
IBM® Workplace Forms™

Introduction to the Viewer Functions

Version 2.6.1

S325-2609-00

���

Note

Before using this information and the product it supports, read the information in “Notices,” on page 25.

First Edition (September 2006)

This edition applies to version 1, release 2.6.1 of Workplace Forms and to all subsequent releases and modifications

until otherwise indicated in new editions.

This edition replaces version 1, release 2.6 of Workplace Forms.

© Copyright International Business Machines Corporation 2003, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Introduction to the Viewer Functions . . 1

Calling a Function in XFDL 1

Document Conventions 1

About Parameters 1

addressBook 2

env 3

fileOpen 4

fileSave 5

getDefaultFilename 6

getHeight 7

getHelpMode 8

getWidth 8

getX 9

getY 10

Header/Footer Functions 11

measureHeight 15

messageBox 17

param 18

setCursor 20

setDefaultFilename 21

setHelpMode 22

showCalendar 23

Appendix. Notices 25

Trademarks 26

© Copyright IBM Corp. 2003, 2006 iii

iv

Introduction to the Viewer Functions

The Viewer functions enable form developers to trigger actions in the Viewer from

within a form. The Viewer functions are compiled into a package called viewer,

similar to the XFDL system package. Please refer to the XFDL Specification for more

details regarding the system functions.

Calling a Function in XFDL

The syntax used to call a Viewer function is as follows:

 viewer.functionName(parameter_1, parameter_2, ... parameter_n)

 Expression Description

viewer The name of the package that the function belongs to.

functionName The name of the function.

parameter A string representing the value of the parameter. Functions take zero or

more parameters.

All parameters should appear in quotations, as in the following example:

 viewer.fileOpen("C:\\My Documents","Forms.xfd")

Use empty quotes to represent null values.

Document Conventions

Optional parameters in function calls are indicated with brackets ([]). For

example:

 fileOpen(startdir, [extfilter])

In this function call, the extfilter parameter is optional.

About Parameters

In general, parameters are enclosed in single quotes, as shown:

 function(’param1’, ’param2’)

However, in some cases you may want to copy a value from another element in

the form. For example, you may want to use the value of a user-set field as the

parameter in a function. To do this, you would use a reference to that value with

no quotations as a parameter, as shown:

 function(’param1’, reference)

In this case, the reference will be evaluated, and the value retrieved will be

substituted for the reference, resulting in the following:

 function(’param1’, ’retrieved value’)

The function will then be computed.

© Copyright IBM Corp. 2003, 2006 1

Reference Strings

In some cases, a function may require a reference string as a parameter. For

example, the second parameter of the measureHeight function allows you to specify

which item should be measured by providing a reference to that item.

In the normal case, you would provide a reference that is enclosed in quotation

marks, as shown:

 measureHeight(’pixels’, ’descriptionField’)

The quotation marks indicate that the function should use the reference as the final

value. So in this case, the function will measure the height of the descriptionField.

However, if a different element in the form is storing the reference you want to

use, you can provide a reference to that element that is not in quotations. For

example:

 getHeight(’pixels’, storageField.value)

In this case, the function will first retrieve the value of the storageField.value option,

and will use that value to compute the function. For example, if the value option of

storageField contained ″descriptionField″, then the function would be evaluated as

though it was:

 getHeight(’pixels’, ’descriptionField’)

addressBook

Sets the value of one or more form options based on user selection of email

addresses. The function opens the user’s email client address book and allows

them to select email addresses.

This function uses extended MAPI when available, but otherwise uses simple

MAPI.

Note: If MS Exchange users have not configured their SMTP addresses, the MS

Exchange common name will be returned.

Call

addressBook(to_field, cc_field, bcc_field)

Parameters

 Expression Setting Description

to_field string References a form option that is set when a the user selects the

To information

cc_field string References a form option that is set when a the user selects the

Cc information (the to_field parameter must be present for this

parameter to receive input)

bcc_field string References a form option that is set when a the user selects the

Bcc information (the to_field and cc_field parameters must be

present for this parameter to receive input)

2

Returns

Returns 1 on success and an empty string on failure. Errors are logged and an

error form launches on failure.

Example

In the following example, when the user clicks the form’s Address Book button, an

address book dialog box appears, allowing the user to select email addresses using

the To, Cc, or Bcc fields:

 <button sid="ADDRESS_BOOK">

 <type>select</type>

 <value>Address Book</value>

 <custom:opt xfdl:compute="(toggle(activated, ’off’,

 ’on’) == ’1’ ? viewer.addressbook(’TO_FIELD.value’,

 ’CC_FIELD.value’, ’BCC_FIELD.value’) : ’’)"></custom:opt>

 <visible compute="(isAvailable(’function’,

 ’viewer.addressbook’) > ’0’ ? ’on’ : ’off’)">on</visible>

 <itemlocation>

 <x>337</x>

 <y>47</y>

 </itemlocation>

 </button>

env

The env function returns a string that contains the details of the environment in

which the Viewer is operating. This is useful for determining whether the Viewer

is standalone or embedded in a browser, embedded in Eclipse, or embedded in an

HTML page.

