
IBM® Workplace Forms™

Using the XML Data Model

Version 2.6.1

S325-2608-00

���

Note

Before using this information and the product it supports, read the information in “Notices,” on page 51.

First Edition (September 2006)

This edition applies to version 2.6.1 of IBM Workplace Forms and to all subsequent releases and modifications until

otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2003, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Introduction 1

Who Should Read this Document 1

About the XML Data Model 1

XFDL: Combining Presentation and Data 1

XML: A Common Language for Interoperability . 1

The XML Data Model: Grouping Data for

Interoperability 2

Validating the XML Data Model Against Schema . 2

Smartfill and the XML Data Model 3

When to Use the XML Data Model 3

Overview of the XML Data Model 5

The Core of the XML Data Model 5

Schema Validation in the XML Data Model 6

Data Fragment Definitions in the XML Data Model . 6

Creating An XML Data Model 7

Declaring the XML Data Model 7

Creating a Data Instance 8

Naming a Data Instance 8

Defining Namespaces for an Instance 9

Binding the Elements of a Data Instance 10

Setting the First Element to Bind 10

Setting Which Data Instance Contains the First

Element 12

Setting the Second Element to Bind 12

Example of a Complete Bind 13

Binding Computed Elements 13

Binding Lists, Popups, and Radio Buttons . . . 14

Binding Radio Buttons 17

Reformatting Data With a Bind 20

Creating Submission Rules for an Instance 21

Naming the Submission Rules 21

Setting the Target URL for a Submission 21

Setting the Content Type of the Submission . . . 22

Setting Which Data is Submitted 22

Filtering Inherited Namespaces 23

Creating a Submission Button 25

Adding Schema Validation 27

Embedding a Schema in a Form 27

Naming a Schema 28

Registering Embedded Schemas 28

Registering External Schemas 28

Adding the xmlmodelValidate Function 29

Validating Data on Submission 29

Validating Data During Processing 30

Enabling Smartfill 31

Managing Smartfill Data 31

Creating a Data Fragment 32

Identifying a Data Fragment 32

Providing a Description for a Data Fragment . . 33

Defining the Contents of a Data Fragment . . . 33

Specifying Whether a Data Fragment is Active . 34

Example of a Complete Data Fragment 34

Working with Data Fragments 35

About Storage IDs 35

Activating Data Fragments 35

Sample XML Data Models 37

Core XML Data Model 37

Data Model with Schema Validation 38

Data Model with Smartfill 38

Filtering Submissions 41

Applying Transmit Filters to the XML Data Model 41

Filtering Rules 41

Filtering Lists, Popups, and Radio Buttons . . . 42

Using Computes with the XML Data

Model 45

Limitations To Using Computes 45

Updating the Data Model in Memory 45

Computes in Data Instances 46

How Computed Changes Affect Bindings 46

Creating and Destroying Bound Elements . . . 46

Creating and Destroying Bindings 47

Signing an XML Data Model 49

Appendix. Notices 51

Trademarks 52

Index 53

© Copyright IBM Corp. 2003, 2006 iii

iv

Introduction

The XML Data Model makes it easier to integrate XFDL forms with other

applications by:

v Separating the form data into a separate block of XML. This makes the data easy

to locate and parse within the form, while also allowing the data to conform to

any valid XML structure, such as that dictated by a schema.

v Enabling schema validation of data. This ensures that all data collected adheres

to a defined schema, thereby reducing input errors.

Additionally, you can use the XML Data Model to enable Smartfill functionality in

the Viewer, which can automatically complete portions of the form for the user.

This document explains what the XML Data Model does, and provides practical

instructions for using the data model.

Who Should Read this Document

This document is written for system integrators who want to use the XML Data

Model. This document assumes that the reader has a working knowledge of XML

and XFDL, as well as some programming experience and some familiarity with

XML Namespace.

About the XML Data Model

Before discussing the XML Data Model, it’s useful to review the structure of XFDL

as well as some of the goals of XML.

XFDL: Combining Presentation and Data

XFDL was engineered to combine a form’s presentation and data. For example, the

following field item embeds the user’s name, Tom Jones, in the value option:

 <field sid="nameField">

 <value>Tom Jones</value>

 </field>

By embedding the data in the form description, XFDL offers a number of strengths,

including non-repudiation and the ability to save the form to a single file.

However, embedded data can be inconvenient when integrating with other

applications. For example, typical XFDL integrations are built by developing a

module that reformats the data as it is passed back and forth. Unfortunately, this

may require significant custom programming for every integration.

XML: A Common Language for Interoperability

One of the goals of XML is to enable interoperation. Simply put, this means

making it easier for applications to work together.

For example, consider an application that processes purchase orders. A typical PO

system would receive a purchase order, then spend significant effort parsing the

© Copyright IBM Corp. 2003, 2006 1

PO and extracting the data before it began processing. In fact, extracting the data

from the PO is often a complicated process that requires a good deal of custom

programming.

However, with XML the PO application can be designed to accept a set of XML

data that is defined by a schema. Furthermore, if the PO is XML-based, it can be

designed to encapsulate this data in a single block of XML that conforms to the

schema. This makes the submission process easier, since the PO system can quickly

retrieve the block of XML from the form and begin processing almost immediately.

In fact, extracting the data from the form can be as simple as a single line

command, which greatly reduces the scope of work necessary for integration.

The XML Data Model: Grouping Data for Interoperability

Although XFDL is an XML syntax, it has not provided the ability to easily group

data into blocks that would support interoperability. The XML Data Model

addresses this problem by allowing form developers to create separate data sets

within an XFDL form and to share data between those data sets and regular form

elements.

Essentially, the XML Data Model is a block of XML that is placed at the beginning

of a form, within the global page’s global item, as shown:

 <globalpage sid="global">

 <global sid="global">

 <xmlmodel>

 ... XML Data Model ...

 </xmlmodel>

 </global>

 </globalpage>

This block of XML allows for arbitrary data, meaning that it can contain any data

and can be formatted in any manner. Furthermore, individual elements in the data

model can be bound to one or more elements in the form description. This binding

causes the elements to share data. If one element is changed, the other elements

are updated to mirror that change.

This allows you to create a separate block of data within the form, format it any

way you like, and bind it to form elements so that data entered by the user is

automatically copied to the data model. For example, you could include the block

of data that is required by an application (such as a PO system), format the data so

that it complies with a specific schema, and then bind that data model to the form

description.

The result is a block of XML data that can be structured to meet any needs,

extracted easily by other applications, and transmitted without the rest of the form.

Validating the XML Data Model Against Schema

Once you have created an XML Data Model, you can associate that model with

one or more schema. This allows you to validate the data in the model against any

XML schema. Furthermore, you can embed the schema in the form itself, or link to

an external schema file.

2

Smartfill and the XML Data Model

The Viewer’s Smartfill feature helps user to complete forms by automatically

completing certain sections of the form, such as address information. This feature

is enabled through the XML Data Model, which defines the Smartfill information

and links it to the body of the form.

While working with a Smartfill enabled form, Smartfill data is also stored on the

user’s computer as data fragments. These fragments contain the information that the

user has entered in the past, and are automatically loaded into forms that make

use of the Smartfill feature.

When to Use the XML Data Model

You can use the XML Data Model in any of the following scenarios:

XML Applications — The XML Data Model is most useful when integrating

eforms with applications that already use XML, especially if those applications

already offer XML interfaces. In these cases, you can design forms that will submit

the XML data directly to the application, and will not need to program a custom

module that extracts the data from the form. Furthermore, you can format the data

to match any schema, and validate the data against the schema before submission.

Non-XML Applications — Even if an application does not use XML, you can still

benefit from using the XML Data Model. The data model simplifies copying

information from one page to another, making wizard-style forms easier to create

and manage. Furthermore, although custom programming is still required for

back-end processing, the data model makes it far easier to extract data from the

form.

Automatic Form Completion — If a form requires users to repeatedly enter the

same information, such as, their name and contact information, you can set up the

form to use Smartfill. Smartfill can automate portions of form completion by

capturing frequently used information and giving the user the option to

automatically load that information while they are completing a form.

Introduction 3

4

Overview of the XML Data Model

The XML Data Model serves several purposes. Its core function is to provide a way

to achieve interoperability with other applications. In addition, it provides schema

validation capabilities, and allows you to enable the Viewer’s Smartfill feature,

which can automatically complete portions of the form for the user.

The Core of the XML Data Model

The XML Data Model contains three core parts that work together to create a

complete model:

v Data Instances — Data instances are arbitrary blocks of XML. A data model

may contain any number of data instances, and each instance is normally

created to serve a particular purpose. For example, if your form provides data to

both an accounting application and a shipping application, you may want to

create two data instances - one for each application.

v Bindings — Each data instance has associated bindings. Bindings tie one

element in the data instance to one or more elements in the form description.

For example, if a form had a firstName field on both the first and second pages,

you might bind the firstName element in your data instance to both fields. Once

this is done, all three elements will share data, meaning that if one element is

changed the other two elements are updated to mirror that change.

v Submission Rules — Each data instance may have an associated set of

submission rules. These rules control how a data instance is transmitted when it is

submitted for processing. This is an optional feature, and is only necessary when

you want to submit the data instance by itself, without the rest of the form.

There are many cases in which you may want to submit the entire form, and

then retrieve the data instance from the form during processing. This is

particularly true when you are using signatures on your forms.

Each of the three parts is contained by its own tags within the <xmlmodel> tag,

which is itself contained by the global page’s global item, as shown:

 <globalpage sid="global">

 <global sid="global">

 <xmlmodel>

 <instances>

 ... all data instances ...

 </instances>

 <bindings>

 ... all bindings ...

 </bindings>

 <submissions>

 ... all submission rules ...

 </submissions>

 </xmlmodel>

 </global>

 </globalpage>

© Copyright IBM Corp. 2003, 2006 5

Schema Validation in the XML Data Model

As we have seen, the core of the data model consists of data instances, their

bindings and submission rules. In addition, the data model can reference one or

more schemas, which allow you to validate data instances against them. A schema

can be embedded in the form by including a <schemas> tag in the data model, as

shown:

 <globalpage sid="global">

 <global sid="global">

 <xmlmodel>

 <schemas>

 ...schemas...

 </schemas>

 </xmlmodel>

 </global>

 </globalpage>

Data Fragment Definitions in the XML Data Model

A data fragment definition specifies what data from a specific data instance can be

stored in a data fragment on a user’s local computer. Data fragments are intended

to simplify the completing of forms, by capturing information that is frequently

entered on forms and storing it on the user’s computer for future use. For

complete information about this feature, see ″Enabling Smartfill″.

 <globalpage sid="global">

 <global sid="global">

 <xmlmodel>

 <instances>

 ...all data instances....

