
IBM® Workplace Forms™

The XFDL Event Model

Version 2.6.1

S325-2602-00

���

Note

Before using this information and the product it supports, read the information in “Notices,” on page 13.

First Edition (September 2006)

This edition applies to version 1, release 2.6.1 of Workplace Forms and to all subsequent releases and modifications

until otherwise indicated in new editions.

This edition replaces version 1, release 2.6 of Workplace Forms.

© Copyright International Business Machines Corporation 2003, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

The XFDL Event Model 1

What is the XFDL Event Model? 1

About the Event Model Options 1

Using activated 2

Example 2

Using dirtyflag 3

Example 4

Using focused 4

Example 5

Using focuseditem 6

Example 6

Using keypress 7

Example 7

Using Mouseover 8

Example 8

Using printing 10

Example 10

Where to Find More Help 11

Appendix. Notices 13

Trademarks 14

© Copyright IBM Corp. 2003, 2006 iii

iv

The XFDL Event Model

This document explains how to use the XFDL Event Model, which relies on the

following XFDL options: activated, dirtyflag, focused, focuseditem, keypress, mouseover,

and printing.

This document explains how to work with each option, and provides instructions

for designing forms that use the Event Model, either by writing XFDL code in a

text editor or by designing forms in Workplace Forms™ Designer. Before reading

this document, you should be familiar with both the XFDL language and

Workplace Forms Designer.

What is the XFDL Event Model?

The XFDL Event Model tracks user actions, such as mouse movements and

keyboard input. These actions are called events, and you can design your forms so

that these events are captured and trigger specific responses. For example, using

the Event Model you could:

v Create a button that changes color when the user moves the mouse over it.

v Create a form that submits when the user types F2 on the keyboard.

v Create a ″help″ label that displays a different message depending on which field

the user is filling out.

v Create links to websites or other documents that change color once they have

been clicked.

About the Event Model Options

The Event Model relies on the following XFDL options:

v activated — Detects whether or not an item, page, or form has been activated by

the user. For example, a button becomes activated when the user clicks it.

v dirtyflag — Records whether the form has been updated since the last save or

submission.

v focused — Detects whether an item, page, or form currently has the input focus.

For example, a field has the focus when the cursor is in it.

v focuseditem — Specifies which item in the page currently has the focus.

v keypress — Stores the last keystroke made by the user.

v mouseover — Detects whether the mouse pointer is currently positioned over an

item or page.

v printing — Indicates whether the form is currently printing.

These are special options in the XFDL language that are never written out in XFDL

forms. Instead, these options are created in memory only, and can be thought of as

virtual options — they never appear in the XFDL text for a form, but are always

created and maintained when the form is run.

This means that you never have to add these options to your form. You can simply

assume that they will exist when the form is in use. Furthermore, each option is

automatically included in every item that supports it. For example, every button

item will include an activated option.

© Copyright IBM Corp. 2003, 2006 1

Using activated

The activated option specifies whether an item is active, and stores one of the

following values:

v on — The item is active. For example, a button is active when the user clicks

and releases it.

v maybe — The item is in an undetermined state. This state is specific to buttons,

and occurs when the button has been clicked but has not yet been released.

v off — The item is not active. For example, an action that is not firing is not

active.

The following tables lists the items that support the activated option, and provides

more information about when status of the activated option changes:

 Item When activated status changes

action activated changes to on when the action fires, and back to off when the action is

complete.

button activated changes to on when the button is clicked, switches to maybe while the

button is held down, and changes back to off when the button is released.

cell activated changes to on when the cell’s action fires, and back to off when the

cell’s action is complete.

combobox activated changes to on when the list of choices is displayed, and back to off

when the list is closed.

popup activated changes to on when the list of choices is displayed, and back to off

when the list is closed.

page

global

activated changes to on when the page is displayed, and back to off when a

different page is displayed or when the form is closed.

form

global

activated changes to on when the form is open, and back to off when the form

is closed.

Example

The following diagram shows how an activated Save button changes color (from

white to grey) while the save action occurs. The button’s color returns to white

when the save is complete.

2

Working with activated in the Designer

To change the background color of a button when it is activated, you must edit the

XFDL source code for the button. This involves inserting an If/Then/Else

statement into the bgcolor option of the button using the following logic:

IF activated is set to on, THEN the color of the button is grey. Otherwise (ELSE), it

is white.

