
IBM® Workplace Forms™

Using the Viewer Settings

Version 2.6.1

S325-2610-00

���

Note

Before using this information and the product it supports, read the information in “Notices,” on page 13.

First Edition (September 2006)

This edition applies to version 1, release 2.6.1 of Workplace Forms and to all subsequent releases and modifications

until otherwise indicated in new editions.

This edition replaces version 1, release 2.6 of Workplace Forms.

© Copyright International Business Machines Corporation 2003, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Using the Viewer Settings 1

About the ufv_settings Option 1

Usage Details 1

errorcolor 2

helpcursor 2

mandatorycolor 3

menu 3

modifiable 5

printwithformaterrors 5

savewithformaterrors 6

scrollfieldsonzoom 7

signwithformaterrors 8

submitwithformaterrors 9

validoverlap 10

Appendix. Notices 13

Trademarks 14

© Copyright IBM Corp. 2003, 2006 iii

iv

Using the Viewer Settings

This document describes the ufv_settings option. ufv_settings is an option that can

be placed in a form to control some of the Viewer’s features, such as:

v The information displayed in the Viewer’s about box.

v The color used to denote errors on the form.

v The appearance of the cursor when the Viewer is in help mode.

v The color used to denote mandatory fields.

v The buttons that appear in the Viewer’s toolbar.

To understand all of the controls available, you should review the beginning

portion of each setting in this document.

About the ufv_settings Option

The ufv_settings option is declared in either the form global or any page global. As

with other options, the global page settings override the global form settings.

The ufv_settings option belongs to the XFDL namespace. The option can control one

or more features, and follows this syntax:

 <ufv_settings>

 <feature1>

 <setting>setting_value1</setting>

 <setting>setting_valuen</setting>

 </feature1>

 <featuren>

 <setting>setting_value1</setting>

 <setting>setting_valuen</setting>

 </featuren>

 </ufv_settings>

Note: Page settings override the global settings. For example, if you set the

validoverlap globally, then set the errorcolor for page one, page one will not

inherit the validoverlap setting. If you want to add page specific settings to

your form, you must repeat the form’s global settings in the settings for that

page.

Usage Details

All ufv_settings can be changed by computes in the form. The following example

shows how a form can be set to read-only using a compute. In this example, the

custom option opt_1 will set modifiable to off once the form has been submitted.

 <button sid="SubmitForm">

 <value>Submit Form</value>

 <type>submit</type>

 <custom:opt_1 xfdl:compute="toggle(activated,’off’,’on’) ==

 ’1’ ? set(’global.global.ufv_settings[modifiable]’,

 ’off’):’’"></opt_1>

 </button>

Note that the ufv_settings option is a form global option in the XFDL namespace,

and is referenced using the following syntax:

 global.global.ufv_settings[element][setting]

© Copyright IBM Corp. 2003, 2006 1

For example, to reference the setting for the Open control bar button, you use:

 global.global.ufv_settings[menu][open]

To reference the setting for modifiable, you use:

 global.global.ufv_settings[modifiable]

errorcolor

This feature sets the background color of an input item if a user’s entry is incorrect

(for example, if a user enters text in an integer field). The setting can use either

RGB values, hex values, or a valid color name. See the XFDL Specification for a list

of valid color names.

Example

 <ufv_settings>

 <errorcolor>255,105,180</errorcolor>

 </ufv_settings>

OR

 <ufv_settings>

 <errorcolor>HotPink</errorcolor>

 </ufv_settings>

OR

 <ufv_settings>

 <errorcolor>#EE6AA7</errorcolor>

 </ufv_settings>

All examples are correct. In each case, if an input item in the form receives an

invalid entry, the background color of the item will change to hot pink.

Default

The default value for errorcolor is watermelon (255, 128, 128).

helpcursor

This feature controls the appearance of the cursor when the Viewer is in help

mode. Valid settings are:

v arrow — The help cursor appears as the “normal select” cursor, as defined by

the Windows® settings. This is normally a plain arrow.

v question — The help cursor appears as the “help select” cursor, as defined by

the Windows settings. This is normally an arrow with a question mark beside it.

