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1. Categorize TM1 application types and performance components

– Identify roadblocks to high performance

– Describe how to go over, around or through roadblocks by:

• Leveraging released TM1 9.5.x performance capabilities

• And, deploying model and process techniques

2. Illustrate high levels of TM1 performance being achieved today

3. Describe a methodology for achieving high performance in your TM1 

environment

Goals for Today

High-Lights recent TM1 Improvement 
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Agenda

• Follow an “Amalgamated” Case Study for improving query, contribution 

and operations performance across a TM1 application

– Before – what were the symptoms and causes of bad 

performance?

– After – What improvements could be achieved?

– Take-Aways

• Present a general application methodology to achieve a high 

performance TM1 application
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Amalgamated Case Study 
Could this be you? 

An all too common story.  Things started out great…

• I built a POC model:

– Got some specifications

– Created Dimensions and Cubes and some rules

– Wrote some TI processes to load some sample data

– Created Cubeviews, Reports and Input screens

• Queries and Inputs:  everything ran fast

• I worked with the team to set SLAs for response times and system 

availability

• And the implementation began
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Amalgamated Case Study 
Symptoms 

But as the Go Live date approached…

• As we neared our implementation target performance started to lag (a lot):

– For some users, some of the time, queries that used to be instant were 

now running 5, 10, 15 or many more seconds.

– Looking in TM1Top I saw my planning users began stacking up behind 

these slow queries.

– Some users query and update performance was always much slower

– Server startup and Nightly processing are extending too long, I‟m not 

meeting my availability SLA

– My users are losing faith, my manager is not happy. 

– Oh yeah, the application‟s memory consumption has really grown, do I 

have sufficient RAM on my server?

• What happened?  Why?  What do we do?
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Amalgamated Case Study 
First Step to Better Performance – Fix Query Times 

Fully loading the model with data has exposed several design 

inefficiencies.  Indicative symptoms are significantly slower query 

times and significantly increased memory consumption.

• Likely Causes:

– Non-optimal cube dimension order

– OVERFEEDING

– Unnecessary calculations
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Amalgamated Case Study 
Fix Query Times – Optimize Dimension Order 

• Reordering cube dimensions may give you an easy one time significant 

memory reduction and increased query efficiency 
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• OVERFEEDING = Many, many (, many) useless, wasted calculations

• Simple sample:

FEEDERS;

[‘Sales’]=>DB(‘ProfitLossCube’, !product, !timeperiod,                    

‘All Geographies’, ‘Sales Amount’);

• Feeder statements should be as precision as possible:

FEEDERS;

[‘Sales’]=>DB(‘ProfitLossCube’, !product, !timeperiod,                    

ATTRS(‘Customer’, !customer, ‘Geog’), 

‘Sales Amount’);

Amalgamated Case Study 
Fix Query Times - OVERFEEDING

Danger
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Amalgamated Case Study 
Fix Query Times - Unnecessary calculations

• TM1 rules are fast, but straight dimensional aggregation is much faster.

• High level queries can require millions of low level calculations.

• Whenever possible remove or replace unnecessary calculations & 

consolidations:

– For example:

• If your time dimension contains years and periods before or after your 

useful data (actual or planning) remove the extraneous time periods.

• If you have useless top level consolidations (often „All Years‟ in a time 

dimension serves no purpose) remove them.  They just invite 

unneeded aggregation and force unneeded calculation.

– Replace “one time only” rules calculations that will never be 

changed by user input with “stored” calculations where possible.  

Removing these on-demand calculations can improve some query 

times by orders of magnitude!
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Take Aways & Tips

The fundamental key to TM1 performance is query speed.  Always 

consider the following:

• Size of Model (dimension size and order, data volume)

• Nature and Complexity of calculations

Keys to Performance

• Always Optimize Dimension Order

• Optimize Rules

– Avoid using Rules for “static” calculations

– Beware OVERFEEDING!
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Amalgamated Case Study 
Second Step – Deal with Object Contention

Inconsistent query times.  Readers blocking Writers.  Writers blocking each 

other.  Strangest of all Readers blocking Readers…

• Understand the TM1 locking and object dependency model

– Readers block writers at the Cube/Dimension level

– TM1 Cube Rules create multi-cube dependencies and multi-cube locks

– Some Read operations require Write locks

• Work around locking by separating components that will be accessed 

concurrently by many users.

