
IBM® Workplace Forms™

Best Practices for Form Design

Version 2.6.1

S325-2603-00

���

Note

Before using this information and the product it supports, read the information in “Notices,” on page 71.

First Edition (September 2006)

This edition applies to version 1, release 2.6.1 of Workplace Forms and to all subsequent releases and modifications

until otherwise indicated in new editions.

This edition replaces version 1, release 2.6 of Workplace Forms.

© Copyright International Business Machines Corporation 2003, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Introduction 1

Who Should Read This Document 1

General Best Practices 3

Topics Discussed 3

Using Four Digit Dates 3

Do Not Use Smartfill To Store Sensitive Data . . . 4

Localizing Forms 5

Do Not Use a Text Editor to Create Your Form . . . 5

Do Not Use a Single Field for Entering Large

Amounts of Text 6

Use SSL Authentication Page 6

Do Not Use Progressive JPEG Images 7

Do Not Place Input Items On Top Of Labels 7

Size Check Boxes and Radio Buttons Using Font Size 7

Test Forms at Various Zoom Levels 8

Test Forms Thoroughly 8

Formatting Fields 11

Formatting Phone Numbers 11

Formatting Postal Codes 12

Formatting E-Mail Addresses 14

Creating Accessible Forms 17

Topics Discussed 17

System Requirements 17

Other Resources 18

Provide Appropriate Accessibility Messages . . . 18

Put Label Text Into acclabels 25

Use Field Items To Display Text Information . . . 26

Place Graphics Inside Buttons 28

Minimize and Explain the Use of Dynamic Content 30

Reset the Form’s Tab Order 30

Identify Row and Column Headings 32

Use Contrasting Page Background Colors 33

Use Wizard-Style Forms 34

Avoid Using Clickwrap Signatures 35

Avoid Using Write-Only Fields 37

Turn Off Smartfill 37

Turn Viewer Help On 38

Creating Secure Signatures 41

Topics Discussed 41

Use omit Rather Than keep For Signature Filters . . 41

Use keep To Create Overlapping Signatures . . . 42

Sign Form and Page Global Options 44

Use Custom Items To Store Custom Information . . 45

Sign Item Positioning Information 45

Use Absolute Positioning 47

Use Unique Scope Identifiers For Items 49

Sign Related Items 50

Creating Certificate Filters 53

Use RSA-Compatible Engines 54

Use dialogcolumns To Control The Certificate

Information Displayed To Users 54

Use filteridentity To Limit The Number Of Signing

Identities Displayed To Users 55

Appendix A: Screen Reader

Announcements 57

Placeholder Conventions 57

Appendix B: Certificate Attributes . . . 63

Appendix C: Additional Usage Notes 67

Appendix. Notices 71

Trademarks 72

© Copyright IBM Corp. 2003, 2006 iii

iv

Introduction

This document describes best practices for designing XFDL forms. These best

practices cover a variety of issues, including form security, accessibility, and

regulation compliance.

This document divides form design issues into separate sections. Each section

contains a basic overview of the design issue as well as a number of best practices

for resolving these issues. Each best practice is discussed in the following format:

v Title of Practice — Summarizes the practice and provides a brief overview.

v Why Use This Practice — Explains why using the practice is important and

provides background information for context.

v Example — Provides concrete examples that clarify the concepts behind each

practice.

v Usage Notes — Technical notes about the practice, if necessary.

v Exceptions To This Practice — Alerts you to exceptions to the practice that you

should consider.

Who Should Read This Document

You should read this document if your organization creates or updates forms that

must comply with accessibility and security requirements, withstand legal scrutiny,

or has particular certificate requirements. This document is intended for form

developers who are familiar with:

v General form design principles

v Digital signatures

v Extensible Forms Description Language (XFDL)

v IBM® Workplace Forms™ Designer

v Digital certificates

For more information about XFDL, refer to the XFDL Specification. For more

information about the Designer refer to IBM Workplace Forms Designer Getting

Started guide.

© Copyright IBM Corp. 2003, 2006 1

2

General Best Practices

This section describes general best practices for form design. Practices that involve

adding formats to fields, signature security, accessibility, or certificate filters are

discussed in later sections.

Topics Discussed

This section discusses the following best practices:

v “Using Four Digit Dates.”

v “Do Not Use Smartfill To Store Sensitive Data” on page 4.

v “Localizing Forms” on page 5

v “Do Not Use a Text Editor to Create Your Form” on page 5

v “Do Not Use a Single Field for Entering Large Amounts of Text” on page 6

v “Use SSL Authentication Page” on page 6

v “Do Not Use Progressive JPEG Images” on page 7

v “Do Not Place Input Items On Top Of Labels” on page 7

v “Size Check Boxes and Radio Buttons Using Font Size” on page 7

v “Test Forms Thoroughly” on page 8

Using Four Digit Dates

Using four digit dates allows you to avoid the difficulties associated with using

only two digits to represent a year (the Year 2000 problem).

Why Use This Practice

Using four digit dates ensures that your forms and applications are always ’Year

2000’ compliant.

The Year 2000 problem occurs when software or hardware handles dates by storing

the year in two digits (for example, 99 for 1999), and assumes that the two missing

digits are 19. It will display January 6, 1900 and January 6, 2000 the same way

(06/01/00) and will interpret both as January 6, 1900.

When handling dates of January 1, 2000 or greater, this becomes an issue. While

the Viewer is guaranteed to be Year 2000 compliant (that is, it uses a sliding scale

to determine whether two digit dates should be read as 19xx or 20xx), the same is

not necessarily true for other applications and third-party technology. To ensure

Year 2000 compliance with all of your forms applications, you should ensure that

your forms use four digit dates.

Example

The easiest way to ensure that your forms always use four digit dates is to set the

format option of items that collect date information. The following code sample

shows an item with a format option with a datatype of date and a presentation style

of long. This format automatically renders Jan. 31, ’03 as 31st January 2003.

© Copyright IBM Corp. 2003, 2006 3

<format>

 <datatype>date</datatype>

 <presentation>

 <style>long</style>

 </presentation>

 </format>

Usage Notes

1. In fields, lists, popups, combo boxes (and sometimes labels) that display a year,

always use formats that require and display the year in four digits.

v Always set a data type of date or year.

v Do not create a field without a data type.

v For year fields, set a format type of abbreviated, numeric or long, or create a

customized formatting template that stores the year as four digits.

v Do not use short format for dates, and do not create a customized formatting

template that converts the year to two digits.

v For date fields, set a format type of abbreviated, numeric or long, or a

customized formatting type that stores the year as four digits.

v Never create customized formatting templates that stores the year as two

digits.
2. Always ask your users to enter the year in four digits. Create a label above

data entry fields that prompts users to type the date correctly. In the help

associated with the field, include instructions to use a four digit year.

3. Always send dates to your database in four digit format.

Exceptions To This Practice

There are no exceptions to this practice.

Do Not Use Smartfill To Store Sensitive Data

Do not use Smartfill data fragments to store sensitive data, such as banking

information, credit card information, or personal ID numbers.

Smartfill is a feature that automatically fills out portions of a form in the Viewer.

This is accomplished by storing commonly used information, such as the user’s

name and address, on the user’s computer. The Viewer can then access this

information at any time, using it to automatically complete sections of forms that

require it.

The first time the Viewer opens a Smartfill form, data from the form is saved to

the user’s computer. Thereafter, each time the Viewer encounters the same Smartfill

data, the Viewer will offer to automatically complete that section of the form for

the user.

Why Use This Practice

The data fragments used by Smartfill are stored on users’ computers, which means

that other users may be able to access that information. For this reason, you should

never use Smartfill to store sensitive information, such as credit card numbers.

Example

No example provided.

4

Exceptions To This Practice

There are no exceptions to this practice.

Localizing Forms

You should localize your forms to suit the locale (country and language) in which

they will be used.

Why Use This Practice

Every locale uses different symbols to express common concepts, such as

currencies, decimal and grouping separators, and mathematical symbols.

Furthermore, most locales express dates and times in different ways as well. To

ensure that your form displays this information correctly, you need to localize your

forms.

Example

To localize your form, you need to configure it to:

v Set the locale

v Select an appropriate font

v Set an appropriate page size

v Correctly format XFDL items

v Create localized signatures

For detailed information on creating localized forms, see the Locale Specification for

XFDL.

Exceptions To This Practice

There are no exceptions to this practice.

Do Not Use a Text Editor to Create Your Form

Some text editors will automatically add a byte-order mark (BOM) to documents.

If you use a text editor to edit a form, configure your editor so it does not add a

BOM to UTF-8 encoded documents. (See your text editor’s documentation for

details.)

Why Use This Practice

The Viewer and API cannot read UTF-8 encoded forms that have a BOM and will

produce the following error: Unable to load form: Invalid document structure.

Example

No example provided.

Usage Notes

To remove a BOM from a form, open the form in the Designer and save it.

General Best Practices 5

Exceptions To This Practice

There are no exceptions to this practice.

Do Not Use a Single Field for Entering Large Amounts of Text

Do not require users to enter a large amount of text within a single field. If you

expect users to enter several lines of text within a field, inform your users of the

maximum number of characters they should enter. If the user input can be

naturally divided into components, provide several separate fields for entering

each component.

Why Use This Practice

Text fields that the Viewer displays can support up to 500K of text. If the user tries

to insert more than 500K of text (about 7,500 lines in a 60-character wide field), the

text will be truncated at the 500K mark.

Example

No example provided.

Exceptions To This Practice

There are no exceptions to this practice.

Use SSL Authentication Page

If your users are going to perform submissions using SSL under Internet Explorer

5.0 or 5.5, we recommend that you implement an HTML page that requires SSL

authentication, and that users must view before opening a form.

Why Use This Practice

Under Internet Explorer 5.0 and 5.5, the submission of a form using SSL will fail if

the browser presents any SSL related dialog box. This is primarily of concern when

the browser presents a dialog requesting that the user choose an SSL identity (that

is, a certificate). Once the user has selected an SSL identity, subsequent submissions

will work properly.

If your users are going to perform submissions using SSL under Internet Explorer

5.0 or 5.5, we recommend that you implement an HTML page that requires SSL

authentication, and that users must view before opening a form. This forces the

selection of the user’s SSL identity. Once the SSL identity is selected, the browser

will not present the selection dialog box again, and SSL submissions will succeed.

Note: Users who protect their certificates with a password may still need to enter

that password, but this will not prevent a successful submission.

Example

No example provided.

6

Exceptions To This Practice

If all of your users are using Internet Explorer 6.0 or higher, you do not need to

follow this practice.

Do Not Use Progressive JPEG Images

Do not use Progressive JPEG images in your forms.

Why Use This Practice

The Viewer supports Standard JPEG image formats and does not support

Progressive JPEG image formats. If your image is a Progressive JPEG, you will

need to open it in a graphics program and save it as a Standard JPEG.

Example

No example provided.

Exceptions To This Practice

There are no exceptions to this practice.

Do Not Place Input Items On Top Of Labels

Avoid placing input items (such as fields, buttons, popups, lists, comboboxes,

radios, and check boxes) on top of labels.

Why Use This Practice

When input items are placed on top of labels, the user cannot use the mouse to

give the items the focus or to interact with the item (for example, the user cannot

click a check box to turn it on or off). The user must use the Tab key to move to

the item and the keyboard to enter information in the item.

Example

No example provided.

Exceptions To This Practice

There are no exceptions to this practice.

Size Check Boxes and Radio Buttons Using Font Size

To change the drawn size of a check box or radio button, change the font size of

the item.

Why Use This Practice

In the Viewer, the size option in check and radio items changes the size of the

bounding box around the check box and radio button, not the item’s actual drawn

size.

General Best Practices 7

Example

No example provided.

Exceptions To This Practice

There are no exceptions to this practice.

Test Forms at Various Zoom Levels

Test your form thoroughly using various zoom levels. If you notice any problems

with text or fields, either use a different font or instruct your users to view the

form at 100% zoom level.

Why Use This Practice

Some fonts do not scale well when zooming the form, which may cause text to

appear cut off in some fields. This problem is most noticeable in fields that are

either very small or very large.

Example

No example provided.

Exceptions To This Practice

There are no exceptions to this practice.

Test Forms Thoroughly

You should always test your forms before releasing them for general use. Don’t

forget to test your forms using all of the accessibility software that a person with

disabilities may use. Tests should include:

v Turn on your focus indicator.

v Use various zoom levels.

v Check tab order.

v Verify that all the computes work.

v Use a screen magnifier.

v Review the forms with the three supported screen readers.

v Use keyboard commands only. (Do not use a mouse - many users with

disabilities cannot navigate with a mouse.)

v Close your eyes or turn off your monitor.

Why Use This Practice

Testing your forms ensures that the user experience is easy and intuitive. Tab order

should proceed as expected by your users (left-to-right, right-to-left, or top-down

depending on the locale), computes should function properly (taking users to

correct pages, making items visible or available as required, and so on), and

selected fonts should scale properly at all zoom levels so that text is always visible.

Testing your forms is especially important for users with disabilities who need to

use accessibility tools to access forms. This practice ensures that all visual elements

in the form are represented by text that the screen readers can read aloud, that

8

tabbing sequences include all form items and proceed in a logical order, and that

the form’s background colors clearly contrast with text, mandatory and invalid

fields, and the focus indicator.