Call

env()

Parameters

None.

Returns

A string containing:

v standalone — If the Viewer is operating as a standalone Viewer.

v eclipse — If the Viewer is operating inside Eclipse.

v browser — If the Viewer is operating inside a browser.

v html-object — If the Viewer is operating inside an HTML page.

Example

The following example uses the env function to determine which environment in

which the Viewer is operating. The URL of the submit button changes depending

upon the Viewer environment. In other words, if the Viewer is operating in

standalone mode, it is submitted to server1. If it is operating inside a browser, it is

submitted to server2 and so on. As you’ll see, two custom options are used, one

Introduction to the Viewer Functions 3

containing a compute which calculates the Viewer environment, the other

specifying which URL to use for each environment.

 <button sid = "Submit">

 <value>Submit</value>

 <type>submit</type>

 <custom:enviro xfdl:compute="toggle(global.global.activated,

 ’off’, ’on’) == ’1’ ? viewer.env() : ’’"></custom:enviro>

 <custom:envString xfdl:compute="custom:enviro == ’standalone’

 ? (’http://server1/cgi-bin/submit’)

 : custom:enviro == ’browser’

 ? (’http://server2/cgi-bin/submit’)

 : custom:enviro == ’html-object’

 ? (’http://server3/cgi-bin/submit’)

 : custom:enviro == ’eclipse’

 ? (’http://server4/cgi-bin/submit’) : ’’"></custom:envString>

 <url compute="custom:envString"></url>

 </button>

fileOpen

Displays an Open File dialog box and allows the user to select a file. Returns the

filename and path of the selected file, but does not actually open the file. This is

useful for allowing the user to select a specific file that will be accessed at another

time.

For example, the Workplace Forms™ Viewer uses this function in the preferences

form to allow the user to set the location of the web browser.

Call

fileOpen(startdir, [extfilter])

Parameters

 Expression Setting Description

startdir directory

path

Default directory where the file browser will look for files.

extfilters string A list of one or more strings, which specify the file extensions

that can be selected in the Open File dialog. The list must be

comma delimited, and the strings should follow this format:

<text description> *.<ext> . For example, ″HTML document

*.html″ would represent HTML files. The exact text of the

string will appear in the Save File dialog.

Note: A filter of *.* represents any file type. Also, a list of file

extensions, separated by commas, specifies the types of files to

display in the dialog box.

Returns

A string containing the path of the file to be opened.

Example

The following example uses the fileOpen function to set the URL option in a link

button. When the button is selected, an Open File dialog box appears, and the user

can select a specific file. The path and filename are returned and used as the URL

4

option for the link button. Because it is a link button, the selected file is opened by

the browser. For more information on link buttons, refer to the XFDL Specification.

 <button sid = "BUTTON1">

 <value>Open File...</value>

 <type>link</type>

 <url compute="toggle(activated, ’off’, ’on’) == ’1’ ?

 viewer.fileOpen(’C:\\My Documents’,

 ’XFDL Document *.xfd, HTML Documents *.htm’) : ’’"></url>

 </button>

The parameters in this example specify that the Open File dialog box will default

to the My Documents folder, and that it will display both XFDL (.xfd) and HTML

(.htm) files.

fileSave

Displays a Save File dialog box and allows the user to select or type a filename.

The path and filename selected are returned, but the file is not actually saved. This

function is intended for use with other applications, which can perform the actual

save action based on the function return value.

For example, a configuration form (like the Viewer’s preferences form) might allow

the user to set a default location to which all files should be saved. The application

in question would then check the preferences form, and save all files in the

specified location.

Call

fileSave(startdir, [default_text, [extfilter_1, extfilter_2, ... extfilter_n]])

Parameters

 Expression Setting Description

startdir directory

path

Default directory where files will be saved.

default_text file

extension

Default file extension used when files are saved.

extfilters string A list of one or more strings, which specify the file extensions

that can be selected in the Save File dialog. The list must be

comma delimited, and the strings should follow this format:

<text description> *.<ext> . For example, ″HTML document

*.html″ would represent HTML files. The exact text of the

string will appear in the Save File dialog.

Note that a filter of *.* represents any file type.

Returns

A string containing the file path name of the file to be saved.

Example

The following example uses the fileSave function to set the value of a label. When

the button on the form is clicked, a Save File dialog opens, and the user selects a

folder and filename. The fileSave function returns the path to this location, and the

Introduction to the Viewer Functions 5

set function is used to assign the path to the value option of the label (see the

XFDL Specification for more information on the set function).