Note that the appearance of the cursor relies on the Windows settings. Individual

users can use those settings to change the appearance of the cursor.

Example

 <ufv_settings>

 <helpcursor>arrow</helpcursor>

 </ufv_settings>

In this case, the help cursor is set to be an arrow rather than an arrow with a

question mark.

2

Default

The default value for helpcursor is question.

mandatorycolor

This feature sets the background color of a mandatory input item. The setting can

use either RGB values, hex values, or a valid color name. See the XFDL Specification

for a list of valid color names.

Example

 <ufv_settings>

 <mandatorycolor>255,228,225</mandatorycolor>

 </ufv_settings>

OR

 <ufv_settings>

 <mandatorycolor>misty rose</mandatorycolor>

 </ufv_settings>

OR

 <ufv_settings>

 <mandatorycolor>#FF00CC</mandatorycolor>

 </ufv_settings>

All of the above examples are correct. In each case, the mandatory input items on

the form will have a background color of misty rose. This background color will

override any other background color stated in the form description, and cannot

itself be overridden by a compute.

Default

The default value for mandatorycolor is light yellow (255, 255, 208).

menu

This feature allows a form designer to either hide or gray out the icons in the

Viewer’s toolbar or the toolbar used by Webform Server. The following table lists

each icon, describes what the icon does, and provides the keyword to use with the

menu setting.

Note that the Save Form and Save As button are controlled by the save keyword.

This means that they must both either be on or off - you cannot set them

individually.

 Icon Description Keyword

Open Opens a new form. open

Save Form Saves the form to the current file. save

Save As Saves the form, prompting the user for a filename and

location.

save

Print Prints the current form. print

Mail Emails the current form. mail

Preferences Opens the Preferences form. preferences

Using the Viewer Settings 3

Icon Description Keyword

Font Opens the Font dialog, which allows the user to change

font characteristics in rich text fields.

fontdialog

Paragraph Opens the Paragraph dialog, which allows the user to

change indenting and alignment in rich text fields.

paragraphdialog

Check

Spelling

Checks the spelling in the current item. spellcheck

Check All

Spelling

Checks the spelling for the entire page. spellcheckall

Zoom Out Decreases the magnification of the form. zoom

Select Zoom

Factor

Sets the magnification to a specific factor. zoom

Zoom In Increases the magnification of the form. zoom

Help Activates the form’s help messages. help

Viewer Help Opens the Viewer Help. viewerhelp

Refresh Form Refreshes the form, which updates all the computes.

This feature is only available when viewing forms in

Webform Server.

refresh

Toggle

Accessibility

Mode

Turns the accessibility mode on and off. This feature is

only available when viewing forms in Webform Server.

accessibility

You can set each icon individually to one of three states:

v on — The icon is available as normal. This is the default setting.

v off — The icon is visible, but is grayed out and cannot be used.

v hidden — The icon is not visible. The toolbar will collapse appropriately to

eliminate the gaps in the icons.

Example

 <ufv_settings>

 <menu>

 <save>off</save>

 <print>on</print>

 <open>off</open>

 <mail>off</mail>

 <preferences>on</preferences>

 <spellcheck>on</spellcheck>

 <spellcheckall>on</spellcheckall>

 <help>hidden</help>

 <viewerhelp>on</viewerhelp>

 </menu>

 </ufv_settings>

In a form with this ufv_settings declaration, the user will be able to select Print,

Preferences, Check Spelling, Check All Spelling, and open the Viewer Help form.

He or she will not be able to save the form, open another form, send mail, or

access the help mode. Furthermore, the help mode icon will not be visible.

Note: The menu function does not prevent the form designer from adding controls

for opening or saving forms, or from using other functions elsewhere in the

form.

4

Default

All toolbar icons are on by default.

modifiable

This feature allows the read/write status of the entire form to be set.