Example

No example provided.

Exceptions To This Practice

Currently there are no exceptions to this practice.

General Best Practices 9

10

Formatting Fields

Formatting fields allows you to create datatype, presentation, or constraint rules on

data entered into the field. This allows you to add currency symbols to currency

fields, pre-format dates, phone numbers or social insurance numbers, zip codes

and so on.

This section provides examples for creating some of the most popular field

formats. The following topics are discussed:

v “Formatting Phone Numbers.”

v “Formatting Postal Codes” on page 12.

v “Formatting E-Mail Addresses” on page 14.

Formatting Phone Numbers

Phone number fields come in a number of formats. Some locales may include

periods, others dashes, while others include parentheses. In your form, you may

want to accept a wide range of phone number formats, force a particular phone

number format, or ensure that users can only input numbers and not letters. You

can do this by defining the field’s presentation format and providing input

constraints.

Input Constraints

If you are creating a form that may have an international audience, it is best to

accept a wide range of phone number formats. In particular, you must specify the

patterns that the phone number field will accept. For example, to specify a three

digit area code followed by a seven digit phone number, you would create a

pattern that allows:

1. optional parentheses around a three digit area code

2. optional dash, dot, or space

3. 3 digits

4. optional dash, dot, or space

5. 4 digits

You must use a Unix-style regular expression to specify this pattern. For example,

the following regular expression creates the pattern described above:

 (?(\d{3})\)?[[-.][:whitespace:]]?(\d{3})[[-.][:whitespace:]]?(\d{4})

A field formatted with this expression would accept user input formatted in many

ways, including:

v ##########

v (###)###-####

v (###) ###-####

v ### ### ####

v ###.###.####

v ###-###-####

© Copyright IBM Corp. 2003, 2006 11

However, it would reject user input that contained 11 or more numbers or which

included alphabetic characters.

For more information about Unix-style regular expressions, see

http://www.regular-expressions.info/. For detailed information about formatting

fields, see the format option section of the XFDL Specification.

Presentation

For every pattern you create as an input constraint, you must have a

corresponding presentation patternref. The patternref allows you to specify how the

user’s input is displayed in the form. For example, if you want to display the user

input as ###-###-#### you need to specify that dashes are placed between each

string of digits. You must use a Unix-style regular expression to specify this

pattern. For example:

 $1-$2-$3

Examples

The following code sample shows how to accept multiple phone number formats

while ensuing that the data is displayed as ###-###-####. For example,

123-456-7890.

 <field sid="FIELD2">

 <label>Phone Number</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <patterns>

 <pattern>\(?(\d{3})\)?[[-.][:whitespace:]]?(\d{3})[[-.]

 [:whitespace:]]?(\d{4})</pattern>

 </patterns>

 </constraints>

 <presentation>

 <patternrefs>

 <patternref>$1-$2-$3</patternref>

 </patternrefs>

 </presentation>

 </format>

 <value></value>

 </field>

Exceptions To This Practice

There are no exceptions to this practice.

Formatting Postal Codes

Postal codes (also known as post codes or ZIP codes) are a series of characters

appended to a postal address for the purpose of sorting mail. Most countries use 4,

5, 6, or 9 digit numeric strings, while others use both numbers and letters. In your

form, you may want to accept a wide range of valid postal code formats while

filtering invalid ones. You can do this by defining the field’s presentation format

and providing input constraints.

Input Constraints

12

http://www.regular-expressions.info/

In particular, you must specify the patterns that the postal code fields may accept.

For example, to specify a Canadian postal code (two sets of three alternating

alphanumeric characters, such as V9A 1G2) you would create a pattern that allows:

v a letter

v a number

v a letter

v an optional space

v a number

v a letter

v a number

You must use a Unix-style regular expression to specify this pattern. For example,

the following regular expression creates the pattern described above:

 ([A-Za-z]{1}[0-9]{1}[A-Za-z]{1})\s?([0-9]{1}[A-Za-z]{1}[0-9]{1})

A field formatted with only this expression would accept user input formatted in

only two ways:

v x#x #x#

v x#x#x#

To add additional postal code styles, you need to add additional acceptable

patterns. For example, to add 4, 5, or 6 character digit strings, or a 9 digit string

that may contain a dash, you would add the following patterns:

 (\d{4})

 (\d{5})

 (\d{6})

 (\d{5})-?(\d{4})

For more information about Unix-style regular expressions, see

http://www.regular-expressions.info/. For detailed information about formatting

fields, see the format option section of the XFDL Specification.

Presentation

For every pattern you create as an input constraint, you must have a

corresponding presentation patternref. The patternref allows you to specify how the

user’s input is displayed in the form. If there are multiple patterns, the first

patternref corresponds to the first pattern, the second patternref corresponds to the

second pattern, and so on. You must use a Unix-style regular expression to specify

this patternref. The follow example shows the patternrefs for the 6 character

alphanumeric code, the 4, 5, and 6 digit codes, and the 9 digit code that contains a

dash:

 $1 $2

 $1

 $1

 $1

 $1-$2

Note that the patternref for the 4, 5, and 6 digit codes is exactly the same

(indicating a single string). However, each must be listed separately to ensure they

correspond with the correct input constraint pattern.

Formatting Fields 13

http://www.regular-expressions.info/

Examples

The following code sample shows how to accept multiple postal code formats and

allow them to display in the format chosen by the user. This example also uses

casetype to ensure that any letters are displayed as upper case:

 <field sid="FIELD4">

 <label>Postal/ZIP code</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <patterns>

 <pattern>([A-Za-z]{1}[0-9]{1}[A-Za-z]{1})\s?([0-9]{1}[A-Za-z]

 {1}[0-9]{1})</pattern>

 <pattern>(\d{4})</pattern>

 <pattern>(\d{5})</pattern>

 <pattern>(\d{6})</pattern>

 <pattern>(\d{5})-?(\d{4})</pattern>

 </patterns>

 </constraints>

 <presentation>

 <patternrefs>

 <patternref>$1 $2</patternref>

 <patternref>$1</patternref>

 <patternref>$1</patternref>

 <patternref>$1</patternref>

 <patternref>$1-$2</patternref>

 </patternrefs>

 <casetype>upper</casetype>

 </presentation>

 </format>

 <value></value>

 </field>

Exceptions To This Practice

There are no exceptions to this practice.

Formatting E-Mail Addresses

E-mail addresses only come in one format: a string of alphanumeric characters

(which may include punctuation symbols), followed by the @ sign, and concluded

with a domain name. There are two primary ways to format e-mail address fields:

v To accept any e-mail address

v To accept only e-mail addresses from a particular domain

Accepting Any E-Mail Address

To format a field to accept any e-mail address (and reject any data that is not an

e-mail address), you must create an input constraint pattern. You must use a

Unix-style regular expression to specify this pattern. For example, the following

regular expression configures a field to accept any e-mail address, but rejects any

that do not contain an @ symbol or domain name:

 (?:[A-Za-z0-9]+[._]?){1,}[A-Za-z0-9]+\@(?:(?:[A-Za-z0-9]+[-]?){1,}

 [A-Za-z0-9]+\.){1,}[A-Za-z]{2,4}

For more information about Unix-style regular expressions, see

http://www.regular-expressions.info/. For detailed information about formatting

fields, see the format option section of the XFDL Specification.

14

http://www.regular-expressions.info/

Accepting Only E-Mail Addresses From a Specific Domain

To format a field to only accept e-mail addresses from a particular domain, you

must create an input constraint pattern that specifies the required domain name.

You must use a Unix-style regular expression to specify this pattern. For example,

the following regular expression configures a field to accept only e-mail addresses

with an IBM domain:

 (?:[A-Za-z0-9]+[._]?){1,}[A-Za-z0-9]+\@ibm\.com

For more information about Unix-style regular expressions, see

http://www.regular-expressions.info/. For detailed information about formatting

fields, see the format option section of the XFDL Specification.

Examples

The following code sample shows how to create a field that accepts any e-mail

address:

 <field sid="FIELD24">

 <label>E-Mail Address</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <patterns>

 <pattern>(?:[A-Za-z0-9]+[._]?){1,}[A-Za-z0-9]+\@

 (?:(?:[A-Za-z0-9]+[-]?){1,}[A-Za-z0-9]+\.){1,}[A-Za-z]

 {2,4}</pattern>

 </patterns>

 </constraints>

 </format>

 <value></value>

 </field>

The following code sample shows how to create a field that accepts only e-mail

addresses from a particular domain:

 <field sid="FIELD25">

 <label>E-Mail Address</label>

 <format>

 <datatype>string</datatype>

 <constraints>

 <patterns>

 <pattern>(?:[A-Za-z0-9]+[._]?){1,}[A-Za-z0-9]+\@ibm\.com</pattern>

 </patterns>

 </constraints>

 </format>

 <value></value>

 </field>

Exceptions To This Practice

There are no exceptions to this practice.

Formatting Fields 15

http://www.regular-expressions.info/

16

Creating Accessible Forms

With the release of Section 508 of the Rehabilitation Act, the US government has

issued a set of regulations describing minimum accessibility standards for

information technologies. These regulations have two important goals:

1. To give members of the public who have disabilities equal access to

government services.

2. To ensure that persons with disabilities have equal access to employment

opportunities with the federal government.

If your organization is impacted by these regulations or have other reasons to

adopt accessibility standards, you should review the following topics and

incorporate them into your forms design process.

Topics Discussed

This section describes practices you should follow whether you are designing new

forms to be accessible or updating existing ones. The emphasis is on issues that

apply to XFDL forms that will be read by screen reading software. It includes the

following topics:

v “Provide Appropriate Accessibility Messages” on page 18.

v “Put Label Text Into acclabels” on page 25.

v “Use Field Items To Display Text Information” on page 26.

v “Place Graphics Inside Buttons” on page 28.

v “Minimize and Explain the Use of Dynamic Content” on page 30.

v “Reset the Form’s Tab Order” on page 30.

v “Identify Row and Column Headings” on page 32.

v “Use Contrasting Page Background Colors” on page 33.

v “Use Wizard-Style Forms” on page 34.

v “Avoid Using Clickwrap Signatures” on page 35.

v “Avoid Using Write-Only Fields” on page 37.

v “Turn Off Smartfill” on page 37.

v “Turn Viewer Help On” on page 38.

System Requirements

The Viewer supports the following screen readers:

v JAWS 5.0

v Microsoft® Narrator

v Microsoft Eyes

While the Viewer is compatible with Internet Explorer, Netscape, and Mozilla

browsers, only IE supports Microsoft Narrator and Microsoft Eyes screen readers.

© Copyright IBM Corp. 2003, 2006 17

Other Resources

Whether a given XFDL document complies with Section 508 regulations depends

almost entirely on its design. While these practices will help you create XFDL

forms that integrate with screen readers and magnifiers, you will also have to

consider several other accessibility design issues not covered here. This document

does not address general accessibility practices for form design. If you need more

information on this subject, refer to these online resources:

v www.w3c.org/WAI/ — The Web Accessibility Initiative web site explores

technology, guidelines, tools, education and outreach with the goal of improving

access to the Internet.

v www.microsoft.com/enable/ — Discusses Microsoft’s built-in accessibility

features.

v www.access-board.gov/sec508/508standards.htm — Electronic and information

technology accessibility standards published by the US Architectural and

Transportation Barriers Compliance Board.

v www-3.ibm.com/able/ — Product and service information for people with

disabilities.

v ncam.wgbh.org/webaccess/ — Accessibility projects by the National Centre for

Accessible Media.

Provide Appropriate Accessibility Messages

To meet the accessibility needs of all the users of your form, you must provide

descriptive help messages for most items on the form. However, adding these help

messages directly to a form’s text leaves the form appearing cluttered and

over-complicated to sighted users. Furthermore, most screen readers cannot

recognize label items and therefore cannot announce their contents.

This problem is solved through the use of accessibility labels or acclabels. Acclabels

allow you to add completion instructions and item descriptions to each item. All

the supported screen readers recognize and read acclabels, but users who do not

used screen readers will be unaware of the acclabel’s presence.

You can assign acclabels to any item that is capable of receiving input focus.

Why Use This Practice

Although the supported screen readers recognize most items that appear on a

form, the default information they provide is generally insufficient to allow users

with visual disabilities to complete a form. As a result, you must provide all the

necessary information in the item’s accessibility message. In fact, without adequate

help information your form may not meet minimum accessibility requirements.

Here are some general practices that will help you create useful messages:

v For interactive items such as fields, lists, buttons, and so on, use verbs that

indicate the type of action the user must perform. Some good choices are: type,

select, check, and press. Avoid using ″enter″ because it is too vague.

v Mention whether completion of the item is optional or mandatory. You may

choose to only mention this for items that are mandatory.

v In the case of fields that only accept certain types of input, explain the format

requirements (such as text, numeric, date, and so on). Be as descriptive as

necessary.

18

v Be consistent in the amount and type of information you provide. For example,

if you decide to only indicate which fields are mandatory, do not unexpectedly

mention that a certain field is optional.

v Use consistent language for items of the same type. For example, you might

decide to use the phrase ″Select a choice from the list.″ as part of the

accessibility message for popup lists. In that case, you should use the same

phrase for every popup list on the form.

v You should consider the experience level of the users of your form. If you expect

users to be fairly new to computers, you may need to provide more detailed

instructions. On the other hand, if users are experienced or will be using the

same form frequently, you may choose to provide shorter messages.

v If the Help functionality is turned on, the screen readers read an item’s help

message, so acclabels do not need to repeat that content. For details on how to

automatically turn on the Viewer’s Help functionality, see “Use Field Items To

Display Text Information” on page 26.