 <label sid = "savelabel">

 <size>

 <width>50</width>

 <height>1</height>

 </size>

 <value></value>

 </label>

 <button sid = "savebutton">

 <type>select</type>

 <value>Select file to be saved</value>

 <custom:save_opt xfdl:compute="toggle(activated, ’off’,

 ’on’) == ’1’ ? set(’savelabel.value’,

 viewer.fileSave(’C:\My Documents’, ’frm’, ’Forms

 *.xfd, HTML Forms .htm, *.html, *.doc’)) : ’’"></custom:save_opt>

 </button>

The parameters in this example specify that the Save File dialog box will default to

the My Documents folder, that the filename will default to a ″.xfd″ extension. The

filters specify that XFDL (.xfd), HTML documents (.html and .htm), and Word

documents (.doc) are acceptable file extensions.

getDefaultFilename

The Viewer maintains a default filename for all open forms, unless they are

temporary files. In general, a form will be considered temporary if it is passed to

the Viewer by the web browser. For example, a form passed to the Viewer in

response to a web transaction would be a temporary file. Temporary files have no

default filenames.

Calling getDefaultFilename will return the default filename.

Call

getDefaultFilename()

Parameters

None.

Returns

Returns a string containing the default filename of the form. This string does not

include any path information.

Usage Details

You must use the event model to trigger the getDefaultFilename function. This

means you must use the toggle function, keypress, mouseover, or some other event. If

you want getDefaultFilename to run when the form opens, toggle the function off

of the value of the global.global.activated option. This option will switch to on when

the form is opened.

6

Example

The following example creates a label in the form that displays the default

filename when the user clicks the getFilename button.

 <label sid = "filename_LABEL">

 <value compute="toggle(getFilenameButton.activated,

 ’off’, ’on’) == ’1’ ? viewer.getDefaultFilename() :

 value"></value>

 </label>

getHeight

Measures an item’s height in either pixels or characters.

Call

getHeight(units, [item])

Parameters

 Expression Setting Description

units string Determines whether height is returned in chars or pixels.

item reference

string

Optional. References the SID of the item you want to measure.

If no item is specified, the current item is measured.

Returns

Returns a string containing the height of the current or specified item in either

pixels or characters.

Usage Details

You must use the event model to trigger the getHeight function. This means you

must use the toggle function, keypress, mouseover, or some other event. If you want

getHeight to run when the form opens, toggle the function off of the value of the

global.global.activated option. This option will switch to on when the form is opened.

Example

In the following example, when a user clicks BUTTON1, getHeight calculates the

height in pixels of FIELD3:

 <field sid="FIELD3">

 <itemlocation>

 <x>17</x>

 <y>25</y>

 <width>48</width>

 <height>397</height>

 </itemlocation>

 <value compute="toggle(BUTTON1.activated, ’off’, ’on’) ==

 ’1’ ? viewer.getHeight(’pixels’) : value"></value>

 <scrollhoriz>always</scrollhoriz>

 </field>

Introduction to the Viewer Functions 7

getHelpMode

The Viewer has a help mode that is entered when the user clicks the appropriate

icon on the Viewer’s toolbar. While the help mode is active, help messages that

have been added to the form are displayed for the user as tool tips.

Calling getHelpMode will return the Viewer’s help mode status: on or off.

Call

getHelpMode()

Parameters

None.

Returns

Returns either on or off.

Example

The following example creates a button in the form that will turn the help mode

on and off (just like the button in the Viewer’s toolbar). When the button is clicked,

the form uses getHelpMode to determine whether the help mode is currently on or

off. Based on that value, the form uses setHelpMode to change the setting of the

help mode. So, if the help mode is on, the form sets it to off, and if the help mode

is off, the form sets it to on.

Note: getHelpMode should be used in conjunction with the toggle function (see

the XFDL Specification for more information about the toggle function).
 <button sid="toggleHelp_BUTTON">

 <value>Toggle Help Mode</value>

 <custom:toggle_OPTION xfdl:compute="toggle(activated,

 ’off’, ’on’)==’1’ ? viewer.getHelpMode()==’on’ ?

 viewer.setHelpMode("off") : viewer.setHelpMode

 (’on’) : ’’"></custom:toggle_OPTION>

 </button>

getWidth

Measures an item’s width in either pixels or characters.

Call

getWidth(units, [item])

Parameters

 Expression Setting Description

units string Determines whether width is returned in chars or pixels.

item reference

string

Optional. References the SID of the item you want to measure. If

no item is specified, the current item is measured.

8

Returns

Returns a string containing the width of the current or specified item in either

pixels or characters.

Usage Details

You must use the event model to trigger the getWidth function. This means you

must use the toggle function, keypress, mouseover, or some other event. If you want

getWidth to run when the form opens, toggle the function off of the value of the

global.global.activated option. This option will switch to on when the form is opened.