– Separate cubes by logical function (employee plan, capital plan, driver 

based revenue…)

– Use separate cubes to separate read/only users from contribution users 

– Separate writers from one another and other readers 

• Sandboxes/Personal Workspace capability
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Concurrency That Has Been Achieved

•US Financial Services ~1,000 Users

•Australian Financial Services ~1,600 

Users

•Large Manufacturer:  ~1,500 Users

•Large Electronics Company:  ~2,500 

Users
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Amalgamated Case Study 
Deal with Object Contention – Separate Cubes By Function

• Separate cubes by logical function (employee plan, capital plan, driver 

based revenue…)

Labor
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• Use separate cubes to separate read/only users from contribution users 

– Create Read/Only Cubes on separate servers using Rep/Sync

• Built into server functionality

– Create same server Read/Only Cubes

• Limit Cube rules to a minimum by pre-calculating everything at the leaf 

level on load.  This will produce huge speed improvements for high 

level queries and drastically limit the negative impact of query cache 

invalidation.

• Update Frequency depends on workflow requirements:

– Update nightly from Input Cubes

– Update slices on demand as part of a workflow submission.

Amalgamated Case Study 
Deal with Object Contention – Read/Only Cubes
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Effect of Read/Only Separation
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Amalgamated Case Study 
Deal with Object Contention - Separate writers from one another 

• TM1 9.5.x introduces Sandbox/Personal Workspace.  Great new 

contribution functionality and writers don‟t lock “base” cubes until they 

commit their changes.

– TM1 9.5 introduces Sandboxes 

capability. 

– TM1 9.5.1 augments with 

Personal workspace capability 

and Job Queuing

• Prior to TM1 9.5 writer separation can be achieve by “partitioning” input 

cubes.  

– Complex to implement but significantly decreases object contention 

and increases concurrent user activity.
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Effect of Separating Writers with 9.5 Sandboxes

• Contribution into sandboxes avoids cube contention until users merge 

their sandbox numbers into the base cubes.   Queued sandbox commits 

(9.5.1) further increase response times.

• Significantly better, more predictable performance is achieved at high 

user counts.
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Amalgamated Case Study 
Deal with Object Contention – Readers Blocking Readers

Beware of deployment of TM1 objects that require write locks for read 

operations:

– Dynamic Subsets

• Require a write lock to evaluate

• Are in constant need of re-evaluation (particularly in contribution 

applications)

• Can be used for nightly updates of “semi-dynamic” subsets. 

– User Defined Consolidations and }Rollups

• Queries evaluating UDCs and Rollups can block Logins due to private 

object registration write locks

– Where possible, avoid deploying.
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Take-Aways & Tips

Understand TM1’s object locking model and its impact on user concurrency.  

Design for concurrency.

• Account for Object Locking

– Understanding what activities block other activities

– Sandboxes and Personal Workspace

• Job Queuing

– Partitioning of Writers

• Application oriented (Employee Cube vs. CAPEX cube…)

• Physical cube partitioning

Keys to Performance

• Leverage Calculation and Query Cache

– Understanding when cache is invalidated

– Use of “Read Only” cubes

• Replication/Synchronization

• Turbo Integrator based

• Beware Dynamic Subsets and UDCs



20

Amalgamated Case Study 
Step Three – Operations Performance & Environmental Factors

With basic query performance corrected and object contention 

issues dealt with we still have various operational/environmental 

issues to deal with:

• Server Startup Too Slow

• Nightly Loads Too Long

• Do we have the correct Server environment? 

– TM1 Server

– TM1Web

• Why are some clients always so slow?

– WAN/LAN

– TM1Web/Contributor 

– Excel 
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Keys to Performance

• Multi Threaded Startup (for pre 9.5.1)

– There are some caveats (no conditional feeders)

• Persistent Feeders (TM1 9.5.1)!

– Can decrease startup time by a factor of 10

• Depends on size/use of Feeders

• You still want to optimize your feeders!

– Cautions

• Disk considerations, .FEEDER files can be quite large.

• Major rules file updates will still require a “full” restart.

