
IBM® Workplace Forms™ Server - API

COM API User's Manual

Version 2.6

S229-1528-00

���

Note

Before using this information and the product it supports, read the information in “Notices,” on page 157.

First Edition (September 2006)

This edition applies to version 2.6 of IBM Workplace Forms Server - API (product number L-DSED-6JLR37) and to

all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2003, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Introduction 1

About This Manual 1

Who Should Read This Manual 1

Document Conventions 1

About the API 3

Where the API Fits in Your System 3

Differences Between the C, Java, and COM Editions

of the API 3

The API Data Types 4

IFormNodeP Objects 4

About the API Constants 4

Overview of the Form Structure 5

The Node Structure 5

The Node Hierarchy 5

References 6

Dereferencing 7

Namespace in References 8

Advanced Information about the Node Structure . . 8

A Sample Hierarchy 9

The Sample Tree Structure 9

Node Properties 10

Introduction to the Form Library 13

Getting Started with the Form Library 15

Setting Up Your Application 15

Initializing the Form Library 16

Loading a Form 17

Retrieving A Value from a Form 17

Setting a Value in a Form 18

Writing a Form to Disk 19

Closing a Form 20

Compiling Your Application 20

Testing your Application 20

Distributing Applications That Use the Form Library 21

Summary 21

Form Library Quick Reference Guide 23

Form Library Functions 23

About the Function Descriptions 26

Using Signatures with the Form Library 26

About Errors 26

About Output Parameters 27

The Certificate Functions 29

GetBlob 29

GetDataByPath 30

GetIssuer 33

The FormNodeP Functions 35

FormNodeP Constants 35

addNamespace 35

CheckValidFormats 37

createCell 37

DeleteSignature 38

DereferenceEx 40

Destroy 44

Duplicate 45

EncloseFile 46

EncloseInstance 47

ExtractFile 48

ExtractInstance 49

ExtractXFormsInstance 51

GetAttribute 52

GetCertificateList 54

GetChildren 55

GetFormVersion 56

GetIdentifier 57

GetLiteralByRefEx 58

GetLiteralEx 61

GetLocalName 62

GetNamespaceURI 63

GetNamespaceURIFromPrefix 64

GetNext 66

GetNodeType 67

GetParent 68

GetPrefix 69

GetPrefixFromNamespaceURI 71

GetPrevious 72

GetReferenceEx 73

GetSecurityEngineName 77

GetSigLockCount 78

GetSignature 78

GetSignatureVerificationStatus 80

GetType 81

IsSigned 82

IsValidFormat 83

IsXFDL 84

RemoveAttribute 85

RemoveEnclosure 86

ReplaceXFormsInstance 87

SetActiveForComputationalSystem 88

SetAttribute 89

SetFormula 91

SetLiteralByRefEx 92

SetLiteralEx 95

SignForm 96

UpdateXFormsInstance 97

ValidateHMACWithSecret 99

ValidateHMACWithHashedSecret 102

VerifyAllSignatures 106

VerifySignature 107

WriteForm 109

WriteFormToASPResponse 110

XMLModelUpdate 111

The Hash Functions 113

© Copyright IBM Corp. 2003, 2006 iii

Hash 113

The Initialization Functions 117

IFSInitialize 117

IFSInitializeWithLocale 119

The LocalizationManager Functions 123

GetCurrentThreadLocale 123

GetDefaultLocale 125

SetCurrentThreadLocale 128

SetDefaultLocale 130

The SecurityManager Functions . . . 135

LookupHashAlgorithm 135

The Signature Functions 139

GetDataByPath 139

GetSigningCert 144

The XFDL Functions 147

Create 147

GetEngineCertificateList 149

IsDigitalSignaturesAvailable 151

ReadForm 152

ReadFormFromASPRequest 154

Appendix. Notices 157

Trademarks 158

Index 159

iv

Introduction

Welcome to the COM Edition of the user’s manual for the IBM® Workplace Forms™

Server — API. The API extends the capabilities of Workplace Forms by enabling

you to:

v Manipulate XFDL forms from new or existing applications.

v Create custom-built functions that may be integrated into XFDL forms.

This section discusses the organization and format of this manual. To learn more

about the API, refer to “About the API” on page 3.

About This Manual

This manual has been organized as both an instruction manual and a quick

reference. It describes the functions available in the API and provides examples of

their use.

This manual contains the following major sections:

 Section Page

Introduction — introduces you to the

features of the API.

“Introduction”

Overview of the Form Structure — explains

how XFDL forms are stored in memory.

“Overview of the Form Structure” on page 5

Getting Started with the Form Library —

provides a detailed tutorial demonstrating

how to create a simple application that

interacts with an XFDL form.

“Introduction to the Form Library” on page

13

Form Library Quick Reference — a

reference to the functions contained in the

Form Library. Each method description

includes sample code.

“Form Library Quick Reference Guide” on

page 23

Who Should Read This Manual

The API is designed to be easy to use for any moderately experienced programmer.

However, the skill level required to develop particular functions may be quite

high. This document is intended for developers who have a working knowledge

of:

v COM compliant programming and syntax.

v Extensible Forms Description Language (XFDL) and syntax. Refer to the

Extensible Forms Description Language Specification for more information.

Document Conventions

The following conventions appear throughout this manual:

v Sample code is presented in a monospaced font, and is indented to make the

code stand out:

© Copyright IBM Corp. 2003, 2006 1

Sub SaveForm(Form, ThePath)

 ’ Write the form to a file on disk

 Form.WriteForm ThePath, Nothing, 0

 End Sub

v Text in bold italics represents information that you need to supply:

 <label sid="firstName">

 <value>your first name here</value>

 <label>

v The hash symbol (#) represents a number.

v Angle brackets enclose placeholders. For example, <API Program Folder>

represents the actual folder in which you installed the API.

v Braces indicate optional items. The following example indicates that the item tag

(including the period after it) is optional:

 {itemtag.} option

v ″xx″ or ″xxx″ appears in place of the two or three digit version number of the

API. In particular, these placeholders appear when referring to file names,

folders, and directories that contain the API’s version number.

v Brackets are used to indicate a sequence of choices, and the pipe symbol (|) is

used to indicate ″or″. The following example indicates that you can use a

number or a name:

 (number|name)

2

About the API

The Workplace Forms Server — Application Programmer Interface (API) consists of

a collection of programming tools to help you develop applications that can

interact with XFDL forms. These tools are available for both C and Java

programming environments. The API enables you to access and manipulate forms

as structured data types.

The API is divided into two libraries: the Form Library and the Function Call

Interface (FCI) Library. The Form Library allows you to create applications that:

v Read and write forms.

v Retrieve information from form elements.

v Add cells to certain form items.

v Insert information into form elements.

For more information about the Form Library refer to the “Form Library Quick

Reference Guide” on page 23.

Where the API Fits in Your System

IBM provides a powerful suite of forms software for creating, using and

transmitting forms over the Internet. The main components of this suite are:

Workplace Forms Viewer — Use the Viewer to view XFDL forms just as you

would use a web browser to view HTML pages. You can also use the Viewer to fill

out forms and submit them for review.

Workplace Forms Designer — The Designer provides an easy to use WYSIWYG

design environment for creating XFDL forms. Use the Designer to create forms

quickly and easily.

Workplace Forms API — The API is made up of a collection of Form functions.

Use the Form Library to develop applications that manipulate XFDL forms.

Differences Between the C, Java, and COM Editions of the API

The various editions of the API differ in the following ways:

v The Java and COM editions offer an object-oriented interface.

v The COM edition does not support the FCI Library.

v The COM edition does not include the following Form Library functions:

– GetInfoEx

– GetAttributeList
v The COM edition includes the following Form library functions that the other

editions do not:

– GetType

– GetIdentifier

– ReadFormFromASPRequest

– WriteFormToASPResponse

© Copyright IBM Corp. 2003, 2006 3

In all other respects, the different editions of the API provide the same

functionality, and use the same memory model for forms.

The API Data Types

IFormNodeP Objects

The functions in the Form Library store forms in memory as a series of linked

nodes. Each node, regardless of its level in the hierarchy, is represented by a

IFormNodeP object.

The functions in the Form Library are responsible for creating and populating

these nodes, and for freeing the memory they occupy.

About Memory Use

The Form methods are responsible for creating and populating these nodes.

Furthermore, once you are done working with a form, you must use the destroy

method on the root node of the form to remove it from memory.

About the API Constants

Several of the Form Library functions accept parameters whose values are

constants (for example, the referenceType parameter of DereferenceEx). All constants

have been defined in the IFS_COM_API type library, and are available by

including that library in your source file, as shown:

 <!-- METADATA TYPE = "typelib"

 FILE = "c:\winnt\system32\IFS_COM_API.tlb" -->

4

Overview of the Form Structure

This section provides an overview of an XFDL form as it is represented in memory.

Developers must understand the memory structure of a form to effectively develop

applications using the API.

The Node Structure

When a form is loaded into memory, it is constructed as a series of linked nodes.

Each node represents an element of the form, and together these nodes create a

tree that describes the form. The following diagram illustrates the general

composition of a single node.

Each node within the tree has the following properties:

v Type — For page and item nodes, this describes the type of node, such as

button, line, field, and so on. Page nodes are always of type page.

v Literal — The literal value of the node (for example, a literal string). If the node

has a formula, the result of the formula will be stored here.

v Identifier — The page tag, item tag, option name, or custom name assigned to

the node.

v Compute — The compute assigned to the node (for example, ″field_1.value +

field_2.value″). The result of the compute will be stored in the literal of the

node.

Depending on the node type, some of these properties may be null.

The Node Hierarchy

Every node is part of an overall hierarchy that describes the complete form. This

hierarchy follows a standard tree structure, with the top of the tree being the top

(or root) of the hierarchy.

The diagram on the following page illustrates the typical tree structure for a simple

form.

The elements of the hierarchy, in descending order, are:

v Form — Each form has one form level node. This is the root node of the tree.

v Page — Each form contains pages, which are represented as children of the form

node. Each form has at least two page nodes - one for the globalpage, which

stores the global settings, and one for the first page of the form.

v Item — Each page contains items, which are represented as children of the page

node. An item node is created for each item, including the global item which

stores page settings.

v Option — Each item contains options, which are represented as children of the

item node. An option node is created for each option.

v Argument — Options often contain further settings, or arguments, which are

represented as children of the option node or as children of other argument

© Copyright IBM Corp. 2003, 2006 5

nodes. There may be more than one level of argument node created below an

option node, depending on the option’s settings. The easiest way to access a

particular node in the hierarchy is to use a reference. References allow you to

locate a specific node without first having to locate the parent of that node.

References

References allow you to identify a specific page, item, option, or argument by

providing a ″path″ to that element. This means that you can access an element

directly without having to locate any of its ancestors. The syntax of a reference

follows this general pattern:

 page.item.option[argument]

Each element of the reference is constructed as follows:

v Page and Item — Pages and items are identified by their scope identifiers (sid).

For example, Page1 or Field1.

6

v Options — Options are identified by their tag name. For example, value or

itemlocation.

v Arguments — Arguments are identified by their tag name or a zero-based

numeric index. Argument references are always enclosed in brackets. For

example, [1] or [message].

Arguments can also have any depth. For example, you might have an argument

that contains arguments. You can reference additional levels of depth by adding

another bracketed reference. For example, to refer to the first argument in the

first argument of the printsettings option, you could use either [0][0] or the tag

names in brackets, such as [pages][filter].

You can create references to any level of the node hierarchy. For example, the

following table illustrates a number of references starting at different levels of the

form:

Start At

Ref to

Page Ref to Item Ref to Option Ref to Argument

Page Page1 Page1.Field1 Page1.Field1.format Page1.Field1.format[message]

Item — Field1 Field1.format Field1.format[message]

Option — — format format[message]

Argument — — — [message]

Dereferencing

When making a reference to an item node, there may be times when you do not

know which node to reference because it depends on some action from the user of

the form. Consider a situation in which a user selects a cell from a list. Because

you don’t know beforehand which cell the user will choose, it is not possible to

explicitly reference the item node for the chosen cell. In such cases you would use

dereferencing to retrieve the node indirectly.

Essentially, dereferencing allows you to make a dynamic reference that is evaluated

at runtime. This is accomplished by placing the -> symbol to the right of the

dynamic reference.

For example, consider a list item called List1 that has three cells called Cell1, Cell2,

Cell3. If you wanted to access the item node of the cell selected by the user, we

would use the following reference string:

 List1.value->

At runtime, the portion of the expression that is to the left of the dereference

symbol is evaluated and replaced. If the user chose the second cell, List1.value

would be evaluated and replaced with:

 Cell2

As a result, the item node for Cell2 would be returned.

In some cases, instead of accessing the item node of the chosen cell, you may want

to access one of the cell’s option nodes. Again, dereferencing is used. The reference

string would be:

 List1.value->value

As before, the above expression is evaluated at runtime. The expression to the left

of the dereference symbol is evaluated and replaced, just as before. So if the second

Overview of the Form Structure 7

cell was selected, List1.value would be evaluated as Cell2. This value is then

concatenated with the expression to the right of the dereference symbol. This

would produce:

 Cell2.value

As a result, the option node for Cell2.value would be returned.

Note: Do not include any spaces before or after the dereference symbol (->).

Namespace in References

References that include options or arguments in any namespace other than XFDL

normally require the inclusion of the namespace prefix in the reference. For

example, if you were referencing ″myOption″ in the ″custom″ namespace, you

would refer to that option as ″custom:myOption″ as shown:

 page_1.myItem.custom:myOption

If you are referencing named arguments, you should also use the appropriate

namespace. For example:

 page_1.myItem.custom:myOption[custom:myArgument]

However, if you are referencing an argument by index number you do not need to

worry about namespace. All arguments, regardless of namespace, are indexed in

order. For example, if ″myOption″ contained two arguments, the first in the XFDL

namespace and the second in the custom namespace, you would use the following

reference for the second argument:

 page_1.myItem.custom:myOption[1]

Note: Page and item references never require a namespace prefix because they are

uniquely identified by their sid.

The null Namespace

In some cases, forms may have no default namespace or may have a default

namespace that is explicitly set to an empty string. In these cases, you can use null

as the prefix for the empty namespace. For example, the following field declares a

default namespace that is empty:

 <page sid="Page1">

 <field sid="myField" xmlns="">

 <value>Test Value</value>

 </field>

 </page>

In this case, to reference the value of the field, you would use the null prefix as

shown:

 Page1.null:myField.null:value

Advanced Information about the Node Structure

When an XFDL form is stored in memory, it exists as a series of nodes that are

linked in a tree structure. As described in “The Node Hierarchy” on page 5, the

tree structure follows this hierarchy: form, page, item, option, and argument.

Within a single branch of the tree, all elements of the same level are treated as

siblings, each of which has a common parent, and each of which may have its own

children.

8

The following example illustrates the node structure of a simple form, and gives a

top-down description of the node structure.

A Sample Hierarchy

The following XFDL code creates the node hierarchy shown in . The result is a

simple form that contains three items (a line and two labels).

 <?xml version = "1.0"?>

 <XFDL xmlns="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:xfdl="http://www.ibm.com/xmlns/prod/XFDL/7.0">

 <globalpage sid="global">

 <global sid="global"></global>

 </globalpage>

 <page sid = "PAGE1">

 <global sid="global"></global>

 <line sid = "REFLINE">

 <size>

 <width>20</width>

 <height>0</height>

 </size>

 </line>

 <label sid = "LABEL1">

 <value>Hello</value>

 </label>

 <label sid = "LABEL2">

 <value>World</value>

 <itemlocation>

 <after>LABEL1</ae>

 <expandr2r>REFLINE</expandr2r>

 </itemlocation>

 </label>

 </page>

 </XFDL>

The Sample Tree Structure

Each tree begins with the form, or root, node. This node contains no information -

it simply represents the starting point of the tree structure.

Below the form node are the page nodes. In the previous example, there are two

page nodes: ″global″ and ″PAGE1″. The ″global″ page node stores any global

settings that apply to the form while ″PAGE1″ stores the contents of the first form

page. Any additional pages would also be stored as children of the form node.

Below each page node are the item nodes. As illustrated in the previous example,

the first item node for any page is always the ″global″ item. The ″global″ item

stores any page settings that are applied to the items in that page. Each additional

item in the page is stored as a sibling of the global item.

Note: The ″global″ page node will always have one child: the global item. This

global item will always store the XFDL version number used to create the

form, and is also used to store any global settings that are applied to the

form.

Below each item node are the option nodes. Each option node represents an option

setting for that item, such as a background color or font setting.

Below each option node are the argument nodes. These nodes contain the settings

for the parent option. For example, the background color might be set to ″blue″.

Overview of the Form Structure 9

There can be an infinite number and depth of these nodes, depending upon the

number and depth of the settings for that option.

For instance, in the sample form, the size node for ″REFLINE″ has two argument

nodes: one for the width and one for the height. In contrast, the printsettings option

can have multiple argument nodes which themselves have argument nodes as

children. The following is an example of the node structure of the printsettings

option:

<printsettings>

<pages> argument node level I

<filter>omit</filter> argument node level II

<pageref>page2</pageref> argument node level II

</pages>

<dialog> argument node level I

<active>on</active> argument node level II

<orientation>landscape<orientation> argument node level II

<copies>2</copies> argument node level II

</dialog>

</printsettings>

<printsettings>

<pages> argument node level I

<filter>omit</filter> argument node level II

<pageref>page2</pageref> argument node level II

</pages>

<dialog> argument node level I

<active>on</active> argument node level II

<orientation>landscape<orientation> argument node level II

<copies>2</copies> argument node level II

</dialog>

</printsettings>

printsettings Node Structure

orientation

landscape

printsettings

pages

filter

omit

pageref

PAGE2

active

on

dialog

copies

2

Thus, in storing the printsettings option, two levels of argument nodes are created.

The first level describes the number of array elements in the option (two). The

second level gives the arguments for each element.

Due to their potential complexity, pay careful attention to the mapping of

argument nodes.

Note: In cases where an option has multiple elements in an array (for example,

printsettings), there will be a single option node, but a separate argument

node for each element in the array.

Node Properties

There are several levels of nodes in an XFDL form: form (or root), page, item,

option, and argument (which can have an infinite number of levels). Each node has

four properties: literal, type, identifier, and compute. A node does not necessarily

contain information for every property.

For example, a page node can never have values for the compute or literal

properties. And while a value for the user data property is optional, a page node

must always have values for the type and identifier properties.

The following table illustrates what properties may be in use for each node level.

10

Node Property

Level

Form

Page

Item

Option

Argument (at
any level)

Literal Type Identifier Compute

no

no

no

no

no

no

no

no no

no

yes

yes

yes

yes

always

always

always

always

always

yes

yes — node can have that property

always — node always has that property

no — node cannot have that property

Overview of the Form Structure 11

12

Introduction to the Form Library

The Form Library is a collection of functions for developing applications that

manipulate XFDL forms. Using the functions in the Form Library, your

applications can:

v Read and write forms.

v Retrieve information contained in a form’s elements.

v Assign information to the elements of a form.

v Create new elements within a form.

v Remove elements from a form.

v Extract images or enclosures from a form.

v Verify digital signatures.

Essentially, an XFDL form may be thought of as a structured data type, with the

API as the means for accessing this data structure.

© Copyright IBM Corp. 2003, 2006 13

14

Getting Started with the Form Library

This section provides a detailed tutorial to help you understand how to use the

Form Library. By working through the tutorial, you will perform all of the steps

involved in creating a simple application that uses the API functions, including:

v Initializing the Form Library.

v Reading a form into your application.

v Setting and retrieving form data.

v Removing a form from memory.

The sample application in this tutorial reads an input form called CalculateAge.xfd

into memory. It retrieves the user’s birth day, month, and year as well as the

current date from the form. It then places these values into hidden fields in the

form. This triggers the form to compute the user’s age and display the result.

When complete, the application saves the changes made to calculateAge.xfd as a

new form called Output.xfd.

Note: The sample application described in this tutorial is included with the API

and can be found in the folder: <API Program Folder>\Samples\COM\
Form\Demo\Calculate_Age\

The tutorial describes the following tasks:

 “Setting Up Your Application”

“Initializing the Form Library” on page 16

“Loading a Form” on page 17

“Retrieving A Value from a Form” on page 17

“Setting a Value in a Form” on page 18

“Writing a Form to Disk” on page 19

“Closing a Form” on page 20

“Compiling Your Application” on page 20

“Testing your Application” on page 20

“Distributing Applications That Use the Form Library” on page 21

Note: Before you can build applications using the Form Library, you must install

the API and set up your development environment. Refer to the IBM

Workplace Forms Server - API Installation and Setup Guide for more

information.

Setting Up Your Application

This example assumes that you are developing a program in Microsoft Visual Basic

using Microsoft Studio. To begin, you must first set up your development

environment to use the API type library.

1. Create a new Visual Basic project.

2. Any project using the API must include the following type library:

v IFS_COM_API.tlb

© Copyright IBM Corp. 2003, 2006 15

To add this to your Visual Basic Project, open the References dialog from the

Project menu and select “InternetForms API”.
3. Set up the rest of your application. This generally includes setting up your

main algorithm and declaring any variables you will need. The following code

sets up the Calculate Age application:

 ’ Create the Main method for the program.

 Sub Main()

 ’ Declare a number of variables. TheForm represents the form, while the

 ’ other variables are values we will read from the form.

 Dim TheForm As IFormNodeP

 Dim BirthYear As Integer

 Dim BirthMonth As Integer

 Dim BirthDay As Integer

 ’ The program’s Main consists of a number of calls to other functions.

 Initialize

 Set TheForm = LoadForm

 BirthYear = GetBirthYear(TheForm)

 BirthMonth = GetBirthMonth(TheForm)

 BirthDay = GetBirthDay(TheForm)

 SetBirthYear BirthYear, TheForm

 SetBirthMonth BirthMonth, TheForm

 SetBirthDay BirthDay, TheForm

 SaveForm TheForm

 ’ Free the memory in which the form was stored.

 TheForm.Destroy

 End Sub

Initializing the Form Library

All applications that use the API functions must initialize the Form Library to

ensure correct error and memory handling behavior. The sample application does

this in a separate method called Initialize. In turn, Initialize calls the Form Library

function IFSInitialize and passes it the name of the current program.

Define the Initialize function to call the function IFSInitialize. IFSInitialize

initializes the API environment.

 Sub Initialize()

 Dim DTK As DTK

 ’ Get the DTK object. You need this call the IFSInitialize function.

 Set DTK = CreateObject("PureEdge.DTK")

 ’ Call DTK.IFSInitialize. DTK is a static class representing the Java

 ’ API development toolkit. The parameters are:

 ’ 1. CalculateAge: the name of the application being run.

 ’ 2. 1.0.0 : the version of the application being run.

 ’ 3. 2.6.0 : the version of the API being run.

16

’ An exception will be thrown if there is a problem.

 DTK.IFSInitialize "CalculateAge", "1.0.0", "2.6.0"

 End Sub

Note: For detailed information about the IFSInitialize function, including a

description of its parameters, refer to “IFSInitialize” on page 117.

Loading a Form

Before your program can begin working with a form, you must load it into

memory. CalculateAge does this by defining a LoadForm function to handle these

tasks.

Call ReadForm within the implementation of your loadForm function to read in

the form, calculateAge.xfd.

 Function LoadForm() As IFormNodeP

 Dim XFDL As XFDL

 ’ Get the XFDL object. You need this to call the ReadForm function.

 Set XFDL = CreateObject("PureEdge.xfdl_XFDL")

 ’ Call XFDL.ReadForm. The parameters are:

 ’ 1. calculateAge.xfd : indicates the file on the local drive to read

 ’ the form from.

 ’ 2. 0 : no special behavior.

 ’ readForm will return a reference to the root node of the

 ’ new form structure once it is loaded into memory. An exception

 ’ will be thrown if there is a problem.

 Set LoadForm = XFDL.ReadForm("c:\calculateage.xfd", 0)

 End Function

Note: For more information about the ReadForm function, refer to “ReadForm” on

page 152.

Retrieving A Value from a Form

Once you have set up and initialized your application with the API and loaded a

form into memory, your application is ready to start working with the form. The

following code uses GetLiteralByRefEx to get a specific value from the form:

Retrieve the birth date from the form as three separate values: the birth day, birth

month, and birth year. To do this, we will use three separate functions. Each

function uses GetLiteralByRefEx to retrieve one of the values.

 Function GetBirthDay(TheForm) As Integer

 Dim BDay As String

 ’ Call IFormNodeP.GetLiteralByRefEx to get the literal information for

 ’ the PAGE1.BIRTHDAY.value node. An exception will be thrown if

 ’ there is a problem.

 BDay = TheForm.GetLiteralByRefEx(vbNullString, _

 "PAGE1.BIRTHDAY.value", 0, vbNullString, Nothing)

 ’ If a literal value was returned, convert it into an integer value;

 ’ otherwise, indicate that no value was entered into the field

Getting Started with the Form Library 17

’ and throw an exception.

 If (Len(BDay) > 0) Then

 GetBirthDay = CInt(BDay)

 Else

 MsgBox "The birth day was not entered.", vbCritical

 Stop

 End If

 End Function

’ Similar to GetBirthDay

 Function GetBirthMonth(TheForm) As Integer

 Dim BMonth As String

 BMonth = TheForm.GetLiteralByRefEx(vbNullString, _

 "PAGE1.BIRTHMONTH.value", 0, vbNullString, Nothing)

 If (Len(BMonth) > 0) Then

 GetBirthMonth = CInt(BMonth)

 Else

 MsgBox "The birth month was not entered.", vbCritical

 Stop

 End If

 End Function

’ Similar to getBirthDay()

 Function GetBirthYear(TheForm) As Integer

 Dim BYear As String

 BYear = TheForm.GetLiteralByRefEx(vbNullString, _

 "PAGE1.BIRTHYEAR.value", 0, vbNullString, Nothing)

 If (Len(BYear) > 0) Then

 GetBirthYear = CInt(BYear)

 Else

 MsgBox "The birth year was not entered.", vbCritical

 Stop

 End If

 End Function

Note: For detailed information about the GetLiteralByRefEx method, including a

description of its parameters, refer to “GetLiteralByRefEx” on page 58.

Setting a Value in a Form

Once a form is loaded into memory, a developer can set the values associated with

any of the item or option nodes located in the form by calling SetLiteralByRefEx.

Change the values of hidden fields in the original form. These hidden fields are

arguments for a compute in the SHOWAGE label that calculates the user’s age. To

do this, we will use three separate functions. Each function uses SetLiteralByRefEx

to set one of the values.

 Sub SetBirthDay(BDay As Integer, TheForm As IFormNodeP)

 Dim Day As String

18

’ Convert the birthday to a String

 Day = CStr(BDay)

 ’ Call TheForm.SetLiteralByRefEx. The parameters are:

 ’ 1. vbNullString : reserved. Must be vbNullString.

 ’ 2. PAGE1.HIDDENDAY.value : the reference to the node.

 ’ 3. 0 : must be zero.

 ’ 4. vbNullString : sets the character set to ANSI.

 ’ 5. Nothing : no namespace node required.

 ’ 6. Day : the value to assign to the literal.

 ’ An Exception will be thrown if there is a problem.

 TheForm.SetLiteralByRefEx vbNullString, "PAGE1.HIDDENDAY.value", _

 0, vbNullString, Nothing, Day

 End Sub

 ’ Similar to SetBirthDay()

 Sub SetBirthMonth(BMonth As Integer, TheForm As IFormNodeP)

 Dim Month As String

 ’ Convert the birth month to a String

 Month = CStr(BMonth)

 ’ Set the birth month as a value in the form.

 TheForm.SetLiteralByRefEx vbNullString, "PAGE1.HIDDENMONTH.value", _

 0, vbNullString, Nothing, Month

 End Sub

 ’ Similar to setBirthDay()

 Sub SetBirthYear(BYear As Integer, TheForm As IFormNodeP)

 Dim Year As String

 ’ Convert the birth year to a String

 Year = CStr(BYear)

 ’ Set the birth year as a value in the form.

 TheForm.SetLiteralByRefEx vbNullString, "PAGE1.HIDDENYEAR.value", _

 0, vbNullString, Nothing, Year

 End Sub

Note: For detailed information about SetLiteralByRefEx, including a description of

its parameters, refer to “SetLiteralByRefEx” on page 92.

Writing a Form to Disk

Once you have finished making the desired changes to the form, you should save

it to disk. If you want to retain the original form (calculateAge.xfd), you should

save the modified form under a new name. This program saves the modified form

as Output.xfd.

The following example implements the function SaveForm. This function calls the

API function WriteForm that writes a form to disk.

Getting Started with the Form Library 19

Sub SaveForm(TheForm)

 ’ Call theForm.writeForm. theForm is the root node of the form to

 ’ be written. The parameters are:

 ’ 1. output.xfd : the filename you want to use (you could also use

 ’ a path here).

 ’ 2. Nothing : since we do not want to set a triggeritem.

 ’ 3. 0 : since we do not want to allow the transmit options to work.

 ’ An exception is thrown if there is a problem.

 TheForm.WriteForm "output.xfd", Nothing, 0

 End Sub

Note: For detailed information about WriteForm, including a description of its

parameters, refer to “WriteForm” on page 109.

Closing a Form

Next, you must free the memory used by the form itself. This is the last operation

in the main function of the program.

The program’s main method calls the API’s Destroy method to delete TheForm

object.

 ’ Now that we are done with the form, we can free the memory by

 ’ calling Destroy. The object, ’TheForm’, is a reference to

 ’ the root node of the form. This causes the root node and all

 ’ of its children (the complete form) to be deleted from memory.

 TheForm.Destroy

 End Sub

Note: For detailed information about Destroy, including a description of its

parameters, refer to “Destroy” on page 44.

Compiling Your Application

Once you have generated the source files for your application, you must compile

the source code.

v Use an appropriate compiler that is supported by this API to compile your files.

Refer to the IBM Workplace Forms Server - API Installation and Setup Guide for

more information about compatible development environments.

v Before building your application you should have a source file that represents

your application. After compiling the file you will have a file an executable (or

class file) with the same name.

v The details of compiling your source code are not included in this manual.

Consult your development environment’s documentation for specific information

on how to use your compiler.

v Make sure that the compiler uses the -I option when searching the directory

containing the API include files.

Testing your Application

Use the sample form that accompanies the API to test the Calculate Age

application.