Example

When building an accessible form, it’s important to be familiar with the supported

screen readers and the default phrases they announce for each item in addition to

your custom accessibility message. Before continuing with this section, you may

want to review “Appendix A: Screen Reader Announcements” on page 57 for this

information.

When creating accessibility messages, try to keep in mind what people with vision

disabilities need to know to use an item. The exact wording of each message will

depend on the item itself and, to some extent, on the overall design of the form.

However, the following examples demonstrate the type of information that you

should provide for each item.

Note: In the following examples, messages automatically provided by a screen

reader are italicized in the text.

Field

The following diagram shows a typical text field with its associated label.

The screen readers announce field messages in the following order:

v label option

v accessibility message

v the value

v screen reader message

v help message

v screen reader tips (JAWS and Narrator only)

Creating Accessible Forms 19

Note: For details on screen reader messages and how they integrate with form

messages, see “Appendix A: Screen Reader Announcements” on page 57.

Fields often have special formatting requirements. For example, mandatory fields

are indicated to sighted users by a yellow shading of the text area. Other special

fields may require specific formatting, such as fields that accept only area codes.

The following diagram shows a mandatory text field.

If users with visual disabilities tabbed into this field, they would be unaware that

the focus is in a mandatory text field unless you provided an accessibility message

for fields. Although screen readers do announce the contents of the field’s label

option, the label does not indicate that the field is mandatory. Additionally, users

with cognitive disabilities may require clear instructions to correctly respond to the

field.

The following code shows a suitable accessibility message for this field:

 <acclabel>

 Mandatory field. Type your last name, first name, and middle initial.

 </acclabel>

As a result, when screen reader users move the focus to this field they will hear:

″Name left parens last, first, and middle initial right parens. Mandatory field. Type

your last name, first name, and middle initial. Edit field is empty.″

Note: You should use the verb ″type″ for fields because this describes the action

that users need to perform to complete this item.

The field in the following diagram contains special formatting constraints. This

field has been formatted to accept phone numbers and area codes. If users do not

enter their area code, they will be informed that their entry is invalid. Note that

the field already provides parentheses and a dash - users only need to type the

correct numbers.

An appropriate accessibility message for this field could be:

 <acclabel>

 Type your area code and phone number into this mandatory

 field. You do not need to type the parenthesis around the

 area code or the dash in the phone number. These symbols

 have been provided for you.

 </acclabel>

20

When users tab to this field, the screen readers announce: ″Phone number. Type

your area code and phone number into this mandatory field. You do not need to

type the parenthesis around the area code or the dash in the phone number. These

symbols have been provided for you. Edit field is empty.″

Note: You should note that the supported screen readers pronounce most

punctuation, including parentheses, number signs, and dashes that appear in

labels, acclabels, and item contents. For example, most screen readers reads

the sequence (###) ###-#### as left parens number number number right

parens number number number dash number number number number. Not

surprisingly, a person with cognitive disabilities could find this confusing.

When writing accessibility messages, try to describe formatting requirements

in words rather than symbols.

Combobox

Comboboxes allow users to enter text or to select a choice from a list, as illustrated

below:

To make comboboxes more accessible to people with visual impairments, you

should indicate the total number of choices in the list. The screen readers

automatically provide instructions for using the combobox.

The combobox messages are read in the following order:

v label option

v accessibility message

v the selected choice

v screen reader message

v help message

v screen reader tips (JAWS and Narrator only)

Note: For details on screen reader messages and how they integrate with form

messages, see “Appendix A: Screen Reader Announcements” on page 57.

Because the screen reader reads the label first, the transition between the

accessibility message and the choice announcement may be awkward. At the end

of your accessibility message, you may want to repeat the name of the combobox.

The following code demonstrates appropriate code for the acclabel of the combobox

in the diagram above:

Creating Accessible Forms 21

<acclabel>

 Type your employment status or select a choice from the list.

 This list contains 4 items. The Employment Status combobox.

 </acclabel>

When screen reader users move the focus to this field they will hear: ″Employment

status. Type your employment status or select a choice from the list. This list

contains 4 items. The Employment Status combobox is empty. This is an editable

combobox. Type in text or use the down arrow key to choose from the list. Type in text.″

As users move through the list, the screen readers read the choices aloud.

Popup List

Popup lists are the easiest method of offering choices to users without using a lot

of space on a form. To make popup lists fully accessible to users with visual

impairments, you should indicate the number of choices in the popup. The screen

readers automatically announces instructions for using popup lists. The following

diagram shows a typical popup list:

Popup messages are read in the following order:

v accessibility message

v label option or selected choice

v screen reader message

v help message

v screen reader tips (JAWS and Narrator only)

Note: For details on screen reader messages and how they integrate with form

messages, see “Appendix A: Screen Reader Announcements” on page 57.

Unlike comboboxes, the screen readers say a popup’s accessibility message before

its label. Therefore, a popup’s accessibility message should fully introduce the item,

but doesn’t need to verify the name of the popup. An appropriate accessibility

message would be:

 <acclabel>

 This popup allows you to select your marital status from a list of 6 choices.

 </acclabel>

22

When users access this popup, the screen readers announce: ″This popup allows

you to select your marital status from a list of 6 choices. Marital Status. This is a

popup list. Use the spacebar or down arrow key to bring up the list. To activate, press

spacebar.″

As users move through the list, the screen readers read the choices aloud.

Check Box

The screen readers read aloud both the check box’s accessibility message and label.

However, form designers frequently use a separate label item for check boxes to

allow more flexible placement options for the label. In that case, to make check

boxes accessible, you should repeat the contents of the label in the acclabel item.

The following diagram shows a check box and its label:

Check box messages are read in the following order:

v label option

v accessibility message

v value

v screen reader message

v help message

v screen reader tips (JAWS and Narrator only)

Note: For details on screen reader messages and how they integrate with form

messages, see “Appendix A: Screen Reader Announcements” on page 57.

As always, the accessibility message should indicate what type of action the user

needs to perform. The following code shows an appropriate help message for this

check box:

 <acclabel>

 Select this check box if you would like an agent to contact

 you directly.

 </acclabel>

Although the message consists of only one sentence, it conveys what action the

user can take as well as the question presented by the label. When users access this

check box, they hear: ″Would you like an agent to contact you directly? Select this

check box if you would like an agent to contact you directly. Check box: checked/not

checked. To activate, press spacebar.″

Radio Button

As with check boxes, form designers frequently use separate label items for radio

buttons. If this is the case, you must provide this information individually for each

radio button by using its accessibility message.

In addition, grouped radio buttons often have a title or caption that applies to the

entire group, as shown in the following diagram:

Creating Accessible Forms 23

Radio button messages are read in the following order:

v label option

v accessibility message

v value

v screen reader message

v help message

v screen reader tips (JAWS and Narrator only)

Note: For details on screen reader messages and how they integrate with form

messages, see “Appendix A: Screen Reader Announcements” on page 57.

Grouped radio buttons typically have a separate label that describes the set of

buttons, as illustrated in the diagram above. You should present this information in

either a read-only field or in the acclabel of the first radio button, so that it is

available to all your users. For details on presenting this information, see “Use

Field Items To Display Text Information” on page 26 or “Put Label Text Into

acclabels” on page 25.

In addition to containing the text that appears on the form, the accessibility

message of the read-only field should indicate that the user is expected to respond

using radio buttons. The following code shows an appropriate message for the text

field shown above:

 <acclabel>

 What did you think of the course? Respond by using the

 following radio buttons.

 </acclabel>

If you prefer not to use read-only fields, you should ensure that this information is

placed in the acclabel of the first radio button.

In either case, you must also create individual accessibility message for each radio

button. For example, the following code shows an acclabel for the ″Excellent″ radio

button:

 <acclabel>Excellent</acclabel>

When users accessed this radio button, they would hear: “What did you think of

the course? Respond by using the following radio buttons. Excellent. Radio button.

x of n. Checked/Not checked. To activate, press spacebar.”

24

Exceptions To This Practice

There are no exceptions to this practice.

Put Label Text Into acclabels

Most forms contain a certain amount of read-only text such as titles, captions,

headings, or instructions. This text is normally displayed using label items. You

should include this text in the acclabel of the appropriate input items.

Note: This practice is an alternative to “Use Field Items To Display Text

Information” on page 26.

Why Use This Practice

Screen readers only announces text from items that receive the input focus.

Because label items are not designed to accept input from the user, they never

receive the focus. As a result, the screen reader cannot read a label’s text. If you

use labels to separate contextual areas on a form, users with visual disabilities may

be unaware of the subject change. If you repeat and expand upon the label

information in the accessibility message of the appropriate items, the screen

readers can inform users of any changes or instructions.

Example

There are a number of situations in which you would use read-only text

information in a form. The following diagram illustrates a section header, followed

by instructions for completing medical information:

The following code creates an acclabel option for the ″Yes″ check box shown in the

previous diagram. Note that the check box acclabel contains all the information

displayed in the section’s read-only labels, including section title, instructions,

sub-heading, and the first question of the section:

 <check sid="LostSight_Yes>

 <acclabel>

 This section of the form records your Medical

 History. It contains a series of questions with yes and no

 check boxes. If you answer yes to any of these questions,

 please explain your response in the Remarks section that

 directly follows the list of questions. Eyesight.

 Question 1. Have you lost the use or sight of either eye?

 Select yes or no. This is the Yes check box.

 </acclabel>

 </check>

Creating Accessible Forms 25

When a screen reader user tabs to this item, they hear: “This section of the form

records your Medical History. It contains a series of questions with yes and no

check boxes. If you answer yes to any of these questions, please explain your

response in the Remarks section that directly follows the list of questions. Eyesight.

Question 1. Have you lost the use or sight of either eye? Select yes or no. This is

the Yes check box. Checkbox: not checked. To activate, press spacebar.”

Usage Notes

When an item receives the focus (for example, by using the tab key to navigate to

the field), screen readers typically announce:

v The label option of the item.

v The accessibility message.

v The contents of the item.

v Any instructions the screen reader automatically adds.

As a result, you should ensure that the item’s label option and accessibility message

do not repeat information. Repeating, conflicting, or out-of-order messaging can be

confusing. If you have items that contain the text of a header, caption, or

instruction label in its accessibility message, do not use a label option to display

labels for those items. Instead, use a separate label item to provide text for sighted

users.

Whether you are using the Designer or a text editor to create or modify your form,

remember:

v For sighted users, create a label item instead of a label option.

v For users with visual disabilities, ensure that you place all relevant information

(section header, instructions, item information, and so on) in the acclabel.

Note: This practice may result in lengthy accessibility messages, which is an

issue for screen readers that limit message length to 256 characters. This

issue can be avoided by splitting instructions across the appropriate items.

Where a sighted user might prefer to read all of the instructions at the

beginning of a section, it is more useful to split the instructions across

multiple items for a vision impaired user. For more information on this

issue, see “Use Wizard-Style Forms” on page 34.

Exceptions To This Practice

If the majority of your intended users have vision impairments, you may choose to

substitute read-only fields for labels containing section headers, instruction,

captions, and so on. For more information on substituting read-only fields, see

“Use Field Items To Display Text Information.”

If your accessibility messages need to be longer than 256 characters, you may need

to re-design your form so that it is simpler to use. For more information, see “Use

Wizard-Style Forms” on page 34.

Use Field Items To Display Text Information

As an alternative to putting label text in acclabels, you may choose to avoid the

use of label items to display text on your forms. Instead, you can use specially

formatted field items to display label text.

26

This practice involves creating read-only fields that receive the focus. This is fine if

the majority of your users have vision impairments. However, keep in mind that

this can reduce the usability of the form for sighted users.

Note: This practice is an alternative to “Put Label Text Into acclabels” on page 25.

Why Use This Practice

Screen readers only read text from items that receive the input focus. Because label

items are not designed to accept input from the user, they never receive the focus.

As a result, the screen reader cannot read a label’s text. For example, if you use

labels to give text instructions for completing a form, users with visual disabilities

will be unaware of those instructions. By using fields instead of labels, you are

ensuring that the information is available to all users. When properly formatted,

such fields are virtually indistinguishable from the labels that they replace and will

not affect the overall layout of your form.

Note: If sighted users tab through a form formatted this way, they will find that

the tab order includes items that appear to be labels, and that a cursor

appears when that item has the focus. This may reduce the usability of the

form for sighted users.

Example

When a field receives the focus (for example, by using the tab key to navigate to

the field), the screen reader first announces the accessibility message for the field,

followed by its contents. The following diagram shows part of a form in which a

field item creates a section heading and gives instructions to the user:

In this case, when screen reader users tab into a read-only field, they hear the

reader announce the contents of the field, general field information, and any

additional acclabel the field may have.

Usage Notes

The ability to provide extra information through an item’s accessibility message is

an important part of making a form accessible. For more information on providing

accessibility messages, refer to page “Provide Appropriate Accessibility Messages”

on page 18.

