
IMS
Version 13

Exit Routines
(December 18, 2017 edition)

SC19-3655-04

IBM

IMS
Version 13

Exit Routines
(December 18, 2017 edition)

SC19-3655-04

IBM

Note
Before you use this information and the product it supports, read the information in “Notices” on page 777.

December 18, 2017 edition.

This edition applies to IMS Version 13 (program number 5635-A04), IMS Database Value Unit Edition, V13.1
(program number 5655-DSM), IMS Transaction Manager Value Unit Edition, V13.1 (program number 5655-TM2),
and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1974, 2017.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information vii
Prerequisite knowledge vii
IMS function names used in this information . . . vii
How new and changed information is identified . . vii
Accessibility features for IMS Version 13 viii
How to send your comments viii

Part 1. IMS control region exit
routines 1

Chapter 1. Guidelines for writing IMS
exit routines 3
Introduction to IMS exit routines 3

Exit routine naming conventions. 3
Changeable interfaces and control blocks 4
Refreshable exit routine types. 4
IMS standard user exit parameter list 5
Using the ISWITCH macro 8
Routine binding restrictions 9
Writing IMS routines that access control blocks 10
Extended Terminal Option (ETO) exit routines. . 10
APPC/IMS exit routines 10
Registers and save areas 11
Cross-memory considerations 12
Exit routine performance recommendations. . . 12

IMS callable services 13
Types of callable services 13
Exit routines eligible for callable services . . . 13
Using callable services 15
Callable services 15
IMS Callable Storage Services 20
IMS Callable Control Block Services requests . . 23
IMS Callable AOI Services 28

Callable services return and reason codes 29
Return codes (CSPLRTRN) 29
Callable service interface reason codes
(CSPLRESN) 30
Function-specific parameter list reason codes
(CSPLRESN) 30

Callable services request example 36
Control block usage 38
Customization exit routines 41
IMS.SDFSSMPL data set 44

Chapter 2. Database Manager exit
routines 47
Batch application exit routine (DFSISVI0) 47
IMS Catalog Definition exit routine (DFS3CDX0) . . 48
CCTL exit routines 51

Coordinator controller routine attributes 51
Suspend exit routine 51
Resume exit routine 52
Control exit routine. 52
Status exit routine 59

Data Capture exit routine. 61
Sample Data Capture exit routine 73
Sample Extended Program Communication Block
(XPCB) 79
Sample Extended Segment Data Block (XSDB) . . 82

Data conversion user exit routine (DFSDBUX1) . . 83
Data Entry Database Partition Selection exit routine
(DBFPSE00) 85
Sample data entry database randomizing routines
(DBFHDC40 / DBFHDC20 DBFHDC44 /
DBFHDC24 DBFHDC2S) 89

Sample DEDB randomizing routines
(DBFHDC40) 92
Extended call interface (XCI) option 93

Data Entry Database Resource Name hash routine
(DBFLHSH0) 96

Sample hashing routine result format 99
Data Entry Database Sequential Dependent Scan
utility exit routine (DBFUMSE1) 99

Sample DEDB Sequential Dependent Scan utility
exit routine (DBFUMSE1) 101

HALDB Partition Selection exit routine (DFSPSE00) 103
Sample partition selection exit routine
(DFSPSE00) 107
Partition exit communication area mapping
(DFSPECA) 107
Partition definition area mapping (DFSPDA) 108

HDAM and PHDAM randomizing routines
(DFSHDC40) 109

Sample HDAM and PHDAM generalized
randomizing routine (DFSHDC40) 114

Secondary Index Database Maintenance exit
routine 115

Sample Secondary Index Database Maintenance
exit routine 119

Segment edit/compression exit routines 120
Description of sample segment
compression/expansion modules 131
Hardware data compression support 135

Sequential Buffering Initialization exit routine
(DFSSBUX0) 141

Sample SB initialization routines 144

Chapter 3. Transaction Manager exit
routines. 145
2972/2980 Input edit routine (DFS29800) 145
4701 Transaction Input Edit routine (DFS36010) . . 147
Build Security Environment user exit (BSEX) . . . 148
Conversational Abnormal Termination exit routine
(DFSCONE0) 153
Destination Creation exit routine (DFSINSX0) . . 158

DFSINSX0 when extended terminal option is
active 162
DFSINSX0 when shared queues are active . . . 164

© Copyright IBM Corp. 1974, 2017 iii

|
|
||
|
||
||

|

DFSINSX0 when dynamic resource definition is
enabled 165

Fast Path Input Edit/Routing exit routine
(DBFHAGU0) 168
Front-End Switch exit routine (DFSFEBJ0) 172

Terminal input processing 175
IBE input processing 176
Front-end interface block 176
Input and output fields 179
Routing information 181
Message expansion 182
Timer facility 183
FEIBRPQ1 indicator 183
Example of the front-end switch exit routine
(DFSFEBJ0) 183

Global Physical Terminal (Input) edit routine
(DFSGPIX0) 187
Greeting Messages exit routine (DFSGMSG0) . . . 191
IMS Adapter for REXX exit routine (DFSREXXU) 193
Initialization exit routine (DFSINTX0) 195
Input Message Field edit routine (DFSME000) . . 200

Calling the Input Message Field edit routine . . 202
Defining edit routines 203
Performance considerations. 203

Input Message Segment edit routine (DFSME127) 204
Calling the Input Message Segment edit routine 207
Defining edit routines 207
Performance considerations. 208

Logoff exit routine (DFSLGFX0) 208
Logon exit routine (DFSLGNX0) 211

Selecting a logon descriptor 214
LU 6.2 Edit exit routine (DFSLUEE0) 215
Message Control/Error exit routine (DFSCMUX0) 220

Rerouting messages 223
Message Control/Error Exit Interface Block
(MSNB) 226
Valid flags and default actions. 231

Message Switching (Input) edit routine
(DFSCNTE0) 232

Using the sample message switching edit
routine (DFSCNTE0) 233

Non-Discardable Messages user exit (NDMX) . . 234
OTMA Destination Resolution user exit
(DFSYPRX0 and other OTMAYPRX type exits) . . 243
OTMA Input/Output Edit user exit (DFSYIOE0
and other OTMAIOED type exits) 247
OTMA User Data Formatting exit routine
(DFSYDRU0) 251
OTMA Resume TPIPE Security user exit
(OTMARTUX) 258
Physical Terminal (Input) edit routine (DFSPIXT0) 261

Sample Physical Terminal (Input) edit routine
(DFSPIXT0) 265

Physical Terminal (Output) edit routine
(DFSCTTO0). 265

Sample Physical Terminal (Output) edit routine
(DFSCTTO0). 269

Queue Space Notification exit routine
(DFSQSPC0/DFSQSSP0). 269
Security Reverification exit routine (DFSCTSE0) 275
Shared Printer exit routine (DFSSIML0). 278

Signoff exit routine (DFSSGFX0) 279
Signon exit routine (DFSSGNX0) 283

User descriptor selection 288
Providing queue (LTERM) data 289

Signon/off Security exit routine (DFSCSGN0) . . 291
Time-Controlled Operations (TCO) Communication
Name Table (CNT) exit routine (DFSTCNT0) . . . 294
Time-Controlled Operations (TCO) exit routine
(DFSTXIT0) 296
TM and MSC Message Routing and Control User
exit routine (DFSMSCE0) 300
Transaction Authorization exit routine (DFSCTRN0) 313
Transaction Code (Input) edit routine (DFSCSMB0) 317

Sample transaction code (input) edit routine
(DFSCSMB0) 320

Chapter 4. IMS system exit routines 321
Buffer Size Specification facility (DSPBUFFS) . . . 321

Example of specifying buffers 322
Command Authorization exit routine (DFSCCMD0) 323
DBRC Command Authorization exit routine
(DSPDCAX0) 327
DBRC SCI registration exit routine (DSPSCIX0) . . 330

Sample DBRC SCI registration exit routine . . 332
Dependent Region Preinitialization routines . . . 333
Dump Override Table (DFSFDOT0) 335

Sample Dump Override Table (DFSFDOT0) . . 337
ESAF In-Doubt Notification exit routine
(DFSFIDN0) 338
ESAF subsystem exit routines 340

Exit routine interface control blocks 342
Control block mapping 343
Abort Continue exit routine 344
Command exit routine 345
Commit Continue exit routine 347
Commit Prepare exit routine 348
Commit Verify exit routine 350
Create Thread exit routine 351
Echo exit routine 353
Identify exit routine 354
Initialization exit routine 357
Normal Call exit routine. 359
Resolve Indoubt exit routine 361
Signoff exit routine 364
Signon exit routine 365
Subsystem Not Operational exit routine . . . 367
Subsystem Termination exit routine 371
Terminate Identify exit routine 373
Terminate Thread exit routine 374

ESAF synchronous exit routines 376
Log Service exit routine 377
Message Service exit routine 379
Subsystem Startup Service exit routine 381
Subsystem Termination Service exit routine . . 383

IMS Command Language Modification facility
(DFSCKWD0) 384

Sample IMS Command Language Modification
facility. 387

IMS Initialization and Termination user exit . . . 387
Language Environment User exit routine
(DFSBXITA) 389

iv Exit Routines

|
|
|
|
|

|
|

Log Archive exit routine. 390
Sample Log Archive exit routine 393

Log edit user exit (LOGEDIT) 400
Log Filter exit routine (DFSFTFX0) 405
Logger user exit (LOGWRT) 409
Partner Product exit routine (PPUE) 416
Restart exit routine 419
RECON I/O exit routine (DSPCEXT0) 421

Minimizing impact to system performance . . 431
Resource Access Security user exit (RASE). . . . 431
System Definition Preprocessor exit routine (input
phase) (DFSPRE60) 437

Sample system definition preprocessor exit
routine 439

System Definition Preprocessor exit routine (name
check complete) (DFSPRE70) 439
Type-1 Automated Operator exit routine
(DFSAOUE0) 441

AO functions and how to implement them . . 454
Setting up the exit registers. 460
User Exit Header Block (UEHB) 463

Type-2 Automated Operator exit routine
(DFSAOE00). 468

Types of messages passed to this routine . . . 474
User Message table (DFSCMTU0) 478

Sample user message table and routine 480
XRF Hardware Reserve Notification exit routine 485

Part 2. Base Primitive
Environment-based exit routines . 487

Chapter 5. BPE user-supplied exit
routine interfaces and services. . . . 489
Calling subsequent exit routines in BPE 492
BPE user-supplied exit routine environment . . . 493
BPE user exit routine performance considerations 494
Abends in BPE user-supplied exit routines . . . 494
BPE user-supplied exit routine callable services . . 495

BPEUXCSV get storage service 500
BPEUXCSV free storage service 502
BPEUXCSV load module service 503
BPEUXCSV delete module service 505
BPEUXCSV create named storage service . . . 506
BPEUXCSV retrieve named storage service . . 507
BPEUXCSV destroy named storage service . . 508

BPE callable service example: Sharing data among
exit routines 509

Chapter 6. Base Primitive
Environment customization exit
routines. 515
BPE Initialization-Termination user-supplied exit
routine 515
BPE Statistics user-supplied exit routine 517

BPE system statistics area 519

Chapter 7. BPE-based DBRC user exit
routines. 533
DBRC Request exit routine 533

DBRC Security exit routine 535
Sample DBRC Security Exit Routine 538

RECON I/O exit routine 538
Sample RECON I/O exit routine 548

DBRC statistics 549

Chapter 8. BPE-based CQS
user-supplied exit routines 553
CQS initialization-termination user-supplied exit
routine 554
CQS client connection user-supplied exit routine 555
CQS Queue overflow user-supplied exit routine 557
CQS structure statistics user-supplied exit routine 559
CQS structure event user-supplied exit routine . . 570
CQS statistics available through the BPE statistics
user-supplied exit 577

Chapter 9. Common Service Layer exit
routines. 579
CSL ODBM user exit routines 579

CSL ODBM Initialization and Termination user
exit 579
CSL ODBM Input user exit routine 581
CSL ODBM Output user exit routine 586
CSL ODBM Client Connect and Disconnect user
exit routine 589
CSL ODBM statistics available through BPE
statistics user exit 590

CSL OM user exit routines 593
CSL OM client connection user exit 593
CSL OM Initialization/termination user exit . . 595
CSL OM input user exit 597
CSL OM output user exit 599
CSL OM Security user exit 604
CSL OM statistics available through BPE
statistics user exit 606

CSL RM user exit routines 609
CSL RM client connection user exit 609
CSL RM initialization/termination user exit . . 611
CSL RM statistics available through BPE
statistics user exit 613

BPE-based CSL SCI user exit routines 618
CSL SCI Client Connection user exit 618
CSL SCI Initialization/termination user exit . . 620
CSL SCI statistics available through BPE
statistics user exit 622

Part 3. CQS client exit routines 627

Contents v

|

|

|

Chapter 10. Client CQS Event exit
routine 629

Chapter 11. CQS Client Structure
Event exit routine 633

Chapter 12. CQS Client Structure
Inform exit routine 643

Part 4. CSL SCI IMSplex member
exit routines 645

Chapter 13. CSL SCI Input exit routine 647

Chapter 14. CSL SCI Notify Client exit
routine 651

Part 5. IMS Connect exit routines 655

Chapter 15. IMS Connect user
message exit routines 657
User message exit routines HWSSMPL0 and
HWSSMPL1 657

HWSSMPL0 sample JCL. 659
HWSSMPL1 sample JCL. 660

IMS TM Resource Adapter user message exit
routine (HWSJAVA0) 660

HWSJAVA0 sample JCL 661
SOAP Gateway exit routine (HWSSOAP1). . . . 661
WSDL-to-PL/I segmentation APIs exit routine
(DFSPWSHK) 662
IBM WebSphere DataPower message exit routine
(HWSDPWR1) 664
IMS Connect OM Command exit routines
(HWSCSLO0 and HWSCSLO1) 665
IMS Connect Port Message Edit exit routine . . . 666
IMS Connect communications with user message
exits 669

INIT subroutine 670
READ subroutine 672
XMIT subroutine 676
TERM subroutine 677
EXER subroutine 679

Macros that support IMS Connect user message
exits 680

Chapter 16. IMS Connect
function-specific exit routines 683
IMS Connect User Initialization exit routine
(HWSUINIT) 683

IMS Connect User Initialization exit routine
(HWSUINIT) sample JCL 684

IMS Connect DB Routing user exit routine
(HWSROUT0) 685
IMS Connect DB security user exit routine
(HWSAUTH0) 687

Using the IMS Connect DB security user exit
routine 689

IMS Connect sample OTMA User Data Formatting
exit routine (HWSYDRU0) 690

IMS Connect sample OTMA User Data
Formatting (HWSYDRU0) sample JCL 692

z/OS TCP/IP IMS Listener security exit
(IMSLSECX) 692
IMS Connect Event Recorder exit routine
(HWSTECL0) 693

Modifying the HWSTECL0 user exit. 696
Event types 697
Event record formats 704
Control blocks and DSECTS for event recording 754
Terminating HWSTECL0 763

IMS Connect Password Change exit routine
(HWSPWCH0) 763

Part 6. TSO SPOC user exit
routines 765

Chapter 17. EXITPGM user exit 767

Chapter 18. EXITCMD user exit 769

Chapter 19. Variables in the ISPF
shared pool 771

Chapter 20. REXX program example
using the EXITCMD exit routine . . . 773

Part 7. Appendixes 775

Notices 777
Programming interface information 779
Trademarks 779
Terms and conditions for product documentation 780
IBM Online Privacy Statement. 781

Bibliography. 783

Index 785

vi Exit Routines

|
||
|
||
|
||

About this information

These topics provide reference information for the exit routines that you can use to
customize IMS™ database, system, transaction management, IMSplex, Base
Primitive Environment (BPE), Common Queue Server (CQS), and IMS Connect
environments.

This information is available in IBM® Knowledge Center.

Prerequisite knowledge
Before using this book, you should have knowledge of either IMS Database
Manager (DB) or IMS Transaction Manager (TM), including the access methods
used by IMS. You should also understand basic z/OS® and IMS concepts, your
installation's IMS system, and have general knowledge of the tasks involved in
project planning.

You can learn more about z/OS by visiting the “z/OS basic skills” topics in IBM
Knowledge Center.

You can gain an understanding of basic IMS concepts by reading An Introduction to
IMS, an IBM Press publication.

IBM offers a wide variety of classroom and self-study courses to help you learn
IMS. For a complete list of courses available, go to the IBM Skills Gateway and
search for IMS.

IMS function names used in this information
In this information, the term HALDB Online Reorganization refers to the
integrated HALDB Online Reorganization function that is part of IMS Version 13,
unless otherwise indicated.

How new and changed information is identified
New and changed information in most IMS library PDF publications is denoted by
a character (revision marker) in the left margin. The first edition (-00) of Release
Planning, as well as the Program Directory and Licensed Program Specifications, do not
include revision markers.

Revision markers follow these general conventions:
v Only technical changes are marked; style and grammatical changes are not

marked.
v If part of an element, such as a paragraph, syntax diagram, list item, task step,

or figure is changed, the entire element is marked with revision markers, even
though only part of the element might have changed.

v If a topic is changed by more than 50%, the entire topic is marked with revision
markers (so it might seem to be a new topic, even though it is not).

Revision markers do not necessarily indicate all the changes made to the
information because deleted text and graphics cannot be marked with revision
markers.

© Copyright IBM Corp. 1974, 2017 vii

http://www-01.ibm.com/support/knowledgecenter/SSEPH2/welcome
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
https://www-03.ibm.com/services/learning/content/ites.wss/zz-en?pageType=page&c=a0011023

Accessibility features for IMS Version 13
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products,
including IMS Version 13. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers and screen magnifiers.
v Customization of display attributes such as color, contrast, and font size.

Keyboard navigation

You can access IMS Version 13 ISPF panel functions by using a keyboard or
keyboard shortcut keys.

For information about navigating the IMS Version 13 ISPF panels using TSO/E or
ISPF, refer to the z/OS TSO/E Primer, the z/OS TSO/E User's Guide, and the z/OS
ISPF User's Guide Volume 1. These guides describe how to navigate each interface,
including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their
functions.

Related accessibility information

Online documentation for IMS Version 13 is available in IBM Knowledge Center.

IBM and accessibility

See the IBM Human Ability and Accessibility Center at www.ibm.com/able for more
information about the commitment that IBM has to accessibility.

How to send your comments
Your feedback is important in helping us provide the most accurate and highest
quality information. If you have any comments about this or any other IMS
information, you can take one of the following actions:
v Click the Contact Us tab at the bottom of any IBM Knowledge Center topic.
v Send an email to imspubs@us.ibm.com. Be sure to include the book title and the

publication number.

To help us respond quickly and accurately, please include as much information as
you can about the content you are commenting on, where we can find it, and what
your suggestions for improvement might be.

viii Exit Routines

http://www.ibm.com/able
http://www.ibm.com/support/knowledgecenter/SSEPH2/welcome

Part 1. IMS control region exit routines

Use these topics to design and write user-supplied modules for exit routines that
are supported by IMS interfaces and callable services.

© Copyright IBM Corp. 1974, 2017 1

2 Exit Routines

Chapter 1. Guidelines for writing IMS exit routines

Use the guidelines in this information to write IMS exit routines, enable IMS exit
routines to perform functions with callable services, and reference all callable
service return and reason codes.

Introduction to IMS exit routines
Exit routines that customize IMS must adhere to specific guidelines. Use these
guidelines when writing an IMS exit routine, when using the callable services that
IMS provides for these exit routines, and when analyzing the callable service
return and reason codes.

What you can customize

Using IMS-supplied exit routines, you can customize IMS to:
v Edit messages
v Check security
v Edit transaction code input, message switching input, and physical terminal

input and output
v Perform additional clean-up
v Initialize dependent regions
v Control the number of buffers the RECON data sets use
v Keep track of segments that have been updated

You can write or include additional routines to customize your IMS system.

Many sample exit routines with default settings are provided in the
IMS.SDFSSMPL and IMS.ADFSSMPL libraries.

Related Reading: For information on how to prevent your exit routines from
impacting z/OS system integrity, see z/OS MVS Programming: Authorized Assembler
Services Guide.

You can replace a default exit routine that does not meet your needs by writing
one of your own. If you use IMS macros in your exit routine, you must reassemble
the routine with the current release level macro library.

Exit routine naming conventions
Each routine name should adhere to naming conventions, including both standard
z/OS conventions, and conventions that are specific to the routine.

Using standard z/OS conventions, each routine can have any name up to 8
characters in length. Be sure that this name is unique and that it does not conflict
with the existing members of the data set into which you place the routine.
Because most IMS-supplied routines begin with the prefix “DFS”, “DBF”, “DSP”,
“DXR”, “BPE”,“ CQS”, or “CSL”, do not choose a name that begins with these
letters, unless the specific routine requires it. Also, specify one entry point for the
routine.

© Copyright IBM Corp. 1974, 2017 3

Naming requirements or exceptions that are specific to an exit routine are noted in
the “Naming the Routine” topic of each exit routine section.

Changeable interfaces and control blocks
The interfaces that IMS supplies for use by the exit routines, including the
ISWITCH macro, might change in future releases of IMS. IMS control blocks might
also change. Therefore, if you write an exit routine that uses these services or
control blocks, you might need to change or reassemble the routine accordingly
when you migrate to a new release of IMS.

This topic contains Diagnosis, Modification, and Tuning information.

These control blocks include:

DMB Data management block

PST Partition specification table

SCD Systems content directory

VTCB VTAM® terminal control block

Refreshable exit routine types
For certain types of exit routines, you can designate them as a refreshable exit
routine type, which also allows you to call multiple exit routines of that type at the
same exit point. These exit routines can be used with the REFRESH USEREXIT
command to obtain a new copy of an exit routine without bringing down and
restarting IMS.

You can define exit routines for the exit routine types in the EXITDEF parameter in
the USER_EXITS section of the DFSDFxxx member. The QRY USEREXIT command
is used to query information about the routines for the user exit types, and the
REFRESH USEREXIT command is used to dynamically refresh the exit routine
types. There are no name restrictions for an exit routine that is associated with a
refreshable exit routine type.

If an exit routine type is not designated as refreshable, you can call only one exit
routine of that type and typically the name of the exit routine is designated by
IMS.

If an exit routine type is defined as refreshable, multiple exit routines of the same
type can be called in sequence. However, any one of the exit routines in the
sequence can bypass the remaining subsequent exit routines and return control to
the IMS system by setting the SXPLCNXT exit parameter to SXPL_CALLNXTN.

IMS supports the following exit routine types:
v Build Security Environment User Exit (BSEX)
v IMS CQS Event user exit (ICQSEVNT)
v IMS CQS Structure Event user exit (ICQSSTEV)
v Initialization/Termination user exit (INITTERM)
v Log Edit User Exit (LOGEDIT)
v Logger User Exit (LOGWRT)
v Non-Discardable Messages User Exit (NDMX)
v OTMA Input/Output Edit user exit (OTMAIOED)
v OTMA Destination Resolution user exit (OTMAYPRX)

4 Exit Routines

|
|
|
|

v OTMA Resume TPIPE Security user exit (OTMARTUX)
v Partner Product user exit (PPUE)
v Resource Access Security user exit (RASE)
v Restart user exit (RESTART)
Related reference:

USER_EXITS section of the DFSDFxxx member (System Definition)

REFRESH USEREXIT command (Commands)
“IMS standard user exit parameter list”

IMS standard user exit parameter list
Many of the IMS user exit routines are called with a standard interface, which
allows the exit routines to access IMS control blocks with callable services.

This interface creates a clearly differentiated programming interface (CDPI)
between IMS and the exit routine. Part of the interface consists of a standard user
exit parameter list. The list contains information such as a pointer to a version
number and a pointer to a function-specific parameter list. All standard user exit
parameter lists that have the same version number will contain the same
parameters. If a new parameter is added, it is added to the end of the parameter
list and the version number is increased by one.

There are currently two active versions of the IMS standard user exit parameter
list: version 1 and the current version. The Version 6 standard exit parameter list is
the current version. In general, IMS exit routines that do not use the Version 1
standard exit parameter list use the Version 6 standard exit parameter list. Refer to
the information for each individual exit routine.

Version 1 standard exit parameter list

The version 1 parameter list contains only pointers to the version number and the
function-specific parameter list. The following table shows the content of the
Version 1 standard exit parameter list. When the user exit routine is called, IMS
passes it the address of this list in register 1.