To set a button to change color when activated:

1. Open the form in the Designer and select the button you want to modify with

the activated option.

2. Select Source.

v The Code View window appears.
3. In theCode View window, edit the bgcolor option of the button so that it

changes color based on the value of activated.

For example:

 <button sid="saveButton">

 <type>saveform</type>

 <value>Save</value>

 <activated>off</activated>

 <bgcolor compute="activated==’on’ ? (’white’) : ’gray’"></bgcolor>

 </button>

4. Click OK when you are done editing.

Note: Because the activated option is created and destroyed by the form, you do

not have to create this option to refer to it in the compute for the Save

button. For more details about the activated option, refer to the XFDL

Specification.

Using dirtyflag

The dirtyflag option records whether the form has been updated since the last save

or submission, and stores one of the following values:

v on — The user made a change to the form.

v off — The user had not changed the form since it was last saved or submitted.

The dirtyflag option is valid for the form global only.

Note that dirtyflag is not set by computed changes to the form. For example, if the

user clicks a button that triggers a compute, and that compute copies information

to a field in the form, the dirtyflag would not be set. In these cases, the form should

include additional computes that set the dirtyflag.

If necessary, the save prompt can be disabled by using a compute to set the

dirtyflag to off.

This option is not saved or transmitted as part of the form. Instead, it is

automatically created each time the form is read into memory, and is maintained

only during display or processing.

The XFDL Event Model 3

Example

In the Create New Bank Account form, clicking the Save button activates a special

function that bypasses the usual Save As dialog box and saves the form to a

specific directory on the bank system. However, because the usual method of

saving was bypassed, the Viewer will still prompt users to save when they close

the form unless dirtyflag is turned off.

Working with dirtyflag in the Designer

To ensure that the Viewer does not prompt the user to save after using a custom

function to save the form, you must set the dirtyflag event to off. To do this, you

must complete the following steps:

v Create a custom option in the Save button.

v Create an If/Then/Else statement which specifies that when the function has

been activated, it should trigger the custom save function and set the dirtyflag

option to off. For example, to trigger the custom save function and turn off the

dirtyflag event, you would use the following logic:

IF the toggle function is activated (or the Save button is pressed), THEN the

MySaveFunction function is triggered AND the dirtyflag option is set to off.

Otherwise (ELSE), no action is specified.

v Use the toggle function to trigger the custom save function.

v Use your custom function to perform the save.

v Use the set function to set turn off the dirtyflag event.

To do this:

1. Open the form in the Designer and select the Save button.

2. Select Source.

v The Code View window appears.
3. In the Code View window, create the custom option and its conditional

statement. For example:

 <button sid="ApplicationSpecificSave">

 <value>Save</value>

 <type>cancel</type>

 <custom:save compute="toggle(activated, ’off’, ’on’)== ’1’

 ? (MySaveFunction() + set(’global.global.dirtyflag’,

 ’off’)) : ’’ "></custom:save>

 </button>

Note: Because the dirtyflag option is created and destroyed by the form, you do

not have to include it in your XFDL code to use it in the compute. For more

details about the toggle and set functions, refer to the XFDL Specification.

Using focused

The focused option specifies which type of form object currently has the input

focus, and stores one of the following values:

v on — The item, page, or form has the input focus.

v off — The item, page, or form does not have the input focus.

The focused option is valid for the following items:

v button v field v radio

4

v check v list v page global

v combobox v popup v form global

An object’s focused option is set to on when that item, page, or form receives the

input focus, and is set to off when the focus moves to another item, page or form.

However, in objects that are hierarchical, it is possible for more than one object to

have the focus at one time. For example, a form, a page, and a field can all be

focused at the same time.

Note: The item that has the focus does not change when the Viewer window is

minimized or when the user is working in another window.

Example

The following diagram shows how the background color of an item changes (from

white to yellow) depending on whether it has the focus. The item’s color returns to

white when the focus moves to a new item.

When the Birth Date field has the input focus, the focused options are set to:

v on for the Birth Date field.

v off for every other item in the form.

v on for the page that contains the Birth Date field.

v on for the form (the form global option) as it contains the Birth Date field.