When you replace a regular label with a field, remember to:

v Not specify a label option for the field.

v Set the field as read-only.

v Set the field as active.

v Disable the border around the field’s contents.

v Specify a custom acclabel item for the field. As a minimum, the accessibility

message should repeat the text that appears on the form. However, it is usually

desirable to make the audible message more descriptive than the text it

supports.

Creating Accessible Forms 27

The following code creates an acclabel item for the “Select Items for Purchase”

heading shown in the previous diagram:

 <acclabel>

 This section of the form allows you to select the type and

 amount of the items you want to purchase. The price is

 automatically calculated for you.

 </acclabel>

When this item receives the input focus, screen reader users hear: “This section of

the form allows you to select the type and amount of the items you want to

purchase. The price is automatically calculated for you. Edit field contains Select

Items for Purchase. Read-only.”

Note: If you use labels to identify other items, such as fields, check boxes, or radio

buttons, you may not need to exchange read-only fields for labels, as these

items can contain their own accessibility messages that describes their

function. As a rule of thumb, simply ensure that the screen readers

pronounces all visible text on the form whether it be through read-only

fields or accessibility messages.

Exceptions To This Practice

Sighted users may find it distracting to see the cursor tab into items that do not

require user input. As a result, you may prefer to put label text into the acclabel of

the first item in the section. For more information, see “Put Label Text Into

acclabels” on page 25.

Place Graphics Inside Buttons

If you want to include graphics on your form, you should place each image inside

a button that has its border turned off.

Why Use This Practice

Section 508 regulations require that there be a text equivalent description of

non-text elements such as images and graphics. The best way to meet this

requirement is to place images and graphics within buttons. This allows you to

place a text description of the image in the button’s accessibility and help

messages. Removing the button’s border maintains the image’s appearance for

sighted users.

When users access the button, the screen readers say the accessibility message

aloud. If Viewer Help is turned on when users tab into the button, the readers

announce the help message while the form displays a hover help. As a result, the

layout of the form is not affected.

Example

The following diagram shows part of a form containing an image of the PureEdge

logo. Because the image is contained within a button, the form designer was able

to use help and acclabel items to display descriptive text about the image.

28

The following code creates the image button shown above:

 <button sid="BUTTON1">

 <itemlocation>

 <value>BUTTON1</value>

 

 <borderwidth>0</borderwidth>

 <acclabel>An image of the PureEdge logo</acclabel>

 <help>HELP5</help>

 <fontcolor>

 <bgcolor>

 </button>

This code creates the help message for the button:

 <HELP sid="HELP5">

 <value>An image of the PureEdge logo.</value>

 </HELP>

Note: Remember, Viewer Help must be turned on before the screen readers can

read the help messages.

Usage Notes

When using buttons to display images you should remember to:

v Specify an invisible border for the button.

v Make the button the same size as the image.

v Include the image button in your tab layout.

You may be tempted to make the button inactive so that users cannot click it.

However, keep in mind that inactive buttons do not receive the focus, and that

users with visions impairments must be able to tab to an item to get an

accessibility message for it.

Note: Remember that help messages are displayed in text on the screen.

Information conveyed in a help message should be applicable for both

sighted users and users with visual disabilities.

Exceptions To This Practice

According to Section 508 regulations, you only need to provide text equivalent

descriptions for non-text elements that ″provide information required for

comprehension of content or to facilitate navigation″. In other words, you do not

need to provide text for graphic elements such as lines, frames, and boxes.

Creating Accessible Forms 29

Minimize and Explain the Use of Dynamic Content

Dynamic content usually consists of XFDL items whose appearance, operation, or

value change at runtime in response to user events involving some other form

element. If you are creating or modifying forms that will be used by people with

special accessibility needs, you should only include dynamic content if it is

essential to the operation of the form. This is particularly true if the dynamic items

significantly affect the layout, appearance, or operation of the rest of the form.

If you find that you must include dynamic content, you should make it as simple

as possible. In addition, you should make every effort to alert users of how the

form changes and which items are affected. The example section below

demonstrates one way of doing this using acclabel items.

Why Use This Practice

Depending on its complexity, dynamic content can have a considerable effect on a

form’s appearance and operation. Although dynamic content is often included to

make forms easier to use, persons with visual or cognitive disabilities may not

always be aware of these changes and may find the form difficult to understand,

or may completely miss changes that affect the overall meaning of the form.

Example

The following diagram shows part of a form containing some simple dynamic

content. When users complete the ″Quantity″ and ″Product″ items, the form

automatically fills in the ″Unit Price″ and ″Amount″ fields.

Although this is a simple example, the form should still identify which fields it

updates automatically. The easiest way to do this is to include this information in

the affected item’s accessibility message. For example, the following code creates

the accessibility message for the first ″Amount″ field:

 <acclabel>

 Amount Column. Row 1. The form automatically calculates this

 amount.

 </acclabel>

Exceptions To This Practice

Currently there are no exceptions to this practice.

Reset the Form’s Tab Order

This practice is a reminder to carefully check and update your form’s tab order.

30

Why Use This Practice

If you modified an existing form to meet Section 508 requirements, you most likely

added a number of items to your form. In that case, you must reset the form’s tab

order so that the focus moves from item to item in a logical order. Keep in mind

that many users with disabilities rely solely on keyboard navigation to review and

complete forms.

In particular, you should include in the tab order any read-only fields that

implement informative text elements such as headings, titles, captions, and

instructions. If the form contains a toolbar item, you should also include the items

that appear in the toolbar.

Example

The following diagram shows a portion of a form in Designer, with the tab order

view enabled. The arrows indicate the tab order.

Note that the title of the form (Product Order Request) is located in a toolbar and

is the first item in the tab order. To include this title in the tab order and make its

accessibility message available to the screen reader, it was implemented using a

read-only field item, rather than a label. Other fields that implement read-only text

include the ″Contact Information″ and ″Select Items for Purchase″ headings. These

items are also part of the tab order so that screen reader can read their accessibility

messages.

Exceptions To This Practice

Currently there are no exceptions to this practice.

Creating Accessible Forms 31

Identify Row and Column Headings

If your form contains items arranged in a table layout, you must identify headings

for each row and column. This involves placing read-only fields with appropriate

accessibility messages at the start of every data column and row.

Why Use This Practice

Section 508 regulations require that row and data columns be identified for data

tables. The goal of this requirement is to ensure that users of assistive technologies

such as JAWS or Microsoft Narrator can correctly interpret tables.

Although XFDL does not support a true table item, it is easy to arrange individual

fields and other items in a grid-like pattern, thereby replicating the functionality of

a table. In such cases, you should provide row and column headings with

accessibility messages that the screen readers can read aloud. You should also

include similar accessibility information for each cell, so that users always know

their current position within the table.

Example

The following diagram shows a table that enables users to select items for

purchase. The table consists of four columns and five rows.

Note that every row and column is identified by a unique heading. Each heading

consists of a read-only field and an accessibility message. The accessibility message

should identify the item as a heading and whether it is a column or row. It is also

helpful to number each column or row. The following code shows the accessibility

message for the ″Unit Price″ column heading:

 <acclabel>Column Heading 3 of 4</acclabel>

When the focus is on the ″Unit Price″ heading, the screen readers announce

″Column heading 3 of 4. Editable text. Unit Price″.

To help users with visual disabilities be aware of their current position within the

table, you should include the column name and row number in the acclabel item

for each cell. For example, the following code creates a accessibility message for

the cell in the third row of the first column:

 <acclabel>

 Quantity Column. Row 3. Type the quantity of the

 product you would like to order.

 </acclabel>

32

Exceptions To This Practice

Currently there are no exceptions to this practice.

Use Contrasting Page Background Colors

You should always use clearly contrasting colors for your text and bgcolors.This

makes your form easier to read and understand. Additionally, you should make

sure your text and background colors are clearly different than the colors the

Viewer uses to display the focus indicator and highlight mandatory and invalid

fields. By default, the Viewer shades mandatory fields in yellow and invalid fields

in red. The focus indicator is always black. The following list shows the RGB

triplet for these reserved colors:

″Mandatory″ Yellow

255 255 208

″Invalid″ Red

255 128 128

″Focus Indicator″ Black

0 0 0

You should either use a page background color that provides adequate contrast

from these colors, or choose new contrasting colors to indicate the mandatory or

invalid status of items.

Why Use This Practice

If the enhanced focus indicator is on, the Viewer displays it as a black square. It

indicates that the item has the cursor. The text entry area of mandatory fields has a

light yellow background, while invalid fields are red. If the background of the

form is a similar color, these fields may become difficult to see for people with

certain vision disabilities.

While you cannot change the color or symbol used by the focus indicator, it is

possible to modify the default colors of the mandatory and invalid fields. For

example, some form designers prefer to use a brighter color to indicate mandatory

fields. By increasing the contrast of mandatory fields, the designers ensure that the

mandatory fields are readily visible to all sighted users.

Example

The following diagrams show part of the same form, but with different page

background colors. Note how the text entry area of the mandatory field seems to

disappear when item borders are off and the page’s background color is set to

Lemon Chiffon (255 250 205).

Creating Accessible Forms 33

Usage Notes

You can make changes to the default mandatory and invalid colors by adding

ufv_settings to the form global:

 <ufv_settings>

 <mandatorycolor>255,165,0</mandatorycolor>

 <errorcolor>HotPink</errorcolor>

 </ufv_settings>

Exceptions To This Practice

As of Viewer 6.2, users with visual disabilities can choose to override form color

settings with high contrast operating system colors. If this option is used, the

Viewer automatically keeps a record of those colors so that the appearance of the

document, when signed, can be recreated.

Use Wizard-Style Forms

You should use wizard-style forms whenever possible. Wizard-style forms are very

simple and easy to use. Unlike forms based on traditional paper forms, which

typically feature pages covered with densely packed labels and fields, wizard-style

forms feature only one or two related questions per page. Users navigate

sequentially through the form using ’Next Page’ buttons.

You can use these page flips to dynamically update the form behind the scenes by

using user information to determine what pages should be shown next, or to

pre-populate other areas of the form with user data. For example, you might

design a form in which one section changes completely depending on whether the

user is single or married. On the first page of the form the user might indicate

whether they are married or single. Then the user clicks a button to flip to the next

page. The content of the next page is based purely on the user’s marital status.

Married users see page two, in which they must provide some information about

their spouse and dependents, while single users skip page two entirely and are

shown page three.

Why Use This Practice

Forms with complex page content can be very difficult for users with visual

disabilities to navigate and complete. While using descriptive acclabels helps to

mitigate these issues, items in complex forms may require longer explanations.

Providing complete explanations within the 256 character limit that the screen

readers impose on accessibility messages can be challenging. Moving from a

traditional form layout to a wizard-style layout minimizes these complexities and

helps to reduce the amount of required accessibility messaging.

Furthermore, dynamically manipulating a traditional-style form’s presentation can

be very confusing for someone who cannot see the changes to a form. For

example, visually impaired users may not notice that mandatory rows have been

added to a table, but they would not be permitted to sign the form until the new

row has been completed. In a wizard-style form, the information required by that

unexpected table row could simply be presented as a new form page in a series of

form pages.

34

Example

The following pictures illustrate a page in which the spousal information

dynamically alters when the user selects the appropriate check box:

In a more complex form, these new fields could easily be missed by users with

visual disabilities. However, in a wizard-style form, you can add a page flip to the

first page, as shown:

In this case, the user clicks the Next button to move to the next page. This brings

up the special ″Spousal Information″ page because the user selected Yes in the

previous page. This makes the dynamically added fields part of the normal flow of

completing the form and provides the user with a more intuitive experience.

Exceptions to this Practice

There are no exceptions to this practice.

Avoid Using Clickwrap Signatures

If you require your users to sign your forms, ensure that you use digital signatures

instead of Clickwrap signatures. Digital signatures use unique digital codes to

identify a signer and authenticate the document’s data. This allows for a very

simple signing ceremony. Clickwrap signatures, on the other hand, do not use

encryption or digital certificates for signing. The Clickwrap signing ceremony

typically identifies signers through a series of questions and answers and may

require users to ’echo’ statements to indicate their agreement with the terms of the

document. As a result, the process of completing a Clickwrap signing ceremony is

more complicated than signing a form with a digital signature. Furthermore, none

of the supported screen reader are capable of reading the entire Clickwrap signing

ceremony.

Creating Accessible Forms 35

Why Use This Practice

None of the three supported screen readers are able to fully read the Clickwrap

signature dialog box. That means valuable signing information is not passed on to

users with visual impairments. This lack of information can make the signing

ceremony confusing for vision impaired users or prevent them from correctly

completing the signing ceremony.

Example

The following examples compare a typical Clickwrap signing ceremony with a

digital signature signing ceremony:

Digital Signature Signing Ceremony Clickwrap Signature Signing Ceremony

As the signing ceremonies open, they appear identical. Signers are required to

simply click the Sign button. At this point, however, the content of the ceremonies

begin to diverge.

In the case of the digital signature signing ceremony, the ceremony is complete

once the Sign button has been clicked. But the Clickwrap signing ceremony has

only just begun. When the Sign button is clicked, users are presented with

questions designed to identify the user and text intended to ensure that the user is

fully informed and accepts the terms of the agreement:

Digital Signature Signing Ceremony Clickwrap Signature Signing Ceremony

36

As you can see, the Clickwrap signing ceremony is more complex than the digital

signature signing ceremony. Given that the screen readers cannot read all of the

text in the Clickwrap signing ceremony, this additional complexity could make it

impossible for users with vision disabilities to sign the form.