Table 1. Version 1 standard exit parameter list (mapped by DFSSXPL)

Field Offset Length Description

SXPL X'00' N/A DSECT label for the IMS standard user exit
parameter list

SXPLVER X'00' X'04' Address of fullword containing version number
of standard exit parameter list

SXPLATOK X'04' X'04' Reserved

SXPLAWRK X'08' X'04' Reserved

SXPLFSPL X'0C' X'04' Address of function-specific parameter list

SXPLINTX X'10' X'04' Reserved

SXPLASCD X'14' X'04' Reserved

The following user exit routines use the Version 1 parameter list:
v “Command Authorization exit routine (DFSCCMD0)” on page 323
v “Fast Path Input Edit/Routing exit routine (DBFHAGU0)” on page 168

Chapter 1. Guidelines for writing IMS exit routines 5

|

|

|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsdfxxx_proclib_user_exits.htm#ims_dfsdfxxx_proclib_user_exits
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_refreshuserexit_ims.htm#ims_cr2refreshuserexit

v “Greeting Messages exit routine (DFSGMSG0)” on page 191
v “Initialization exit routine (DFSINTX0)” on page 195
v “Logoff exit routine (DFSLGFX0)” on page 208
v “Logon exit routine (DFSLGNX0)” on page 211
v “Destination Creation exit routine (DFSINSX0)” on page 158
v “Signoff exit routine (DFSSGFX0)” on page 279
v “Signon exit routine (DFSSGNX0)” on page 283

Version 6 standard exit parameter list

This version is the current version of the parameter list. The Version 6 standard
exit parameter list contains additional fields beyond those in version 1 of the
parameter list. The following table shows the layout of the parameter list. When a
user exit routine is called, IMS passes the address of this parameter list to the exit
routine module in register 1.

Table 2. Version 6 standard exit parameter list (mapped by DFSSXPL)

Field Offset Length Description

SXPL X'00' N/A DSECT label for the IMS standard user exit
parameter list

SXPLVER X'00' X'04' Address of fullword containing version number
of standard exit parameter list

SXPLATOK X'04' X'04' 0 or the address of a fullword containing the
callable services token for this instance of the
routine

SXPLAWRK X'08' X'04' Pointer to a 512-byte work area. This area is
intended as working storage for a user exit
routine. The storage is not initialized, and may
contain residual data. The contents of the storage
are not guaranteed to be preserved between user
exit calls. If a work area that is preserved
between calls is required, use the storage
pointed to by SXPLASWA.

SXPLFSPL X'0C' X'04' Address of the function-specific parameter list

SXPLINTX X'10' X'04' Address of the user data table loaded by
DFSINTX0 at IMS initialization time. This field is
valid only in IMS environments where
DFSINTX0 is called. It will be X'80000000' in any
other environment.

SXPLASCD X'14' X'04' Address of the IMS SCD

6 Exit Routines

|
|
|
|
|
|
|
|

Table 2. Version 6 standard exit parameter list (mapped by DFSSXPL) (continued)

Field Offset Length Description

SXPLASWA X'18' X'04' Address of a 256–byte static work area. Each exit
routine is assigned its own static work area and
is available for the exit routine to store data that
is preserved from call to call. The static work
area is cleared before the first time the exit
routine is called.

Each exit routine is assigned a separate static
work area that is preserved between calls to that
exit routine. This work area is available for all
user exits that use this version of the standard
exit parameter list, regardless of whether the exit
is defined with the EXITDEF parameter in the
USER_EXITS section of the DFSDFxxx member
of the IMS.PROCLIB data set.

If your exit routine can be called concurrently
under different ITASKs, you must consider the
results of sharing a single static work area in the
design of your exit routine.

If an exit routine is replaced with the REFRESH
USEREXIT command, the same static work area
is passed to the new version of the exit routine.
If an exit routine is deleted with the command,
the static work area is also deleted. If a new exit
routine is added with the command, a new static
work area is allocated.

Due to the design of the quiesce function of the
REFRESH USEREXIT command, the same static
work area might be accessed by both the old
and new versions of an exit routine at the same
time. This must be handled by your exit routine
in the same way as multiple concurrent
executions under different ITASKs.

SXPLIMSR X'1C' X'04' Address of the version of IMS that is calling the
exit. The 4-byte version data is stored in the
following format:

0000vvmm
vv IMS version (SSCDIMSR)

mm IMS mod (SSCDIMSM)

SXPLIMID X'20' X'04' Address of the IMS ID

SXPLRSEN X'24' X'04' Address of the 8 character Recoverability Service
Name (RSENAME). This name is set using the
RSENAME startup parameter in the DFSHSBxx
member. If the control region is not XRF capable
or DBCTL warm standby capable, this field is
blank.

Chapter 1. Guidelines for writing IMS exit routines 7

|

Table 2. Version 6 standard exit parameter list (mapped by DFSSXPL) (continued)

Field Offset Length Description

SXPLCNXT X’28’ X’04’ Address of a flag byte in storage. The flag
indicates if the next exit routine in the definition
list will be called after this exit routine releases
control.

When an exit type is defined as refreshable,
multiple exit routines of the same type can be
called in sequence. By setting this flag to
SXPL_CALLNXTN, an exit routine in the
sequence can return control to the IMS system
without calling any subsequently defined exit
routine.
SXPL_CALLNXTN

The next exit routine will not be called.
SXPL_CALLNXTY

The next exit routine will be called.

SXPLFLGA X’2C’ X’04’ Address of a full word in storage that contains
flags for the user exit.
SXPL_F1ENHSRV

The exit is called with the enhanced
callable services, including the ability to
call multiple exit routines of the same
user exit type.

SXPL_F1SWARFR
If this flag is set, the exit routine was
refreshed and both copies of the exit
use the same work area. Since the old
copy is not deleted until all users are
done with it, the static work area can be
accessed by both copies. Your exit
should take this into consideration if
the two copies use different layouts for
the area. When the old exit is deleted,
this flag will no longer be set.

If an exit routine is written to use a parameter that was added in a later version,
and the exit routine can execute in an environment in which earlier versions of the
parameter list could be received, the exit routine should check the version of the
parameter list it receives to ensure that the data is available to the exit routine.
Related reference:
“Initialization exit routine (DFSINTX0)” on page 195

Using the ISWITCH macro
The ISWITCH macro changes execution from the dependent region TCB to the
control or DL/I address space. ISWITCH also exits cross-memory mode. If you
executing an ISWITCH macro call, follow the guidelines in this information.

ISWITCH must have addressability to the SCD and, for the following figure, to the
PST. The address of the SCD is obtained from the PSTSCDAD field in the PST.

For Fast Path exit routines, specify TO=CTL.

The following figure is an ISWITCH example:

8 Exit Routines

|
|
|
|
|
|
|

ISWITCH example
ISWITCH TO=DLI,ECB=PSTDECB
SLR R1,R1 Get a zero
ST R1,PSTDECB Clean ECB after target memory post
LTR R15,R15 Successful?
BNZ ERR1 No

When a Fast Path exit routine issues an ISWITCH to the control region, it must
issue a second ISWITCH call specifying TO=DEP to return to the dependent region
before returning to the caller of the exit routine. This is done only in an exit
routine that is entered from a Fast Path module.

The following is an example of the second ISWITCH call needed for Fast Path:
ISWITCH TO=DEP,ECB=PSTDECB
SLR R1,R1 Get a zero
ST R1,PSTDECB Clean ECB after target memory post
LTR R15,R15 Successful?
BNZ ERR1 No

Exit routines should not use ISWITCH TO=RET, because unpredictable results
might occur. (ISWITCH TO=RET could be used in previous IMS releases.) Ensure
that all instances of ISWITCH TO=RET are changed to ISWITCH TO=DEP.

Routine binding restrictions
If you bind DL/I exit routines, you must keep in mind the recommendations and
restrictions in this information.

Most modules receive control and must return control in AMODE=31, and must be
able to execute in cross-memory and TASK modes.

Recommendations:

v RMODE=ANY is recommended.
v All TM exit routines can be entered simultaneously by multiple dispatchable

tasks. Therefore, it is highly recommended that all TM exit routines are coded as
reentrant (RENT).

All routines receive control and must return control in 31-bit addressing mode
(AMODE 31) and must be able to execute in RMODE ANY and AMODE 31.

If you bind an exit routine as reentrant (RENT), it must be truly reentrant (for
example, it cannot depend on any information from a previous iteration and it
cannot store into itself).

If you bind an exit routine as reusable (REUSE), it must be truly reusable (it cannot
depend on any information in itself from a previous iteration), but it can depend
on information that it saves in the specific block passed to it. If you bind a routine
that is serially reusable, it must be used for a single database only.

If you bind an exit routine as neither RENT nor REUSE, it can store into itself and
depend on the information saved in the block that is passed to it.

If you bind an exit routine as reentrant, it is loaded in key 0 storage to
automatically protect the exit routine from being accidentally or intentionally
modified.

Chapter 1. Guidelines for writing IMS exit routines 9

Specific requirements and exceptions are noted in each topic. Refer to the topic on
“Binding the Routine” included in each exit routine section.

Writing IMS routines that access control blocks
Control blocks for databases, programs, transactions, and routing codes are not in
contiguous storage. This is true whether dynamic resource definition is enabled or
not. If you have exit routines that depend on these resources being in contiguous
storage, you will have to change them.

These requirements apply specifically to:
v DMB directory entries (DDIR)
v PSB directory entries (PDIR)
v Routing code table entries (RCTE)
v Scheduler message blocks (SMB)

If your routine accesses IMS control blocks, you can find DSECTs for these blocks
in the following macros:

Macro DSECT

ISCD System content directory (SCD)

DFSDDIR
DMB Directory entry (DDIR)

DFSPDIR
PSB Directory entry (PDIR)

DFSDMB
Data management block (DMB)

DFSPSB
Program specification block (PSB)

DBFESCD
Extended system content directory (ESCD)

DBFRCTE
Routing code table entry (RCTE)

IAPS Scheduler message block (SMB)

Extended Terminal Option (ETO) exit routines
Unless otherwise stated, all non-LU 6.2 exit routines are available to terminals that
are defined both statically at system definition and dynamically by using the
Extended Terminal Option (ETO) feature.

Some exit routines are loaded at initialization if ETO=Y. (If this is the case, it is
noted in each in the topic on Binding or including the routine.) Although these exit
routines are loaded only if the ETO feature is used, they are available for use by
static and dynamic ACF/VTAM terminals.

Related Reading: For more information about ETO, see IMS Version 13
Communications and Connections.

APPC/IMS exit routines
Some exit routines support LU 6.2 devices and are affected by APPC/IMS.

10 Exit Routines

The LU 6.2 Edit exit routine (DFSLUEE0) is available only to LU 6.2 devices. The
following exit routines also support LU 6.2 devices:
v Message Control Error exit routine (DFSCMUX0)
v Conversational Abnormal Termination exit routine (DFSCONE0)
v Transaction Authorization exit routine (DFSCTRN0)
v Fast Path Routine for Input Edit/Routing exit routine (DBFHAGU0)
v Command Authorization exit routine (DFSCCMD0)
v TM and MSC Message Routing and Control User exit routine (DFSMSCE0)

No other exit routines support LU 6.2 devices or are affected by APPC/IMS.

Registers and save areas
IMS exit routines need to save registers in the save area pointed to by Register 13.
This save area is provided at entry. In general, the save area passed to the exit is in
31-bit storage. You should save and restore registers in 31-bit mode.

There are two types of save areas that exit routines use to save registers:
v A prechained save area passed to the exit routine by IMS or the calling

application
v A single save area used by exit routines that use the Version 5 standard user exit

parameter list

Using the prechained save area

IMS or the application that calls the exit routine passes a prechained save area to
the exit. The routine must step forward to the next save area in the save area set
before processing any data.

The save area address given to the exit routine has a prechained forward save area
pointer at offset 8 and a prechained backward pointer at offset 4. The exit routine
can use the forward save area pointed to by offset 8 but must not alter the first
three words of the save area.

Before returning control to IMS, the routine must step back to the original save
area and restore IMS registers.

Using the single save area

When an exit routine uses the version 5 standard user exit parameter list, it does
not receive a prechained save area. Instead, the routine points to a single save area
in register 13. The exit routine must use this save area to save registers from IMS
or the calling application.

If the exit routine calls other applications or routines, including IMS callable
services, the routine must provide an additional save area. The 512-byte dynamic
work area passed to exit routines that use the Version 6 standard exit parameter
list can be used as one or more save areas.

Before returning control to IMS, the exit routine must restore the registers to IMS
or the calling application.
Related reference:
“IMS standard user exit parameter list” on page 5

Chapter 1. Guidelines for writing IMS exit routines 11

Cross-memory considerations
Restrictions exist which should be considered when writing an IMS exit routine
that will perform while in cross-memory mode.

Do not issue any SVC (except ABEND) or I/O request.

If the routine runs in the DL/I address space and you need to perform a function
that cannot be done in cross-memory mode, issue an ISWITCH TO=DLI to exit
cross-memory. Because of the overhead in performing a task switch from the
dependent address space to the IMS control program, use ISWITCH infrequently.
ISWITCH TO=DLI is not valid for TM exit routines.

If you are not using the DL/I address space option, execution after the ISWITCH
continues in the control address space. With LSO=S, execution continues in the
DL/I address space. TO=DLI on ISWITCH performs the correct switching in all
environments.

With LSO=S, DL/I exits cannot address data in the control address space.

Most terminal-related control blocks are not addressable from the DL/I address
space.

Sometimes your exit might need to test to determine whether it is running in
cross-memory mode before making a particular function call. In IMS, when an exit
is called in cross-memory mode, the primary address space will always be different
from the secondary address space. You can use the instructions EPAR and ESAR to
obtain the primary and secondary address space ASIDs and compare them. If they
are equal, the exit is not in cross-memory mode. If they are unequal, the exit is in
cross-memory mode.

The following sample shows an example of checking for running in cross-memory
mode. The code issues a branch-enter WTO macro call when it is in cross-memory
mode; it issues a normal SVC WTO when not in cross-memory mode.

EPAR R0 Get primariy ASID
ESAR R1 Get secondary ASID
CLR R0,R1 Primary = Secondary?
BNE BEWTO No, in XM mode, use BE WTO
WTO ’message’ Yes, use SVC WTO
B ENDWTO

BEWTO DS 0H
WTO ’message’,LINKAGE=BRANCH

ENDWTO DS 0H

Exit routine performance recommendations
Efficiency of exit routines is a prime concern for IMS performance. The amount
and type of processing that is done by exit routines can directly contribute to the
total path length and time required to complete a unit of work.

Most routines are called from the IMS control region and get control in key 7
supervisor state. Some routines might be called from mainline processing code
running under the IMS Control Region task. Other units of work that must wait to
run under a task currently in use by an exit routine can also be affected. An abend
in an exit routine that gets control in the IMS control region can cause the IMS
control region to abend.

Recommendations:

12 Exit Routines

v Code user-written routines in ways that minimize path length and processing
time as much as possible.

v Use services such as OS WAITs, SVCs, and I/O sparingly. When an IMS callable
service exists, use it rather than the z/OS equivalent. The IMS callable service is
optimized to perform more efficiently in an IMS subdispatching environment.

v Write IMS exit routines in assembly language rather than high-level languages.
IMS does not support exit routines running under Language Environment® for
z/OS.

IMS callable services
IMS provides IMS callable services for exit routines to provide the user of the exit
routine with clearly defined interfaces.

Types of callable services
IMS callable services may consist of services for storage, control blocks, and the
automated operator interface (AOI).

Storage services support the following functions:
v Get storage
v Free storage
v Load module
v Delete module

Control block services support the following functions:
v Find control block
v Scan control block

AOI services support the following functions:
v Insert message
v Enqueue message
v Cancel message

Exit routines eligible for callable services

An exit routine may use one or more of the three types of callable services: storage,
control block, and AOI. DFSAOE00 is the only exit routine that is eligible to use
AOI callable services.

The following table shows the exit routines that are eligible for callable services
and the types of callable service that they can use. See the topic for each exit
routine for more information on how it uses callable services.

Table 3. Exit routines and associated callable services.

Exit name or user
exit type

Callable services

Storage Control block AOI

BSEX X

DBFHAGU0 X X

DFSAOE00 X X

DFSAOUE0 X X

Chapter 1. Guidelines for writing IMS exit routines 13

|
|
|

|
|
|

|
|

||||

Table 3. Exit routines and associated callable services (continued).

Exit name or user
exit type

Callable services

Storage Control block AOI

DFSCCMD0 X X

DFSCMLR1 X X

DFSCMPX0 X X

DFSCNTE0 X X

DFSCONE0 X X

DFSCSGN0 X X

DFSCSMB0 X X

DFSCTRN0 X X

DFSCTSE0 X X

DFSCTTO0 X X

DFSFEBJ0 X X

DFSGMSG0 X

DFSGPIX0 X X

DFSINSX0 X X

DFSINTX0 X X

DFSI7770 X X

DFSLGFX0 X X

DFSLGNX0 X X

DFSME000 X X

DFSME127 X X

DFSMSCE0 X X

DFSO7770 X X

DFSPIXT0 X X

DFSQSPC0 X X

DFSSGFX0 X X

DFSSGNX0 X X

DFSSIML0 X X

DFSS7770 X X

DFSYPRX0 X X

DFSYIOE0 X X

DFSYDRU0 X X

DFSYRTUX X X

DFS29800 X X

DFS36010 X X

LOGWRT X

NDMX X

PPUE X

14 Exit Routines

|
|

||||

||||

||||

||||

||||

||||

|

Using callable services
You will need to initialize callable services for your IMS exit routine each time that
your exit routine gets control.

To use a callable service, do the following:
1. Link your exit routine to the callable service interface module (DFSCSI00).
2. Initialize callable services for your exit routine (CALL DFSCSII0) each time

your exit routine gets control.
3. Initialize the callable services parameter list.
4. Initialize the function-specific parameter list.
5. Invoke the callable service (CALL DFSCSIF0).

Repeat steps 3 through 5 as many times as necessary while your exit routine has
control.

Not all exit routines perform all five of the preceding steps. See the section called
“Using IMS callable services ” in the description of the specific exit routine you are
coding to see which steps apply.

Callable services
To use IMS callable services, an exit routine must invoke one of two IMS callable
services entry points in AMODE 31. The exit routine will receive a control block
and a callable services parameter list.

The callable services interface module DFSCSI00 contains two entry points that
your exit routine can invoke: DFSCSII0 and DFSCSIF0.

Entry point DFSCSII0 initializes callable services. To begin initialization, issue
CALL DFSCSII0 with the appropriate registers initialized. DFSCSII0 returns a
callable services token and a parameter list address. The callable services token
must be passed to IMS when you invoke one of the callable services. The
parameter list address directs reentrant programs to a storage area in which to
build parameter lists needed to invoke callable services.

Entry point DFSCSIF0 invokes one of the callable services. To invoke a callable
service, issue CALL DFSCSIF0 with the appropriate information specified. You
must tell IMS which service to invoke. You do this by initializing two parameter
lists. The first list, the callable services parameter list, contains information needed
by callable services to route the request to the appropriate service. The second list,
the function-specific parameter list, defines which service is to be used and
provides information required by that service.

When your exit routine receives control back from callable services, register 15
contains a return code indicating whether the call was successful. The callable
services parameter list contains a return code and a reason code if the call did not
complete successfully. The function-specific parameter list can contain data from a
specific callable service.

Exit routine assembler macros
You can use assembler macros to generate parameter list DSECTs for your exit
routine.

To generate parameter list DSECTs, you can use the following assembler macros in
your exit routine.

Chapter 1. Guidelines for writing IMS exit routines 15

Macro Description

DFSCSIPL
Generates the DFSCSPL, DFSCSTRG, DFSCCBLK, and DFSAOI parameter
list DSECTs for an exit routine.

DFSCSPL
Generates the callable services parameter list DSECT (CSPARMS).

DFSCSTRG
Generates the storage services function-specific parameter list DSECT
(CSSTRG).

DFSCCBLK
Generates the control block services function-specific parameter list DSECT
(CSBLK).

DFSAOI
Generates the AOI services function-specific parameter list DSECT
(DFSAOI).

Links with your exit routine and DFSCSI00
To use callable services, your exit routine must be linked with the callable service
interface module, DFSCSI00. For some exit routines, this module is linked
automatically by IMS. For others, you need to manually link this module to your
exit routine.

Automatic linking

The following exit routines are automatically linked to DFSCSI00 by IMS.

Exit routines linked to DFSCSI00 Exit routines linked to DFSCSI00

DBFHAGU0 DFSI7770

DFSCNTE0 DFSME000

DFSCONE0 DFSME127

DFSCSGN0 DFSQSPC0

DFSCTRN0 DFSSIML0

DFSFEBJ0 DFSS7770

DFS29800

Manual linking

To use callable services, you must manually link these exit routines to DFSCSI00.

Exit routines or user exit types to be
manually linked to DFSCSI00

Exit routines or user exit types to be
manually linked to DFSCSI00

DFSAOE00 DFSINTX0

DFSAOUE0 DFSLGFX0

BSEX DFSLGNX0

DFSCCMD0 DFSMSCE0

DFSCSMB0 NDMX

DFSCTSE0 PPUE

16 Exit Routines

|
|
|
|

|

|

|

Exit routines or user exit types to be
manually linked to DFSCSI00

Exit routines or user exit types to be
manually linked to DFSCSI00

DFSGMSG0 DFSSGFX0

DFSGPIX0 DFSSGNX0

DFSINSX0 LOGWRT

Typically, you must manually link DFSCSI00 if your exit routine is a stand-alone
module (not linked as part of another IMS load module). When you perform this
binding, include an ENTRY bind control statement that specifies the entry point of
your exit routine. The statement ensures that your exit routine, and not DFSCSI00,
receives control when IMS calls it.

Initialization of IMS callable services (DFSCSII0)
Some exit routines must initialize IMS callable services before using them. To
initialize IMS callable services, you can issue a call to entry point DFSCSII0.
DFSCSII0 returns a callable services token and a parameter list address.

Exit routines that do not receive the IMS standard user exit parameter list
(DFSSXLP) in register 1 on entry, or that do receive DFSSXPL but with a zero value
for field SXPLATOK, must initialize IMS callable services.

Exit routines that receive DFSSXLP in register 1 with a non-zero value for field
SXPLATOK do not need to initialize callable services. These routines should use
the callable services token referenced in SXPLATOK for all calls to IMS callable
services. A routine that receives a token can use the work area pointed to in
SXPLAWRK to get the callable services parameter list.

The callable services token is used to request a specific callable service through a
subsequent call to entry point DFSCSIF0.

The parameter list that is returned in register 1, contains the callable services
token. You need to extract the token and save it, so it does not get overlaid. Then
the parameter list can be formatted for your callable service request. The parameter
list is large enough to contain the parameter lists that accompany your request.

Communicating with IMS

IMS uses the entry registers, parameter list, and exit registers to communicate with
your exit routine. The contents of register 0 are not preserved on entry and exit.

The following two tables list the content of registers on entry and return to and
from DFSCSII0.

Content of registers on entry to DFSCSII0

Register Content

1 ECB Address.

On entry, IMS gives the address of an ECB to each exit routine that can issue
callable service requests. The ECB address must be passed on the DFSCSII0
initialization call. See the section for each exit routine to determine where to
find the ECB address for that exit routine.

13 Address of save area for use by DFSCSII0.

14 Caller's return address.

Chapter 1. Guidelines for writing IMS exit routines 17

|
|
|
|

|

Register Content

15 DFSCSII0 entry point address.

Content of registers on return from DFSCSII0

Register Content

1 Address of parameter list

Offset Description

0 Callable services token, which is four bytes long.

15 Return code

Return code
Meaning

0 Request was successful.

4 Callable services are unavailable.

8 Callable services are unavailable. Initialization failed due to
insufficient storage.

12 Callable services are unavailable. Initialization failed due to errors in
IMS control blocks.

Callable services parameter list
CSPARMS is the callable services parameter list required for all callable service
requests. Callable services use parameters in the list to route control from the
module requesting the service to the service routine that processes the request. The
list is also used to pass return and reason codes from the service to the exit
routine.

Initialize the parameter list with the callable services token and the code of the
callable service you want to use (storage services, control block services, or AOI
services). All other fields should be cleared. If the exit routine issues multiple calls,
you can save the callable services token in a register and restore it to CSPLTOKN
on subsequent calls.

Initialize the following fields:

Field Offset Length Description

CSPLTOKN 0 4 IMS callable services token

CSPLSERV 4 4 IMS callable service code. The values are as follows:

1 Storage services

2 Control block services

3 AOI services

Function-specific parameter list initialization
After specifying which service you want to use in the callable services parameter
list, indicate which function of the service you want to use by initializing the
appropriate function-specific parameter list.
Related reference:
“IMS Callable Storage Services” on page 20

18 Exit Routines

“IMS Callable Control Block Services requests” on page 23
“IMS Callable AOI Services” on page 28

IMS callable service (DFSCSIF0) activation
IMS uses the entry registers, parameter lists, and exit registers to communicate
with your exit routine.

Communicating with IMS

To activate a callable service, issue CALL DFSCSIF0 (callable services parameter
list, function-specific parameter list).