Working with focused in the Designer

To set the value of another item in the form based on the focused option, you must:

v Create an If/Then/Else statement which specifies that when the focused option is

″on″ its background color should change accordingly. For example, to set the

Birth Date field background color to change when it has the focus, you would

use the following logic:

IF the Birth Date field’s focused option is set to ″on″, THEN its bgcolor is yellow.

Otherwise (ELSE), the bgcolor is white.

The XFDL Event Model 5

To create a compute that uses the focused option to change the item’s background

color:

1. Open the form in the Designer and select the item that will have its content

changed depending upon the position of the input focus.

2. Select Source.

v The Code View window appears.
3. In the Code View window, create the compute in the bgcolor option. For

example:

 <bgcolor compute="Birth_Date.focused == ’on’ ? (’yellow’)

 : ’white’"></bgcolor>

Note: Because the focused option is created and destroyed by the form, you do not

have to include it in your XFDL code to use it in the compute. For more

details on the focused option, refer to the XFDL Specification.

Using focuseditem

The focuseditem option specifies which item in the page currently has the input

focus and stores its sid. It is valid for the page global only.

Example

The following shows how the dynamic Help messages at the bottom of the form

changes depending upon the part of the form that has the focus. In diagram A, the

focus is on the page, and there is no Help message. In diagram B, the focus is on

the Birth Date field, and the Help message contains instructions for completing the

field. When a user clicks the Birth Date input field, the input focus shifts to that

field.

This message changes dynamically,
depending on the location of the input

focus.

Working with focuseditem in the Designer

To create a focuseditem compute:

6

1. Open the form in the Designer and select the item that will display the form’s

help messages.

2. Select Source.

v The Code View window appears.
3. In theCode View window, create the compute and its dereference. For

example:

<value compute="global.focuseditem->help->value"></value>

Note: Because the focuseditem option is automatically created and destroyed by

the form, you do not have to include this option in the form before referring

to it in the compute. For more details about the focuseditem option,

dereferences, or computes, refer to the XFDL Specification.

Using keypress

The keypress option stores the last keystroke made by the user, and is valid for the

following items:

v button v field v radio

v check v list v page global

v combobox v popup v form global

For the form global, keypress stores the last keystroke made for any valid items on

the form. For the page global, keypress stores the last keystroke made for any valid

item on that page.

The keypress option is most useful for creating shortcut keys in your forms. Such

keys make it faster for users to access frequently used features. For example, you

might configure your form so that the F2 key submits it.

The keypress option only stores keystrokes that are invalid input for the current

item. For example, if the focus were on a field and the user typed ″a″, an ″a″

would appear in the field and the keypress option would remain empty because ″a″

is valid input for a field. However, if the focus were on a radio button and the user

typed ″a″, the keypress option would be set to ″a″ because the radio button cannot

accept that character as input.

Once the keypress option is set for an item, that value trickles up to the page global

and form global so that it can be accessed at any level of the form.

Example

In the Create New Bank Account form, users can press the F7 key at any time to

cancel the form. F7 is a shortcut key, which activates the Cancel button when

pressed. This occurs regardless of where the focus is at the time the user presses

F7.

Working with keypress in the Designer

If you are using the Designer, you can only create shortcut keys for form items that

are buttons. To create these shortcut keys:

v Select the button that will be the default action item in the form.

v Edit the source code for the default button to specify the desired shortcut key.

The XFDL Event Model 7

To do this:

1. Open the form in the Designer and select the button that you want to use as

the default action item in the form. This is typically a button that performs an

action such as printing, saving, or canceling the form.

2. Select Source.

3. In the Code View window, edit the global option vfd_default so that the desired

shortcut key is attached to the default button.

v The Code View window appears.
v For example, if you want to cancel the form using the F7 key, then use F7

with the toggle and set functions:

<vfd_default compute="toggle(keypress, ’’, ’F7’) ==’1’

 ? (set(’cancelButton.activated’, ’on’)) : ’’"></vfd_default>

Note: The Designer only allows you to attach shortcut keys to buttons that are

declared as default items. If you want to attach shortcut keys to other items,

refer to the following section, called ″Working with keypress in a text

editor″.

Using Mouseover

The mouseover option recognizes whether the mouse pointer is currently positioned

over the item, and stores one of the following values:

v on — The mouse is over the item.

v off — The mouse is not over the item.