20

1. Copy the file calculateAge.xfd to the folder containg your application. The file

is located in the following folder:

 <API Program folder>\Samples\COM\Form\Demo\Calculate_Age\

2. Open the form in the Viewer to see the original settings.

3. Run the application that you have just created.

4. A new file will be created called Output.xfd.

Note: To view the forms provided with this API, you must have a licensed or

evaluation copy of the IBM Workplace Forms Viewer installed.

Distributing Applications That Use the Form Library

If you distribute applications that use the Form Library, you will also need to

distribute a number of API files. Refer to the IBM Workplace Forms Server - API

Installation and Setup Guide for information about distributing applications that use

the Form Library.

Summary

By working through this section you have successfully built the Calculate Age

application. In the process, you have learned how to initialize, compile, and test

form applications using the following methods from the Form Library:

v IFSInitialize

v ReadForm

v GetLiteralByRefEx

v SetLiteralByRefEx

v WriteForm

v Destroy

The source code for the Calculate Age application is included with this API and

can be found in the following folder:

 <API Program folder>\Samples\COM\Form\Demo\Calculate_Age\

To view the forms provided with the sample application, you must have a copy of

the Viewer installed.

Note: The sample files provided are compatible with the Microsoft Visual Basic 6.0

development environment. For more information about compatible

development environments for the API refer to the IBM Workplace Forms

Server - API Installation and Setup Guide.

Getting Started with the Form Library 21

22

Form Library Quick Reference Guide

This section provides detailed information about the Form Library. The available

functions are divided into the following categories:

v “The Certificate Functions” on page 29.

v “The FormNodeP Functions” on page 35.

v “The Hash Functions” on page 113.

v “The Initialization Functions” on page 117.

v “The LocalizationManager Functions” on page 123.

v “The SecurityManager Functions” on page 135.

v “The Signature Functions” on page 139.

v “The XFDL Functions” on page 147.

Within each section, the functions are presented alphabetically.

Form Library Functions

The Form Library includes the following functions:

 Function Type Description Functions

Certificate The Certificate function

gets information from

digital certificates.

GetBlob

GetDataByPath

GetIssuer

FormNodeP The FormNodeP

functions create and

populate nodes and free

memory.

AddNamespace

CreateCell

DeleteSignature

DereferenceEx

Destroy

Duplicate

EncloseFile

EncloseInstance

© Copyright IBM Corp. 2003, 2006 23

Function Type Description Functions

FormNodeP

(continued)

The FormNodeP

functions create and

populate nodes and free

memory.

ExtractFile

ExtractInstance

ExtractXFormsInstance

GetAttribute

GetAttributeList

GetCertificateList

GetChildren

GetFormVersion

GetIdentifier

GetLiteralEx

GetLiteralByRefEx

GetLocalName

GetNamespaceURI

GetNamespaceURIFromPrefix GetNext

GetNodeType

GetParent

GetPrefix

GetPrefixFromNamespaceURI

GetPrevious

GetReferenceEx

GetSecurityEngineName

GetSigLockCount

GetSignature

GetSignatureVerificationStatus

GetType

IsSigned

IsXFDL

24

Function Type Description Functions

FormNodeP

(continued)

The FormNodeP

functions create and

populate nodes and free

memory.

RemoveEnclosure

ReplaceXFormsInstance

SetActiveForComputationalSystem

SetAttribute

SetFormula

SetLiteralEx

SetLiteralByRefEx

SignForm

ValidateHMACWithSecret

ValidateHMACWithHashedSecret

VerifyAllSignatures

VerifySignature

WriteForm

WriteFormToASPResponse

XMLModelUpdate

Hash The Hash functions hash

data.

Hash

Initialization The Initialization

functions initialize the

API.

IFSInitialize

LocalizationManager The LocalizationManager

functions control which

locale (language) the API

uses.

GetCurrentThreadLocale

GetDefaultThreadLocale

SetCurrentThreadLocale

SetDefaultLocale

SecurityManager The SecurityManager

functions provide hashing

algorithms.

LookupHashAlgorithm

Signature The Signature functions

get information from

signatures.

GetDataByPath

GetSigningCert

XFDL The XFDL functions

create the root nodes of

XFDL forms and handle

administrative tasks

related to the API.

Create

GetEngineCertificateList

IsDigitalSignaturesAvailable

ReadForm

ReadFormFromASPRequest

Form Library Quick Reference Guide 25

About the Function Descriptions

The functions in this reference guide are listed according to the functionality they

provide and are described using the following format:

v Description: Provides a general description of what the function does.

v Function: Lists the function’s signature and type of value returned (if any).

v Parameters: Lists and describes each parameter in detail.

v Returns: Indicates what value is returned by the function.

v Notes: Provides additional information to help you use the function.

v Example: Provides sample code that uses the function in question.

Note: All sample code for the COM API is written in VBScript, and assumes it

is running as part of an ASP page. However, you can use any COM

compliant language when writing your own programs.

Using Signatures with the Form Library

Computed options often contain their current computed value. If this value is

signed, it will not change, even if something in the form changes that would

normally trigger the compute.

The literal value is stored as simple character data in the computed option, as

shown below:

 <field sid="FIELD1">

 <value compute="page1.nameField.value">Jane E. Smith</value>

 </field>

The node structure for this value option is:

Page1.nameField.value

field FIELD1

Jane E. SmithJane E. Smith

value

The Viewer sets this literal value when a form is signed, submitted, or saved (and

discards any old value if necessary). When ReadForm is invoked, the current value

(cval) is set and cannot be changed. Because a digitally signed formula never fires

after being signed, the current value for the option is always the same - and

therefore it is possible to reference the option and get the signed literal value.

About Errors

The COM API reports errors in one of two ways, depending on the programming

language you are using. If your programming language supports structured errors,

the COM API will throw exceptions. Otherwise, the COM API will report errors in

the HResult, and you will have to handle those errors manually.

26

About Output Parameters

When using VBScript, the COM interface does not properly match output

parameters with variant data types. This means that any function requiring an

output parameter will not function properly. If you are programming in VBScript,

set all output parameters to null rather than using a variable.

The nulls required under VBScript are:

v Nothing — Used for all objects.

v vbNullString — Used for all strings.

v vbNull — Used for other data types. vbNull is equivalent to the constant ″1″,

and is not declared by default in VBScript. Rather than declaring a constant

variable, you should use ″1″ in all cases.

Form Library Quick Reference Guide 27

28

The Certificate Functions

The Certificate functions allow you to work with Certificate objects.

v To use the Certificate functions you must import the IFS_COM_API type library,

as shown:

 <!-- METADATA TYPE = "typelib"

 FILE = "c:\winnt\system32\IFS_COM_API.tlb" -->

GetBlob

Description

This function extracts a binary long object (Blob). This Blob is a DER-encoded

certificate.

Function

 Function GetBlob(

 theStatus As Long

) As Variant

Parameters

 Expression Type Description

theStatus Long A long that is set with the status of the

operation. This will be one of the following:

SUSTATUS_OK — The operation was

successful.

SUSTATUS_CANCELLED — the operation was

cancelled by the user.

SUSTATUS_INPUT_REQUIRED — the

operation required user input, but could not

receive it (for example, it was run on a server

with no user).

Returns

The Blob as a variant containing an array of bytes.

Example

The following function extracts the Blob from a certificate, checks the status to

make sure the operation was successful, then returns the Blob.

 Sub extractBlob(TheCert)

 Dim TheBlob ’ Variant

 ’ Get the Blob from the certificate

 TheBlob = TheCert.GetBlob(1) ’ vbNull

 ’ Call the ProcessBlob function to process the certificate Blob. Note

 ’ that this is not an API function, but rather a function you would

© Copyright IBM Corp. 2003, 2006 29

’ write to do some processing, such as writing the Blob to disk.

 ProcessBlob(TheBlob);

 End Sub

GetDataByPath

Description

This function retrieves a piece of data from a certificate object.

Function

 Function GetDataByPath(

 dataPath As String,

 tagData As Boolean,

 encoded As Boolean

) As String

Parameters

 Expression Type Description

thePath String The path to the data you want to retrieve.

See the Notes section below for more

information on data paths.

tagData Boolean True if the path should be prepended to

the data, or False if not. If the path is

prepended, an equals sign (=) is used as a

separator.

For example, suppose the path is ″Signing

Cert: Issuer: CN″ and the data is ″IBM″. If

True, the path will be prepended,

producing ″CN=IBM″. If False, the path

will not be prepended, and the result will

be ″IBM″.

encoded Boolean True if the return data is base 64 encoded,

or False if not. The function returns binary

data in base 64 encoding.

Notes

About Data Paths

Data paths describe the location of information within a certificate, just like file

paths describe the location of files on a disk. You describe the path with a series of

colon separated tags. Each tag represents either a piece of data, or an object that

contains further pieces of data (just like directories can contain files and

subdirectories).

For example, to retrieve the version of a certificate, you would use the following

data path:

 version

However, to retrieve the subject’s common name, you first need to locate

thesigning certificate, then the subject, then the common name within the subject,

as follows:

30

SigningCert: Subject: CN

Some tags may contain more than one piece of information. For example, the

issuer’s organizational unit may contain a number of entries. You can either

retrieve all of the entries as a comma separated list, or you can specify a specific

entry by using a zero-based element number.

For example, the following path would retrieve a comma separated list:

 Issuer: OU

While adding an element number of 0 would retrieve the first organizational unit

in the list, as shown:

 Issuer: OU: 0

Certificate Tags

The following table lists the tags available in a certificate object:

 Tag Description

Subject The subjects distinguished name. This is an object that contains

further information, as detailed in Distinguished Name Tags.

Issuer The issuer’s distinguished name. This is an object that contains

further information, as detailed in Distinguished Name Tags.

IssuerCert The issuer’s certificate. This is an object that contains the complete

list of certificate tags.

Engine The security engine that generated the certificate. This is an object

that contains further information, as detailed in Security Engine Tags.

Version The certificate version.

BeginDate The date on which the certificate became valid.

EndDate The date on which the certificate expires.

Serial The certificates serial number.

SignatureAlg The signature algorithm used to sign the certificate.

PublicKey The certificates public key.

FriendlyName The certificates friendly name.

Distinguished Name Tags

The following table lists the tags available in a distinguished name object:

 Tag Description

CN The common name.

E The e-mail address.

T The title.

O The organization.

OU The organizational unit.

C The country.

L The locality.

ST The state.

All The entire distinguished name.

The Certificate Functions 31

Security Engine Tags

The following table lists the tags available in the security engine object:

 Tag Description

Name The name of the security engine used by the server.

Help The help text for the security engine.

HashAlg A hash algorithm supported by the security engine.

Returns

A string containing the certificate data (null if no data is found), or throws an

exception if an error occurs.

Example

The following function uses DereferenceEx to locate a signature button in the

form. It then calls GetCertificateList to get a list of valid certificates for that

button. The function then loops through the available certificates, using

GetDataByPath to check the common name of each certicate. When it finds the

certificate with the common name of ″TJones″, it calls SignForm and uses that

certificate to sign the form.

 Sub ApplySignature(Form)

 Dim SigNode, SigObject ’ objects

 Dim TheCerts ’ CertificateList

 Dim CommonName ’ String

 Dim Cert ’ ICertificate

 ’ Get the SignatureButton node

 Set SigNode = Form.DereferenceEx(vbNullString, _

 "PAGE1.SignatureButton", 0, UFL_ITEM_REFERENCE, Nothing)

 ’ Get available certificates for that button

 Set TheCerts = SigNode.GetCertificateList(vbNullString, 1) ’vbNull

 ’ Test each of the available certificates to see if it has a common

 ’ name of "TJones". If it does, use that certificate to sign

 ’ the form.

 For Each Cert in TheCerts

 CommonName = Cert.GetDataByPath("SigningCert: Subject: CN", _

 False, 1) ’ vbNull

 Response.Write CommonName & vbCrLf

 If CommonName = "TJones" Then

 Set SigObject = SigNode.SignForm(TheCerts(1), Nothing, 1)

 ’ vbNull

 End If

 Next

 End Sub

32

GetIssuer

Description

This function extracts the issuer certificate from the certificate provided.

Function

 Function GetIssuer(

 theStatus As Long

) As Certificate

Parameters

 Expression Type Description

theStatus Long A long that is set with the status of the operation.

This will be one of the following:

SUSTATUS_OK — The operation was successful.

SUSTATUS_CANCELLED — the operation was

cancelled by the user.

SUSTATUS_INPUT_REQUIRED — the operation

required user input, but could not receive it (for

example, it was run on a server with no user).

Returns

The issuer certificate.

Example

The following example gets the signing certificate from a signature object, then

iterates through the certificate issuers until it reaches the end of the chain. During

the iteration, each certificate is passed to a function that processes them.

 Sub processCertChain(TheSig)

 Dim TheCert, IssuerCert ’ ICertificate

 ’ Get the signing certificate from the signature

 Set TheCert = TheSig.GetSigningCert()

 ’ Loop through the certificate chain, passing each certificate to the

 ’ ProcessCert function. The loop ends when the issuer certificate is

 ’ Nothing.

 Do While (Not(TheCert Is Nothing))

 ’ Pass the certificate to the ProcessCert function. Note that

 ’ this is not an API function, but rather a function you would

 ’ write to process the certificate in some way.

 ProcessCert(TheCert)

 ’ Get the issuer certificate from the TheCert

 Set IssuerCert = TheCert.GetIssuer(1) ’ vbNull

 ’ Assign theCert to equal the issuerCert for next iteration of the

 ’ loop.

The Certificate Functions 33

Set TheCert = IssuerCert

 Loop

 End Sub

34

The FormNodeP Functions

The FormNodeP functions apply to particular instances of a form and the items in

that form.

v Each node in a form, regardless of its level in the node hierarchy, is represented

by a IFormNodeP object. For more information about the node structure of

XFDL forms refer to “Overview of the Form Structure” on page 5.

v To use the FormNodeP functions you must import the IFS_COM_API type

library, as shown:

 <!-- METADATA TYPE = "typelib"

 FILE = "c:\winnt\system32\IFS_COM_API.tlb" -->

FormNodeP Constants

The following table lists the constants that are used by the IFormNodeP functions

along with a short description of each constant:

 Named Constants Description

UFL_DS_CERTEXPIRED The certificate has expired.

UFL_DS_CERTNOTFOUND The certificate was not found.

UFL_DS_CERTNOTTRUSTED The certificate is no longer trusted.

UFL_DS_CERTREVOKED The certificate has been revoked.

UFL_DS_F2MATCHSIGNER The name in the form did not match the

name in the signature.

UFL_DS_HASHCOMPFAILED The hash of the document did not match

the hash in the signature.

UFL_DS_ISSUERNOTFOUND The issuer could not be found.

UFL_DS_ISSUERSIGFAILED The verification of the issuer’s certificate

failed.

UFL_DS_SIGNATUREALTERED The signature has been altered.

UFL_DS_UNEXPECTED Generic error.

addNamespace

Description

This function adds a namespace declaration to the node it is called on. Each

namespace is defined in the form by a namespace declaration, as shown:

 xmlns:xfdl="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:custom="http://www.ibm.com/xmlns/prod/XFDL/Custom"

Each namespace declaration defines both a prefix and a URI for the namespace. In

this sample, the prefix for the XFDL namespace is xfdl and the URI is

http://www.ibm.com/xmlns/prod/XFDL/7.0.

Tags within the form are assigned specific namespaces by using the defined prefix.

For example, to declare that an option was in the custom namespace you would

use the prefix custom as shown:

© Copyright IBM Corp. 2003, 2006 35

<field sid="testField">

 <custom:custom_option>value</custom:custom_option>

 </field>

Function

 Sub AddNamespace(

 theURI As String,

 thePrefix As String)

Parameters

 Expression Type Description

theURI String The namespace URI. For example:

http://www.ibm.com/xmlns/prod/XFDL/7.0

thePrefix String The prefix for the namespace. For example, xfdl.

Returns

Nothing or throws an exception if an error occurs.

Example

The following function adds a custom namespace to a form and then adds a custom

option to the global item. First, the function uses AddNamespace to add the

custom namespace to the form. It then uses DereferenceEx to locate the global item

on the form’s global page. Finally, it uses Create to add a custom option to the

global item.

 Sub AddCustomNamespace(Node)

 Dim TempNode, XFDL ’ objects

 Set TempNode = Node

 ’ Add the Custom namespace to the form

 TempNode.AddNamespace"http://www.ibm.com/xmlns/prod/XFDL/Custom", "custom"

 ’ Locate the global item in the global page

 Set TempNode = TempNode.DereferenceEx(vbNullString, "global.global", _

 0, UFL_ITEM_REFERENCE, Nothing)

 ’ Create an XFDL object so that we can use the create function

 Set XFDL = CreateObject("Workplace_Forms.xfdl_XFDL")

 ’ Create a "status" option in the custom namespace as a child of the

 ’ global item.

 Set TempNode = XFDL.Create(TempNode, UFL_APPEND_CHILD, vbNullString, _

 "Processed" , vbNullString, "custom:status")

 End Sub

36

CheckValidFormats

Description

This function checks the format of all items in the form and returns the number of

items whose format is invalid. You can also set the function to create a list of the

invalid items.

This function does not support XForms nodes.

Function

 Function CheckValidFormats() As Boolean

Parameters

There are no parameters for this function.

Returns

An array of nodes that represent items with invalid formats.

Example

The following function walks through the form and uses CheckValidFormats to

determine which nodes have the correct format. This function assumes that you are

passing in the root node of the form.

 Sub CheckFormats

 Dim theForm ’ object

 Dim invalidItems ’ IFormNodePList

 Dim theItem ’ IFormNodeP

 Dim theReference ’ String

 invalidItems = theForm.checkValidFormats();

 If invalidItems == Nothing Then

 Response.Write("All the items have valid formats."

 Else

 For Each theItem in invalidItems

 theReference = theItem.GetReferenceEx(vbNullString, Nothing, _

 Nothing, False)

 Response.Write("The item "theReference" has an invalid format".)

 End If

 End Sub

createCell

Description

Use this function to create a new cell item for a combobox, list, or popup. CreateCell

adds one new cell to a specific group on a specific page in the form. Note that this

function can only assign a name to the new cell; it cannot set the cell’s value. To set

the value of a cell, you must use the SetLiteralByRefEx function.

This function is called from a page level node, and creates the new cell in that

page. Note that you cannot call this function from the global page node.

The FormNodeP Functions 37

Function

 Function CreateCell(

 theCellName As String,

 theGroupName As String

) As IFormNodeP

Parameters

 Expression Type Description

theCellName String The name of the new cell being created.

theGroupName String The name of the group option to which

the new cell will be added.

Returns

An IFormNodeP containing the new cell or throws an exception if an error occurs.

Example

The following function adds three cells to a form. First, the function uses

DereferenceEx to locate the PAGE1 node. Next, the function calls CreateCell to

create a new cell on that page and SetLiteralByrefEx to set the value of the new

cell. The function then repeats these steps to create two more cells on that page.

 Sub AddCells(Form)

 Dim PageNode, CellNode ’ object

 Set PageNode = Form

 Set PageNode = PageNode.DereferenceEx(vbNullString, "PAGE1", 0, _

 UFL_PAGE_REFERENCE, Nothing)

 Set CellNode = PageNode.CreateCell("RedCell", "AvailableColors")

 CellNode.SetLiteralByRefEx vbNullString, "PAGE1.RedCell.value", 0, _

 vbNullString, Nothing, "Red"

 Set CellNode = PageNode.CreateCell("BlueCell", "AvailableColors")

 CellNode.SetLiteralByRefEx vbNullString, "PAGE1.BlueCell.value", 0, _

 vbNullString, Nothing, "Blue"

 Set CellNode = PageNode.CreateCell("GreenCell", "AvailableColors")

 CellNode.SetLiteralByRefEx vbNullString, "PAGE1.GreenCell.value", 0, _

 vbNullString, Nothing, "Green "

 End Sub

DeleteSignature

Description

This function deletes the specified digital signature in the form. For security

reasons, the form must meet certain criteria before this is allowed. None of the

following should be locked by another signature: the signature, its descendants, the

associated signature button, and its signer option. If these criteria are met, then the

signature’s locks are removed, and the signature item is deleted. Then, and the

signer of the associated signature button is set to empty (″″).

38

Function

 Sub DeleteSignature(

 signatureItem As IFormNodeP)

Parameters

 Expression Type Description

signatureItem IFormNodeP The signature node to delete.

Returns

Nothing if call is successful or throws an exception if an error occurs.

Notes

If the signature item contains a layoutinfo option, DeleteSignature will not remove

the entire signature from the form. Instead, the signature item and the layoutinfo

option will remain. To completely delete the signature item, you must delete the

remaining nodes manually by using Destroy to delete the signature item.

Example

The following function checks to see the signature in the form is valid. First, the

function uses DereferenceEx to locate the signature button. It then uses

GetLiteralByRefEx to get the name of the signature item, and uses another

DereferenceEx to locate that item. Next, it uses VerifySignature to determine

whether the signature is valid. If so, it return the string ″Valid″. If not, it uses

DeleteSignature to delete the signature and returns the string ″Invalid″.

 Function CheckSignature(Form)

 Dim TempNode, SigNode ’ objects

 Dim SigStatus ’ Integer

 Dim SigItemRef ’ Strings

 Set TempNode = Form

 ’ Get the SignatureButton node

 Set TempNode = TempNode.DereferenceEx(vbNullString, _

 "PAGE1.SignatureButton", 0, UFL_ITEM_REFERENCE, Nothing)

 ’ Get a reference to the signature item from the signature option

 SigItemRef = TempNode.GetLiteralByRefEx(vbNullString, "signature", _

 0, vbNullString, Nothing)

 ’ Get the signature item node

 Set SigNode = TempNode.DereferenceEx(vbNullString, SigItemRef, 0, _

 UFL_ITEM_REFERENCE, Nothing)

 ’ Verify the signature

 SigStatus = Form.VerifySignature(SigNode, vbNullString, False)

 ’ If the signature is not verified, then delete the signature and set

 ’ the return code to "Invalid". Otherwise, set the return code to

 ’ "Valid".

 If (Not(SigStatus = UFL_DS_OK)) Then

The FormNodeP Functions 39

TempNode.DeleteSignature SigNode

 CheckSignature = "Invalid"

 Else

 CheckSignature = "Valid"

 End If

 End Function

DereferenceEx

Description

Use this function to locate a particular IFormNodeP, to locate a cell in a particular

group, or to locate a data item in a particular datagroup. The node that this

function operates on is used as the starting point of the search.

Note: It is not necessary to call this function when you are using XForms. The

ReplaceXFormsInstance and ExtractXFormsInstancefunctions perform this

task automatically.

Function

 Function DereferenceEx(

 theScheme As String,

 theReference As String,

 theReferenceCode As Long,

 referenceType As Long,

 theNSNode As IFormNodeP

) As IFormNodeP

Parameters

 Expression Type Description

theScheme String Reserved. This must be null.

theReference String The reference string.

theReferenceCode Long Reserved. This must be 0.

40

Expression Type Description

referenceType Long One of the following constants:

UFL_OPTION_REFERENCE

UFL_ITEM_REFERENCE

UFL_PAGE_REFERENCE

UFL_ARRAY_REFERENCE

UFL_GROUP_REFERENCE

UFL_DATAGROUP_REFERENCE

If it is an option or argument reference, bitwise

OR (|) with one of:

UFL_SEARCH

UFL_SEARCH_AND_CREATE

If it is a group or datagroup reference, bitwise

OR (|) with one of:

UFL_FIRST

theNSNode IFormNodeP A node that is used to resolve the namespaces

in theReference parameter (see the note about

namespace below). Use null if the node that

this function is operating on has inherited the

necessary namespaces.

Returns

The IFormNodeP defined by the reference string or null if the referenced node

does not exist and UFL_SEARCH_AND_CREATE is not specified. On error, the

function throws an exception.

Notes

IFormNodeP

Before you decide which IFormNodeP to use this function on, be sure you

understand the following:

1. The IFormNodeP supplied can never be more than one level in the hierarchy

above the starting point of the reference string. For example, if the reference

string begins with an option, then the IFormNodeP can be no higher in the

hierarchy than an item.

2. If the IFormNodeP is at the same level or lower in the hierarchy than the

starting point of the reference string, the function will attempt to locate a

common ancestor. The function will locate the ancestor of the IFormNodeP that

is one level in the hierarchy above the starting point of the reference string. The

function will then attempt to follow the reference string back down through the

hierarchy. If the reference string cannot be followed from the located ancestor

(for example, if the ancestor is not common to both the IFormNodeP and the

reference string), the function will fail. For example, given a IFormNodeP that

The FormNodeP Functions 41

represents field_1 and a reference of field_2, the function will access the page

node above field_1, and will then try to locate field_2 below that node. If the

two fields were not on the same page, the function would fail.

3. DereferenceEx does not support the XForms scheme.

Creating a Reference String

For general information about creating a reference string, see “References” on page

6.

Reference strings for groups or datagroups follow this format:

 page.group or page.datagroup

In both cases, the page component is optional, and is only required if you want to

search a different page than the one containing your reference node.

For example, to refer to the ″State″ group of cells on PAGE1 of the form, you

would use:

 PAGE1.State

Locating Cells or Data Items

If you want to locate a cell or a data item, you must perform a bitwise OR with

UFL_FIRST or UFL_NEXT. UFL_FIRST will locate the first cell or data item in the

page. UFL_NEXT will locate the next cell or data item. This allows you to loop

through all the cells or data item on a page until you have found the one you

want.

Note that groups and datagroups are limited to a single page, and that your search

will likewise be limited to a single page.

Creating a Node

For an option or argument reference, you can have the library create a node that

does not exist. To do so, perform a bitwise OR of UFL_SEARCH_AND_CREATE to

the referenceType parameter; otherwise, perform a bitwise OR of UFL_SEARCH to

the referenceType variable and the function will return null if the node does not

exist.

Determining Namespace

In some cases, you may want to use the DereferenceEx function to locate a node

that does not have a globally defined namespace. For example, consider the

following form:

 <label sid="Label1">

 <value>Field1.processing:myValue</value>

 </label>

 <field sid="Field1" xmlns:processing="URI">

 <value></value>

 <processing:myValue>10<processing:myValue>

 </field>

In this form, the processing namespace is declared in the Field1 node. Any elements

within Field1 will understand that namespace; however, elements outside of the

scope of Field1 will not.

42

In cases like this, you will often start your search at a node that does not

understand the namespace of the node you are trying to locate. For example, you

might want to locate the node referenced in the value of Label1. In this case, you

would first locate the Label1 value node and get its literal. Then, from the Label1

value node, you would attempt to locate the processing:myValue node as shown:

 Label1Node.DereferenceEx(vbNullString, "Field1.processing:myValue", 0,

 UFL_OPTION_REFERENCE, vbNullString)

In this example, the DereferenceEx function would fail. The function cannot

properly resolve the processing namespace because this namespace is not defined

for the Label1 value node. To correct this, you must also provide a node that

understands the processing namespace (in this case, any node in the scope of Field1)

as the last parameter in the function:

 Label1Node.DereferenceEx(vbNullString, "Field1.processing:myValue", 0,

 UFL_OPTION_REFERENCE, Field1Node)

Example

The following example adds a label to a form. A node is passed into the function,

which then uses GetLiteralByRefEx to read the value of a field. The function then

uses DereferenceEx to locate the field node, and creates a label node as a sibling

using Create. Finally, the function creates a value for the new label node using

SetLiteralByRef.

 Sub AddLabel(Form)

 Dim TempNode, XFDL ’ objects

 Dim Name ’ strings

 Set TempNode = Form

 ’ Get the value of the NameField.value option node

 Name = TempNode.GetLiteralByRefEx(vbNullString, _

 "PAGE1.NameField.value", 0, vbNullString, Nothing)

 ’ Locate the NameField item node in the first page of the form

 Set TempNode = TempNode.DereferenceEx(vbNullString, _

 "PAGE1.NameField", 0, UFL_ITEM_REFERENCE, Nothing)

 ’ Get an XFDL object

 Set XFDL = CreateObject("PureEdge.xfdl_XFDL")

 ’ Create a label. This label is created as a sibling of the NameField,

 ’ and is named NameLabel.

 Set TempNode = XFDL.Create(TempNode, UFL_AFTER_SIBLING, "label", _

 vbNullString, vbNullString, "NameLabel")

 ’ Create a value option for the label. This option is assigned the

 ’ value of Name (as read from the field)

 TempNode.SetLiteralByRefEx vbNullString, "value", 0, vbNullString, _

 Nothing, Name

 End Sub

The FormNodeP Functions 43

Destroy

Description

This function destroys the indicated IFormNodeP. All children of the specified

IFormNodeP are also destroyed.

Function

 Sub Destroy()

Parameters

There are no parameters for this function.

Returns

Nothing if call is successful or throws an exception if an error occurs.

Notes

Digital Signatures

You cannot destroy a signed item, except in the case of destroying an entire signed

form. Destroying a signed item breaks the digital signature, resulting in an

exception.

Example

The following function uses GetChildren and GetNext to walk through an entire

form and deletes all information that is not in the XFDL namespace. The function

uses IsXFDL to determine which nodes are in the XFDL namespace. Note that the

function assumes that you are passing the root node of the form on the first call.

Subsequent calls occur through recursion, which may provide any level of node.

 Sub DeleteCustomInfo(Node)

 Dim MainNode, TestNode ’ objects

 Dim TempInt

 ’ Set the MainNode to be the child of the provided node.

 Set MainNode = Node.GetChildren

 ’ Use recursion to step through each node in the form. This routine

 ’ walks to the last node in each page, then traverses back up the tree,

 ’ deleting nodes that are not in the XFDL namespace as it goes.

 Do While (Not(MainNode Is Nothing))

 Set TestNode = MainNode.getNext

 DeleteCustomInfo(MainNode)

 Set MainNode = TestNode

 Loop

 ’ Check to see if the node passed to the routine is in the XFDL

 ’ namespace. If not, delete the node.

 If Node.isXFDL = False Then

 Node.Destroy

 End If

 End Sub

44

Duplicate

Description

This function makes a copy of a node. The duplicate node can be attached to any

other node as either a sibling or a child, or can be stored as a separate node

structure (that is, as a separate form). The new node can also be assigned a new

identifier, as indicated by the theIdentifier parameter. All of the properties of the

original node are duplicated, including any children and any namespace settings.