 </instances

 <bindings

 ...all bindings....

 </bindings>

 <submissions>

 ...all submissions....

 </submissions>

 <datafragments>

 ...all datafragments...

 </datafragments>

 </xmlmodel>

 </global>

 </globalpage>

6

Creating An XML Data Model

When creating an XML Data Model, it’s a good idea to create your data instances

one at a time, and to set up the bindings and submission rules for that instance

before moving on to the next data instance. This helps to avoid confusion.

To create an XML Data Model, you must:

v Declare the XML Data Model in the form.

v Create a data instance.

v Bind the elements of the data instance.

v Set up submission rules for the instance (optional).

v Create a submission button for the instance (optional).

Declaring the XML Data Model

The data model is always declared as an option in the global item of a form’s

global page, and begins with the <xmlmodel> tag, as shown:

 <globalpage sid="global">

 <global sid="global">

 <xmlmodel>

 </xmlmodel>

 </global>

 </globalpage>

The <xmlmodel> tag normally includes a definition of the XForms namespace.

This definition is necessary because most data instances begin with a tag in the

XForms namespace, as you will see later in this document.

To define a namespace, you use the xmlns attribute. This attribute assigns the

unique URI for the namespace to a prefix, as shown:

 xmlns:prefix="namespace URI"

By convention, the XForms prefix is xforms, and the XForms namespace is defined

by the following URI:

 http://www.w3.org/2003/xforms

Substituting these values, you get the following xmlns attribute:

 xmlns:xforms="http://www.w3.org/2003/xforms"

This attribute is added to the <xmlmodel> tag, as shown:

 <globalpage sid="global">

 <global sid="global">

 <xmlmodel xmlns:xforms="http://www.w3.org/2003/xforms">

 </xmlmodel>

 </global>

 </globalpage>

Once you have declared the data model in your form, you can add data instances,

bindings, and submission rules.

© Copyright IBM Corp. 2003, 2006 7

Creating a Data Instance

Each data instance is inserted within an <instances> tag in the XML model, as

shown:

 <xmlmodel xmlns:xforms="http://www.w3.org/2003/xforms">

 <instances>

 ... all data instances ...

 </instances>

 </xmlmodel>

Each instance is created within an arbitrary tag. This tag is simply a placeholder

for the data instance, but may also provide meaning in other contexts. For

example, in this case we’ll use an <xforms:instance> tag. This tag indicates that the

data instance conforms to the XForms definition of a data instance. The following

example shows a data model with two data instances:

 <xmlmodel xmlns:xforms="http://www.w3.org/2003/xforms">

 <instances>

 <xforms:instance>

 ... data instance 1 ...

 </xforms:instance>

 <xforms:instance>

 ... data instance 2 ...

 </xforms:instance>

 </instances>

 </xmlmodel>

Each <xforms:instance> tag contains a data instance. Each data instance must be

well-formed XML, meaning that it must have a single root element. You should

give the root element a meaningful name that reflects the content of the instance.

For example, you might use a <customerData> element to begin an instance that

contains customer data, as shown:

 <xforms:instance>

 <customerData>

 ... customer data ...

 </customerData>

 <xforms:instance>

Your data instance can contain any valid XML. For example, for customer data you

might include the customer’s first name, last name, and address. In this case, your

data instance might look like this:

 <xforms:instance>

 <customerData>

 <firstName></firstName>

 <lastName></lastName>

 <address></address>

 </customerData>

 </xforms:instance>

Instance data is not processed by XFDL parsers, such as Workplace Forms™ Viewer

and Designer, and can follow any format necessary. This gives you the freedom to

create data models that match defined schemas or other formats. However, this

also means that computes do not work when placed within a data instance (for

more information, see ″Using Computes with the XML Data Model″).

Naming a Data Instance

If you have more than one data instance in your form, you must name each

instance. You can do this by adding an id attribute to the <xforms:instance> tag of

your data instance. The id attribute follows this format:

8

id="name"

For example, if you wanted give the name customer to the customer data instance,

you would use the following tag to begin the data instance:

 <xforms:instance id="customer">

Defining Namespaces for an Instance

You can also use the <xforms:instance> tag to define:

v The default namespace for the data instance.

v Any other namespace prefixes you want to use in the instance.

For example, if you were creating an XBRL instance, you might set the default

namespace of the data instance to match the XBRL namespace.

Defining the Default Namespace

To define the default namespace, you must add an xmlns attribute to the

<xforms:instance> tag. The xmlns attribute is assigned the URI that defines the

namespace, as shown:

 xmlns="namespace URI"

For example, if you wanted to place an instance in your company’s Human

Resources namespace, the <xforms:instance> tag of our customer data might look

like this:

 <xforms:instance xmlns="http://www.mycompany.com/namespaces/HR">

When you set the default namespace for an element, both the opening element and

all children of that element are placed in that namespace.

Defining and Using Other Namespaces

You may also want to create a namespace that you use selectively. For example,

you might have a data instance that should be in your company’s general

namespace, except for two elements that should be in the Human Resources

namespace. In this case, you would assign the Human Resources namespace to a

prefix, and then use that prefix to tag specific data elements.

When defining other namespaces to use, it’s best to declare them on the

<xmlmodel> tag. This makes them available to the entire data model. You use the

xmlns attribute to assign the unique URI for the namespace to a namespace prefix,

as shown:

 xmlns:prefix="namespace URI"

For example, the following tag creates an hr prefix for a Human Resources

namespace:

 <xmlmodel xmlns:hr="http://www.mycompany.com/namespaces/HR">

You can now add the prefix to any tag within the data instance to indicate that the

tag belongs to the Human Resources namespace, as shown:

 prefix:tag

For example, if you wanted the first name and last name in our customer data to

belong to the Human Resources namespace, you would write:

Creating An XML Data Model 9

<purchaseOrderData>

 <hr:firstName></hr:firstName>

 <hr:lastName></hr:lastName>

 <address></address>

 </purchaseOrderData>

In this case, both the first and last name are in the Human Resources namespace,

but the street is not since it has no prefix. Also, notice that each closing tag must

also include the prefix.

Binding the Elements of a Data Instance

Setting the First Element to Bind

The first bound element must be part of a data instance, and is identified by

enclosing a reference to it in a <ref> tag, as shown:

 <bind>

 <ref>reference</ref>

 </bind>

The reference to the element is written as a standard array reference that starts at

the <xforms:instance> tag. In this case, array references use brackets to enclose

each level of depth. For example:

 [Level1][Level2][Level3]

Furthermore, the brackets can contain either a zero-based index to the element, or

the name of the element’s tag if it is unique within the scope of its parent.

Consider the following data instance for a customer:

 <xforms:instance>

 <customerData>

 <firstName></firstName>

 <lastName></lastName>

 <address> </address>

 </customerData>

 </xforms:instance>

To refer to the customerData element, you could use either of these references:

 [customerData]

 [0]

To refer to elements at a greater depth, such as the address element, you simply

add the next level of depth, as shown in the following references:

 [customerData][address]

 [0][2]

Once you have determined the correct reference, include it in the <ref> tag as

shown:

 <bind>

 <ref>[customerData][address]</ref>

 </bind>

Referencing an Attribute in the Data Instance

In some cases, you may need to reference an attribute in the data instance rather

than an element. To do this, use the following notation in your reference:

 [element]@attribute

10

For example, consider the following data instance:

 <xforms:instance>

 <customerData>

 <firstName></firstName>

 <lastName></lastName>

 <address street="" city="" country=""></address>

 </customerData>

 </xforms:instance>

In this case, the address element stores the street, city, and country in attributes. To

refer to the street attribute, you would use the following reference:

 <bind>

 <ref>[customerData][address]@street</ref>

 </bind>

Using Namespaces in Element References

References assume that you are working in the XFDL namespace. To refer to an

element that is in another namespace you must include the appropriate namespace

prefix in your reference, as shown:

 [prefix:element]@prefix:attribute

An element might be in a non-XFDL namespace for two reasons. First, the default

namespace of the data instance may not be XFDL. Second, the element may have a

namespace prefix that places it in a non-XFDL namespace.

For example, in the following data instance a namespace prefix is used to place

some of the elements in the Human Resources namespace:

 <xforms:instance>

 <customerData>

 <hr:firstName></hr:firstName>

 <hr:lastName></hr:lastName>

 <address></address>

 </customerData>

 </xforms:instance>

In this case, to refer to the firstName element, you would use the following

reference:

 [customerData][hr:firstName]

Alternately, you can choose to add a namespace and prefix to the form that is in

the same namespace as the instances’s default namespace. You can then use that

prefix to reference those elements within the model as if they explicitly had that

prefix. For example, you could add the following to your root node

 xmlns:example="http://www.hr.com

Then, you could reference this namespace from your instance data:

 <xforms:instance>

 <customerData xmlns="http://www.hr.com>

 <firstName></firstName>

 <lastName></lastName>

 <address></address>

 </customerData>

 </xforms:instance>

You could then still reference the nodes in your instance using the prefix, even

though the prefix doesn’t appear with the nodes:

 global.global.xmlmodel[instances][0][hr:customerData][hr:firstName]

Creating An XML Data Model 11

Setting Which Data Instance Contains the First Element

By default, a bind assumes that the first bound element is part of the first data

instance in your form. However, if you have more than one data instance, you

must declare which data instance contains the bound element. To do this, enclose

the name of the data instance in an <instanceid> tag, as shown:

 <bind>

 <instanceid>name</instanceid>

 </bind>

The name of the data instance is defined by the id attribute in the

<xforms:instance> tag. For example, you might begin a customer data instance

with the following tag:

 <xforms:instance id="customer">

In this case, you would refer to the customer data instance as shown:

 <bind>

 <instanceid>customer</instanceid>

 </bind>

Setting the Second Element to Bind

The second bound element can be either part of the data model or an option in the

form description. You define this element by enclosing a reference to it in a

<boundoption> tag, as shown:

 <bind>

 <boundoption>reference</boundoption>

 </bind>

The reference is a standard XFDL reference, but is relative to the boundoption

element. This means that you must ensure your reference provides enough

information, such as the correct page, item, or option tag.

For example, consider the following form:

 <page sid="Page1">

 <field sid="firstNameField">

 <value>Tom</value>

 </field>

 </page>

To bind the value option of the field, you would use an absolute reference as

shown:

 <bind>

 <boundoption>Page1.firstNameField.value</boundoption>

 </bind>

Next, consider the following data instance:

 <globalpage sid="global>

 <global sid="global">

 <xmlmodel xmlns:xforms="http://www.w3.org/2003/xforms">

 <xforms:instance>

 <customerData>

 <firstName></firstName>

 <lastName></lastName>

 <address></address>

 </customerData>

 </xforms:instance>

12

To bind the firstName element of the instance, you would use an option level

reference, as shown:

 <bind>

 <boundoption>xmlmodel[0][customerData][firstName]</boundoption>

 </bind>

Note: Lists, popups, and radio buttons require special binding methods. For more

information, see ″Binding Lists, Popups, and Radio Buttons″.