The following tables list the content of registers on entry and exit to and from
DFSCSIF0.

Table 4. Content of registers on entry to DFSCSIF0

Register Content

1 Address of two-word parameter list built by CALL macro.

Offset Description

0 Callable services parameter list address

4 Function-specific parameter list address

13 Address of save area for use by DFSCSIF0

15 DFSCSIF0 entry point address

Register Content

15 Return code

Return code
Meaning

0 Request successful

4 Request unsuccessful

If the request is unsuccessful, refer to the return (CSPLRTRN) and reason code
(CSPLRESN) fields in the callable services parameter list described in the following
table.

Table 5. Content of registers on return from DFSCSIF0

Field Description

CSPLRTRN Return code set with error codes defined in DFSCSPL. For a list of these
codes, refer to “Return codes (CSPLRTRN)” on page 29.

CSPLRESN Reason code set with error codes defined in DFSCSPL. For a complete
description of the reason codes, see one of the following sections:

Reason code
Reference

4 See “Callable service interface reason codes (CSPLRESN)” on
page 30.

8 See “Function-specific parameter list reason codes
(CSPLRESN)” on page 30.

Chapter 1. Guidelines for writing IMS exit routines 19

IMS Callable Storage Services
CSSTRG is the function-specific parameter list used for IMS Callable Storage
Service requests. It is defined by the DFSCSTRG macro.

The function-specific parameter list contains the information that storage services
need to perform the function you requested (get or free storage, load or delete a
module). The function-specific parameter list is also used to return data to the exit
routine.

You must initialize the function-specific parameter list for storage services before
calling DFSCSIF0 to activate storage services. All fields that are not used as input
to DFSCSIF0 should be cleared.

GET storage function
You can obtain user storage for any IMS exit routine that uses IMS callable services
by initializing the GET storage function in CSSTRG.

The storage can be obtained in private storage or CSA with either doubleword or
page boundary alignment. The storage can be requested above (31-bit) or below
(24-bit) the 16 MB line.

To request the GET storage function, initialize the following fields in the
function-specific parameter list (CSSTRG):

Field Offset Length Description

CSSTFUNC 0 4 IMS storage service function code value:

1 = GET storage

CSGTLEN 4 4 Length of storage to obtain

CSGTSP 8 4 Storage subpool identifier values:

v 0 = private storage

v X'FFF' = CSA storage

CSGTLOC C 4 Storage location identifier values:

v 0 = 31-bit storage

v 1 = 24-bit storage

CSGTBNDY 10 4 Storage boundary identifier values:

v 0 = doubleword boundary

v 1 = page boundary

The following field (in CSSTRG) is returned from the GET storage function:

Field Offset Length Description

CSGTADDR 14 4 Storage address

FREE storage function
You can release user storage previously obtained by the GET storage service by
using the FREE storage function.

The requestor specifies the address of the storage service. The storage subpool
(private or CSA) specified on the FREE request must be the same value specified
on the GET request.

20 Exit Routines

To request the FREE storage function, initialize the following fields in the
function-specific parameter list (CSSTRG):

Field Offset Length Description

CSSTFUNC 0 4 IMS storage service function code value:

v 2 = FREE storage

CSFRSTAD 4 4 Address of storage to release

CSFRLEN 8 4 Length of storage to release

CSFRSP

No data is
returned from the
FREE storage
service.

C 4 Storage subpool identifier values:

v 0 = private storage

v X'FFF' = CSA storage

LOAD module function
You can load a module for any IMS exit routine that uses IMS callable services by
initializing the LOAD module function in CSSTRG.

The module can be loaded in private storage or CSA. The module can be loaded
above (31-bit) or below (24-bit) the 16 MB line. The name of the module must be
specified. If the module was loaded previously but you want a new copy of the
module, you can request a load of a new copy.

The LOAD module function can be requested by callers running in cross memory
mode. In this case, the LOAD module function determines if the primary address
space is either CTL or DLI/SAS, and ensures that the call executes in the proper
address space in non-cross memory mode. The LOAD module function restores the
cross memory environment before returning control to the caller.

There might be a noticeable performance impact for cross memory callers issuing
the LOAD module function, because this call requires that the environment be
switched from cross memory mode to non-cross memory mode and then restored.
Use of the LOAD module function should be kept to a minimum for mainline path
exit routines.

To use the LOAD module function, initialize the following fields in the
function-specific parameter list (CSSTRG):

Field Offset Length Description

CSSTFUNC 0 4 IMS storage service function code value:

v 5 = LOAD module

CSLDNAME 4 8 Name of module to load

CSLDSP C 4 Storage subpool identifier values:

v 0 = private storage

v X'FFF' = CSA storage

CSLDLOC 10 4 Module storage location identifier values:

v 0 = 31-bit storage

v 1 = 24-bit storage

Chapter 1. Guidelines for writing IMS exit routines 21

Field Offset Length Description

CSLDUSE 14 4 Module reuse identifier values:

v 0 = use existing copy of module if found

v 1 = load a new copy of module

The following fields are returned from the LOAD module function:

Field Offset Length Description

CSLDMEP 18 4 Module entry point

CSLDMLEN 1C 4 Module length bit 0 is set to one when the module
was previously loaded

DELETE module function
You can use the DELETE module storage service to delete a module previously
obtained by the LOAD storage service.

The requester specifies either the module name or module address. If more than
one copy of the module was loaded, the address should be used instead of the
name to ensure that the correct copy is deleted. The module storage subpool
(private or CSA) specified on the DELETE request must be the same value
specified on the LOAD request.

The DELETE module function can be requested by callers running in cross
memory mode. In this case, the DELETE module function determines if the
primary address space is either CTL or DLI/SAS, and ensures that the call executes
in the proper address space in non-cross memory mode. The DELETE module
function restores the cross memory environment before returning control to the
caller.

There might be a noticeable performance impact for cross memory callers issuing
the DELETE module function, because this call requires that the environment be
switched from cross memory mode to non-cross memory mode and then restored.
Use of the DELETE module function should be kept to a minimum for mainline
path exit routines.

To request the DELETE module function, initialize the following fields in the
function-specific parameter list (CSSTRG):

Field Offset Length Description

CSSTFUNC 0 4 IMS storage service function code value:

6 = DELETE module

CSDLNAME 4 8 Name of module to delete. Either module name or
module address must be specified to delete a
module. The unused field should be cleared. If the
module name is not specified, this field should be
cleared and CSDLEP must be specified.

22 Exit Routines

Field Offset Length Description

CSDLEP C 4 Address of module to delete. If more than one
copy of the module was loaded, delete the
module by specifying the module entry point.
This ensures that the correct copy of the module is
deleted. If both name and address are specified,
the module is deleted using the address. If the
address is not given, the name must be specified
and all copies will be deleted.

CSDLSP 10 4 Storage subpool identifier values:

0 = private storage

X'FFF' = CSA storage

No data is returned from the DELETE module function.

IMS Callable Control Block Services requests
CSCBLK is the function-specific parameter list used for IMS Callable Control Block
Service requests. It is defined by the DFSCCBLK macro.

The function-specific parameter list contains the information control block services
need to perform the function you requested (find or scan a control block). The
function-specific parameter list is also used to return data to the exit routine.

Restriction: Global terminal or user resource information is not available to user
exit DFSLGNX0. Callable services will only return local information for
DFSLGNX0.

If an IMSplex is sharing terminal or user information in Resource Manager (RM),
callable services automatically and transparently return global resource information
to the exit routine. However, if a routine scans resources that are only local to the
current IMS, it can specify the local option (by setting CSFDFLG1). For resources
that do not have global information such as transactions, the local option results in
the same information as the default.

You must initialize the function-specific parameter list for control block services
before calling DFSCSIF0 to activate control block services. All fields that are not
used as input to DFSCSIF0 should be cleared.

FIND control block function
You can find a specific instance of a control block within any IMS exit routine that
uses IMS callable services by initializing the FIND control block function in the
DFSCCBLK macro.

The search type identifies the type of control block to locate. A search type can
include more than one type of control block. A list of the search types is in the
description of the CSFDTYPE field in the following table. The control block name
or identifier is used to find a specific instance of the control block.

Initialize the function-specific parameter list before calling DFSCSIF0 to activate
control block services. All fields that are not used as input to DFSCSIF0 should be
cleared.

Chapter 1. Guidelines for writing IMS exit routines 23

Initializing the function-specific parameter list for FIND

In all instances, you need to initialize the following three fields:

Field Offset Length Description

CSCBFUNC 0 1 IMS control block services function code value:

v 1 = FIND control block

CSFDTYPE 4 4 Control block search type values:

1 = FIND CCB

2 = FIND CNT, or LNB

3 = FIND RCNT

4 = FIND CNT, LNB, or RCNT

5 = FIND SPQB

6 = FIND VTCB

7 = FIND CNT descriptor

8 = FIND LOGON descriptor

9 = FIND USER descriptor

10 = FIND transaction

CSFDFLG1 16 1 Input Flag Byte

CSFDLOC1 EQU X'80'
Indicates that the FIND request is to
return local information only.

Depending on the type of block you want to find, you must initialize the following
fields:

Block type to find Field to initialize

CCB Specify one of the first two fields, and clear the unused field.
The LTERM name field must always be specified.

CSFDEID = EBCDIC CCB identifier
CSFDBID = Binary CCB identifier
CSFDNAME = associated LTERM name

CNT or LNB Use the LTERM name to locate a specific CNT or LNB.

CSFDNAME = LTERM name

RCNT Use the LTERM name to locate a specific RCNT.

CSFDNAME = LTERM name

CNT, LNB, or RCNT Use the LTERM name to locate a specific CNT, LNB, or RCNT.

CSFDNAME = LTERM name

SPQB Use the USER name to locate a specific SPQB.

CSFDNAME = USER name

VTCB Either the node name alone or the node and user name are used
to locate a specific VTCB. If the user name is not used on the
request, clear the unused field.

CSFDNODE = Node name
CSFDUSER = User name

CNT, LOGON, or USER
Descriptor

Specify the name of the descriptor you want to locate.

CSFDNAME = CNT, LOGON, or USER descriptor name

Transaction Specify the transaction code you want to find.

CSFDNAME = Transaction name

24 Exit Routines

Output returned from FIND Control Block Services

Depending on the type of search specified, one of the following is returned in the
CSFDBLKA field in the function-specific parameter list:

Search type Output from service

FIND CCB CCB address

FIND CNT or LNB CNT or LNB address

FIND RCNT RCNT address

FIND CNT, LNB, or RCNT CNT, LNB, or RCNT address

FIND SPQB SPQB address

FIND VTCB CLB address

FIND CNT descriptor USRD address

FIND LOGON descriptor CLB address

FIND USER descriptor USRD address

FIND Transaction SMB address

FIND transaction also returns the PDIR address in
field CSFCBLK2.

SCAN control block function
You can use the SCAN control block function to scan control blocks of a certain
type.

The first time the SCAN function is activated, the current control block address
should be 0. SCAN returns the first control block that meets the search criteria. The
SCAN function an be subsequently activated to locate additional control blocks.
Subsequent searches start where the previous scan left off.

On subsequent SCAN requests, the current block address is passed back to the
service. The search starts with the current control block to locate the next control
block meeting the criteria. The blocks are not retrieved in alphabetic sequence.

Subsections:
v “Qualifying the scan”
v “Initializing the function-specific parameter list for SCAN” on page 26
v “Output returned from SCAN Control Block Services” on page 27

Qualifying the scan

To further qualify the scan, a generic name or a name containing wild cards can be
specified for CNT, LNB, RCNT, SPQB, and VTCB control block types.
v A generic name consists of one or more characters of the name followed by an

asterisk. Generic names must be padded with blanks.
For example, assume valid names are DFSAAAAA, DFSZZZZZ, and
DFSABBBB. Multiple scan requests using the generic name 'DFSA*' can be used
to obtain the control block addresses for DFSAAAAA and DFSABBBB. In this
case, DFSZZZZZ would not be returned to the requester.

Chapter 1. Guidelines for writing IMS exit routines 25

v A wild card character is represented by the '%' character. One or more wild
cards can replace characters within the name when that position in the name can
be any character.
For example, assume valid names are DFSAABBB, DFSZZBBB, and DFSABCDE.
Multiple scan requests using the name DFS%%BBB containing wild card
characters in positions 4 and 5 would return control block addresses for
DFSAABBB and DFSZZBBB. DFSABCDE would not be returned to the requester.

You must initialize the function-specific parameter list before calling DFSCSIF0 to
activate control block services. All fields that are not used as input to DFSCSIF0
should be cleared.

Initializing the function-specific parameter list for SCAN

To request a SCAN and search type, you always need to initialize the first two
fields as follows:

Field Offset Length Description

CSCBFUNC 0 4 IMS control block service function code value:

v 2 = SCAN control block

CSSCTYPE 4 4 Control block search type indicator values:

1 = SCAN CCB

2 = SCAN CNT or LNB

3 = SCAN RCNT

4 = SCAN CNT, LNB, or RCNT

5 = SCAN SPQB

6 = SCAN VTCB

7 = not used

8 = SCAN LOGON descriptor

9 = SCAN USER descriptor

10 = not used

CSSCFLG1 20 1
CSSCLOC1 EQU X'80'

Indicates that the SCAN request is to
return local information only

Depending on the type of search you want, you might also need to initialize one
or more of the following fields in the function-specific parameter list.

To scan Initialize

CCB Specify whether you want to scan for the first CCB or to start the
scan at the current CCB.

CSSCCBLK = Current CCB address or zero

CNT or LNB Specify whether you want to scan for the first CNT or LNB or to
start the scan at the current CNT or LNB. Use the LTERM name to
narrow the scope of the scan. If the LTERM name is not used, clear
the field.

CSSCCBLK = Current CNT or LNB address or zero
CSSCNAME = LTERM name

26 Exit Routines

To scan Initialize

RCNT Specify whether you want to scan for the first RCNT or to start the
scan at the current RCNT. Use the LTERM name to narrow the
output of the scan. If the LTERM name is not used, clear the field.

CSSCCBLK = Current RCNT address or zero
CSSCNAME = LTERM name

CNT, LNB, or RCNT Specify whether you want to scan for the first CNT, LNB, or RCNT,
or to start the scan at the current CNT, LNB, or RCNT. Use the
LTERM name to narrow the output of the scan. If the LTERM name
is not used, clear the field.

CSSCCBLK = Current CNT, LNB, or RCNT address,
or zero

CSSCNAME = LTERM name

SPQB Specify whether you want to scan for the first SPQB or to start the
scan at the current SPQB. Specify the USER name to narrow the
output of the scan. If the USER name is not specified, clear the field.

CSSCCBLK = Current SPQB address or zero
CSSCNAME = USER name

VTCB Specify whether you want to scan for the first VTCB or to start the
scan at the current CLB. Specify either the NODE name alone, or
the NODE and USER name to narrow the output of the scan. If the
name fields are not specified, clear the fields.

CSSCCBLK = Current CLB address or zero
CSSCNODE = NODE name
CSSCUSER = USER name

LOGON Descriptor Specify whether you want to scan for the first LOGON descriptor or
to start the scan at the current LOGON descriptor.

CSSCCBLK = Current LOGON descriptor address
or zero

USER Descriptor Specify whether you want to scan for the first USER descriptor or to
start the scan at the current USRD.

CSSCCBLK = Current USRD address or zero

Output returned from SCAN Control Block Services

Depending on the type of scan specified, one of the following is returned in the
CSSCNBLK field in the function-specific parameter list:

Search type Output from service

SCAN CCB Next CCB address

SCAN CNT or LNB Next CNT or LNB address

SCAN RCNT Next RCNT address

SCAN CNT, LNB, or RCNT Next CNT, LNB, or RCNT address

SCAN SPQB Next SPQB address

SCAN VTCB Next CLB address

SCAN LOGON descriptor CLB address of next LGND

SCAN USER descriptor Next USRD address

Chapter 1. Guidelines for writing IMS exit routines 27

IMS Callable AOI Services
DFSCAOI is the function-specific parameter list used for IMS Callable AOI Service
requests. The DFSCAOI macro defines these requests.

The function-specific parameter list contains the information that AOI services
needs to perform the function you requested (insert, enqueue, or cancel a
message). The function-specific parameter list is also used to return data to your
exit routine.

You must initialize this function-specific parameter list before calling DFSCSIF0 to
activate AOI callable services. All fields that are not used as input to DFSCSIF0
should be cleared.

INSERT function
The INSERT function inserts the first, or a subsequent, message segment into a
message buffer. The message segments are not available to the AO application until
an enqueue is issued specifying an AOI token.

To request the INSERT function, initialize the following fields in the
function-specific parameter list:

Field Offset Length Description

CAOIFUNC 0 4 IMS AOI service function code value:

1 = INSERT message segment

CAOIDMTK 4 4 Directed message token

CAINMSEG 8 4 Address of message segment

ENQUEUE function
The ENQUEUE function inserts the last or only message segment into the message
buffer, enqueues this message segment to the AOI token the requester has
specified, and then makes the entire message available to the AO application.

If ENQUEUE is requested with a message segment address of 0, all previously
inserted message segments are made available to the AO application.

To request the ENQUEUE function, initialize the following fields in the
function-specific parameter list (DFSCAOI):

Field Offset Length Description

CAOIFUNC 0 4 IMS AOI service function code value:

2 = ENQUEUE segment to AOI token

CAOIDMTK 4 4 Directed message token

CAENMSEG 8 4 Address of message buffer

CAENTCNT 12 4 Number of AOI token names in the token list
addressed by the next word in this parameter list

28 Exit Routines

Field Offset Length Description

CAENTLST 16 4 Address of a token list. Each 12-byte entry in the
list contains the following:

Offset Description

+0 The 8-byte alphanumeric AOI token name
to which the message is to be enqueued

+8 The 4-byte code from the ENQUEUE
function indicating whether the message
was successfully enqueued to the AOI
token. Possible codes are:

Code Meaning

0 Enqueue to AOI token was
successful.

1 Enqueue was unsuccessful. AOI
token name was blanks.

2 Enqueue was unsuccessful. AOI
token name contained invalid
characters.

3 Enqueue was unsuccessful.
Enqueue could not get AOIP
storage.

4 Enqueue was unsuccessful. An
internal latch error occurred.

CANCEL function
The CANCEL function cancels messages that have been inserted into the message
buffer but not yet enqueued to the AOI token. Canceled messages are not made
available to the application program.

To request the CANCEL function, initialize the following fields:

Field Offset Length Description

CAOIFUNC 0 4 IMS AOI service function code value:

3 = CANCEL message segments

CAOIDMTK 4 4 Directed message token

Callable services return and reason codes
IMS callable services provides return and reason codes that describe why a callable
service request did not complete successfully.

Callable services return and reason codes provide reasons for why function-specific
parameter list, interface, and service processing errors occurred. These codes are in
hexadecimal format.

Return codes (CSPLRTRN)
Return codes in field CSPLRTPN indicate why the request did not complete
successfully.

Chapter 1. Guidelines for writing IMS exit routines 29

Return codes are in field CSPLRTPN in the callable services parameter list.
Following are the return codes indicating why the request did not complete
successfully:

Return code Meaning

X'04' A callable service interface error occurred. The service request was not
processed.

X'08' Function-specific parameter list error. While processing the callable service
request, an error occurred in the function-specific parameter list.

X'20' Service processing error. An error occurred while processing the callable
service request. The error could be a user error or an internal system error.

Callable service interface reason codes (CSPLRESN)
When the return code in the field CSPLRTRN is X'04', callable service interface
reason codes in the field CSPLRESN explain why a callable service interface error
occurred.

Following are the callable service interface reason codes:

Reason code Meaning

X'04' Callable services token is 0. The field CSPLTOKN in the callable services
parameter list DFSCSPL is 0.

X'08' Callable services token is invalid. The field CSPLTOKN in the callable
services parameter list DFSCSPL does not contain a valid callable services
token.

X'0C' Service code is not specified. The field CSPLSERV in the callable services
parameter list DFSCSPL is 0.

X'10' Service code is invalid. The field CSPLSERV in the callable services
parameter list DFSCSPL does not contain a valid callable service code. The
service code is too large.

X'14' Service is not supported. The field CSPLSERV in the callable services
parameter list DFSCSPL contains a value for a callable service code that is
not supported in the current environment or is a reserved function.

X'30' Function code is not specified. The function code field in the function-specific
parameter list is 0.

X'34' Function code is invalid. The function code field in the function-specific
parameter list contains a function code that is too large.

X'38' Function is not supported. The function code field in the function-specific
parameter list contains a value for a callable service function code that is not
supported in the current environment or is a reserved function.

Function-specific parameter list reason codes (CSPLRESN)
When the return code in the field CSPLRTRN is 8 or 20, an error occurred in the
function-specific parameter list. The function-specific parameter list reason codes
are stored in the field CSPLRESN and are described by service and by function.

GET storage service reason codes
When an error occurs in the GET storage service function-specific parameter list,
the return code in the field CSPLRTRN is 8 or 20. The reason codes are stored in
the field CSPLRESN and are described by service and by function.

30 Exit Routines

Following are the reason codes for GET function parameter errors:

When CSPLRTRN = 8

Reason code Meaning

X'4' Invalid subpool parameter. The field CSGTSP in the function-specific
parameter list DFSCSTRG contains an invalid subpool value.

X'8' Invalid location parameter. The field CSGTLOC in the function-specific
parameter list DFSCSTRG contains an invalid storage location value.

X'C' Invalid boundary parameter. The next CSGTBNDY in the function-specific
parameter list DFSCSTRG contains an invalid storage boundary value.

X'10' Length parameter not specified. The field CSGTLEN in the function-specific
parameter list DFSCSTRG is 0.

When CSPLRTRN = 20

If you receive any reason code not listed in the following table, contact IBM
Software Support.

Reason code Meaning

X'06 00 00 04' Storage could not be allocated.

X'06 00 00 08' Parameter list error.

FREE storage service reason codes
When an error occurs in the FREE storage service function-specific parameter list,
the return code in the field CSPLRTRN is 8 or 20. The reason codes are stored in
the field CSPLRESN and are described by service and by function.

Following are the reason codes for FREE function parameter errors:

When CSPLRTRN = 8

Reason code Meaning

X'4' Invalid subpool parameter. The field CSFRSP in the function-specific
parameter list DFSCSTRG contains an invalid subpool value.

X'8' Address parameter not specified. The field CSFRSTAD in the
function-specific parameter list DFSCSTRG is 0.

X'C' Length parameter not specified. The field CSFRLEN in the function-specific
parameter list DFSCSTRG is 0.

When CSPLRTRN = 20

If you receive any reason code not listed in the following table, contact IBM
Software Support.

Reason code Meaning

X'07 00 00 04' Storage was not released. A value in the second byte of the reason code
is provided by the associated z/OS Service. For example, the 04 in the
second byte of reason code 07 04 00 04 is returned from z/OS
FREEMAIN. Additional information can be found in the IMODULE
FREESTOR Return Codes section of IMS Version 13 Messages and Codes,
Volume 4: IMS Component Codes.

Chapter 1. Guidelines for writing IMS exit routines 31

Reason code Meaning

X'07 00 00 08' Parameter list error.

X'07 00 00 0C' Unable to locate storage descriptor block. Storage address might be
invalid or storage subpool specification might be incorrect.

LOAD storage service reason codes
When an error occurs in the LOAD storage service function-specific parameter list,
the return code in the field CSPLRTRN is 8 or 20. The reason codes are stored in
the field CSPLRESN and are described by service and by function.

Following are the reason codes for LOAD function parameter errors:

When CSPLRTRN = 8

Reason code Meaning

X'4' Invalid subpool parameter. The field CSLDSP in the function-specific
parameter list DFSCSTRG contains an invalid subpool value.

X'8' Invalid location parameter. The field CSLDLOC in the function-specific
parameter list DFSCSTRG contains an invalid module location value.

X'C' Invalid use parameter. The field CSLDUSE in the function-specific parameter
list DFSCSTRG contains an invalid module reuse value.

X'10' Name parameter not specified. The field CSLDNAME in the function-specific
parameter list DFSCSTRG does not contain a module name.

X'14' The caller is running in cross memory mode, and the primary address space
is not CTL or DLI.

When CSPLRTRN = 20

If you receive any reason code not listed in the following table, contact IBM
Software Support.

Reason code Meaning

X'02 00 00 04' Module was not found.

X'02 00 00 08' DFSMODU0 allocation error.

X'02 00 00 0C' BLDL/FETCH allocation error.

X'02 00 00 10' FETCH/BLDL I/O error occurred loading the requested module.

X'02 00 00 24' DCB was not open for BLDL.

X'02 00 00 28' Caller was authorized, but module was found in unauthorized library.