Note: If you duplicate a node that is not in the XFDL namespace, the namespace is

copied as part of the duplicated node, but is not set globally.

Function

 Function Duplicate(

 baseNode As IFormNodeP,

 where As Long,

 theIdentifier As String

) As IFormNodeP

Parameters

 Expression Type Description

baseNode IFormNodeP The formNodeP to attach the new copy to. If null,

then origNode is used as the baseNode.

where Long A constant that describes the location in relation to

the supplied ’baseNode’ in which the new node

should be placed. Can be one of:

UFL_APPEND_CHILD — adds the new node as the

last child of the ’baseNode’.

UFL_AFTER_SIBLING — adds the new node as a

sibling of the ’baseNode’, placing it immediately after

that node in the form structure.

UFL_BEFORE_SIBLING — adds the new node as a

sibling of the ’baseNode’, placing it immediately

before that node in the form structure.

UFL_ORPHAN — copies the node to a new form

structure, effectively creating a separate form.

theIdentifier String A new identifier for this node. If null, the same

identifier that was on the original node is used.

Returns

The duplicate node or throws an exception if an error occurs.

Example

The following function duplicates a page in the form, including all of the items on

the page. First, the function uses DereferenceEx to locate the PAGE2 node and

then the PAGE3 node. Next, the function uses Duplicate to create a copy of the

PAGE2 node and place it after the PAGE3 node.

The FormNodeP Functions 45

Sub DuplicatePage(Form)

 Dim CopyNode, DestinationNode ’ objects

 Set CopyNode = Form

 Set DestinationNode = Form

 ’ Locate the page 2 node. This is the node that will be copied.

 Set CopyNode = CopyNode.DereferenceEx(vbNullString, "PAGE2", 0, _

 UFL_PAGE_REFERENCE, Nothing)

 ’ Locate the last page node. The copy will be inserted to the right

 ’ of this node in the form structure. In other words, the copy will

 ’ become the last page.

 Set DestinationNode = DestinationNode.DereferenceEx(vbNullString, _

 "PAGE3", 0, UFL_PAGE_REFERENCE, Nothing)

 ’ Duplicate the page 2 node, inserting it after the page 3 node. The

 ’ new page will be named PAGE4.

 Set CopyNode = CopyNode.Duplicate(DestinationNode, UFL_AFTER_SIBLING,_

 "PAGE4")

 End Sub

EncloseFile

Description

This function encloses a file in a form. The file must be accessible on the local

computer. The IFormNodeP may refer to either a page node or an item node. If the

IFormNodeP is a page node, the function creates a data item in that page to

contain the enclosure. If the IFormNodeP is an item node, it must be a data item,

and the function encloses the file in that node.

The file is enclosed using base64-gzip encoding.

Function

 Function EncloseFile(

 theFile As String,

 mimeType As String,

 dataGroup As String,

 identifier As String

) As IFormNodeP

Parameters

 Expression Type Description

theFile String The path to the file on the local drive to enclose.

mimeType String The MIME type of the file. If null, the library will

attempt to find a suitable MIME type for the file.

dataGroup String The data group to which this file should belong. If

the aNode parameter is a page node, you must

provide this parameter. If aNode parameter is an

item node, you may use null to keep the current

datagroup option or provide a different value to

overwrite the option.

46

Expression Type Description

theIdentifier String The identifier to assign to the new data item if one

is created. If null, either the current name is used

or a unique name is automatically generated for

the new data item.

Returns

The IFormNodeP of the item that contains the enclosure or throws an exception if

an error occurs.

Example

The following function encloses a file in a form. The function receives a form, uses

DereferenceEx to locate the PAGE2 node in the form, and then uses EncloseFile to

enclose a text file in the Notices datagroup. The file is stored in a data item named

PersonnelNotice.

 Sub AttachFile(Form)

 Dim TempNode ’ object

 Set TempNode = Form

 ’ Locate the PAGE2 node.

 Set TempNode = TempNode.DereferenceEx(vbNullString, "PAGE2", 0, _

 UFL_PAGE_REFERENCE, Nothing)

 ’ Create an enclosure in this page. The enclosure is stored in a data

 ’ item called PersonnelNotice, is linked to the Notices datagroup, and

 ’ encloses a text file from the local drive called Notice.txt.

 Set TempNode = TempNode.EncloseFile("c:\Notice.txt", "text/plain", _

 "Notices", "PersonnelNotice")

 End Sub

EncloseInstance

Description

This function modifies one instance in the data model, either updating information

or appending information. Note that the form must have an existing data model.

Call this function on the root node of the form or an XML instance node.

Note: Use caution when calling this function. It can be used to overwrite signed

instance data.

Function

 Sub EncloseInstance(

 theInstanceID As String,

 theFile As String,

 theFlags As Long,

 theScheme As String,

 theRootReference As String,

 theNSNode As IFormNodeP,

 replaceNode As Boolean)

The FormNodeP Functions 47

Parameters

 Expression Type Description

theInstanceID String The ID of the instance node to create or

replace. This is defined by the id attribute of

that node, and is case sensitive.

If theNode parameter is the instance node you

want to replace, set this parameter to null.

theFile String The path to the file on the local drive that

contains the XML instance.

theFlags Long Reserved. Must be 0.

theScheme String Reserved. Must be null.

theRoot Reference String A reference to the node you want to replace

or append children to. This reference is

relative to the instance node.

Use null to default to the instance node.

theNSNode IFormNodeP A node that inherits the namespaces used in

the reference. This node defines the

namespaces for the function. Use null if the

node that this function is operating on has

inherited the necessary namespaces.

replaceNode Boolean If True, the node specified by theRootReference

is replaced with data. If False, the data is

appended as the last child of theRootReference

node.

Returns

Nothing if call is successful or throws an exception if an error occurs.

Example

The following example shows a function that takes the root node of a form and

updates the XML instance called ″data″.

 Sub UpdateDataInstance(Form)

 Form.EncloseInstance "Test", "c:\DataInstance.txt", 0, vbNullString, _

 vbNullString, Nothing, False

 End Sub

ExtractFile

Description

This function will extract an enclosure contained in a node and save it to a file on

the local computer. Note that this function does not remove the enclosure from the

form.

Function

 Sub ExtractFile(

 theFile As String)

48

Parameters

 Expression Type Description

theFile String The path showing where to store the file on the

local drive. Any existing file will be overwritten.

Returns

Nothing if call is successful or throws an exception if an error occurs.

Example

The following function extracts an attachment from a form and saves it to disk.

First, the function uses DereferenceEx to locate the data item containing the

attachment, then it uses ExtractFile to write the attachment to a file on the local

drive.

 Sub SaveAttachment(Form)

 Dim TempNode ’ object

 Set TempNode = Form

 ’ Locate the PAGE3.DATA1 item, which contains the enclosure.

 Set TempNode = TempNode.DereferenceEx(vbNullString, "PAGE3.DATA1", _

 0, UFL_ITEM_REFERENCE, Nothing)

 ’ Extract the enclosure from the data item and save it to disk as

 ’ c:\Review1.doc

 TempNode.ExtractFile "c:\Review1.doc"

 End Sub

ExtractInstance

Description

This function copies an instance from a form’s XML model to a file. Note that this

function does not remove the instance from the form.

Call this function on the root node of the form or an XML instance node.

Function

 Sub ExtractInstance(

 theInstanceID As String,

 theFilter As IFormNodeP,

 includeNamespaces As String,

 theFile As String,

 theFlags As Long,

 theScheme As String,

 theRootReference As String,

 theNSNode As IFormNodeP)

The FormNodeP Functions 49

Parameters

 Expression Type Description

theInstanceID String The ID of the instance node to extract. This is

defined by the id attribute of that node.

If theNode parameter is the instance node you

want to extract, set this parameter to .

theFilter IFormNodeP An item in the form, such as a button or cell,

that defines the filtering for the instance.

Filtering of elements is controlled by the

transmit filters in the item. If all of an element’s

bound options are filtered out, then the element

is also filtered out. Use for no filtering.

included

Namespaces

String If set to null, a definition for each inherited

namespace is added to the root node of the

instance when it is extracted.

To filter the namespaces, list the prefixes for

those namespaces you want to include in the

instance, separated by spaces.

For example, to include only the xfdl and custom

namespaces, you would set this parameter to:

 xfdl custom

Use #default to indicate the default namespace

for the instance.

Use an empty string (″″) to include only those

namespaces that are used by the instance.

Namespaces that are used in the instance are

always included, regardless of this setting.

theFile String The path to the file on the local drive that will

contain the XML instance.

theFlags Long Reserved. This must be 0.

theScheme String Reserved. Must be null.

theRootReference String A reference to the root node you want to extract.

This reference is relative to the instance node.

Use null to default to the instance node.

theNSNode IFormNodeP A node that inherits the namespaces used in the

reference. This node defines the namespaces for

the function. Use null if the node that this

function is operating on has inherited the

necessary namespaces.

Returns

Nothing if call is successful or throws a generic exception (UWIException) if an

error occurs.

Example

The following example shows a function that takes the root node of a form and

extracts an XML instance.

50

Sub SaveDataInstance(Form)

 Form.ExtractInstance "Test", Nothing, vbNullString, _

 "c:\InstanceData.txt", 0, vbNullString, vbNullString, Nothing

 End Sub

ExtractXFormsInstance

Description

This function copies an XForms instance to a file or a memory block. This function

does not remove the instance from the form.

Call this function on the root node of the form or an instance node.

Note: This function automatically updates the XForms data model.

Function

 Sub ExtractXformsInstance(

 theModelID As String,

 theNodeRef As String,

 writeRelevant As Boolean,

 IgnoreFailures As Boolean,

 theNSNode As IFormNodeP,

 theFilename As String,

 theMemoryBlock As Variant)

Parameters

 Expression Type Description

theModelID String The ID of the model to extract. Use

vbnullstring to extract the default model.

theNodeRef String An XPath reference to a node in the instance.

This node and all of its children are copied.

Leave blank to extract the entire instance.

writeRelevant Boolean If True, writes only relevant instance data.

ignoreFailures Boolean If True, ignores constraint or validation

failures.

theNSNode IFormNodeP A node that inherits the namespaces used in

the reference. This node defines the

namespaces for the function. Use nothing if

the node that this function is operating on

has inherited the necessary namespaces.

theFilename String The name and path of the file to write to.

Use vbnullstring to write to the output

memory block.

theMemoryBlock Variant The memory block that represents the

instance if you are not writing to a file.

Returns

Nothing if call is successful or throws an exception if an error occurs.

The FormNodeP Functions 51

Example

The following example shows a routine that takes the root node of a form, extracts

an XForms instance, and writes it to a file called ″InstanceData.xml″.

 Sub SaveDataInstance(Form)

 Form.ExtractXFormsInstance"model1",

 "instance(’instance1’)loanrecord.user_personal_info", True, False,

 Nothing, "c:\InstanceData.xml", Nothing

 End Sub

GetAttribute

Description

This function returns the value of a specific attribute for a node. For example, the

following XFDL represents a MIME data node:

 <mimedata encoding="base64"></mimedata>

In this sample, you could use GetAttribute to obtain the value of the encoding

attribute, which would be ″base64″.

Function

 Function GetAttribute(

 theNamespaceURI As String,

 theAttribute As String

) As String

Parameters

 Expression Type Description

theNamespaceURI String The namespace URI for the attribute. For

example:

 http://www.ibm.com/xmlns/prod/XFDL/7.0

theAttribute String The local name of the attribute. For example,

encoding.

Returns

The attribute’s value or throws an exception if an error occurs. If the attribute is

empty or does not exist, the function returns null.

Notes

Namespaces

If you refer to an attribute with a namespace prefix, getAttribute first looks for a

complete match, including both prefix and attribute name. If it does not find such

a match, it will look for a matching attribute name that has no prefix but whose

containing element has the same namespace.

For example, assume that the custom namespace and the test namespace both

resolve to the same URI. In the following case, looking for the id attribute would

locate the second attribute (test:id), since it has an explicit namespace declaration:

52

<a xmlns:custom="ABC" xmlns:test="ABC">

 <custom:myElement id="1" test:id="2">

However, in the next case, the id attribute does not have an explicit namespace

declaration. Instead, it inherits the custom namespace. However, since the inherited

namespace resolves to the same URI, the id attribute is still located:

 <custom:myElement id="1">

Special Attributes

Forms generally use three special attributes that are not in an explicitly defined

namespace and which require special commands to retrieve.

The first is the default namespace attribute, which looks like this:

 xmlns="http://www.ibm.com/xmlns/prod/XFDL/7.0"

To retrieve this attribute, you must use a namespace URI of null and the attribute

name xmlns.

The second special attribute is a namespace declaration, which looks like this:

 xmlns:custom="http://www.ibm.com/xmlns/prod/XFDL/Custom"

To retrieve this sort of attribute, you must use the namespace URI

http://www.w3.org/2000/xmlns and the appropriate attribute name, such as custom.

Finally, there is the language attribute, which looks like this:

 xml:lang="en-GB"

To retrieve this sort of attribute, you must use the namespace URI

http://www.w3.org/XML/1998/namespace and the attribute name lang.

Example

The following function uses DereferenceEx to locate a node that contains an

attachment. It then calls GetAttribute to retrieve the encoding type used, and

returns that value.

 Function GetEncodingType(Form)

 Dim TempNode ’ object

 Set TempNode = Form

 ’ Locate the mimedata option for the DATA1 node in PAGE3, which

 ’ contains an attachment.

 Set TempNode = TempNode.DereferenceEx(vbNullString, _

 "PAGE3.DATA1.mimedata", 0, UFL_OPTION_REFERENCE, Nothing)

 ’ Get the encoding type of the data node.

 GetEncodingType = TempNode.GetAttribute(_

 "http://www.ibm.com/xmlns/prod/XFDL/7.0", "encoding")

 End Function

The FormNodeP Functions 53

GetCertificateList

Description

This function locates all available certificates that can be used by a particular

signature button. The certificates are filtered according to the signature engine

defined in the signformat option of the button, and according to the filters defined

in the signdetails option of the button.

This function returns the valid certificates in an undetermined order. This means

that you cannot rely on the certificates being listed in the same order each time

you call this function.

Function

 Function GetCertificateList(

 theFilters As String,

 theStatus As Long

) As CertificateList

Parameters

 Expression Type Description

theFilters String A string that is used to filter the subject attribute

of the certificate. If the subject attribute include

this substring, then that certificate will be listed.

For example, you might filter against a name,

such as ″John Doe″, or an e-mail address, such as

″jdoe@ibm.com″.

Note that this filter is in addition to the other

filters defined in the signdetails option of the

button.

If null is passed, then only the filters in the

signdetails option are used.

theStatus Long This is a status flag that reports whether the

operation was successful. Possible values are:

SUSTATUS_OK — the operation was successful.

SUSTATUS_CANCELLED — the operation was

cancelled by the user.

SUSTATUS_INPUT_REQUIRED — the

operation required user input, but could not

receive it (for example, it was run on a server

with no user).

Returns

An array containing the list of certificates objects.

Example

The following function uses DereferenceEx to locate a signature button in the

form. It then calls GetCertificateList to get a list of valid certificates for that

button. The function then loops through the available certificates, using

54

GetDataByPath to check the common name of each certicate. When it finds the

certificate with the common name of ″TJones″, it calls SignForm and uses that

certificate to sign the form.

 Sub ApplySignature(Form)

 Dim SigNode, SigObject ’ objects

 Dim TheCerts ’ CertificateList

 Dim CommonName ’ String

 Dim Cert ’ ICertificate

 ’ Get the SignatureButton node

 Set SigNode = Form.DereferenceEx(vbNullString, _

 "PAGE1.SignatureButton", 0, UFL_ITEM_REFERENCE, Nothing)

 ’ Get available certificates for that button

 Set TheCerts = SigNode.GetCertificateList(vbNullString, 1) ’vbNull

 ’ Test each of the available certificates to see if it has a common

 ’ name of "TJones". If it does, use that certificate to sign

 ’ the form.

 For Each Cert in TheCerts

 CommonName = Cert.GetDataByPath("SigningCert: Subject: CN", _

 False, 1) ’ vbNull

 If CommonName = "TJones" Then

 Set SigObject = SigNode.SignForm(TheCerts(1), Nothing, 1)

 ’ vbNull

 End If

 Next

 End Sub

GetChildren

Description

This function, along with GetParent, is used to traverse vertically along the form

hierarchy. GetChildren returns the first child of the indicated node. If the node has

no children, null is returned. All children of a particular IFormNodeP can be

traversed using an iterator, such as a while loop, in combination with GetNext.

Function

Function GetChildren() As IFormNodeP

Parameters

There are no parameters for this function.

Returns

The that represents the child or if no such child exists.

Example

getChildren returns the first child node of PAGE1.NAMELABEL that is

PAGE1.NAMELABEL.value.

The FormNodeP Functions 55

The following sample function receives any form node and returns a reference to

the last page of the form. First, the function uses GetNodeType to determine if the

supplied node is a the form level. If so, the function uses GetChildren to locate the

first page node. If not, the function uses GetParent to locate a page level node. The

function then uses GetNext to locate the last page in the form and calls

GetReferenceEx to retrieve a reference to that node.

 Function GetLastPage(Node)

 Dim MainNode, TestNode ’ objects

 Set MainNode = Node

 ’ Locate the page level node that is the nearest ancestor or child of

 ’ the current node. If the node is a form node, get the child. If the

 ’ node is any other type, get the parent until a page node is

 ’ retrieved.

 If MainNode.getNodeType = UFL_FORM Then

 Set MainNode = MainNode.GetChildren

 Else

 ’ Locate the page node of the form by iterating through the parents

 ’ of the supplied node. At the end of this loop, MainNode will be

 ’ a page node.

 Do While (Not(MainNode.GetNodeType = UFL_PAGE))

 Set MainNode = MainNode.GetParent

 Loop

 End If

 ’ Set TestNode to be the MainNode (the page node) before beginning the

 ’ next loop.

 Set TestNode = MainNode

 ’ Locate the last page node by iterating through the siblings of the

 ’ global page node. At the end of this loop, TestNode will be Nothing

 ’ and MainNode will be the last page node.

 Do While (Not(TestNode Is Nothing))

 Set MainNode = TestNode

 Set TestNode = TestNode.GetNext

 Loop

 ’ Get a reference to the MainNode and return that reference to the

 ’ caller.

 GetLastPage = MainNode.GetReferenceEx(vbNullString, Nothing, Nothing,_

 False)

 End Function

GetFormVersion

Description

This function determines the XFDL version of a form. You can call this function on

any form node that is in the XFDL namespace.

Function

 Function GetFormVersion() As Integer

56

Parameters

There are no parameters for this function.

Returns

An integer in the form of &HMMmm0300, where MM is the major number and

mm is the minor number. For example, a version 6.3 form would return:

&H06030300.

Example

The following function accepts a form node and returns a boolean that indicates

whether the form is version 6.5 or higher.

 Function CheckVersion(TheNode)

 If (TheNode.GetFormVersion >= &H06050300) Then

 CheckVersion = True

 Else

 CheckVersion = False

 End If

End Function

GetIdentifier

Description

This function retrieves the identifier of a node. This is either the scope identifier or

option name for the node.

Function

Function GetIdentifier() As String

Parameters

There are no parameters for this function.

Returns

A string containing the identifier of the node or throws an exception if an error

occurs. If the identifier is empty or does not exist, the function returns null.

Example

The following function locates the first value option in a single page form, and

assumes that you pass it the root node of the form. First, the function uses

GetChildrenand GetNext to locate the first item in the first page. The function

then uses nested loops and GetNext to iterate through each option for each item in

the form, testing each option with GetIdentifier until it locates a value node.

Finally, the function returns the value node, or a null node if no value node was

found.

 Function LocateFirstValue(Form)

 Dim ItemNode, OptionNode ’ objects

 Dim Found ’ Boolean

The FormNodeP Functions 57

Set ItemNode = Form

 Found = False

 ’ Find the first item on the first page of the form. This takes three

 ’ separate calls, since we do not know the name of the first page or

 ’ item.

 Set ItemNode = ItemNode.GetChildren

 Set ItemNode = ItemNode.GetNext

 Set ItemNode = ItemNode.GetChildren

 ’ Iterate through the items until one is found that contains a value

 ’ option or a null node is reached.

 Do While (Not(ItemNode is Nothing))

 ’ Find the first option in the current item.

 Set OptionNode = ItemNode.GetChildren

 ’ Iterate through the options until a "value" option is found or a

 ’ null node is reached.

 Do While (Not(OptionNode is Nothing))

 If OptionNode.GetIdentifier= "value" Then

 Found = True

 Exit Do

 End If

 Set OptionNode = OptionNode.GetNext

 Loop

 If Found Then Exit Do

 Set ItemNode = ItemNode.GetNext

 Loop

 Set LocateFirstValue = OptionNode

 End Function

GetLiteralByRefEx

Description

This function finds a particular IFormNodeP on the basis of a reference string. The

node you call this function on is used as the starting point for the search unless

you provide an absolute reference. Once the IFormNodeP is found, its literal is

retrieved.

Note: It is not necessary to call this function when you are using XForms. The

ReplaceXFormsInstance and ExtractXFormsInstancefunctions perform this

task automatically.

Function

 Function GetLiteralByRefEx(

 theScheme As String,

 theReference As String,

 theReferenceCode As Long,

 theCharSet As String,

 theNSNode As IFormNodeP

) As String

58

Parameters

 Expression Type Description

theScheme String Reserved. This must be null.

theReference String The reference string.

theReferenceCode Long Reserved. This must be 0.

theCharSet String The character set you want to use to view the

literal string. Use null for ANSI/Unicode. Use

Symbol for Symbol.

theNSNode IFormNodeP A node that is used to resolve the namespaces

in theReference parameter (see the note about

namespace below). Use null if the node that this

function is operating on has inherited the

necessary namespaces.

Returns

The literal string or throws an exception if an error occurs. If the literal is empty or

does not exist, the function returns null.

Notes

IFormNodeP

Before you decide which IFormNodeP to call the function on, be sure you

understand the following:

1. The IFormNodeP supplied can never be more than one level in the hierarchy

above the starting point of the reference string. For example, if the reference

string begins with an option, then the IFormNodeP can be no higher in the

hierarchy than an item.

2. If the IFormNodeP is at the same level or lower in the hierarchy than the

starting point of the reference string, the function will attempt to locate a

common ancestor. The function will locate the ancestor of the IFormNodeP that

is one level in the hierarchy above the starting point of the reference string. The

function will then attempt to follow the reference string back down through the

hierarchy. If the reference string cannot be followed from the located ancestor

(for example, if the ancestor is not common to both the IFormNodeP and the

reference string), the function will fail.

For example, given a IFormNodeP that represents ″field_1″ and a reference of

″field_2″, the function will access the ″page″ node above ″field_1″, and will

then try to locate ″field_2″ below that node. If the two fields are not on the

same page, the function will fail.

3. If the IFormNodeP is at the argument level, the search will not start from that

point. Instead, the nearest ancestor that is at the option level will be used as the

starting point for the search.

Creating a Reference String

For more information about creating a reference, see “References” on page 6.

Determining Namespace

The FormNodeP Functions 59

In some cases, you may want to use the GetLiteralByRefEx function to get the

literal of a node that does not have a globally defined namespace. For example,

consider the following form:

 <label sid="Label1">

 <value>Field1.processing:myValue</value>

 </label>

 <field sid="Field1" xmlns:processing="URI">

 <value></value>

 <processing:myValue>10<processing:myValue>

 </field>

In this form, the processing namespace is declared in the Field1 node. Any elements

within Field1 will understand that namespace; however, elements outside of the

scope of Field1 will not.

In cases like this, you will often start your search at a node that does not

understand the namespace of the node you are trying to locate. For example, you

might want to locate the node referenced in the value of Label1. In this case, you

would first locate the Label1 value node and get its literal. Then, from the Label1

value node, you would attempt to locate the processing:myValue node as shown:

 Label1Node.GetLiteralByRefEx(vbNullString, "Field1.processing:myValue",

 0, vbNullString, vbNullString)

In this example, the GetLiteralByRefEx function would fail. The function cannot

properly resolve the processing namespace because this namespace is not defined

for the Label1 value node. To correct this, you must also provide a node that

understands the processing namespace (in this case, any node in the scope of Field1)

as a parameter in the function:

 Label1Node.GetLiteralByRefEx(vbNullString, "Field1.processing:myValue",

 0, vbNullString, Field1Node)

Example

The following example adds a label to a form. A node is passed into the function,

which then uses GetLiteralByRefEx to read the value of a field. The function then

uses DereferenceEx to locate the field node, and creates a label node as a sibling

using Create. Finally, the function creates a value for the new label node using

SetLiteralByRef.

 Sub AddLabel(Form)

 Dim TempNode, XFDL ’ objects

 Dim Name ’ strings

 Set TempNode = Form

 ’ Get the value of the NameField.value option node

 Name = TempNode.GetLiteralByRefEx(vbNullString, _

 "PAGE1.NameField.value", 0, vbNullString, Nothing)

 ’ Locate the NameField item node in the first page of the form

 Set TempNode = TempNode.DereferenceEx(vbNullString, _

 "PAGE1.NameField", 0, UFL_ITEM_REFERENCE, Nothing)

 ’ Get an XFDL object

 Set XFDL = CreateObject("PureEdge.xfdl_XFDL")

 ’ Create a label. This label is created as a sibling of the NameField,

 ’ and is named NameLabel.

60

Set TempNode = XFDL.Create(TempNode, UFL_AFTER_SIBLING, "label", _

 vbNullString, vbNullString, "NameLabel")

 ’ Create a value option for the label. This option is assigned the

 ’ value of Name (as read from the field)

 TempNode.SetLiteralByRefEx vbNullString, "value", 0, vbNullString, _

 Nothing, Name

 End Sub

GetLiteralEx

Description

This function retrieves the literal of a node. The literal is returned in the specified

character set.

Note: It is not necessary to call this function when you are using XForms. The

ReplaceXFormsInstance and ExtractXFormsInstancefunctions perform this

task automatically.

Function

 Function GetLiteralEx(

 theCharSet As String

) As String

Parameters

 Expression Type Description

theCharSet String The character set you want to use to view the

literal string. . Use null for ANSI/Unicode. Use

Symbol for Symbol.

Returns

A string containing the literal of the node or throws an exception if an error

occurs. If the literal is empty or does not exist, the function returns null.

Example

The following function copies the value from one field to another. First, the

function uses DeferenceEx to locate the value node of a field on page one and

reads the value using GetLiteral. Next, teh function locates a value node on page

two and writes the literal to that field using SetLiteral.

 Sub CopyValue(Form)

 Dim TempNode ’ object

 Dim theName ’ string

 Set TempNode = Form

 ’ Locate the NameField on page 1

 Set TempNode = TempNode.DereferenceEx(vbNullString, _

 "PAGE1.NameField.value", 0, UFL_OPTION_REFERENCE, Nothing)

 ’ Get the literal from the value node

The FormNodeP Functions 61

theName = TempNode.GetLiteralEx

 ’ Locate the NameField on page 2

 Set TempNode = TempNode.DereferenceEx(vbNullString, _

 "PAGE2.NameField.value", 0, UFL_OPTION_REFERENCE, Nothing)

 ’ Write the literal that was read from the first value node

 TempNode.SetLiteral theName

 End Sub

GetLocalName

Description

This function returns the local name of a given node. The local name is determined

by the XML tag that represents that node. For example, examine the following

XML fragment:

 <page sid="PAGE1">

 <global sid="global"></global>

 <field sid="testField">

 <value>Hello</value>

 <bgcolor>

 <ae>120</ae>

 <ae>120</ae>

 <ae>120</ae>

 <bgcolor>

 </field>

 </page>

In this sample, the name of the page node is ″page″, the name of the field node is

″field″, the name of the value node is ″value″, and the name of the bgcolor node is

″bgcolor″. The bgcolor node is also the parent of three array element nodes, all of

which are named ″ae″.

Note that the local name does not include any namespace prefix that might exist.

For example, you might have a custom option in a different namespace as shown:

 <field sid="testField">

 <custom:my_option>value</custom:my_option>

 </field>

In this case, the local name of the custom option is returned without the prefix,

resulting in ″my_option″.

Function

 Function GetLocalName() As String

Parameters

There are no parameters for this function.

Returns

The name of the node or throws an exception if an error occurs.

62

Example

The following function uses GetChildren and GetNext to walk through the entire

form recursively. While walking through the form, the function uses IsXFDL and

GetLocalName to test each node in the form and determine whether it is an XFDL

label node. If so, the function uses SetLiteralByRefEx to set the label’s background

color to green.

 Sub ChangeLabelColor(Node)

 Dim TempNode, BGColorNode ’ objects

 ’ Use recursion to step through each node in the form

 Set TempNode = Node.GetChildren

 Do While (Not(TempNode Is Nothing))

 ChangeLabelColor(TempNode)

 Set TempNode = TempNode.GetNext

 Loop

 ’ If the node is a label in the XFDL namespace, locate the background

 ’ color child node and change its value to green.

 If ((Node.IsXFDL) And (Node.GetLocalName = "label")) Then

 Node.SetLiteralByRefEx vbNullString, "bgcolor[0]", 0, _

 vbNullString, Nothing, "green"

 End If

 End Sub

GetNamespaceURI

Description

This function returns the namespace URI for the node.

Each namespace is defined in the form by a namespace declaration, as shown:

 xmlns:xfdl="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:custom="http://www.ibm.com/xmlns/prod/XFDL/Custom"

Each namespace declaration defines both a prefix and a URI for the namespace. In

this sample, the prefix for the XFDL namespace is xfdl and the URI is

http://www.ibm.com/xmlns/prod/XFDL/7.0.

Tags within the form are assigned specific namespaces by using the defined prefix.

For example, to declare that an option was in the custom namespace you would

use the prefix custom as shown:

 <field sid="testField">

 <custom:custom_option>value</custom:custom_option>

 </field>

Function

 Function GetNamespaceURI() As String

Parameters

There are no parameters for this function.

The FormNodeP Functions 63

Returns

The namespace URI or throws an exception if an error occurs.

Example

The following function uses GetChildren and GetNext to walk through an entire

form. While walking through the form, it uses GetNamespaceURI to determine

whether each node is in the Custom namespace identified by the following URI:

http://www.ibm.com/xmlns/prod/XFDL/Custom. If so, the function destroys the node.