Example

 <ufv_settings>

 <modifiable>off</modifiable>

 </ufv_settings>

A form with this setting would be read-only. This is not a secure method of

preventing a form from being altered, since the source code can still be changed.

However, this can be used to prevent accidental changes.

Default

The default value for modifiable is on.

printwithformaterrors

This feature allows form designers to create forms that can be printed even if there

are type checking errors in the form. For example, you can create a form that the

user cannot print unless they have completed all of the mandatory fields.

This element has three possible settings:

v permit — Allows prints to proceed even if there are type checking errors.

v warn — If type checking errors exist, warn the user and ask if they want to

print the form anyway. This is the default value.

v deny — If type checking errors exist, alert the user and abort the print.

Note: This setting does not effect predictive type checking, which will still be

applied as the user types.

To apply printformaterrors to all of the print buttons in your form, place the setting

in the form global. For example:

 <globalpage sid="global">

 <global sid="global">

 <ufv_settings>

 <printwithformaterrors>deny</printwithformaterrors>

 </ufv_settings>

 </global>

 </globalpage>

To apply printformaterrors to all the print buttons on a single page, place it in the

page global. For example:

 <page sid="PAGE1">

 <global sid="global">

 <ufv_settings>

 <printwithformaterrors>deny</printwithformaterrors>

 </ufv_settings>

 </global>

 ...XFDL items...

 </page>

Using the Viewer Settings 5

If you want printwithformaterrors to apply to only a single button, you must

implement it in a compute that references the print button you want to affect. The

following example shows a compute that toggles between permit and deny based

on the activated state of a print button. This ensures that users are denied the

ability to print a form that contains format errors unless they are using the

specified print button.

 <ufv_settings>

 <printwithformaterrors compute="toggle(

 page1.printButton.activated,’off’, ’on’) == ’1’ ? ’permit’ :

 ’deny’"></printwithformaterrors>

 </ufv_settings>

A form with this setting will deny printing until the page1.printButton is clicked.

When that button is clicked, the form will toggle to permit and will print even if

there are type checking errors. Once printing is complete, the setting will toggle

back to deny.

Default

The default for printwithformaterrors is warn.

savewithformaterrors

This feature allows form designers to create forms that can be saved even if there

are type checking errors in the form. For example, you can create a form that the

user cannot save unless they have completed all of the mandatory fields.

This element has three possible settings:

v permit — Allows saves to proceed even if there are type checking errors.

v warn — If type checking errors exist, warn the user and ask if they want to save

the form anyway. This is the default value.

v deny — If type checking errors exist, alert the user and abort the save.

Note: This setting does not effect predictive type checking, which will still be

applied as the user types.

To apply savewithformaterrors to all of the save buttons in your form, place the

setting in the form global. For example:

 <globalpage sid="global">

 <global sid="global">

 <ufv_settings>

 <savewithformaterrors>deny</savewithformaterrors>

 </ufv_settings>

 </global>

 </globalpage>

To apply savewithformaterrors to all the save buttons on a single page, place it in the

page global. For example:

 <page sid="PAGE1">

 <global sid="global">

 <ufv_settings>

 <savewithformaterrors>deny</savewithformaterrors>

 </ufv_settings>

 </global>

 ...XFDL items...

 </page>

6

If you want savewithformaterrors to apply to only a single button, you must

implement it in a compute that references the save button you want to affect. The

following example shows a compute that toggles between permit and deny based

on the activated state of a save button. This ensures that users are denied the

ability to save a form that contains format errors unless they are using the

specified save button.

 <ufv_settings>

 <savewithformaterrors compute="toggle(

 page1.saveButton.activated,’off’, ’on’) == ’1’ ? ’permit’ :

 ’deny’"></savewithformaterrors>

 </ufv_settings>

A form with this setting will deny saving until the page1.saveButton is clicked.

When that button is clicked, the form will toggle to permit and will save even if

there are type checking errors. Once saving is complete, the setting will toggle back

to deny.