DELETE storage service reason codes
When an error occurs in the DELETE storage service function-specific parameter
list, the return code in the field CSPLRTRN is X'8' or X'20'. The reason codes are
stored in the field CSPLRESN and are described by service and by function.

Following are the reason codes for DELETE function parameter errors:

32 Exit Routines

When CSPLRTRN = 8

Reason code Meaning

X'4' Invalid subpool parameter. The field CSDLSP in the function-specific
parameter list DFSCSTRG contains an invalid subpool value.

X'8' Name and address was not specified. The field CSDLNAME in the
function-specific parameter list DFSCSTRG does not contain a module name,
and CSDLEP does not contain a module address.

X'C' The caller is running in cross memory mode, and the primary address space
is not CTL or DLI.

When CSPLRTRN = 20

If you receive any reason code not listed in the following table, contact IBM
Software Support.

Reason code Meaning

X'04 00 00 04' Module was not found.

X'04 00 00 0C' Module storage was not released.

FIND control block service reason codes
When an error occurs in the FIND control block service function-specific parameter
list, the return code in the field CSPLRTRN is 8 or 20.

Following are the reason codes for FIND function parameter errors:

When CSPLRTRN = 8

Reason code Meaning

X'4' FIND type was not specified. The field CSFDTYPE in the function-specific
parameter list DFSCCBLK is 0.

X'8' FIND type was invalid. The field CSFDTYPE in the function-specific
parameter list DFSCCBLK does not contain a valid control block search type
value. The search type value is too large.

X'C' CCBID was not specified. The field CSFDEIB in the function-specific
parameter list DFSCSTRG does not contain an EBCDIC CCB identifier, and
CSFDBID does not contain a binary CCB identifier.

X'10' Control block name was not specified. The field CSFDNAME in the
function-specific parameter list DFSCCBLK does not contain a name.

When CSPLRTRN = 20

Following are the reason codes you might get when searching CCB, CNT, LNB,
RCNT, SPQB, CNT, descriptor and USER descriptor control block types:

Reason code Meaning

X'4' Block was not found.

X'40 00 00 00' CBTS latch held, cannot process request.

Following are the reason codes you might get when searching VTCB and LOGON
descriptor control block types:

Chapter 1. Guidelines for writing IMS exit routines 33

Reason code Meaning

X'4' Cannot find CLB with VTAM CID or node/descriptor name.

X'8' NO VTCBs/LGNDs are in system.

X'40 00 00 00' CBTS latch held, cannot process request.

The following are the reason codes that can be encountered when searching for a
transaction control block type.

Reason code Meaning

X'8' Transaction was not found.

X'40 00 00 00' CBTS latch held, cannot process request.

SCAN control block service reason codes
When an error occurs in the SCAN control block service function-specific
parameter list, the return code in the field CSPLRTRN is 8 or 20.

Following are the reason codes for SCAN function parameter errors:

When CSPLRTRN = 8

Reason code Meaning

X'4'
SCAN type was not specified. The field CSSTYPE in the function-specific
parameter list DFSCCBLK is 0.

X'8'

SCAN type was invalid. The field CSSCTYPE in the function-specific
parameter list DFSCCBLK does not contain a valid control block search type
value. The search type value is too large or is a reserved function.

When CSPLRTRN = 20

Following are the reason codes you might get when searching CCB, CNT, LNB,
RCNT, SPQB, and USER descriptor control block types:

Reason code Meaning

X'4' End of queue was found.

X'8' No block is in system.

X'14' Bad INUSE call. Verify that the CSSCCBLK and CSSCNAME fields are
properly initialized.

X'18' Bad NOUSE call. Verify that the CSSCCBLK and CSSCNAME fields are
properly initialized.

X'40 00 00 00' CBTS latch held, cannot process request.

Following are the reason codes you might get when searching VTCB and LOGON
descriptor control block types:

Reason code Meaning

X'4' Cannot find VTCB matching arguments.

X'8' No VTAM nodes were in system.

X'40 00 00 00' CBTS latch held, cannot process request.

34 Exit Routines

INSERT AOI service reason codes
When an error occurs in the INSERT AOI service function-specific parameter list,
the return code in the field CSPLRTRN is 8 or 20.

Following are the reason codes for INSERT function parameter errors:

When CSPLRTRN = 8

Reason code Meaning

X'4' Directed message token was 0.

X'8' Directed message token was invalid.

X'C' Message segment address was 0.

X'10' Message segment length (LL field) was 0.

When CSPLRTRN = 20

Reason code Meaning

X'4' IMS could not get the storage required to process the call.

ENQUEUE AOI service reason codes
When an error occurs in the ENQUEUE AOI service function-specific parameter
list, the return code in the field CSPLRTRN is 8.

Following are the reason codes for ENQUEUE function parameter errors:

When CSPLRTRN = 8

Reason code Meaning

X'4' Directed message token was 0.

X'8' Directed message token was invalid.

X'10' Message segment address was specified, but segment length (LL field) was 0.

X'14' AOI token count field was 0.

X'18' AOI list token address was 0.

X'1C' One or more tokens was processed successfully.

X'20' No tokens were processed successfully.

CANCEL AOI Service reason codes
When an error occurs in the CANCEL AOI Service function-specific parameter list,
the return code in the field CSPLRTRN is 8.

Following are the reason codes for CANCEL function parameter errors:

When CSPLRTRN = 8

Reason code Meaning

X'4' Directed message token was 0.

X'8' Directed message token was invalid.

X'C' No message exists to cancel.

Chapter 1. Guidelines for writing IMS exit routines 35

Callable services request example
An exit routine could use IMS callable services using DFSCSII0.

The following example depicts how an exit routine could use IMS callable services.
In the example, the storage returned from DFSCSII0 is divided into three areas.
These areas are for the parameter lists used for the call to DFSCSIF0. The first area
is used for the z/OS CALL parameter list, the second for the IMS callable service
parameter list, and the third for the function specific parameter list. The labels,
CSICLLEN and CSPLPLEN, used in the examples are defined as EQU statements
in the macro DFSCSIPL. These labels represent the length of the z/OS parameter
list built by the CALL macro and the length of the IMS callable services parameter
list.

* *
* -------------------------------- *
* GETSTOR - GET STORAGE SUBROUTINE *
* -------------------------------- *
* *
* THIS SUBROUTINE INVOKES IMS callable services TO *
* GET WORKING STORAGE. THE CALLER PASSES THE REQUIRED *
* STORAGE LENGTH. THE SUBROUTINE THEN OBTAINS PRIVATE, *
* 31-BIT STORAGE ON A DOUBLEWORD BOUNDARY. *
* *
* *
* INPUT REGISTERS: *
* R8 = REQUESTED STORAGE LENGTH *
* R9 = ECB ADDRESS *
* R10 = LINKAGE REGISTER *
* CALLED BY BAL 10,GETSTOR *
* *
* OUTPUT REGISTERS: *
* R1 = STORAGE ADDRESS *
* R9 = ECB ADDRESS *
* R10 = LINKAGE REGISTER *
* R15 = RETURN CODE *
* 0 - CALL COMPLETED SUCCESSFULLY *
* NON-ZERO - STORAGE REQUEST FAILED *
* RETURN CODE FROM IMS CALLABLE STORAGE *
* SERVICES - GET STORAGE FUNCTION *
* *
* REGISTER USAGE: *
* R0 = WORK REGISTER *
* R1 = WORK REGISTER *
* R2 = IMS CALLABLE SERVICE TOKEN *
* R3 = IMS callable services PARAMETER LIST *
* R4 = IMS STORAGE SERVICES PARAMETER LIST *
* R5 = z/OS CALL PARAMETER LIST *
* R8 = REQUESTED STORAGE LENGTH *
* R9 = ECB ADDRESS *
* R14 = WORK REGISTER *
* R15 = WORK REGISTER *
* *

GETSTOR DS 0H

SPACE

* INVOKE CALLABLE SERVICES INITIALIZATION ENTRY POINT *
* DFSCSII0, TO OBTAIN THE CALLABLE SERVICE TOKEN AND *
* PARAMETER LIST STORAGE. *

LR 1,9 ECB ADDRESS
CALL DFSCSII0 INVOKE INIT ENTRY POINT
LTR 15,15 CALL SUCCESSFUL?

36 Exit Routines

BNZ GSTREXIT NO, ERROR RETURN
SPACE

* R1 CONTAINS A PARAMETER LIST ADDRESS. *
* OFFSET 0 IN THE LIST CONTAINS THE 4-BYTE CALLABLE *
* SERVICE TOKEN. EXTRACT THE TOKEN FROM THE PARAMETER *
* LIST FOR USE ON THE GET STORAGE REQUEST. *

LR 5,1 COPY STORAGE ADDRESS
L 2,0(,5) CALLABLE SERVICE TOKEN
SPACE

* R5 CONTAINS THE ADDRESS TO USE FOR THE PARAMETER *
* LIST FOR THE z/OS CALL MACRO. USING THE EQU LABELS *
* IN MACRO DFSCSIPL, CARVE THE STORAGE RETURNED BY *
* DFSCSII0 INTO SEPARATE PARAMETER LISTS TO BE USED *
* ON THE CALL TO DFSCSIF0. *

LA 3,CSICLLEN(,5) CALLABLE SERVICE PARM LIST ADDR
LA 4,CSPLPLEN(,3) STORAGE SERVICES PARM LIST ADDR
SPACE

* PARAMETER LIST RETURNED FROM DFSCSII0 HAS BEEN CARVED INTO *
* THREE PARTS: *
* *
* R5 R3 R4 *
* -- *
* | Z/OS CALL AREA | IMS CALL SVC AREA | STG SVC AREA | *
* -- *
* *

SPACE

* INITIALIZE CALLABLE SERVICE PARAMETER LIST. *
* *
* ENTIRE LIST IS CLEARED SO ALL RESERVED AND NON-INPUT *
* FIELDS (SUCH AS THE RETURN AND REASON CODES) *
* ARE SET TO ZERO. THE CALLABLE SERVICE CODE IS *
* INITIALIZED TO REQUEST STORAGE SERVICES *
* AND THE CALLABLE SERVICE TOKEN IS SAVED IN THE LIST. *

USING CSPARMS,3 CALLABLE SERVICES PARM LIST DSECT
XC CSPARMS(CSPLPLEN),CSPARMS CLEAR CALLABLE SERVICES LIST
LA 0,CSPLSTRG STORAGE SERVICE CODE
ST 0,CSPLSERV INSERT SERVICE CODE IN LIST
ST 2,CSPLTOKN INSERT CALLABLE SERVICE TOKEN
SPACE

* INITIALIZE STORAGE SERVICE PARAMETER LIST *
* *
* ENTIRE LIST IS CLEARED SO ALL RESERVED AND NON-INPUT *
* FIELDS (SUCH AS THE RETURN AND REASON CODES) *
* ARE SET TO ZERO. THE STORAGE SERVICES *
* FUNCTION CODE IS INITIALIZED TO REQUEST THE GET STORAGE *
* FUNCTION. PARAMETERS ARE INITIALIZED TO OBTAIN 31-BIT, *
* PRIVATE STORAGE IN SUBPOOL 0 ON A DOUBLEWORD BOUNDARY. *
* *

USING CSSTRG,4 STORAGE SERVICES PARM LIST DSECT
XC CSSTRG(CSGTPLEN),CSSTRG CLEAR STORAGE SERVICES LIST
LA 0,CSSTGET GET STORAGE FUNCTION CODE
ST 0,CSSTFUNC INIT FUNCTION CODE PARAMETER
SPACE
ST 8,CSGTLEN INIT STORAGE LENGTH PARAMETER
SPACE
LA 0,CSGTPRI PRIVATE STORAGE INDICATOR
ST 0,CSGTSP INIT STORAGE SUBPOOL INDICATOR

Chapter 1. Guidelines for writing IMS exit routines 37

SPACE
LA 0,CSGT31B 31-BIT STORAGE INDICATOR
ST 0,CSGTLOC INIT STORAGE LOCATION PARAMETER
SPACE
LA 0,CSGTDBLW DOUBLE WORD BOUNDARY INDICATOR
ST 0,CSGTBNDY INIT STORAGE BOUNDARY PARAMETER
SPACE

* THE CALLABLE SERVICES PARAMETER LIST HAS BEEN INITIALIZED *
* TO INVOKE IMS STORAGE SERVICES. THE STORAGE SERVICES *
* PARAMETER LIST HAS BEEN INITIALIZED TO OBTAIN USER STORAGE. *
* ISSUE THE IMS CALLABLE SERVICE REQUEST TO OBTAIN STORAGE. *

CALL DFSCSIF0,((3),(4)),MF=(E,(5))
LTR 15,15 STORAGE REQUEST SUCCESSFUL?
BNZ GSTREXIT NO, RETURN TO CALLER
SPACE
L 1,CSGTADDR STORAGE ADDRESS
SPACE

* RETURN TO CALLER *

GSTREXIT DS 0H

BR 10 RETURN TO CALLER
LTORG
DFSCSIPL

Control block usage
Review this directory of the control blocks, their associated fields that are intended
for access by exit routines, and restrictions of their use.

If only certain fields within a control block are intended for your use, they are
listed next to the control block name in the following table. If a field does not
appear next to the control block name, it is not intended for your use. Unless
otherwise specified, the only information that is part of the interface for exit
routines is the control block name and any specific fields associated with that
control block. For a field that is part of the interface, the only information that is
part of the interface for exit routines is the named field.

The following control blocks and their associated fields and flags, shown in the
following table, are intended for use as, or as part of, a product-sensitive interface.
Flags are enclosed in parenthesis next to their associated fields.

Table 6. Control blocks and associated fields and flags

Control block name Fields and flags intended for use

CCB CCBNUMB

CIB CIBMNAME, CIBDTYP (CIBDNDS)

CLB CLBNAME, CLBCURR, CLBCNTQB

CNT, LNB CNTDEQCT, CNTENQCT, CNTNAME, CNTDQCT, CNTCTBPT,
CNTCNTPT

CTB CTBCTT, CTBTERM, CTBFLAG1 (CTB1SIGN, CTB1PRES),
CTBFLAG2 (CTB2LOCK, CTB2TEST, CTB2EXCL), CTBFLAG3
(CTB3SEG1), CTBACTL (CTBAEOM, CTBAINC), CTBFEAT,
CTBINCT, CTBOUTCT, CTBCNT, CTBCIBPT, CTBPRSTN,
CTBCNTPT, CTBFLAG6 (CTB6SDON, CTB6TRNI), CTBUSID,
CTBOUSID

38 Exit Routines

Table 6. Control blocks and associated fields and flags (continued)

Control block name Fields and flags intended for use

CTT CTTDEVIC (CTTD3286, CTTDTYP1, CTTDLU4), CTTSEND,
CTTEDIT, CTTIEDIT, CTTOPT2 (CTT2DIT), CTTOPT5 (CTT5DYN)

CVB CVBCCMD

DFSPDA PDAPDE, PDANUM, PDADORG, PDALSTRL, PDAUSR1,
PDAUSR2, PDAUSR3, PDAUSR4, PDAUSR5, PDAPLEN

DFSPDAE PDAPN, PDASTRG, PDAPID, PDARAP, PDABLKR, PDASTRGL,
PDAFLAG1 (PDAF101), PDAELEN

DFSPECA PECDBN, PECRC, PECFDB, PECFDB2, PECKEY, PECCPID,
PECKEYL, PECACT, PECFLAG1 (PEC1NEWP), PECFLAG2,
PECUSER

FEIB FEIBOFLG (FEIBRPQ1, FEIBERP, FEIBTMED), FEIBMSGN,
FEIBLTRM, FEIBMSG, FEIBUNID, FEIBNDST, FEIBERPN, FEIBLDST,
FEIBULNG FEIBUSER, FEIBIMID

MFSFLDE FLDFLAG (FLDOPT, FLDEXIT, FLDATTR, FLDEATR), FLDELTH,
FLDVECT, FLDLTH, FLDADDR (OPT3LTH, OPT3ID, OPT3DATA)

MFSSEGE SEGFLAG, SEGOPT (SEGEXIT, SEGECHO), SEGVECT, SEGLTH,
SEGFLDRC (SEGDL)

MSNB MSNFLG1 (MSN1DEQ), MSNFLG3 (MSN3DQND, MSN3DQLM)

PDIR PDIRSYM, PDIRCODE (PDIRLOCK, PDIRNOSC, PDIRSCHD,
PDIRDBST, PDIRBALG), PDIROPTC (PDIRRETN, PDIRGPSB,
PDIRDOPT, PDIRPARL, PDIRBAD), PDIRFLG3 (PDIRIFPR,
PDIRIFPM, PDIRIFPU)

RCNT CNTDEQCT, CNTENQCT, CNTNAME, CNTDQCT

SCD SSCDIMID, SCDQTU, SCDQTL, SCDSSTYP (SCDSSDBC,
SCDSSDCC), SSCDIMSR, SSCDIMSL

SMB SMBDEQCT, SMBENQCT, SMBTRNCD, SMBSTATS (SMBSRESP,
SMBSMULT, SMBSNOQU, SMBNOSC, SMBLOCK, SMBSQERR),
SMBFLAG1 (SMB1CONV, SMB1UPP, SMBCPIC, SMB1NORE,
SMB1INIT), SMBFLAG2 (SMB2DRRT, SMBFPPTX, SMBFPXCL,
SMB2SMS, SMB2RMT), SMBFLAG3 (SMBBAD, SMB3WFI),
SMBFLAG5 (SMBINQN, SMB5TLS), SMBPRIOR, SMBCLASS,
SMBSPAL, SMBLMTCT, SMBCOUNT, SMBSIDR, SMBSIDL,
SMBMXRGN, SMBPARLM, SMBAOIFL (SMBTCMDA, SMBNOSCH),
SMBPDIRN, SMBRCTEN

SPQB, USRD SPQBHSQN

The following table provides a list, by exit, of the control blocks that are intended
for use as, or as part of, a product-sensitive interface:

Table 7. Exit routines and associated control blocks

Exit name or type Associated control blocks

DBFHAGU0 SCD

DBFHDC40 none

DBFHDC44 none

DBFUMSE1 none

DBFLHSH0 none

DFSAOE00 none

Chapter 1. Guidelines for writing IMS exit routines 39

|

Table 7. Exit routines and associated control blocks (continued)

Exit name or type Associated control blocks

DFSAOUE0 CLB, CTB, SCD

BSEX none

DFSCCMD0 CLB, CTB, CTT, CVB, SCD

DFSCKWD0 none

DFSCMPX0 none

DFSCMTU0 none

DFSCMUX0 MSNB

DFSCNTE0 CLB, CNT, CTB

DFSCONE0 CCB, CTB, PDIR, SCD, SPQB, SMB

DFSCSGN0 CTB, SCD

DFSCSMB0 CLB, CTB

DFSCTRN0 CLB, CNT, CTB, PDIR, SCD, SMB

DFSCTSE0 CNT, CTB, PDIR, SCD, SMB

DFSCTTO0 CLB, CNT, CTB, SCD

DFSFDOT0 none

DFSFEBJ0 FEIB, PDIR, SMB

LOGWRT none

DFSFTFX0 none

DFSGMSG0 none

DFSGPIX0 PDIR, SMB

DFSHDC40 DMBDACS

DFSINSX0 CLB, SCD

DFSINTX0 CLB, SCD

DFSI7770 CLB, CNT, CTB, SCD

DFSLGFX0 CLB, SCD

DFSLGNX0 CLB, SCD

DFSLUEE0 none

DFSME000 MFSFLDE

DFSME127 MFSSEGE, CLB

DFSMSCE0 SCD

NDMX none

DFSO7770 CLB, CTB, CTT, SCD

DFSPIXT0 CTB, PDIR, SMB

PPUE none

DFSPRE60 none

DFSPRE70 none

DFSPSE00 DFSPECA, DFSPDA, DFSPDAE

DFSQSPC0 PDIR, SCD, SMB

DFSSBUX0 none

DFSSGFX0 CLB, SCD

40 Exit Routines

|

|

|

|

|

Table 7. Exit routines and associated control blocks (continued)

Exit name or type Associated control blocks

DFSSGNX0 CIB, CLB, CTB, CTT, SCD

DFSSIML0 CLB, CNT, CTB, CTT, SCD

DFSS7770 CLB, CNT, CTB, CTT, SCD

DFSTXIT0 none

DFSYORU0 none

OTMAIOED none

OTMAYPRX none

DFS29800 CLB, CNT, CTB, PDIR, SCD, SMB

DFS36010 CLB, CTB, SCD

DSPCEXT0 none

Customization exit routines
IMS provides sample exit routines and programs for most exit points.

The location of the sample exit routines and programs are listed in the following
table.

Table 8. Exit routines and their location

Exit routine or user
exit type Location Description

BSEX No sample Build Security Environment exit
routine

DBFHAGU0 IMS.SDFSSRC IMS Fast Path Sample User
Input Exit

DBFHDC40 /
DBFHDC44

IMS.SDFSSRC IMS/FP Randomizing Exit

DBFLHSH0 IMS.SDFSSRC Data Entry Database Resource
Name hash routine

DBFUMSE1 Sample provided in Knowledge
Center

DEDB Sequential Dependent
Scan utility exit routine

DFSAOE00 IMS.SDFSSMPL Automated Operator exit routine
sample

DFSAOUE0 IMS.SDFSSMPL AOI User exit routine sample
program

DFSBXITA IMS.SDFSSMPL CEEBXITA Assembler user exit
routine for IMS

DFSCCMD0 IMS.SDFSSMPL Command Authorization user
exit routine sample

DFSCKWD0 IMS.SDFSSRC Command Keyword Table

DFSCMPX0 IMS.SDFSSMPL User-data Compression program

DFSCMTU0 No sample User Message Table

DFSCMUX0 IMS.SDFSSRC Message Control/Error exit
routine

Chapter 1. Guidelines for writing IMS exit routines 41

|

|
|

|||
|

Table 8. Exit routines and their location (continued)

Exit routine or user
exit type Location Description

DFSCNTE0 IMS.SDFSSMPL Sample CNT Destination edit
routine

DFSCONE0 IMS.SDFSSMPL Conversational user exit routine

DFSCSGN0 IMS.SDFSSMPL COMM / SIGN exit routine
sample

DFSCSMB0 IMS.SDFSSMPL Transaction Code (Input) edit
routine

DFSCTRN0 IMS.SDFSSMPL COMM Transaction
Authorization exit routine
sample

DFSCQEX0 IMS.SDFSSMPL IMS CQS structure event user
exit (ICQSSTEV)

DFSCSTX0 IMS.SDFSSMPL IMS CQS event user exit
(ICQSEVNT)

DFSCTSE0 No sample Security Reverification exit
routine

DFSCTTO0 IMS.SDFSSMPL Sample PTERM (Output) edit
routine

DFSFDOT0 IMS.SDFSSMPL IMS Dump Override table

DFSFEBJ0 IMS.SDFSSMPL Front End Switch user exit
routine

DFSFIDN0 No sample ESAF In-Doubt Notification exit
routine

DFSFTFX0 IMS.SDFSSRC Log Filter exit routine

DFSGMSG0 IMS.SDFSSMPL Greeting Messages user exit
routine

DFSGPIX0 No sample Global Physical Terminal (Input)
edit routine

DFSHDC40 IMS.SDFSSRC HDAM and PHDAM
randomizing routine

DFSINSX0 IMS.SDFSSMPL Output Destination Creation
user exit routine

DFSINTX0 IMS.SDFSSMPL IMS Initialization user exit
routine

DFSITRX0 IMS.SDFSSMPL IMS Initialization and
Termination user exit
(INITTERM)

DFSKMPX0 IMS.SDFSSMPL User Data Compression program

DFSLGFX0 IMS.SDFSSMPL IMS Logoff user exit routine

DFSLGNX0 IMS.SDFSSMPL User Logon exit routine

DFSLUEE0 IMS.SDFSSRC LU 6.2 Edit exit routine

DFSME000 IMS.SDFSSRC Input Message Field edit routine

DFSME127 IMS.SDFSSRC Input Message Segment edit
routine

42 Exit Routines

|
|

|||
|

|||
|

|||
|
|

Table 8. Exit routines and their location (continued)

Exit routine or user
exit type Location Description

DFSMSCE0 IMS.SDFSSMPL TM and MSC Message Routing
and Control user exit routine

DFSPIXT0 IMS.SDFSSMPL Physical Termination Input Edit
routine sample

DFSPPUE0 No sample Partner Product exit routine

DFSPRE60 IMS.SDFSSMPL System Definition Preprocessor
exit routine (input phase)

DFSPRE70 IMS.SDFSSMPL System Definition Preprocessor
exit routine (name check
complete)

DFSPSE00 IMS.SDFSSMPL Sample Partition Selection exit
routine

DFSQSPC0 IMS.SDFSSRC Queue Space Notification exit
routine

DFSREXXU IMS.SDFSSMPL REXXTDLI Sample user exit
routine

DFSSBUX0 No sample Sequential Buffering
Initialization exit routine

DFSSGFX0 IMS.SDFSSMPL Sign-off user exit routine

DFSSGNX0 IMS.SDFSSMPL Sign-on user exit routine
example

DFSSIML0 IMS.SDFSSMPL Shared Printer exit routine

DFSTXIT0 IMS.SDFSSRC Time-Controlled Operations exit
routine

DFSUTL IMS.SDFSSMPL Sample MVS™ IEFUTL Timeout
exit routine

DFSYDRU0 IMS.SDFSSMPL OTMA User Data Formatting
exit

DFS29800 No sample 2972/2980 Input Edit Routine

DFS36010 IMS.SDFSSMPL COMM DEV MOD (3600),
Sample 3601 Input edit routine

DSPBUFFS IMS.SDFSSRC Buffer Size Specification facility

DSPCEXT0 IMS.SDFSSMPL (sample is
named DSPCEXT1)

RECON I/O exit routine

DSPDCAX0 IMS.SDFSSMPL Sample DBRC SCI Registration
exit routine

DSPSCIX0 IMS.SDFSSMPL Sample DBRC SCI Registration
exit routine

LOGWRT No sample Logger exit routine

NDMX IMS.SDFSSMPL Non-Discardable Messages
(NDMX) user exit

OTMAIOED IMS.SDFSSMPL OTMA Input/Output Edit user
exit

OTMARTUX IMS.SDFSSMPL OTMA Resume TPIPE Security
exit routine

Chapter 1. Guidelines for writing IMS exit routines 43

|
|

|

|||

|||
|

|||
|

|||
|

Table 8. Exit routines and their location (continued)

Exit routine or user
exit type Location Description

OTMAYPRX IMS.SDFSSMPL OTMA Destination Resolution
exit routine

RASE IMS.SDFSSMPL Resource Access Security exit
routine sample

IMS.SDFSSMPL data set
The IMS.SDFSSMPL data set contains source code modules that you can customize
for various purposes.