Exceptions To This Practice

Currently there are no exceptions to this practice.

Avoid Using Write-Only Fields

You should avoid using write-only fields in your forms as much as possible.

Write-only fields do not display the text typed by the user. Instead, these fields

replace each character with an asterisk. They are frequently used to allow users to

enter sensitive information, such as passwords. However, some screen readers will

read the true text of these fields instead of the replacement characters.

Why Use This Practice

Because some screen readers read the true text contained within write-only fields,

sensitive information such as passwords can be obtained by users with screen

readers. To protect the privacy of your users, you should avoid using write-only

fields wherever possible.

Example

No example provided.

Exceptions To This Practice

If your forms require a write-only field to allow users to enter sensitive

information, you should consider creating a compute that turns the write-only field

invisible once it has been filled in. Screen readers ignore invisible fields and

therefore cannot inadvertently reveal data contained in an invisible field.

Furthermore, you should advise your screen reader users to wear headphones

while completing forms containing sensitive information. This ensures that

personal information cannot be overheard when it is read aloud by the screen

reader.

Turn Off Smartfill

You should advise your users with vision disabilities to turn off Smartfill in their

Viewer preferences.

Smartfill is a feature that automatically fills out portions of a form in the Viewer.

This is accomplished by storing commonly used information, such as the user’s

name and address, on the user’s computer. The Viewer can then access this

information at any time, using it to automatically complete sections of forms that

require it.

The first time the Viewer opens a Smartfill form, data from the form is saved to

the user’s computer. Thereafter, each time the Viewer encounters the same Smartfill

data, the Viewer will offer to automatically complete that section of the form for

the user.

Creating Accessible Forms 37

Why Use This Practice

Unfortunately, none of the three supported screen readers are able to fully read the

Smartfill dialog boxes. Therefore, users with vision difficulties will be unaware

what data is being provided by Smartfill. This could lead users to accidentally

provide information that they do not want to share. In some cases, the lack of

support from the screen readers may cause the users to be unable to proceed

beyond the Smartfill dialog box to the form itself.

Example

No example provided.

Usage Notes

To turn off Smartfill:

1. Click the Preferences button

in the Viewer toolbar or press ALT + F12.

v The Preferences dialog box appears.
2. Click Input Options.

3. Under Smartfill, deselect Enable Smartfill.

4. Click Save.

Exceptions To This Practice

There are no exceptions to this practice.

Turn Viewer Help On

You can set a form to automatically open with the Viewer’s Help mode turned on.

This means that help messages are automatically displayed and read aloud to the

user. However, keep in mind that this can reduce usability for sighted users, and

that this option is best used if you are certain your users have vision impairments.

Help messages give additional instructions for completing items on the form. They

may provide special formatting instructions, or simply offer examples of the

expected response. Help messages may be particularly useful to people using

screen magnifiers or those with cognitive disabilities.

Why Use This Practice

If Viewer help is not turned on, the screen readers cannot read the relevant help

messages. Many users with visual disabilities cannot access the toolbar icon that

turns on Viewer Help, and may be unaware of the shortcut key that turns it on.

This means that unless Viewer Help turns on automatically, many of your users

may be unable to access the help messages they need to complete the form.

Example

To automatically turn on Viewer Help when a form opens, you must create a

custom option that contains a compute that toggles the Viewer function

setHelpMode to on when the form is opened. The following sample shows this

compute:

38

<ViewerHelp_on compute="toggle(global.global.activated,

 ’off’, ’on’) == ’1’ ? viewer.setHelpMode(’on’) : ’’">

 </ViewerHelp_on>

Exceptions To This Practice

There are no exceptions to this practice.

Creating Accessible Forms 39

40

Creating Secure Signatures

This section describes best practices for creating digital signatures and digital

signature filters in XFDL forms. These best practices ensure that users are fully

aware of the form content they are signing, and assures the non-repudiation of

those forms by alerting users of any malicious alteration of the form content. Using

best practices for filtering digital signatures creates secure forms that withstand

rigorous scrutiny.

These best practices do not attempt to describe every potential scenario related to

filtering digital signatures. Instead, it exposes you to sound form-design habits that

will strengthen the security of the signatures in your forms.

Topics Discussed

This section discusses the following topics:

v ″Use omit Rather Than keep For Signature Filters″.

v ″Use keep To Create Overlapping Signatures″.

v ″Sign Form and Page Global Options″.

v ″Use Custom Items To Store Custom Information″.

v ″Sign Item Positioning Information″.

v ″Use Absolute Positioning″.

v ″Use Unique Scope Identifiers For Items″.

v ″Sign Related Items″.

Note: Many of these security practices discuss related issues. Therefore, we

recommend that you read the entire section before creating forms that

require high security.

Use omit Rather Than keep For Signature Filters

When creating signature filters, use the omit flag rather than the keep flag. Digital

signatures with omit flags sign everything in the form except those elements that

you specifically exclude.

Why Use This Practice

Consistently using this practice prevents you from accidentally excluding items

and options that should be signed. If you don’t sign the proper form items and

options, the form is vulnerable to malicious alteration. In turn, this may lead to

forms that will not withstand scrutiny.

When setting filter options with the Designer, omit is the default flag. Accepting

this default ensures that users sign everything except the items and options you

specifically exclude.

If you rely on keep filters, you must specify each item and option the signature is to

sign. This increases the risk that you will miss an item or option you intended to

© Copyright IBM Corp. 2003, 2006 41

include in the signature. Also, using keep filters could subsequently allow someone

to add to the form’s contents without breaking the signature. This is prevented if

you use omit filters.

Note: Filters which use the keep or omit flag include signitems, signoptions,

signgroups, signdatagroups, signitemrefs, signoptionrefs, and signpagerefs.

For more information on filter options and creating digital signatures, see

the Creating Signature Buttons in XFDL document.

Example

There are certain options that form designers must always omit in a form. If you

create your forms using the Designer, it automatically creates the signoptions filter

for you. These options are triggeritem and coordinates. Both of these options are

normally updated after the form is signed. For example, triggeritem is set when you

submit the form, even if you have already signed it.

The following code depicts an omit filter that excludes triggeritem and coordinates:

 <signoptions>

 <filter>omit</filter>

 <optiontype>triggeritem</optiontype>

 <optiontype>coordinates</optiontype>

 </signoptions>

This construction creates a filter that excludes a minimum of information from the

signed form. In general, this is a good practice when creating filters.

Note: When omitting items from the signature, ensure that you secure their

positioning information. For more information, see ″Sign Item Positioning

Information″.

Exceptions To This Practice

An exception to this practice may occur when you are filtering multiple and

overlapping signatures. You should generally use omit for the form’s primary

signature, but you can use keep for a secondary signature if it signs only the

primary signature. For more details, see ″Use keep To Create Overlapping

Signatures″ and ″Sign Item Positioning Information″

Use keep To Create Overlapping Signatures

When creating multiple and overlapping signatures, you may be able to use keep

instead of omit. If you want a secondary signature to sign the primary signature,

you can use keep to sign only the primary signature. For example, you could use

this strategy if you wanted a manager to sign an employee’s information and

signature.

Note: We recommend that you also read ″Use omit Rather Than keep For

Signature Filters″.

Why Use This Practice

This practice simplifies the creation of overlapping signatures, saving form

development time. Your choice of omit or keep for secondary signatures depends on

42

whether the secondary signatures are signing information the primary signature

didn’t. In general, when creating secondary signatures you should consider the

following:

v When the secondary signature signs different information than the primary

signature, use omit to create the secondary signature filters

v When the secondary signature signs the same information as the primary

signature as well as the primary signature itself, you can use keep to have the

secondary signature sign only the primary signature. Since the primary signature

has already locked the contents of the form, the secondary signature only needs

to lock the primary signature itself.

Example

The following diagrams show a form in which the first signature signs the body of

the form, but not the second signature. The second signature then signs the first

signature, and by extensions body of the form. This allows the second signer to

endorse the original signature.

Signature 2Signature 1 Signature 2Signature 1

Signature 1 signs the filled
section of the form.

Signature 2 signs Signature 1
and the filled section of the form.

In the following code sample, SIGNATURE1 and SIGNATURE2 are set as follows:

v Signature1 is the primary signature.

v Signature2 is the secondary signature and signs only BUTTON1 and its

associated signature.

<signitemrefs>

 <filter>omit</filter>

 <itemref>PAGE1.SIGNATURE2</itemref>

</signitemrefs>

Signature1 omits signature2

<signoptions>

 <filter>omit</filter>

 <optiontype>triggeritem</optiontype>

 <optiontype>security_info</optiontype>

</signoptions>

Signature1 also omits

triggeritems, allowing the

user to click buttons without

breaking the signature.

<signitemrefs>

 <filter>keep</filter>

 <itemref>PAGE1.SIGNATURE1</itemref>

 <itemref>PAGE1.BUTTON1<itemref>

</signitemrefs>

Signature2 keeps Button1

and Signature1

Exceptions To This Practice

There are no exceptions to this practice.

Creating Secure Signatures 43

Sign Form and Page Global Options

Set signatures to sign global and page options such as global fonts and background

colors. While omit filters automatically sign form and page globals unless they are

specifically excluded, it is easy to neglect global options when using a keep filter.

However, modification of non-secure global options can effect the entire form.

Note: Form developers will sometimes omit globals because they contain custom

items that need to keep operating after the user has signed the form.

However, custom information should be placed in custom items. See ″Use

Custom Items To Store Custom Information″ Use Custom Items To Store

Custom Information.

Why Use This Practice

If you do not secure your form’s global and page options, someone could alter

these options to obscure what is being signed. For example, someone could change

the background color of a form so that text becomes unreadable.

Global and page options such as global fonts and background colors are not

automatically signed by the keep filter. As a result, it’s best to use omit, which

automatically secures your global and page options unless you intentionally

exclude them from a signature. However, if you must use a keep filter, ensure that

form and page globals are identified in a signoptions or signoptionrefs option. (For

more details on omit and keep, see ″Use omit Rather Than keep For Signature

Filters″, ″Use keep To Create Overlapping Signatures″, and ″Sign Item Positioning

Information″.)

Example

Assume that you have created a one-page form with a grey background color and

black font color. At the bottom of the form, you’ve written a notice in a yellow font

that reads, ″By signing this form, you agree to allow XYZ Inc. to sell information

about you.″

In this scenario, if you haven’t set the signature filters to sign global background

and font colors, it’s possible for someone to change the default background color

from gray to yellow. The new default background would render your notice in

yellow font invisible to the reader. This leaves the signed form vulnerable to

repudiation and XYZ Inc. exposed to possible legal consequences for selling

personal data without permission.

The following code sample shows a keep filter that specifically secures the

background and font color set in a form global and font information set in a page

global. Additionally, it secures custom items placed in the page and form globals

 <signoptionrefs>

 <filter>keep</filter>

 <optionref>global.global.bgcolor</optionref>

 <optionref>global.global.fontcolor</optionref>

 <optionref>PAGE1.global.fontinfo</optionref>

 <optionref>PAGE1.global.custom_items</optionref>

 <optionref>global.global.custom_items</optionref>

 </signoptionrefs>

44

Exceptions To This Practice

There are no exceptions to this practice.

Use Custom Items To Store Custom Information

If you need custom information to update after the user signs the form, place the

information in a custom item rather than in the form or page globals. This allows

you to sign form and page global options without freezing the custom option.

Why Use This Practice

As discussed in ″Sign Global and Page Options″ Sign Form and Page Global

Options, you should set signatures to sign global and page options in a form.

However, if you place custom options in a global item, those options are ’locked’

when the global item is signed. This means that the custom options cannot be

modified after the user signs the form. As a result, if you need to update your

custom information after the user signs the form, you must ensure that the custom

information is placed outside of signed global options.

Example

The following sample shows a custom item that contains a custom option and an

xfdl option:

 <custom:event xfdl:sid="STATUS_EVENT"

 xmlns:custom="http://www.ibm.com/xmlns/prod/XFDL/Custom">

 <xfdl:active>off</xfdl:active>

 <custom:ID>UF45567/home/users/preferences01</custom:ID>

 </custom:event>

Exceptions To This Practice

If locking will not affect your custom item’s functionality (that is, if you don’t need

to alter the value after it has been signed), you do not need to follow this practice.

However, it is still considered good practice to create custom items for storing

custom information.

Sign Item Positioning Information

Item positioning specifies where each item is displayed on a form. When creating

signature filters, always ensure that you secure the positioning information of all of

your form items. Even items that you have omitted from your signitems option

should have a signoptions or signoptionrefs option filter that keeps their item

positions. While itemlocation is the most obvious option that contains positioning

information, there are other options that could potentially effect the location, size,

or appearance of an item, such as size, visible, or scrollhoriz and scrollvert. The

Designer automatically secures these options, unless you choose otherwise.

There are two types of positioning information: absolute and relative. Absolute

positioning requires that you position items using x and y coordinates in pixels.