Example

In the following example, when a user selects BUTTON1, getWidth calculates the

width in pixels of FIELD3:

 <field sid="FIELD3">

 <itemlocation>

 <x>17</x>

 <y>25</y>

 <width>48</width>

 <height>397</height>

 </itemlocation>

 <value compute="toggle(BUTTON1.activated, ’off’, ’on’) ==

 ’1’ ? viewer.getWidth(’pixels’) : value"></value>

 <scrollhoriz>always</scrollhoriz>

 </field>

getX

Calculates the distance from the left edge of the form to the left edge of the item

(in other words, the x coordinate of the item) in pixels.

Call

getX([item])

Parameters

 Expression Setting Description

item reference string Optional. References the SID of the item you want to use. If

no item is specified, the current item is used.

Returns

Returns a string containing the x coordinate of the item in pixels.

Usage Details

You must use the event model to trigger the getX function. This means you must

use the toggle function, keypress, mouseover, or some other event. If you want getX

to run when the form opens, toggle the function off of the value of the

global.global.activated option. This option will switch to on when the form is opened.

Introduction to the Viewer Functions 9

Example

In the following example, when a user selects BUTTON1, getX calculates the x

coordinate of FIELD3:

 <field sid="FIELD3">

 <itemlocation>

 <x>17</x>

 <y>25</y>

 <width>48</width>

 <height>397</height>

 </itemlocation>

 <value compute="toggle(BUTTON1.activated, ’off’, ’on’) ==

 ’1’ ? viewer.getX() : ’’ "></value>

 <scrollhoriz>always</scrollhoriz>

 </field>

getY

Calculates the distance from the top edge of the form to the top edge of the item

(in other words, the y coordinate of the item) in pixels.

Call

getY([item])

Parameters

 Expression Setting Description

item reference

string

Optional. References the SID of the item you want to use. If no

item is specified, the current item is used.

Returns

Returns a string containing the y coordinate of the item in pixels.

Usage Details

You must use the event model to trigger the getY function. This means you must

use the toggle function, keypress, mouseover, or some other event. If you want getY

to run when the form opens, toggle the function off of the value of the

global.global.activated option. This option will switch to on when the form is opened.

Example

In the following example, when a user selects BUTTON1, getY calculates the y

coordinate of FIELD3:

 <field sid="FIELD3">

 <itemlocation>

 <x>17</x>

 <y>25</y>

 <width>48</width>

 <height>397</height>

 </itemlocation>

 <value compute="toggle(BUTTON1.activated, ’off’, ’on’) ==

 ’1’ ? viewer.getY() : ’’"></value>

 <scrollhoriz>always</scrollhoriz>

 </field>

10

Header/Footer Functions

This is a collection of functions that can be used within the printsettings option to

add header and footer information to a form. These headers and footers do not

appear on the screen, but do appear when the form is printed.

Each header and footer can be one or more lines in height. However, they can be

no larger than 1/3 of the page size. Each header and footer is also divided into

three separate sections - the left, the middle, and the right. By placing text in a

particular section, you control where the text is positioned, as follows:

v Left — The text begins at the left edge of the form.

v Middle — The text is centered in the middle of the form.

v Right — The text is positioned so that it ends at the right edge of the form.

Each section can contain different text. For example, you might put a date in the

left section, a title in the middle section, and a page number in the right section.

If you place a long string of text in a header or footer, it will overlap the other

sections of that header or footer. For example, suppose you put the following text

in the left section of your header:

 This form is for demonstration purposes only. Do not distribute.

This text would start at the left edge of the form, but would continue to overlap

the middle portion of the header. Futhermore, a longer string would also overlap

the right portion of the header.

Any hard returns placed in a string are respected. For example, you could avoid

overlapping the other sections of the header by using the same string with hard

returns, as shown:

 This form is for

 demonstration purposes

 only. Do not distribute.

If a string is wider than the form, it is truncated appropriately. For example, a

string that starts on the left edge of the form is truncated once it reaches the right

edge of the form, and vice versa. If a string starts in the middle of the form, it is

truncated on both the left and right edges.

Setting the PrintSettings Option

When using the Header/Footer functions, you must include two additional arrays

in the printsettings option for the form. The printsettings option should be

configured as follows:

 <printsettings>

 <pages>page list</pages>

 <dialog>dialog settings</dialog>

 <header>header information</header>

 <footer>footer information</footer>

 </printsettings>

The header and footer information are themselves arrays, and should look like this:

 <header>

 <left>left text</left>

 <center>center text</center>

 <right>right text</right>

 </header>

Introduction to the Viewer Functions 11

All text can be set as normal, using strings, computes, or functions to determine

what the text should be.

For more information on configuring the page list and dialog settings, refer to the

XFDL Specification.

Pages vs. Sheets

Forms often contain multiple pages. These pages are just like the pages of a paper

form - you complete one page at a time, and ″flip″ between the pages (usually

with a next or previous page button) while completing the form.

However, when a form is printed, sometimes a single page of the form will be too

large to fit on one piece of paper. Since there is no limit to the space you can take

up on the computer screen, some form pages may in fact cover many pieces of

paper when printed. To make the distinction between a ″form page″ and the

″number of pieces of paper″ more clear, we call the pieces of paper ″sheets.″ So, if

the first page of a form prints on three pieces of paper, we say that the page covers

three sheets.