Amalgamated Case Study 
Operations - Server Startup
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Amalgamated Case Study 
Operations – Nightly Loads

Keys to Performance

• Data & Meta Data Import

– “Multi Threaded” data loads

• Imported data must be separate for each thread

• Imported data must overwrite existing cells (no accumulate)

• Batch Mode (BatchUpdateStart, BatchUpdateFinishWait)

– Turn Off Transaction Logging (careful)

– Bulk Load Mode for “big” dimension updates to avoid any chance 

of contention and rollback.
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Amalgamated Case Study 
Operations – Nightly Loads & Action Buttons

Some TI Processes may run concurrently and can’t leverage “Batch” 

mode.

• Two or more long running processes that update/read the shared 

objects will contend with each other. 

• Blocked processes will “Rollback” all operations prior to the block wait 

and then retry.  This creates serious CPU drain and a locking Log Jam.

The solution – “”

• For TI processes that may contend (launched from Action Buttons or 

possibly conflicting Chores schedules) introduce an immediate locking 

cube write action to limit rollback.

• Create a small cube with 2 dimensions (semaphore.cub)

• In line one of the TI prolog write to the semaphore cube:

CellPutS(‘somestring’, ‘semaphore’, ‘element1’, ‘element2’);
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Amalgamated Case Study 
Operations – Server Environment

TM1 Server - Keys to Performance

• For higher user concurrency, more CPU cores are important.

– Beware object contention.   Extra CPUs will only help if users are 

not blocked on object locks.

• For Larger Models more memory is required

– NO SWAPPING TO DISK!

– NOT currently NUMA aware

• Virtualization

– Optimized Virtual Environments work

– You STILL need sufficient CPUs and Memory
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Hardware Configuration Examples

• Large Manufacturer

• Users: ~1,500

• TM1 Server:

– 16 Cores:  8 dual-core Intel 
Xeon x64 @ 2.93 GHz

– 128 GB of RAM

– Windows 2003 Server 
Enterprise Edition 64-bit

• Web Servers (3):

– 16 Cores:  8 dual-core Intel 
Xeon x64 @ 2.4 GHz

– 32 GB of RAM

– Windows 2003 Server 
Enterprise Edition 64-bit

• Large Electronics Company

• Users: ~2,500

• TM1 Server:

– 16 Cores:  8 x Dual Core 
Intel Xeon x64

– 128 GB of RAM

– Windows 2003 Server 
Enterprise Edition 64-bit

• Web Servers (4):

– 4 x Dual Core Intel Xeon x64

– 64GB RAM

– Windows 2003 Server 
Enterprise Edition 64-bit
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Amalgamated Case Study 
Operations – Server Environment

TM1Web Server (IIS) - Keys to 
Performance

• 64 Bit Windows allows more memory 
which in turn allows more users

• Websheets typically require significantly 
more TM1Web resource than Cubeviews

• Websheet Paging to optimize (9.5.1)

• Locate the TM1Web server (IIS) on the 
LAN with the TM1 Server to avoid WAN 
related performance issues.

• Multiple Web servers 

– Allows horizontal scaling of web 
environment

– Standard load balancers can be 
used but do need to support a 
“sticky” connection.

– Multiple Virtual Directories on 
server hosts can help, particularly 
with Websheet based applications.

TM1Web Websheet Performance

91
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Amalgamated Case Study 
Operations – Client Environments

TM1 formula optimization for Excel sheets

• Use the VIEW() formula instead of direct Cubeview name.

• Use DBRW() instead of DBR()

• Use DBSW() instead of DBS()
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System Operation Optimizations
Client Environments

WAN/LAN

• In a WAN environment many 

features of the TM1 Architect and 

Perspectives clients do not perform 

well.  

– We have a ways to go…

• Strategies to improve performance 

for WAN users:

– Implement the application in 

TM1Web for WAN users if 

possible

– Have remote Architect and 

Perspectives users run via 

terminal services

– Optimize Perspectives sheet 

design
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End of Amalgamated Case Study
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Methodology for Performance
Rules of Thumb

• Understand the likely performance issues in your application.

• Build cubes with efficient dimensional design

• Avoid the “rules” trap!

– A model is fast with a small data sample and one user may have 

significant issues under a full data load or when hit by multiple 

users.