Default

The default for savewithformaterrors is warn.

scrollfieldsonzoom

In some cases, using the Viewer’s zoom feature can cause the text in fixed height

fields to wrap incorrectly. This causes some of the text to disappear beyond the

bottom of the field, which can prevent users from reading the text or entering as

much text as they should be able to. To correct this problem, the Viewer adds scroll

bars to fixed height fields when necessary.

You can disable this feature by using the scrollfieldsonzoom element. This element

has two possible settings:

v On — Add scroll bars to fixed height fields when necessary.

v Off — Never add scroll bars to fixed height fields.

Disabling this feature may limit the functionality of the form when the user zooms.

Note: This feature overrides any settings in the Viewer’s preferences form. Use

this feature only in the form global settings. It does not work in the page

global settings.

Example

The following example turns the scroll bars off:

 <ufv_settings>

 <scrollfieldsonzoom>off</scrollfieldsonzoom>

 </ufv_settings>

Default

By default, scroll bars are added to fixed height fields when necessary.

Using the Viewer Settings 7

signwithformaterrors

This feature allows form designers to create forms that can be signed even if there

are type checking errors in the form. For example, you can create a form that the

user can sign even if they have not completed all of the mandatory fields.

This element has three possible settings:

v permit — Allows signing to proceed even if there are type checking errors.

v warn — If type checking errors exist, warn the user and ask if they want to sign

the form anyway. This is the default value.

v deny — If type checking errors exist, alert the user and abort the signature.

Note: This setting does not effect predictive type checking, which will still be

applied as the user types.

To apply signwithformaterrors to all of the sign buttons in your form, place the

setting in the form global. For example:

 <globalpage sid="global">

 <global sid="global">

 <ufv_settings>

 <signwithformaterrors>deny</signwithformaterrors>

 </ufv_settings>

 </global>

 </globalpage>

To apply signwithformaterrors to all the sign buttons on a single page, place it in the

page global. For example:

 <page sid="PAGE1">

 <global sid="global">

 <ufv_settings>

 <signwithformaterrors>deny</signwithformaterrors>

 </ufv_settings>

 </global>

 ...XFDL items...

 </page>

If you want savewithformaterrors to apply to only a single button, you must

implement it in a compute that references the signature button you want to affect.

The following example shows a compute that toggles between warn and deny

based on the activated state of a signature button. This ensures that users are

denied the ability to sign a form that contains format errors unless they are using

the specified signature button.

 <ufv_settings>

 <signwithformaterrors compute="toggle(

 page1.saveButton.activated,’off’, ’on’) == ’1’ ? ’warn’ :

 ’deny’"></signwithformaterrors>

 </ufv_settings>

A form with this setting will deny signing until the page1.signButton is clicked.

When that button is clicked, the form will toggle to warn and will alert users to

formatting errors, but still allow them to sign the form. Once the form is signed,

the setting will toggle back to deny if the ufv_setting has not been signed. To

exclude this compute from the signature button, you must omit it from the

signature. One way to do this is to omit ufv_setting from the signoptions filter in the

signature button. For example:

8

<signoptions>

 <filter>omit</filter>

 <optionrefs>ufv_settings</optionrefs>

 </signoptions>

Default

The default for signwithformaterrors is warn.

submitwithformaterrors

This feature allows form designers to create forms that can be submitted even if

there are type checking errors in the form. For example, you can create a form that

the user can submit even if they have not completed all of the mandatory fields.

This element has three possible settings:

v permit — Allows submits to proceed even if there are type checking errors.

v warn — If type checking errors exist, warn the user and ask if they want to

submit the form anyway.

v deny — If type checking errors exist, alert the user and abort the submission.

This is the default value.

Note: This setting does not effect predictive type checking, which will still be

applied as the user types.