This distinction is important for numbering, since the Header/Footer functions

allow you to number both pages and sheets when printing your form.

Calls

The Header/Footer functions are a series of calls that return text-based

information. These function calls are listed and described below.

 Function Description

printTime() Prints the current time from your computer’s system clock. The

time is formatted using a 12-hour clock as HH:MM AM/PM. For

example, 3:00 PM.

printDate() Prints the current date from your computer’s system clock. Dates

are formatted as MMM DD YYYY. For example, Aug 24 1999.

printFormPage() Prints the page number of the page currently being printed.

Numbering begins from the first page of the form, and includes

all pages regardless of whether they are being printed.

For example, if the third page of the form was being printed, the

number 3 would be printed on the third page. This would be

true even if page 1 was not printed.

Notice that pages with multiple sheets will have the same

number on each sheet.

12

Function Description

printActualFormPage() Prints the page number of the page currently being printed.

Numbering begins from the first page being printed, and does

not include pages not being printed.

For example, if the third page of the form was being printed, but

pages 1-2 were not, the number 1 would be printed on the third

page.

Pages with multiple sheets will have the same number on each

sheet.

printTotalFormPages() Prints the total number of pages in the form. Numbering begins

from the first page of the form, and includes all pages regardless

of whether they are being printed.

For example, if a form that contained 3 pages was being printed,

then the total number of pages would be 3. This would be true

even if page 1 was not being printed.

Note that the total page count is not affected by the number of

sheets any page may print on. For example, if a three page form

prints on four sheets, the page count is still three.

printActualTotal

FormPages()

Prints the total number of pages being printed. Numbering

begins with the first page being printed, and does not include

pages not being printed.

For example, if a form that contained 3 pages was being printed,

but page 1 was not being printed, then the total number of pages

would be 2.

Note that the total page count is not affected by the number of

sheets any page may print on. For example, if two pages of the

form printed on three sheets, the page count would still be two.

Introduction to the Viewer Functions 13

Function Description

printSheet() Prints the sheet number of the form currently being printed. Each

piece of paper used in printing is one ″sheet,″ and numbering

begins with the first piece of paper used to print the form.

For example, if a form printed page one on one sheet of paper,

page two on two sheets of paper, and page three on one sheet of

paper, the sheets would be numbered 1 through 4.

If a page is not printed, the sheet count does not include that

page. For example, if page one in the example above were not

printed, the other sheets would be numbered 1, 2, and 3

respectively.

printPageSheet() Prints the sheet number of the page currently being printed. Each

piece of paper used in printing is one ″sheet.″ In this case,

numbering begins with the first sheet used to print the current

page.

For example, if a form printed page two on two pieces of paper,

then the numbers of those pieces of paper would be 1 and 2

respectively.

printTotalPage Sheets() Prints the total number of sheets necessary to print the current

page. Each piece of paper used in printing is one ″sheet.″ In this

case, numbering begins with the first sheet used to print the

current page.

For example, if a form printed page two on two pieces of paper,

then the number 2 would be printed on both sheets.

Parameters

None of these functions take parameters.

Returns

Each function returns a number or a string, depending on the specific function. See

the ″Call″ section above for more information.

14

Example

The following example uses the printdate and printtime functions to add date and

time information to the header of the form. The printformpage and printsheet

functions are also used to number the pages and sheets in the footer.

 <printsettings>

 <pages>page list</pages>

 <dialog>dialog settings</dialog>

 <header>

 <left>DRAFT</left>

 <center compute="’Printed on ’ +. viewer.printDate()

 +. ’at’ +. viewer.printTime()"></center>

 <right>DRAFT</right>

 </header>

 <footer>

 <center compute="’Page Number ’ +. viewer.printFormPage()"

 ></center>

 <right compute="’Sheet Number ’ +. viewer.printSheet()"></right>

 </footer>

 </printsettings>

On the printed form, the header and footer would look like this:

measureHeight

This function calculates how tall an item would have to be to display all of its text.

This calculation is based on the current width of the item. For example, when

using a monospace font, if a field with a width of 60 characters contained 150

characters of text, the field would have to be 3 lines tall to display all of the text.

This function should be used as part of a size or itemlocation option, and allows

items to be dynamically sized based on the amount of text in those items. The

measureHeight function must be used in conjunction with the toggle function (see

the XFDL Specification for more information on the toggle function). When the user

moves out of a field that is sized by the measureHeight function, the field’s height

will be updated automatically.