This function assumes that you are passing the root node of the form on the first

call. Subsequent calls occur through recursion, which may provide any level of

node.

 Sub DeleteCustomNamespace(Node)

 Dim MainNode, TestNode ’ objects

 Dim TempInt

 ’ Set the MainNode to be the child of the provided node.

 Set MainNode = Node.GetChildren

 ’ Use recursion to step through each node in the form. This routine

 ’ walks to the last node in each page, then traverses back up the tree,

 ’ deleting nodes that are not in the XFDL namespace as it goes.

 Do While (Not(MainNode Is Nothing))

 Set TestNode = MainNode.GetNext

 DeleteCustomInfo(MainNode)

 Set MainNode = TestNode

 Loop

 ’ Check to see if the node passed to the routine is in the Custom

 ’ namespace. If so, delete the node.

 If Node.GetNamespaceURI = "http://www.ibm.com/xmlns/prod/XFDL/Custom" Then

 Node.Destroy

 End If

 End Sub

GetNamespaceURIFromPrefix

Description

This function returns the namespace URI that corresponds to a specific prefix. You

can call this function from any node in the form, as long as that node either

declares or inherits the namespace in question.

Each namespace is defined in the form by a namespace declaration, as shown:

 xmlns:xfdl="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:custom="http://www.ibm.com/xmlns/prod/XFDL/Custom"

Each namespace declaration defines both a prefix and a URI for the namespace. In

this sample, the prefix for the XFDL namespace is xfdl and the URI is

http://www.ibm.com/xmlns/prod/XFDL/7.0.

Tags within the form are assigned specific namespaces by using the defined prefix.

For example, to declare that an option was in the custom namespace you would

use the prefix custom as shown:

64

<field sid="testField">

 <custom:custom_option>value</custom:custom_option>

 </field>

Function

 Function GetNamespaceURIFromPrefix(

 thePrefix As String

) As String

Parameters

 Expression Type Description

thePrefix String The namespace prefix. For example, xfdl.

Returns

The namespace URI or throws an exception if an error occurs. If the namespace

URI is not declared, the result is null.

Example

The following function copies an option in the custom namespace from one form

to another. First, it uses GetNamespaceURIFromPrefix to get the URI for the

custom namespace from Form1, then uses AddNamespace to add that namespace

to Form2. Next, it uses DereferenceEx to locate the custom node in Form1 and the

global page’s global item in Form2. Finally, it uses Duplicate to copy the custom

node from Form1 into Form2, creating it as a child of the global item.

 Sub CopyCustomInfo(Form1, Form2)

 Dim TheURI ’ String

 Dim TempNode, DuplicateNode, GlobalNode ’ IFormNodeP

 ’ Get the URI for the custom namespace in Form1.

 TheURI = Form1.GetNamespaceURIFromPrefix("custom")

 ’ Create the custom namespace in Form2 using the URI from Form1.

 Form2.AddNamespace TheURI, "custom"

 ’ Locate the custom processing node in Form1.

 Set TempNode = Form1.DereferenceEx(vbNullString, _

 "global.global.custom:processing", 0, UFL_OPTION_REFERENCE, _

 Nothing)

 ’ Locate the global item in Form2

 Set GlobalNode = Form2.DereferenceEx(vbNullString, "global.global", _

 0, UFL_ITEM_REFERENCE, Nothing)

 ’ Copy the custom node from Form1 and insert it as the child of the

 ’ global item in Form2.

 Set DuplicateNode = TempNode.duplicate(GlobalNode, _

 UFL_APPEND_CHILD, vbNullString)

 End Sub

The FormNodeP Functions 65

GetNext

Description

This function, along with GetPrevious, is used to traverse horizontally along the

form hierarchy. GetNext returns the next node in the tree. For instance, the page

node corresponding to the first page of your form can be reached by calling

GetNext on the global page node.

Function

 Function GetNext() As IFormNodeP

Parameters

There are no parameters for this function.

Returns

The IFormNodeP that represents the next node or null if no such node exists.An

exception is thrown if an error occurs.

Example

The following sample function receives any form node and returns a reference to

the last page of the form. First, the function uses GetNodeType to determine if the

supplied node is a the form level. If so, the function uses GetChildren to locate the

first page node. If not, the function uses GetParent to locate a page level node. The

function then uses GetNext to locate the last page in the form and calls

GetReferenceEx to retrieve a reference to that node.

 Function GetLastPage(Node)

 Dim MainNode, TestNode ’ objects

 Set MainNode = Node

 ’ Locate the page level node that is the nearest ancestor or child of

 ’ the current node. If the node is a form node, get the child. If the

 ’ node is any other type, get the parent until a page node is

 ’ retrieved.

 If MainNode.getNodeType = UFL_FORM Then

 Set MainNode = MainNode.GetChildren

 Else

 ’ Locate the page node of the form by iterating through the parents

 ’ of the supplied node. At the end of this loop, MainNode will be

 ’ a page node.

 Do While (Not(MainNode.GetNodeType = UFL_PAGE))

 Set MainNode = MainNode.GetParent

 Loop

 End If

 ’ Set TestNode to be the MainNode (the page node) before beginning the

 ’ next loop.

 Set TestNode = MainNode

 ’ Locate the last page node by iterating through the siblings of the

 ’ global page node. At the end of this loop, TestNode will be Nothing

 ’ and MainNode will be the last page node.

66

Do While (Not(TestNode Is Nothing))

 Set MainNode = TestNode

 Set TestNode = TestNode.GetNext

 Loop

 ’ Get a reference to the MainNode and return that reference to the

 ’ caller.

 GetLastPage = MainNode.GetReferenceEx(vbNullString, Nothing, Nothing,_

 False)

 End Function

GetNodeType

Description

This function returns the type for a node (for example, page, item, option, and so

on). This allows you to quickly determine the type of node you are working with

and what depth you are at in the node hierarchy.

Function

 Function GetNodeType() As Long

Parameters

There are no parameters for this function.

Returns

This method throws a generic exception (UWIException) if an error occurs.

One of the following types:

v UFL_FORM — The root node of the form.

v UFL_PAGE — A page level node.

v UFL_ITEM — An item level node.

v UFL_OPTION — An option level node.

v UFL_ARRAY — An argument level node, such as an array element.

This function throws an exception if an error occurs.

Example

The following function recieves a node below the page level and uses GetParent to

ascend the hierarchy until it reaches a page node, as detected by GetNodeType.

The following sample function receives any form node and returns a reference to

the last page of the form. First, the function uses GetNodeType to determine if the

supplied node is a the form level. If so, the function uses GetChildren to locate the

first page node. If not, the function uses GetParent to locate a page level node. The

function then uses GetNext to locate the last page in the form and calls

GetReferenceEx to retrieve a reference to that node.

 Function GetLastPage(Node)

 Dim MainNode, TestNode ’ objects

 Set MainNode = Node

The FormNodeP Functions 67

’ Locate the page level node that is the nearest ancestor or child of

 ’ the current node. If the node is a form node, get the child. If the

 ’ node is any other type, get the parent until a page node is

 ’ retrieved.

 If MainNode.getNodeType = UFL_FORM Then

 Set MainNode = MainNode.GetChildren

 Else

 ’ Locate the page node of the form by iterating through the parents

 ’ of the supplied node. At the end of this loop, MainNode will be

 ’ a page node.

 Do While (Not(MainNode.GetNodeType = UFL_PAGE))

 Set MainNode = MainNode.GetParent

 Loop

 End If

 ’ Set TestNode to be the MainNode (the page node) before beginning the

 ’ next loop.

 Set TestNode = MainNode

 ’ Locate the last page node by iterating through the siblings of the

 ’ global page node. At the end of this loop, TestNode will be Nothing

 ’ and MainNode will be the last page node.

 Do While (Not(TestNode Is Nothing))

 Set MainNode = TestNode

 Set TestNode = TestNode.GetNext

 Loop

 ’ Get a reference to the MainNode and return that reference to the

 ’ caller.

 GetLastPage = MainNode.GetReferenceEx(vbNullString, Nothing, Nothing,_

 False)

 End Function

GetParent

Description

This function, along with GetChildren, is used to traverse vertically along the

form hierarchy. GetParent returns the parent of a node. If the node has no parent,

null is returned. A form’s structure can be traversed up to the root node using an

iterator such as a while loop.

Function

 Function GetParent() As IFormNodeP

Parameters

There are no parameters for this function.

Returns

The IFormNodeP that represents the parent node or null if no such parent exists. If

an error occurs, an exception is thrown.

68

Example

getParent returns the parent node of PAGE1.AGEFIELD.size, that is,

PAGE1.AGEFIELD.

The following sample function receives any form node and returns a reference to

the last page of the form. First, the function uses GetNodeType to determine if the

supplied node is a the form level. If so, the function uses GetChildren to locate the

first page node. If not, the function uses GetParent to locate a page level node. The

function then uses GetNext to locate the last page in the form and calls

GetReferenceEx to retrieve a reference to that node.

 Function GetLastPage(Node)

 Dim MainNode, TestNode ’ objects

 Set MainNode = Node

 ’ Locate the page level node that is the nearest ancestor or child of

 ’ the current node. If the node is a form node, get the child. If the

 ’ node is any other type, get the parent until a page node is

 ’ retrieved.

 If MainNode.GetNodeType = UFL_FORM Then

 Set MainNode = MainNode.GetChildren

 Else

 ’ Locate the page node of the form by iterating through the parents

 ’ of the supplied node. At the end of this loop, MainNode will be

 ’ a page node.

 Do While (Not(MainNode.GetNodeType = UFL_PAGE))

 Set MainNode = MainNode.GetParent

 Loop

 End If

 ’ Set TestNode to be the MainNode (the page node) before beginning the

 ’ next loop.

 Set TestNode = MainNode

 ’ Locate the last page node by iterating through the siblings of the

 ’ global page node. At the end of this loop, TestNode will be Nothing

 ’ and MainNode will be the last page node.

 Do While (Not(TestNode Is Nothing))

 Set MainNode = TestNode

 Set TestNode = TestNode.GetNext

 Loop

 ’ Get a reference to the MainNode and return that reference to the

 ’ caller.

 GetLastPage = MainNode.GetReferenceEx(vbNullString, Nothing, Nothing,_

 False)

 End Function

GetPrefix

Description

This function returns the namespace prefix for the node.

Each namespace is defined in the form by a namespace declaration, as shown:

The FormNodeP Functions 69

xmlns:xfdl="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:custom="http://www.ibm.com/xmlns/prod/XFDL/Custom"

Each namespace declaration defines both a prefix and a URI for the namespace. In

this sample, the prefix for the XFDL namespace is xfdl and the URI is

http://www.ibm.com/xmlns/prod/XFDL/7.0.

Tags within the form are assigned specific namespaces by using the defined prefix.

For example, to declare that an option was in the custom namespace you would

use the prefix custom as shown:

 <field sid="testField">

 <custom:custom_option>value</custom:custom_option>

 </field>

Note: A given prefix may not always resolve to the same namespace. Different

portions of the form may define the prefix differently. For example, the

custom prefix may resolve to a different namespace on the first page of a

form than it does on the following pages.

Function

 Function GetPrefix() As String

Parameters

There are no parameters for this function.

Returns

The prefix for the node’s namespace or throws an exception if an error occurs.

Example

The following function removes all nodes from the form that have a namespace

prefix of ″custom″. The function walks through the form using GetChildren and

GetNext in a recursive loop. While walking the form, it uses GetPrefix to locate

nodes in the custom namespace and deletes them using Destroy. This function

assumes that you are passing it the root node of the form.

 Sub DeleteCustomPrefix(Node)

 Dim TempNode, TempNode2 ’ IFormNodeP

 ’ Use recursion to step through each node of the form.

 Set TempNode = Node.GetChildren

 Do While (Not(TempNode is Nothing))

 Set TempNode2 = TempNode.GetNext

 DeleteCustomPrefix(TempNode)

 Set TempNode = TempNode2

 Loop

 ’ If the node has a namespace prefix of "custom", delete it.

 If (Node.GetPrefix = "custom") Then

 Node.Destroy

 End If

 End Sub

70

GetPrefixFromNamespaceURI

Description

This function returns the namespace prefix for a specific namespace URIYou can

call this function from any node in the form, as long as that node either declares or

inherits the namespace in question.

Each namespace is defined in the form by a namespace declaration, as shown:

 xmlns:xfdl="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:custom="http://www.ibm.com/xmlns/prod/XFDL/Custom"

Each namespace declaration defines both a prefix and a URI for the namespace. In

this sample, the prefix for the XFDL namespace is xfdl and the URI is

http://www.ibm.com/xmlns/prod/XFDL/7.0.

Tags within the form are assigned specific namespaces by using the defined prefix.

For example, to declare that an option was in the custom namespace you would

use the prefix custom as shown:

 <field sid="testField">

 <custom:custom_option>value</custom:custom_option>

 </field>

Function

 Function GetPrefixFromNamespaceURI(

 theURI As String

) As String

Parameters

 Expression Type Description

theURI String The namespace URI. For example:

 http://www.ibm.com/xmlns/prod/XFDL/7.0

Returns

The namespace prefix or throws an exception if an error occurs. If the namespace

URI is not declared, the result is null.

Example

The following function adds some custom user information to the form, but

assumes that the prefix used for the custom namespace is unknown. The function

first uses GetPrefixFromNamespaceURI to determine which prefix is used for the

custom namespace. It then concatenates that prefix with the tag ″:User″ to create

the name for a new node. Next, it uses DereferenceEx to locate the global item in

the global page. Finally, it uses Create to add a custom option called ″User″ to the

form.

 Sub AddUserInfo(Form, UserName)

 Dim XFDL, TempNode ’ objects

 Dim ThePrefix, NewName ’ Strings

 Set TempNode = Form

 ’ Retrieve the prefix for the custom namespace

The FormNodeP Functions 71

ThePrefix = TempNode.GetPrefixFromNamespaceURI(_

 "http://www.ibm.com/xmlns/prod/XFDL/Custom")

 ’ Create a name for a new node by concatenating the prefix with ":User"

 NewName = ThePrefix & ":User"

 ’ Locate the global item in the global page so we can add a global

 ’ option

 Set TempNode = TempNode.DereferenceEx(vbNullString, "global.global", _

 0, UFL_ITEM_REFERENCE, Nothing)

 ’ Create an XFDL object so we can use the create function

 Set XFDL = CreateObject("PureEdge.xfdl_XFDL")

 ’ Create new node in the custom namespace that represents the user of

 ’ the form and give it a value of "TJones"

 Set TempNode = XFDL.Create(TempNode, UFL_APPEND_CHILD, vbNullString, _

 UserName , vbNullString, NewName)

 End Sub

GetPrevious

Description

This function, along with GetNext, is used to traverse horizontally along the form

hierarchy. GetPrevious returns the previous node in the tree. For instance, if you

call GetPrevious one the Page1 node in your form, it will return the global page

node.

Function

 Function GetPrevious() As IFormNodeP

Parameters

There are no parameters for this function.

Returns

The IFormNodeP that represents the previous node or null if no such node exists.

An exception is thrown if an error occurs.

Example

The following sample function receives any form node and returns a reference to

the first page of the form. First, the function uses GetNodeType to determine if the

supplied node is a the form level. If so, the function uses GetChildren to locate the

first page node. If not, the function uses GetParent to locate a page level node. The

function then uses GetPrevious to locate the first page in the form and calls

GetReferenceEx to retrieve a reference to that node.

 Function GetFirstPage(Node)

 Dim MainNode, TestNode ’objects

 Set MainNode = Node

 ’ Locate the page level node that is the nearest ancestor or child of

72

’ the current node. If the node is a form node, get the child. If the

 ’ node is any other type, get the parent until a page node is

 ’ retrieved.

 If MainNode.GetNodeType = UFL_FORM Then

 Set MainNode = MainNode.GetChildren

 Else

 ’ Locate the page node of the form by iterating through the parents

 ’ of the supplied node. At the end of this loop, MainNode will be

 ’ the page node.

 Do While (Not(MainNode.GetNodeType = UFL_PAGE))

 Set MainNode = MainNode.GetParent

 Loop

 End If

 ’ Set TestNode to be the MainNode before beginning the next loop

 Set TestNode = MainNode

 ’ Locate the first page node (the global page) by iterating through the

 ’ siblings of the located page node. At the end of this loop, TestNode

 ’ will be Nothing and MainNode will be the global page node.

 Do While (Not(TestNode Is Nothing))

 Set MainNode = TestNode

 Set TestNode = TestNode.GetPrevious

 Loop

 ’ Locate the first page of the form by getting the first sibling of the

 ’ global page node.

 Set MainNode = MainNode.GetNext

 ’ Get a reference to the page and return the reference to the caller

 GetFirstPage = MainNode.GetReferenceEx(vbNullString, Nothing, _

 Nothing, False)

 End Function

GetReferenceEx

Description

This function returns the reference string that identifies the node. For example, a

value node might return a reference of Page1.Field1.value. The reference will either

begin at the page level of the form or at a level specified by the caller.

Function

 Function GetReferenceEx(

 theScheme As String,

 theNSNode As IFormNodeP,

 theStartPoint As IFormNodeP,

 addNamespaces As Boolean

) As String

Parameters

 Expression Type Description

theScheme String Reserved. This must be null.

The FormNodeP Functions 73

Expression Type Description

theNSNode IFormNodeP A node that defines which namespace prefixes are

used when constructing the reference. Only

namespace prefixes that this node inherits are used.

Use null if the node that this function is operating on

has inherited the necessary namespaces.

theStartPoint IFormNodeP A node that determines the starting point of the

reference. This node must be a parent of the aNode

parameter. The reference will begin one level below

the start point node. For example, if you provide a

page node the reference will begin at the item level.

Use null to start the reference at the page level.

addNamespaces Boolean Use True to add declarations for unknown

namespaces to the namespace node (theNSNode).

Otherwise, use False.

Returns

A string containing a reference to the node, or throws an exception if an error

occurs.

Notes

Creating a Reference String

For more information about creating a reference, see “References” on page 6.

Working with Namespace Prefixes

In some cases, you may want to use the GetReferenceEx function to get the

reference to a node that uses a different prefix for a known namespace. For

example, consider the following form:

 <label sid="Label1" xmlns:data="URI">

 <value></value>

 </label>

 <field sid="Field1" xmlns:processing="URI">

 <value></value>

 <processing:myValue>10<processing:myValue>

 </field>

In this form, processing and data are prefixes for the same namespace, since they

both refer to the same URI. However, both namespaces have limited scope since

they are declared at the item level. This means that Label1 node does not

understand the processing prefix, and that the Field1 node does not understand the

data prefix.

This becomes a problem if you want to refer to a namespace from a location that

does not understand that namespace. For example, suppose you wanted to set the

value of Label1 to be a reference to the myValue node in Field1. Normally, you

would locate the myValue node and use getReferenceEx as shown:

 myValueNode.GetReferenceEx(vbNullString, Nothing, Nothing, False)

In this case, GetReferenceEx would return the following reference:

Page1.Field1.processing:myValue. However, because the processing namespace is not

74

defined for Label1, a reference to the processing namespace is not understood. This

means that you cannot set the value of Label1 to equal this reference, since the

node would not understand that content.

Instead, you must generate a reference that includes a known namespace prefix,

such as the data namespace. You can do this by including a second node in the

GetReferenceEx function. The second node must understand the appropriate

namespace. For example, you could include the Label1 node in the function, as

shown:

 myValueNode.GetReferenceEx(vbNullString, Label1Node, Nothing, False)

In this case, the function will substitute the data prefix for the processing prefix,

since they both resolve to the same namespace. As a result, the function will

return: Page1.Field1.data:myValue. Since the data prefix is defined within Label1, you

can use this reference to set Label1’s value node.

Working with Unknown Namespaces

In some cases, you may want to use the GetReferenceEx function to get the

reference to a node that uses an unknown namespace. For example, consider the

following form:

 <page sid="Page1" xmlns:processing="URI1">

 <global sid="global">

 <processing:info></processing:info>

 </global>

 <field sid="Field1" xmlns:data="URI2">

 <value></value>

 <data:info>data</data:info>

 </field>

In this example, you might want to store a reference to the <data:info> element in

the <processing:info> element. GetReferenceEx would return the following

reference for the <data:info> element: Page1.Field1.data:info. However, this reference

includes the data namespace, which is not defined for the page global. This means

that you could not store this reference in the <processing:info> element, because it

would not understand the reference.

To solve this problem, you can use the addNamespaces flag in the GetReferenceEx

function. When this flag is set to True, the function will add unknown namespaces

to the theNSNode.

For example, if you set theNSNode to be the global item node for Page1, and set the

addNamespace flag to True, as shown:

 dataNode.GetReferenceEx(vbNullString, pageGlobalNode, Nothing, True)

The function would return the reference to the <data:info> element, but would also

modify the global item node to include the unknown data namespaces, as shown:

 <global sid="global" xmlns:data="URI2">

You could then store the reference in that global item or any of its descendants,

since the namespace is now properly defined.

The FormNodeP Functions 75

Example

In the following example, a page node is passed to the . The then uses and to

locate the last item node in the page. is then called to get the reference to that

node, which is returned to the caller.

The following sample function receives any form node and returns a reference to

the last page of the form. First, the function uses GetNodeType to determine if the

supplied node is a the form level. If so, the function uses GetChildren to locate the

first page node. If not, the function uses GetParent to locate a page level node. The

function then uses GetNext to locate the last page in the form and calls

GetReferenceEx to retrieve a reference to that node.

 Function GetLastPage(Node)

 Dim MainNode, TestNode ’ objects

 Set MainNode = Node

 ’ Locate the page level node that is the nearest ancestor or child of

 ’ the current node. If the node is a form node, get the child. If the

 ’ node is any other type, get the parent until a page node is

 ’ retrieved.

 If MainNode.getNodeType = UFL_FORM Then

 Set MainNode = MainNode.GetChildren

 Else

 ’ Locate the page node of the form by iterating through the parents

 ’ of the supplied node. At the end of this loop, MainNode will be

 ’ a page node.

 Do While (Not(MainNode.GetNodeType = UFL_PAGE))

 Set MainNode = MainNode.GetParent

 Loop

 End If

 ’ Set TestNode to be the MainNode (the page node) before beginning the

 ’ next loop.

 Set TestNode = MainNode

 ’ Locate the last page node by iterating through the siblings of the

 ’ global page node. At the end of this loop, TestNode will be Nothing

 ’ and MainNode will be the last page node.

 Do While (Not(TestNode Is Nothing))

 Set MainNode = TestNode

 Set TestNode = TestNode.GetNext

 Loop

 ’ Get a reference to the MainNode and return that reference to the

 ’ caller.

 GetLastPage = MainNode.GetReferenceEx(vbNullString, Nothing, Nothing,_

 False)

 End Function

76

GetSecurityEngineName

Description

This function returns the name of the appropriate security engine for a given

button or signature node. This is useful for determining which validation call you

need to make to validate the signature.

Function

 Function GetSecurityEngineName(

 theOperation As Long

) As String

Parameters

 Expression Type Description

theOperation Long The operation you want the security engine for.

Possible values are:

SEOPERATION_SIGN — the engine is needed to sign

the form.

SEOPERATION_VERIFY — the engine is needed to

verify the signature.

SEOPERATION_LISTIDENTITIES — the engine is

needed to generate a list of valid certificates for

signing.

Returns

A string containing the name of the security engine on success, or throws an

exception if an error occurs. The possible names are:

v CryptoAPI

v Netscape

v ClickWrap

v HMAC-ClickWrap

v PenOp

Example

The following function uses GetSecurityEngineName to determine which engine

to use to verify the signature. It then calls the appropriate verification function.

Note that the verification functions are not themselves API functions, but would

use functions within the API such as VerifySignature and

ValidateHMACWithSecret.

 Function CheckSignatureByType(SigNode)

 Dim EngineName, Status ’ String

 ’ Get the name of the signature engine that can verify the signature

 EngineName = SigNode.GetSecurityEngineName(SEOPERATION_VERIFY)

 ’ If the signature engine is HMAC, call ValidateHMACSig, otherwise call

 ’ CheckSignature.

The FormNodeP Functions 77

If EngineName = "HMAC-ClickWrap" Then

 Status = ValidateHMACSig(SigNode)

 Else

 Status = CheckSignature(SigNode)

 End If

 ’ Return the signature status

 CheckSignatureByType = Status

 End Function

GetSigLockCount

Description

This function returns the signature lock count of a node. If 0 is returned, the node

is not signed by any digital signature, but it may have descendants that are signed.

Function

 Function GetSigLockCount() As Integer

Parameters

There are no parameters for this function.

Returns

The number of locks on the the given node or throws an exception if an error

occurs.

Example

The following function uses GetSigLockCount to determine whether a node has

been signed. If so, the function returns True; otherwise, the function returns False.

 Function CheckSigned(Node)

 ’ Check to see if the node has a any signature locks. If so, return

 ’ True to show that is signed; otherwise, return false.

 If Node.GetSigLockCount > 0 Then

 CheckSigned = True

 Else

 CheckSigned = False

 End If

 End Function

GetSignature

Description

This function returns signature object for a given button or signature item.

Function

 Function GetSignature() As ISignature

78

Parameters

There are no parameters for this function.

Returns

A signature object if the call is successful, or throws an exception if an error occurs.

Example

The following function uses DereferenceEx and GetLiteralByRefEx to locate the

signature item in a form. It then uses GetEngineCertificateList and

GetDataByPath to locate a server signing certificate. Next, it uses GetSignature

and GetDataByPath to get the signer’s common name. Finally, it uses

ValidateHMACWithSecret to determine if the HMAC signature is valid, and

returns ″Valid″ or ″Invalid″, as appropriate.

 Function ValidateHMACSig(Form)

 Dim SigObject, XFDL ’ Objects

 Dim TheCerts ’ CertificateList

 Dim Cert, SigningCert ’ ICertificate

 Dim SignerName, SharedSecret, CommonName, SigItemRef ’ Strings

 Dim Validation ’ Integer

 Dim TempNode, SigNode ’ IFormNodeP

 Set TempNode = Form

 ’ Get the SignatureButton node

 Set TempNode = Form.DereferenceEx(vbNullString, _

 "PAGE1.HMACSignatureButton", 0, UFL_ITEM_REFERENCE, Nothing)

 ’ Get the name of the signature item

 SigItemRef = TempNode.GetLiteralByRefEx(vbNullString, "signature", _

 0, vbNullString, Nothing)

 ’ Get the signature item node

 Set SigNode = TempNode.DereferenceEx(vbNullString, SigItemRef, 0, _

 UFL_ITEM_REFERENCE, Nothing)

 ’ Get available server certificates for Generic RSA signing

 Set XFDL = CreateObject("PureEdge.xfdl_XFDL")

 Set TheCerts = XFDL.GetEngineCertificateList("Generic RSA", 1)

 ’ vbNull

 ’ Locate the certificate that has a common name of "User1-CP.02.01".

 ’ This is the certificate we will use when verifying the signature.

 For Each Cert in TheCerts

 CommonName = Cert.GetDataByPath("SigningCert: Subject: CN", _

 False, 1) ’ vbNull

 If CommonName = "User1-CP.02.01" Then

 Set SigningCert = Cert

 End If

 Next

 ’ Get the signature object from the signature node

 Set SigObject = SigNode.GetSignature

The FormNodeP Functions 79

’ Get the signer’s name from the signature object

 SignerName = SigObject.GetDataByPath("SigningCert: Subject: CN", _

 False, 1) ’ vbNull

 ’ Include code that matches the signer’s identity to a shared secret,

 ’ and sets SharedSecret to match. In most cases, this would be a

 ’ database lookup. For the purposes of this example, we will simply

 ’ assign a value to SharedSecret.

 SharedSecret = "secret"

 ’ Validate the signature

 Validation = SigNode.ValidateHMACWithSecret(SharedSecret, _

 SigningCert, 1) ’ vbNull

 ’ Check the validation code and return either "Valid" or "Invalid"

 If Validation = UFL_DS_OK Then

 ValidateHMACSig = "Valid"

 Else

 ValidateHMACSig = "Invalid"

 End If

 End Function

GetSignatureVerificationStatus

Description

When called, this function checks to see if the digital signatures in a given form

are valid.

Function

 Function GetSignatureVerificationStatus() As Integer

Parameters

There are no parameters for this function.

Returns

An Integer having one of the following values:

 Code Status

UFL_SIGS_OK The signatures are valid.

UFL_SIGS_NOTOK One or more signatures are broken.

UFL_SIGS_UNVERIFIED One or more signatures are unverifiable.

On error, the function throws an exception.

Example

The following function checks to see if all of the signatures in the form are valid

by calling GetSignatureVerificationStatus. This relies on a flag that was set when

80

the form was first read, and does not return the current status of the signatures. If

the signatures were valid when the form was read, the function returns ″Valid″;

otherwise, the functions returns ″Invalid″.

 Function CheckSignatures(Form)

 Dim TempNode ’ objects

 Dim SigStatus ’ Integer

 Set TempNode = Form

 ’ Check to see if the signatures were valid when the form was read.

 SigStatus = TempNode.GetSignatureVerificationStatus

 ’ If the signatures are not valid, then return "Invalid". If the

 ’ signatures are valid, then return "Valid".

 If (Not(SigStatus = 0)) Then ’ 0 = UFL_SIGS_OK

 CheckSignatures = "Invalid"

 Else

 CheckSignatures = "Valid"

 End If

 End Function

GetType

Description

This function retrieves the type of a node. Possible types include global, page, and

all item names (such as action, button, and so on).

Function

Function GetType() As String

Parameters

There are no parameters for this function.

Returns

A string containing the type of the node or throws an exception if an error occurs.

If the type is empty or does not exist, the function returns null.

Example

The following function locates the first field in a single page form. First, the

function uses GetChildren and GetNext to locate the first item in the first page.

The function then uses GetNext to iterate through each item in the page, testing

each item with GetType to determine whether it is a field. Finally, the function

returns the field node, or a null node if no field is found.

 Function LocateFirstField(Form)

 Dim TempNode ’ object

 Set TempNode = Form

 ’ Find the first item on the first page of the form.

 Set TempNode = TempNode.GetChildren

The FormNodeP Functions 81

Set TempNode = TempNode.GetNext

 Set TempNode = TempNode.GetChildren

 ’ Iterate through the items until the first field is located or an

 ’ empty node is returned.