Using Namespaces in Option References

In some cases, you may need to reference elements in the form description that are

not in the XFDL namespace. For example, you may use certain custom options to

store data in your form, and these options may be in the custom namespace.

When referring to form elements that are not in the XFDL namespace, you must

include the appropriate namespace prefix for each element in the reference. In a

reference including the page, item, and option, you would also include the

namespace prefix on option and array elements, as shown:

 page.item.prefix:option[prefix:element]...

Notice that the page and item elements do not require a namespace prefix. This is

because page and item reference refer to the sid of the element, not the local name.

For example, consider the following form:

 <page sid="Page1">

 <field sid="firstNameField">

 <value>Tom</value>

 <custom:userNumber>22</custom:userNumber>

 </field>

 </page>

Notice that the userNumber tag is at the option level, but is also in the custom

namespace. To reference this option, you must include the namespace as shown:

 Page1.firstNameField.custom:userNumber

Example of a Complete Bind

The following example shows a complete bind. In this case, the firstName element

in the customerData data instance is bound to the firstNameField on the first page of

the form:

 <bind>

 <instanceid>customer</instanceid>

 <ref>[customerData][firstName]</ref>

 <boundoption>Page1.firstNameField.value</boundoption>

 </bind>

Binding Computed Elements

In many cases, elements in your form will have computed values. For instance, a

purchase order might have a ″Total″ field. The value of this field might be

computed by adding the values in other fields.

In cases such as this, binding the computed value creates a one-way relationship.

Data is copied from the computed value to the data instance, but not the other

way around. This prevents computed values from being overwritten by inaccurate

values in the data instance.

Creating An XML Data Model 13

Binding Lists, Popups, and Radio Buttons

Lists, popups, and radio buttons are challenging to bind because they do not

contain the value that you normally want.

For example, lists contain the name of the cell that was selected, but in most cases

you want to know the value of the cell, not its name. If you bind to a list normally,

you might get a value of cell1 or cell2 instead of green or blue.

Similarly, radio buttons contain an on or off value, but in most cases what you

really want to know is which radio button is selected. Binding to radio buttons

directly not only gives you an on or off value, as opposed to greenRadio or

blueRadio, but also requires you to create extra elements in your data instance.

To solve this problem, you must add three custom elements to the form: a data

holder and two toggle elements. The data holder is bound to the data instance, so

that data is automatically copied between the data holder and the data instance.

The two toggle elements contains computes that transfer the data between the data

holder and the form description. This creates a three step process, in which data is

copied from the data instance, to the data holder, and then to the form description,

and vice versa:

Data
Instance

Data
Holder

Form
Description

From Data Model to Form Description

From Form Description to Data Model

Bind Compute

Bind Compute

This approach solves the problem in all cases. However, lists and popups require

different computes than radio buttons.

Binding Lists and Popups

To bind to a list or popup, you must create three elements in your form:

v A data holder.

v A toggle element that copies data from the list or popup to the data holder.

v A toggle element that copies data from the data holder to the list or popup.

Creating a Data Holder

The data holder is created in the <bind> element, and can have any name you like.

However, it cannot be in the XFDL namespace. You can use any namespace you

want for the data holder - in this case, we’ll use the custom namespace. For

example, if you had a popup that listed all of the states, your data holder would

hold the state the user chose. In this case, you might use the following tag:

 <custom:state>

14

You must also bind the data holder to your data instance. For example, consider

the following data instance:

 <xforms:instance id="customer">

 <customerData>

 <firstName></firstName>

 <lastName></lastName>

 <address>

 <street></street>

 <city></city>

 <state></state>

 </address>

 </customerData>

 </xforms:instance>

In this case, you would bind the <custom:state> data holder to the <state> element

in the data instance, as shown:

 <bind>

 <instanceid>customer</instanceid>

 <ref>[customerData][address][state]</ref>

 <boundoption>..[custom:state]</boundoption>

 <custom:state></custom:state>

 </bind>

Copying Data from the List or Popup to the Data Holder

To copy data from the list or popup to the data holder, you must create another

element that contains a compute. This element can be in any namespace and have

any name you like. In this case, we’ll use the custom namespace and call the

element toggle1, as shown:

 <bind>

 <custom:toggle1></custom:toggle1>

 </bind>

The toggle1 element’s compute is based on the toggle function, and follows this

algorithm:

1. Begin processing when the value of the popup changes (detected with the

toggle function).

2. Copy the value of the selected cell to the data holder (using the set function).

The compute looks like this:

 toggle(reference to list’s value option) == ’1’

 ? set(’reference to data holder’, dereference to cell’s value)

 : ’’

For example, if you had a popup named statePopup on the first page of the form

and your placeholder was named <custom:state>, your compute would look like

this:

 toggle(Page1.statePopup.value) == ’1’

 ? set(’..[custom:state]’, Page1.statePopup.value->value)

 : ’’

Placing this compute in a bind, it looks like this:

 <bind>

 <custom:toggle1

 xfdl:compute="toggle(Page1.statePopup.value) == ’1’

 ? set(’..[custom:state]’,

 Page1.statePopup.value->value)

 : ’’"></custom:toggle1>

 </bind>

Creating An XML Data Model 15

Copying Data from the Data Holder to the List or Popup

To copy data from the data holder to the list or popup, you must create another

element that contains a compute. This element can be in any namespace and have

any name you like. In this case, we’ll use the custom namespace and call the

element toggle2, as shown:

 <bind>

 <custom:toggle2></custom:toggle2>

 </bind>

The toggle2 element’s compute is based on the toggle function, and follows this

algorithm:

1. Begin processing when the value of the data holder changes (detected with the

toggle function).

2. Get the name of the cell that has a value equal to the data holder (using the

getGroupedItem function).

3. Set the value of the list to the name of the cell.

The compute looks like this:

 toggle(reference to data holder) == ’1’

 ? set(’reference to popup’s value’,

 getGroupedItem(reference to popup’s group, ’value’,

 reference to data holder,

 ’reference to page containing popup’, ’page’, ’form’))

 : ’’

For example, if you had a popup named statePopup on the first page of the form

and your placeholder was named <custom:state>, your compute would look like

this:

 toggle(..[custom:state]) == ’1’

 ? set(’Page1.statePopup.value’,

 getGroupedItem(Page1.statePopup.group, ’value’,

 ..[custom:state], ’Page1’, ’page’, ’form’))

 : ’’

Placing this compute in a bind, it looks like this:

 <bind>

 <custom:toggle2

 xfdl:compute="toggle(..[custom:state]) == ’1’

 ? set(’Page1.statePopup.value’,

 getGroupedItem(Page1.statePopup.group, ’value’,

 ..[custom:state], ’Page1’, ’page’, ’form’))

 : ’’"></custom:toggle2>

 </bind>

Example of a Complete Bind for Lists and Popups

Adding all of the elements together, including the data holder and toggle elements,

a complete bind looks like this:

 <bind>

 <instanceid>customer</instanceid>

 <ref>[customerData][address][state]</ref>

 <boundoption>..[custom:state]</boundoption>

 <custom:state></custom:state>

 <custom:toggle1

 xfdl:compute="toggle(Page1.statePopup.value) == ’1’

 ? set(’..[custom:state]’,

 Page1.statePopup.value->value)

 : ’’"></custom:toggle1>

16

<custom:toggle2

 xfdl:compute="toggle(..[custom:state]) == ’1’

 ? (..[custom:state) == ’’

 ? set(’Page1.statePopup.value’,

 getGroupedItem(Page1.statePopup.group, ’value’,

 ..[custom:state], ’Page1’, ’page’, ’form’))

 : ’’"></custom:toggle2>

 </bind>

Remember that this example assumes you have popup item named statePopup and

a corresponding element in your data instance named state.

Binding Radio Buttons

To bind to a group of radio buttons, you must create three elements in your form:

v A data holder.

v A toggle element that copies data from the radio buttons to the data holder.

v A toggle element that copies data from the data holder to the radio buttons.

Creating a Data Holder

The data holder is created in the <bind> element, and can have any name you like.

However, it cannot be in the XFDL namespace. You can use any namespace you

want for the data holder - in this case, we’ll use the custom namespace. For

example, if you had a group of radio buttons that selected the user’s citizenship,

your data holder would hold the name of the citizenship button the user selected.

In this case, you might use the following tag:

 <custom:citizenship>

You must also bind the data holder to your data instance. For example, consider

the following data instance:

 <xforms:instance id="customer">

 <customerData>

 <firstName></firstName>

 <lastName></lastName>

 <citizenship></citizenship>

 <address>

 <street></street>

 <city></city>

 <state></state>

 </address>

 </customerData>

 </xforms:instance>

In this case, you would bind the <custom:citizenship> data holder to the

<citizenship> element in the data instance, as shown:

 <bind>

 <instanceid>customer</instanceid>

 <ref>[customerData][citizenship]</ref>

 <boundoption>..[custom:citizenship]</boundoption>

 <custom:citizenship></custom:citizenship>

 </bind>

Copying Radio Name from Radio Buttons to the Data Holder

To copy data from the radio buttons to the data holder, you must create another

element that contains a compute. This element can be in any namespace and have

any name you like. In this case, we’ll use the custom namespace and call the

element toggle1, as shown:

Creating An XML Data Model 17

<bind>

 <custom:toggle1> </custom:toggle1>

 </bind>

The toggle1 element’s compute is based on the toggle function, and follows this

algorithm:

1. Begin processing when any of the radio buttons change value (detected with

toggle function).

2. Get the name of the radio button that is on (using the getGroupedItem function).

3. Set the name of the radio button to the data holder (using the set function).

Assuming that you had three radio buttons, the compute would look like this:

 toggle(reference to first radio button’s value, ’off’, ’on’) == ’1’ or

 toggle(reference to second radio button’s value, ’off’, ’on’) == ’1’ or

 toggle(reference to third radio button’s value, ’off’, ’on’) == ’1’

 ? set(’reference to data holder’,

 getGroupedItem(’reference to group’, ’value’, ’on’,

 ’reference to page containing group’, ’page’, ’page’))

 : ’’

Notice that each radio button has a separate toggle function. This causes the

compute to run when any of the radio buttons are changed. When writing this

compute, you must add a toggle for every radio button in your group. You add

each toggle with the or operator.

