Some TI Processes may run concurrently and can’t leverage “Batch”

mode.

• Two or more long running processes that update/read the shared

objects will contend with each other.

• Blocked processes will “Rollback” all operations prior to the block wait

and then retry. This creates serious CPU drain and a locking Log Jam.

The solution – “”

• For TI processes that may contend (launched from Action Buttons or

possibly conflicting Chores schedules) introduce an immediate locking

cube write action to limit rollback.

• Create a small cube with 2 dimensions (semaphore.cub)

• In line one of the TI prolog write to the semaphore cube:

CellPutS(‘somestring’, ‘semaphore’, ‘element1’, ‘element2’);

24

Amalgamated Case Study
Operations – Server Environment

TM1 Server - Keys to Performance

• For higher user concurrency, more CPU cores are important.

– Beware object contention. Extra CPUs will only help if users are

not blocked on object locks.

• For Larger Models more memory is required

– NO SWAPPING TO DISK!

– NOT currently NUMA aware

• Virtualization

– Optimized Virtual Environments work

– You STILL need sufficient CPUs and Memory

25

Hardware Configuration Examples

• Large Manufacturer

• Users: ~1,500

• TM1 Server:

– 16 Cores: 8 dual-core Intel
Xeon x64 @ 2.93 GHz

– 128 GB of RAM

– Windows 2003 Server
Enterprise Edition 64-bit

• Web Servers (3):

– 16 Cores: 8 dual-core Intel
Xeon x64 @ 2.4 GHz

– 32 GB of RAM

– Windows 2003 Server
Enterprise Edition 64-bit

• Large Electronics Company

• Users: ~2,500

• TM1 Server:

– 16 Cores: 8 x Dual Core
Intel Xeon x64

– 128 GB of RAM

– Windows 2003 Server
Enterprise Edition 64-bit

• Web Servers (4):

– 4 x Dual Core Intel Xeon x64

– 64GB RAM

– Windows 2003 Server
Enterprise Edition 64-bit

26

Amalgamated Case Study
Operations – Server Environment

TM1Web Server (IIS) - Keys to
Performance

• 64 Bit Windows allows more memory
which in turn allows more users

• Websheets typically require significantly
more TM1Web resource than Cubeviews

• Websheet Paging to optimize (9.5.1)

• Locate the TM1Web server (IIS) on the
LAN with the TM1 Server to avoid WAN
related performance issues.

• Multiple Web servers

– Allows horizontal scaling of web
environment

– Standard load balancers can be
used but do need to support a
“sticky” connection.

– Multiple Virtual Directories on
server hosts can help, particularly
with Websheet based applications.

TM1Web Websheet Performance

91

23

0

20

40

60

80

100

Open Websheet

E
l
a
p

s
e
d

T

i
m

e

(
s
e
c
)

TM1 9.4.1 TM1 9.5

27

Amalgamated Case Study
Operations – Client Environments

TM1 formula optimization for Excel sheets

• Use the VIEW() formula instead of direct Cubeview name.

• Use DBRW() instead of DBR()

• Use DBSW() instead of DBS()

28

System Operation Optimizations
Client Environments

WAN/LAN

• In a WAN environment many

features of the TM1 Architect and

Perspectives clients do not perform

well.

– We have a ways to go…

• Strategies to improve performance

for WAN users:

– Implement the application in

TM1Web for WAN users if

possible

– Have remote Architect and

Perspectives users run via

terminal services

– Optimize Perspectives sheet

design

Architect Cube Viewer

145

1552

122

179

0

200

400

600

800

1000

1200

1400

1600

1800

Latency 0ms Latency 140ms

Network Latency

E
l
a
s
p

e
d

T

i
m

e

(
s
e
c
)

TM1 9.4.1 TM1 9.5

29

End of Amalgamated Case Study

30

Methodology for Performance
Rules of Thumb

• Understand the likely performance issues in your application.

• Build cubes with efficient dimensional design

• Avoid the “rules” trap!

– A model is fast with a small data sample and one user may have

significant issues under a full data load or when hit by multiple

users.