To apply submitformaterrors to all of the submit buttons in your form, place the

setting in the form global. For example:

 <globalpage sid="global">

 <global sid="global">

 <ufv_settings>

 <submitwithformaterrors>deny</submitwithformaterrors>

 </ufv_settings>

 </global>

 </globalpage>

To apply submitformaterrors to all the submit buttons on a single page, place it in

the page global. For example:

 <page sid="PAGE1">

 <global sid="global">

 <ufv_settings>

 <submitwithformaterrors>deny</submitwithformaterrors>

 </ufv_settings>

 </global>

 ...XFDL items...

 </page>

If you want savewithformaterrors to apply to only a single button, you must

implement it in a compute that references the submit button you want to affect.

The following example shows a compute that toggles between permit and deny

based on the activated state of a submit button. This ensures that users are denied

the ability to submit a form that contains format errors unless they are using the

specified submit button.

 <ufv_settings>

 <submitwithformaterrors compute="toggle(

 page1.saveButton.activated,’off’, ’on’) == ’1’ ? ’permit’ :

 ’deny’"></submitwithformaterrors>

 </ufv_settings>

Using the Viewer Settings 9

A form with this setting will deny submitting until the page1.submitButton is

clicked. When that button is clicked, the form will toggle to permit and will submit

even if there are type checking errors. Once submitting is complete, the setting will

toggle back to deny.

Default

The default for submitwithformaterrors is deny.

validoverlap

This feature adjusts the tolerance of the overlap test that the Viewer performs

when signing items. The overlap test detects overlaps between signed items and

unsigned items. Because the unsigned items might be moved later to reveal

information that changes the meaning of the form, the overlap test prevents the

user from signing these forms. However, in some cases the overlap is very slight,

and should be allowed.

By default, the Viewer allows a 2 pixel overlap between items. While you can use

validoverlap to change this value, you should explore the following solutions first:

v The overlap test looks for signed items that overlap unsigned items. You should

always follow the best practice of signing as much of the form as possible. This

means that if your form is failing the overlap test, you should first consider

whether you can sign additional items to correct this problem.

v Lines can often cause problems. In general, you should either sign all lines in the

form, or sign none of the lines in the form. This will help you avoid problems

with lines that overlap each other. If you choose to sign none of the lines in the

form, you may need to adjust the placement of some lines to prevent them from

overlapping with other items, such as fields. While this may seem like a lot of

work, it’s preferable to signing the overlapping line. Signing the line may create

more problems than it solves, as the line may overlap with a number of other

lines, which may overlap with further lines, and so on. Because of the work

involved in determining which lines need to be signed, it’s best to avoid this

scenario if possible.

If you still find that you cannot sign your form because of overlapping items, you

should adjust the validoverlap setting by small increments (such as 1 or 2 pixels)

until you can successfully sign the form or until you reach an overlap of 8 pixels.

Note: Never set the validoverlap to allow more than 8 pixels of overlap. If you

find that you still cannot sign your form with an overlap of 8 pixels, you

should redesign your form so that the items do not overlap as much. Using

a larger validoverlap increases the risk that a malicious user could

successfully modify a signed form.

The validoverlap can also be set as low as 0 pixels. The default of 2 pixels accounts

for the size of a border, which is included in the size of each item even if the

border is not drawn.

Example

 <ufv_settings>

 <validoverlap>4</validoverlap>

 </ufv_settings>

10

A form with this setting would allow signed items to overlap unsigned items by 4

pixels or less.

Default

The default setting for validoverlap is 2 pixels.

Using the Viewer Settings 11

12

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003, 2006 13

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Office 4360

One Rogers Street

Cambridge, MA 02142

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

AIX

IBM

Workplace

Workplace Forms

Other company, product, or service names may be trademarks or service marks of

others.

14

����

Program Number:

Printed in USA

S325-2610-00

	Contents
	Using the Viewer Settings
	About the ufv_settings Option
	Usage Details
	errorcolor
	helpcursor
	mandatorycolor
	menu
	modifiable
	printwithformaterrors
	savewithformaterrors
	scrollfieldsonzoom
	signwithformaterrors
	submitwithformaterrors
	validoverlap

	Appendix. Notices
	Trademarks