Table 9. IMS.SDFSSMPL data set exit routines and descriptions

Exit routines Description

DBFMLBX0 Fast Path MADS I/O Timing user hash routine

DFSAOE00 Automated Operator exit routine sample

DFSAOUE0 AOI User exit routine sample program

DFSBXITA CEEBXITA Assembler user exit routine for IMS

DFSCCMD0 Command Authorization user exit routine sample

DFSCMPX0 User-data Compression program

DFSCNTE0 Sample CNT Destination edit routine

DFSCONE0 Conversational user exit routine

DFSCSGN0 COMM / SIGN exit routine sample

DFSCSMB0 Transaction Code (Input) edit routine

DFSCQEX0 IMS CQS structure event user exit (ICQSSTEV)

DFSCSTX0 IMS CQS event user exit (ICQSEVNT)

DFSCTRN0 COMM Transaction Authorization exit routine sample

DFSCTTO0 Sample PTERM (Output) edit routine

DFSFDOT0 IMS Dump Override table

DFSFEBJ0 Front End Switch user exit routine

DFSGMSG0 Greeting Messages user exit routine

DFSIDEF0 IMS Installation Defaults Block

DFSINSX0 Output Destination Creation user exit routine

DFSINTX0 IMS Initialization user exit routine

DFSITRX0 IMS Initialization and Termination user exit (INITTERM)

DFSKMPX0 User Data Compression program

DFSLGFX0 IMS Logoff user exit routine

DFSLGNX0 User Logon exit routine

DFSMSCE0 TM and MSC Message Routing and Control user exit routine

DFSNDMX0 Non-Discardable Messages (NDMX) user exit

DFSPIXT0 Physical Termination Input Edit routine sample

DFSPRE60 System Definition Preprocessor exit routine (input phase)

DFSPRE70 System Definition Preprocessor exit routine (name check complete)

44 Exit Routines

|
|

|||
|

|||
|

||

||

||

|

Table 9. IMS.SDFSSMPL data set exit routines and descriptions (continued)

Exit routines Description

DFSPSE00 Sample Partition Selection exit routine

DFSRAS00 Resource Access Security exit routine sample

DFSREXXU REXXTDLI Sample user exit routine

DFSSGFX0 Sign-off user exit routine

DFSSGNX0 Sign-on user exit routine example

DFSSIML0 Shared Printer exit routine

DFSUTL Sample MVS IEFUTL Timeout exit routine

DFSYCWAT Sample program that suspends the currently executing task

DFSYDRU0 OTMA User Data Formatting exit

DFSYIOE0 OTMA Input/Output Edit user exit

DFSYPRX0 OTMA Destination Resolution exit routine

DFS36010 COMM DEV MOD (3600), Sample 3601 Input edit routine

DSPAPSMP Example Program Using the DBRC API

DSPCEXT1 Sample DBRC I/O exit routine

DSPDCAX0 Sample DBRC Command Authorization user exit routine

DSPSCIX0 Sample DBRC SCI Registration exit routine

Chapter 1. Guidelines for writing IMS exit routines 45

46 Exit Routines

Chapter 2. Database Manager exit routines

Use the database manager exit routines to initialize products that run with IMS,
control operations related to subsystems, and enhance the maintenance and control
of segments.

Batch application exit routine (DFSISVI0)
The batch application exit routine (DFSISVI0) routine is called immediately before
linking to the batch application program. The exit routine has no predefined
purpose. You can use it to allow the initialization of products that run with IMS.
The exit is called prior to calling the application program.

Subsections:
v “About this routine”
v “Communicating with IMS”

About this routine

The Batch Application exit routine is applicable to IMS DB and IMS TM batch
environments, and batch types DBB, DLI, and ULU. The exit routine is called if it
is available in IMS.SDFSRESL.

You can link-edit the exit routine as needed, and will process in TASK mode. The
exit routine's addressing mode can be either 24 or 31. It is given control in its
defined AMODE and can return control to IMS in either 24- or 31-bit addressing
mode.

Table 10. Batch application exit routine attributes

Attribute Description

IMS environments DB Batch, TM Batch.

Naming convention Must be named DFSISVI0.

Link editing After you compile your routine, include it into IMS.SDFSRESL or
into any operating system-partitioned data set to which access is
provided by using a JOBLIB or STEPLIB JCL statement.

Including the routine No special steps required.

IMS callable services This exit routine is not eligible to use IMS callable services.

Sample routine
location

No sample exit routine is provided.

Calling this routine

This exit routine is called using standard linkage conventions.

Communicating with IMS

IMS communicates with this routine through the entry registers, a parameter list,
and the exit registers.

Content of Registers on Entry

© Copyright IBM Corp. 1974, 2017 47

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Content

1 Address of the exit parameter list.

13 Address of a single, standard save area.

14 Return address to IMS.

15 Entry point of this exit routine.

Parameter list

The following parameter list is provided to the exit routine:

00 Address of the application PCB list.

04 Address of PXPARMS

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for
register 15, which contains the return code. A return code of 12 indicates that the
exit does not want IMS processing to continue.

Return code Meaning

00 Continue normal IMS processing.

04 Undefined. Treated like a return code of 00.

08 Undefined. Treated like a return code of 00.

12 Terminate IMS processing with U0099 abend.

Related reference:
“Routine binding restrictions” on page 9

IMS Catalog Definition exit routine (DFS3CDX0)
Use the IMS Catalog Definition exit routine (DFS3CDX0) to provide the settings
and attributes of the IMS catalog to batch application programs. Using this exit
routine is an alternative to referencing the DFSDFxxx member of the IMS.PROCLIB
data set in the JCL of batch application programs.

This exit routine is available in batch processing environments only.

About this routine

Table 11. Catalog Definition exit routine attributes

Attribute Description

IMS environments IMS batch

Naming convention Must be named DFS3CDX0

48 Exit Routines

Table 11. Catalog Definition exit routine attributes (continued)

Attribute Description

Binding v You must bind this exit routine module into IMS.SDFSRESL or a
concatenated library.

v You must code this exit routine module as reentrant.

v IMS batch processing attempts to load this exit routine, then
attempts to load a DFSDFxxx member of the IMS.PROCLIB data
set if this exit routine is not found.

v If you enable the IMS catalog with this exit routine (function code
1), you must ensure that the catalog resource members
(DFSCP000, DFSCD000, DFSCX000) have been added to the PSB
and DBD libraries with the appropriate PSB generation or DBD
generation utility.

The following example JCL shows how to bind the exit routine
module into IMS.SDFSRESL.

//LINKIT JOB 1,MSGLEVEL=1
//LINK EXEC PGM=IEWL,PARM=RENT
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(20,20))
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSN=IMS.SDFSRESL.,DISP=SHR
//OBJIN DD DSN=IMS.USERLIB.,DISP=SHR
//SYSLIN DD *

INCLUDE OBJIN(DFS3CDX0)
MODE AMODE(31),RMODE(ANY)
NAME DFS3CDX0(R)

/*

Including the routine No special steps required.

IMS callable services This exit routine is not eligible to use IMS callable services.

Sample routine
location

IMS.SDFSSMPL.
Note: You must customize the sample exit routine before you can
compile it.

Communicating with IMS

IMS communicates with this routine through the entry registers, a parameter list,
and the exit registers. The exit routine must save all registers with the provided
save area on entry. The exit routine must restore all registers before returning
control to IMS.

Table 12. Contents of registers on entry

Register Content

1 Address of the Version 6 standard exit parameter list.

13 Address of the exit save area. The exit routine must not change the first three
words of the save area. This save area is not chained to any other save area.

14 Return address.

15 Entry point of this exit routine.

Register 1 contains the address of the Version 6 standard exit parameter list. The
standard exit parameter list contains the field SXPLFSPL which is the address of
the function-specific parameter list for the Catalog Definition exit. Some fields in
the parameter list are directly equivalent to parameters in the DATABASE and
CATALOG sections of the DFSDFxxx member of the IMS.PROCLIB data set.

Chapter 2. Database Manager exit routines 49

For a description of the fields in the Version 6 standard exit parameter list, see IMS
standard user exit parameter list (Exit Routines).

The function-specific parameter list is mapped by macro DFS3DXP and contains
the following fields:

Table 13. Catalog Definition exit routine function-specific parameter list

Field Offset Length Description Equivalent DFSDFxxx parameter

DXPL_PVER X'00' 4 Version number of the
function-specific parameter list:

1 Version 1

DXPL_FUNC X'04' 4 Function code:

1 Catalog enabled

CATALOG=YES (required)

DXPL_LEN X'08' 4 Parameter list length

DXPL_RGNTYPE X'0C' 4 Region type:

1 Batch region

DXPL_URCATL X'10' 4 Unregistered catalog name list UNREGCATLG (optional)

X'14' 4 Reserved

DXPL_RETNUM X'18' 2 Number of catalog record copies to
retain

RETENTION VERSIONS (optional)

DXPL_RETPD X'1A' 2 Record retention period in days RETENTION DAYS (optional)

DXPL_ALIAS X'1C' 4 Alias name prefix ALIAS (required)

X'20' 8 Reserved None

DXPL_DATC X'28' 8 Data class DATACLAS (optional)

DXPL_MGTC X'30' 8 Management class MGMTCLAS (optional)

DXPL_STGC X'38' 8 Storage class STORCLAS (optional)

DXPL_1PCT X'40' 2 Primary data set space allocation
percentage

SPACEALLOC PRIMARY
(optional)

DXPL_2PCT X'42' 2 Secondary data set space allocation
percentage

SPACEALLOC SECONDARY
(optional)

X'44' 4 Reserved

X'48' 4 Reserved

X'4C' 4 Reserved

X'50' 4 Reserved

X'54' 4 Reserved

X'58' 2 SMS volume count SMSVOLCT (optional)

DXPL_VOL X'5A' 6 Non-SMS primary or secondary
index volume

IXVOLSER (required when the
catalog data sets are not managed
by SMS)

Related reference:

DFSDFxxx member of the IMS PROCLIB data set (System Definition)

50 Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_exitparmlist.htm#ims_exitparmlist
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_exitparmlist.htm#ims_exitparmlist
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib

CCTL exit routines
The database resource adapter (DRA) can pass control to four coordinator
controller (CCTL) exit routines, each of which may contain code provided entirely
or in part by the CCTL.

If the CCTL passes an address (in the INIT request) of zero for a particular routine,
the DRA uses a default exit routine.

Coordinator controller routine attributes
Coordinator controller (CCTL) routines have certain attributes and requirements.

All CCTL exit routines called by the database resource adapter (DRA) have control
passed to them in 31-bit addressing mode and must return to the DRA in the same
mode. Since much of the DRA has RMODE=31, registers 13 and 14 can point to
locations above the 16 MB line. When the DRA calls the Control exit routine, the
PAPL that it passes can also be above the line.

On entry to a CCTL exit routine, the PAPLTTOK and PAPLUSER fields are the
same as they were when DFSPRRC0 first received the PAPL. (For more
information on these fields, see IMS Version 13 System Programming APIs.) The
CCTL uses the PAPLUSER field to pass information to the exit routines (for
example, the address of the control blocks).

If you want the DRA to use the default exit routines supplied with IMS DB, pass a
value of binary 0 as the address of the exit routine in the INIT request. For more
information, see the topic “INIT request” in IMS Version 13 System Programming
APIs.

To use the default Suspend exit routine and Resume exit routine, each DRA request
must have the field PAPLTECB set with the address of a CCTL ECB to be used if
the thread is waited or posted.

Suspend exit routine
The Suspend exit routine receives control whenever the database resource adapter
(DRA) router routine needs to suspend a DRA request and allows the CCTL to use
its own processing technique to suspend its thread.

The Suspend exit routine can start executing before or after the Resume exit
routine starts executing, but the Suspend exit routine cannot finish executing
before the Resume exit routine starts executing. When you design the Suspend and
Resume exit routines, ensure that the Suspend exit routine can determine whether
the Resume exit has started or completed execution. If the Suspend exit routine
determines that the Resume exit routine has not started executing, the Suspend exit
routine must not return to the caller. If the Suspend exit routine determines that
the Resume exit routine has started or completed execution, the Suspend exit
routine should return to the Suspend exit caller and consider the suspend request
complete.

The Suspend exit routine executes in the CCTL's environment. The contents of the
registers on entry are:

Register
Contents

1 Address of the PAPL

Chapter 2. Database Manager exit routines 51

|
|
|
|
|
|
|
|
|
|

14 Return address

15 Entry point address

This routine can use a PAPL 16-word save area (PAPLSREG) to save the DRA's
registers The DRA does not expect any output from this routine.

Resume exit routine
The Resume exit routine allows the CCTL to use its own processing technique to
resume a database resource adapter (DRA) request suspended by the Suspend exit
routine.

The Resume exit routine can start executing before or after the Suspend exit
routine starts executing. When you design the Suspend and Resume exit routines,
ensure that the Suspend exit routine can determine whether the Resume exit has
started or completed execution. If the Suspend exit routine determines that the
Resume exit routine has not started executing, the Suspend exit routine must not
return to the caller. If the Suspend exit routine determines that the Resume exit
routine has started or completed execution, the Suspend exit routine should return
to the Suspend exit caller and consider the suspend request complete.

This routine receives control whenever a request has completed its process. The
contents of the registers on entry are:

Register
Contents

1 Address of the PAPL

13 Address of an 18-word save area that this routine can use to save DRA
registers

14 Return address

15 Entry point address

The DRA does not expect any output from this routine.

Control exit routine
The Control exit routine allows the database resource adapter (DRA) to notify the
CCTL about events occurring within the DRA or IMS DB. It also allows the CCTL
to notify the DRA how to respond to those events.

This routine receives control whenever the DRA must notify the CCTL of the
following events:
v The DRA successfully identifies itself to IMS DB.
v The identify attempt to IMS DB fails.
v The CCTL's INIT request is canceled.
v The DRA fails.
v IMS DB fails.
v IMS DB terminates normally using the /CHECKPOINT FREEZE command.
v The DRA terminates due to a Control exit routine request.

The Control exit routine uses a PAPL that belongs to the DRA, never a CCTL PAPL
that is a DRA request.

52 Exit Routines

|
|
|
|
|
|
|
|

For all of these events (except the last one), the CCTL must tell the DRA what
action to execute next. This is done using a return code that the CCTL places in the
PAPLRETC field prior to passing the PAPL back to the DRA. The DRA then acts
accordingly.

The contents of the registers on entry are:

Register
Contents

1 Address of the PAPL

13 Address of standard 18-word save area that the Control exit routine can
use

14 Return address

15 Entry point address

A list of possible events about which the DRA notifies the CCTL follows. With each
event, the contents of the PAPL are listed with possible actions for the CCTL to
take.

Subsections:
v “The DRA successfully identifies itself to IMS DB”
v “The identify attempt to IMS DB fails” on page 54
v “The CCTL's INIT request is canceled” on page 55
v “The DRA fails” on page 56
v “IMS DB fails” on page 57
v “IMS DB terminates normally using the /CHECKPOINT FREEZE command” on

page 57
v “The DRA terminates due to a Control exit routine request” on page 58

The DRA successfully identifies itself to IMS DB

After the DRA successfully identifies to IMS DB, the contents of the PAPL passed
to the CCTL are:

Field Contents

PAPLFUNC
Resync function code, PAPLRSYN

PAPLRSLT
Resync list address, list of recovery tokens of indoubt UORs. First 4 bytes
in the list is the number of tokens in the list. Following this number are the
actual tokens, each being 16 bytes.

PAPLUSER
User data (passed on the INIT request).

PAPLDBCT
IMS DB identifier.

PAPLMTCB
Minimum thread count specified in the startup table or INIT request.

PAPLJOBN
IMS DB jobname.

Chapter 2. Database Manager exit routines 53

PAPLCRC
IMS DB command recognition character.

PAPLIDTK
IMS DB identify token (unique store clock value representing the time the
CCTL identified with IMS DB).

PAPLDSID
IMS DB address space ID (ASID).

PAPLRSEN
DBRSE (IMS DB warm standby name, =DBRSENM, IMS DB execution
parameter). See IMS Version 13 System Definition for more information.

PAPLRGTY
IMS region type. The possible region types are:

PAPLDBCX
DB/DC with XRF.

PAPLDBCO
DB/DC only.

PAPLDBCL
IMS DB

After the routine has completed analyzing the PAPL, it can insert the following
return codes in the PAPLRETC field to notify the DRA of the next action to take:

Code Returned
Meaning

0 IMS DB environment OK.

4 Terminate the DRA (the Control exit routine is not called again during this
DRA session).

The identify attempt to IMS DB fails

After the identify to IMS DB fails, the contents of the PAPL passed to the CCTL
are:

Field Contents

PAPLFUNC
Failure function code

PAPLSFNC
Identify request failed subfunction code

PAPLUSER
User data (passed on the INIT request)

PAPLDBCT
IMS DB identifier

PAPLRETC
Code returned from subsystem interface or IMS DB

PAPLRCOD
Reason code. The possible reason codes are:

PAPLNTUP
Subsystem exists but is not up

54 Exit Routines

PAPLNOSS
Subsystem does not exist

PAPLINT
IMS DB is in initialization process

PAPLRSTN
IMS DB waiting for restart command

PAPLRST
In restart process

PAPLBRST
DB/DC XRF backup in tracking mode

PAPLTKOV
Backup in takeover mode

After the routine analyzes the PAPL, it can insert the following data in the output
fields in the PAPL to notify the DRA of the next action to take:

Field Contents

PAPLDBCN
New IMS DB identifier

PAPLRETC
Code returned from the CCTL to the DRA. PAPLRETC is passed to the
Control exit routine and must be reset.

Code Returned
Meaning

0 Issue a DFS0690A message and try to identify IMS DB again.

4 Proceed with DRA termination (the Control exit routine will not be called
again).

8 Reidentify with new IMS DB identifier (in the PAPLDBCN field).

The CCTL's INIT request is canceled

After the DRA INIT request is canceled by a cancel response to the DRF690
message, the contents of the PAPL passed to the CCTL are:

Field Contents

PAPLFUNC
Failure function code

PAPLSFNC
Cancelled INIT request subfunction code

PAPLUSER
User data (from the INIT request).

PAPLDBCT
IMS DB identifier.

PAPLRETC
Code returned from IMS DB.

PAPLRCOD
Reason code. The possible reason codes are:

Chapter 2. Database Manager exit routines 55

|

PAPLDBNZ
IMS DB rejected identify request.

PAPLOPC
Operator responded cancel to DFS690 message.

After the routine has completed analyzing the PAPL, it can insert the following
return codes in the PAPLRETC field to tell the DRA what to do next:

Code Returned
Meaning

0 Wait for a DRA TERM request.

4 Proceed with DRA termination (the Control exit routine will not be called
again).

PAPLRETC is passed to the Control exit routine and must be reset.

The DRA fails

When the DRA fails, the contents of the PAPL passed to the CCTL are:

Field Contents

PAPLFUNC
Failure function code

PAPLDRAF
DRA failure subfunction code.

PAPLUSER
User data.

PAPLDBCT
IMS DB identifier.

PAPLRCOD
Reason code

The reason codes possible are:

PAPLGMF
GETMAIN failed.

PAPLSSF
Subsystem interface failure.

PAPLDRAA
DRA abend.

PAPLESTF
Unable to establish DRA ESTAE.

The DRA expects no return code in PAPLRETC. The DRA fails and the Control exit
routine is not called when the failure occurs while processing a TERM request. In
this case, the PAPL return code of the returned TERM PAPL contains the failure
code.

56 Exit Routines

IMS DB fails

When IMS DB fails, the DRA first issues a U002 abend to all DRA thread TCBs. In
some cases, the DRA itself can also get a U002 abend and call the Control exit
routine as in the previous failure event. Otherwise, the contents of the PAPL
passed to the CCTL are:

Field Contents

PAPLFUNC
Failure function code.

PAPLDBCF
IMS DB failure subfunction code.

PAPLUSER
User data.

PAPLDBCT
IMS DB identifier.

PAPLRETC
Code returned from IMS DB.

PAPLRCOD
Reason code. The reason code is:

PAPLABND
IMS DB abend.

The DRA expects no return code in PAPLRETC.

After the exit routine analyzes the PAPL, it can insert the following identifier and
return codes in the output fields of the PAPL to notify the DRA of the next action
to take:

Field Contents

PAPLDBCN
New IMS DB identifier.

PAPLRETC
Code returned.

PAPLRETC is passed to the Control exit routine and must be reset.

Code Returned
Meaning

0 Wait for a DRA TERM request.

4 Wait for DRA termination.

8 Try to identify again with the new IMS DB identifier in the PAPLDBCN
field.

IMS DB terminates normally using the /CHECKPOINT FREEZE
command

After IMS DB terminates using a /CHECKPOINT FREEZE command, the contents
of the PAPL passed to the CCTL are:

Field Contents

Chapter 2. Database Manager exit routines 57

PAPLFUNC
Failure function code.

PAPLDBCC
IMS DB /CHE FREEZE subfunction code.

PAPLUSER
User data.

PAPLDBCT
IMS DB identifier.

After the exit routine analyzes the PAPL, it can insert the following identifier and
return codes in the output fields of the PAPL to notify the DRA of the next action
to take:

Field Contents

PAPLDBCN
IMS DB identifier.

PAPLRETC
Code returned.

Code Returned
Meaning

0 Allow the DRA to shut itself down.

4 Terminate DRA immediately.

8 The current DRA threads are allowed to complete all current calls and are
then terminated. The DRA then reidentifies with the new IMS DB
identifier.

After the CCTL sets the return code equal to 0, the DRA follows the rules of the
/CHECK FREEZE command (for example, it allows the current threads to complete
their units of work). After the last thread completes, the DRA terminates. The
invocation of the Control exit routine signals the completion of the DRA shutdown
process.

The DRA terminates due to a Control exit routine request

After the DRA terminates due to a Control exit routine request, the contents of the
PAPL passed to the CCTL are:

Field Contents

PAPLFUNC
Failure function code.

PAPLDRAF
DRA failure subfunction code.

PAPLUSER
User data.

PAPLDBCT
IMS DB identifier.

PAPLRCOD
Reason code.

The possible reason codes are:

58 Exit Routines

PAPLITCF
DRA terminated due to a Control exit routine request.

PAPLMXN2
Statistic #1 (see IMS Version 13 System Programming APIs)

PAPLMIN2
Statistic #2 (see IMS Version 13 System Programming APIs)

PAPLHIT2
Statistic #3 (see IMS Version 13 System Programming APIs)

PAPLTIM2
Statistic #4 (see IMS Version 13 System Programming APIs)

Since the DRA terminated, the CCTL does not pass any return codes to IMS DB.

Control is passed to this exit routine at the end of the DRA cleanup when the DRA
termination is due to a previous Control exit routine request. For example, after
being notified of a IMS DB failure or a /CHE FREEZE command, the Control exit
routine terminates the DRA.