– For calculations that don‟t change or only change in sync with

external data loads consider storing calculations via Turbo

Integrator instead of Real Time calculation with Rules.

• Beware model components that can create contention:

– Dynamic Subsets

– User Defined Consolidations

31

Methodology for Performance
Test for Speed

• Once the model or components of the model are build it is imperative to

test and tune.

• Test with a full load of data.

– If you have a full set of “live” data, use it.

– If you don‟t have the real data, make it up.

– Fully populated cubes can expose rule, feeder and dimensional

inefficiencies that must be corrected before going live.

– Test query times with un-cached cubes.

– Test Turbo Integrator performance.

• Make sure to run a full “overnight” scenario

– Test startup time (with and without Persistent Feeders)

32

Methodology for Performance
Test for Concurrency

• Once the single user performance has been properly established begin

concurrency testing.

• Test with a full user load.

– Once the application is built and populated run a series of multi-

user tests exercising any/all functions of the system.

• Record base line performance numbers with a single user.

• Begin adding progressively more monitoring performance and TM1Top

activity

• Automated Testing

– If possible use a multi-user test automation tool to allow continuous

test, improve, retest cycles without taxing your users‟ patience.

– Appropriate tools depend very much on the nature of your

application (web, Excel, custom…) and your budget.

33

Parting Thoughts…

IBM Cognos is continually considering how best to:

• Allow quicker, easier development of high performance applications

• Achieve even higher levels of performance

But For Now:

• Consider your application and performance pain points

• Implement one or more methods to improve performance

• Test/Adjust

• Repeat until happy

34

Information and Analytics Communities

• On-line communities, User Groups, Technical Forums, Blogs,

Social networks, and more

– Find a community that interests you at…

• ibm.com/software/data/community

• Integration with TM1

• Information Champions

– Recognizing individuals who have made the most outstanding

contributions to Information Management communities

• ibm.com/software/data/champion

http://www.ibm.com/software/data/community
http://www.ibm.com/software/data/community
TM1 with Business Insight.wmv
http://www.ibm.com/software/data/champion
http://www.ibm.com/software/data/champion

35

So lets see a real life example

36

“A leading retailer”

So who is it?

Sorry. We can‟t reveal the retailer‟s identity as this project is still in early go-

live / final UAT.

However, rest assured this is a real case study!

37

Session agenda

1. The reporting problem pre-TM1

2. Proof of concept and volume testing

3. Reporting requirements

4. Model design considerations

5. “Blackbelt” techniques to pull it off

38

The problem

• The source OLTP system (JDA ODBMS) ran the business well but fell down when it

came to reporting

• The business‟s primary merchandise reporting tool was Excel

• Reports at the level of detail the business required were only available in the MCA

reporting module at a low level. There was no concept of “drilling down” from above.

This lead to:

– Analysts having to run multiple reports with multiple sessions of MCA to dump

out data then piece together and collate reports in Excel

– Significant strain on the source system due to the volume of queries

– Complicated Excel reports with macros and pivot tables that were subject to

breakage

– ... an “Excel Hell” scenario that we are all familiar with

39

Due diligence

• Proof of Concept

– 8 weeks of data at store by product by week level

– 24 measures

– 16 dimensional cube with many product attributes included as dimensions for slice and

dice analysis

– Excel cube viewer the primary interface

– Around 30 sec response times on high level views

– “Beauty contest” with another BI tool

– TM1 selected due to ease of use and Excel integration

• Proof of technology

– 3 days in HP data labs in Sydney

– Expand data set to 100 weeks, 100+ GB

– Prove stable at 100+ GB with no loss in query response time

40

System requirements

• Hold 2 years of data at product/variation level by store by week

• Hold 6 weeks of daily data at product/variation by store

• Be able to summarize and “slice & dice” measures based on product attributes

(status, ranging, size, colour, season, vendor, etc.)