For example, if you had three radio buttons named citizenRadio,

landedImmigrantRadio, and otherRadio in a group called citizenship, and your data

holder was named <custom:citizenship>, your compute would look like this:

 toggle(Page1.citizenRadio.value) == ’1’ or

 toggle(Page1.landedImmigrantRadio.value, ’off’, ’on’) == ’1’ or

 toggle(Page1.otherRadio.value, ’off’, ’on’) == ’1’

 ? set(’..[custom:citizenship]’,

 getGroupedItem(’Page1.citizenship’, ’value’, ’on’,

 ’Page1’, ’page’, ’page’))

 : ’’

Placing this compute in a bind, it looks like this:

 <bind>

 <custom:toggle1

 xfdl:compute="toggle(Page1.citizenRadio.value) == ’1’

 or toggle(Page1.landedImmigrantRadio.value, ’off’,

 ’on’) == ’1’

 or toggle(Page1.otherRadio.value, ’off’, ’on’) == ’1’

 ? set(’..[custom:citizenship]’,

 getGroupedItem(’Page1.citizenship’, ’value’, ’on’,

 ’Page1’, ’page’, ’page’))

 : ’’"></custom:toggle1>

 </bind>

Copying Data from the Data Holder to the Radio Buttons

To copy data from the data holder to the radio buttons, you must create another

element that contains a compute. This element can be in any namespace and have

any name you like. In this case, we’ll use the custom namespace and call the

element toggle2, as shown:

 <bind>

 <custom:toggle2></custom:toggle2>

 </bind>

18

The toggle2 element’s compute is based on the toggle function, and follows this

algorithm:

1. Begin processing when the value of the data holder changes (detected with the

toggle function).

2. Set all of the radio buttons in the group to off (using the set function).

3. Set the radio button named in the data holder to on (using the set function).

The actual compute looks like this:

 toggle(reference to data holder) == ’1’

 ? set(’reference to value of first radio button’, ’off’) +.

 set(’reference to value of second radio button’, ’off’) +.

 set(’reference to value of third radio button’, ’off’) +.

 set(’page reference.’ +. reference to data holder +.

 ’.value’, ’on’)

 : ’’ "></custom:toggle2>

Notice that each radio button has a corresponding set function that turns it off

before the correct radio button is turned on. This ensures that two radio buttons

are never turned on at the same time. When writing this compute, you must add a

set for every radio button in your group, adding each set with the concatenation

operator (+.).

For example, if you had three radio buttons named citizenRadio,

landedImmigrantRadio, and otherRadio in a group, and your data holder was named

<custom:citizenship>, your compute would look like this:

 toggle(..[custom:citizenship]) == ’1’

 ? set(’Page1.citizenRadio.value’, ’off’) +.

 set(’Page1.landedImmigrantRadio.value’, ’off’) +.

 set(’Page1.otherRadio.value’, ’off’) +.

 set(’Page1.’ +. ..[custom:citizenship] +.

 ’.value’, ’on’)

 : ’’ "></custom:toggle2>

Placing this compute in a bind, it looks like this:

 <bind>

 <custom:toggle2

 xfdl:compute="toggle(..[custom:citizenship])

 == ’1’

 ? set(’Page1.citizenRadio.value’, ’off’) +.

 set(’Page1.landedImmigrantRadio.value’, ’off’) +.

 set(’Page1.otherRadio.value’, ’off’) +.

 set(’Page1.’ +. ..[custom:citizenship] +.

 ’.value’, ’on’)

 : ’’ "></custom:toggle2>

Example of a Complete Bind for Radio Buttons

Adding all of the elements together, including the data holder and toggle elements,

a complete bind would look like this:

 <bind>

 <instanceid>customer</instanceid>

 <ref>[customerData][citizenship]</ref>

 <boundoption>..[custom:citizenship]</boundoption>

 <custom:citizenship></custom:citizenship>

 <custom:toggle1

 xfdl:compute="toggle(Page1.citizenRadio.value) == ’1’

 or toggle(Page1.landedImmigrantRadio.value) == ’1’

 or toggle(Page1.otherRadio.value) == ’1’

 ? set(’..[custom:citizenship’],

 getGroupedItem(’Page1.citizenship’, ’value’, ’on’,

Creating An XML Data Model 19

’Page1’, ’page’, ’page’))

 : ’’ "></custom:toggle1>

 <custom:toggle2

 xfdl:compute="toggle(..[custom:citizenship]) == ’1’

 ? set(’Page1.citizenRadio.value’, ’off’) +.

 set(’Page1.landedImmigrantRadio.value’, ’off’) +.

 set(’Page1.otherRadio.value’, ’off’) +.

 set(’Page1.’ +. ..[custom:citizenship] +.

 ’.value’, ’on’)

 : ’’ "></custom:toggle2>

 </bind>

Remember that this example assumes you have three radio buttons named

citizenRadio, landedImmigrantRadio, and otherRadio in a group called citizenship, and a

corresponding data element named <custom:citizenship>.

Reformatting Data With a Bind

In some cases, the data in the form description may not match the format required

in the data instance. For example, in a purchase order the total amount might be

formatted (using the format option) with a dollar sign, commas, and a two digit

decimal place, as shown:

 $1,123.59

However, in your data instance you may want to remove the dollar sign and the

commas, so that you have a number with no formatting:

 1123.59

You can control the formatting of data by using an optional autoformat tag. This tag

is set to either on or off, as follows:

v on — The bind automatically strips all formatting from the form data before

moving it to the data instance. Note that this applies only to formatting

introduced by the format option of the form item, and does not change any

formatting the user may have applied manually.

v off — The bind respects all formatting, and copies all data ″as is″ to the data

instance.

For example, the following bind uses the autoformat tag to ensure that the bind

respects all formatting:

 <bind>

 <instanceid>customer</instanceid>

 <ref>[customerData][firstName]</ref>

 <boundoption>Page1.firstNameField.value</boundoption>

 <autoformat>off</autoformat>

 </bind>

By default, all binds strip formatting from the data.

Manually Changing Formatting

In some cases, you may find that you need different formats than those produced

with the autoformat tag. You can perform more complicated formatting by creating

computes that reformat the value and store it in a data holder. This is very similar

to binding lists, and requires the following elements:

v Data Holder — This element holds the formatted value, and is bound to the

data instance.

v Compute 1 — This element contains a compute that copies the value from the

form description to the data holder, and reformats the value appropriately.

20

v Compute 2 — This element contains a compute that copies the value from the

data holder to the form description, and reformats the value appropriately.

For a more detailed explanation of how these elements work together, see ″Binding

Lists, Popups, and Radio Buttons″.

Creating Submission Rules for an Instance

When submitting a form that contains an XML Data Model, you can submit either

the entire form or just a particular data instance. This makes it possible to send

your data instance directly to processing applications, rather than having to parse

the complete form and extract the data instance.

If you want to submit a data instance, you must create a set of submission rules.

These rules help determine what data is submitted, how the data is submitted, and

where the data goes. In addition to submission rules, you must also create a

submission button that is linked to the rules (for more information, see ″Creating a

Submission Button″).

Each set of submission rules is inserted within the <submissions> tag in the XML

model, as shown:

 <xmlmodel>

 <submissions>

 ... all submission rules ...

 </submissions>

 </xmlmodel>

Within the <submissions> tag, each set of submission rules is defined by a separate

<submission> tag, as shown:

 <submissions>

 <submission>

 ... submission 1 ...

 </submission>

 <submission>

 ... submission 2 ...

 </submission>

 </submissions>

Each submission is further defined by adding attributes to the <submission> tag

and by including an optional <ref> element. This is explained in more detail in the

following sections.

Naming the Submission Rules

Each submission tag must include an id attribute. This tag names the submission

rules, and follows this format:

 id="name"

For example, if you wanted to call the submission rules submitCustomerData, you

would use the following tag:

 <submission id="submitCustomerData">

Setting the Target URL for a Submission

Use the action attribute to define the target URL for the submission. The action

attribute is written in the following format:

 action="URL"

Creating An XML Data Model 21

You can only list one URL in the action attribute. For example, if you wanted to

submit your data instance to a cgi script on your server, you might use the

following submission tag:

 <submission id="submitCustomerData"

 action="http://www.myserver.com/cgi">

If you do not provide an action attribute, the submission is sent to the first URL

listed in the url option of the linked submission button.

Setting the Content Type of the Submission

Each submission tag may also include an optional mediatype attribute. This

attribute is a MIME type that sets the content type of the HTTP submission. For

example, if you wanted to set a MIME type of application/vnd.xfdl you would use

the following tag:

 <submission id="submitCustomerData"

 mediatype="application/vnd.xfdl">

If you do not provide a media type, it defaults to application/xml.

Setting Which Data is Submitted

By default, the first data instance in a form is submitted. If you want to submit a

different data instance, you must define that instance using the <instanceid> tag,

as shown:

 <instanceid>instance id</instanceid>

Each data instance is identified by the id attribute in the <xforms:instance> tag.

You can also choose to submit the entire data instance or only a portion of the

instance. When submitting only a portion of the data instance, you must identify

the root element of the submission. The root element determines which portion of

the instance is submitted, since only the root element and its children are sent.

For example, consider the following data instance:

 <xforms:instance>

 <customerData>

 <firstName></firstName>

 <lastName></lastName>

 <address>

 <street></street>

 <city></city>

 <country></country>

 </address>

 </customerData>

 </xforms:instance>

By default, the first tag within the instance is the root element. In this case,

<customerData> is the first tag and therefore the root element. This means that

<customerData> and all of its children would be submitted by default.

However, if you only wanted to submit the address information, you could set the

address tag to be the root element. In that case, only the <address> tag and its

children would be submitted.

You set the root element by enclosing a <ref> tag in the <submission> tag, as

shown:

22

<submission id="Page1.submitPOData">

 <ref>reference to root element</ref>

 </submission>

The reference to the root element is written in the same array notation that is used

by the <ref> element in bindings. For example, to refer to the <address> tag, you

would write:

 <ref>[customerData][address]</ref>

Note that this reference also obeys the same namespace rules as the <ref> element

used for bindings. For more information, see ″Using Namespaces in Element

References″.

Filtering Inherited Namespaces

By default, when you submit a data instance, the instance includes all of the

namespaces that it inherits. For example, consider the following data instance:

 <XFDL xmlns="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:xfdl="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:custom="http://www.ibm.com/xmlns/prod/XFDL/Custom>

 ...

 <xmlmodel xmlns:xforms="http://www.w3.org/2003/xforms">

 <instances>

 <xforms:instance xmlns="http://www.mycompany.com/HR">

 <customerData>

 <firstName></firstName>

 <lastName></lastName>

 <address></address>

 </customerData>

 <xforms:instance>

 </instances>

 ...