Status exit routine
The Status exit routine prevents a z/OS S0C4 abend from occurring when a CCTL
thread attempts to access nonexistent storage.

The database resource adapter (DRA) passes control to the Status exit routine
when a task control block (TCB) for a DRA thread in a scheduled state is
collapsing.

The scheduled state is the time between the DRA's successful processing of a
schedule request and the DRA's successful processing of one of the following
thread function requests:

ABTTERM
Abort unit of work.

COMTERM
Commit unit of work.

TERMTHRD
Terminate thread.

Related Reading: Refer to the section on CCTL DRA function requests in IMS
Version 13 System Programming APIs for a description of the thread functions.

The status exit is called to:
v Notify CCTL that the DRA thread is about to terminate for a reason other than a

request from the CCTL.
v Allow CCTL to stop reference, by the CCTL thread, to storage that IMS DB

acquired on behalf of the thread.
v Notify CCTL to free the storage that IMS DB acquired for the thread.

When a DRA thread successfully processes a schedule request, the address of the
storage that IMS DB acquired in the CCTL's private storage is returned to the
CCTL. The storage is acquired and initialized with the user's PCBLIST and PCBs.

Chapter 2. Database Manager exit routines 59

The CCTL thread uses the PCBLIST and PCBs to make DL/I requests and to
receive the results of the requests. The storage is referred to as user private storage
(UPSTOR).

Related Reading: See the topic on CCTL DRA function requests in IMS Version 13
System Programming APIs for PAPL fields returned to CCTL when the schedule
request is completed.

The CCTL thread has access to UPSTOR for the duration of the thread's scheduled
state. When the scheduled state terminates normally by a request from the CCTL,
IMS DB manages UPSTOR storage.

Reference to UPSTOR by the CCTL thread after the normal end of a scheduled
state can result in a z/OS S0C4 abend if IMS DB has freed the storage. If IMS DB
allocated the same storage to another thread, reference to UPSTOR can overlay the
second thread's data.

When the thread terminates abnormally during the scheduled state, the Status exit
routine notifies the CCTL. The CCTL is responsible for freeing UPSTOR. The
responsibility for freeing UPSTOR is assigned to the CCTL to ensure that UPSTOR
is freed at the proper time.

The UPSTOR area is acquired using the GETMAIN macro by DRA thread TCBs
out of subpool 0 (subpool 132 if the CCTL application is running with the public
key option set).

The default Status exit routine provided by the DRA frees UPSTOR. If the CCTL
chooses the default exit routine, it can incur a program check abend trying to
access that storage because the CCTL might execute after the DRA has freed the
storage.

The contents of the registers on entry are:

Register
Contents

1 Address of the PAPL.

13 Address of standard 18-word save area that the Status exit routine can use.

14 Return address.

15 Entry point address.

If DRA thread termination occurs during processing of a CCTL request, the CCTL's
PAPL is passed to the Status exit routine. Otherwise, the DRA builds a PAPL.

The contents of the PAPL that are significant for the call are:

Field Contents

PAPLUSR3
The value CCTL passed in PAPLUSR3 on the INIT request.

PAPLTOKT
The thread token set up by the CCTL. This is the token which the CCTL
passed, in PAPLTTOK, on the SCHED request.

PAPLUPSA
Address of UPSTOR.

60 Exit Routines

PAPLUPSL
Length of UPSTOR.

The DRA expects no return code in the field PAPLRETC.

Data Capture exit routine
You can write a Data Capture exit routine that receives control whenever a
segment, for which the exit routine is defined, is updated. Your exit routine
processes the data after the DL/I call completes but before control is returned to
the application program.

This topic contains Product-sensitive Programming Interface information.

When an application program updates an IMS database with a DL/I insert,
replace, or delete call, the original and updated data, as applicable, are passed and
made available to a Data Capture exit routine. The DL/I call is considered
complete and the PCB status is set when the exit routine is called. The following
figure shows how control passes among the application, the full-function or DEDB
database, and the exit routine.

You might want to capture changed data so that you can replicate that data to a
Db2® for z/OS database as shown in the previous figure.

As an alternative to capturing data synchronously, you can also propagate
captured data asynchronously by using either of the following methods:
v Use the logging option on the EXIT= parameter of DBDGEN.
v Use IMS DataPropagator and specify that the data is to be propagated

asynchronously.

The following table describes data capture support for IMS environments for both
full-function and DEDB databases.

Application

DB2

Data Capture
exit routine

(Full-function
databases or

DEDBs)

Figure 1. Calling order with data capture

Chapter 2. Database Manager exit routines 61

Table 14. Data capture support for IMS environments

CICS®

DB/CTL
CICS
Batch

IMS
Batch IMS IFP

IMS
BMP IMS MPP

Data Capture Exit
EXIT=exit_name

No Yes1 Yes Yes Yes Yes

Asynchronous Data
Capture EXIT= *, LOG

Yes Yes1 Yes Yes Yes Yes

Note: 1BATCH is a pure IMS batch environment that is available with CICS DB/CTL (no
CICS code executing).

Subsections:
v “About this routine”
v “Communicating with IMS” on page 65
v “Extended Program Communication Block (XPCB)” on page 67
v “Extended Segment Data Block (XSDB)” on page 69
v “Writing the routine in supported languages” on page 70
v “Storage requirements for Data Capture” on page 71
v “Storage failure” on page 72
v “Data security and integrity” on page 72

About this routine

The main purpose of capturing updated data and making it available to an exit
routine is to propagate the IMS data to the relational environment of Db2 for
z/OS. You can write your own exit routine, use a separate product, use IBM IMS
DataPropagator for z/OS, or write a IMS DataPropagator-supported exit routine. If
you write your own exit routine, you can code it to perform tasks other than data
propagation. The sample Data Capture exit routine provided at the end of this
topic only propagates data.

Restriction: This exit routine cannot be used with CICS, because it conflicts with
CICS architecture. (Asynchronous Data Capture does work with DBCTL.) Even
though the exit routine works with captured IMS data, CICS cannot use it.

Attributes of the routine

Regardless of its function, you must write the routine in assembly language, C
language, COBOL, or PL/I. Routines written in high-level languages running
under Language Environment for z/OS are not supported. Sample exit routines are
provided in COBOL and PL/I.

Running Data Capture exit routines under Language Environment for z/OS might
result in performance problems unless the dependent region that is running the
application that causes the Data Capture exit routine to execute is pre-initialized in
the Language Environment for z/OS. This can be done with the preinitialization
list. Otherwise, every execution of the application in a dependent region causes the
Language Environment for z/OS to be initialized each time the application is
invoked and stopped each time the application terminates.

Binding the routine

62 Exit Routines

|
|
|
|

If you bind the exit routine as either RENT or REUSE, it remains in storage until
the region terminates as if the exit routine was preloaded. However, non-REUSE
exit routines must be loaded each time, because they are deleted from storage after
each call.

Loading the routine

IMS loads the exit routine the first time IMS calls it; preloading the exit routine is
not necessary. However, runtime library routines used by high-level languages
should be preloaded. After abnormal termination in an IMS Fast Path region (IFP)
or in a message processing region (MPP), the exit routine is deleted and must be
reloaded. The exit routine must be reloaded when:
v A pseudo or standard abend of the application that is running in the region

occurs (regardless of whether the region itself abends along with the
application).

v The data capture routine gets an XPCB return code of 16.

Specifying data options

In addition to the necessary control information, you can have the following data
passed to your exit routine. The data is chained together using pointers.

Physical concatenated key
The fully concatenated key of each segment in the physical hierarchy,
including the updated segment. For logical relationships and secondary
indexes, this key differs from the key in the PCB feedback area.

Physical segment data
The physical segment updated by the application program, without any
PSB field sensitivity.

Data before a replace
The data as it looked before it was updated. Your exit routine must
determine what fields the application program changed.

Path data
The physical path data from the root segment to the parent of the updated
segment.

Cascade delete data
The data deleted by IMS when an application program deleted a segment
that is higher in the hierarchy.

The data is in the same format that was returned to the application program,
excluding PSB field sensitivity. For logical children, the segment data follows the
logical parent concatenated key. For segments with compression/edit exit routines
defined for them, the data is in its expanded or encoded form. For variable-length
segments, the first two bytes contain the length ('LL') for the segment.

Additional guidelines

The Data Capture exit routine is called whenever a segment is updated that has
the exit routine defined, regardless of the execution environment. The exit routine
uses the INQY ENVIRON call to identify the execution environment (batch or
online) and determine what functions are available.

Chapter 2. Database Manager exit routines 63

The exit routine can issue any DL/I calls allowed by the PSB using the AIB
Interface (AIBTDLI). However, any updates that the exit routine makes are not
captured and do not call an exit routine.

The Data Capture exit routine is treated as an extension of the application
program; IMS attributes SQL or DL/I calls made by the exit routine to the
application program. The exit routine and the application run under the same unit
of work. SQL and DL/I updates made by the exit routine are committed or
aborted along with the application program at sync-point time with the same
integrity as the application. The exit routine must follow the same rules as the
application program whether the routine makes IMS or Db2 for z/OS requests.

For data propagation, all DL/I updates must be passed to the exit routine to
determine whether to propagate the change to Db2 for z/OS or not. Both the IMS
data and Db2 for z/OS data must be available and on the same z/OS system for
either update to occur.

The Data Capture exit routine is called based on specification in the DBD rather
than in the PSB. The exit routine is always called. It is also a global exit routine:
once implemented for any segment, all activity in that segment causes IMS to call
the exit routine, regardless of which PSB is active. Any performance impact that
the exit routine causes occurs across the entire system.

Defining the routine for segments

The Data Capture exit routine is specified for a particular segment during
DBDGEN. Failure to locate the exit routine during processing results in an
application program abend.

DBDGEN supports the parameter, EXIT=, on the DBD and SEGM statements. If
specified on the DBD statement, the parameter applies to all segments within the
physical database structure. If specified on the SEGM statement, you can override
the specification on the DBD, or can limit the parameter so that only selected
segments are propagated when updated. As a SEGM parameter, EXIT= does not
apply to other segments; physical children do not inherit the parameters of any of
their parents.

You can specify multiple exit routine names, each with different data options, on a
single DBD or SEGM statement.

Multiple exit routines

A single DL/I call might call your exit routine more than once or it might call
more than one exit routine. Multiple exit routines are called when there are:
v Multiple exit routines per segment
v Path calls
v Cascade deletes

Multiple exit routines are called in succession before returning to the application
program. The sequence depends on the reason multiple exit routines are called:
v Multiple exit routines are defined.

When multiple exit routines are defined for a single physical segment, the
routines are called based on DBDGEN definition order. The first exit routine
listed in the DBD or SEGM statement is called, followed by each subsequent exit
routine defined for that segment.

64 Exit Routines

v Multiple segments are updated.
When multiple physical segments are updated in a single call, the routines are
called in hierarchical order. IMS calls the exit routines for the segments in the
same order that the segments were physically updated:
– Top-down for path inserts and path replaces:

Parents must be inserted before dependents. The exit routine for the parent
segment must be called before the dependent segment's exit routine.

– Bottom-up for cascade deletes:
The dependent segment's exit routine is called before the parent's exit routine.
The root segment's exit routine is called last. If the dependent segment has
several exit routines defined for it, they are all called at this time. Calling the
exit routines in bottom-up order allows propagation to Db2 for z/OS without
requiring referential integrity.
For each segment type, multiple segment occurrences might be deleted as
part of the cascade delete. Each exit routine is called once for each segment
occurrence that is deleted. The order the exit is called is the same order in
which DL/I deleted the segments.

Using IMS callable services with this routine

This exit is not eligible to use IMS callable services.

Communicating with IMS

Each segment that is passed in a dependent region and has the Data Capture exit
routine defined for it has two control blocks available for its use. Both the
Extended Program Communication Block (XPCB) and the Extended Segment Data
Block (XSDB) reside in private storage and have key 8. They are passed to the exit
routine according to the AMODE of the exit: above the 16 MB line for AMODE 31,
and below the 16 MB line for AMODE 24.

The order in which the control blocks receive control depends on the type of data
updated and passed to the Data Capture exit routine. The following figure shows
how control flows between the XPCB and the XSDB.

Chapter 2. Database Manager exit routines 65

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of the XPCB address

13 Address of save area

14 Return address to IMS

15 Entry point of exit routine

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers. Return and
reason codes are placed in the XPCB.

Return and reason codes

The XPCB contains fields for the exit routine to communicate its status to IMS.
These fields are initialized to binary zeros. The return code set by the exit routine
defines the type of condition encountered; the higher the number, the more severe
the error. You can also assign a reason code to return codes of 8 or greater. The
reason code is for your use; IMS uses only the return code.

The following table outlines the return and reason codes that the exit routine
returns and places in the XPCB. If the return code placed in the XPCB is invalid,
an abend occurs and an invalid return code indicator is set.

Figure 2. Control block flow with data capture

66 Exit Routines

Table 15. XPCB return codes

Return
code

Description Action DFS3314
message

0 Good return. Normal completion of exit
routine.

No

4 Indicates the exit routine wants
to ignore the DL/I call.

Exit routine is not called for
any additional segments for
this DL/I call.

No

8 Exit routine encountered an
error during the DL/I call and
wants to return to the
application.

DL/I call is terminated
without calling any other exit
routines and control is
returned to application
program.

Yes

12 This copy of the exit routine is
not to be called again. (Used
with a “dummy” exit routine.)

Exit routine is deleted from
storage.

Yes

16 Abend the exit routine and the
application program.

Application program is
abended with a U3314.

Yes

20 Do not make further calls to this
routine, or any other Data
Capture routines, for this region.

Terminate data capture for
this region.

Yes

After an abend in an IFP or MPP region with return code 12 or 20, the interface
control blocks are reinitialized and the exit work area is reset. The exit routine can
then be called again.

Extended Program Communication Block (XPCB)

The XPCB identifies the segment and call functions, provides the address of a
work area, and contains additional information that is passed to the exit routine.
Every XPCB identifies the physical function performed by DL/I (insert, replace, or
delete) and points to the updated data that is passed to the exit routine. The
following two tables describe the contents of the XPCB.

For reentrant exit routines, the address of a 256-byte work area is passed in the
XPCB. The exit routine can use the work area to save information. One work area
exists for each exit routine, and it is initialized to binary zeros the first time the
exit routine is given control.

Table 16. XPCB by offset

Offset Field name Offset Field name Offset Field name

0 Eye catcher 4 Version 6 Release

8 User_Exit_Name 16 Exit_Return_Code 18 Exit_Reason_Code

20 Database_Name 28 DBD_Version_Ptr 32 Segment_Name

40 Call_Function 44 Physical_Function 48 reserved

52 DB_PCB_Ptr 56 DB_PCB_Name 64 INQY_Output_Ptr

68 IO_PCB_Ptr 72 Environment_Flags 73 reserved

74 Conc_Key_Length 76 Conc_Key_Ptr 80 Data_XSDB_Ptr

84 Before_XSDB_Ptr 88 Path_XSDB_Ptr 92 Set_Rols_Token

96 Next_Twin_Ptr 100 Cmd_Codes_Ptr 104 Exit_Work_Ptr

Chapter 2. Database Manager exit routines 67

||

Table 16. XPCB by offset (continued)

Offset Field name Offset Field name Offset Field name

108 Null_Ptr 112 reserved 116 Call_Timestamp

Table 17. XPCB alphabetically

Field name Offset Data type Length Field description

Before_XSDB_Ptr 84 Pointer 4 Address of XSDB for data before it was replaced.
Zero if not a physical replace or if data not
captured.

Call_Function 40 Character 4 Call used by application to update segment: ISRT,
DLET, REPL, FLD (field), or CASC (cascade).

Call_Timestamp 116 Character 8 Time stamp of completion of DL/I call. Obtained
from Store Clock instruction.

Cmd_Codes_Ptr 100 Pointer 4 Address of command codes. This field points to a
data area that has the same format as the
COMMAND_CODES in the CAPD block format.

Conc_Key_Length 74 Fixed 2 Length of the segment concatenated key for
physical path. Zero if data not captured. Key is
optional.

Conc_Key_Ptr 76 Pointer 4 Address of the segment concatenated key for
physical path. Zero if data not captured. Key is
optional.

Database_Name 20 Character 8 Name of physical database that contains the
updated segment.

Data_XSDB_Ptr 80 Pointer 4 Address of XSDB for segment data. Zero if data
not captured.

DBD_Version_Ptr 28 Pointer 4 Address of variable length character string to
identify the DBD used for update. First 2 bytes
contain length of string, followed by string itself.
String is from DBD VERSION= parameter if it
was used for DBDGEN. Otherwise, string is
date/time of DBDGEN.

DB_PCB_Ptr 52 Pointer 4 Address of database PCB used for DL/I call.

DB_PCB_Name 56 Character 8 The 8-byte name of database PCB used for DL/I
call. Null if name not assigned during PSBGEN
with the label or PCBNAME= parameter.

Environment_Flags 72 Flag byte 1 Flag bits describing execution environment.

Exit_Return_Code 16 Fixed 2 Return code from exit routine.

Exit_Reason_Code 18 Fixed 2 Reason code from exit routine.

Exit_Work_Ptr 104 Pointer 4 Address of 256-byte work area.

Eye catcher 0 Character 4 'XPCB'

INQY_Output_Ptr 64 Pointer 4 Address of output of an INQY ENVIRON call.

IO_PCB_Ptr 68 Pointer 4 Address of I/O PCB.

Next_Twin_Ptr 96 Pointer 4 Address of XSDB for the data of the twin that
follows the segment being inserted. Zero if not a
twin or if no other twins exist for the non-unique
segment.

68 Exit Routines

|
|

|||||
|
|

|||||
|
|
|

Table 17. XPCB alphabetically (continued)

Field name Offset Data type Length Field description

Null_Ptr 108 Pointer 4 Zero address for use as null address for languages
that do not recognize a zero address as null (such
as PL/I).

Path_XSDB_Ptr 88 Pointer 4 Address of XSDB for physical root when path
data option requested. XSDBs for path data are
chained together, in descending hierarchical order,
from physical root to parent of updated segment.
Last XSDB has a zero pointer.

Physical_Function 44 Character 4 Physical call function performed: ISRT, DLET, or
REPL.

Release 6 Character 2 XPCB release indicator. Along with version,
identifies the level of the control block. The
current release is R3.

Segment_Name 32 Character 8 Physical segment name of segment updated.

Sets_Rols_Token 92 Hexadecimal
data

4 Token that is used to identify the processing scope
between the SETS and ROLS calls.

User_Exit_Name 8 Character 8 Entry point name of exit routine.

Version 4 Character 2 XPCB version indicator. Along with release,
identifies the level of the control block. The
current version is V1.

Extended Segment Data Block (XSDB)

The XPCB points to the first XSDB. For path data, subsequent XSDBs are chained
together. The XSDB points to the updated data that is passed to the exit routine. It
contains additional information that is also passed. The following two tables
describe the contents of the XSDB.

Table 18. XSDB by offset

Offset Field name Offset Field name Offset Field name

0 Eye catcher 4 Version 6 Release

8 Next_Ptr 12 Database_Name 20 Segment_Name

28 Physical_Path 29 CMD_CODE_R 30 reserved

32 Segment_Level 34 Key_Length 36 Key_Ptr

40 LP_Key_Length 42 Segment_Length 44 Segment_Ptr

48 reserved

Table 19. XSDB alphabetically

Field name Offset Data type Length Field description

CMD_CODE_R 29 Flag byte 1 Subset pointer command codes R1 through R8. Each bit
represents whether or not the corresponding command
code number was specified on the SSA.

Database_Name 12 Character 8 Name of physical database that contains the updated
segment.

Eye catcher 0 Character 4 'XSDB'

Key_Length 34 Fixed 2 Length of key for segment. Zero if segment not keyed.

Chapter 2. Database Manager exit routines 69

|
|
|

|||

|||||
|
|

Table 19. XSDB alphabetically (continued)

Field name Offset Data type Length Field description

Key_Ptr 36 Pointer 4 Address of key for segment. Zero if segment not keyed.

LP_Key_Length 40 Fixed 2 Length of the concatenated key of a logical parent
segment included in segment data for logical children.

Next_Ptr 8 Pointer 4 Address of next XSDB in chain for path data. Zero for
last XSDB in chain.

Physical_Path 28 Character 1 Access by physical path (Y/N)

Release 6 Character 2 XSDB release indicator. Along with version, identifies
level of control block. The current release is R2.

Segment_Ptr 44 Pointer 4 Address of physical segment data.

Segment_Length 42 Fixed 2 Length of physical segment data.

Segment_Level 32 Fixed 2 Level of segment in physical database.

Segment_Name 20 Character 8 Physical segment name for segment data passed in this
block. Different from segment name in XPCB for path
data.

Version 4 Character 2 XSDB version indicator. Along with release, identifies
level of control block. The current version is V1.

Writing the routine in supported languages

Although the Data Capture exit routine can be written in assembler language, C,
COBOL, or PL/I, you must follow certain guidelines depending on which
language you use.

Assembler

The exit routine is entered in primary mode, but the access registers can be
nonzero.

C

C does not support variable-length character strings using integer lengths, such as
those passed in the XPCB and XSDB. Key and segment data passed to the exit
routine is terminated by “null” (binary zero) values. Any null value in the data
itself might result in an invalid string length.

The following declarations and statements are used to locate the XPCB. Declare
XPCB_TYPE_PTR as a pointer to the XPCB structure.
XPCB_TYPE_PTR *TPTR;
TPTR = (XPCB_TYPE_PTR *) __sysplist;
XPCB = *TPTR;

The exit routine must be defined as a main program with the PLIST(IMS) and
ENV(IMS) options specified. Use the following format to specify these options:
#pragma runopt(env(IMS), plist(IMS))

COBOL

The exit routine operates under a separate run unit from the application program.
The method used to establish the run unit depends on the compiler or on the
RES/NORES compiler option. For all COBOL programs compiled with newer

70 Exit Routines

|
|

compilers, and older COBOL programs compiled with resident (RES), the exit
routine is given control by LINK. For older COBOL programs compiled with
nonresident (NORES), it is given control directly.

Recommendation: Use a compiler with RES and code the exit routine as reentrant
(RENT) and AMODE 31. With older compilers and NORES, the routine must be
AMODE 24 and it must not be reentrant.

Attention: You can use GOBACK to terminate the exit routine run unit and
return to the application program, but do not use STOP RUN and EXIT
PROGRAM because they are not supported and might cause unpredictable results
or abends.

The procedure division is:
exitname USING XPCB

PL/I

The exit routine must be compiled as a main program. The entry point can be
PLICALLA, so that the exit routine can use the assembler interface or use PL/I
compile-time option SYSTEM(IMS)

The procedure statement is:
exitname: PROCEDURE(XPCB_PTR) OPTIONS (MAIN);

Storage requirements for Data Capture

As your application program issues a DL/I call to update the database, the
updates are stored as required for use by the Data Capture exit routine or the
Asynchronous Data Capture. Because the amount of storage required can be
significant for update functions like a cascade delete, a data space is acquired for
each dependent region that uses the exit routine. The attributes of the data space
vary for online and batch-dependent regions, as illustrated in the following table.

Table 20. Data space characteristics (Data Capture exit routine and Asynchronous Data Capture)

Attribute Online Dependent Region Batch Dependent Region

Number of data spaces 1 per dependent region 1

Data space name SYSDFS01 @SYSDFS1

Storage key Key 7, not fetch protected to allow access from
dependent region in key 8

Key 8

Storage size By region controller By region controller. Default
size used if space requested
violates total size of key 8
data spaces.

Storage obtained During region initialization During region initialization
if exit routines are defined

Storage owned By region controller TCB By batch TCB

Added to access list Dependent region address space, for access by program
controller TCB in message regions. Control regions SAS
address space for access by DL/I in an IMS DB/DC
system when data capture is required. DEDB capture
runs under program controller TCB.

Batch TCB

Chapter 2. Database Manager exit routines 71

Table 20. Data space characteristics (Data Capture exit routine and Asynchronous Data Capture) (continued)

Attribute Online Dependent Region Batch Dependent Region

Deleted from access list Dependent region always accessed. Deleted from control
region SAS access list during thread termination if added
to access list by data capture.

Not deleted

Data space cleared During normal thread termination for message regions if
data space storage was referenced.

Not cleared

Data space deleted At region termination. At z/OS job termination

You can control the use of data spaces with the SMF IEFUSI Step Initiation exit
routine for key 8 batch regions. This exit routine determines the number and size
of the data space available for key 8. If you have batch application programs that
call the Data Capture exit routine, the data space specified for key 8 must be large
enough to accommodate the data space requirements of data capture.