– For calculations that don‟t change or only change in sync with 

external data loads consider storing calculations via Turbo 

Integrator instead of Real Time calculation with Rules.

• Beware model components that can create contention:

– Dynamic Subsets 

– User Defined Consolidations
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Methodology for Performance
Test for Speed

• Once the model or components of the model are build it is imperative to 

test and tune.

• Test with a full load of data.

– If you have a full set of “live” data, use it.

– If you don‟t have the real data, make it up.  

– Fully populated cubes can expose rule, feeder and dimensional 

inefficiencies that must be corrected before going live.

– Test query times with un-cached cubes.

– Test Turbo Integrator performance.

• Make sure to run a full “overnight” scenario

– Test startup time (with and without Persistent Feeders)
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Methodology for Performance
Test for Concurrency

• Once the single user performance has been properly established begin 

concurrency testing.

• Test with a full user load.

– Once the application is built and populated run a series of multi-

user tests exercising any/all functions of the system.

• Record base line performance numbers with a single user.

• Begin adding progressively more monitoring performance and TM1Top 

activity 

• Automated Testing

– If possible use a multi-user test automation tool to allow continuous 

test, improve, retest cycles without taxing your users‟ patience.

– Appropriate tools depend very much on the nature of your 

application (web, Excel, custom…) and your budget.
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Parting Thoughts…

IBM Cognos is continually considering how best to:

• Allow quicker, easier development of high performance applications

• Achieve even higher levels of performance

But For Now:

• Consider your application and performance pain points

• Implement one or more methods to improve performance

• Test/Adjust

• Repeat until happy
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Information and Analytics Communities

• On-line communities, User Groups, Technical Forums, Blogs, 

Social networks, and more

– Find a community that interests you at…

• ibm.com/software/data/community

• Integration with TM1

• Information Champions

– Recognizing individuals who have made the most outstanding 

contributions to Information Management communities

• ibm.com/software/data/champion

http://www.ibm.com/software/data/community
http://www.ibm.com/software/data/community
TM1 with Business Insight.wmv
http://www.ibm.com/software/data/champion
http://www.ibm.com/software/data/champion
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So lets see a real life example 
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“A leading retailer” ....

So who is it?

Sorry. We can‟t reveal the retailer‟s  identity as this project is still in early go-

live / final UAT.

However, rest assured this is a real case study!  
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Session agenda

1. The reporting problem pre-TM1

2. Proof of concept and volume testing

3. Reporting requirements

4. Model design considerations

5. “Blackbelt” techniques to pull it off
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The problem

• The source OLTP system (JDA ODBMS) ran the business well but fell down when it 

came to reporting

• The business‟s primary merchandise reporting tool was Excel

• Reports at the level of detail the business required were only available in the MCA 

reporting module at a low level.  There was no concept of “drilling down” from above.  

This lead to:

– Analysts having to run multiple reports with multiple sessions of MCA to dump 

out data then piece together and collate reports in Excel

– Significant strain on the source system due to the volume of queries

– Complicated Excel reports with macros and pivot tables that were subject to 

breakage

– ... an “Excel Hell” scenario that we are all familiar with
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Due diligence

• Proof of Concept

– 8 weeks of data at store by product by week level

– 24 measures

– 16 dimensional cube with many product attributes included as dimensions for slice and 

dice analysis

– Excel cube viewer the primary interface

– Around 30 sec response times on high level views

– “Beauty contest” with another BI tool

– TM1 selected due to ease of use and Excel integration

• Proof of technology

– 3 days in HP data labs in Sydney

– Expand data set to 100 weeks, 100+ GB

– Prove stable at 100+ GB with no loss in query response time
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System requirements

• Hold 2 years of data at product/variation level by store by week

• Hold 6 weeks of daily data at product/variation by store 

• Be able to summarize and “slice & dice” measures based on product attributes 

(status, ranging, size, colour, season, vendor, etc.)