 </xmlmodel>

 ...

 </XFDL>

When you submit the customerData instance, the root element of the submission is

modified so that it declares all of the namespaces that it inherits. Assume that the

root element is customerData. In this case, that tag declares a default namespace but

also inherits the XFDL, custom, and XForms namespaces from the XFDL tag. As a

result, the submission declares those namespaces on the customerData element, as

shown:

 <customerData xmlns="http://www.mycompany.com/HR"

 xmlns:xfdl="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:custom="http://www.ibm.com/xmlns/prod/XFDL/Custom

 xmlns:xforms="http://www.w3.org/2003/xforms">

In some cases, you may want to restrict the inherited namespaces that are included

with a data instance. For example, you may want to submit non-namespace-aware

XML for DTD validation.

To restrict the inherited namespaces that are included, use the

includenamespaceprefixes attribute. This attribute lists the prefixes for those

namespaces that you want to include in the submission, and follows this syntax:

 includenamespaceprefixes="prefix1 prefix2 prefix3"

Each prefix is separated by whitespace, such as a space. For example, to include

only the XFDL and the custom namespaces in a submission, you would use the

following submission tag:

Creating An XML Data Model 23

<submission id="submitCustomerData"

 includenamespaceprefixes="XFDL custom">

If you want to submit only those namespaces that are used in your data instance,

you can do this automatically by using an empty string, as shown:

 <submission id="submitCustomerData" includenamespaceprefixes="">

This automatically removes all namespaces that are not used in your data instance.

Exceptions to Filtering

Filtering never excludes namespaces that are used in the data instance. This

includes both the default namespace and any namespaces that are used within the

instance.

For example, consider the following data instance:

 <xforms:instance xmlns="http:www.mycompany.com/HR">

 <customerData>

 <firstName></firstName>

 <lastName></lastName>

 <custom:address></custom:address>

 </customerData>

 </xforms:instance>

This instance is in the Human Resources namespace by default, and uses the

custom namespace for the address element. In this case, your submission would

always include definitions for both the Human Resources namespace (as default)

and the custom namespace, even if you did not include it in your filter.

For example, your submission filter might be set to include only the XDFL

namespace, as shown:

 <submission id="submitCustomerData"

 includenamespaceprefix="XFDL">

In this case, the root element of your submission would look like this:

 <customerData xmlns="http:www.mycompany.com/HR"

 xmlns:XFDL="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:custom="http://www.ibm.com/xmlns/prod/XFDL/Custom>

Including a Default Empty Namespace

You may have a data instance that defaults to the empty namespace, which is

defined as ″″. For example, the following instance tag would create an instance in

the default namespace:

 <xforms:instance xmlns="">

Submissions that default to the empty namespace do not normally declare that

namespace. If you want your submission to declare the empty namespace in the

root element, you must include the appropriate prefix in the

inlcudenamespaceprefixes attribute. The empty namespace is identified by the prefix:

#default.

For example, to ensure your submission declares the empty namespace as default,

you would use the follow filter:

 <submission id="submitCustomerData"

 includenamespaceprefix="XFDL #default">

In this case, the root element of your submission would look like this:

24

<customerData xmlns=""

 xmlns:XFDL="http://www.ibm.com/xmlns/prod/XFDL/7.0">

Creating a Submission Button

Submission buttons are only necessary if you want to submit a data instance

without the rest of the form. The button triggers the submission, and the data

submitted is determined by combining the filters for the button with the

submission rules in the data model.

To create a submission button, create a button of type submit or done and set the

transmitformat option to:

 application/xml;id="submission rule id"

By including the name of the appropriate submission rules, you link the button to

that set of rules. This name is defined by the id attribute of the appropriate

submission tag.

For example, if your submission rules had an id of ″submitCustomerData″, you

would use the following button:

 <button sid="submitCustomerDataButton">

 <type>done</type>

 <transmitformat>application/xml;

 id="submitCustomerData"</transmitformat>

 </button>

For more information about using the submission button to filter the submission,

see ″Filtering Submissions″.

Creating An XML Data Model 25

26

Adding Schema Validation

When adding schema validation, you can choose to either embed one or more

schema files in the form itself, or refer to external schema files that are saved on

the user’s computer. Embedding schemas in the form will increase the overall size

of the form and may affect performance, especially when low bandwidth is

available. However, referring to external schema files requires you to distribute

those files to client computers. The architecture of your overall application will

probably dictate which solution you should use.

Normally, each instance in the data model is validated against all available

schemas. However, if a schema is defined for a particular namespace, only those

instances that belong to that namespace are validated against it. This allows you to

apply specific schemas to specific data instances.

Finally, you must restrict all schemas to a single, self-contained file. The Viewer

does not support the use of the import or include tags.

To add schema validation to a form, you must:

1. Embed the schemas you want to include in the form.

2. Register the embedded schemas.

3. Register any external schemas.

4. Add the xmlmodelValidate function to the form.

Embedding a Schema in a Form

You can embed any number of schemas in a form. Each schema is inserted within

the <schemas> tag in the XML model, as shown:

 <xmlmodel>

 <schemas>

 ... all schemas ...

 </schemas>

 </xmlmodel>

Within the <schemas> tag, each schema is defined in a separate <schema> tag, as

shown:

 <xmlmodel>

 <schemas>

 <schema>

 ... schema 1 ...

 </schema>

 <schema>

 ... schema 2 ...

 <schema>

 </schemas>

 </xmlmodel>

Each schema is placed between the opening and closing schema tags, and must

conform to the rules for XML schemas.

© Copyright IBM Corp. 2003, 2006 27

Naming a Schema

You must name each schema that you embed in the form with a globally unique

id. You can do this by adding an id attribute to the <schema> tag. The id attribute

follows this format:

 id="name"

For example, if you wanted to give the name customerData to your schema, you

would use the following <schema> tags to enclose the schema description:

 <schema id="customerData">

 ... schema definition ...

 </schema>

Registering Embedded Schemas

Embedded schemas are not automatically used when the data model is validated.

Instead, only those schemas listed in the schema attribute on the <xmlmodel> tag

are used. The schema attribute is written as shown:

 schema="list of schemas"

You must list each of the embedded schemas by their id attribute, and precede

each id with the # symbol. Furthermore, the list must be space delimited. For

example, to register the customerData and pricingData schemas, you would use the

following schema attribute:

 schema="#customerData #pricingData"

The schema attribute is added to the <xmlmodel> tag. For example, a complete

data model, with the customerData and pricingData schemas, would look like this:

 <xmlmodel schema="#customerData #pricingData">

 <schemas>

 <schema id="customerData">

 ... schema definition ...

 </schema>

 <schema id="pricingData">

 ... schema definition ...

 </schema>

 </schema>

 </xmlmodel>

Registering External Schemas

External schemas must be placed in the Viewer’s schema folder or they will not be

available to the form. You can add sub-folders to the Viewer’s schema folder, but

cannot place any schemas outside of that folder. As with embedded schemas, only

those external schemas listed in the schema attribute on the <xmlmodel> tag are

used during validation. Any other schemas in the Viewer’s schema folder are

ignored.

The schema attribute is written as shown:

 schema="list of schemas"

You must list each of the external schemas by path and filename, relative to the

Viewer’s schema folder. This list is space delimited, which means that your schema

filenames cannot contain spaces. Furthermore, you must add a prefix of xsf: to each

path. For example, if both the customerData.xsd and pricingData.xsd schemas we in

the Viewer’s schema folder, you would use the following schema attribute to register

those schemas:

28

schema="xsf:customerData.xsd xsf:pricingData.xsd"

Note that the schema attribute can refer to both embedded and external schema, as

shown:

 schema="#customerData xsf:pricingData.xsd"

The schema attribute is added to the <xmlmodel> tag. For example, a complete

data model, with external customerData and pricingData schemas, would look like

this:

 <xmlmodel schema="xsf:customerData.xsd xsf:pricingData.xsd">

 </xmlmodel>

Since the schemas are external, there is no need to include the <schemas> tag in

the data model.

Adding the xmlmodelValidate Function

The data model is validated against all registered schemas when you call the

xmlmodelValidate function in the form. In most cases, you will want to tie this

function to the submission of the form, so that the data model is validated just

before the form is submitted.

Optionally, you may prefer to validate the data model during processing on your

back-end systems. In this case, you can use any available XML schema tools to

validate the data model.

Validating Data on Submission

To validate data on submission, you must use the toggle function to trigger the

xmlmodelValidate call when the user clicks the submit button. The most common

way to do this is to create a compute that evaluates the results of the validation

and either allows or aborts the submission.

The following algorithm describes this compute:

1. Use the toggle function to detect when the user clicks the submit button.

2. When the user clicks the button, trigger the xmlmodelValidate function.

3. Use the set function to place the results of xmlmodelValidate into a custom

option.

4. Use the strlen function to determine whether the results indicate an error.

v If the data validates, the result string will be empty and therefore have a

length of zero.

v If the data does not validate, the result string will have a length greater than

zero.
5. If the data does not validate:

v Use the messagebox function to inform the user.

v Use the set function to deactivate the submit button. This will abort the

submission.

The actual compute looks like this:

 compute="toggle(activated, ’off’, ’on’) == ’1’

 ? set(’custom:results’, xmlmodelValidate())

 + (strlen(reference to custom option storing results) > ’0’

 ? viewer.messageBox(’message to user’)

 + set(’activated’, ’off’)

 : ’’) : ’’ "

Adding Schema Validation 29

And if you placed this compute into a submit button, you would have the

following:

 <button sid="submitForm">

 <value>Submit</value>

 <type>done</type>

 <custom:results></custom:results>

 <custom:opt xfdl:compute="toggle(activated, ’off’, ’on’)

 == ’1’ ?

 set(’custom:results’, xmlmodelValidate())

 + (strlen(custom:results) > ’0’

 ? viewer.messageBox(custom:results)

 + set(’activated’, ’off’)

 : ’’) : ’’ "></custom:opt>

 </button>

Notice that this button contains two custom options: the custom:opt option contains

the compute that validates the form and performs the necessary logic, while the

custom:results option is set to contain the results of the xmlmodelValidate call. Also,

notice that in this case the messageBox function displays the results of the

xmlmodelValidate call. However, you could use this function to display any message

you wanted.

Validating Data During Processing

To validate data during processing, you can use any of the publicly available tools

for processing XML schema. IBM® does not supply a specific tool for this need.

30

Enabling Smartfill

Smartfill enables users to store frequently used form information on their local

computers and to re-use this information when completing other forms that require

it. Smartfill is intended to make it easier to fill out forms that require commonly

used information, such as the user’s name and address.