The relative positioning scheme, however, places items in relation to other items. If

you use relative positioning, you must sign the anchor item so that it cannot be

moved. If someone moves an un-secured anchor item, it automatically displaces all

of the items that are dependent upon it for positioning information. Regardless of

Creating Secure Signatures 45

the type of item positioning you use, you must secure the positioning information

or a malicious user could displace form items and obscure important information.

Using this practice allows you to lock down the appearance and location of items

that otherwise cannot be signed. For example, you might exclude certain compute

items with an omit filter. However, to prevent malicious modification of those

items, you can specify options to secure using the keep filter. For more information

regarding keep filters and itemlocation, see ″Sign Item Positioning Information″

Note: You should set signatures to sign all item positioning information, regardless

of whether positioning is absolute or relative. However, whenever practical,

you should use absolute rather than relative positioning. For more

information, see ″Use Absolute Positioning″.

Why Use This Practice

Setting signatures to sign positioning information helps prevent someone from

using unsigned items and options to obscure signed items. If items are obscured,

readers could potentially misunderstand what they are signing. This may allow

users to repudiate their signed forms based on an incorrect perception of what

they were signing.

Consider an online insurance policy application. If a flaw in a signature filter

permitted someone to obscure contract terms that are crucial to the user’s

understanding, the contract could be successfully challenged.

Example

The following diagrams illustrate a portion of a brokerage application form. In this

form, the check boxes and fields are positioned below the anchor labels using

relative positioning. These anchor labels are not secured by a signature filter. As

you can see in the second diagram, LabelB and its dependent items have been

moved to obscure LabelA and its dependent items.

Label BLabel A

Label B

obscures

Label A

For example, in the following code the signature filter omits LABELB but keeps its

itemlocation:

46

<signitemrefs>

 <filter>omit</filter

 <itemref>PAGE1.LABELB</itemref>

 </signitemrefs>

This signitemrefs option

omits LABELB from the

signature filter.

 <signoptionrefs>

 <filter>keep</filter>

 <optionref>PAGE1.LABELB.itemlocation</optionref>

 <optionref>PAGE1.LABELB.size</optionref>

 <optionref>PAGE1.LABELB.fontinfo</optionref>

 <optionref>PAGE1.LABELB.visible</optionref>

 <optionref>PAGE1.LABELB.value</optionref>

 </signoptionrefs>

This signoptionrefs option

secures LABELB’s

itemlocation.

Usage Notes

If you use an omit signature filter, you automatically secure the form’s item

positioning, except for those items you specifically exclude. If you do exclude some

items with an omit filter, pair it with a keep filter to secure the item positioning

information.

Itemlocation is not the only option that can potentially affect the location, size, or

appearance of an item. If an item is omitted from the signature filter, you should

consider adding all of these options to a keep filter. These options include:

v itemlocation

v fontinfo

v labelfontinfo

v size

v visible

v value

v scrollhoriz

v scrollvert

v fontcolor

v labelfontcolor

v bordercolor

v labelborderwidth

v thickness

Exceptions To This Practice

There are no exceptions to this practice.

Use Absolute Positioning

Absolute positioning allows you to precisely place items by setting their x and y

coordinates in pixels. Each absolutely positioned item contains its own location

and extent information and is therefore independent of other items on the form.

On the other hand, items with relative positioning are positioned in relation to

other items on the form. Their itemlocation information is dependent upon an

anchor item. If you move the anchor item, all of its dependent items move to

maintain their positions relative to the anchor item.

Creating Secure Signatures 47

Why Use This Practice

Relative positioning affects more than the location of items. Relative positioning

can also affect the alignment and size of items. Any adjustments to the location or

size of an anchor item could potentially affect numerous other items. Additionally,

to secure the itemlocation of a relatively positioned item, you must sign the

positioning of the anchor item.

Using absolute positioning guarantees that the location and extent of items are not

reliant on other items. Each item contains its own itemlocation information, making

signature filtering easier and more precise. Therefore, forms with absolute

positioning are more difficult to compromise.

An item’s own itemlocation code is the only factor in determining its absolute

positioning. On the other hand, the same item positioned relatively could depend

on several other anchor items, which in turn could be dependent on still other

items. Displacement of a single anchor item could result in a domino effect of

misplaced and mis-sized items.

Example

The following code samples compare the itemlocation information of an identical

button. The first sample uses relative positioning, while the second uses absolute

positioning.

 <button sid="BUTTON1">

 <value>Print</value>

 <itemlocation>

 <after>LABEL1</after>

 <expandl2c>BUTTON3</expandl2c>

 <offsetx>-94</offsetx>

 <offsety>70</offsety>

 </itemlocation>

 </button>

Relative positioning depends upon a

number of variables. Items may even

be anchored to more than one anchor

item. For example, label1 and button3

 <button sid="BUTTON1">

 <value>Print</value>

 <itemlocation>

 <x>200</x>

 <y>200</y>

 <width>130</width>

 <height>22</height>

 </itemlocation>

 </button>

Absolutely positioned items contain all

of their own itemlocation information.

Exceptions To This Practice

If you are transferring form information from a database table with an indefinite

number of rows, you must use relative positioning. Moreover, some forms have

dynamically created sections, such as a purchase order form that allows users to

add multiple rows. In such cases, you must use relative positioning.

48

Use Unique Scope Identifiers For Items

Scope identifiers, or sids, uniquely identify each item within the XFDL code. Each

item on a page should have a different sid to differentiate it from other items on

that page. You may use the following characters: a-z, A-Z, 0-9, dollar sign ($), and

underscore (_). Spaces are not permitted.

Why Use This Practice

Each item should have a unique sid to so that the Viewer and Designer can tell

them apart. Older versions of the Viewer allow forms to contain duplicate sids, but

treat them unpredictably. For example, computes involving two items that share

the same sid, called duplicate sids, may behave incorrectly, or may not function at

all. As a result, when hand-coding forms you should create unique sids for each

item on every page. It is good practice to choose sids that describe the purpose of

the item, such as ″Print_Button″.

If you create your forms using the Designer, it automatically creates unique sids by

numbering each item as it is created. For example, LABEL1, LABEL2, and so on.

Note: If you open a hand-coded form in Designer 2.0 or later or Viewer 4.5 or

later, they automatically flag duplicate sids as errors and will not allow you

to use them.

Example

You must establish sids in the first line of an item’s code, as shown in the

following example:

<button sid="Print_Button">

However, items on separate pages may have duplicate sids. For example, if you

had a print button on multiple pages, each button’s sid could be ″Print_Button″, as

shown below:

 <page sid="PAGE1">

 <global sid="global"></global>

 <label>PAGE1</label>

 <button sid="Print_Button">

 ...

 </page>

 <page sid="PAGE2">

 <global sid="global"></global>

 <label>PAGE2</label>

 <button sid="Print_Button">

 ...

 </page>

Duplicate sids on separate pages are permitted because each item’s reference

includes the sid of it’s page. Therefore, if a compute involved the first button in

the code above, the full reference would be:

 PAGE1.Print_Button

This allows the Viewer to differentiate between buttons with the same name on

different pages.

Creating Secure Signatures 49

Exceptions To This Practice

There are no exceptions to this practice.

Sign Related Items

Many items point to another item for their values, images, and help messages.

These items are considered related. Related items include lists, popups, and

comboboxes with cells, buttons and images, or any item linked to a help message.

For the best security, when you sign an item, you must sign all related items.

If there is a conflict between signed and unsigned items, you must err on the side

of signing. For example, you can omit a cell group for a popup, but if two popups

use the same cell group and only one popup is signed, then the cell group should

still be signed.

Why Use This Practice

If a signature signs only one item in a related pair of items, the unsigned item can

be modified. For example, someone could alter unsigned cell information even

when the related popup item has been signed. As a result, the content of the form

could be changed after the user has signed it.

While an omit filter automatically signs all items and options that you do not

specifically exclude, keep filters must explicitly list all items and options you want

to secure. Because related items often do not appear as separate items on the form,

it is easy to neglect them in your keep filter. If you are using keep filters, always

double-check that you are securing all related items. For example, images are

stored in separate data items. Items that display images simply contain references

to the data item. Therefore, if you secure a button using a keep filter but forget to

secure the image data, the button’s image is not secured and could be modified.

Example

Assume you are creating a popup with the following two choices visible to the

user:

v ″Please do not sell my personal information″

v ″You may sell my personal information″

When the users sign the form, the popup is secured with a keep filter that does not

specify the popup’s cells.

Once a choice is selected, the scope identifier (SID) of the cell containing the choice

is stored in the popup’s value option. In this example, assume the user chooses

″Please do not sell my personal information″. The SID of this choice is cell1. The

secured popup stores a reference to cell1 in it’s value option. This secures the SID

of the popup, preventing users from selecting a new cell from the popup.

However, the cell itself is not signed. A malicious user could open the form in a

text editor and change the text contained in cell1 so that it no longer reflects the

choice made by the user. For example, the cell’s value could be changed to ″You

may sell my personal information″. Anyone viewing the form after this alteration

would think that the user permitted the company to sell her personal information.

50

Exceptions To This Practice

There are no exceptions to this practice that you should consider

Note: While there are no exceptions to this practice, you should be aware that

conflict resolution between signed and unsigned items must err on the side

of signing. For example, you can omit a cell group for a popup, but if two

popups use the same cell group and only one popup is signed, then the cell

group should still be signed.

Creating Secure Signatures 51

52

Creating Certificate Filters

This section describes practices for creating certificate filters in XFDL forms. These

best practices help form designers ensure that users select the appropriate

certificate for signing forms.

There are two reasons for filtering certificate information within a form’s code:

v To control the certificate information displayed when users select a signature

identity

v To limit the number of certificates displayed when users select a signature

identity

Typically users have more than one digital certificate on their computers. They

acquire the certificates from various Certificate Authorities, using different

signature engines, and each certificate may have a different purpose. As a result,

the Viewer often presents a long list of signing identities when users want to sign

a form. If a form has specific signing requirements, form designers should ensure

that the Viewer displays all the information necessary to enable users to select the

correct signing identity, while limiting extraneous data. Alternatively, designers

could limit certificate choices so that the Viewer only displays applicable signing

identities.

There are two types of certificate filters:

v filteridentity

v dialogcolumns

The dialogcolumns filter is easiest method of controlling the certificate information

that is displayed to the user. It allows you to specify the information displayed to

users so that they can easily choose the correct signing certificate. On the other

hand, filteridentity filters are much more difficult to create for the public, because

they filter for precise values. When you create forms for use by the general public

you are unlikely to know the details of their digital certificates. Filteridentity filters

require exact matches, including spelling, case, and punctuation. Unfortunately,

CryptoAPI and NSS certificates use different strings to report the same

information, preventing an exact match by both signature engines. As a result,

certificate filtering for precise values is only useful when the signer’s digital

certificate contains predictable information. In other words, organizations may

choose to specify which certificates sign in-house documents, but it is not practical

to filter for specific values when creating forms that will be signed by the public.

This section includes the following topics:

v ″Use RSA-Compatible Engines″.

v ″Use dialogcolumns To Control The Certificate Information Displayed To Users″.

v ″Use filteridentity To Limit The Number Of Signing Identities Displayed To

Users″.

For more information on certificate attributes and the values returned by signature

engines, see ″Appendix B: Certificate Attributes″.

© Copyright IBM Corp. 2003, 2006 53

Use RSA-Compatible Engines

You must use RSA-compatible signature engines if you want to create certificate

filters. The only fully RSA-compatible signature engines supported by XFDL are

Microsoft CryptoAPI, Netscape, and generic RSA engines. While some aspects of

certificate filtering are applicable to the Clickwrap engine, this is only true for the

functionality that overlaps with RSA-compatible engines.

Why Use This Practice

If you want to limit the type of certificates that the Viewer displays to the user,

you must designate an RSA-compatible engine, such as CryptoAPI, Netscape, or

generic RSA. These signature engines allow you to fully implement certificate

filtering, by accepting the filteridentity and dialogcolumns parameters. These

parameters are certificate attributes common to X.509 digital certificates. Other

digital certificate providers do not use X.509 certificates, and as a result, PenOp or

Entrust signing engines do not have certificate filtering functionality.

Example

You can specify the type of signature engine that the form should use by adding

an engine parameter to the signformat option. If the engine parameter is blank, or

not included in the option, the Viewer will automatically use the generic RSA

engine, which uses both the Netscape and CryptoAPI engines. For example, the

following code samples demonstrate engine parameters that specify

RSA-compatible engines.

 <signformat>application/x-xfdl; engine="CryptoAPI"</signformat>

 <signformat>application/x-xfdl; engine="Netscape"</signformat>

 <signformat>application/x-xfdl; </signformat>

Exceptions To This Practice

There are no exceptions to this practice.

Use dialogcolumns To Control The Certificate Information Displayed

To Users

The dialogcolumns filter allows you to control the certificate information displayed

to users when they are selecting a signature identity.

When creating dialogcolumns filters, ensure that the information you want to

display to the user actually exists as a certificate attribute. If it does not, the

missing attributes are displayed as blank spaces followed by a comma. For more

information, see ″Appendix B: Certificate Attributes″.