 Do While (Not(TempNode.GetType = "field")) And (Not(TempNode is _

 Nothing))

 Set TempNode = TempNode.GetNext

 Loop

 ’ Return the node. If no field node is found, a null node is returned.

 Set LocateFirstField = TempNode

 End Function

IsSigned

Description

This function determines whether a node is signed.

Function

 Function IsSigned(

 excludeSelf As Boolean

) As Boolean

Parameters

 Expression Type Description

excludeSelf Boolean A signature node is always self-signed. To

determine whether a second signature has been

applied to that node, you must exclude the

self-signing from this check.

To exclude the self-signing from the signature

check, set this to True. To include the

self-signing, set this to False.

Returns

True if the node is signed, False if it is not.

Example

The following function locates the value node for a Date field, checks to see if it is

signed, and sets the value if the node is not signed.

 Sub SetDateValue(theDate, TheForm)

 Dim TempNode ’ object

 ’ Locate the value option for the Date field

 Set TempNode = TheForm.DereferenceEx(vbNullString, _

 "PAGE1.Date.value", 0, UFL_OPTION_REFERENCE, Nothing)

 ’ Check the value node to see if it is signed. If it is not signed,

 ’ set it to the value passed into the function.

82

If TempNode.IsSigned(False) = False Then

 TempNode.SetLiteralEx vbNullString, theDate

 End If

 End Sub

IsValidFormat

Description

This function returns the boolean result of whether a string is valid according to

the setting of the node’s format option.

This function does not support XForms nodes.

Function

 Function IsValidFormat(

 theString As String

) As Boolean

Parameters

 Expression Type Description

theString String A string to be checked against the format. For

example, to check 23.2 against a specific format,

the string would be “23.2”.

Returns

True if the string does match the format, False if it does not.

Example

The following function locates the Currency field and checks to see if “23.2”

conforms to the format required by the field’s format option.

 Sub CheckFormat(TheForm)

 Dim theItem ’ object

 ’ Locate the Currency field

 Set theItem = TheForm.DereferenceEx(vbNullString, _

 "PAGE1.Currency", 0, UFL_OPTION_REFERENCE, Nothing)

 ’ Check the string to see if it is valid. If it is valid, then

 ’ enter the string into the Currency field.

 ’ Otherwise, do nothing.

 If theItem.IsValidFormat("23.2") = True Then

 theItem.SetLiteralByRefEx vbNullString, "value", 0, vbNullString, Nothing, _

 "23.2"

 End If

 End Sub

The FormNodeP Functions 83

IsXFDL

Description

This function determines whether a node belongs to the XFDL namespace.

Each namespace is defined in the form by a namespace declaration, as shown:

 xmlns:xfdl="http://www.ibm.com/xmlns/prod/XFDL/7.0"

 xmlns:custom="http://www.ibm.com/xmlns/prod/XFDL/Custom"

Each namespace declaration defines both a prefix and a URI for the namespace. In

this sample, the prefix for the XFDL namespace is xfdl and the URI is

http://www.ibm.com/xmlns/prod/XFDL/7.0.

Tags within the form are assigned specific namespaces by using the defined prefix.

For example, to declare that an option was in the custom namespace you would

use the prefix custom as shown:

 <field sid="testField">

 <custom:custom_option>value</custom:custom_option>

 </field>

Function

 Function IsXFDL() As Boolean

Parameters

There are no parameters for this function.

Returns

True if the node belongs to the XFDL namespace, False if it does not, or throws an

exception if an error occurs.

Example

The following function uses GetChildren and GetNext to walk through an entire

form and deletes all information that is not in the XFDL namespace. The function

uses IsXFDL to determine which nodes are in the XFDL namespace. Note that the

function assumes that you are passing the root node of the form on the first call.

Subsequent calls occur through recursion, which may provide any level of node.

 Sub DeleteCustomInfo(Node)

 Dim MainNode, TestNode ’ objects

 Dim TempInt

 ’ Set the MainNode to be the child of the provided node.

 Set MainNode = Node.GetChildren

 ’ Use recursion to step through each node in the form. This routine

 ’ walks to the last node in each page, then traverses back up the tree,

 ’ deleting nodes that are not in the XFDL namespace as it goes.

 Do While (Not(MainNode Is Nothing))

 Set TestNode = MainNode.getNext

 DeleteCustomInfo(MainNode)

 Set MainNode = TestNode

 Loop

84

’ Check to see if the node passed to the routine is in the XFDL

 ’ namespace. If not, delete the node.

 If Node.isXFDL = False Then

 Node.Destroy

 End If

 End Sub

RemoveAttribute

Description

This function removes a specific attribute from a node. For example, the following

XFDL represents a value node:

 <value custom:myAtt="x"></value>

To remove the custom attribute from this node, you would use removeAttribute.

Function

 Sub RemoveAttribute(

 theNamespaceURI As String,

 theAttribute As String)

Parameters

 Expression Type Description

theNamespaceURI String The namespace URI for the attribute. For

example:

 http://www.ibm.com/xmlns/prod/XFDL/7.0

theAttribute String The local name of the attribute. For example,

compute, encoding, and so on.

Returns

Nothing or throws an exception if an error occurs.

Notes

Attributes and the Null Namespace

If an attribute is on a node in a non-XFDL namespace, and that attribute has no

namespace prefix, then the attribute is in the null namespace. For example, the

following node is the custom namespace, as is the first attribute, but since the

second attribute does not have a namespace prefix, it is in the null namespace:

 <custom:processing custom:stage="2" user="tjones">

When an attribute is the null namespace, you may either provide a null value for

the namespace URI or use the namespace URI for the containing element.

For example, to indicate user attribute on the processing node, you could use the

null namespace or the custom namespace URI.

Attributes and Namespace Prefixes

The FormNodeP Functions 85

If you refer to an attribute with a namespace prefix, RemoveAttribute first looks

for a complete match, including both prefix and attribute name. If it does not find

such a match, it will look for a matching attribute name that has no prefix but

whose containing element has the same namespace.

For example, assume that the custom namespace and the test namespace both

resolve to the same URI. In the following case, looking for the id attribute would

locate the second attribute (test:id), since it has an explicit namespace declaration:

 <a xmlns:custom="ABC" xmlns:test="ABC">

 <custom:myElement id="1" test:id="2">

However, in the next case, the id attribute does not have an explicit namespace

declaration. Instead, it inherits the custom namespace. However, since the inherited

namespace resolves to the same URI, the id attribute is still located:

 <custom:myElement id="1">

Example

The following function uses DereferenceEx to locate a custom node in the form. It

then uses RemoveAttribute to delete the ″stage″ attribute from the node, and calls

SetAttribute to update the value of the status attribute to ″completed″.

 Sub CompletedProcessing(Form)

 Dim TempNode ’ object

 Set TempNode = Form

 ’ Dereference the custom processing node in the global item.

 Set TempNode = TempNode.DereferenceEx(vbNullString, _

 "global.global.custom:processing", 0, UFL_OPTION_REFERENCE, _

 Nothing)

 ’ Remove the "stage" attribute from the node.

 TempNode.RemoveAttribute vbNullString, "stage"

 ’ Update the status attribute to "completed".

 TempNode.SetAttribute vbNullString, "status", "completed"

 End Sub

RemoveEnclosure

Description

This function will either remove an enclosure from a specific datagroup or delete

the enclosure from the form. Call this function on the IFormNodeP that contains

the enclosure you want to remove.

Function

 Sub RemoveEnclosure(

 theDataGroup As String)

86

Parameters

 Expression Type Description

theDataGroup String The datagroup that contains the enclosed item. If

null, the item will be removed from all

datagroups. If an item no longer belongs to any

datagroups, it is deleted from the form.

Returns

Nothing if call is successful or throws an exception if an error occurs.

Example

The following function locates an attachment in a form an deletes it. First, the

function uses DereferenceEx to locate the node that contains the attachment. Next,

the function calls RemoveEnclosure to delete the attachment.

 Sub DeleteAttachment(Form)

 Dim TempNode ’ object

 Set TempNode = Form

 ’ Locate the PAGE3.DATA1 item, which contains the enclosure

 Set TempNode = TempNode.DereferenceEx(vbNullString, "PAGE3.DATA1", _

 0, UFL_ITEM_REFERENCE, Nothing)

 ’ Delete the enclosure

 TempNode.RemoveEnclosure vbNullString

 End Sub

ReplaceXFormsInstance

Description

This function either inserts or replaces an XForms instance in a form’s data model.

The instance can come from either from either a file or a memory block.

Call this function on the root node of the form or an instance node.

Use caution when calling this function. It can be used to overwrite signed instance

data.

Note: This function automatically updates the XForms data model.

Function

 Sub ReplaceXformsInstance(

 theModelID As String,

 theNodeRef As String,

 theNSNode As IFormNodeP,

 theFilename As String,

 theMemoryBlock As Variant

 replaceRef As Boolean)

The FormNodeP Functions 87

Parameters

 Expression Type Description

theModelID String The ID of the affected model. You must

use vbnullstring to use the default

model.

theNodeRef String An XPath reference to the instance (or

portion of an instance) you want to

replace. An empty string indicates the

default instance of the selected model.

theNSNode IFormNodeP A node that inherits the namespaces

used in the reference. This node defines

the namespaces for the function. Use

nothing if the node that this function is

operating on has inherited the necessary

namespaces.

theFilename String The file to read the instance from.

theMemoryBlock Variant The memory block that contains the

instance if you are not reading from a

file, input stream, or Reader. Use

nothing if theFilename is used.

replaceRef Boolean If True, the node specified by theNodeRef

is replaced with data. If False, the data

is appended as the last child of the

instance node.

Returns

Nothing if call is successful or throws an exception if an error occurs. .

Example

The following example shows a routine that replaces an XForms instance.

 Sub SaveDataInstance(Form)

 Form.ReplaceXFormsInstance "model1",

 "instance(’instance1’)loanrecord.user_personal_info",

 Nothing, "c:\InstanceData.xml", Nothing, True

 End Sub

SetActiveForComputationalSystem

Description

This function sets whether the computational system is active. When active, all

computes in the form are evaluated on an on-going basis. When inactive, no

computes are evaluated.

Note that turning the computational system on causes all computes in the form to

be re-evaluated, which can be time consuming.

Function

Sub SetActiveForComputationalSystem(

 activeFlag As Boolean)

88

Parameters

 Expression Type Description

activeFlag Boolean Set to True to activate the compute system or

False to deactivate the compute system.

Returns

Nothing or throws an exception if an error occurs.

Example

The following function uses SetActiveForComputationalSystem to turn the

compute system off before making a series of changes to a form. Once the changes

are complete, SetActiveForComputationalSystem is called again to turn the

compute systems back on, allowing the form to update itself based on the changes

that were made.

 Sub ProcessForm(Form)

 ’ Turn the compute system off. This allows us to make many changes to

 ’ the form quickly without the compute system slowing down the

 ’ processing.

 Form.SetActiveForComputationalSystem(False)

 ’ Call a function that adds a series of new items to the form.

 AddInformation(Form)

 ’ Call a function that removes a series of items from the form.

 RemoveInformation(Form)

 ’ Call a function that updates some information in the form.

 UpdateInformation(Form)

 ’ Turn the compute system back on so that the form can update itself.

 Form.SetActiveForComputationalSystem(True)

 End Sub

SetAttribute

Description

This function sets the value of a specific attribute for a node. For example, the

following XFDL represents a value node:

 <value custom:myAtt="x"></value>

To change the custom attribute, you would use setAttribute. If the attribute does

not already exist, setAttribute will create it and assign the appropriate value.

Note: Do not use SetAttribute to set the compute attribute. Instead, use

SetFormula.

The FormNodeP Functions 89

Function

 Sub SetAttribute(

 theNamespaceURI As String,

 theName As String,

 theValue As String)

Parameters

 Expression Type Description

theNamespaceURI String The namespace URI for the attribute. For

example:

 http://www.ibm.com/xmlns/prod/XFDL/7.0

theAttribute String The local name of the attribute. For example,

encoding.

theValue String The value to assign to the attribute.

Returns

Nothing or throws an exception if an error occurs.

Notes

Attributes and the Null Namespace

If an attribute is on a node in a non-XFDL namespace, and that attribute has no

namespace prefix, then the attribute is in the null namespace. For example, the

following node is the custom namespace, as is the first attribute, but since the

second attribute does not have a namespace prefix, it is in the null namespace:

 <custom:processing custom:stage="2" user="tjones">

When an attribute is the null namespace, you may either provide a null value for

the namespace URI or use the namespace URI for the containing element.

For example, to indicate user attribute on the processing node, you could use the

null namespace or the custom namespace URI.

Attributes and Namespace Prefixes

If you refer to an attribute with a namespace prefix, SetAttribute first looks for a

complete match, including both prefix and attribute name. If it does not find such

a match, it will look for a matching attribute name that has no prefix but whose

containing element has the same namespace.

For example, assume that the custom namespace and the test namespace both

resolve to the same URI. In the following case, looking for the id attribute would

locate the second attribute (test:id), since it has an explicit namespace declaration:

 <a xmlns:custom="ABC" xmlns:test="ABC">

 <custom:myElement id="1" test:id="2">

However, in the next case, the id attribute does not have an explicit namespace

declaration. Instead, it inherits the custom namespace. However, since the inherited

namespace resolves to the same URI, the id attribute is still located:

 <custom:myElement id="1">

90

Example

The following function uses DereferenceEx to locate a custom node in the form. It

then uses RemoveAttribute to delete the ″stage″ attribute from the node, and calls

SetAttribute to update the value of the status attribute to ″completed″.

 Sub CompletedProcessing(Form)

 Dim TempNode ’ object

 Set TempNode = Form

 ’ Dereference the custom processing node in the global item.

 Set TempNode = TempNode.DereferenceEx(vbNullString, _

 "global.global.custom:processing", 0, UFL_OPTION_REFERENCE, _

 Nothing)

 ’ Remove the "stage" attribute from the node.

 TempNode.RemoveAttribute vbNullString, "stage"

 ’ Update the status attribute to "completed".

 TempNode.SetAttribute vbNullString, "status", "completed"

 End Sub

SetFormula

Description

This function sets the formula for a node.

Function

 Sub SetFormula(

 theComputation As String)

Parameters

 Expression Type Description

theFormula String The formula to assign to the aNode. If null, the

formula is assigned as null.

Returns

Nothing if call is successful or throws an exception if an error occurs.

Example

The following function sets the formula in a field so that it will copy a value from

another item in the form. First, the function uses DereferenceEx to locate the field.

The function then calls SetFormula to set the field to copy the value of another

field.

 Sub AddFormula(Form)

 Dim TempNode ’ object

 Set TempNode = Form

The FormNodeP Functions 91

’ Locate the value node for the NameLabel on page 1.

 Set TempNode = TempNode.DereferenceEx(vbNullString, _

 "PAGE1.NameLabel.value", 0, UFL_OPTION_REFERENCE, Nothing)

 ’ Set a formula for the node that will copy the value of the NameField

 ’ into the NameLabel.

 TempNode.SetFormula "NameField.value"

End Sub

SetLiteralByRefEx

Description

This function finds a particular IFormNodeP as specified by a reference string.

Once the IFormNodeP is found, its literal will be set as specified. If the

IFormNodeP does not exist, this function will create it, but only if the IFormNodeP

would be an option or argument node.

If necessary, this function can create several nodes at once. For example, if you set

the literal for the second argument of an itemlocation, this function will create the

itemlocation option node and the two argument nodes and then set the literal for

the second argument node.

This function cannot create a IFormNodeP at the form, page, or item level; to do

so, use Create.

The node you call this function on is used as the starting point for the search.

Note: It is not necessary to call this function when you are using XForms. The

ReplaceXFormsInstance and ExtractXFormsInstancefunctions perform this

task automatically.

Function

 Sub SetLiteralByRefEx(

 theScheme As String,

 theReference As String,

 theReferenceCode As Long,

 theCharSet As String,

 theNSNode As IFormNodeP,

 theLiteral As String)

Parameters

 Expression Type Description

theScheme String Reserved. This must be null.

theReference String A string that contains the reference.

theReferenceCode Long Reserved. Must be 0.

theCharSet String The character set in which theLiteral parameter

is written. . Use null for ANSI/Unicode. Use

Symbol for Symbol.

92

Expression Type Description

theNSNode IFormNodeP A node that is used to resolve the namespaces

in theReference parameter (see “Determining

Namespace” on page 93). Use null if the node

that you are calling this function on has

inherited the necessary namespaces.

theLiteral String The string that will be assigned to the literal. If

null, any existing literal is removed.

Returns

Nothing if the call is successful or throws an exception if an error occurs.

Notes

IFormNodeP

Before you decide which IFormNodeP to use this function on, be sure you

understand the following:

1. The IFormNodeP you supply can never be more than one level in the hierarchy

above the level at which your reference string starts. For example, if the

reference string begins with an option, then the IFormNodeP can be no higher

in the hierarchy than an item.

2. If the IFormNodeP is at the same level or lower in the hierarchy than the

starting point of the reference string, the function will attempt to locate a

common ancestor. The function will locate the ancestor of the IFormNodeP that

is one level in the hierarchy above the starting point of the reference string. The

function will then attempt to follow the reference string back down through the

hierarchy. If the reference string cannot be followed from the located ancestor

(for example, if the ancestor is not common to both the IFormNodeP and the

reference string), the function will fail. For example, given a IFormNodeP that

represents ″field_1″ and a reference of ″field_2″, the function will access the

″page″ node above ″field_1″, and will then try to locate ″field_2″ below that

node. If the two fields were not on the same page, the function would fail.

Creating a Reference String

For more information about creating a reference, see “References” on page 6.

Digital Signatures

Do not set a node that is digitally signed. Doing so will break the digital signature

and produce an error.

Determining Namespace

In some cases, you may want to use the SetLiteralByRefEx function to set the

value for a node that does not have a globally defined namespace. For example,

consider the following form:

 <label sid="Label1">

 <value>Field1.processing:myValue</value>

 </label>

The FormNodeP Functions 93

<field sid="Field1" xmlns:processing="URI">

 <value></value>

 <processing:myValue>10<processing:myValue>

 </field>

In this form, the processing namespace is declared in the Field1 node. Any elements

within Field1 will understand that namespace; however, elements outside of the

scope of Field1 will not.

In cases like this, you will often start your search at a node that does not

understand the namespace of the node you are trying to locate. For example, you

might want to locate the node referenced in the value of Label1. In this case, you

would first locate the Label1 value node and get its literal. Then, from the Label1

value node, you would attempt to locate the processing:myValue node as shown:

 Label1Node.SetLiteralByRefEx(vbNullString, "Field1.processing:myValue",

 0, vbNullString, vbNullString, "20")

In this example, the setLiteralByRef function would fail. The function cannot

properly resolve the processing namespace because this namespace is not defined

for the Label1 value node. To correct this, you must also provide a node that

understands the processing namespace (in this case, any node in the scope of Field1)

as a parameter in the function:

 Label1Node.SetLiteralByRefEx(vbNullString, "Field1.processing:myValue",

 0, vbNullString, Field1Node, "20")

Example

The following example adds a label to a form. A node is passed into the function,

which then uses GetLiteralByRefEx to read the value of a field. The function then

uses DereferenceEx to locate the field node, and creates a label node as a sibling

using Create. Finally, the function creates a value for the new label node using

SetLiteralByRef.

 Sub AddLabel(Form)

 Dim TempNode, XFDL ’ objects

 Dim Name ’ strings

 Set TempNode = Form

 ’ Get the value of the NameField.value option node

 Name = TempNode.GetLiteralByRefEx(vbNullString, _

 "PAGE1.NameField.value", 0, vbNullString, Nothing)

 ’ Locate the NameField item node in the first page of the form

 Set TempNode = TempNode.DereferenceEx(vbNullString, _

 "PAGE1.NameField", 0, UFL_ITEM_REFERENCE, Nothing)

 ’ Get an XFDL object

 Set XFDL = CreateObject("PureEdge.xfdl_XFDL")

 ’ Create a label. This label is created as a sibling of the NameField,

 ’ and is named NameLabel.

 Set TempNode = XFDL.Create(TempNode, UFL_AFTER_SIBLING, "label", _

 vbNullString, vbNullString, "NameLabel")

 ’ Create a value option for the label. This option is assigned the

 ’ value of Name (as read from the field)

94

TempNode.SetLiteralByRefEx vbNullString, "value", 0, vbNullString, _

 Nothing, Name

 End Sub

SetLiteralEx

Description

This function sets the literal of a node. You should only set the literal for option or

argument nodes.

Note: It is not necessary to call this function when you are using XForms. The

ReplaceXFormsInstance and ExtractXFormsInstancefunctions perform this

task automatically.

Function

 Sub SetLiteralEx(

 theCharSet As String,

 theLiteral As String)

Parameters

 Expression Type Description

theCharSet String The character set in which theLiteral parameter is

written. . Use null for ANSI/Unicode. Use

Symbol for Symbol.

theLiteral String The literal to assign to the node. If null, any

existing literal is removed.

Returns

Nothing if call is successful or throws an exception if an error occurs.

Notes

Digital Signatures

Do not set the literal of a node that has already been signed. Doing so will break

the digital signature and produce an error.

Example

The following function copies the value from one field to another. First, the

function uses DeferenceEx to locate the value node of a field on page one and

reads the value using GetLiteral. Next, the function locates a value node on page

two and writes the literal to that field using SetLiteralEx.

 Sub CopyValue(Form)

 Dim TempNode ’ object

 Dim theName ’ string

 Set TempNode = Form

 ’ Locate the NameField on page 1

The FormNodeP Functions 95

Set TempNode = TempNode.DereferenceEx(vbNullString, _

 "PAGE1.NameField.value", 0, UFL_OPTION_REFERENCE, Nothing)

 ’ Get the literal from the value node

 theName = TempNode.GetLiteral

 ’ Locate the NameField on page 2

 Set TempNode = TempNode.DereferenceEx(vbNullString, _

 "PAGE2.NameField.value", 0, UFL_OPTION_REFERENCE, Nothing)

 ’ Write the literal that was read from the first value node

 TempNode.SetLiteralEx vbNullString, theName

 End Sub

SignForm

Description

This function takes a button node and creates a digital signature for that button.

The signature is created using the signature filter in the button and the private key

of the signer.

Function

 Function SignForm(

 signer As ICertificate,

 theInfo As IStringDictionary,

 theStatus As Long

) As ISignature

Parameters

 Expression Type Description

theSigner ICertificate The certificate to use to create the signature.

theInfo IStringDictionary Always use a null value.

theStatus Long This is a status flag that reports whether the

operation was successful. Possible values are:

SUSTATUS_OK — the operation was successful.

SUSTATUS_CANCELLED — the operation was

cancelled by the user.

SUSTATUS_INPUT_REQUIRED — the

operation required user input, but could not

receive it (for example, it was run on a server

with no user).

Returns

A signature object if the call is successful, or throws an exception if an error occurs.

Example

The following function uses DereferenceEx to locate a signature button in the

form. It then calls GetCertificateList to get a list of valid certificates for that

96

button. The function then loops through the available certificates, using

GetDataByPath to check the common name of each certicate. When it finds the

certificate with the common name of ″TJones″, it calls SignForm and uses that

certificate to sign the form.

 Sub ApplySignature(Form)

 Dim SigNode, SigObject ’ objects

 Dim TheCerts ’ CertificateList

 Dim CommonName ’ String

 Dim Cert ’ ICertificate

 ’ Get the SignatureButton node

 Set SigNode = Form.DereferenceEx(vbNullString, _

 "PAGE1.SignatureButton", 0, UFL_ITEM_REFERENCE, Nothing)

 ’ Get available certificates for that button

 Set TheCerts = SigNode.GetCertificateList(vbNullString, 1) ’vbNull

 ’ Test each of the available certificates to see if it has a common

 ’ name of "TJones". If it does, use that certificate to sign

 ’ the form.

 For Each Cert in TheCerts

 CommonName = Cert.GetDataByPath("SigningCert: Subject: CN", _

 False, 1) ’ vbNull

 Response.Write CommonName & vbCrLf

 If CommonName = "TJones" Then

 Set SigObject = SigNode.SignForm(TheCerts(1), Nothing, 1)

 ’ vbNull

 End If

 Next

 End Sub

UpdateXFormsInstance

Description

This function supplants replaceXFormsInstance. It allows developers to insert data

anywhere within the XForms instance data, or replace it entirely. The instance can

come from either from either a file or a memory block. The UpdateXFormsInstance

function automatically updates the XForms data model.

Call this function on the root node of the form or an instance node.

Use caution when calling this function. It can be used to overwrite signed instance

data.

Note: This function automatically updates the XForms data model.

Function

 Sub UpdateXformsInstance(

 theModelID As String,

 theNodeRef As String,

 theNSNode As IFormNodeP,

 theFilename As String,

 theMemoryBlock As Variant,

 updateType As Long)

The FormNodeP Functions 97

Parameters

 Expression Type Description

theModelID String The ID of the affected model. You must

use vbnullstring to use the default

model.

theNodeRef String An XPath reference to the instance (or

portion of an instance) you want to

insert data into or replace. An empty

string indicates the default instance of

the selected model.

theNSNode IFormNodeP A node that inherits the namespaces

used in the reference. This node defines

the namespaces for the function. Use

nothing if the node that this function is

operating on has inherited the necessary

namespaces.

theFilename String The file to read the instance data from.

Note that if both a file and a memory

block are provided, the file will take

precedence.

theMemoryBlock Variant The memory block that contains the

instance if you are not reading from a

file, input stream, or Reader. Use

nothing if theFilename is used.

updateType Long Indicates which type of update to

perform:

XFORMS_UPDATE_REPLACE —

Replaces the specified data element.

XFORMS_UPDATE_APPEND — Adds

the data to the end of the specified data

instance or element as a child element.

XFORMS_UPDATE_INSERT_BEFORE

— Adds the data as a sibling of the

specified element. This sibling is placed

before the specified element.

Returns

Nothing if call is successful or throws an exception if an error occurs. .

Example

The following example shows a routine that replaces an XForms instance.

 Sub SaveDataInstance(Form)

 Form.UpdateXFormsInstance "model1",

 "instance(’instance1’)loanrecord.user_personal_info",

 Nothing, "c:\InstanceData.xml", Nothing, True, XFORMS_UPDATE_REPLACE)

 End Sub

98

ValidateHMACWithSecret

Description

This function determines whether an HMAC signature is valid. HMAC signatures

include both Authenticated Clickwrap and Signature Pad signatures.

For Authenticated Clickwrap signatures, you must know the signer’s shared secret

to use this function. For Signature Pad signatures, you may use this function

without the shared secret if the signature was created without one. In any case, the

shared secret should be available from a corporate database or other system.

This function will also notarize (that is, digitally sign) a valid HMAC signature if

you provide a digital certificate. However, notarization will not occur if the

signature does not include a shared secret. Once notarized, you must use the

VerifySignature function to validate the signature.

Note: Authenticated Clickwrap is a separately licensed product. Please ensure that

your company has the license to use Authenticated Clickwrap before you

provide forms or functionality that rely on it.

Function

 Function ValidateHMACWithSecret(

 theSecret As String,

 theServerCert As ICertificate,

 theStatus As Long

) As Integer

Parameters

 Expression Type Description

theSecret String The shared secret that identifies the user. This

should be available from a corporate database

or other system.

If there is more than one shared secret, you

must concatenate the strings with no

separating characters. For example, if the

secrets were ″blue″ and ″red″, you would pass

″bluered″ to the function.

If there is no shared secret pass an empty

string.

theServerCert ICertificate The server certificate. If the HMAC signature

is valid, the function will use the private key

of this certificate to digitally sign the HMAC

signature. This signature is appended to the

signature item, and can be verified using

VerifySignature.

If you pass null, the function will simply

validate the HMAC signature.

The FormNodeP Functions 99

Expression Type Description

theStatus Long This is a status flag that reports whether the

operation was successful. Possible values are:

SUSTATUS_OK — the operation was

successful.

SUSTATUS_CANCELLED — the operation

was cancelled by the user.

SUSTATUS_INPUT_REQUIRED — the

operation required user input, but could not

receive it (for example, it was run on a server

with no user).

Returns

:A constant if the verification is successful, or throws an exception if an error

occurs. The following table lists the possible return values:

Code

Numeric

Value Status

UFL_DS_OK 0 The signature is verified.

UFL_DS_ALGORITHM UNAVAILABLE 13590 The appropriate verification

engine for the signature is not

available.

UFL_DS_F2MATCHSIGNER 13529 The certificate does not match

the signer’s name.

UFL_DS_FAILED AUTHENTICATION 1272 The signature is invalid or the

secret used is incorrect.

UFL_DS_HASHCOMPFAILED 13527 The document has been

tampered with.

UFL_DS_NOSIGNATURE 13526 There is no signature.

UFL_DS_NOTAUTHENTICATED 1240 The signer cannot be

authenticated.

UFL_DS_UNEXPECTED 13589 An unexpected error occurred.

UFL_DS_UNVERIFIABLE 859 The signature cannot be

verified.

Example

The following function uses DereferenceEx and GetLiteralByRefEx to locate the

signature item in a form. It then uses GetEngineCertificateList and

GetDataByPath to locate a server signing certificate. Next, it uses GetSignature

and GetDataByPath to get the signer’s common name. Finally, it uses

ValidateHMACWithSecret to determine if the HMAC signature is valid, and

returns ″Valid″ or ″Invalid″, as appropriate.

 Function ValidateHMACSig(Form)

 Dim SigObject, XFDL ’ Objects

 Dim TheCerts ’ CertificateList

 Dim Cert, SigningCert ’ ICertificate

 Dim SignerName, SharedSecret, CommonName, SigItemRef ’ Strings

 Dim Validation ’ Integer

100

Dim TempNode, SigNode ’ IFormNodeP

 Set TempNode = Form

 ’ Get the SignatureButton node

 Set TempNode = Form.DereferenceEx(vbNullString, _

 "PAGE1.HMACSignatureButton", 0, UFL_ITEM_REFERENCE, Nothing)

 ’ Get the name of the signature item

 SigItemRef = TempNode.GetLiteralByRefEx(vbNullString, "signature", _

 0, vbNullString, Nothing)

 ’ Get the signature item node

 Set SigNode = TempNode.DereferenceEx(vbNullString, SigItemRef, 0, _

 UFL_ITEM_REFERENCE, Nothing)

 ’ Get available server certificates for Generic RSA signing

 Set XFDL = CreateObject("PureEdge.xfdl_XFDL")

 Set TheCerts = XFDL.GetEngineCertificateList("Generic RSA", 1)

 ’ vbNull

 ’ Locate the certificate that has a common name of "User1-CP.02.01".