• Choose different levels in same report and able to traverse – drill up and down all 

levels of the product and location hierarchies

• Sub 30 sec query response times
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Goals

• Eliminate reporting bottlenecks.  Save time

• Eliminate use of MS Access

• Availability of vs. LY and MAT calculations (plus many other calcs)

• Exception based reporting

• Eliminate need to add or remove rows and adjust formulas when master data 

changes

• Provide common reporting language and source of truth. Central location for all 

reports. Centralise reporting team

• User friendly access to information
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Design considerations

• Size! Over 1 million active products, hundreds of stores

• Billions of records. Initial calculations pointed to a model of 100 – 200 GB

• Managing query response times to user acceptable levels

• Managing data loads within  very limited batch processing windows (2 – 7am)

• Managing many administration and “master data” type processes internally within TM1. 

E.g.

– Backdated transactions

– Product re-class events

– Product status tracking
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Design principles

• “Distributed” or “partitioned” model

– Break into smaller cubes based on business reporting structures not 

one mega cube

• Why?

– Manage cube and dimension size for better query performance

– Faster server load times on multiple threads

– Parallel data loads for massive reduction in load times

• But still need to support business wide reports
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Model size

• This is a BIG data model
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How it fits together

• Model split by business unit (10 major BUs)

• Majority of reports run from summary cube at class level

• Final drill down to product level only available within business unit cubes

Product 

Level

Class

Level

General Merch Ladies Wear Toys Electronics

Total Business
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How it fits together

• The end user perspective ...

“Summary Cube”

(Total business)

Total Product

Business Unit

Department

Class

“Detail Cubes”

(BU specific)

Business Unit

Department

Class

Range

Product

Variation

Drill-down

Drill-down

Drill through
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How it works

• Data integration perspective

TI

TI

(parallel)

TI

(serial)

Data extracts
Processed, split  & “pivoted” extracts
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Some “blackbelt” techniques

• Model partitioning

• Multi-threaded data loads

• External job scheduling

• Feederless rules

• Avoiding locking

• Eliminating public dynamic subsets
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Multi-threaded data loads

• External data loads from file extracts

– Eliminates ODBC or source system as a bottleneck in TM1 processing

• Made possible by model partitioning

• Each cube loads on a different thread
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External scheduling

• Control M is the enterprise 

scheduling tool

• When file transfer of extracts are 

complete TM1 jobs are called via a 

3rd party command line tool 

TM1ProcessExecute.exe

• When TM1 jobs complete a 

confirmation file is placed in a 

monitored directory to signal 

downstream jobs can commence

• Allows much better and finer control than can be achieved via the TM1 

chore scheduler
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Feederless rules

• Q: what are “feederless” rules?

• A: rules that do not require feeding!

• What would typically have been “N” measures are defined as 

“C”

• Use consolidations and real leaf data to feed the  rule rather 

than feeders

• Significant savings in model size and load time

• Example rule: 
[„LY Actual‟] = C: DB(„Cube‟, „Actual‟, AttrS(„Year‟, !Year, „Prev Year‟), ... );

• Can also be applied to other dimensions (e.g. version, 

currency, ...)

Regular hierarchies or 

rollups.

Elements consolidate or 

add/subtract

Artificial rollups for what would 

usually be N elements. The 

children are defined for the 

sole purpose of “feeding” the 

rule calculation
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Avoidance of object locking

• To take advantage of multi-threaded loading need to make sure that each processes only 

obtains write locks on a unique set of objects

• Concept of “semaphores” or signalling cubes

– So what‟s a semaphore?

– Any common object that needs to get written to.  Most common example would be 

}CubeProperties cube with CubeSetLogChanges

• How to avoid

– Handle logging before and after multi-threaded phase not in each process

– Avoid multiple processes attempting to write to the same object (subsets, views, not just 

data)

– Custom logging cubes: write out to file and process later

• Sometimes you want to lock ...

– E.g. To force queuing to ensure one process has a “clear window”
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Dynamic subsets

• Dynamic subsets have performance implications

• Concept of “semi-dynamic” subsets

– Nightly regeneration of dynamic subsets and conversion to static subsets

– Get (most) benefits of dynamic subsets without the drawbacks
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Thank You!
Your Feedback is Important to Us

• Access your personal session survey list and complete via SmartSite 

– Your smart phone or web browser at: iodsmartsite.com  

– Any SmartSite kiosk onsite

– Each completed session survey increases your chance to win 

an Apple iPod Touch with daily drawing sponsored by Alliance 

Tech


