Business Analytics Forum

The Premier Conference for Information and Analytics

≥√ ↓4 14 7 3 · 5ž 2010 Gold Coast Convention and Exhibition Centre Queensland, Australia

Dimensional Reporting

Philip Wittann Business Analytics

IEM. S

Dimensional Reporting Concepts

- Query languagues
 - Relational sources use SQL
 - Dimensional sources use MDX (MultiDimensional eXpression)

MDX

Dimensional Reporting Concepts

Query Axes – Lists

• One query axis

8

Dimensional Reporting Concepts

Query Axes – Crosstabs and Charts

- Multiple axes
- Evaluated independently*

* More complex expressions may depend on the context from another axis to determine the value for a measure cell

What makes up a "block"?

- A Member is the basic unit of dimensional reporting
- A Member can have many attributes
- A Member does not contain a measure value
- Members can be combined into larger units called Sets

Ö

Working with Members and creating Sets

- A set can be created from
 - An explicit list of members
 - A dimensional function
- Sets can be reused within a query to satisfy other expressions

11.

Working with Members and creating Sets

Demo

Ö

- Relational (SQL) sources will limit data based on inner joins
- OLAP Sources will create cross products for dimensions on the same axis

		Revenue
2004	Outdoor Protection	36,165,521.07
	Personal Accessories	391,647,093.61
	Camping Equipment	332,986,338.06
	Golf Equipment	153,553,850.98
2005	Camping Equipment	402,757,573.17
	Outdoor Protection	25,008,574.08
	Golf Equipment	168,006,427.07
	Mountaineering Equipment	107,099,659.94
	Personal Accessories	456,323,355.9
2006	Camping Equipment	500,382,422.83
	Outdoor Protection	10,349,175.84
	Golf Equipment	230,110,270.55
	Personal Accessories	594,009,408.42
	Mountaineering Equipment	161,039,823.26
2007	Golf Equipment	174,740,819.29
	Camping Equipment	352,910,329.97
	Mountaineering Equipment	141,520,649.7
	Outdoor Protection	4,471,025.26
	Personal Accessories	443,693,449.85

SQL

OLAP

		Revenue	
2004	Camping Equipment	332,986,338	
(Mountaineering Equipment)
	Personal Accessories	391,647,094	
	Outdoor Protection	36,165,521	
	Golf Equipment	153,553,851	
2005	Camping Equipment	402,757,573	
	Mountaineering Equipment	107,099,660	
	Personal Accessories	456,323,356	
	Outdoor Protection	25,008,574	
	Golf Equipment	168,006,427	
2006	Camping Equipment	500,382,423	
	Mountaineering Equipment	161,039,823	
	Personal Accessories	594,009,408	
	Outdoor Protection	10,349,176	
	Golf Equipment	230,110,271	
2007	Camping Equipment	352,910,330	
	Mountaineering Equipment	141,520,650	
	Personal Accessories	443,693,450	
	Outdoor Protection	4,471,025	
	Golf Equipment	174,740,819	

Result size

- OLAP cross products have the potential for much larger result sets
- Example:
 - Product dimension (100 members)
 - Time dimension (24 months)
 - Store dimension (100 stores)
 - Warehouse dimension (10 warehouses)
 - Nesting all these members will produce
 100 (Product) * 24 (Months) * 100 (Stores) * 10 (Warehouses)
 = 2,400,000 rows

Impact on filtering

- Detail filters may be applied after retrieving a result set
- Dimensional filtering can be better performed in the sets on the axes

Results of set-based filtering

- Example:
 - Product dimension (100 members) \rightarrow (20 members)
 - Time dimension (24 months)
 - Store dimension (100 stores) \rightarrow (15 members)
 - Warehouse dimension (10 warehouses) \rightarrow (4 members)
 - Nesting all these members will produce
 100 (Product) * 24 (Months) * 100 (Stores) * 10 (Warehouses)
 = 2,400,000 rows

20 (Product) * 24 (Months) * 15 (Stores) * 4 (Warehouses) = 28,800 rows

8

Cross products and sparse data

Filtering demo

OLAP Performance

Do

- Design for reuse
- Use dimensional functions to filter sets
- Use the union, except, and intersect **functions** to combine sets
- Use the member summary functions to roll up a measure for a set

Avoid

- Filtering on attributes (such as the member caption)
- Detail filters on measures
- Union, Except, Intersect, and Join operations between two queries
- Direct addition operations between members
- Relational functions such as the string operations for substrings and concatenation

Examples of filtering and aggregation with reuse

Relative Time demo

Ś

OLAP Performance

Do

- Design for reuse
- Use dimensional functions to filter sets
- Use the union, except, and intersect **functions** to combine sets
- Use the member summary functions to roll up a measure for a set

Avoid

- Filtering on attributes (such as the member caption)
- Detail filters on measures
- Union, Except, Intersect, and Join operations between two queries
- Direct addition operations between members
- Relational functions such as the string operations for substrings and concatenation

WIN an Apple[®] iPad

Please remember to complete your session evaluation online at the Communication Station or point your Smart Phone browser to:

www.spss.com/goldcoast

For a chance to win an Apple[®] iPad