 ’ This is the certificate we will use when verifying the signature.

 For Each Cert in TheCerts

 CommonName = Cert.GetDataByPath("SigningCert: Subject: CN", _

 False, 1) ’ vbNull

 If CommonName = "User1-CP.02.01" Then

 Set SigningCert = Cert

 End If

 Next

 ’ Get the signature object from the signature node

 Set SigObject = SigNode.GetSignature

 ’ Get the signer’s name from the signature object

 SignerName = SigObject.GetDataByPath("SigningCert: Subject: CN", _

 False, 1) ’ vbNull

 ’ Include code that matches the signer’s identity to a shared secret,

 ’ and sets SharedSecret to match. In most cases, this would be a

 ’ database lookup. For the purposes of this example, we will simply

 ’ assign a value to SharedSecret.

 SharedSecret = "secret"

 ’ Validate the signature

 Validation = SigNode.ValidateHMACWithSecret(SharedSecret, _

 SigningCert, 1) ’ vbNull

 ’ Check the validation code and return either "Valid" or "Invalid"

 If Validation = UFL_DS_OK Then

 ValidateHMACSig = "Valid"

 Else

 ValidateHMACSig = "Invalid"

 End If

 End Function

The FormNodeP Functions 101

ValidateHMACWithHashedSecret

Description

This function determines whether an HMAC signature is valid. HMAC signatures

include both Authenticated Clickwrap and Signature Pad signatures.

For Authenticated Clickwrap signatures, you must know the hash of the signer’s

shared secret to use this function. For Signature Pad signatures, you may use this

function without the shared secret if the signature was created without one. In any

case, the shared secret should be available from a corporate database or other

system.

This function will also notarize (that is, digitally sign) a valid HMAC signature if

you provide a digital certificate. However, notarization will not occur if the

signature does not include a shared secret. Once notarized, you must use the

VerifySignature function to validate the signature.

Note: Authenticated Clickwrap is a separately licensed product. Please ensure that

your company has the license to use Authenticated Clickwrap before you

provide forms or functionality that rely on it.

Function

 Function ValidateHMACWithHashedSecret(

 hashedSecret As Variant,

 theServerCert As ICertificate,

 theStatus As Long

) As Integer

102

Parameters

 Expression Type Description

hashedSecret Variant The hash of the shared secret that identifies

the user. This should be available from a

corporate database or other system.

If there is more than one shared secret, you

must concatenate the strings with no

separating characters and then hash the

combined secret. For example, if the secrets

were ″blue″ and ″red″, you would pass the

hash of ″bluered″ to the function.

If there is no shared secret, pass and empty

string.

You must encode the byte array as follows:

Authenticated Clickwrap (HMAC) UTF-8

Signature Pad UTF-16LE

The method for doing this depends on the

software library you are using to interface

with the COM API.

Note that the function expects the hashed

secret to be a single-byte binary array. Using a

double-byte binary array produces an

incorrect result.

theCertificate ICertificate The server certificate. If the HMAC signature

is valid, the function will use the private key

of this certificate to digitally sign the HMAC

signature. This signature is appended to the

signature item, and can be verified using

UFLVerifySignature.

If you pass null, the function will simply

validate the HMAC signature.

theStatus Long This is a status flag that reports whether the

operation was successful. Possible values are:

SUSTATUS_OK — the operation was

successful.

SUSTATUS_CANCELLED — the operation

was cancelled by the user.

SUSTATUS_INPUT_REQUIRED — the

operation required user input, but could not

receive it (for example, it was run on a server

with no user).

Returns

A constant if the verification is successful, or throws an exception if an error

occurs. The following table lists the possible return values:

The FormNodeP Functions 103

Code

Numeric

Value Status

UFL_DS_OK 0 The signature is verified.

UFL_DS_ALGORITHM UNAVAILABLE 13590 The appropriate verification

engine for the signature is

not available.

UFL_DS_F2MATCHSIGNER 13529 The certificate does not

match the signer’s name.

UFL_DS_FAILED AUTHENTICATION 1272 The signature is invalid or

the secret used is incorrect.

UFL_DS_HASHCOMPFAILED 13527 The document has been

tampered with.

UFL_DS_NOSIGNATURE 13526 There is no signature.

UFL_DS_NOT AUTHENTICATED 1240 The signer cannot be

authenticated.

UFL_DS_UNEXPECTED 13589 An unexpected error

occurred.

UFL_DS_UNVERIFIABLE 859 The signature cannot be

verified.

Example

The following function validates an HMAC signature using a hashed secret. First,

the function uses DereferenceEx and GetLiteralByRefEx to locate the signature

item in a form. It then uses GetEngineCertificateList and GetDataByPath to locate

a server signing certificate. Next, it uses GetSignature and GetDataByPath to get

the signer’s common name and Hash to create a hashed secret. Finally, it uses

ValidateHMACWithHashedSecret to determine if the HMAC signature is valid,

and returns ″Valid″ or ″Invalid″, as appropriate.

Note that this example also relies on a second function called StringToBinary. This

function converts a string to a single-byte binary array, which is required for the

hash function. This prevents COM from converting the string to a double-byte

array before hashing it, which would produce an incorrect result.

 Function ValidateHMACSigHashed(Form)

 Dim SigObject, XFDL, HashObject, SecurityManager ’ objects

 Dim TheCerts ’ CertificateList

 Dim Cert, SigningCert ’ ICertificate

 Dim SignerName, SharedSecret, HashedSecret, CommonName, _

 SigItemRef ’ Strings

 Dim Validation ’ Integer

 Dim TempNode, SigNode ’ IFormNodeP

 Set TempNode = Form

 ’ Get the SignatureButton node

 Set TempNode = Form.DereferenceEx(vbNullString, _

 "PAGE1.HMACSignatureButton", 0, UFL_ITEM_REFERENCE, Nothing)

 ’ Get the name of the signature item

 SigItemRef = TempNode.GetLiteralByRefEx(vbNullString, "signature", _

 0, vbNullString, Nothing)

104

’ Get the signature item node

 Set SigNode = TempNode.DereferenceEx(vbNullString, SigItemRef, 0, _

 UFL_ITEM_REFERENCE, Nothing)

 ’ Get available server certificates for Generic RSA signing

 Set XFDL = CreateObject("PureEdge.xfdl_XFDL")

 Set TheCerts = XFDL.GetEngineCertificateList("Generic RSA", 1)

 ’ vbNull

 ’ Locate the certificate that has a common name of "User1-CP.02.01".

 ’ This is the certificate we will use when verifying the signature.

 For Each Cert in TheCerts

 CommonName = Cert.GetDataByPath("SigningCert: Subject: CN", _

 False, 1) ’ vbNull

 If CommonName = "User1-CP.02.01" Then

 Set SigningCert = Cert

 End If

 Next

 ’ Get the signature object from the signature node

 Set SigObject = SigNode.GetSignature

 ’ Get the signer’s name from the signature object

 SignerName = SigObject.GetDataByPath("SigningCert: Subject: CN", _

 False, 1) ’ vbNull

 ’ Include code that matches the signer’s identity to a shared secret

 ’ that is hashed, and sets SharedSecret to match. In most cases, this

 ’ would be a database lookup. For the purposes of this example, we will

 ’ use the Hash function to assign a hashed value to HashedSecret.

 ’ Get the Security Manager object

 Set SecurityManager = _

 CreateObject("PureEdge.security_SecurityManager")

 ’ Get the Hash object

 Set HashObject = SecurityManager.LookupHashAlgorithm("sha1")

 ’ Set the Hashed secret. First convert the secret to a single-byte

 ’ binary array, then hash the secret.

 SharedSecret = StringToBinary("secret")

 HashedSecret = HashObject.Hash(SharedSecret)

 ’ Validate the signature

 Validation = SigNode.ValidateHMACWithHashedSecret(HashedSecret, _

 SigningCert, 1) ’ vbNull

 ’ Check the validation code and return either "Valid" or "Invalid"

 If Validation = UFL_DS_OK Then

 ValidateHMACSigHashed = "Valid"

 Else

 ValidateHMACSigHashed = "Invalid"

 End If

 End Function

 ’ The following function is required to convert a string to a single-byte binary

 ’ array before hashing that string. This prevents COM from converting

 ’ the string to a multi-byte format, which would produce and incorrect

The FormNodeP Functions 105

’ hash.

 Function StringToBinary(String)

 Dim Counter, Binary

 For Counter = 1 to len(String)

 Binary = Binary & ChrB(Asc(Mid(String, Counter, 1)))

 Next

 StringToBinary = Binary

 End Function

VerifyAllSignatures

Description

This function verifies the correctness of all digital signatures in a given form whose

root node is provided. It finds all items of type signature and calls VerifySignature

for each signature. Errors are logged for all invalid signatures.

This function checks the following conditions for each signature:

v The signature item contains mimedata.

v The mimedata contains a hash value and signer certificate.

v The signer certificate contains the same ID as that recorded in the signature

item’s signer option.

v The signer certificate has not expired.

Function

 Function VerifyAllSignatures(

 reportAsErrorsFlag As Boolean

) As Integer

Parameters

 Expression Type Description

reportAsErrorsFlag Boolean Set to True if you want errors about the

signatures to be reported by throwing an

exception, or False if you want the error

code to be only returned through the return

value.

Returns

An integer having one of the following values:

 Code Status

UFL_SIGS_OK The signatures are valid.

UFL_SIGS_NOTOK One or more signatures are broken.

UFL_SIGS_UNVERIFIED One or more signatures are unverifiable.

If one or more of the signatures is not valid and the reportAsErrorsFlag is true, an

exception is thrown. On error, the function throws an exception.

106

Example

The following example uses VerifyAllSignatures to check all of the signatures in

the form, then returns ″Valid″ if the signatures are okay or ″Invalid″ if they are not.

 Function CheckAllSignatures(Form)

 Dim Status ’ Integer

 Status = Form.VerifyAllSignatures(False)

 If Status = UFL_SIGS_OK Then

 CheckAllSignatures = "Valid"

 Else

 CheckAllSignatures = "Invalid"

 End If

 End Function

VerifySignature

Description

This function verifies the correctness of the given digital signature. You supply the

root of the form that contains the signature you want to verify. This function

checks the following conditions:

v The signature item contains mimedata.

v The mimedata contains a hash value and signer certificate.

v The signer certificate contains the same ID as that recorded in the signature

item’s signer option.

v The signer certificate has not expired.

A plain text representation of the form (filtered by the signature item’s filter) is

constructed and the result is hashed. This hash value must match the hash value

stored in the signature.

Function

 Function VerifySignature(

 signatureItem As IFormNodeP,

 theCertChain As String,

 reportAsErrorsFlag As Boolean

) As Integer

Parameters

 Expression Type Description

signatureItem IFormNodeP The signature to verify.

theCertChain String Reserved. Must be null.

reportAsErrorsFlag Boolean Set to True if you want errors about the

signatures to be reported by throwing an

exception or False if you want the error

code to be returned through the return

value.

Returns

A Long having one of the following values, depending on the status of the

signature:

The FormNodeP Functions 107

Code Status

UFL_DS_OK The signature is verified.

UFL_DS_ALGORITHMUNAVAILABLE The appropriate verification

engine for the signature is not

available.

UFL_DS_CERTEXPIRED The certificate has expired.

UFL_DS_CERTNOTFOUND The certificate cannot be located.

UFL_DS_CERTNOTTRUSTED The certificate is not trusted.

UFL_DS_CERTREVOKED The certificate has been revoked.

UFL_DS_CRLINVALID The certificate revocation list is

invalid.

UFL_DS_F2MATCHSIGNER The certificate does not match the

signer’s name.

UFL_DS_HASHCOMPFAILED The document has been tampered

with.

UFL_DS_ISSUERCERTEXPIRED The issuer’s certificate has

expired.

UFL_DS_ISSUERINVALID The issuer is invalid for the

certificate used to sign.

UFL_DS_ISSUERKEYUSAGE UNACCEPTABLE The issuer certificate’s key usage

extension does not match what

the key was used for.

UFL_DS_ISSUERNOTCA The certificate’s issuer is not a

Certificate Authority.

UFL_DS_ISSUERNOTFOUND The issuer’s certificate was not

located.

UFL_DS_ISSUERSIGFAILED Verification of the issuer’s

certificate failed.

UFL_DS_KEYREVOKED The key used to create the

signature has been revoked.

UFL_DS_KEYUSAGEUNACCEPTABLE The certificate’s key usage

extension does not match what

the key was used for.

UFL_DS_KRLINVALID The Key Revocation List is

invalid.

UFL_DS_NOSIGNATURE There is no signature.

UFL_DS_NOTAUTHENTICATED The signer cannot be

authenticated.

UFL_DS_POLICYUNACCEPTABLE The certificate’s policy extension

does not match the acceptable

policies.

UFL_DS_SIGNATUREALTERED The signature has been tampered

with.

UFL_DS_UNEXPECTED An unexpected error occurred.

UFL_DS_UNVERIFIABLE The signature cannot be verified.

If the signature is not valid and the reportAsErrorsFlag is True, an exception is

thrown. On error, the function throws an exception.

108

Example

The following function checks to see the signature in the form is valid. First, the

function uses DereferenceEx to locate the signature button. It then uses

GetLiteralByRefEx to get the name of the signature item, and uses another

DereferenceEx to locate that item. Next, it uses VerifySignature to determine

whether the signature is valid. If so, it return the string ″Valid″. If not, it uses

DeleteSignature to delete the signature and returns the string ″Invalid″.

 Function CheckSignature(Form)

 Dim TempNode, SigNode ’ objects

 Dim SigStatus ’ Integer

 Dim SigItemRef ’ Strings

 Set TempNode = Form

 ’ Get the SignatureButton node

 Set TempNode = TempNode.DereferenceEx(vbNullString, _

 "PAGE1.SignatureButton", 0, UFL_ITEM_REFERENCE, Nothing)

 ’ Get a reference to the signature item from the signature option

 SigItemRef = TempNode.GetLiteralByRefEx(vbNullString, "signature", _

 0, vbNullString, Nothing)

 ’ Get the signature item node

 Set SigNode = TempNode.DereferenceEx(vbNullString, SigItemRef, 0, _

 UFL_ITEM_REFERENCE, Nothing)

 ’ Verify the signature

 SigStatus = Form.VerifySignature(SigNode, vbNullString, False)

 ’ If the signature is not verified, then delete the signature and set

 ’ the return code to "Invalid". Otherwise, set the return code to

 ’ "Valid".

 If (Not(SigStatus = UFL_DS_OK)) Then

 TempNode.DeleteSignature SigNode

 CheckSignature = "Invalid"

 Else

 CheckSignature = "Valid"

 End If

 End Function

WriteForm

Description

This function will write a form to the specified file . Call this function on the root

node of the form. The version number of the form determines the format of the

output file. You can specify whether to compress the output file and whether to

observe the transmit and save settings in the form.

If no format is specified, the default is to write the form in the same format in

which it was read. If the form in question was created dynamically by your

application, WriteForm will, by default, write it as an XFDL form in uncompressed

format.

The FormNodeP Functions 109

Function

 Sub WriteForm(

 theFilePath As String,

 triggerItem As IFormNodeP,

 flags As Long)

Parameters

 Expression Type Description

theFilePath String This is the path to the file on the local disk to

which the form will be written.

triggerItem IFormNodeP This is the item that caused the form to be

submitted. Set to null if the API receives the form

in a manner other than transmission.

flags Long The following flags are valid:

UFL_TRANSMIT_ALLOW allows the transmit

options (that is, transmitdatagroups, transmitgroups,

transmititemrefs, transmititems, transmitoptionrefs,

transmitpagerefs and transmitoptions) to control

which portions of the form are sent. Without this

flag, the entire form will be sent regardless of the

transmit options in the form.

UFL_SAVE_ALLOW allows the saveformat option

to specify what format the form should be saved

in. If no format is specified then the form will be

saved in the same format that it is read.

Note: Specify 0 if you do not want to enable any

of the transmit options.

Returns

Returns nothing if the call is successful, or throws an exception if an error occurs.

Example

The following example uses WriteForm to write the form in memory to a file on

the local drive.

 Sub SaveForm(Form)

 ’ Write the form to a file on disk

 Form.WriteForm "c:\testform.xfd", Nothing, 0

 End Sub

WriteFormToASPResponse

Description

This function will write a form to the ASP response object. Call this function on the

root node of the form. The version number of the form determines the format of

the output file. You can specify whether to compress the output file and whether

to observe the transmit and save settings in the form.

110

If no format is specified, the default is to write the form in the same format in

which it was read. If the form in question was created dynamically by your

application, WriteFormToASPResponse will, by default, write it as an XFDL form

in uncompressed format.

Function

 Sub WriteFormToASPResponse(

 triggerItem As IFormNodeP,

 flags As Long)

Parameters

 Expression Type Description

triggerItem IFormNodeP This is the item that caused the form to be

submitted. Set to null if the API receives the form

in a manner other than transmission.

flags Long The following flags are valid:

UFL_TRANSMIT_ALLOW allows the transmit

options (that is, transmitdatagroups, transmitgroups,

transmititemrefs, transmititems, transmitoptionrefs,

transmitpagerefs and transmitoptions) to control

which portions of the form are sent. Without this

flag, the entire form will be sent regardless of the

transmit options in the form.

UFL_SAVE_ALLOW allows the saveformat option

to specify what format the form should be saved

in. If no format is specified then the form will be

saved in the same format that it is read.

Note: Specify 0 if you do not want to enable any of

the transmit options.

Returns

Returns nothing if the call is successful, or throws an exception if an error occurs.

Example

The following example uses WriteFormToASPResponse to write the form in

memory to the ASP response object.

 Sub RespondWithForm(Form)

 Form.WriteFormToASPResponse Nothing, 0

 End Sub

XMLModelUpdate

Description

This function updates the XML data model in the form. This is necessary if

computes have changed the structure of the data model in some way, such as

changing or adding bindings. These sorts of changes do not take effect until the

XMLModelUpdate function is called.

The FormNodeP Functions 111

Function

 Sub XMLModelUpdate()

Parameters

There are no parameters for this function.

Returns

Returns nothing if the call is successful, or throws an exception if an error occurs.

Example

The following example uses SetLiteralByRefEx to change a binding in the form, so

that it binds to a different option. It then calls XMLModelUpdate so that the data

model reflects the change.

 Function ChangeBinding(Form)

 ’ Change the binding to a field on the second page.

 Form.SetLiteralByRefEx vbNullString, _

 "global.global.xmlmodel.bindings[0][boundoption]", 0, _

 vbNullString, Nothing, "PAGE2.NameField.value"

 ’ Update the XML model.

 Form.XMLModelUpdate

 End Function

112

The Hash Functions

The Hash functions allow you to hash messages.

v To use the Hash functions you must import the IFS_COM_API type library, as

shown:

 <!-- METADATA TYPE = "typelib"

 FILE = "c:\winnt\system32\IFS_COM_API.tlb" -->

Hash

Description

This function hashes a message using the hashing algorithm of your choice.

Function

 Function Hash(

 theMessage As Variant)

Parameters

 Expression Type Description

theMessage Variant The message you want to hash.

Note that the function expects the hashed secret

to be a single-byte binary array. Using a

double-byte binary array will produce an

incorrect result.

Returns

A hashed message, or throws an exception if an error occurs.

Example

The following function validates an HMAC signature using a hashed secret. First,

the function uses DereferenceEx and GetLiteralByRefEx to locate the signature

item in a form. It then uses GetEngineCertificateList and GetDataByPath to locate

a server signing certificate. Next, it uses GetSignature and GetDataByPath to get

the signer’s common name and LookupHashAlgorith and Hash to create a hashed

secret. Finally, it uses ValidateHMACWithHashedSecret to determine if the

HMAC signature is valid, and returns ″Valid″ or ″Invalid″, as appropriate.

Note that this example also relies on a second function called StringToBinary. This

function converts a string to a single-byte binary array, which is required for the

hash function. This prevents COM from converting the string to a double-byte

array before hashing it, which would produce an incorrect result.

 Function ValidateHMACSigHashed(Form)

 Dim SigObject, XFDL, HashObject, SecurityManager ’ objects

 Dim TheCerts ’ CertificateList

 Dim Cert, SigningCert ’ ICertificate

 Dim SignerName, SharedSecret, HashedSecret, CommonName, _

 SigItemRef ’ Strings

© Copyright IBM Corp. 2003, 2006 113

Dim Validation ’ Integer

 Dim TempNode, SigNode ’ IFormNodeP

 Set TempNode = Form

 ’ Get the SignatureButton node

 Set TempNode = Form.DereferenceEx(vbNullString, _

 "PAGE1.HMACSignatureButton", 0, UFL_ITEM_REFERENCE, Nothing)

 ’ Get the name of the signature item

 SigItemRef = TempNode.GetLiteralByRefEx(vbNullString, "signature", _

 0, vbNullString, Nothing)

 ’ Get the signature item node

 Set SigNode = TempNode.DereferenceEx(vbNullString, SigItemRef, 0, _

 UFL_ITEM_REFERENCE, Nothing)

 ’ Get available server certificates for Generic RSA signing

 Set XFDL = CreateObject("PureEdge.xfdl_XFDL")

 Set TheCerts = XFDL.GetEngineCertificateList("Generic RSA", 1)

 ’ vbNull

 ’ Locate the certificate that has a common name of "User1-CP.02.01".

 ’ This is the certificate we will use when verifying the signature.

 For Each Cert in TheCerts

 CommonName = Cert.GetDataByPath("SigningCert: Subject: CN", _

 False, 1) ’ vbNull

 If CommonName = "User1-CP.02.01" Then

 Set SigningCert = Cert

 End If

 Next

 ’ Get the signature object from the signature node

 Set SigObject = SigNode.GetSignature

 ’ Get the signer’s name from the signature object

 SignerName = SigObject.GetDataByPath("SigningCert: Subject: CN", _

 False, 1) ’ vbNull

 ’ Include code that matches the signer’s identity to a shared secret

 ’ that is hashed, and sets SharedSecret to match. In most cases, this

 ’ would be a database lookup. For the purposes of this example, we will

 ’ use the Hash function to assign a hashed value to HashedSecret.

 ’ Get the Security Manager object

 Set SecurityManager = _

 CreateObject("PureEdge.security_SecurityManager")

 ’ Get the Hash object

 Set HashObject = SecurityManager.LookupHashAlgorithm("sha1")

 ’ Set the Hashed secret. First convert the secret to a single-byte

 ’ binary array, then hash the secret.

 SharedSecret = StringToBinary("secret")

 HashedSecret = HashObject.Hash(SharedSecret)

 ’ Validate the signature

114

Validation = SigNode.ValidateHMACWithHashedSecret(HashedSecret, _

 SigningCert, 1) ’ vbNull

 ’ Check the validation code and return either "Valid" or "Invalid"

 If Validation = UFL_DS_OK Then

 ValidateHMACSigHashed = "Valid"

 Else

 ValidateHMACSigHashed = "Invalid"

 End If

 End Function

 ’ The following function is required to convert a string to a single-byte ’

 ’ binary array before hashing that string. This prevents COM from converting

 ’ the string to a multi-byte format, which would produce an incorrect hash.

Function StringToBinary(String)

 Dim Counter, Binary

 For Counter = 1 to len(String)

 Binary = Binary & ChrB(Asc(Mid(String, Counter, 1)))

 Next

 StringToBinary = Binary

 End Function

The Hash Functions 115

116

The Initialization Functions

The initialization function provides an easy function for initializing the API.

v To use the Initialization function you must import the IFS_COM_API type

library, as shown:

 <!-- METADATA TYPE = "typelib"

 FILE = "c:\winnt\system32\IFS_COM_API.tlb" -->

v To use the Initialization function, you must first create the PureEdge.DTK object,

as shown:

 Set DTK = CreateObject("PureEdge.DTK")

You can then call the function on this object.

IFSInitialize

Description

This function initializes the API. The parameters specify which version of the API

your application should bind with (see the Notes below for more details).

You must call this function before calling any of the other functions in the API.

Function

 Sub IFSInitialize(

 progName As String,

 progVer As String,

 apiVer As String)

Parameters

 Expression Type Description

progName String The name of the application calling IFSInitialize. This

name is used to identify the application within the .ini

file. It also sets the name that is returned by the XFDL

applicationName function.

progVer String The version number of the application calling

IFSInitialize. If the .ini file has an entry for this

version of the application, the application will bind to

the version of the API listed in that entry.

apiVer String The version number of the API the application should

use by default. If the .ini file does not contain an entry

for the specific application, the application will bind

to the API specified by this parameter.

Returns

Nothing if call is successful or throws an exception if an error occurs.

Notes

About Binding Your Applications to the API

© Copyright IBM Corp. 2003, 2006 117

When you initialize the API, the IFSInitialize function determines which version of

the API to use based on the parameters you pass it. This allows you to exercise a

great deal of control over which version of the API is used by your applications,

and prevents the problems normally associated with common DLL files (often

referred to as ″DLL hell″).

IFSInitialize uses a configuration file to determine which version of the API will

bind to any application. This allows multiple versions of the API to co-exist on

your computer, and ensures that your applications use the correct version of the

API.

The configuration file is called PureEdgeAPI.ini and is installed with the API. Refer

to the IBM Workplace Forms Server — API Installation and Setup Guide for the exact

location of the file.

Note: You should redistribute the PureEdgeAPI.ini file with any applications that

use the API. See the IBM Workplace Forms Server — API Installation and

Setup Guide for more information about redistributing applications.

The configuration file contains a section for each application that might call the

API, plus a default ″API″ section. Each section contains a list of version numbers in

the following format:

 <version of application> = <folder containing appropriate version of API>

For example, the configuration file might look like this:

 [API]

 5.1.0 = 51

 5.0.0 = 50

 [CustomApplication]

 1.1.0 = 51

 1.0.0 = 50

In this case, the folder indicated on the right hand side of each statement is part of

the relative path to the API, and assumes the API was installed in the default

folder. For example, under Windows ″50″ would resolve to:

 c:\WinNT\System32\PureEdge\50

You can also specify an absolute path by placing a drive letter before the path. For

example, ″c:\50″ would resolve to:

 c:\50\

When you initialize the API, you include three parameters in the initialization call:

v The name of your application (as it would appear in the configuration file).

v The version of your application.

v The version of the API that your application should bind to by default.

The initialization call will first check the configuration file to see if your

application is listed. For example, using the configuration file above, if you make

an initialization call for ″CustomApplication″ version ″1.1.0″, then the application

binds to the API in the ″51″ folder.

If your application is not listed in the configuration file, the initialization call uses

the default version of the API. For example, using the configuration file above, if

you declare ″5.1.0″ as the default API, then your application binds to the API in the

″51″ folder.

118

You can add your own entries to the configuration file before distributing it to

your customers, or you can rely on the default API entries.

Note: IFSInitialize was introduced for version 4.5.0 of the API. Binding does not

work in this manner for earlier versions of the API. Do not include earlier

versions of the API in the configuration file.

Example

In the example below, IFSInitialize initializes the API for the application called

aspApp.

 Function LoadForm(FileName)

 Dim DTK, XFDL, TempForm ’ objects

 ’ Get a DTK object and initialize the API

 Set DTK = CreateObject("PureEdge.DTK")

 DTK.IFSInitialize "aspApp", "1.0.0", "2.6.0"

 ’ Get an XFDL object and read the form from the supplied file

 Set XFDL = CreateObject("PureEdge.xfdl_XFDL")

 Set TempForm = XFDL.ReadForm(FileName, 0)

 ’ Return the form

 Set LoadForm = TempForm

 End Function

IFSInitializeWithLocale

Description

This function initializes the API. The parameters specify the default locale, and

which version of the API your application should bind with (see the Notes below

for more details).

You must call this function before calling any of the other functions in the API.

Function

 Sub IFSInitializeWithLocale(

 progName As String,

 progVer As String,

 apiVer As String

 theLocale As String)

Parameters

 Expression Type Description

progName String The name of the application calling

IFSInitializeWithLocale. This name is used to identify

the application within the .ini file. It also sets the

name that is returned by the XFDL applicationName

function.

The Initialization Functions 119

Expression Type Description

progVer String The version number of the application calling

IFSInitializeWithLocale. If the .ini file has an entry

for this version of the application, the application will

bind to the version of the API listed in that entry.

apiVer String The version number of the API the application should

use by default. If the .ini file does not contain an entry

for the specific application, the application will bind

to the API specified by this parameter.

theLocale String The default locale of the application.

Returns

Nothing if call is successful or throws an exception if an error occurs.

Notes

About Binding Your Applications to the API

When you initialize the API, the IFSInitializeWithLocale function determines

which version of the API to use based on the parameters you pass it. This allows

you to exercise a great deal of control over which version of the API is used by

your applications, and prevents the problems normally associated with common

DLL files (often referred to as ″DLL hell″).

IFSInitializeWithLocale uses a configuration file to determine which version of the

API will bind to any application. This allows multiple versions of the API to

co-exist on your computer, and ensures that your applications use the correct

version of the API.

The configuration file is called PureEdgeAPI.ini and is installed with the API. Refer

to the IBM Workplace Forms Server — API Installation and Setup Guide for the exact

location of the file.

Note: You should redistribute the PureEdgeAPI.ini file with any applications that

use the API. See the IBM Workplace Forms Server — API Installation and

Setup Guide for more information about redistributing applications.

The configuration file contains a section for each application that might call the

API, plus a default ″API″ section. Each section contains a list of version numbers in

the following format:

 <version of application> = <folder containing appropriate version of API>

For example, the configuration file might look like this:

 [API]

 2.6.1 = 70

 2.6.0 = 70

 [CustomApplication]

 1.1.0 = 70

 1.0.0 = 70

In this case, the folder indicated on the right hand side of each statement is part of

the relative path to the API, and assumes the API was installed in the default

folder. For example, under Windows “70” would resolve to:

120

C:\Program Files\IBM\Workplace Forms\Server\26\API\redist

 \msc32\PureEdge\26

You can also specify an absolute path by placing a drive letter before the path. For

example, “c:\70” would resolve to:

 c:\70\

When you initialize the API, you include three parameters in the initialization call:

v The name of your application (as it would appear in the configuration file).

v The version of your application.

v The version of the API that your application should bind to by default.