Why Use This Practice

Most digital certificates contain a lot of information regarding the user, the

certificate issuer, and the certificate itself. By default, the signature engines

automatically filter this information so that only user names and the expiry dates

of the certificate are displayed to users. However, you may find that this is not

enough information to assist users in selecting the correct certificate. On the other

hand, if you do not filter certificate information you may display data that is

irrelevant to users trying to select a certificate. Controlling the information that is

54

displayed makes it easier for users to select the correct certificate they need to sign

the form. If you use dialogcolumns to filter information, you can choose precisely

what information you want to display, assisting users to select the correct

certificate quickly and easily.

Example

The following sample shows a dialogcolumns filter that limits the certificate

information displayed to users to the user name, e-mail address, and department:

<signdetails>

 <dialogcolumns>

 <property>Subject: CN</property>

Subject: CN (Common Name) —

The signer’s name.

 <property>Subject: E</property>

Subject: E (Email) — The signer’s

e-mail address.

 <property>Subject: OU</property>

 </dialogcolumns>

</signdetails>

Subject: OU (Organizational Unit)

— The signer’s department.

In this case, the Viewer’s signing identity list only displays the signer’s common

name, e-mail address, and department of the certificate. If any of these attributes

do not exist in a certificate, that property is displayed as a blank.

Exceptions To This Practice

There are no exceptions to this practice.

Use filteridentity To Limit The Number Of Signing Identities Displayed

To Users

The filteridentity filter allows you to limit the number of certificates displayed to

users when they are selecting a certificate.

Why Use This Practice

Users frequently have multiple digital certificates on their computers. While these

certificates may contain identical user information, their issuer and certificate

information may be completely different. By default, the signing ceremony displays

all of a user’s signing identities, but if those certificates have different purposes, it

may be difficult for users to choose the appropriate one for signing a specific form.

Filtering the certificates limits the number of signing identities listed by the Viewer.

This allows you to specify attributes or attribute values that the certificate must

have. If a certificate does not have the listed attributes or values, it is not included

in the list of signing identities. This creates a more manageable list, making it

easier for users to select the correct certificate for signing the form.

Example

The following code sample depicts a filteridentity filter that specifies the user’s

department (organizational unit) and designates it as IT.

Creating Certificate Filters 55

<filteridentity>

 <filter>

 <tag>Subject: OU</tag>

 <value>IT</value>

 </filter>

 </filteridentity>

In this case, the Viewer’s signing identity list only displays certificates that have an

organizational unit parameter with a value of IT. If a certificate does not contain an

attribute with this value, it is not included in this list.

Note: The value parameter may contain a value or remain blank. If you insert a

value, the attribute value in the certificate must match. If it contains a value,

the signature engine attempts to match that value with the value of the

Subject: OU certificate attribute. If it is blank, the signature engine verifies

that the attribute exists.

Usage Notes

When creating filteridentity filters, you must ensure that the required attributes

match an existing certificate. If you are overly explicit with your certificate filtering

criteria, you may add a certificate attribute or value that does not exist in any user

certificate. If no certificates match the specified certificate attributes, then the

Viewer will display an empty signing identity list and the user will be unable to

sign the form. For example, if your filteridentity filter specifies that users must use

CryptoAPI certificates, then users with only Netscape certificates will be unable to

sign your form.

Consider the following tips when creating a filteridentity filter:

v All of the listed attributes and values must exist in the user’s digital certificate.

v You cannot use ’if’, ’or’ or ’not’ statements unless you use a compute.

v Ensure that the spelling, case, and punctuation of you attribute list exactly match

the user’s digital certificate.

Exceptions To This Practice

There are no exceptions to this practice.

56

Appendix A: Screen Reader Announcements

This appendix presents the default text read by each of the three supported screen

readers:

v JAWS

v Microsoft Narrator

v Microsoft Eyes

This information will help you create more meaningful accessibility messages for

users who rely on screen readers.

Placeholder Conventions

The following placeholders are used to represent custom information that is part of

the form’s design:

<acclabel>

The item’s accessibility message, defined by the associated acclabel item.

<choice>

One of the selections in a list, defined by a cell item.

<contents>

The text that appears inside the field, contained in the item’s value option.

<button value

The text that appears on the button, defined by the item’s value option.

<label>

The text that appears in the item’s label, defined by the item’s value option.

<invalid alert>

The alert message that appears if a user tabs out of a field that contains an

invalid entry.

x Indicates the position a choice has in a list. For example, 1 of 7.

n Indicates the number of choices in a list. For example, 1 of 7.

<help>

The help message that only appears if Viewer Help is on and:

v The item contains the focus indicator.

or

v The item has been passed over by the mouse.

The following tables shows the text that the screen readers announce for each type

of interactive form item in response to different user actions.

 XFDL Item User Action JAWS Narrator Eyes

Field:

Empty

read/write

Move to item

using tab key.

Move to item

using shift+tab.

<label> <acclabel>

Edit field is

empty. <help>

Edit. Type in

text.

<label> <acclabel>

Field is empty.

<help> Editable

text.

Editbox <label>

<acclabel> Edit

field is empty.

<help>

© Copyright IBM Corp. 2003, 2006 57

XFDL Item User Action JAWS Narrator Eyes

Field:

Read/write with

contents

Move to item

using tab key.

Move to item

using shift+tab.

<label> <acclabel>

Edit field

contains

<contents>.

<help> Edit.

Type in text.

<label> <acclabel>

Field contains

<contents>.

<help> Editable

text.

Editbox <label>

<acclabel> Edit

field contains

<contents>.

<help>

Field:

Read-only

containing text

Move to item

using tab key.

Move to item

using shift+tab.

<label> <acclabel>

Edit field

contains

<contents>.

Read-only.

<help> Edit.

Type in text.

<label> <acclabel>

Field contains

<contents>

Read-only.

<help> Editable

text

Editbox <label>

<acclabel> Edit

field contains

<contents>.

Read-only.

<help>

Field:

Write-only

containing text

Move to item

using tab key.

Move to item

using shift+tab.

<label> <acclabel>

Edit field

contains

<contents>.

Write-only.

<help> Edit.

Type in text.

<label> <acclabel>

Write-only.

<help> Editable

text

Editbox <label>

<acclabel>

Write-only.

<help>

Field:

Formatted

read/write with

invalid entry

Tab out of item

that contains an

invalid entry.

<invalid alert>

<help> Edit.

Window <invalid

alert> <help>

Window

Window <invalid

alert> <help>

List:

Empty

read/write

Move to item

using tab key.

Move to item

using shift+tab.

Form pane.

Listbox. <label>

<acclabel>

Nothing

selected. <help>

Listbox. n of x.

To move to an

item, press the

arrow keys.

<label> <acclabel>

Nothing

selected. <help>

List.

Listbox.<label>

<acclabel>

Nothing

selected. <help>

List:

With selection

Move to item

using tab key.

Move to item

using shift+tab.

Form pane.

Listbox. <label>

<acclabel>

<choice> selected.

<help> Listbox. n

of x. To move to

an item, press

the arrow keys.

<label> <acclabel>

<choice> <help>

List.

Listbox.<label>

<acclabel>

<choice> <help>

List:

Activating list

Press spacebar

or use down

arrow to scroll

through choices

in list.

<label> <acclabel>

<choice> selected.

<help> Listbox.

<choice>

<choice> list

item.

<choice> list

item.

List:

Moving through

list

Up or down

arrow key.

<choice> <choice> list

item.

<choice> list

item.

58

XFDL Item User Action JAWS Narrator Eyes

List:

Read-only list

Move to item

using tab key.

Move to item

using shift+tab.

Form pane.

Listbox. <label>

<acclabel>

<choice> selected.

Read-only.

<help> Listbox. n

of x. To move to

an item, press

the arrow keys.

<label> <acclabel>

<choice>

Read-only.

<help> List.

Listbox.<label>

<acclabel>

<choice>

Read-only.

<help>

List:

Formatted list

Move to item

using tab key.

Move to item

using shift+tab.

Form pane.

Listbox. <label>

<acclabel>

<choice> selected.

<help> Listbox. n

of x. To move to

an item, press

the arrow keys.

<label> <acclabel>

<choice> <help>

List.

Listbox.<label>

<acclabel>

<choice> <help>

Popup:

Empty

Move to item

using tab key.

Move to item

using shift+tab.

<acclabel> <label>

This is a popup

list. Use the

space bar or

down arrow key

to bring up the

list. <help>

Combobox. 0

items. To change

the selection, use

the arrow keys.

<acclabel> <label>

Nothing

selected. This is

a popup list. Use

the space bar or

down arrow key

bring up the list.

<help>

Combobox.

Combobox.

<acclabel> <label>

This is a popup

list. Use the

space bar or

down arrow key

to bring up the

list. <help>

Popup:

Activating list

Press the

spacebar or

down arrow key.

List box.

<choice> n of x

To move to an

item, press the

arrow keys.

Foreground

window list.

List. <choice>

List item.

Static box.

Listbox. <label> x

of n

Popup:

Moving through

list

Press the arrow

keys.

<choice> <choice> List

item.

x of n

Note: Windows®

Eyes does not

identify the list

choice as the

user proceeds

down the list. It

merely lists it’s

position.

Popup:

With selection

Move to item

using tab key.

Move to item

using shift+tab.

<acclabel>

<choice> This is

a popup list. Use

the space bar or

down arrow key

to bring up the

list. <help>

Combobox. 0

items. To change

the selection, use

the arrow keys.

<acclabel>

<choice> selected.

This is a popup

list. Use the

space bar or

down arrow key

to bring up the

list. <help>

Combobox.

Combobox.

<acclabel>

<choice> selected.

This is a popup

list. Use the

space bar or

down arrow key

to bring up the

list. <help>

Appendix A: Screen Reader Announcements 59

XFDL Item User Action JAWS Narrator Eyes

Popup:

Read-only list

Move to item

using tab key.

Move to item

using shift+tab.

<acclabel>

<choice> This is

a popup list. Use

the space bar or

down arrow key

to bring up the

list. Read-only.

<help>

Combobox. 0

items.

<acclabel>

<choice> This is

a popup list. Use

the space bar or

down arrow key

to bring up the

list. Read-only.

<help>

Combobox.

Combobox.

<acclabel>

<choice> selected.

This is a popup

list. Use the

space bar or

down arrow key

to bring up the

list. Read-only.

<help>

Combobox:

Empty

Move to item

using tab key.

Move to item

using shift+tab.

<label> <acclabel>

is empty. This is

an editable

combobox. Type

the text or use

the down arrow

key to choose

from the list.

<help>

Combobox. 0

items. To change

the selection, use

the arrow keys.

<label> <acclabel>

contains. This is

an editable

combobox. Type

the text or use

the down arrow

key to choose

from the list.

<help>

Combobox.

Combobox.

<label> <acclabel>

is empty. This is

an editable

combobox. Type

the text or use

the down arrow

key to choose

from the list.

<help> .

Combobox:

After activating

list

Press the

spacebar or

down arrow key.

Listbox. Not

selected. <choice>

To move to an

item, press the

arrow keys.

Foreground

window. List.

List. <choice>

List item.

Static box.

Listbox. <choice>

x of n

Combobox:

Moving through

list

Press the arrow

keys.

<choice> <choice> List

item.

<choice> x of n

Combobox:

With selection

Move to item

using tab key.

Move to item

using shift+tab.

<label> <acclabel>

contains <choice>

This is an

editable

combobox. Type

the text or use

the down arrow

key to choose

from the list.

<help>

Combobox. 0

items. To change

the selection, use

the arrow keys.

<label> <acclabel>

contains <choice>

This is an

editable

combobox. Type

the text or use

the down arrow

key to choose

from the list.

<help>

Combobox.

Combobox.

<label> <acclabel>

contains

<choice>. This is

an editable

combobox. Type

the text or use

the down arrow

key to choose

from the list.

<help>

60

XFDL Item User Action JAWS Narrator Eyes

Combobox:

Read-only list

Move to item

using tab key.

Move to item

using shift+tab.

<label> <acclabel>

contains

<choice>Use the

spacebar or

down arrow key

to bring up the

list. To activate,

press spacebar.

Read-only.

<help>

<label> <acclabel>

contains <choice>

This is an

editable

combobox. Type

the text or use

the down arrow

key to choose

from the list.

Read-only.<help>

Combobox.

Combobox.

<label> <acclabel>

contains

<choice>. This is

an editable

combobox. Type

the text or use

the down arrow

key to choose

from the list.

Read-only.

<help>

Combobox:

Write-only list

Move to item

using tab key.

Move to item

using shift+tab.

<label> <acclabel>

contains

<choice>Use the

spacebar or

down arrow key

to bring up the

list. To activate,

press spacebar.

Write-only.

<help>

<label> <acclabel>

contains <choice>

This is an

editable

combobox. Type

the text or use

the down arrow

key to choose

from the list.

Write-only.

<help>

Combobox.

Combobox.

<label> <acclabel>

contains

<choice>. This is

an editable

combobox. Type

the text or use

the down arrow

key to choose

from the list.

Write-only.

<help>

Combobox:

Formatted list

with invalid

entry

Tabbing out of

list with an

invalid entry.

Combobox.

<invalid alert>

<help>

Combobox.

Window <invalid

alert> <help>

Window

Window <invalid

alert> <help>

Check:

Not selected

Move to item

using tab key.

Move to item

using shift+tab

<label> <acclabel>

Checkbox not

checked. <help>

Checkbox not

checked. To

check, press

spacebar.

<label> <acclabel>

Checkbox not

checked.<help>

Checkbox. To

check, press

spacebar.