Measuring Height in Pixels

Pixel values for height should be used to set the third element of the ″extent″ array

in the itemlocation option. For example:

 <itemlocation>

 <x>10</x>

 <y>10</y>

 <width>300</width>

Introduction to the Viewer Functions 15

<height compute="(toggle(value) == ’1’) and

 (viewer.measureHeight(’pixels’) > ’22’) ?

 viewer.measureHeight(’pixels’) : ’22’"></height>

 </itemlocation>

Using the itemlocation option to set the height of the item allows an exact fit,

regardless of the font or font size of the text displayed.

Measuring Height in Characters

Character values for height should be used to set the second element of the size

option. For example:

 <size>

 <width>60</width>

 <height compute="(toggle(value) == ’1’) ?

 viewer.measureHeight(’chars’) : ’1’"></height>

 </size>

Using the size option to set the height of an item does not always allow for an

exact fit. In some cases the item may be slightly larger than the text displayed,

depending on the font and font size used.

Call

measureHeight(units, [item])

Parameters

 Expression Setting Description

units string Either chars or pixels, depending on which unit you want to

use for measurement.

item reference

string

Optional. A reference to the item you want to measure. If no

item is specified, the item containing the measureHeight

function will be measured.

scrollvert string Optional. Determines whether a scollbar should be taken into

consideration when measuring the height of a field. Used only

if you have a dynamically-added vertical scrollbar that only

appears when the field has the focus. If this parameter is used,

its setting must be always.

Returns

Returns a number representing the height in lines or pixels.

Usage Details

1. You must use the event model to trigger the measureHeight function. This

means you must use the toggle function, keypress, mouseover, or some other

event. If you want measureHeight to run when the form opens, toggle the

function off of the value of the global.global.activated option. This option will

switch to on when the form is opened.

2. The measureHeight function should only be used with field, label, or box.

16

Example

The following example uses the measureHeight function to set the height of a field

in characters:

 <field sid = "description_FIELD">

 <scrollhoriz>wordwrap</scrollhoriz>

 <scrollvert>always</scrollvert>

 <size>

 <width>60</width>

 <height compute="(toggle(value) == ’1’) ?

 viewer.measureHeight(’chars’) : ’1’"></height>

 </size>

 <value></value>

 </field>

The following example uses the measureHeight function to set the height of a field

in pixels:

 <field sid = "description_FIELD">

 <scrollhoriz>wordwrap</scrollhoriz>

 <scrollvert>always</scrollvert>

 <value></value>

 <itemlocation>

 <x>10</x>

 <y>10</y>

 <width>300</width>

 <height compute="(toggle(value) == ’1’) and

 (viewer.measureHeight(’pixels’) > ’22’) ?

 viewer.measureHeight(’pixels’) : ’22’"></height>

 </itemlocation>

 </field>

Note: In this example, the value ’22’ is the height (in pixels) that the field will

default to when it is empty. This value must be determined based on the

font size used and how many blank lines of text you want to show when

the field is empty.

messageBox

This function displays a message box that prompts the user. There are two types of

message boxes that can be displayed:

1. An OK box, that prompts the user to acknowledge a message by pressing OK.

2. A QUESTION box, that prompts the user to answer Yes or No to a question.

In each case, the message box will display a specified title and message. The

message box will return a value based on the user’s response.

Call

messageBox(message, [caption, messagetype])

Parameters

 Expression Setting Description

message string Contains the message to display in the main portion of the

message box.

caption string Contains the caption to display in the title bar of the message

box.

Introduction to the Viewer Functions 17

Expression Setting Description

messagetype message

box type

Specifies whether the message box is an OK or a QUESTION

box. If the type is OK, then the box will contain an OK button.

If the type is QUESTION, then the box will contain a Yes

button and a No button. The default type is OK.

Returns

1 if the user selects an OK button.

1 if the user selects a Yes button.

0 if the user selects a No button.

Example

This example uses an action to open a message box when the form opens. The

message box asks the user if they want to close the form.

 <action sid = "cancel_form">

 <custom:message_display xfdl:compute="viewer.messageBox(

 ’Do you want to close this form?’, ’Just Checking’,

 ’QUESTION’)"></custom:message_display>

 <active compute="cancel_form.message_display == ’1’ ?

 ’on’ : ’off’"></active>

 <type>cancel</type>

 <delay>

 <repeat>once</repeat>

 <interval>0</interval>

 </delay>

 </action>

If the user clicks ″No″, the messageBox function returns a value of ″0″. The compute

on the active option of the cancel_form action then evaluates to false, and the

active option of cancel_form is set to off, so the form opens as normal. If the user

clicks ″Yes″, the value returned by the function is 1, and the action’s active option

is set to on, closing the form.

param

The param function allows you to call one of several name attributes of the HTML

param element. It returns the value of the specified name attribute’s associated value

attribute. This function is only valid if the Viewer is embedded in an HTML page.

Call

param(name)

18

Parameters

 Expression Setting Description

name string The value of the name attribute in the HTML param element. They

are:

v XFDLID

v TTL

v detach_id

v refresh_URL

v retain_viewer

v portlet_URL

v instance_1... instance_n

For more information regarding these properties, see the “Usage

Details” section below.