The initialization call will first check the configuration file to see if your

application is listed. For example, using the configuration file above, if you make

an initialization call for “CustomApplication” version “1.1.0”, then the application

binds to the API in the “70” folder.

If your application is not listed in the configuration file, the initialization call will

use the default version of the API. For example, using the configuration file above,

if you declare “2.6.1” as the default API, then your application binds to the API in

the “70” folder.

You can add your own entries to the configuration file before distributing it to

your customers, or you can rely on the default API entries.

Example

In the example below, IFSInitializeWithLocale initializes the API for the

application called aspApp.

 Function LoadForm(FileName)

 Dim DTK, XFDL, TempForm ’ objects

 ’ Get a DTK object and initialize the API

 Set DTK = CreateObject("PureEdge.DTK")

 DTK.IFSInitializeWithLocale "aspApp", "1.0.0",

 "2.6.0", "fr-FR"

 ’ Get an XFDL object and read the form from the supplied file

 Set XFDL = CreateObject("PureEdge.xfdl_XFDL")

 Set TempForm = XFDL.ReadForm(FileName, 0)

 ’ Return the form

 Set LoadForm = TempForm

 End Function

The Initialization Functions 121

122

The LocalizationManager Functions

The LocalizationManager functions control which language the API uses to report

errors.

v To use the LocalizationManager functions you must import the IFS_COM_API

type library, as shown:

 <!-- METADATA TYPE = "typelib"

 FILE = "c:\winnt\system32\IFS_COM_API.tlb" -->

v To use the LocalizationManager function, you must first create the

PureEdge.i18n_LocalizationManager object, as shown:

 Set theManager = CreateObject("PureEdge.i18n_LocalizationManager")

You can then call the function on this object.

GetCurrentThreadLocale

Description

This function returns which locale is in use for the current thread. This determines

what language the API uses when reporting errors. By default, the API uses the

default locale.

The API supports the following locales:

 Language Locale Locale Name

Chinese Simplified Han, China zh-Hans-CN

Simplified Han, Singapore zh-Hans-SG

Traditional Han, Hong Kong S.A.R., China zh-Hant-HK

Traditional Han, Taiwan zh-Hant-TW

Croatian Croatia hr-HT

Czech Czech Republic cs-CZ

Danish Denmark da-DK

Dutch Belgium nl-BE

The Netherlands nl-NL

English Australia en-AU

Belgium en-BE

Canada en-Ca

Hong Kong S.A.R., China en-HK

India en-IN

Ireland en-IE

New Zealand en-NZ

Philippines en-PH

Singapore en-SG

South Africa en-ZA

United Kingdom en-GB

United States en-US

© Copyright IBM Corp. 2003, 2006 123

Language Locale Locale Name

Finnish Finland fi-FI

French Belgium fr-BE

Canada fr-CA

France fr-FR

Luxembourg fr-LU

Switzerland fr-CH

German Austria de-AT

Germany de-DE

Luxembourg de-LU

Switzerland de-CH

Greek Greece el-GR

Hungarian Hungary hu-HU

Italian Italy it-IT

Switzerland it-CH

Japanese Japan ja-JP

Korean South Korea ko-KR

Norwegian Bokmål Norway nb-NO

Polish Poland pl-PL

Portuguese Brazil pt-BR

Portugal pt-PT

Romanian Romania ro-RO

Russian Russian ru-RU

Slovak Slovakia sk-SK

Slovene Slovenia sl_SI

Spanish Argentina es-AR

Bolivia es-BO

Chile es-CL

Colombia es-CO

Costa Rica es-CR

Dominican Republic es-DO

Ecuador es-EC

El Salvador es-SV

Guatemala es-GT

Honduras es-HN

Mexico es-MX

Nicaragua es-NI

Panama es-PA

Paraguay es-PY

Peru es-PE

Puerto Rico es-PR

Spain es-ES

124

Language Locale Locale Name

United States es-US

Uruguay es-UY

Venezuela es-VE

Swedish Sweden sv-SE

Turkish Turkey tr-TR

The locale name consists of two parts: the language code and the country code, as

shown

 <language code>_<COUNTRY CODE>

For example, to specify the Japanese locale, you would type:

 jp_JP

If you need a more specific locale, you may add additional codes after the country

code. For example, to indicate French in France with a Euro dialect, you would

type:

 fr_FR_EU

Function

 Sub GetCurrentThreadLocale()

Parameters

There are no parameters for this function.

Returns

Returns nothing if the call is successful, or throws an exception if an error occurs.

Example

The following function calls GetCurrentThreadLocale to get the locale.

 Function GetLanguage()

 Dim theManager ’ object

 Set theManager = CreateObject("PureEdge.i18n_LocalizationManager")

 GetLanguage=theManager.GetCurrentThreadLocale

 End Function

GetDefaultLocale

Description

This function returns the default locale the API uses when reporting errors.

The API supports the following locales:

 Language Locale Locale Name

Chinese Simplified Han, China zh-Hans-CN

Simplified Han, Singapore zh-Hans-SG

The LocalizationManager Functions 125

Language Locale Locale Name

Traditional Han, Hong Kong S.A.R., China zh-Hant-HK

Traditional Han, Taiwan zh-Hant-TW

Croatian Croatia hr-HT

Czech Czech Republic cs-CZ

Danish Denmark da-DK

Dutch Belgium nl-BE

The Netherlands nl-NL

English Australia en-AU

Belgium en-BE

Canada en-Ca

Hong Kong S.A.R., China en-HK

India en-IN

Ireland en-IE

New Zealand en-NZ

Philippines en-PH

Singapore en-SG

South Africa en-ZA

United Kingdom en-GB

United States en-US

Finnish Finland fi-FI

French Belgium fr-BE

Canada fr-CA

France fr-FR

Luxembourg fr-LU

Switzerland fr-CH

German Austria de-AT

Germany de-DE

Luxembourg de-LU

Switzerland de-CH

Greek Greece el-GR

Hungarian Hungary hu-HU

Italian Italy it-IT

Switzerland it-CH

Japanese Japan ja-JP

Korean South Korea ko-KR

Norwegian Bokmål Norway nb-NO

Polish Poland pl-PL

Portuguese Brazil pt-BR

Portugal pt-PT

Romanian Romania ro-RO

Russian Russian ru-RU

126

Language Locale Locale Name

Slovak Slovakia sk-SK

Slovene Slovenia sl_SI

Spanish Argentina es-AR

Bolivia es-BO

Chile es-CL

Colombia es-CO

Costa Rica es-CR

Dominican Republic es-DO

Ecuador es-EC

El Salvador es-SV

Guatemala es-GT

Honduras es-HN

Mexico es-MX

Nicaragua es-NI

Panama es-PA

Paraguay es-PY

Peru es-PE

Puerto Rico es-PR

Spain es-ES

United States es-US

Uruguay es-UY

Venezuela es-VE

Swedish Sweden sv-SE

Turkish Turkey tr-TR

The locale name consists of two parts: the language code and the country code, as

shown

 <language code>_<COUNTRY CODE>

For example, to specify the Japanese locale, you would type:

 jp_JP

If you need a more specific locale, you may add additional codes after the country

code. For example, to indicate French in France with a Euro dialect, you would

type:

 fr_FR_EU

Function

 Sub GetDefaultLocale()

Parameters

There are no parameters for this function.

The LocalizationManager Functions 127

Returns

Returns nothing if the call is successful, or throws an exception if an error occurs.

Example

The following function calls GetDefaultLocale to get the locale.

 Function GetLanguage()

 Dim theManager ’ object

 Set theManager = CreateObject("PureEdge.i18n_LocalizationManager")

 GetLanguage=theManager.GetDefaultLocale

 End Function

SetCurrentThreadLocale

Description

This function sets which locale the API uses when reporting errors. By default, the

API uses the application’s default locale.

The API supports the following locales:

 Language Locale Locale Name

Chinese Simplified Han, China zh-Hans-CN

Simplified Han, Singapore zh-Hans-SG

Traditional Han, Hong Kong S.A.R., China zh-Hant-HK

Traditional Han, Taiwan zh-Hant-TW

Croatian Croatia hr-HT

Czech Czech Republic cs-CZ

Danish Denmark da-DK

Dutch Belgium nl-BE

The Netherlands nl-NL

English Australia en-AU

Belgium en-BE

Canada en-Ca

Hong Kong S.A.R., China en-HK

India en-IN

Ireland en-IE

New Zealand en-NZ

Philippines en-PH

Singapore en-SG

South Africa en-ZA

United Kingdom en-GB

United States en-US

Finnish Finland fi-FI

French Belgium fr-BE

128

Language Locale Locale Name

Canada fr-CA

France fr-FR

Luxembourg fr-LU

Switzerland fr-CH

German Austria de-AT

Germany de-DE

Luxembourg de-LU

Switzerland de-CH

Greek Greece el-GR

Hungarian Hungary hu-HU

Italian Italy it-IT

Switzerland it-CH

Japanese Japan ja-JP

Korean South Korea ko-KR

Norwegian Bokmål Norway nb-NO

Polish Poland pl-PL

Portuguese Brazil pt-BR

Portugal pt-PT

Romanian Romania ro-RO

Russian Russian ru-RU

Slovak Slovakia sk-SK

Slovene Slovenia sl_SI

Spanish Argentina es-AR

Bolivia es-BO

Chile es-CL

Colombia es-CO

Costa Rica es-CR

Dominican Republic es-DO

Ecuador es-EC

El Salvador es-SV

Guatemala es-GT

Honduras es-HN

Mexico es-MX

Nicaragua es-NI

Panama es-PA

Paraguay es-PY

Peru es-PE

Puerto Rico es-PR

Spain es-ES

United States es-US

Uruguay es-UY

The LocalizationManager Functions 129

Language Locale Locale Name

Venezuela es-VE

Swedish Sweden sv-SE

Turkish Turkey tr-TR

The locale name consists of two parts: the language code and the country code, as

shown

 <language code>_<COUNTRY CODE>

For example, to specify the Japanese locale, you would type:

 jp_JP

If you need a more specific locale, you may add additional codes after the country

code. For example, to indicate French in France with a Euro dialect, you would

type:

 fr_FR_EU

Function

 Sub SetCurrentThreadLocale(

 theLocale As String)

Parameters

 Expression Type Description

theLocale String The name of the locale.

Returns

Returns nothing if the call is successful, or throws an exception if an error occurs.

Example

The following function checks the language string to determine which locale to use.

It then calls SetCurrentThreadLocale to set the appropriate locale.

 Sub SetCurrentLanguage(Language)

 Dim theManager ’ object

 Set theManager = CreateObject("PureEdge.i18n_LocalizationManager")

 If Language = "English" Then

 theManager.SetCurrentThreadLocale "en_US"

 Else

 theManager.SetCurrentThreadLocale "fr_CA"

 End If

 End Sub

SetDefaultLocale

Description

This function sets the default locale the API uses when reporting errors, if no other

locale is specified. By default, the API uses the locale specified by the operating

system.

130

The API supports the following locales:

 Language Locale Locale Name

Chinese Simplified Han, China zh-Hans-CN

Simplified Han, Singapore zh-Hans-SG

Traditional Han, Hong Kong S.A.R., China zh-Hant-HK

Traditional Han, Taiwan zh-Hant-TW

Croatian Croatia hr-HT

Czech Czech Republic cs-CZ

Danish Denmark da-DK

Dutch Belgium nl-BE

The Netherlands nl-NL

English Australia en-AU

Belgium en-BE

Canada en-Ca

Hong Kong S.A.R., China en-HK

India en-IN

Ireland en-IE

New Zealand en-NZ

Philippines en-PH

Singapore en-SG

South Africa en-ZA

United Kingdom en-GB

United States en-US

Finnish Finland fi-FI

French Belgium fr-BE

Canada fr-CA

France fr-FR

Luxembourg fr-LU

Switzerland fr-CH

German Austria de-AT

Germany de-DE

Luxembourg de-LU

Switzerland de-CH

Greek Greece el-GR

Hungarian Hungary hu-HU

Italian Italy it-IT

Switzerland it-CH

Japanese Japan ja-JP

Korean South Korea ko-KR

Norwegian Bokmål Norway nb-NO

Polish Poland pl-PL

Portuguese Brazil pt-BR

The LocalizationManager Functions 131

Language Locale Locale Name

Portugal pt-PT

Romanian Romania ro-RO

Russian Russian ru-RU

Slovak Slovakia sk-SK

Slovene Slovenia sl_SI

Spanish Argentina es-AR

Bolivia es-BO

Chile es-CL

Colombia es-CO

Costa Rica es-CR

Dominican Republic es-DO

Ecuador es-EC

El Salvador es-SV

Guatemala es-GT

Honduras es-HN

Mexico es-MX

Nicaragua es-NI

Panama es-PA

Paraguay es-PY

Peru es-PE

Puerto Rico es-PR

Spain es-ES

United States es-US

Uruguay es-UY

Venezuela es-VE

Swedish Sweden sv-SE

Turkish Turkey tr-TR

The locale name consists of two parts: the language code and the country code, as

shown

 <language code>_<COUNTRY CODE>

For example, to specify the Japanese locale, you would type:

 jp_JP

If you need a more specific locale, you may add additional codes after the country

code. For example, to indicate French in France with a Euro dialect, you would

type:

 fr_FR_EU

Function

 Sub SetDefaultLocale(

 theLocale As String)

132

Parameters

 Expression Type Description

theLocale String The name of the locale.

Returns

Returns nothing if the call is successful, or throws an exception if an error occurs.

Example

The following function checks the language string to determine which locale to use.

It then calls SetDefaultLocale to set the appropriate locale.

 Sub SetDefaultLanguage(Language)

 Dim theManager ’ object

 Set theManager = CreateObject("PureEdge.i18n_LocalizationManager")

 If Language = "English" Then

 theManager.SetDefaultLocale "en_US"

 Else

 theManager.SetDefaultLocale "fr_CA"

 End If

 End Sub

The LocalizationManager Functions 133

134

The SecurityManager Functions

The SecurityManager functions allow you to retrieve the Security Manager and

obtain a hashing algorithm.

v To use the SecurityManager function you must import the IFS_COM_API type

library, as shown:

 <!-- METADATA TYPE = "typelib"

 FILE = "c:\winnt\system32\IFS_COM_API.tlb" -->

v To use the SecurityManager function, you must first create the

PureEdge.security_SecurityManager object, as shown:

 Set SecurityManager = _

 CreateObject("PureEdge.security_SecurityManager")

You can then call the function on this object.

LookupHashAlgorithm

Description

This function retrieves a hash object. Use the hash object to hash shared secrets for

the ValidateHMACWithHashedSecret function.

Function

 Function LookupHashAlgorithm(

 algorithmName As String

) As IHash

Parameters

 Expression Type Description

algorithmName String The name of the hash algorithm you want

to retrieve. The available hash algorithms

are sha1 and md5.

Returns

A hash object, or throws an exception if an error occurs.

Example

The following function validates an HMAC signature using a hashed secret. First,

the function uses DereferenceEx and GetLiteralByRefEx to locate the signature

item in a form. It then uses GetEngineCertificateList and GetDataByPath to locate

a server signing certificate. Next, it uses GetSignature and GetDataByPath to get

the signer’s common name and LookupHashAlgorith and Hash to create a hashed

secret. Finally, it uses ValidateHMACWithHashedSecret to determine if the

HMAC signature is valid, and returns ″Valid″ or ″Invalid″, as appropriate.

Note that this example also relies on a second function called StringToBinary. This

function converts a string to a single-byte binary array, which is required for the

hash function. This prevents COM from converting the string to a double-byte

array before hashing it, which would produce an incorrect result.

© Copyright IBM Corp. 2003, 2006 135

Function ValidateHMACSigHashed(Form)

 Dim SigObject, XFDL, HashObject, SecurityManager ’ objects

 Dim TheCerts ’ CertificateList

 Dim Cert, SigningCert ’ ICertificate

 Dim SignerName, SharedSecret, HashedSecret, CommonName, _

 SigItemRef ’ Strings

 Dim Validation ’ Integer

 Dim TempNode, SigNode ’ IFormNodeP

 Set TempNode = Form

 ’ Get the SignatureButton node

 Set TempNode = Form.DereferenceEx(vbNullString, _

 "PAGE1.HMACSignatureButton", 0, UFL_ITEM_REFERENCE, Nothing)

 ’ Get the name of the signature item

 SigItemRef = TempNode.GetLiteralByRefEx(vbNullString, "signature", _

 0, vbNullString, Nothing)

 ’ Get the signature item node

 Set SigNode = TempNode.DereferenceEx(vbNullString, SigItemRef, 0, _

 UFL_ITEM_REFERENCE, Nothing)

 ’ Get available server certificates for Generic RSA signing

 Set XFDL = CreateObject("PureEdge.xfdl_XFDL")

 Set TheCerts = XFDL.GetEngineCertificateList("Generic RSA", 1)

 ’ vbNull

 ’ Locate the certificate that has a common name of "User1-CP.02.01".

 ’ This is the certificate we will use when verifying the signature.

 For Each Cert in TheCerts

 CommonName = Cert.GetDataByPath("SigningCert: Subject: CN", _

 False, 1) ’ vbNull

 If CommonName = "User1-CP.02.01" Then

 Set SigningCert = Cert

 End If

 Next

 ’ Get the signature object from the signature node

 Set SigObject = SigNode.GetSignature

 ’ Get the signer’s name from the signature object

 SignerName = SigObject.GetDataByPath("SigningCert: Subject: CN", _

 False, 1) ’ vbNull

 ’ Include code that matches the signer’s identity to a shared secret

 ’ that is hashed, and sets SharedSecret to match. In most cases, this

 ’ would be a database lookup. For the purposes of this example, we will

 ’ use the Hash function to assign a hashed value to HashedSecret.

 ’ Get the Security Manager object

 Set SecurityManager = _

 CreateObject("PureEdge.security_SecurityManager")

 ’ Get the Hash object

 Set HashObject = SecurityManager.LookupHashAlgorithm("sha1")

 ’ Set the Hashed secret. First convert the secret to a single-byte

 ’ binary array, then hash the secret.

136

SharedSecret = StringToBinary("secret")

 HashedSecret = HashObject.Hash(SharedSecret)

 ’ Validate the signature

 Validation = SigNode.ValidateHMACWithHashedSecret(HashedSecret, _

 SigningCert, 1) ’ vbNull

 ’ Check the validation code and return either "Valid" or "Invalid"

 If Validation = UFL_DS_OK Then

 ValidateHMACSigHashed = "Valid"

 Else

 ValidateHMACSigHashed = "Invalid"

 End If

 End Function

 ’ The following function is required to convert a string to a single-byte ’

 ’ binary array before hashing that string. This prevents COM from converting

 ’ the string to a multi-byte format, which would produce an incorrect hash.

 Function StringToBinary(String)

 Dim Counter, Binary

 For Counter = 1 to len(String)

 Binary = Binary & ChrB(Asc(Mid(String, Counter, 1)))

 Next

 StringToBinary = Binary

 End Function

The SecurityManager Functions 137

138

The Signature Functions

The Signature functions allow you to work with signature objects.

v To use the Initialization functions you must import the IFS_COM_API type

library, as shown:

 <!-- METADATA TYPE = "typelib"

 FILE = "c:\winnt\system32\IFS_COM_API.tlb" -->

GetDataByPath

Description

This function retrieves a piece of data from a signature object.

Function

 Function GetDataByPath(

 thePath As String,

 tagData As Boolean,

 encoded As Boolean

) As String

Parameters

 Expression Type Description

thePath String The path to the data you want to retrieve. See the

Notes section below for more information on data

paths.

tagData Boolean True if the path should be prepended to the data, or

False if not. If the path is prepended, an equals sign

(=) is used as a separator.

For example, suppose the path is ″Signing Cert:

Issuer: CN″ and the data is ″IBM″. If True, the path

will be prepended, producing ″CN=IBM″. If False,

the path will not be prepended, and the result will

be ″IBM″.

encoded Boolean True if the return data is base 64 encoded, or False

if not. The function returns binary data in base 64

encoding.

Notes

About Data Paths

Data paths describe the location of information within a signature, just like file

paths describe the location of files on a disk. You describe the path with a series of

colon separated tags. Each tag represents either a piece of data, or an object that

contains further pieces of data (just like directories can contain files and

subdirectories).

For example, to retrieve the version of a signature, you would use the following

data path:

© Copyright IBM Corp. 2003, 2006 139

Demographics

However, to retrieve the signer’s common name, you first need to locate the

signing certificate, then the subject, then finally the common name within the

subject, as follows:

 SigningCert: Subject: CN

Some tags may contain more than one piece of information. For example, the

issuer’s organizational unit may contain a number of entries. You can either

retrieve all of the entries as a comma separated list, or you can specify a specific

entry by using a zero-indexed element number.

For example, the following path would retrieve a comma separated list:

 SigningCert: Issuer: OU

Adding an element number of 0 would retrieve the first organizational unit in the

list, as shown:

 SingingCert: Issuer: OU: 0

Signature Tags

The following table lists the tags available in a signature object. Note that

Clickwrap and HMAC Clickwrap signatures have additional tags (detailed in

Clickwrap Signature Tags and HMAC Clickwrap Tags).

 Tag Description

Engine The security engine used to create the signature. This is an

object that contains further information, as detailed in

Security Engine Tags.

SigningCert The certificate used to create the signature. This is an object

that contains further information, as detailed in Certificate

Tags. Note that this object does not exist for Clickwrap or

HMAC Clickwrap signatures.

HashAlg The hash algorithm used to create the signature.

CreateDate The date on which the signature was created.

Demographics A string describing the signature.

LastVerificationStatus A short representing the verification status of the signature.

This is updated whenever the signature is verified. See

“VerifySignature” on page 107 for a complete list of the

possible values.

Clickwrap Signature Tags

The following table lists additional tags available in both Clickwrap and HMAC

Clickwrap signatures. Note that HMAC Clickwrap signatures have further tags

(detailed in HMAC Clickwrap Tags).

 Tag Description

TitleText The text for the Windows title bar of the signature

dialog box.

MainPrompt The text for the title portion of the signature dialog box.

MainText The text for the text portion of the signature dialog box.

140

Tag Description

Question1Text The first question in the signature dialog box.

Answer1Text The signer’s answer.

Question2Text The second question in the signature dialog box.

Answer2Text The signer’s answer.

Question3Text The third question in the signature dialog box.

Answer3Text The signer’s answer.

Question4Text The fourth question in the signature dialog box.

Answer4Text The signer’s answer.

Question5Text The fifth question in the signature dialog box.

Answer5Text The signer’s answer.

EchoPrompt Text that the signer must echo to create a signature.

EchoText The signer’s response to the echo text.

ButtonPrompt The text that provides instructions for the Clickwrap

signature buttons.

AcceptText The text for the accept signature button.

RejectText The text for the reject signature button.

Certificate Tags

The following table lists the tags available in a certificate object. Note that

Clickwrap and HMAC Clickwrap signatures do not contain these tags.

 Tag Description

Subject The subject’s distinguished name. This is an object that

contains further information, as detailed in

Distinguished Name Tags.

Issuer The issuer’s distinguished name. This is an object that

contains further information, as detailed in

Distinguished Name Tags.

IssuerCert The issuer’s certificate. This is an object that contains the

complete list of certificate tags.

Engine The security engine that generated the certificate. This is

an object that contains further information, as detailed

in Security Engine Tags.

Version The certificate version.

BeginDate The date on which the certificate became valid.

EndDate The date on which the certificate expires.

Serial The certificate’s serial number.

SignatureAlg The signature algorithm used to sign the certificate.

PublicKey The certificate’s public key.

FriendlyName The certificate’s friendly name.

Distinguished Name Tags

The Signature Functions 141

The following table lists the tags available in a distinguished name object. Note

that Clickwrap and HMAC Clickwrap signatures do not contain these tags.

 Tag Description

CN The common name.

E The e-mail address.

T The title.

O The organization.

OU The organizational unit.

C The country.

L The locality.

ST The state.

All The entire distinguished name.

HMAC Clickwrap Tags

The following table lists the tags available in HMAC Clickwrap signature. Note

that these tags are in addition to both the regular Signature Tags and the

Clickwrap Signature Tags.

 Tag Description

HMACSigner A string indicating which answers store the signer’s ID.

HMACSecret A string indicating which answers store the signer’s

secret.

Notarization The notarizing signatures. This is one or more signature

objects that contain further information, as detailed in

Signature Tags . There can be any number of notarizing

signatures. Use an element number to retrieve a specific

signature. For example, to get the first notarizing

signature use:

 Notarization: 0

If no element number is provided, the data will be

retrieved from the first valid notarizing signature found.

If no valid notarizing signatures are found, the function

will return null.

Security Engine Tags

The following table lists the tags available in the security engine object:

 Tag Description

Name The name of the security engine used by the server.

Help The help text for the security engine.

HashAlg A hash algorithm supported by the security engine.

Returns

A string containing the certificate data (null if no data is found), or throws an

exception if an error occurs.

142

Example

The following function uses DereferenceEx and GetLiteralByRefEx to locate the

signature item in a form. It then uses GetEngineCertificateList and

GetDataByPath to locate a server signing certificate. Next, it uses GetSignature

and GetDataByPath to get the signer’s common name. Finally, it uses

ValidateHMACWithSecret to determine if the HMAC signature is valid, and

returns ″Valid″ or ″Invalid″, as appropriate.

 Function ValidateHMACSig(Form)

 Dim SigObject, XFDL ’ Objects

 Dim TheCerts ’ CertificateList

 Dim Cert, SigningCert ’ ICertificate

 Dim SignerName, SharedSecret, CommonName, SigItemRef ’ Strings

 Dim Validation ’ Integer

 Dim TempNode, SigNode ’ IFormNodeP

 Set TempNode = Form

 ’ Get the SignatureButton node

 Set TempNode = Form.DereferenceEx(vbNullString, _

 "PAGE1.HMACSignatureButton", 0, UFL_ITEM_REFERENCE, Nothing)

 ’ Get the name of the signature item

 SigItemRef = TempNode.GetLiteralByRefEx(vbNullString, "signature", _

 0, vbNullString, Nothing)

 ’ Get the signature item node

 Set SigNode = TempNode.DereferenceEx(vbNullString, SigItemRef, 0, _

 UFL_ITEM_REFERENCE, Nothing)

 ’ Get available server certificates for Generic RSA signing

 Set XFDL = CreateObject("PureEdge.xfdl_XFDL")

 Set TheCerts = XFDL.GetEngineCertificateList("Generic RSA", 1)

 ’ vbNull

 ’ Locate the certificate that has a common name of "User1-CP.02.01".

 ’ This is the certificate we will use when verifying the signature.

 For Each Cert in TheCerts

 CommonName = Cert.GetDataByPath("SigningCert: Subject: CN", _

 False, 1) ’ vbNull

 If CommonName = "User1-CP.02.01" Then

 Set SigningCert = Cert

 End If

 Next

 ’ Get the signature object from the signature node

 Set SigObject = SigNode.GetSignature

 ’ Get the signer’s name from the signature object

 SignerName = SigObject.GetDataByPath("SigningCert: Subject: CN", _

 False, 1) ’ vbNull

 ’ Include code that matches the signer’s identity to a shared secret,

 ’ and sets SharedSecret to match. In most cases, this would be a

 ’ database lookup. For the purposes of this example, we will simply

 ’ assign a value to SharedSecret.

The Signature Functions 143

SharedSecret = "secret"

 ’ Validate the signature

 Validation = SigNode.ValidateHMACWithSecret(SharedSecret, _

 SigningCert, 1) ’ vbNull

 ’ Check the validation code and return either "Valid" or "Invalid"

 If Validation = UFL_DS_OK Then

 ValidateHMACSig = "Valid"

 Else

 ValidateHMACSig = "Invalid"

 End If

 End Function

GetSigningCert

Description

This function retrieves the signing certificate from a signature object.

Function

 Function GetSigningCert() As Certificate

Parameters

There are no parameters for this function.

Returns

The signing certificate.

Example

The following example gets the signing certificate from a signature object, then

iterates through the certificate issuers until it reaches the end of the chain. During

the iteration, each certificate is passed to a function that processes them.

 Sub processCertChain(TheSig)

 Dim TheCert, IssuerCert ’ Variant

 ’ Get the signing certificate from the signature

 Set TheCert = TheSig.GetSigningCert

 ’ Loop through the certificate chain, passing each certificate to the

 ’ ProcessCert function. The loop ends when the issuer certificate is

 ’ Nothing.

 Do While (Not(TheCert Is Nothing))

 ’ Pass the certificate to the ProcessCert function. Note that

 ’ this is not an API function, but rather a function you would

 ’ write to process the certificate in some way.

 ProcessCert(TheCert)

 ’ Get the issuer certificate from the TheCert

 Set IssuerCert = TheCert.GetIssuer(1) ’ vbNull

144

’ Assign theCert to equal the issuerCert for next iteration of the

 ’ loop.

 Set TheCert = IssuerCert

 Loop

 End Sub

The Signature Functions 145

146

The XFDL Functions

The XFDL functions create the root nodes of forms and handle administrative tasks

related to the Form Library.

v To use the Initialization functions you must import the IFS_COM_API type

library, as shown:

 <!-- METADATA TYPE = "typelib"

 FILE = "c:\winnt\system32\IFS_COM_API.tlb" -->

v To use the XFDL functions, you must first create the PureEdge.xfdl_XFDL object,

as shown:

 Set XFDL = CreateObject("PureEdge.xfdl_XFDL")

You can then call the function on this object.

Create

Description

This function creates a new IFormNodeP and attaches it to the form hierarchy at

the indicated location. Once created, the type and identifier of a IFormNodeP

cannot be changed.

Note that you can also use SetLiteralByRefEx to create an IFormNodeP at the

option level and below. Using SetLiteralByRefEx is often easier and faster than

using Create.

Function

 Function Create(

 aNode As IFormNodeP,

 where As Long,

 theType As String,

 theLiteral As String,

 theFormula As String,

 theIdentifier As String

) As IFormNodeP

Parameters

 Expression Type Description

aNode IFormNodeP The new IFormNodeP is placed in the form hierarchy

in relation to this node. If null, this creates a new

IFormNodeP hierarchy (a new form)

© Copyright IBM Corp. 2003, 2006 147

Expression Type Description

where Long A constant that describes the location, in relation to the

parameter aNode, in which the new node should be

placed:

UFL_APPEND_CHILD — adds the new node as the

last child of aNode.