Smartfill works by creating data fragments. As the name suggests, these are small

groupings (or fragments) of data from the form. Each data fragment represents a

particular set of data. For example, you might create one data fragment for the

user’s home address and a second data fragment for the user’s work address.

The first time a user submits or saves a Smartfill enabled form, the system will

save the data fragments defined in the form to the user’s local computer. The next

time the user completes a form requiring those data fragments, the Viewer will

offer to automatically load the information into the form.

Once a data fragment has been saved, the Viewer will offer to load that data into

each form that requires it. However, once loaded, the user can modify the data at

any time. Any changes the user makes will be saved over the old data fragment

when the user saves or submit the form.

Because data fragments are stored as XML files within the user’s profile on the

local computer, they can be accessed by other applications. As such, they should

only capture commonly used information, such as names and addresses. Never use

them to store confidential information, such as credit card numbers or passwords.

The Smartfill feature allows you to include any number of data fragments in your

form, and you should give careful consideration to how you want to define and

arrange your data fragments.

Managing Smartfill Data

The Smartfill feature offers enormous flexibility with respect to which portions of a

form can be automatically completed for the user. However, achieving this

flexibility requires proper planning of both the data instances and the data

fragments in your form.

Before creating a Smartfill enabled form, you should spend some time planning

how to design the form, and should consider the following points:

1. Data fragments are best added to forms that are filled out frequently by the

same user, or to forms that are part of a series that include the same basic

information.

2. Data fragments should store commonly used information, such as names and

addresses. Remember, never include confidential information in data fragments.

3. The information included in data fragments must overlap the information

included in the data instances in your form. Because of this, you should design

your data instances and data fragments at the same time, to ensure you are

grouping the data correctly for both purposes. For more information about the

relationship between data instances and data fragments, refer to ″Defining the

Contents of a Data Fragment″.

© Copyright IBM Corp. 2003, 2006 31

4. Forms that will be completed in several stages by multiple users, or which

complete different data fragments depending upon the user filling the form,

must match form sections and data fragments with users. This will allow the

form to determine which data fragments are valid for each user. For more

information about creating forms with multiple data fragments intended for

multiple users, see ″Specifying Whether a Data Fragment is Active″.

Creating a Data Fragment

You can embed any number of data fragments in a form. Each data fragment is

inserted within the <datafragments> tag in the XML model, as shown:

 <xmlmodel>

 <datafragments>

 ... all data fragments...

 </datafragments>

 </xmlmodel>

Within the <datafragments> tag, each data fragment is defined in a separate

<datafragment> tag, as shown:

 <xmlmodel>

 <datafragments>

 <datafragment>

 ... data fragment 1 ...

 </datafragment>

 <datafragment>

 ... data fragment 2 ...

 <datafragment>

 </datafragments>

 </xmlmodel>

Identifying a Data Fragment

You must uniquely identify each data fragment in the form. To do this, you must

add both a <package> and a <name> element to the data fragment, as shown:

 <datafragment>

 <package>package name</package>

 <name>fragment name</name>

 </datafragment>

The package name is a unique name that identifies those data fragments used by

your company. As a general rule, we recommend that you use your company’s

URL as your package name. For example:

 <package>ibm.com</package>

The fragment name should uniquely identify the data fragment itself. For example,

if you are storing address information in the data fragment, you may want to call

it addressInfo, as shown:

 <name>addressInfo</name>

Versioning a Data Fragment

Over time, you may modify or update the data fragments in your forms. For

example, you may begin with an address fragment that has two fields for the

street address, and then six months later realize that you only need one.

By making a change like this, you are effectively creating a new version of your

address data fragment. The first version has two fields for the street, while the

second version only has one. Unfortunately, this can cause problems when you

begin using the updated form.

32

When a data fragment is loaded from disk, that portion of the form’s data model is

completely overwritten. This means that a portion of the existing data model is

replaced with the information loaded from disk, regardless of whether the tags in

that information match the tags in the data model.

This means that a form could potentially load the wrong information. For example,

suppose your user was filling out the old version of your form. Once the form is

completed, a data fragment with two fields for the street is saved to disk. A day

later, the user opens a new version of your form, containing only one field for the

street. However, since the name and package match, the data fragment with two

fields is loaded into the form. Since there is only one field in the form to support

the data, some data may be lost.

To avoid this, it’s a good idea to embed version numbers when naming your data

fragments. For example, rather than naming the fragment addressData, you could

name it addressDataV1. Then, if you update that data fragment, you can create

addressDataV2. This will prevent older versions of the data fragment from

overwriting information in newer forms.

Providing a Description for a Data Fragment

You must also provide a description for your data fragment. This description is

shown to the user whenever they are prompted to load or save the data, so you

should tailor it for your users.

To add a description of the data fragment, enclose it in a <description> tag as

shown:

 <datafragment>

 <description>data fragment description</description>

 </datafragment>

For example, you might want to explain to your users that the data fragment

stores address information. In this case, your description might look like this:

 <datafragment>

 <description>Address information, including street, city,

 ZIP, and country.</description>

 </datafragment>

Defining the Contents of a Data Fragment

Each data fragment is defined as a sub-set of a single data instance. To define the

data fragment, you link it to a single element in a data instance, and that element

and all of its children are then included in the data fragment.

For example, suppose you had defined the following data instance in your data

model:

 <xforms:instance id="customer">

 <customerData>

 <firstName></firstName>

 <lastName></lastName>

 <address>

 <street></street>

 <city></city>

 <state></state>

 </address>

 </customerData>

 </xforms:instance>

Enabling Smartfill 33

In this case, if you linked the data fragment to the <customerData> element, then

the data fragment would include all of the data in the instance. However, if you

linked the data fragment to the <address> element, then the data fragment would

include only the street, city, and state information.

To create this link, you must add an <instanceid> element and a <ref> element to

your data fragment, as shown:

 <datafragment>

 <instanceid>id of instance</instanceid>

 <ref>reference to element in instance</ref>

 </datafragment>

The <instanceid> tag contains the id of the data instance to which you want to link

your data fragment. For example, to link to the customer data instance, you would

use the following tag:

 <instanceid>customer</instanceid>

The <ref> tag contains a reference to the element in the data instance that will be

the root of your data fragment. For instance, if you wanted to link to the

<address> element in the above example, you would use the following tag:

 <ref>[customerData][address]</ref>

Specifying Whether a Data Fragment is Active

If your form will be completed in several stages by multiple users, such as in a

workflow, or if it should complete different data fragments depending upon the

user’s identity, you may want it to load separate data fragments for each user. This

means you must design the form so that it only loads data fragments when you

want them to be loaded. You can use the active option to set whether a data

fragment is active, as shown:

 <datafragment>

 <instance id>

 <reference>

 <active>active setting</active>

 </datafragment>

Valid settings for active are on and off. For example:

 <active>off</active>

If a data fragment’s active option is set to on, the data fragment is loaded when the

form is first opened. If the fragment’s active option is set to off, it is not loaded.

Turning a data fragment’s active to on after the form is open does not trigger a new

data fragment to load until the next time the form is opened.

The default setting for active is on.

Note: You will need to use a compute to activate data fragments that have been

specified as off when the form is opened. For more information regarding

this compute, see ″″.

Example of a Complete Data Fragment

The following example shows a complete data fragment. This fragment links to the

address element in a data instance named customer:

 <datafragments>

 <datafragment>

 <package>ibm.com</package>

 <name>customerData</name>

34

<description>Your address.</description>

 <instanceid>customer</instanceid>

 <ref>[customerData][address]</ref>

 <active>off</active>

 </datafragment>

 </datafragments>

Working with Data Fragments

Once you have added a data fragment to your form, the Viewer will recognize and

use that data fragment as part of the Smartfill feature. In general, this means that

the Viewer will load and save Smartfill data as appropriate. However, there are

some scenarios that may prevent the Smartfill feature from loading data. These

scenarios include:

v Data fragments with storage ids

v Data fragments with active options set to off

About Storage IDs

Whenever the Viewer saves the data fragments in a form (during saving, signing,

or submission), it also adds a <storageid> element to all of the active data fragment

definitions. This element is used to indicate that the Smartfill data has been loaded,

and to link the data fragment to the information stored on disk.

The <storageid> element belongs to the df namespace, and is added alongside the

<package>, <name>, and other elements, as shown:

 <datafragments>

 <datafragment>

 <package>ibm.com</package>

 <name>customerData</name>

 <description>Your address.</description>

 <instanceid>customer</instanceid>

 <ref>[customerData][address]</ref>

 <active>on<active>

 <df:storageid>unique identifier</df:storageid>

 </datafragment>

 </datafragments>

Once the <storageid> element is in a data fragment, the Viewer will no longer

attempt to load that Smartfill data. Furthermore, the Viewer will only save

Smartfill data if: (a) the user changes the data in data fragment, and (b) the

original data fragment is already saved on the local computer (as identified by the

storageid). In general, these rules prevent the Viewer from loading or saving

Smartfill data when it should not.

Note: If the <storageid> element is added to a form before it is distributed, it can

prevent the form from functioning properly. For this reason, you should be

extremely careful when designing and testing your forms. If you save a

form while testing it in the Viewer, you may inadvertently add the

<storageid> element to the form.

Activating Data Fragments

If you have specified that certain data fragments should be off when the form is

originally opened, you need to be able to activate those data fragments at a later

point. In other words, you need to use a compute to change a data fragment’s

active option to on after certain conditions are met. You can trigger this compute in

several ways from within the form or on the server side. The simplest way is to

Enabling Smartfill 35

trigger the compute when the form is submitted. For example, to set the active

option of the second datafragment to on when the Submit button is pushed, you

would:

v Create a custom option inside the Submit button.

v Create an If/Then/Else statement which specifies that when the submit button

has been activated, it should set the second data fragment’s active option to on.

For example:

 <custom:turnDFon xfdl:compute="toggle(activated, ’off’, ’on’)== ’1’

 ? set(’global.global.xmlmodel[datafragments][1][active]’,

 ’on’) : ’’ "></custom:turnDFon>

Note: The form will only try to load a data fragment when it is first opened. If

you activate a data fragment after that point, it will not be loaded until the

next time the form is opened.

36

Sample XML Data Models

The following pages show a complete sample of the core XML data model, as well

as samples of a data model with a schema, a data model with data fragment

definitions, and a sample data fragment file.

Core XML Data Model

The following example shows a core XML Data Model with a single data instance.

This data model includes submission rules that are linked to the

submitCustomerData button in the form and that submit the complete data instance

to the back-end for processing.