Returns

The value of the HTML param element’s value attribute.

Usage Details

The HTML object element is used to embed XFDL forms inside HTML pages. The

HTML param element consists of name and value attributes that have no meaning in

HTML. However the properties of the name and value attributes determine the

Viewer’s behavior when embedded in an HTML page. The Viewer function param

returns the value of the param element’s value attribute for use in XFDL computes.

To do this, it must call the relevant attribute property by name to retrieve its value.

These properties are:

v XFDLID — Returns the ID of the tag that contains the form information.

v TTL — Returns the length of time the detached form will live before being

destroyed automatically. Value given in seconds. For example, 60.

v detach_id — Returns the unique ID of the form instance. Used in successive

objects to allow the form to be reattached and updated.

v refresh_URL — Returns the URL called to reload the XFDL form if the detach_id

has timed out.

v retain_viewer — Returns either off or on, depending on whether the Viewer

remains available after completing replace or done actions. If retain_viewer is off,

the Viewer closes after completing either action. If it is on, the Viewer remains

available for further use, such as to retain form data after a submission.

v portlet_URL — Returns the URL of the portlet.

v instance_1... instance_n — Returns information regarding the XML data inside

the HTML document that will replace or be appended to a specific XML instance

inside the XFDL form. This includes:

– The ID of the new instance.

– The ID of the form instance.

Two additional values may also be returned:

– Either replace or append, depending upon whether the new instance data

replaces or adds to the original instance data. Note that replace is the default

value.

Introduction to the Viewer Functions 19

– The reference within the instance that indicates where the new data should be

placed. Note that any namespaces listed in this value resolve relative to the

document root.

Note: You must use the event model to trigger the param function. This means you

must use the toggle function, keypress, mouseover, or some other event. If

you want param to run when the form opens, toggle the function off of the

value of the global.global.activated option. This option will switch to on when

the form is opened.

Example

In the following example, when a user selects BUTTON1, param returns the

XFDLID value to FIELD3:

 <field sid="FIELD3">

 <itemlocation>

 <x>17</x>

 <y>25</y>

 <width>48</width>

 <height>397</height>

 </itemlocation>

 <value compute="toggle(BUTTON1.activated, ’off’, ’on’) ==

 ’1’ ? viewer.param(’XFDLID’) : value"></value>

 </field>

setCursor

The setCursor function has two uses:

1. To place the cursor at a specific location in a field.

2. To highlight a specific section of text in a field.

This function is useful when you want the user to start typing after some

information that is already in a field, or when you want the user to replace a

specific section of text.

Call

setCursor(startValue, [endValue])

Parameters

 Expression Setting Description

startValue integer The start position of the cursor within a field.

endValue integer The end position of the highlighted text within a field.

Returns

1 if function is successful

0 if errors occur

Usage Details

1. If both parameters have the same value, the cursor is placed at the location

indicated (since both parameters indicate the same location).

20

2. If the endvalue is less than startvalue, the second parameter is ignored and the

cursor is placed at the location indicated by the first parameter.

3. If the endvalue is greater than the length of the field, all of the text and white

space (such as spaces) in the field, from the location indicated by the first

parameter to the end of the field, is highlighted.

Example

In this example, when the user tabs into the field, the word ″shall″ will be

highlighted. Note that setCursor must be used in conjunction with the toggle

function (see the XFDL Specification for more information about the toggle function).

 <field sid = "FIELD1">

 <label>Set Cursor Field</label>

 <custom:set_cursor xfdl:compute="toggle(focused, ’off’, ’on’)

 == ’1’ ? viewer.setCursor(’6’, ’10’) : ’’"></custom:set_cursor>

 <value>What shall we do with the drunken sailor?</value>

 </field>

setDefaultFilename

The Viewer maintains a default filename for all open forms, unless they are

temporary files. In general, a form will be considered temporary if it is passed to

the Viewer by the web browser. For example, a form passed to the Viewer in

response to a web transaction would be a temporary file. Temporary files have no

default filenames.

Calling setDefaultFilename changes the default filename to a specified value.

This can be useful if you are using the same form many times, and you want to

uniquely identify each copy of the form based on who completed it and when it

was filled out. For example, you might create a new filename based on the user

name and the date.

Call

setDefaultFilename(Filename)

Parameters

 Expression Setting Description

Filename string The new default filename for the form. This string should not

include path information.

Returns

Nothing.

Usage Details

1. You must use the event model to trigger the setDefaultFilename function. This

means you must use the toggle function, keypress, mouseover, or some other

event. If you want setDefaultFilename to run when the form opens, toggle the

function off of the value of the global.global.activated option. This option will

switch to on when the form is opened.

Introduction to the Viewer Functions 21

Example

In this example, setDefaultFilename is used when the save button is clicked. Note

that this example also uses the toggle function (see the XFDL Specification for more

information about the toggle function).