UFL_AFTER_SIBLING — adds the new node as a

sibling of aNode, placing it immediately after that node.

UFL_BEFORE_SIBLING — adds the new node as a

sibling of aNode, placing it immediately before that

node.

Note: If the parameter aNode is null, then this

parameter should be set to 0.

theType String The type to assign to the IFormNodeP being created.

This is only necessary for page and item nodes. Use

null for all other nodes. The type cannot be changed

after the node has been created.

If you are creating a non-XFDL node, you must also

include the namespace that the node should belong to,

as shown:

 <namespace prefix>:<type>

For example:

 custom:myItem

If you do not provide a namespace, the function will

assign the default namespace for the form.

theLiteral String The literal to assign to this IFormNodeP. null is valid.

theFormula String The formula to assign to this IFormNodeP. null is

valid.

theIdentifier String The identifier to assign to this IFormNodeP. The

identifier cannot be changed after the node has been

created. null is valid.

If you are creating an option or argument level node,

this must also include the namespace the node should

belong to. Use the following format:

 <namespace prefix>:<type>

For example:

 custom:myOption

If you do not provide a namespace, the function will

assign the default namespace for the form.

Returns

The new IFormNodeP or throws an exception if an error occurs.

148

Example

The following example adds a label to a form. A node is passed into the function,

which then uses GetLiteralByRefEx to read the value of a field. The function then

uses DereferenceEx to locate the field node, and creates a label node as a sibling

using Create. Finally, the function creates a value for the new label node using

SetLiteralByRef.

 Sub AddLabel(Form)

 Dim TempNode, XFDL ’ objects

 Dim Name ’ strings

 Set TempNode = Form

 ’ Get the value of the NameField.value option node

 Name = TempNode.GetLiteralByRefEx(vbNullString, _

 "PAGE1.NameField.value", 0, vbNullString, Nothing)

 ’ Locate the NameField item node in the first page of the form

 Set TempNode = TempNode.DereferenceEx(vbNullString, _

 "PAGE1.NameField", 0, UFL_ITEM_REFERENCE, Nothing)

 ’ Get an XFDL object

 Set XFDL = CreateObject("PureEdge.xfdl_XFDL")

 ’ Create a label. This label is created as a sibling of the NameField,

 ’ and is named NameLabel.

 Set TempNode = XFDL.Create(TempNode, UFL_AFTER_SIBLING, "label", _

 vbNullString, vbNullString, "NameLabel")

 ’ Create a value option for the label. This option is assigned the

 ’ value of Name (as read from the field)

 TempNode.SetLiteralByRefEx vbNullString, "value", 0, vbNullString, _

 Nothing, Name

 End Sub

GetEngineCertificateList

Description

This function locates all available certificates for a particular signing engine.

Function

 Function GetEngineCertificateList(

 engineName As String,

 theStatus As Long

) As CertificateList

Parameters

 Expression Type Description

engineName String The name of the signing engine. Valid signing

engines include: Generic RSA, CryptoAPI,

Netscape, and Entrust. (Note that Generic RSA

is the union of CryptoAPI and Netscape.)

The XFDL Functions 149

Expression Type Description

theStatus Long This is a status flag that reports whether the

operation was successful. Possible values are:

SUSTATUS_OK — the operation was

successful.

SUSTATUS_CANCELLED — the operation

was cancelled by the user.

SUSTATUS_INPUT_REQUIRED — the

operation required user input, but could not

receive it (for example, it was run on a server

with no user).

Returns

A collection containing the list of certificates objects.

Example

The following function uses DereferenceEx and GetLiteralByRefEx to locate the

signature item in a form. It then uses GetEngineCertificateList and

GetDataByPath to locate a server signing certificate. Next, it uses GetSignature

and GetDataByPath to get the signer’s common name. Finally, it uses

ValidateHMACWithSecret to determine if the HMAC signature is valid, and

returns “Valid” or “Invalid”, as appropriate.

 Function ValidateHMACSig(Form)

 Dim SigObject, XFDL ’ Objects

 Dim TheCerts ’ CertificateList

 Dim Cert, SigningCert ’ ICertificate

 Dim SignerName, SharedSecret, CommonName, SigItemRef ’ Strings

 Dim Validation ’ Integer

 Dim TempNode, SigNode ’ IFormNodeP

 Set TempNode = Form

 ’ Get the SignatureButton node

 Set TempNode = Form.DereferenceEx(vbNullString, _

 "PAGE1.HMACSignatureButton", 0, UFL_ITEM_REFERENCE, Nothing)

 ’ Get the name of the signature item

 SigItemRef = TempNode.GetLiteralByRefEx(vbNullString, "signature", _

 0, vbNullString, Nothing)

 ’ Get the signature item node

 Set SigNode = TempNode.DereferenceEx(vbNullString, SigItemRef, 0, _

 UFL_ITEM_REFERENCE, Nothing)

 ’ Get available server certificates for Generic RSA signing

 Set XFDL = CreateObject("PureEdge.xfdl_XFDL")

 Set TheCerts = XFDL.GetEngineCertificateList("Generic RSA", 1)

 ’ vbNull

 ’ Locate the certificate that has a common name of "User1-CP.02.01".

 ’ This is the certificate we will use when verifying the signature.

150

For Each Cert in TheCerts

 CommonName = Cert.GetDataByPath("SigningCert: Subject: CN", _

 False, 1) ’ vbNull

 If CommonName = "User1-CP.02.01" Then

 Set SigningCert = Cert

 End If

 Next

 ’ Get the signature object from the signature node

 Set SigObject = SigNode.GetSignature

 ’ Get the signer’s name from the signature object

 SignerName = SigObject.GetDataByPath("SigningCert: Subject: CN", _

 False, 1) ’ vbNull

 ’ Include code that matches the signer’s identity to a shared secret,

 ’ and sets SharedSecret to match. In most cases, this would be a

 ’ database lookup. For the purposes of this example, we will simply

 ’ assign a value to SharedSecret.

 SharedSecret = "secret"

 ’ Validate the signature

 Validation = SigNode.ValidateHMACWithSecret(SharedSecret, _

 SigningCert, 1) ’ vbNull

 ’ Check the validation code and return either "Valid" or "Invalid"

 If Validation = UFL_DS_OK Then

 ValidateHMACSig = "Valid"

 Else

 ValidateHMACSig = "Invalid"

 End If

 End Function

IsDigitalSignaturesAvailable

Description

This function determines whether digital signatures are available on the current

computer.

Function

 Function IsDigitalSignaturesAvailable() As Boolean

Parameters

There are no parameters for this function.

Returns

True if digital signatures are available on this computer; otherwise, False. On error,

the function throws an exception.

The XFDL Functions 151

Example

The following function calls IsDigitalSignaturesAvailable to deterimine whether

the digital signature engine is available. If so, it returns ″Available″; otherwise, it

returns ″Not Available″.

 Function SigsAvailable()

 Dim XFDLObject ’ Object

 Dim Available ’ Boolean

 ’ Get the XFDL object.

 Set XFDLObject = CreateObject("PureEdge.xfdl_XFDL")

 ’ Check to see if the engine is available.

 Available = XFDLObject.IsDigitalSignaturesAvailable

 ’ Return the appropriate response.

 If Available = True Then

 SigsAvailable = "Available"

 Else

 SigsAvailable = "Not Available"

 End If

 End Function

ReadForm

Description

This function will read a form into memory from a specified file .

Function

 Function ReadForm(

 theFilePath As String,

 flags As Long

) As IFormNodeP

Parameters

 Expression Type Description

theFilePath String The path to the source file on the local disk.

152

Expression Type Description

flags Long The following flags cause special behaviors. If

using multiple flags, combine them using a

bitwise OR. For example:

 UFL_AUTOCOMPUTE_OFF |

 UFL_AUTOCREATE_FORMATS_OFF

0 — no special behavior.

UFL_AUTOCOMPUTE_OFF — Reads the form

into memory, but disables the compute system so

that no computes are evaluated.

UFL_AUTOCREATE_CONTROLLED_OFF —

Reads the form into memory, but disables the

creation of all options that are maintained only in

memory (for example, itemnext, itemprevious,

pagenext, pageprevious, and so on).

UFL_AUTOCREATE_FORMATS_OFF — Reads

the form into memory, but disables the evaluation

of all format options.

UFL_SERVER_SPEED_FLAGS — Turns off the

following features: computes, automatic

formatting, duplicate sid detection, the event

model, and relative page and item tags (for

example, itemprevious, itemnext, and so on). This

setting significantly improves server processing

times.

UFL_XFORMS_INITIALIZE_ONLY — Turns off

the following features: controlled item

construction, UI connection to the XForms model,

action handling set up, and the

rebuild/recalculate/revalidate/refresh sequence

after instance replacements.

Returns

Returns an IFormNodeP that is the root node of the form, or throws an exception

if an error occurs.

Notes

Duplicate Scope IDs

If a form contains duplicate scope IDs (for example, two items on the same page

with the same SID), ReadForm will fail to read the form and will return an error.

This enforces correct XFDL syntax, and eliminates certain security risks that exist

when duplicate scope IDs appear in signed forms.

Digital Signatures

When a form containing one or more digital signatures is read, the signatures will

be verified. The result of the verification is stored in a flag that can be checked by

calling GetSignatureVerificationStatus.

The XFDL Functions 153

Note that this flag is only set by ReadForm, and its value will not be adjusted by

changes made to the form after it has been read. This means that calls such as

SetLiteralEx may actually break a signature (by changing the value of a signed

item), but that this will not adjust the flags value. To verify a signature after

changes have been made to a form, it is best to use VerifyAllSignatures.

Note that when a form is signed, all signed computes are frozen at their start value

(regardless of whether the compute system is disabled).

Server-Side Processing

Using the UFL_SERVER_SPEED_FLAGS setting significantly improves

performance during server-side processing. We strongly recommend you use this

flag if you do not require computes to update while processing the form.

Example

In the following example, the function uses ReadForm to load a form into memory

and return the root node of the form.

 Function LoadForm(FileName)

 Dim DTK, XFDL, TempForm ’ objects

 ’ Get a DTK object and initialize the API

 Set DTK = CreateObject("PureEdge.DTK")

 DTK.IFSInitialize "aspApp", "1.0.0", "6.5.0"

 ’ Get an XFDL object and read the form from the supplied file

 Set XFDL = CreateObject("PureEdge.xfdl_XFDL")

 Set TempForm = XFDL.ReadForm(FileName, 0)

 ’ Return the form

 Set LoadForm = TempForm

 End Function

ReadFormFromASPRequest

Description

This function will read a form into memory from the ASP request object.

Function

 Function ReadFormFromASPRequest(

 flags As Long

) As IFormNodeP

154

Parameters

 Expression Type Description

flags Long The following flags cause special behaviors. If using

multiple flags, combine them using a bitwise OR.

For example:

 UFL_AUTOCOMPUTE_OFF |

 UFL_AUTOCREATE_FORMATS_OFF

0 — no special behavior.

UFL_AUTOCOMPUTE_OFF — Reads the form into

memory, but disables the compute system so that no

computes are evaluated.

UFL_AUTOCREATE_CONTROLLED_OFF —

Reads the form into memory, but disables the

creation of all options that are maintained only in

memory (for example, itemnext, itemprevious,

pagenext, pageprevious, and so on).

UFL_AUTOCREATE_FORMATS_OFF — Reads the

form into memory, but disables the evaluation of all

format options.

UFL_SERVER_SPEED_FLAGS — Turns off the

following features: computes, automatic formatting,

duplicate sid detection, the event model, and

relative page and item tags (for example,

itemprevious, itemnext, and so on). This is intended

to decrease server processing times.

UFL_XFORMS_INITIALIZE_ONLY — Turns off the

following features: controlled item construction, UI

connection to the XForms model, action handling set

up, and the rebuild/recalculate/revalidate/refresh

sequence after instance replacements.

Returns

Returns an IFormNodeP that is the root node of the form, or throws an exception

if an error occurs.

Notes

Duplicate Scope IDs

If a form contains duplicate scope IDs (for example, two items on the same page

with the same SID), ReadForm will fail to read the form and will return an error.

This enforces correct XFDL syntax, and eliminates certain security risks that exist

when duplicate scope IDs appear in signed forms.

Digital Signatures

When a form containing one or more digital signatures is read, the signatures will

be verified. The result of the verification is stored in a flag that can be checked by

calling GetSignatureVerificationStatus.

The XFDL Functions 155

Note that this flag is only set by ReadForm, and its value will not be adjusted by

changes made to the form after it has been read. This means that calls such as

SetLiteralEx may actually break a signature (by changing the value of a signed

item), but that this will not adjust the flag’’s value. To verify a signature after

changes have been made to a form, it is best to use VerifyAllSignatures.

Note that when a form is signed, all signed computes are frozen at their start value

(regardless of whether the compute system is disabled).

Example

The following example uses ReadFormFromASPRequest to load a form into

memory and return the root node of the form.

 Function LoadFormFromRequestObject()

 Dim DTK, XFDL, TempForm ’ objects

 ’ Get a DTK object and initialize the API

 Set DTK = CreateObject("PureEdge.DTK")

 DTK.IFSInitialize "aspApp", "1.0.0", "6.5.0"

 ’ Get an XFDL object and read the form from the request object

 Set XFDL = CreateObject("PureEdge.xfdl_XFDL")

 ’ Read the form into memory

 Set TempForm = XFDL.ReadFormFromASPRequest(0)

 ’ Return the form

 Set LoadFormFromRequestObject = TempForm

End Function

156

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003, 2006 157

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Office 4360

One Rogers Street

Cambridge, MA 02142

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

AIX

IBM

Workplace

Workplace Forms

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation

in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

158

Index

Special characters
-> symbol 7

A
about

the API 3

AddNamespace function 35

algorithm, looking up a hash algorithm 135

API
about the API 3

differences between Java, C, and COM 3

list of Form Library functions 23

where the API fits into your system 3

applications
compiling your application, tutorial 20

testing your application, tutorial 20

argument nodes 5, 9

ASP
reading a form from the ASP request object 154

writing a form to the ASP response object 110

attachments
attaching files to a form 46

extracting attachments from a form 48

removing an attachment 86

attributes
getting the value of an attribute 52

removing an attribute 85

setting an attribute 89

Authenticated Clickwrap
validating Authenticated Clickwrap signatures 99, 102

C
C API, differences from Java and COM 3

cell item
locating a cell in a particular group 40

cells, creating 37

Certificate functions 29

certificates
getting a Blob of the certificate 29

getting a list of available certificates 54, 149

getting specific certificate data 30

getting the issuer certificate 33

getting the signing certificate from a signature 144

CheckValidFormats function 37

child nodes, locating 55

closing a form 44

tutorial 20

COM API, differences from C and Java 3

compiling
compiling your application, tutorial 20

computations. See computes 1

compute node property 5

computes
deactivating the compute system 88, 155

setting a compute 91

constants 4

FormNodeP constants 35

constants (continued)
See also formNodeP constants[constants

a] 1

See also Function Call constants[constants
a] 1

conventions for functions descriptions 26

conventions, document 1

copying a node 45

Create function 147

CreateCell function 37

creating
a form or node 147

creating cells in a form 37

creating forms 42

creating nodes 42

current value
about signed computes 26

D
data

retrieving a value from a form, tutorial 17

setting a value in a form, tutorial 18

data item
locating a particular data item in a datagroup 40

data model, updating the XML data model 111

datagroup
locating a particular data item in a datagroup 40

DeleteSignature function 38

deleting
a form 20

deleting a form from memory 44

removing an enclosure from a form 86

DereferenceEx function 40

dereferencing 7

special notes on 93

Designer 3

designing XFDL forms 3

Destroy function 44

destroy method
tutorial 20

digital certificates, getting a list of available cetificates 54, 149

digital certificates. See certificates 1

digital signatures
determining if signatures are available 151

digital signatures. See signatures 1

distributing applications tutorial 21

document conventions 1

Duplicate function 45

duplicating a node 45

E
EncloseFile function 46

EncloseInstance function 47

enclosures
enclosing files in a form 46

extracting enclosures from a form 48

removing an enclosure 86

error message, getting the language for 123, 125

© Copyright IBM Corp. 2003, 2006 159

error message, setting the language for 128, 130

errors, reporting errors 26

Extensible Forms Description Language. See XFDL 1

ExtractFile function 48

extracting enclosures 48

ExtractInstance function 49

ExtractXFormsInstance function 51

F
form

determining the version of a form 56

Form Library
getting started 13, 15

initializing the Form Library 16, 117

list of Form Library functions 23

See also functions[Form Library
a] 1

form nodes 5, 9

form. See forms 1

formatting
determining whether a node is correctly formatted 83

determining whether all the nodes in a form ares correctly

formatted 37

formNodeP
creating a formNodeP 42

formNodeP structure 5

FormNodeP
See also nodes[formNodeP

a] 1

formNodeP constants
UFL_AFTER_SIBLING 45

UFL_APPEND_CHILD 45, 148

UFL_BEFORE_SIBLING 45, 148

UFL_ORPHAN 45

FormNodeP constants 35

forms
writing a form to disk 109, 110

formula node property 5

formulas
about signed formulas 26

setting a formula 91

freeing memory 44

tutorial 20

function calls. See functions 1

functions 54

about the function descriptions 26

AddNamespace 35

Certificate functions 29

CheckValidFormats 37

Create 147

CreateCell 37

DeleteSignature 38

DereferenceEx 40

Destroy 44

Duplicate 45

EncloseFile 46

EncloseInstance 47

ExtractFile 48

ExtractInstance 49

ExtractXFormsInstance 51

GetAttribute 52

GetBlob 29

getChildren 55

GetDataByPath 30, 139

GetDefaultLocale 123, 125

GetEngineCertificateList 149

functions (continued)
GetFormVersion 56

GetIdentifier 57

GetIssuer 33

GetLiteralByRefEx 58

GetLiteralEx 61

GetLocalName 62

GetNamespaceURI 63

GetNamespaceURIFromPrefix 64

GetNext 66

GetNodeType 67

getParent 68

GetPrefix 69

GetPrefixFromNamespaceURI 71

GetPrevious 72

GetReferenceEx 73

GetSecurityEngineName 77

getSigLockCount 78

GetSignature 78

GetSignatureVerificationStatus 80

GetSigningCert 144

GetType 81

Hash 113

Hash functions 113

IFormNodeP functions 35

IFSInitialize 117

IFSInitializeWithLocale 119

IsDigitalSignaturesAvailable 151

IsSigned 82

IsValidFormat 83

IsXFDL 84

list of Form Library functions 23

LocalizationManager functions 123

LookupHashAlgorithm 135

ReadForm 152

ReadFormFromASPRequest 154

Remove Enclosure 86

RemoveAttribute 85

ReplaceXFormsInstance 87

SecurityManager functions 135

See also string functions[functions
a] 1

SetActiveForComputationalSystem 88

SetAttribute 89

SetCurrentThreadLocale 128

SetDefaultLocale 130

SetFormula 91

SetLiteralByRefEx 92

SetLiteralEx 95

Signature functions 139

SignForm 96

UpdateXFormsInstance 97

ValidateHMACWithHashedSecret 102

ValidateHMACWithSecret 99

VerifyAllSignatures 106

VerifySignature 107

WriteForm 109

WriteFormToASPResponse 110

XFDL functions 147

XMLModelUpdate 111

G
GetAttribute function 52

GetBlob function 29

GetCertificateList 54

GetCertificateList function 54

160

getChildren function 55

GetCurrentThreadLocale function 123

GetDataByPath function 30, 139

GetDefaultLocale function 125

GetEngineCertificateList function 149

GetFormVersion function 56

GetIdentifier function 57

GetIssuer function 33

GetLiteralByRefEx function 58

GetLiteralEx function 61

GetLocalName function 62

GetNamespaceURI function 63

GetNamespaceURIFromPrefix function 64

GetNext function 66

GetNodeType function 67

getParent function 68

GetPrefix function 69

GetPrefixFromNamespaceURI function 71

GetPrevious function 72

GetRererenceEx function 73

GetSecurityEngineName function 77

GetSigLockCount function 78

GetSignature function 78

GetSignatureVerificationStatus function 80

GetSigningCert function 144

getting started
with the Form Library 15

getting started with the Form Library 13

GetType function 81

global
item 9

page node 9

group
locating a cell in a particular group 40

H
hash algorithm, looking up an algorithm 135

Hash function 113

Hash functions 113

hashes
creating a hash 113

hierarchy
about the node hierarchy 5

HMAC signatures
validating HMAC signatures 99, 102

validating Signature Pad signatures 99, 102

I
identifier node property 5

IFormNodeP
IFormNodeP functions 35

IFormNodeP constants
UFL_NEXT 41

UFL_SAVE_ALLOW 110, 111

UFL_TRANSMIT_ALLOW 111

IFormNodeP objects
about 4

creating an IFormNodeP object 147

freeing IFormNodeP objects from memory 4

IFSinitialize function 117

IFSinitializeWithLocale function 119

ifx files. See extensions 1

initializing
initializing the API 117

initializing (continued)
initializing the API with locale 119

initializing the Form Library 16, 117

instances, XForms
adding to an instance 97

extracting an instance 51

replacing an instance 87, 97

updating an instance 97

instances, XML
enclosing an instance 47

extracting an instance 49

Interlink signatures
validating 99, 102

IsDigitalSignaturesAvailable function 151

IsSigned function 82

IsValidFormat function 83

IsXFDL function 84

item node 5, 9

item, global 9

J
Java API, differences from C and COM 3

L
language, getting the current language 123

language, getting the default language 125

language, setting the current language 128

language, setting the default language 130

literal property
about 5

getting the value of 58, 61

setting the value 92

setting the value of the literal property 95

loading a form
tutorial 17

loading forms
loading forms into memory 152, 154

local names
getting the local name of a node 62

locale
initializing the API with locale 119

locale, getting the current locale 123

locale, getting the default locale 125

locale, setting the current locale 128

locale, setting the default locale 130

LocalizationManager functions 123

locating a node 40

lock count, getting for a node 78

LookupHashAlgorithm function 135

M
memory, freeing 20, 44

memory, freeing IFormNodeP objects 4

N
names, getting the security engine name 77

namespace
adding a namespace to a form 35

determining if a node is in the XFDL namespace 84

getting the local name of a node 62

getting the namespace prefix for a namespace URI 71

Index 161

namespace (continued)
getting the namespace prefix for a node 69

getting the namespace URI for a node 63

getting the namespace URI from a prefix 64

null namespace 8

using namespace in references 8

node properties
compute property 5

formula property 5

identifier property 5

literal property 5

table of properties 10

type 5

node structure
advanced information 8

tree structure 9

nodes
about the node hierarchy 5

adding as child 45, 148

adding as new form 45

adding as sibling 45, 148

argument 9

argument nodes 5

compute property 5

creating form nodes 147

creating nodes 42

determining how many times a node has been signed 78

duplicating a node 45

form nodes 5, 9

forumula property 5

getting the literal value 58

getting the literal value of a node 61

getting the type of a node 57, 81

global page nodes 9

identifier property 5

item 9

item nodes 5

literal property 5

locating a child node 55

locating a node 40

locating the parent node 68

node properties 10

node tree structure 9

option 9

option nodes 5

page 5

page nodes 9

reference, getting for a particular node 73

root nodes 9

See also attributes 52

See also local names 62

See also namespace 62

setting the literal value 92

setting the literal value of a node 95

setting the value of signed nodes 95

table of node properties 10

traversing nodes 66, 72

type property 5

type, determining the node type 67

O
objects

getting a signature object 78

Hash objects 113, 135

IFormNodeP objects 4

option nodes 5, 9

output paramaters, limitations 27

P
page node 5, 9

global page node 9

parameters, limitations to output parameters 27

parent nodes, traversing parent nodes 68

prefix, namespace See namespace 64

properties
table of node properties 10

R
ReadForm function 152

setting the current value of items 26

ReadFormFromASPRequest function 154

reading
reading forms into memory 152, 154

references
getting a reference to a particular node 73

syntax of a reference 6

using namespace in references 8

using the null namespace in references 8

RemoveAttribute function 85

RemoveEnclosure function 86

removing
removing a form from memory 44

removing enclosures 86

ReplaceXFormsInstance function 87

request object, reading a from from the ASP request

object 154

response object, writing a form to the ASP response

object 110

root nodes 9

S
saving a form to disk 109, 110

tutorial 19

saving enclosures to disk 48

secret, hashing a secret 113

security engines, getting the name 77

SecurityManager functions 135

SetActiveForComputationalSystem function 88

SetAttribute function 89

SetCurrentThreadtLocale function 128

SetDefaultLocale function 130

SetFormula function 91

SetLiteralByRefEx function 92

SetLiteralEx function 95

shared secret, hashing a shared secret 113

Signature functions 139

Signature Pad signatures, validating
signatures

validtating Signature Pad signatures 99, 102

signatures
creating signatures 96

deleting signatures 38

destroying signatures 44

determining how many times a node has been signed 78

determining if a signature is valid 80

determining whether a node is signed 82

getting a signature object 78

getting specific signature data 139

getting the signing certificate from a signature 144

162

signatures (continued)
setting the value of nodes that are already signed 95

validating HMAC signatures 99, 102

validating Interlink signatures 99, 102

validating Topaz signatures 99, 102

validating WinTab signatures 99, 102

verifying 107

verifying signatures 106

SignForm function 96

signing
signing a formula 26

strings
hashing a string 113

structures
formNodeP structure 5

system, where the API fits 3

T
Topaz signatures, validating 99, 102

traversing nodes 55, 66, 72

traversing child nodes to particular count 55

traversing parent nodes 68

tree structure
sample 9

XFDL 8

tutorials
closing a form 20

compiling your application 20

distributing applications 21

freeing memory 20

getting started
with the Form Library 13

loading a form 17

retrieving a value from a form 17

setting a value in a form 18

testing your application 20

writing a form to disk 19

type
determining the node type 67

node property 5

U
UFL_AFTER_SIBLING constant 45

UFL_APPEND_CHILD constant 45, 148

UFL_BEFORE_SIBLING constant 45, 148

UFL_NEXT constant 41

UFL_ORPHAN constant 45

UFL_SAVE_ALLOW constant 110, 111

UFL_TRANSMIT_ALLOW constant 111

UpdateXFormsInstance function 97

updating the XForms data model 51, 87, 97

V
ValidateHMACWithHashedSecret function 102

ValidateHMACWithSecret function 99

validating signatures 80

values, setting a value in a form, tutorial 18

VerifyAllSignatures function 106

verifying signatures 106, 107

VerifySignature function 107

version
determining the version of a form 56

Viewer 3

viewing XFDL forms 3

W
WinTab signatures, validating 99, 102

Workplace Forms Designer 3

Workplace Forms Viewer 3

WriteForm function 109

writeForm method
tutorial 19

WriteFormToASPResponse function 110

writing a form to disk 109, 110

tutorial 19

X
XFDL functions 147

XFDL tree structure 8

XFDL, about 1

XForms data model, updating 51, 87, 97

XForms instances
adding to an instance 97

extracting an instance 51

replacing an instance 87, 97

updating an instance 97

XForms Model update 51, 87, 97

XML data model, updating 111

XML instances
enclosing an instance 47

extracting an instance 49

XMLModelUpdate function 111

Index 163

164

����

Program Number: 5724-N08

Printed in USA

S229-1528-00

	Contents
	Introduction
	About This Manual
	Who Should Read This Manual
	Document Conventions

	About the API
	Where the API Fits in Your System
	Differences Between the C, Java, and COM Editions of the API
	The API Data Types
	IFormNodeP Objects

	About the API Constants

	Overview of the Form Structure
	The Node Structure
	The Node Hierarchy
	References
	Dereferencing
	Namespace in References
	The null Namespace

	Advanced Information about the Node Structure
	A Sample Hierarchy
	The Sample Tree Structure
	Node Properties

	Introduction to the Form Library
	Getting Started with the Form Library
	Setting Up Your Application
	Initializing the Form Library
	Loading a Form
	Retrieving A Value from a Form
	Setting a Value in a Form
	Writing a Form to Disk
	Closing a Form
	Compiling Your Application
	Testing your Application
	Distributing Applications That Use the Form Library
	Summary

	Form Library Quick Reference Guide
	Form Library Functions
	About the Function Descriptions
	Using Signatures with the Form Library
	About Errors
	About Output Parameters

	The Certificate Functions
	GetBlob
	GetDataByPath
	GetIssuer

	The FormNodeP Functions
	FormNodeP Constants
	addNamespace
	CheckValidFormats
	createCell
	DeleteSignature
	DereferenceEx
	Destroy
	Duplicate
	EncloseFile
	EncloseInstance
	ExtractFile
	ExtractInstance
	ExtractXFormsInstance
	GetAttribute
	GetCertificateList
	GetChildren
	GetFormVersion
	GetIdentifier
	GetLiteralByRefEx
	GetLiteralEx
	GetLocalName
	GetNamespaceURI
	GetNamespaceURIFromPrefix
	GetNext
	GetNodeType
	GetParent
	GetPrefix
	GetPrefixFromNamespaceURI
	GetPrevious
	GetReferenceEx
	GetSecurityEngineName
	GetSigLockCount
	GetSignature
	GetSignatureVerificationStatus
	GetType
	IsSigned
	IsValidFormat
	IsXFDL
	RemoveAttribute
	RemoveEnclosure
	ReplaceXFormsInstance
	SetActiveForComputationalSystem
	SetAttribute
	SetFormula
	SetLiteralByRefEx
	SetLiteralEx
	SignForm
	UpdateXFormsInstance
	ValidateHMACWithSecret
	ValidateHMACWithHashedSecret
	VerifyAllSignatures
	VerifySignature
	WriteForm
	WriteFormToASPResponse
	XMLModelUpdate

	The Hash Functions
	Hash

	The Initialization Functions
	IFSInitialize
	IFSInitializeWithLocale

	The LocalizationManager Functions
	GetCurrentThreadLocale
	GetDefaultLocale
	SetCurrentThreadLocale
	SetDefaultLocale

	The SecurityManager Functions
	LookupHashAlgorithm

	The Signature Functions
	GetDataByPath
	GetSigningCert

	The XFDL Functions
	Create
	GetEngineCertificateList
	IsDigitalSignaturesAvailable
	ReadForm
	ReadFormFromASPRequest

	Appendix. Notices
	Trademarks

	Index