• Choose different levels in same report and able to traverse – drill up and down all

levels of the product and location hierarchies

• Sub 30 sec query response times

41

Goals

• Eliminate reporting bottlenecks. Save time

• Eliminate use of MS Access

• Availability of vs. LY and MAT calculations (plus many other calcs)

• Exception based reporting

• Eliminate need to add or remove rows and adjust formulas when master data

changes

• Provide common reporting language and source of truth. Central location for all

reports. Centralise reporting team

• User friendly access to information

42

Design considerations

• Size! Over 1 million active products, hundreds of stores

• Billions of records. Initial calculations pointed to a model of 100 – 200 GB

• Managing query response times to user acceptable levels

• Managing data loads within very limited batch processing windows (2 – 7am)

• Managing many administration and “master data” type processes internally within TM1.

E.g.

– Backdated transactions

– Product re-class events

– Product status tracking

43

Design principles

• “Distributed” or “partitioned” model

– Break into smaller cubes based on business reporting structures not

one mega cube

• Why?

– Manage cube and dimension size for better query performance

– Faster server load times on multiple threads

– Parallel data loads for massive reduction in load times

• But still need to support business wide reports

44

Model size

• This is a BIG data model

45

How it fits together

• Model split by business unit (10 major BUs)

• Majority of reports run from summary cube at class level

• Final drill down to product level only available within business unit cubes

Product

Level

Class

Level

General Merch Ladies Wear Toys Electronics

Total Business

46

How it fits together

• The end user perspective ...

“Summary Cube”

(Total business)

Total Product

Business Unit

Department

Class

“Detail Cubes”

(BU specific)

Business Unit

Department

Class

Range

Product

Variation

Drill-down

Drill-down

Drill through

47

How it works

• Data integration perspective

TI

TI

(parallel)

TI

(serial)

Data extracts
Processed, split & “pivoted” extracts

48

Some “blackbelt” techniques

• Model partitioning

• Multi-threaded data loads

• External job scheduling

• Feederless rules

• Avoiding locking

• Eliminating public dynamic subsets

49

Multi-threaded data loads

• External data loads from file extracts

– Eliminates ODBC or source system as a bottleneck in TM1 processing

• Made possible by model partitioning

• Each cube loads on a different thread

50

External scheduling

• Control M is the enterprise

scheduling tool

• When file transfer of extracts are

complete TM1 jobs are called via a

3rd party command line tool

TM1ProcessExecute.exe

• When TM1 jobs complete a

confirmation file is placed in a

monitored directory to signal

downstream jobs can commence

• Allows much better and finer control than can be achieved via the TM1

chore scheduler

51

Feederless rules

• Q: what are “feederless” rules?

• A: rules that do not require feeding!

• What would typically have been “N” measures are defined as

“C”

• Use consolidations and real leaf data to feed the rule rather

than feeders

• Significant savings in model size and load time

• Example rule:
[„LY Actual‟] = C: DB(„Cube‟, „Actual‟, AttrS(„Year‟, !Year, „Prev Year‟), ...);

• Can also be applied to other dimensions (e.g. version,

currency, ...)

Regular hierarchies or

rollups.

Elements consolidate or

add/subtract

Artificial rollups for what would

usually be N elements. The

children are defined for the

sole purpose of “feeding” the

rule calculation

52

Avoidance of object locking

• To take advantage of multi-threaded loading need to make sure that each processes only

obtains write locks on a unique set of objects

• Concept of “semaphores” or signalling cubes

– So what‟s a semaphore?

– Any common object that needs to get written to. Most common example would be

}CubeProperties cube with CubeSetLogChanges

• How to avoid

– Handle logging before and after multi-threaded phase not in each process

– Avoid multiple processes attempting to write to the same object (subsets, views, not just

data)

– Custom logging cubes: write out to file and process later

• Sometimes you want to lock ...

– E.g. To force queuing to ensure one process has a “clear window”

53

Dynamic subsets

• Dynamic subsets have performance implications

• Concept of “semi-dynamic” subsets

– Nightly regeneration of dynamic subsets and conversion to static subsets

– Get (most) benefits of dynamic subsets without the drawbacks

5454

Thank You!
Your Feedback is Important to Us

• Access your personal session survey list and complete via SmartSite

– Your smart phone or web browser at: iodsmartsite.com

– Any SmartSite kiosk onsite

– Each completed session survey increases your chance to win

an Apple iPod Touch with daily drawing sponsored by Alliance

Tech