 <xmlmodel xmlns:xforms="http://www.w3.org/2003/xforms">

 <instances>

 <xforms:instance id="customer">

 <customerData>

 <firstName></firstName>

 <lastName></lastName>

 <address>

 <street></street>

 <city></city>

 <country></country>

 </address>

 </customerData>

 </xforms:instance>

 </instances>

 <bindings>

 <bind>

 <instanceid>customer</instanceid>

 <ref>[customerData][firstName]</ref>

 <boundoption>Page1.firstNameField.value</boundoption>

 </bind>

 <bind>

 <instanceid>customer</instanceid>

 <ref>[customerData][lastName]</ref>

 <boundoption>Page1.lastNameField.value</boundoption>

 </bind>

 <bind>

 <instanceid>customer</instanceid>

 <ref>[customerData][address][street]</ref>

 <boundoption>Page1.streetField.value</boundoption>

 </bind>

 <bind>

 <instanceid>customer</instanceid>

 <ref>[customerData][address][city]</ref>

 <boundoption>Page1.cityField.value</boundoption>

 </bind>

 <bind>

 <instanceid>customer</instanceid>

 <ref>[customerData][address][country]</ref>

 <boundoption>Page1.countryField.value</boundoption>

 </bind>

 </bindings>

 <submissions>

 <submission id="submitCustomerData"

 action="http://www.myserver.com/cgi"

 mediatype="application/xml">

 </submission>

 </submissions>

 </xmlmodel>

© Copyright IBM Corp. 2003, 2006 37

Data Model with Schema Validation

The following data model contains all the core parts of a data model, as well as a

schema.

 <xmlmodel xmlns:xforms="http://www.w3.org/2003/xforms"

 schema="#customer xsf:invoice.xsd">

 <instances>

 <xforms:instance id="customer">

 <customerData>

 <firstName></firstName>

 <lastName></lastName>

 <address>

 <street></street>

 <city></city>

 <country></country>

 </address>

 </customerData>

 </xforms:instance>

 </instances>

 <bindings>

 <bind>

 <instanceid>customer</instanceid>

 <ref>[customerData][firstName]</ref>

 <boundoption>Page1.firstNameField.value</boundoption>

 </bind>

 <bind>

 <instanceid>customer</instanceid>

 <ref>[customerData][lastName]</ref>

 <boundoption>Page1.lastNameField.value</boundoption>

 </bind>

 <bind>

 <instanceid>customer</instanceid>

 <ref>[customerData][address][street]</ref>

 <boundoption>Page1.streetField.value</boundoption>

 </bind>

 <bind>

 <instanceid>customer</instanceid>

 <ref>[customerData][address][city]</ref>

 <boundoption>Page1.cityField.value</boundoption>

 </bind>

 <bind>

 <instanceid>customer</instanceid>

 <ref>[customerData][address][country]</ref>

 <boundoption>Page1.countryField.value</boundoption>

 </bind>

 </bindings>

 <submissions>

 <submission id="submitCustomerData"

 action="http://www.myserver.com/cgi"

 mediatype="application/xml">

 </submission>

 </submissions>

 <schemas>

 <schema>

 ...schema details...

 </schema>

 </schemas>

 </xmlmodel>

Data Model with Smartfill

The following data model contains all the core parts of a data model, as well as a

data fragment that enables the Viewer’s Smartfill feature.

38

<xmlmodel xmlns:xforms="http://www.w3.org/2003/xforms">

 <instances>

 <xforms:instance id="agent">

 <agentContactInfo>

 <name>

 <firstName>Leslie</firstName>

 <lastName>Smith</lastName>

 </name>

 <phone>555-455-7676</phone>

 </agentContactInfo>

 </xforms:instance>

 </instances>

 <bindings>

 <bind>

 <instanceid>agent</instanceid>

 <ref>[agentContactInfo][firstName]</ref>

 <boundoption>Page1.firstNameField.value</boundoption>

 </bind>

 <bind>

 <instanceid>agent</instanceid>

 <ref>[agentContactInfo][lastName]</ref>

 <boundoption>Page1.lastNameField.value</boundoption>

 </bind>

 <bind>

 <instanceid>agent</instanceid>

 <ref>[agentContactInfo][phone]</ref>

 <boundoption>Page1.phoneField.value</boundoption>

 </bind>

 </bindings>

 <submissions>

 <submission id="submitAllData"

 action="http://www.myserver.com/cgi"

 mediatype="application/xml">

 </submission>

 </submissions>

 <datafragments>

 <datafragment>

 <package>ibm.com</package>

 <name>customerData</name>

 <description>Your address.</description>

 <instanceid>customer</instanceid>

 <ref>[customerData][address]</ref>

 <active>on<active>

 </datafragment>

 </datafragments>

 </xmlmodel>

Sample XML Data Models 39

40

Filtering Submissions

When submitting forms that use the XML Data Model, you can use the transmit

filters (transmititems, transmitoptions, and so on) to apply indirect filtering to the

data model. While the transmit filters do not allow you to specify elements of the

data model, the filters are still applied to the data model through the bindings that

exist. For example, omitting the firstName field from your transmission would also

omit the firstName data element if that element was bound to the field.

You can submit data from the data model in two different ways:

v Submit the Complete Form — In this case, you create a submission button that

submits the form, and filters out the parts of the form you do not need. The

filters you create apply both to the data elements in the form and the bindings

in the form. For example, if you omit the firstName field, then the firstName data

element and the bind that links the two elements are also omitted.

v Submit a Data Instance Only — In this case, you create a submission button

that submits a single data instance from the data model. The filters you create

apply to the data elements based on their bindings.

If you submit only a data instance, you can also filter the submission by setting the

root element for the submission. For more information about this, see ″Setting

Which Data is Submitted″.

Applying Transmit Filters to the XML Data Model

Transmit filters are applied to the data model based on the bindings in the form.

For example, if you omit the firstName field, and that field is bound to a firstName

data element, then that element is also omitted.

This indirect filtering is governed by a number of rules that may conflict with each

other depending on the complexity of your data instance. As a general rule, a data

element is included whenever one or more rules support its inclusion. For

example, if three rules would omit the element, but one rule would include it, then

that element is included.

Furthermore, if any data element is included, then any bindings that include that

data element are also included.

Filtering Rules

This section explains the rules that apply when determining which data elements

are filtered.

Basic Rules for Filtering Data Elements

In the simplest cases, filtering follows these rules:

v If a data element is bound to a form element that is included, then that data

element is also included.

v If a data element is bound to a form element that is omitted, then that data

element is also omitted.

Filtering Data Elements with Multiple Binds

If a data element is bound to multiple form elements, the following rules apply:

© Copyright IBM Corp. 2003, 2006 41

v If a data element is bound to multiple form elements, and any of those form

elements are included, then the data element is also included.

v If a data element is bound to one or more form elements, and all of those form

elements are omitted, then the data element is also omitted.

Filtering Data Elements that are Bound to Other Data Elements

If a data element is bound to another data element, the following rules apply:

v If a data element is bound to another data element, then the first data element

follows the behavior of the second data element.

v If a data element is bound to multiple data elements, and any of those data

elements are included, then the first data element is also included.

Filtering Data Elements with No Binds

If a data element is not bound to anything, the following rules apply:

v If a data element is not bound to the form, then that element is included.

v If a data element is not bound to the form, and contains any children that are

either not bound or are included, then that element is included.

v If a data element is not bound to the form, and all of its children are omitted,

then that data item is omitted.

Filtering Data Elements with Attributes

If a data element contains attributes, the following rules apply:

v If any of an element’s attributes are bound to another element that is included,

then the first element is included with all attributes that are not explicitly

omitted.

v If all of an element’s attributes are bound to elements that are omitted, then the

first element and all of its attributes are also omitted.

Filtering Lists, Popups, and Radio Buttons

Filtering of the XML data model is normally governed by bindings. For instance, if

the value of a field is bound to an element in the data instance, and that value is

omitted by a filter, then the element in the data instance is also omitted because of

the link created by the bind.

However, the values of lists, popups, and radio buttons are not directly linked to a

data element through a bind. Instead, the bind links the element to a data holder,

which is then linked to the value option by two computes, as shown:

Data
Element

Data
Holder

Value
Option

Compute

Bind

Compute

Because of this indirect relationship, filtering does work properly with these item

types. The item’s value is not directly bound to anything, so the corresponding

element in the data model is not filtered properly.

To correct this, you must add an <associated> tag to your bind, as shown:

 <bind>

 <associated>reference</associated>

 </bind>

42

The tag contains a reference to an option or array element in the form. This creates

a direct link between the data element in the XML model and the option in the

form, and this link is used when determining how the data element is filtered.

For example, consider the following bind (note that the computes have been

removed to improve readability):

 <bind>

 <instanceid>customer</instanceid>

 <ref>[customerData][citizenship]</ref>

 <boundoption>..[custom:citizenship]</boundoption>

 <custom:citizenship></custom:citizenship>

 <custom:toggle1 compute></custom:toggle1>

 <custom:toggle2 compute></custom:toggle2>

 <associated>Page1.citizenPopup.value</associated>

 </bind>

This bind is for a citizenship popup called citizenPopup. The data element,

<citizenship>, is bound to the data holder, <custom:citizenship>. The bind also

includes two custom elements that provide computes for copying data from the

<custom:citizenship> element to the popup’s value. Finally, the <associated>

element creates a direct link from the <citizenship> data element to the value of

the citizenPopup.

This link ensures that filtering applied to the citizenPopup is also applied to its

associated data element.

Filtering Submissions 43

44

Using Computes with the XML Data Model

In general, computes work normally with the XML Data Model. However, before

you use computes to change your data model, you should understand:

v The limitations to using computes with the data model.

v How computed changes to the data model affect bindings.

Limitations To Using Computes

The following limitations apply when using computes with the data model:

v Computes do not automatically update the data model in memory.

v Computes do not work within data instances.

Updating the Data Model in Memory

There are two ways that the data model may change. The first type of change

occurs when data is copied between a data instance and the form description

through a binding. This process occurs automatically as the user interacts with the

form, or when the data instances are populated from a database.

The second type of change occurs when the data model itself is changed. For

example, a compute might change a boundoption from Field1.value to Field2.value.

Changes like this affect the overall structure of the data model, and are not

updated automatically. Instead, the data model is updated when you use a special

function called xmlmodelUpdate. This function is available both in the XFDL

language and in the Workplace Forms API.

If you want to use the xmlmodelUpdate function in a form, you would call it with

the following syntax:

 xmlmodelUpdate()

For example, you might create a compute that sets a reference in the bindings

section of the data model, as follows:

 set(’global.global.xmlmodel[bindings][0][boundOption]’,

 ’Page1.firstNameField.value’)

This sets the first bind in the data model to use the firstNameField. However, once

you’ve set this bind you may also want the data model to update immediately. To

do this, you would add the xmlmodelUpdate function to your compute, as shown:

 set(’global.global.xmlmodel[bindings][0][boundOption]’,

 ’Page1.firstNameField.value’) + xmlmodelUpdate()

This would set the bind and then immediately update the XML model to reflect

that change.