Checkbox.

Unchecked.

<label> <acclabel>

Checkbox not

checked. <help>

Check: Selected Move to item

using tab key.

Move to item

using shift+tab

<label> <acclabel>

Checkbox.

checked. <help>

Checkbox.

checked. To clear

checkmark, press

spacebar.

<label> <acclabel>

Checkbox

checked.<help>

Checkbox. To

check, press

spacebar.

Checkbox.

Checked. <label>

<acclabel>

Checkbox

checked. <help>

Radio: Not

selected

Move to item

using tab key.

Move to item

using shift+tab

<label> <acclabel>

Radio button. x

of n. Not

selected. <help>

Radio button not

checked. To

change the

selection, press

up or down

arrow.

<label> <acclabel>

Radio button. <x

of n> Not

selected. <help>

Radio button. To

select a different

item in the

cluster, use the

arrow keys.

Radio button.

Unchecked.

<label> <acclabel>

Radio button. <x

of n> Not

selected. <help>

Appendix A: Screen Reader Announcements 61

XFDL Item User Action JAWS Narrator Eyes

Radio: Selected Move to item

using tab key.

Move to item

using shift+tab.

<label> <acclabel>

Radio button. x

of n selected.

<help> Radio

button checked.

To change the

selection, press

up or down

arrow.

<label> <acclabel>

Radio button. <x

of n> selected.

<help> Radio

button. To select

a different item

in the cluster,

use the arrow

keys.

Radio button.

Checked. <label>

<acclabel> Radio

button. <x of n>

Selected. <help>

Button Move to item

using tab key.

Move to item

using shift+tab.

Button. <button

value> <acclabel>

<help> Button.

To activate, press

spacebar.

Button. <button

value> <acclabel>

<help> To press,

use spacebar.

Button. <button

value> Button.

<acclabel> <help>

62

Appendix B: Certificate Attributes

This appendix lists the filterable certificate attributes and indicates whether the

CryptoAPI and Netscape signature engines return identical strings when returning

certificate attributes with identical data. If you want to filter for specific

filteridentity tag values without specifying an engine, filter for strings that can be

recognized by both RSA-compliant signature engines. If you want to filter for other

tag values, your organization should maintain a policy stating the preferred

signature engine for attaining digital certificates.

For example, if you wanted to filter for certificates encrypted with an md5

algorithm, you would find that Netscape and CryptoAPI return different strings

for this attribute. CryptoAPI returns md5RSA, while Netscape returns PKCS #1

MD5 With RSA Encryption. If you listed either of these attributes as a tag value,

you would return certificates from only one engine.

Note: This is not an issue for strings that are expected to be unique from certificate

to certificate, such as the certificate serial number or public key.

 Certificate Attribute Description Identical Strings?

Subject: CN the certificate owner’s common

name

Yes

Subject: E the certificate owner’s e-mail

address

Yes

Subject: T the certificate owner’s locality Yes

Subject: ST the certificate owner’s state of

residence

Yes

Subject: O the organization to which the

certificate owner belongs

Yes

Subject: OU the name of the organizational unit

to which the certificate owner

belongs

Yes

Subject: C the certificate owner’s country of

residence

Yes

Subject: STREET the certificate owner’s street

address

Yes

Subject: ALL the certificate owner’s complete

distinguished name

Yes

Issuer: CN the certificate issuer’s common

name

Yes

Issuer: E the certificate issuer’s e-mail

address

Yes

Issuer: T the certificate issuer’s locality Yes

Issuer: ST the certificate issuer’s state of

residence

Yes

Issuer: O the organization to which the

certificate issuer belongs

Yes

© Copyright IBM Corp. 2003, 2006 63

Certificate Attribute Description Identical Strings?

Issuer: OU the name of the organizational unit

to which the certificate issuer

belongs

Yes

Issuer: C the certificate issuer’s country of

residence

Yes

Issuer: STREET the certificate issuer’s street address Yes

Issuer: ALL the certificate issuer’s complete

distinguished name

Yes

Serial the certificate’s serial number No

SignatureAlg the algorithm used by the

Certificate Authority to sign the

certificate

No

BeginDate the date at which the certificate

becomes valid

Yes

EndDate the date at which the certificate

becomes invalid

Yes

PublicKey the certificate’s public key No

FriendlyName the certificate’s friendly name No

KeyUsage: ALL indicates the purposes for which

the certificate’s public key can be

used

No

KeyUsage: Digital Signature this certificate’s public key can

create digital signatures

No

KeyUsage: NonRepudiation this certificate’s public key can be

used for non-repudiation

No

KeyUsage: KeyEncipherment this certificate’s public key can

encipher keys

No

KeyUsage:

DataEncipherment

this certificate’s public key can

encipher data

No

KeyUsage: KeyAgreement this certificate’s public key can

ensure that other public keys match

their certificates. Used in certificate

management.

No

KeyUsage: KeyCertSign this certificate’s public key can sign

key certificates

No

KeyUsage: CRLSign this certificate’s public key can sign

Certificate Revocation Lists

No

KeyUsage: EncipherOnly this certificate’s public key can only

encipher keys or data

No

KeyUsage: DecipherOnly this certificate’s public key can only

decipher keys or data

No

BasicConstraints behaves as though the fCA tag was

specified

Yes

BasicConstraints: fCA determines whether the subject of

this certificate can act as a

Certificate Authority (1 if true, 0 if

false)

Yes

64

Certificate Attribute Description Identical Strings?

BasicConstraints: pathLength the number of CA certificates that

can follow this certificate in a

certification path.

Yes

Policies returns all of the Object

Identification Numbers’s of the

certificate’s policies in a comma

separated string

Yes

PolicyConstraints:

requireExplicitPolicy

indicates whether an explicit policy

is required

Yes

PolicyConstraints:

inhibitPolicyMapping

indicates whether policy mapping

is inhibited

Yes

Engine: Name the name of the signature engine

that created the certificate

Yes

Appendix B: Certificate Attributes 65

66

Appendix C: Additional Usage Notes

This appendix lists additional minor form design issues for Workplace Forms

Viewer:

v XForms Soap submissions must include the mediatype, followed by an optional

charset attributes, followed by an optional action. You must specify the mediatype,

charset, and action attributes in the order indicated. If you reverse the order of

charset and action, then the HTTP charset header will receive the value of the

action set in the form, and the action header will receive the value of the form

charset.

v The only valid charset parameter for XForm Soap submissions is UTF-8.

v Workplace Forms Viewer does NOT support the following:

– Using the next option to direct the focus to a new page.

– Justify for images in buttons and labels (images are centered).

– A printpages option with a borderwidth setting greater than 1. If integers

greater than 1 are used, the borderwidth around pages will remain at 1 pixel.
v The Viewer expects the fontinfo option’s array elements to be listed in the

following order:

1. font name

2. point size

3. any other desired elements
v If you bind input constraints on a string, predictive type checking will not work.

v Radio button values cannot contain a compute. However, they can be modified

by the set function, and you can reference radio button values in computes for

other options.

v If using a set function to set the on/off values for radio buttons, it is possible to

destroy the functionality of the radio button’s group option. To avoid this, set all

radio buttons in a particular group at the same time. For example, if you use a

set function to turn a radio on, make sure you use a set function to turn each of

the other radio buttons off.

v Because of the nature of web browsers, a user can always return to a cancelled

form. For example, if you give a button a type of “done”, the form will perform

a submission and then cancel itself. However, in a web browser, a user can click

the Back button to return to the form.

v The destroy function cannot delete the item that triggered the destroy. For

example, if clicking a button calls the destroy function, the function cannot

destroy the button itself.

Additionally, you cannot use the XFDL destroy function to remove a spacer from

the form. If you attempt to do this, the Viewer will not destroy the spacer and

will display an error.

v If a field’s label option is empty and you set the label option dynamically (with a

compute), the field is not redrawn properly.

v When you close a form, the activated option for the form and any page in the

form (that is global.global.activated and page.global.activated) do not turn off

before the form closes.

v Signing items with fonts that are 5 points or smaller in size may cause the

signature to break across different versions of Windows.

© Copyright IBM Corp. 2003, 2006 67

The Viewer uses the Windows “Small Font” when displaying any fonts that are

5 points or smaller in size. The metrics used to display the Small Font change

across different versions of Windows, and may result in slightly larger or smaller

text depending on the operating system.

If your items are sized by character size or if they default to the length of the

text, this may result in slightly larger or smaller items, which will cause the

layout test to fail when validating a signature.

To correct this problem, ensure that all items using small fonts are sized using

the extent setting in the itemlocation option. This will size the item based on the

pixel size rather than character size, ensures the items do not change their size

based on the font in use.

v Signing items with fonts that are not generally available may cause the signature

to break across different computers.

If the font is not available on the current computer, Windows will substitute a

different font that may not be exactly the same size.

If your items are sized by character size or if they default to the length of the

text, this may result in slightly larger or smaller items, which will cause the

layout test to fail when validating a signature.

To correct this problem, ensure that all items using uncommon fonts are sized

using the extent setting in the itemlocation option. This will size the item based

on the pixel size rather than character size, ensures the items do not change their

size based on the font in use.

v The Viewer does not support dynamically changing RTF fields to plain text.

Attempting to do so may result in unexpected behavior.

v When printing rich text fields, background colors will not print properly. To

solve this problem, you should set rich text fields to have a printbgcolor option of

white.

If you are using Rich Text fields as labels and want them to match the

background color of the form, consider printing the entire form with a white

background. This will print a clean looking form and will save toner.

v Do not use rich text in fixed size fields. Rich text does not support the level of

precision required to properly limit the text within the constraints of the field. In

many cases, formatting and printing will cause the text to extend beyond the

boundaries of the field.

v Rich text fields do not support a high level of precision when printing. This

means that the text may look different or wrap differently when printed.

v Do not use F1 or F6 as keypress events. When the Viewer is running in a web

browser, the browser interferes with capturing these events.

v If the endianness of a form is important to your Workplace Forms

implementation, ensure you specify the endianness within your forms

(encoding=″UTF-16LE″ or encoding=″UTF-16BE″). If you do not specify the

endianness of a form, the form’s endianness is based on the system on which

the form is being modified, which may result in the endianness of the form

changing. For example, if the form is notarized on a Windows system

(little-endian) and written to a Solaris system (big-endian), the endianness of the

form will change from little-endian to big-endian.

v The use of the x-xfdl MIME type is no longer recommended. However, this

version of the Viewer continues to support this MIME type to maintain

backward compatibility with older forms. Use the application/vnd.xfdl MIME

type instead.

68

v Workplace Forms Viewer prints the body of the form, including the form itself

and all information in the form. However, the Viewer does not print the toolbar

of the form, nor can it print only the data entered into the form.

v Workplace Forms Viewer refuses to display some forms containing “fatal” form

design errors. These are generally errors that could seriously affect the form’s

appearance or functionality.

v Boxes are automatically drawn in the background regardless of their position in

the XFDL build order. This means that items framed by a box will be visible and

will function properly even if they come after the box in the build order.

Appendix C: Additional Usage Notes 69

70

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003, 2006 71

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Office 4360

One Rogers Street

Cambridge, MA 02142

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

AIX

IBM

Workplace

Workplace Forms

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

72

����

Program Number:

Printed in USA

S325-2603-00

	Contents
	Introduction
	Who Should Read This Document

	General Best Practices
	Topics Discussed
	Using Four Digit Dates
	Do Not Use Smartfill To Store Sensitive Data
	Localizing Forms
	Do Not Use a Text Editor to Create Your Form
	Do Not Use a Single Field for Entering Large Amounts of Text
	Use SSL Authentication Page
	Do Not Use Progressive JPEG Images
	Do Not Place Input Items On Top Of Labels
	Size Check Boxes and Radio Buttons Using Font Size
	Test Forms at Various Zoom Levels
	Test Forms Thoroughly

	Formatting Fields
	Formatting Phone Numbers
	Formatting Postal Codes
	Formatting E-Mail Addresses

	Creating Accessible Forms
	Topics Discussed
	System Requirements
	Other Resources
	Provide Appropriate Accessibility Messages
	Put Label Text Into acclabels
	Use Field Items To Display Text Information
	Place Graphics Inside Buttons
	Minimize and Explain the Use of Dynamic Content
	Reset the Form's Tab Order
	Identify Row and Column Headings
	Use Contrasting Page Background Colors
	Use Wizard-Style Forms
	Avoid Using Clickwrap Signatures
	Avoid Using Write-Only Fields
	Turn Off Smartfill
	Turn Viewer Help On

	Creating Secure Signatures
	Topics Discussed
	Use omit Rather Than keep For Signature Filters
	Use keep To Create Overlapping Signatures
	Sign Form and Page Global Options
	Use Custom Items To Store Custom Information
	Sign Item Positioning Information
	Use Absolute Positioning
	Use Unique Scope Identifiers For Items
	Sign Related Items

	Creating Certificate Filters
	Use RSA-Compatible Engines
	Use dialogcolumns To Control The Certificate Information Displayed To Users
	Use filteridentity To Limit The Number Of Signing Identities Displayed To Users

	Appendix A: Screen Reader Announcements
	Placeholder Conventions

	Appendix B: Certificate Attributes
	Appendix C: Additional Usage Notes
	Appendix. Notices
	Trademarks