Storage failure

The two types of storage failure for data capture are:
v Data space not obtained. This type of error occurs in batch regions when a data

space is not specified for each region. Online dependent regions can always
obtain data space.

v Insufficient storage in the data space. In online dependent regions, storage space
is specified by the region controller. Some database functions, such as cascade
delete, require more than the space allocated for successful completion. Batch
dependent regions can be limited in data space size. You must specify a data
space large enough for data capture to complete successfully.

Either type of storage failure terminates the region with a U814 abend.

Data security and integrity

The Data Capture exit routine is an extension of the application program with the
same capabilities as the application program; the exit routine and the application
have equal authorization and limitations. IMS and Db2 for z/OS resources that the
exit routine uses must be authorized in the IMS PSB or DB2® PLAN for the
application program. This behavior ensures that the application program can access
any IMS or Db2 for z/OS data that is available to the exit routine.

The data and the exit routine operate in unprotected, key-8 storage. The exit
routine is able to modify data or control blocks that can affect the successful
operation of the application program. The data passed to the exit routine is the
physical segment data. With PSB field sensitivity, this data might include data that
is unavailable to the application.
Related concepts:

Asynchronous data propagation (System Programming APIs)

z/OS: Dynamic Exits Facility

IMS Configuration Manager for z/OS V2.2
Related reference:

INQY call (Application Programming APIs)

Examples of the DBDGEN utility (System Utilities)

72 Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.spr/ims_propogate_captureddata.htm#ims_propogate_captureddata
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieae400/dynexit.htm
http://www.ibm.com/support/knowledgecenter/SSF2ZH_2.2.0/gplu-overview.dita
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apr/ims_inqycall.htm#ims_inqycall
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdexam.htm#ims_dbdexam

Related information:

0814 (Messages and Codes)

Sample Data Capture exit routine
A Data Capture exit routine can receive control whenever a segment, for which the
exit routine is defined, is updated.

This topic provides examples of the Data Capture exit routine in COBOL and PL/I.
The exit routine can also be written in assembler or C.

Subsections:
v “COBOL”
v “PL/I” on page 75

COBOL

The following example is the Data Capture exit routine in COBOL.
IDENTIFICATION DIVISION.
PROGRAM-ID. DLICDCE.

*REMARKS. *

* DESCRIPTIVE NAME : HOSPITAL DATA BASE SEGMENT EXIT *

* THIS IS A SAMPLE IMS EXIT. THIS WILL BE CALLED BY IMS. *
* THIS PROGRAM PROPAGATES DATA FROM IMS TO DB2 SYNCHRONOUSLY.*
* THE NAME OF THIS PROGRAM LOAD MODULE IS SPECIFIED *
* ON SEGM MACRO DURING DBDGEN FOR THE HOSPITAL DATA BASE. *
* *
* THE DATA OPTIONS SELECTED FOR THIS EXIT : *
* EXIT=(KEY,DATA,NOPATH,CASCADE) *

* INPUT FOR THIS PROGRAM : XPCB, XSDB. *
* *
* OUTPUT: DISPLAY A MESSAGE WHEN THE IMS UPDATE IS NOT *
* ISRT, REPL, DELE, CASC. DISPLAY ’SQLERRM’ WHEN *
* SQLERROR OCCURS. *
* *
* UPDATES: UPDATES DB2 ILLNESS TABLE *

* LOGIC: THIS PROGRAM IS CALLED BY IMS AFTER THE IMS UPDATE*
* TO ILLNESS SEGMENT AND BEFORE IMS RETURNS TO THE *
* IMS APPLICATION PROGRAM. *
* *
* XPCB IS RECEIVED AS INPUT TO THIS PROGRAM. *
* IF THERE IS NO ADDRESS OF XSDB IN XPCB THIS *
* PROGRAM WILL RETURNS TO IMS OTHERWISE - *
* *
* LOGIC: THIS PROGRAM IS CALLED BY IMS AFTER THE IMS UPDATE*
* WE GET THE ADDRESS OF XSDB FROM XPCB, FROM XSDB *
* WE GET THE ADDRESS OF ILLNESS SEGMENT CONCATENATED*
* KEY, AND ADDRESS OF THE PHYSICAL SEGMENT DATA *
* *
* UPDATE THE DB2 ILLNESS TABLE WITH THE UPDATED IMS *
* SEGMENT DATA. *
* --*
INSTALLATION. IBM - SANTA TERESA LABORATORY.
DATE-WRITTEN. JANUARY 1990.
ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-3090.
OBJECT-COMPUTER. IBM-3090.
DATA DIVISION.

WORKING-STORAGE SECTION.
EXEC SQL
INCLUDE SQLCA

END-EXEC. *--- DB2 ILLNESS TABLE DECLARATION

Chapter 2. Database Manager exit routines 73

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.msgs/msgs/0814.htm#imsabend0814

EXEC SQL
DECLARE SYSADM.ILLNESS TABLE
(ILLDATE VARCHAR (6) NOT NULL,
PATNO VARCHAR (5) NOT NULL,
ILLNAME VARCHAR (10) NOT NULL)

END-EXEC.
*---

01 W-POINTER POINTER.
01 W-POINTER-R REDEFINES W-POINTER PIC 9(8) COMP.
LINKAGE SECTION.
*--- EXIT SEGMENT CONTROL BLOCK

01 XPCB.
05 EYECATCHER PIC X(04).
05 VERSION PIC X(02).
05 RELEASE-ID PIC X(02).
05 EXIT-NAME PIC X(08).
05 EXIT-RETURN-CODE PIC 9(04) COMP.
05 EXIT-REASON-CODE PIC 9(04) COMP.
05 DATABASE-NAME PIC X(08).
05 DBD-VERSION-PTR POINTER.
05 SEGMENT-NAME PIC X(08).
05 CALL-FUNCTION PIC X(04).
05 PHYSICAL-FUNCTION PIC X(04).
05 FILLER PIC 9(08) COMP.
05 DB-PCB-PTR POINTER.
05 DB-PCB-NAME PIC X(08).
05 INQY-OUTPUT-PTR POINTER.
05 IO-PCB-PTR POINTER.
05 ENVIRONMENT-FLAGS PIC X.
88 IMS-ENH-SUPPORT VALUE X’80’.

* RRS SUPPORT IS AVAILABLE IN SYSTEM
88 IMS-RRS-ENABLED VALUE X’40’.

* RRS=Y WAS SPECIFIED
88 CALL_AT_COMMIT VALUE X’20’.

* SET BY EXIT - CALL DURING COMMIT
88 XPCB_LOGX_FORMAT VALUE X’10’.

* REDUCED 9904 FORMAT
88 XPCB_EXIT_WAS_CALLED VALUE X’08’.

* INTERNAL FLAG USED BY IMS
88 XPCB_DPROP_EXIT VALUE X’04’.

* SET BY DPROP EXIT ROUTINE
05 FILLER PIC X.

* RESERVED
05 CONC-KEY-LENGTH PIC 9(04) COMP.
05 CONC-KEY-PTR POINTER.
05 DATA-XSDB-PTR POINTER.
05 BEFORE-XSDB-PTR POINTER.
05 PATH-XSDB-PTR POINTER.
05 FILLER POINTER.
05 FILLER POINTER.
05 FILLER POINTER.
05 EXIT-WORK-PTR POINTER.
05 NULL-PTR POINTER.
05 FILLER POINTER.
05 TIMESTAMP PIC X(08).

*--- EXIT SEGMENT DATA BLOCK

01 DATA-XSDB.
05 EYECATCHER PIC X(4).
05 VERSION PIC X(2).
05 RELEASE-ID PIC X(2).
05 NEXT-PTR POINTER.
05 DATABASE-NAME PIC X(8).
05 SEGMENT-NAME PIC X(8).
05 FILLER PIC X(4).
05 SEGMENT-LEVEL PIC 9(4) COMP.
05 KEY-LENGTH PIC 9(4) COMP.
05 KEY-PTR POINTER.
05 FILLER PIC 9(4) COMP.
05 SEGMENT-LENGTH PIC 9(4) COMP.
05 SEGMENT-DATA-PTR POINTER.
05 FILLER POINTER.
05 FILLER POINTER.

*--- ILLNESS SEGMENT DATA

01 LS-SEGMENT.

03 LS-ILLDATE PIC X(6).

74 Exit Routines

03 LS-ILLNAME PIC X(10).
*--- ILLNESS SEGMENT CONCATENATED KEY

01 XPCB-CONCKEY.

02 LS-PATNO PIC X(5).
02 LS-ILLDT PIC X(6).

PROCEDURE DIVISION USING XPCB.
SET W-POINTER TO DATA-XSDB-PTR.

*--- LENGTH ZERO IF NOT CAPTURED

* IF W-POINTER-R EQUAL ZEROES GOBACK
* GOBACK
* END-IF
*----

SET ADDRESS OF DATA-XSDB TO DATA-XSDB-PTR.
SET ADDRESS OF XPCB-CONCKEY TO CONC-KEY-PTR.
SET ADDRESS OF LS-SEGMENT TO SEGMENT-DATA-PTR.

*----
EXEC SQL
WHENEVER SQLWARNING CONTINUE

END-EXEC
EXEC SQL
WHENEVER SQLERROR GO TO BADSQL

END-EXEC
EXEC SQL
WHENEVER NOT FOUND GO TO BADSQL

END-EXEC
*----

IF PHYSICAL-FUNCTION OF XPCB = "ISRT"

EXEC SQL
INSERT INTO SYSADM.ILLNESS
VALUES (::LS-ILLDATE,::LS-PATNO,
::LS-ILLNAME)

END-EXEC ELSE
IF PHYSICAL-FUNCTION OF XPCB = "CASC" OR

PHYSICAL-FUNCTION OF XPCB = "DLET"
EXEC SQL
DELETE FROM SYSADM.ILLNESS
WHERE (PATNO = ::LS-PATNO AND

ILLDATE = ::LS-ILLDATE)
END-EXEC

ELSE

IF PHYSICAL-FUNCTION OF XPCB = "REPL"

EXEC SQL
UPDATE SYSADM.ILLNESS
SET ILLNAME = ::LS-ILLNAME
WHERE (ILLDATE = ::LS-ILLDATE AND

PATNO = ::LS-PATNO)
END-EXEC

ELSE

DISPLAY "FUNCTION WASNT ISRT, REPL, DLET, OR CASC"
DISPLAY "--- NO SQL ACTION WAS TAKEN"
DISPLAY "PHYS FUNCTION IS "
DISPLAY PHYSICAL-FUNCTION OF XPCB

END-IF
END-IF

END-IF.
DISPLAY "SQLCODE " SQLCODE.
GOBACK.

BADSQL.

DISPLAY "SQLERRM".
MOVE 8 TO EXIT-RETURN-CODE OF XPCB.
MOVE SQLCODE TO EXIT-REASON-CODE OF XPCB.
GOBACK.

PL/I

The following example is the Data Capture exit routine in PL/I.

Chapter 2. Database Manager exit routines 75

DLI2DB2: PROCEDURE(XPCB_PTR) OPTIONS(MAIN);
/*

*REMARKS. *

* DESCRIPTIVE NAME : HOSPITAL DATA BASE SEGMENT EXIT *

* THIS IS A SAMPLE IMS EXIT THAT WILL BE CALLED BY IMS. *
* THIS PROGRAM PROPAGATES DATA FROM IMS TO DB2 SYNCHRONOUSLY.*
* THE NAME OF THIS PROGRAM LOAD MODULE IS SPECIFIED *
* ON SEGM MACRO DURING DBDGEN FOR THE HOSPITAL DATA BASE. *
* *
* THE DATA OPTIONS SELECTED FOR THIS EXIT ARE: *
* EXIT=(DLI2DB2,PATH,DATA,(CASCADE,PATH,DATA,NOKEY) *

* *
* INPUT FOR THIS PROGRAM : XPCB, XSDB. *
* *
* OUTPUT: DISPLAY ’SQLERRM’ WHEN SQLERROR OCCURS. *
* UPDATES: UPDATES DB2 TREATMT TABLE *
* *
* : RETURNS REASON CODE 14 RETURN CODE 16 WHEN PATH *
* NOT SPECIFIED ON THE DBDGEN EXIT STATEMENT, *
* RESULTING IN AN ABEND U3314. *
* *

* LOGIC: THIS PROGRAM IS CALLED BY IMS AFTER AN UPDATE TO *
* THE TREATMT SEGMENT AND BEFORE IMS RETURNS TO *
* IMS APPLICATION PROGRAM. *
* *
* THE ADDRESS OF AN XPCB IS PASSED TO THIS PROGRAM *
* FROM IMS. THE XPCB WILL PROVIDE THE ADDRESSES OF *
* THE XSDB FOR DATA, PATH DATA AND BEFORE DATA. *
* *
* UPDATE THE DB2 TREATMT TABLE WITH THE UPDATED IMS *
* SEGMENT DATA. *
* *
* HOSPITAL *********** *
* DATA BASE * * *
* * PATIENT * KEY FIELD IS PATNO *
* * * *
* *********** *
* * *
* * *
* *********** *
* * * *
* * ILLNESS * KEY FIELD IS ILLDATE *
* * * *
* *********** *
* * *
* * *
* *********** KEY FIELD IS TRTDATE *
* * * FIELD, MEDICINE *
* * TREATMT * FIELD, QUANTITY *
* * * FIELD, DOCTOR (NOT IN DB2 TABLE) *
* *********** *
* *
* *
* TREATMENT TABLE *
* *
* *** *
* * PATNUMB * DATEILL * DATETRT * MEDICAT * AMOUNT * *
* *** *
* *
* --*
*/
/* *** */
/* */
/* E X T E N D E D D A T A B A S E P C B -- X P C B */
/* */
/* ** */

DECLARE
1 XPCB BASED(XPCB_PTR),
3 EYECATCHER CHAR(4), /* "XPCB" EYECATCHER */
3 VERSION CHAR(2), /* XPCB VERSION INDICATOR */
3 RELEASE CHAR(2), /* XPCB RELEASE INDICATOR */
3 EXIT_NAME CHAR(8), /* SEGMENT EXIT NAME */
3 EXIT_RETURN_CODE FIXED BINARY (15), /* RETURN CODE */
3 EXIT_REASON_CODE FIXED BINARY (15), /* REASON CODE */

76 Exit Routines

3 ATABASE_NAME CHAR(8), /* PHYSICAL DATA BASE NAME */
3 DBD_VERSION_PTR POINTER, /* ADDRESS OF DBD VERSION ID */
3 SEGMENT_NAME CHAR(8), /* PHYSICAL SEGMENT NAME */
3 CALL_FUNCTION CHAR(4), /* CALL FUNCTION */
3 PHYSICAL_FUNCTION CHAR(4), /* DL/I PHYSICAL FUNCTION */
3 FILLER1 FIXED BINARY (31), /* RESERVED */
3 DB_PCB_PTR POINTER, /* ADDRESS OF DB PCB */
3 DB_PCB_NAME CHAR(8), /* NAME OF DB PCB */
3 INQY_OUTPUT_PTR POINTER, /* ADDRESS OF "INQY" OUTPUT */
3 IO_PCB_PTR POINTER, /* ADDRESS OF I/O PCB */
3 ENVIRONMENT-FLAGS CHAR(1), /* Environment Flags */
/* IMS-ENH-SUPPORT X’80’ RRS SUPPORT AVAILABLE IN SYSTEM */
/* IMS-RRS-ENABLED X’40’ RRS=Y WAS SPECIFIED */
/* CALL_AT_COMMIT X’20’ SET BY EXIT-CALL DURING COMMIT */
/* XPCB_LOGX_FORMAT X’10’ REDUCED 9904 FORMAT */
/* XPCB_EXIT_WAS_CALLED X’08’ INTERNAL FLAG USED BY IMS */
/* XPCB_DPROP_EXIT X’04’ SET BY DPROP EXIT ROUTINE */
3 NEWFILLER CHAR(1), /* Reserved */
3 FILLER2 FIXED BINARY (15), /* RESERVED */
3 CONC_KEY_LENGTH FIXED BINARY (15), /* LENGTH OF FULLY */

/* CONCATENATED KEY FOR SEGM */
3 CONC_KEY_PTR POINTER, /* ADDRESS OF PHYSICAL FULLY */

/* CONCATENATED KEY FOR SEGM */
3 DATA_XSDB_PTR POINTER, /* ADDRESS OF XSDB FOR */

/* PHYSICAL SEGMENT DATA */
3 BEFORE_XSDB_PTR POINTER, /* ADDRESS OF XSDB FOR */

/* PHYSICAL BEFORE DATA */
3 PATH_XSDB_PTR POINTER, /* ADDRESS OF XSDB FOR */

/* PHYSICAL PATH DATA */
3 FILLER3 POINTER, /* RESERVED */
3 FILLER4 POINTER, /* RESERVED */
3 FILLER5 POINTER, /* RESERVED */
3 EXIT_WORK_PTR POINTER, /* ADDRESS OF 256 BYTE AREA */

/* FOR THE EXIT */
3 NULL_PTR POINTER, /* NULL POINTER VALUE */
3 FILLER6 POINTER, /* RESERVED */
3 CALL_TIMESTAMP CHAR(8), /* TIMESTAMP OF CALL */
3 FILLER7 POINTER; /* RESERVED FOR NULLS AT END */

DECLARE XPCB_PTR POINTER;
/* ** */
/* */
/* E X T E N D E D S E G M E N T D A T A -- X S D B */
/* */
/* ** */

DECLARE
1 XSDB BASED(XSDB_PTR),
3 EYECATCHER CHAR(4), /* "XSDB" EYECATCHER */
3 VERSION CHAR(2), /* XSDB VERSION INDICATOR */
3 RELEASE CHAR(2), /* XSDB RELEASE INDICATOR */
3 NEXT_PTR POINTER, /* NEXT XSDB POINTER */
3 DATABASE_NAME CHAR(8), /* PHYSICAL DATA BASE NAME */
3 SEGMENT_NAME CHAR(8), /* PHYSICAL SEGMENT NAME */
3 FILLER1 CHAR(4), /* RESERVED */
3 SEGMENT_LEVEL FIXED BINARY (15), /* SEGMENT DATA BASE LEVEL */
3 KEY_LENGTH FIXED BINARY (15), /* LENGTH OF PHYSICAL KEY */
3 KEY_PTR POINTER, /* ADDRESS OF PHYSICAL KEY */
3 FILLER2 FIXED BINARY (15), /* RESERVED */
3 SEGMENT_LENGTH FIXED BINARY (15), /* LENGTH OF SEGMENT DATA */
3 SEGMENT_DATA_PTR POINTER, /* ADDRESS OF SEGMENT DATA */
3 FILLER3 POINTER, /* RESERVED */
3 FILLER4 POINTER, /* RESERVED */
3 FILLER5 POINTER; /* RESERVED FOR NULLS AT END */

DECLARE XSDB_PTR POINTER;
DECLARE
1 SEGMENT_XSDB LIKE XSDB BASED(XPCB.DATA_XSDB_PTR);

DECLARE /* TREATMENT SEGMENT */
1 SEGMENT_DATA BASED(SEGMENT_XSDB.SEGMENT_DATA_PTR),
3 SEGMENT_DATA_TRTDATE CHAR(6), /* SEGMENT KEY */
3 SEGMENT_DATA_MEDICINE CHAR(10),
3 SEGMENT_DATA_QUANTITY CHAR(4),
3 SEGMENT_DATA_DOCTOR CHAR(10);

DECLARE
1 BEFORE_XSDB LIKE XSDB BASED(XPCB.BEFORE_XSDB_PTR);

DECLARE /* BEFORE TREATMENT SEGMENT */
1 BEFORE_DATA BASED(BEFORE_XSDB.SEGMENT_DATA_PTR),
3 BEFORE_DATA_TRTDATE CHAR(6), /* SEGMENT KEY */
3 BEFORE_DATA_MEDICINE CHAR(10),
3 BEFORE_DATA_QUANTITY CHAR(4),

Chapter 2. Database Manager exit routines 77

3 BEFORE_DATA_DOCTOR CHAR(10);
DECLARE
1 PATH_XSDB LIKE XSDB BASED(PATH_XSDB_PTR);

DECLARE /* PATIENT SEGMENT */
1 PATH_DATA BASED(PATH_XSDB.SEGMENT_DATA_PTR),
3 PATHSEG_PATNO CHAR(5), /* SEGMENT KEY */
3 PATHSEG_NAME CHAR(10),
3 PATHSEG_ADDR CHAR(30); DECLARE

1 PATH2_XSDB LIKE XSDB BASED(PATH2_XSDB_PTR);
DECLARE /* PATIENT SEGMENT */
1 PATH2_DATA BASED(PATH2_XSDB.SEGMENT_DATA_PTR),
3 PATH2SEG_ILLDATE CHAR(6), /* SEGMENT KEY */
3 PATH2SEG_ILLNAME CHAR(10);

DECLARE PATH2_XSDB_PTR POINTER;
DECLARE /* TREATMENT TABLE ROW */
1 TREATROW BASED(XPCB.EXIT_WORK_PTR),
3 COL_PATNUM CHAR(5), /* FROM LEVEL 1 KEY */
3 COL_ILLDATE CHAR(6), /* FROM LEVEL 2 KEY */
3 COL_TRTDATE CHAR(6), /* FROM LEVEL 3 KEY */
3 COL_MEDICINE CHAR(10), /* FROM LEVEL 3 */
3 COL_QUANTITY CHAR(4); /* FROM LEVEL 3 */

EXEC SQL
INCLUDE SQLCA;

/* - DB2 TREATMENT TABLE DECLARATION */

EXEC SQL
DECLARE SYSADM.TREATMNT TABLE
(PATNUMB VARCHAR (5) NOT NULL,
DATEILL VARCHAR (6) NOT NULL,
DATETRT VARCHAR (6) NOT NULL,
MEDICAT VARCHAR (10) NOT NULL,
AMOUNT VARCHAR (4) NOT NULL);

DECLARE /* CALL FUNCTIONS */
INSERT_FUNCTION CHAR(4) STATIC INIT(’ISRT’),
DELETE_FUNCTION CHAR(4) STATIC INIT(’DLET’),
REPLACE_FUNCTION CHAR(4) STATIC INIT(’REPL’),
CASCADE_FUNCTION CHAR(4) STATIC INIT(’CASC’);

DECLARE ZERO FIXED BINARY (31) STATIC
INIT(0);

DECLARE SIXTEEN FIXED BINARY (31) STATIC
INIT(16);

PATH2_XSDB_PTR = PATH_XSDB.NEXT_PTR;
TREATROW.COL_PATNUM = PATH_DATA.PATHSEG_PATNO;
TREATROW.COL_ILLDATE = PATH2_DATA.PATH2SEG_ILLDATE;
TREATROW.COL_TRTDATE = SEGMENT_DATA.SEGMENT_DATA_TRTDATE;
TREATROW.COL_MEDICINE = SEGMENT_DATA.SEGMENT_DATA_MEDICINE;
TREATROW.COL_QUANTITY = SEGMENT_DATA.SEGMENT_DATA_QUANTITY;

EXEC SQL
WHENEVER SQLWARNING CONTINUE;

EXEC SQL
WHENEVER SQLERROR GOTO BADSQL;

EXEC SQL
WHENEVER NOT FOUND GOTO BADSQL;

IF XPCB.PATH_XSDB_PTR = XPCB.NULL_PTR
THEN DO;
GOTO BADPATH; /* PATH NOT SPECIFIED */
END; ELSE DO; /* PRE-SET CODES TO ZERO */
XPCB.EXIT_RETURN_CODE = ZERO;
XPCB.EXIT_REASON_CODE = ZERO;
END;

/*====================================*/
/* IF CALLED FOR DELETE OR CASCADE, */
/* PERFORM THE DB2 DELETE. */
/*====================================*/

IF XPCB.PHYSICAL_FUNCTION = DELETE_FUNCTION
THEN DO;

EXEC SQL
DELETE FROM SYSADM.TREATMNT
WHERE PATNUMB = ::TREATROW.COL_PATNUM AND
DATEILL = ::TREATROW.COL_ILLDATE AND

DATETRT = ::TREATROW.COL_TRTDATE;
END;

/*==*/
/* IF CALLED FOR INSERT, DO DB2 INSERT CALL */
/*==*/

IF XPCB.CALL_FUNCTION = INSERT_FUNCTION

78 Exit Routines

THEN DO;
EXEC SQL

INSERT INTO SYSADM.TREATMNT
VALUES(::TREATROW.COL_PATNUM,

::TREATROW.COL_ILLDATE,
::TREATROW.COL_TRTDATE,
::TREATROW.COL_MEDICINE,
::TREATROW.COL_QUANTITY);

END;
/*=====================================*/
/* IF CALLED FOR REPLACE, UPDATE THE */
/* THE DB2 ROW, IF A FIELD DESTINED TO */
/* THE DB2 DATA BASE HAS BEEN CHANGED. */
/*=====================================*/

IF XPCB.CALL_FUNCTION = REPLACE_FUNCTION
THEN DO; /* REPLACE */
IF (SEGMENT_DATA.SEGMENT_DATA_MEDICINE ≠
BEFORE_DATA.BEFORE_DATA_MEDICINE) |
(SEGMENT_DATA.SEGMENT_DATA_QUANTITY ≠
BEFORE_DATA.BEFORE_DATA_QUANTITY)
THEN DO; /* UPDATE */
EXEC SQL
UPDATE SYSADM.TREATMNT
SET MEDICAT = ::SEGMENT_DATA.SEGMENT_DATA_MEDICINE,

AMOUNT = ::SEGMENT_DATA.SEGMENT_DATA_QUANTITY
WHERE PATNUMB = ::TREATROW.COL_PATNUM AND
DATEILL = ::TREATROW.COL_ILLDATE AND
DATETRT = ::TREATROW.COL_TRTDATE;

END; /* OF UPDATE */
END; /* OF REPLACE */

STOP;
BADSQL: DO; DISPLAY(SQLERRM);
XPCB.EXIT_RETURN_CODE = 16;
XPCB.EXIT_REASON_CODE = SQLCODE;
END;
BADPATH: DO;
XPCB.EXIT_RETURN_CODE = 16;
XPCB.EXIT_REASON_CODE = 14;
END;

END DLI2DB2B;

Sample Extended Program Communication Block (XPCB)
The segment that is passed in a dependent region and has the Data Capture exit
routine defined for it can use the XPCB to identify the segment and call functions,
provides the address of a work area, and contains additional information that is
passed to the Data Capture exit routine.