The mouseover option is valid for the following items:

v button v combobox v list v toolbar

v check v field v popup v page global

For the page global, mouseover stores whether the mouse is over that page. For

example, if you were working with Page1 of a form, the mouseover option for Page2

would be off. Similarly, if you were working with Page1 of a form, but the mouse

was over a different window (such as your email client), the mouseover option for

Page1 would be off.

Example

The following diagrams show how the mouseover option can change the text of a

button:

8

Notice how the caption on the button changes from Convert Date to Click Me.

In the first diagram, the mouse pointer is positioned over the page, but not over

any particular form item. Therefore, the mouseover options are set to:

v off for every item on the page.

v on for the page.

In the second diagram, the mouse pointer is positioned over the Convert Date

button. In this case the mouseover options are set to:

v on for the Convert Date button.

v off for every other item on the page.

v on for the page, since it contains the Convert Date button.

Working with mouseover in the Designer

To change the value of a form item (in this case, a button) based on the mouseover

option, you must insert an If/Then/Else statement into the value option of the

button. For example:

IF mouseover is set to ″on″, THEN the button says ″Click Me″. Otherwise (ELSE),

it reads ″Convert Date″.

To create a compute that uses the mouseover option to change a button’s text:

1. Open the form in the Designer and select the button whose caption you want

to change dynamically. For example, the Convert Date button.

2. Select Source.

v The Code View window appears.
3. In theCode View window, create the compute in the value option. For example:

 <button sid="convertDateButton">

 <value compute="mouseover == ’on’ ? ’Click Me’

 : ’Convert Date’"></value>

 <type>select</type>

 </button>

Note: Because the mouseover option is automatically created and destroyed by the

form, you do not have to include this option in the form before referring to

it in the compute. For more details about the mouseover option,

If/Then/Else statements, or computes, refer to the XFDL Specification.

The XFDL Event Model 9

Using printing

The printing option indicates whether the form is currently printing. This value

toggles from off to on just before printing. Any computes that rely on this option

are updated before the form prints. This allows you to make computed changes to

the form just before it is printed.

The printing option is valid for the form global only.

Example

As many users do not have a color printer, we would like the background color of

the Create New Bank Account form to change to white when users print it.

Triggering this change off of the printing event ensures that the form’s background

color is changed, no matter what method users employ to print the form, be it a

short-cut key, the Print button on the toolbar, or the Print button in the form.

The following diagrams show how the printing option can trigger a change to the

background color of the form:

Working with printing in the Designer

To change the background color of the form while the form is printing, you must:

v Create an If/Then/Else statement which specifies that when the printing option

is ″on″ its background color should change accordingly.

For example, to set the form background color while the form is printing, you

would use the following logic:

IF the printing option is set to ″on″, THEN its bgcolor is white. Otherwise (ELSE),

the bgcolor is navajo white.

To create a compute that uses the printing option to change the form’s background

color:

1. Open the form in the Designer.

10

2. Select Source.

v The Code View window appears.
3. In theCode View window, create the compute in the form global’s bgcolor

option. For example:

 <bgcolor compute="global.global.printing == ’on’

 ? (’white’) : ’navajo white’"></bgcolor>

Note: Because the printing option is created and destroyed by the form, you do

not have to include it in your XFDL code to use it in the compute. For more

details about the printing option, refer to the XFDL Specification.

Where to Find More Help

v To find out more about XFDL and related syntax, refer to the XFDL Specification.

v To find out more about creating forms using Workplace Forms Designer, refer to

the IBM® Workplace Forms Designer Getting Started Manual and the Designer Help.

The XFDL Event Model 11

12

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003, 2006 13

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Office 4360

One Rogers Street

Cambridge, MA 02142

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

AIX

IBM

Workplace

Workplace Forms

Other company, product, or service names may be trademarks or service marks of

others.

14

����

Program Number:

Printed in USA

S325-2602-00

	Contents
	The XFDL Event Model
	What is the XFDL Event Model?
	About the Event Model Options
	Using activated
	Example
	Working with activated in the Designer

	Using dirtyflag
	Example
	Working with dirtyflag in the Designer

	Using focused
	Example
	Working with focused in the Designer

	Using focuseditem
	Example
	Working with focuseditem in the Designer

	Using keypress
	Example
	Working with keypress in the Designer

	Using Mouseover
	Example
	Working with mouseover in the Designer

	Using printing
	Example
	Working with printing in the Designer

	Where to Find More Help

	Appendix. Notices
	Trademarks