 <button sid = "save_BUTTON">

 <value>Save</value>

 <custom:filenameSet_Option xfdl:compute="toggle

 (save_BUTTON.activated) == ’1’ ? viewer.setDefaultFilename(

 ’myform’ +. date()) : ’’"></custom:filenameSet_Option>

 <type>saveform</type>

 </button>

When the button is clicked, the default filename is set to be ″myform<date>″. For

example, if the form was saved on September 13, 1999, the filename would be set

to ″myform19990913″.

setHelpMode

The Viewer has a help mode that is entered when the user clicks the appropriate

icon on the Viewer’s toolbar. While the help mode is active, help messages that

have been added to the form are displayed for the user as tool tips.

Calling setHelpMode will set the Viewer’s help mode to either on or off.

Note: Help mode can only be set to on if the page currently being displayed

contains help items. If there is no help available in the current page, then

help mode cannot be initialized.

Call

setHelpMode(helpModeSetting)

Parameters

 Expression Setting Description

helpModeSetting string The status the help mode should be set to. Valid

settings are on or off.

Returns

Nothing.

Example

The following example creates a button that will turn the help mode on when

clicked. Note that this example also uses the toggle function (see the XFDL

Specification for more information about the toggle function).

 <button sid = "help_mode_BUTTON">

 <value>Help Mode</value>

 <custom:mode_OPTION xfdl:compute="toggle

 (help_mode_BUTTON.activated)== ’1’ ?

 viewer.setHelpMode("on") : ’’"></custom:mode_OPTION>

 </button>

22

showCalendar

Calling this function displays a calendar widget on the form. The calendar pops up

from the item containing the showCalendar function, in the same way a list pops up

from a popup item. The user can then select a date from the widget, which is

returned by the function.

Note: You cannot call showCalendar from an action, cell, or spacer item.

Call

showCalendar([date], [formatNode])

Parameters

 Expression Setting Description

date string Optional. A date. This sets the default date for the widget, which is

the date the widget shows when it first opens. If no date is

provided, the widget defaults to the current date.

Note that this date is interpreted based on the user preferences set

for the Viewer. To ensure that the date is not misinterpreted, use a

long format that leaves no room for error, such as: March 24, 2004.

formatNode string Optional. A reference to a format option in the form. This option is

used to interpret the date in the date parameter. This is important

for dates that are ambiguous. For example, in 2004 02 02 it isn’t

obvious which number is the month and which number is the day.

If this option is not set, the function uses the date setting in the

Viewer preferences to interpret the date. However, if the date that

you are provide is not in long format, it is strongly recommended

that you provide a formatNode.

Returns

The date selected by the user. The date is formatted according to the user

preferences set for the Viewer.

Usage Details

You must use the event model to trigger the showCalendar function. This means

you must use the toggle function, keypress, mouseover, or some other event. If you

want showCalendar to run when the form opens, toggle the function off of the

value of the global.global.activated option. This option will switch to on when the

form is opened.

Example

The following example shows a field and a button. The field’s value option

contains a showCalendar function that is triggered when the user clicks the button.

In this case, the calendar appears connected to the field, and opens the calendar to

the current date. The function then returns the date chosen by the user, which

populates the value option.

 <button sid="calendarButton">

 <value>Set Date</value>

 </button>

Introduction to the Viewer Functions 23

<field sid="dateField">

 <value compute="toggle(calendarButton.activated) == ’1’ ?

 viewer.showCalendar() : ’’"></value>

 </field>

The next example again shows a field and a button. In this case, the button

contains a custom option with a compute that opens the calendar widget when the

user clicks the button. In this case, the calendar appears connected to the button.

Notice that the compute also uses a set function to set the return value of the

showCalendar function into the field’s value option.

 <button sid="calendarButton">

 <value>Set Date</value>

 <custom:calendar xfdl:compute="

 toggle(calendarButton.activated) == ’1’ ?

 (set(’dateField.value’, viewer.showCalendar())) :

 ’’"></custom:calendar>

 </button>

 <field sid="dateField">

 <value></value>

 </field>

By using the set function (rather than creating a compute in the field’s value option

that copies the custom option) you ensure that the user can also type a date

directly into the field if that is desired.

24

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003, 2006 25

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Office 4360

One Rogers Street

Cambridge, MA 02142

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

AIX

IBM

Workplace

Workplace Forms

Other company, product, or service names may be trademarks or service marks of

others.

26

����

Program Number:

Printed in USA

S325-2609-00

	Contents
	Introduction to the Viewer Functions
	Calling a Function in XFDL
	Document Conventions
	About Parameters
	Reference Strings

	addressBook
	env
	fileOpen
	fileSave
	getDefaultFilename
	getHeight
	getHelpMode
	getWidth
	getX
	getY
	Header/Footer Functions
	measureHeight
	messageBox
	param
	setCursor
	setDefaultFilename
	setHelpMode
	showCalendar

	Appendix. Notices
	Trademarks