If you want the data model to update while processing the form on a server, you

would be more likely to use the API function. This works in a similar manner, but

would be called by your processing application at the appropriate time. For more

information about this function, refer to the IBM Workplace Forms Server - API

User’s Manual.

© Copyright IBM Corp. 2003, 2006 45

Computes in Data Instances

Computes do not work within data instances. For example, the following data

instance attempts to use a compute to populate the firstName element:

 <xforms:instance>

 <customerData>

 <firstName compute="Page1.firstNameField.value"></firstName>

 </customerData>

 </xforms:instance>

In cases like this, the compute is simply ignored. However, you can use the create,

destroy, and set functions in other parts of the form to change data instances. This

allows you to add or remove elements from the data instance or set values as the

user works with the form.

How Computed Changes Affect Bindings

Computed changes can affect bindings in two ways:

v Computes can create or destroy bound elements.

v Computes can create or destroy bindings.

Different rules apply in each case, and you should familiarize yourself with these

rules before using computes to change bindings.

Creating and Destroying Bound Elements

You can use computes to create or destroy bound elements within a form. This

does not affect the binding itself, as the binding remains in the form. However, if

one or more of the bound elements is missing from the form, there are two

possible results, depending on whether xmlmodelUpdate is called:

v If a bound element is missing and xmlmodelUpdate is called, then the bound

element is created. The only exception to this is if the element’s page or item

level ancestors do not exist. For example, if the value option of Field1 was bound,

but Field1 itself did not exist, then it is impossible to create the value option.

v If a bound element is missing and xmlmodeUpdate is not called, then the bind is

deactivated. The bind still exists in the form, but cannot copy information to or

from the missing element. The bind is reactivated as soon as the missing element

is restored.

For example, consider the following data model:

 <xmlmodel>

 <instances>

 <xforms:instance>

 <customerData>

 <firstName></firstName>

 <lastName></lastName>

 </customerData>

 </xforms:instance>

 </instances>

 <bindings>

 <bind>

 <instanceid>customer</instanceid>

 <ref>[customerData][firstName]</ref>

 <boundoption>Page1.firstNameField.value</boundoption>

 </bind>

 </bindings>

 </xmlmodel>

46

In this model, the firstName element is bound to the value option of the

firstNameField. If you destroyed the value option and did not call xmlmodelUpdate,

the bind would remain but would be inactive. If you later created the value option

again, the bind would become active once again.

If you want to permanently destroy a bound element, you should also destroy the

binding. This ensures that the element is not created again when xmlmodelUpdate is

called.

Creating and Destroying Bindings

You can use computes to create or destroy bindings. However, this sort of change

is not registered until you call the xmlmodelUpdate function.

For example, consider the following data model:

 <xmlmodel>

 <instances>

 <xforms:instance>

 <customerData>

 <firstName></firstName>

 <lastName></lastName>

 </customerData>

 </xforms:instance>

 </instances>

 <bindings>

 <bind>

 <instanceid>customerData</instanceid>

 <ref>[customerData][firstName]</ref>

 <boundoption>Page1.firstNameField.value</boundoption>

 </bind>

 </bindings>

 </xmlmodel>

In this case, you could destroy the bind element to remove the binding between the

firstName element and the firstNameField. While the bind element is destroyed

immediately, you must call the xmlmodelUpdate function to update the model in

memory.

Using Computes with the XML Data Model 47

48

Signing an XML Data Model

By default, signatures apply to the complete form, including the XML data model.

Once signed, the XML data model is locked along with the rest of the form. This

means that the Viewer does not allow the user to make changes, and any changes

made through other means will break the signature.

You can also filter signatures by including options such as signitems, signoptions,

and so on, in your signature button. These filters are applied to the XML data

model in the same way as transmit filters. For detailed rules for filtering the XML

Data Model, see ″Filtering Submissions″. For further information regarding signing

filters and their order of precedence, refer to the Creating Signature Buttons in XFDL

document.

© Copyright IBM Corp. 2003, 2006 49

50

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003, 2006 51

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Office 4360

One Rogers Street

Cambridge, MA 02142

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

AIX

IBM

Workplace

Workplace Forms

Other company, product, or service names may be trademarks or service marks of

others.

52

Index

A
autocomplete See Smartfill 3

autofill See Smartfill 3

B
binding

attributes, referencing 10

bindings
about 5, 10

computed elements 13

computes, creating bound

elements 46

computes, creating or destroying

bindings 47

computes, destroying bound

elements 46

computes, how they affect

bindings 46

data holder See data holder 14

example 13

example for radio buttons 19

formatting data manually 20

formatting data through a bind 20

list, example 16

lists 14

popup, example 16

popups 14

radio buttons 14, 17

setting data instance 12

setting first element 10

setting the second element 12

button, submission 25

C
computes

binding computed elements 13

bindings, creating or destroying with

computes 47

bindings, how they affect

computes 46

creating bound elements 46

data instances, computes in 46

destroying bound elements 46

limitations to using 45

updating the data model in

memory 45

using with the data model 45

core components of the data model 5

core data model
example 37

D
data fragment

creating 32

defining the contents of 33

data fragments
activating 35

active, setting whether a fragment

is 34

describing 33

example 34

identifying 32

storage ids 35

versioning 32

working with 35

data fragments See Smartfill 6

data holder
copying data from the data

holder 16, 18

copying data to the data holder 15,

17

creating 14, 17

data instance
creating 8

namespaces 9

naming 8

submission rules See submission

rules 21

data instances
about 5

computes in data instances 46

referencing attributes 10

data model
bindings See bindings 5

computes, limitations to using 45

computes, using with the data

model 45

core components 5

creating a data model 7

data instance See data instance 8

data instances See data instances 5

example 37

overview 5

schema validation See schema 6

signing the data model 49

smartfill, about 3

submission rules See submission

rules 5, 21

updating the data model in

memory 45

when to use 3

data model, about 1

data, managing Smartfill data 31

F
filtering

lists 42

namespaces, exceptions 24

popups 42

radio buttons 42

filtering submissions
about 41

rules for filtering 41

transmit filters, applying 41

formatting data
manually 20

with a bind 20

functions
xmlmodelValidate 29

L
list

copying data from the list 15

copying data to the list 16

example binding 16

lists
binding 14

filtering 42

N
namespaces

data instances 9

default namespace 9

other namespaces 9

element references 11

option references 13

submissions
filtering inherited namespaces 23

filtering, exceptions 24

including a default empty

namespace 24

P
popup

copying data from the popup 15

copying data to the popup 16

example binding 16

popups
binding 14

filtering 42

R
radio button

copying data from radio buttons 17

copying data to radio buttons 18

radio buttons
binding 14, 17

binding example 19

filtering 42

references
namespaces in element references 11

namespaces in option references 13

referencing an attribute 10

S
schema

about schema validation 2, 6

© Copyright IBM Corp. 2003, 2006 53

schemas
about schema validation 27

embedding a schema 27

example 38

naming 28

registering embedded schemas 28

registering external schemas 28

validating
about 29

during processing 30

on submission 29

signatures, signing a data model 49

Smartfill
about 3, 6, 31

data management 31

example 38

See Also data fragments 32

storage IDs 35

submission
filtering, applyingtransmit filters 41

namespaces, filtering 23

submission button 25

submission rules
about 5

content type 22

creating 21

naming 21

setting which data is submitted 22

target URL 21

submissions
button, submission 25

filtering, about 41

filtering, rules for 41

namespaces, including default empty

namspace 24

X
XFDL

about 1

XML
about 1

xml data model See data model 1

xmlmodelValidate function 29

54

����

Program Number:

Printed in USA

S325-2608-00

	Contents
	Introduction
	Who Should Read this Document
	About the XML Data Model
	XFDL: Combining Presentation and Data
	XML: A Common Language for Interoperability
	The XML Data Model: Grouping Data for Interoperability
	Validating the XML Data Model Against Schema
	Smartfill and the XML Data Model

	When to Use the XML Data Model

	Overview of the XML Data Model
	The Core of the XML Data Model
	Schema Validation in the XML Data Model
	Data Fragment Definitions in the XML Data Model

	Creating An XML Data Model
	Declaring the XML Data Model
	Creating a Data Instance
	Naming a Data Instance
	Defining Namespaces for an Instance
	Defining the Default Namespace
	Defining and Using Other Namespaces

	Binding the Elements of a Data Instance
	Setting the First Element to Bind
	Referencing an Attribute in the Data Instance
	Using Namespaces in Element References

	Setting Which Data Instance Contains the First Element
	Setting the Second Element to Bind
	Using Namespaces in Option References

	Example of a Complete Bind
	Binding Computed Elements
	Binding Lists, Popups, and Radio Buttons
	Binding Lists and Popups

	Binding Radio Buttons
	Reformatting Data With a Bind
	Manually Changing Formatting

	Creating Submission Rules for an Instance
	Naming the Submission Rules
	Setting the Target URL for a Submission
	Setting the Content Type of the Submission
	Setting Which Data is Submitted
	Filtering Inherited Namespaces
	Exceptions to Filtering
	Including a Default Empty Namespace

	Creating a Submission Button

	Adding Schema Validation
	Embedding a Schema in a Form
	Naming a Schema

	Registering Embedded Schemas
	Registering External Schemas
	Adding the xmlmodelValidate Function
	Validating Data on Submission
	Validating Data During Processing

	Enabling Smartfill
	Managing Smartfill Data
	Creating a Data Fragment
	Identifying a Data Fragment
	Versioning a Data Fragment

	Providing a Description for a Data Fragment
	Defining the Contents of a Data Fragment
	Specifying Whether a Data Fragment is Active
	Example of a Complete Data Fragment

	Working with Data Fragments
	About Storage IDs
	Activating Data Fragments

	Sample XML Data Models
	Core XML Data Model
	Data Model with Schema Validation
	Data Model with Smartfill

	Filtering Submissions
	Applying Transmit Filters to the XML Data Model
	Filtering Rules
	Basic Rules for Filtering Data Elements
	Filtering Data Elements with Multiple Binds
	Filtering Data Elements that are Bound to Other Data Elements
	Filtering Data Elements with No Binds
	Filtering Data Elements with Attributes

	Filtering Lists, Popups, and Radio Buttons

	Using Computes with the XML Data Model
	Limitations To Using Computes
	Updating the Data Model in Memory
	Computes in Data Instances

	How Computed Changes Affect Bindings
	Creating and Destroying Bound Elements
	Creating and Destroying Bindings

	Signing an XML Data Model
	Appendix. Notices
	Trademarks

	Index