This topic provides examples of the XPCB in assembler, COBOL, and PL/I.

Subsections:
v “Assembler”
v “COBOL” on page 80
v “PL/I” on page 81

Assembler

The following code sample is an example of the XPCB in assembler.
SPACE 3

XPCB DSECT
XPCB_EYECATCHER DS CL4 "XPCB" EYECATCHER
XPCB_VERSION DS CL2 XPCB VERSION INDICATOR
XPCB_RELEASE DS CL2 XPCB RELEASE INDICATOR
XPCB_EXIT_NAME DS CL8 SEGMENT EXIT NAME
XPCB_EXIT_RETURN_CODE DS H RETURN CODE FROM EXIT
XPCB_EXIT_REASON_CODE DS H REASON CODE FROM EXIT
XPCB_DATABASE_NAME DS CL8 PHYSICAL DATA BASE NAME
XPCB_DBD_VERSION_PTR DS A ADDRESS OF DBD VERSION ID
XPCB_SEGMENT_NAME DS CL8 PHYSICAL SEGMENT NAME

Chapter 2. Database Manager exit routines 79

XPCB_CALL_FUNCTION DS CL4 CALL FUNCTION
XPCB_PHYSICAL_FUNCTION DS CL4 PHYSICAL CALL FUNCTION

DS CL4
XPCB_DB_PCB_PTR DS A ADDRESS OF DB PCB
XPCB_DB_PCB_NAME DS CL8 NAME OF DB PCB
XPCB_INQY_OUTPUT_PTR DS A ADDRESS OF "INQY" OUTPUT
XPCB_IO_PCB_PTR DS A ADDRESS OF I/O PCB
XPCB_ENVIRONMENT_FLAGS DS X ENVIRONMENT FLAGS
XPCB_IMS_ENH_SUPPORT EQU X’80’ RRS SUPPORT IS AVAILABLE IN SYSTEM
XPCB_IMS_RRS_ENABLED EQU X’40’ RRS=Y WAS SPECIFIED
XPCB_CALL_AT_COMMIT EQU X’20’ SET BY EXIT - CALL DURING COMMIT
XPCB_LOGX_FORMAT EQU X’10’ REDUCED 9904 FORMAT
XPCB_EXIT_WAS_CALLED EQU X’08’ INTERNAL FLAG USED BY IMS
XPCB_DPROP_EXIT EQU X’04’ SET BY DPROP EXIT ROUTINE

DS X RESERVED
XPCB_CONC_KEY_LENGTH DS H LENGTH OF CONCATENATED KEY
XPCB_CONC_KEY_PTR DS A ADDRESS OF CONCATENATED KEY
XPCB_DATA_XSDB_PTR DS A ADDRESS OF XSDB FOR DATA
XPCB_BEFORE_XSDB_PTR DS A ADDRESS OF XSDB FOR REPL DATA
XPCB_PATH_XSDB_PTR DS A ADDRESS OF XSDB FOR PATH DATA
XPCB_SETS_ROLS_TOKEN DS F TOKEN FOR SETS-ROLS CALL

DS F RESERVED
DS F RESERVED

XPCB_EXIT_WORK_PTR DS A ADDRESS OF WORK AREA
XPCB_ZERO_POINTER DS A ZERO ADDRESS

DS F RESERVED
XPCB_TIMESTAMP DS CL8 TIMESTAMP OF CALL

EJECT

COBOL

The following code sample is an example of the XPCB in COBOL.
01 XPCB.

05 EYECATCHER PIC X(04).
05 VERSION PIC X(02).
05 RELEASE-ID PIC X(02).
05 EXIT-NAME PIC X(08).
05 EXIT-RETURN-CODE PIC 9(04) COMP.
05 EXIT-REASON-CODE PIC 9(04) COMP.
05 DATABASE-NAME PIC X(08).
05 DBD-VERSION-PTR POINTER.
05 SEGMENT-NAME PIC X(08).
05 CALL-FUNCTION PIC X(04).
05 PHYSICAL-FUNCTION PIC X(04).
05 FILLER PIC 9(08) COMP.
05 DB-PCB-PTR POINTER.
05 DB-PCB-NAME PIC X(08).
05 INQY-OUTPUT-PTR POINTER.
05 IO-PCB-PTR POINTER.
05 ENVIRONMENT-FLAGS PIC X.

88 IMS-ENH-SUPPORT VALUE X’80’.
* RRS SUPPORT IS AVAILABLE IN SYSTEM

88 IMS-RRS-ENABLED VALUE X’40’.
* RRS=Y WAS SPECIFIED

88 CALL_AT_COMMIT VALUE X’20’.
* SET BY EXIT - CALL DURING COMMIT

88 XPCB_LOGX_FORMAT VALUE X’10’.
* REDUCED 9904 FORMAT

88 XPCB_EXIT_WAS_CALLED VALUE X’08’.
* INTERNAL FLAG USED BY IMS

88 XPCB_DPROP_EXIT VALUE X’04’.
* SET BY DPROP EXIT ROUTINE

05 FILLER PIC X.
* RESERVED

05 CONC-KEY-LENGTH PIC 9(04) COMP.
05 CONC-KEY-PTR POINTER.

80 Exit Routines

05 DATA-XSDB-PTR POINTER.
05 BEFORE-XSDB-PTR POINTER.
05 PATH-XSDB-PTR POINTER.
05 FILLER POINTER.
05 FILLER POINTER.
05 FILLER POINTER.
05 EXIT-WORK-PTR POINTER.
05 NULL-PTR POINTER.
05 FILLER POINTER.
05 TIMESTAMP PIC X(08).

PL/I

The following sample is an example of the XPCB in PL/I.
DECLARE

1 XPCB BASED(XPCB_PTR),
3 EYECATCHER CHAR(4), /* "XPCB" EYECATCHER */
3 VERSION CHAR(2), /* XPCB VERSION INDICATOR */
3 RELEASE CHAR(2), /* XPCB RELEASE INDICATOR */
3 EXIT_NAME CHAR(8), /* SEGMENT EXIT NAME */
3 EXIT_RETURN_CODE FIXED BINARY (15), /* RETURN CODE */
3 EXIT_REASON_CODE FIXED BINARY (15), /* REASON CODE */
3 ATABASE_NAME CHAR(8), /* PHYSICAL DATA BASE NAME */
3 DBD_VERSION_PTR POINTER, /* ADDRESS OF DBD VERSION ID */
3 SEGMENT_NAME CHAR(8), /* PHYSICAL SEGMENT NAME */
3 CALL_FUNCTION CHAR(4), /* CALL FUNCTION */
3 PHYSICAL_FUNCTION CHAR(4), /* DL/I PHYSICAL FUNCTION */
3 FILLER1 FIXED BINARY (31), /* RESERVED */
3 DB_PCB_PTR POINTER, /* ADDRESS OF DB PCB */
3 DB_PCB_NAME CHAR(8), /* NAME OF DB PCB */
3 INQY_OUTPUT_PTR POINTER, /* ADDRESS OF "INQY" OUTPUT */
3 IO_PCB_PTR POINTER, /* ADDRESS OF I/O PCB */
3 ENVIRONMENT-FLAGS CHAR(1), /* Environment Flags */

/* IMS-ENH-SUPPORT X’80’ RRS SUPPORT AVAILABLE IN SYSTEM */
/* IMS-RRS-ENABLED X’40’ RRS=Y WAS SPECIFIED */
/* CALL_AT_COMMIT X’20’ SET BY EXIT-CALL DURING COMMIT */
/* XPCB_LOGX_FORMAT X’10’ REDUCED 9904 FORMAT */
/* XPCB_EXIT_WAS_CALLED X’08’ INTERNAL FLAG USED BY IMS */
/* XPCB_DPROP_EXIT X’04’ SET BY DPROP EXIT ROUTINE */

3 NEWFILLER CHAR(1), /* Reserved */
3 CONC_KEY_LENGTH FIXED BINARY (15), /* LENGTH OF FULLY */

/* CONCATENATED KEY FOR SEGM */
3 CONC_KEY_PTR POINTER, /* ADDRESS OF PHYSICAL FULLY */

/* CONCATENATED KEY FOR SEGM */
3 DATA_XSDB_PTR POINTER, /* ADDRESS OF XSDB FOR */

/* PHYSICAL SEGMENT DATA */
3 BEFORE_XSDB_PTR POINTER, /* ADDRESS OF XSDB FOR */

/* PHYSICAL BEFORE DATA */
3 PATH_XSDB_PTR POINTER, /* ADDRESS OF XSDB FOR */

/* PHYSICAL PATH DATA */
3 FILLER3 POINTER, /* RESERVED */
3 FILLER4 POINTER, /* RESERVED */
3 FILLER5 POINTER, /* RESERVED */
3 EXIT_WORK_PTR POINTER, /* ADDRESS OF 256 BYTE AREA */

/* FOR THE EXIT */
3 NULL_PTR POINTER, /* NULL POINTER VALUE */
3 FILLER6 POINTER, /* RESERVED */
3 CALL_TIMESTAMP CHAR(8), /* TIMESTAMP OF CALL */
3 FILLER7 POINTER; /* RESERVED FOR NULLS AT END */

DECLARE XPCB_PTR POINTER;

Chapter 2. Database Manager exit routines 81

Sample Extended Segment Data Block (XSDB)
The segment that is passed in a dependent region and has the Data Capture exit
routine defined for it can use the XSDB, which points to the updated data that is
passed to the Data Capture exit routine.

This topic provides examples of the XSDB in assembler, COBOL, and PL/I.

Subsections:
v “Assembler”
v “COBOL”
v “PL/I”

Assembler

The following code sample is an example of the XSDB in assembler.
SPACE 3

XSDB DSECT
XSDB_EYECATCHER DS CL4 "XSDB" EYECATCHER
XSDB_VERSION DS CL2 XSDB VERSION INDICATOR
XSDB_RELEASE DS CL2 XSDB RELEASE INDICATOR
XSDB_NEXT_PTR DS A NEXT XSDB POINTER
XSDB_DATABASE_NAME DS CL8 PHYSICAL DATA BASE NAME
XSDB_SEGMENT_NAME DS CL8 PHYSICAL SEGMENT NAME

DS CL4 RESERVED
XSDB_SEGMENT_LEVEL DS H SEGMENT DATA BASE LEVEL
XSDB_KEY_LENGTH DS H LENGTH OF PHYSICAL KEY
XSDB_KEY_PTR DS A ADDRESS OF PHYSICAL KEY
XSDB_LP_KEY_LENGTH DS H LENGTH OF LOGICAL PARENT KEY
XSDB_SEGMENT_LENGTH DS H LENGTH OF SEGMENT DATA
XSDB_SEGMENT_DATA_PTR DS A ADDRESS OF SEGMENT DATA

DS F RESERVED
DS F RESERVED

COBOL

The following code sample is an example of the XSDB in COBOL.
01 XSDB

05 EYECATCHER PIC X(4).
05 VERSION PIC X(2).
05 RELEASE-ID PIC X(2).
05 NEXT-PTR POINTER.
05 DATABASE-NAME PIC X(8).
05 SEGMENT-NAME PIC X(8).
05 FILLER PIC X(4).
05 SEGMENT-LEVEL PIC 9(4) COMP.
05 KEY-LENGTH PIC 9(4) COMP.
05 KEY-PTR POINTER.
05 LP-KEY-LENGTH PIC 9(4) COMP.
05 SEGMENT-LENGTH PIC 9(4) COMP.
05 SEGMENT-DATA-PTR POINTER.
05 FILLER POINTER.
05 FILLER POINTER.

PL/I

The following code sample is an example of the XSDB in PL/I.
DECLARE

1 XSDB BASED(XSDB_PTR),
3 EYECATCHER CHAR(4), /* "XSDB" EYECATCHER */
3 VERSION CHAR(2), /* XSDB VERSION INDICATOR */

82 Exit Routines

3 RELEASE CHAR(2), /* XSDB RELEASE INDICATOR */
3 NEXT_PTR POINTER, /* NEXT XSDB POINTER */
3 DATABASE_NAME CHAR(8), /* PHYSICAL DATA BASE NAME */
3 SEGMENT_NAME CHAR(8), /* PHYSICAL SEGMENT NAME */
3 FILLER1 CHAR(4), /* RESERVED */
3 SEGMENT_LEVEL FIXED BINARY (15), /* SEGMENT DATA BASE LEVEL */
3 KEY_LENGTH FIXED BINARY (15), /* LENGTH OF PHYSICAL KEY */
3 KEY_PTR POINTER, /* ADDRESS OF PHYSICAL KEY */
3 LP_KEY_LENGTH FIXED BINARY (15), /* RESERVED */
3 SEGMENT_LENGTH FIXED BINARY (15), /* LENGTH OF SEGMENT DATA */
3 SEGMENT_DATA_PTR POINTER, /* ADDRESS OF SEGMENT DATA */
3 FILLER3 POINTER, /* RESERVED */
3 FILLER4 POINTER, /* RESERVED */
3 FILLER5 POINTER; /* RESERVED FOR NULLS AT END */

DECLARE XSDB_PTR POINTER;

Data conversion user exit routine (DFSDBUX1)
The purpose of the Data Conversion exit routine (DFSDBUX1) is to provide a
method for modifying segment search arguments, the key feedback area, the I/O
area, and the status code.

This topic contains Product-sensitive Programming Interface information.

The Data Conversion user exit routine (DFSDBUX1) gets control at the beginning
of a DL/I call and at the end of the call. In the exit routine, you can modify
segment search arguments, the key feedback area, the I/O area, and the status
code.

Restriction: This exit routine gets control only for calls to full-function databases.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 84
v “Data security and integrity” on page 85

About this routine

Attributes of the routine

Regardless of its function, the exit routine must be written in assembler language,
C language, COBOL, or PL/I. Routines written in high-level languages running
under Language Environment for z/OS are not supported.

Binding the routine

Bind the exit routine DFSDBUX1 with the RENT attribute into an APF-authorized
library. This library can be either IMS.SDFSRESL, SYS1.LINKLIB, or any
partitioned data set that can be accessed by a JOBLIB or a STEPLIB DD statement
for the IMS control, SAS, batch, or CICS region.

Loading the routine

IMS attempts to load the exit routine on the first database call. If the exit routine
fails to load, IMS does not attempt to load it again.

Other considerations

Chapter 2. Database Manager exit routines 83

A DBD generation is not required for IMS to call the exit routine.

Recommendation: Perform a DBD generation with the DATXEXIT=YES parameter
for DBDs that require the exit routine.

If you do not specify the DATXEXIT=YES parameter for a DBD, the call analyzer
(DFSDLA00) issues a DFS2097I message if the exit routine specifies that it should
continue to be called for that DBD. After issuing message DFS2097I, the call
analyzer DFSDLA00 dynamically sets the DATXEXIT parameter to YES for the
DBD and continues calling the exit routine. The DFS2097I message appears only
once per DBD.

If you bind an exit routine and want to prevent it from being called, remove the
DFSDBUX1 exit routine from the library in which you edited it.

If exit routine DFSDBUX1 is available to IMS, it is called regardless of the
DATXEXIT parameter specification. If the exit routine determines that the exit
routine should not be called again for the DBD, the routine returns abend code
X'FF' in the SRCHFLAG field in the JCB (SRCHFLAG EQUA JCBWKR55). Abend
code X'FF' causes call analyzer DFSDLA00 to dynamically mark the DBD as not
requiring the exit routine. In this case, the exit routine is not called again for that
DBD for the duration of the execution of this IMS or until the DMB is purged from
the DMB pool.

If you use exit routine DFSDBUX1, it is loaded and called on each database call. If
you do not want to run the DFSDBUX1 exit routine for every database, create a
table in the DFSDBUX1 exit routine that includes the names of the databases you
want the routine to process every time it is called. When exit routine DFSDBUX1 is
called, it checks the table of database names. If a database name is not in that
table, the DFSDBUX1 exit routine flags that database with a X'FF' value in the JCB
when it first calls it, which indicates that the database is not processed further.

Preloading the exit routine is not necessary. After it is loaded, the exit routine
remains loaded until region termination.

Using IMS callable services with this routine

This exit is not eligible to use IMS callable services.

Issuing SVC calls

In an online environment, the exit routine might be running in cross-memory
mode. To prevent 0F8 abends, the exit should avoid issuing SVC calls.

Communicating with IMS

IMS uses the general purpose registers and several IMS control blocks to
communicate with the DFSDBUX1 exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

84 Exit Routines

Register Contents

0 The characters 'IN' at the start of the DL/I call and the characters 'OUT' at
the end of the DL/I call.

1 Address of the Partition Specification Table.

3 Address of the Database Program Communication Block (DBPCB).

5 Address of the PSB Directory (PDIR).

6 Address of the System Contents Directory (SCD).

7 Address of the Program Specification Block (PSB).

9 Address of the Job Control Block (JCB).

10 Address of the Segment Descriptor Block (SDB).

13 Address of save area. The exit routine must not change the first three words.

14 Return address to IMS.

15 Entry point of exit routine.

Contents of registers on exit

Before returning to IMS, the exit routine must restore registers 0 through 14. The
value of Register 15 must be a 2-byte or less positive value set as follows:

Register Contents

0 The exit routine has successfully processed the request.

non-0 The exit routine has set a status code or pseudoabend.

Data security and integrity

The exit routine is an extension of the application program with the same
capabilities as the application program; the exit routine and the application have
equal authorization and limitations.

In batch, the data and the exit routine operate in unprotected key-8 storage.
Online, the data and the exit routine operate in unprotected key-7 storage. The exit
routine is able to modify data or control blocks that can affect the successful
operation of the application program.

Data Entry Database Partition Selection exit routine (DBFPSE00)
Use the Data Entry Database (DEDB) Partition Selection exit routine to partition
data for HISAM or SHISAM secondary index databases.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 88

About this routine

The DEDB Partition Selection exit routine is defined in the primary DEDB database
DBD when its secondary index databases are HISAM or SHISAM databases and
user partitioning is required.

Chapter 2. Database Manager exit routines 85

A partitioned database contains a range of secondary index keys. The DEDB
Partition Selection exit routine selects an appropriate partition based on the key
value of a search key of the secondary index or other user defined partition
selection criteria. The sample partition selection exit routine DBFPSE00 uses the
high key for each partition to determine partition selection. A DEDB Partition
Selection exit routine can have its own user partition selection criteria.

The PSELRTN= parameter on a XDFLD statement defines a DEDB Partition
Selection exit routine for HISAM or SHISAM secondary index databases.

A logical HISAM or SHISAM partition index database can include one or multiple
partitions. The PSELOPT=MULT|SNGL parameter on either a PCB statement with
the PROCSEQD= parameter, or on a XDFLD statement, determines how partitions
are grouped in the index database.

The following naming rules apply to the DEDB Partition Selection exit routine:
v The exit routine name cannot be longer than 8 characters.
v The first character must be alphabetic.
v The remaining characters must be alphabetic, numeric, or #, @, $.

If the PSELRTN= parameter specifies a DEDB Partition Selection exit routine name
that violates one or more naming rules, the DBDGEN utility terminates with a
MNOTE 8 and message XDFLD235.

The DEDB Partition Selection exit routine supports three functions:
v PTDBINIT: Initialization
v PTDBPSEL: Partition database selection
v PTDBTERM: Termination

The PTDBINIT function is driven when a primary DEDB database that has a
DEDB Partition Selection exit routine defined in the PSELRTN= parameter on a
XDFLD statement is opened.

The PTDBPSEL function is driven when a primary DEDB database is being
accessed or updated using its HISAM or SHISAM secondary index and user
partitioning is requested as defined in the primary DEDB database DBD. The
DEDB Partition Selection exit routine allows you to select a user partition database
among a group of HISAM secondary index databases or a group of SHIASM
secondary databases defined in the NAME= parameter on the LCHILD statement
and its corresponding XDFLD statement has the DEDB Partition Selection exit
routine defined in the PSELRTN= parameter in the primary DEDB database DBD.

The PTDBTERM function is driven when a primary DEDB database that has a
DEDB Partition Selection exit routine defined in the PSELRTN= parameter on a
XDFLD statement is closed. A DEDB Partition Selection exit routine has similar
attributes as a DEDB randomizing module. Table 21 on page 87 summarizes the
attributes of a DEDB Partition Selection exit routine for HISAM or SHISAM
secondary index databases.

Option to access user partition databases in a user partition group as a separate
logical database

86 Exit Routines

Each user partition database can be accessed as a separate database. In addition, all
user partition databases in a user partition group can be accessed as a separate
logical database using PSELRTN and PSELOPT=MULT|SNGL parameters.

When ACCESS=DB is specified or defaulted on a PCB statement with the
PROCSEQD parameter, the user partition databases in a user partition group are
accessed as a secondary index to access the primary DEDB database in an alternate
sequence.

When ACCESS=INDEX is specified on a PCB statement with the PROCSEQD
parameter, the user partition databases in a user partition group are accessed as
one single separate logical database. The PSELRTN and PSELOPT=MULT|SNGL
are used to control which partition database to access, and one or more subsequent
partition databases are in the separate logical database.

The SENSEGS statements in a PCB with the PROCSEQD parameter for both
ACCESS=DB and ACCESS=INDEX are the same even though the primary DEDB
database is not accessed when ACCESS=INDEX is specified. This requirement
allows compatibility of PSBGEN utility and ACBGEN utility for ACCESS=DB and
ACCESS=INDEX.

Attributes of the routine

The following table shows the attributes of the Data Entry Database Partition
Selection exit routine.

Table 21. Data Entry Database Partition Selection exit routine attributes

Attribute Description

IMS environments DB/DC, DBCTL.

Naming convention The name given to the load module used for partition selection
should also appear in the DBD generation associated with the
database. The load module name must be the value of the “mod”
parameter of the PSELRTN= parameter on the XDFLD statement in
the DEDB DBD generation.

Link editing After you compile and test your routine, bind it into IMS.SDFSRESL,
SYS1.LINKLIB, or any operating system partitioned data set that can
be accessed by a JOBLIB or STEPLIB JCL statement for the IMS
control and SAS regions.

Including the
routine

No special steps are needed to include this routine.

IMS callable services This exit routine is not eligible to use IMS callable services.

Sample routine
location

IMS.SDFSSRC (member name DBFPSE00).

Loading and deleting the routine

One DEDB Partition Selection exit routine can be shared by both HISAM and
SHISAM secondary index databases. A DEDB Partition Selection exit routine
resides in the IMS.SDFSRESL, SYS1.LINKLIB, or any operating system partitioned
data set that can be accessed by a JOBLIB or STEPLIB JCL statement for the IMS
control and SAS regions.

Chapter 2. Database Manager exit routines 87

When a primary DEDB database has a DEDB Partition Selection exit routine
defined in the PSELRTN= parameter, IMS loads the exit at IMS initialization or at
/START DB or UPDATE DB START(ACCESS) command if the exit has not been
loaded.

When a primary DEDB database is closed, its DEDB Partition Selection exit routine
is logically deleted. When all the primary DEDB databases sharing the DEDB
Partition Selection exit routine are closed, the DEDB Partition Selection exit routine
is physically deleted.

When a DEDB Partition Selection exit routine is physically deleted in an IMS
system, you can refresh your DEDB Partition Selection exit routine if you need to
update your exit routine. After you have refreshed your DEDB Partition Selection
exit routine in the library where it resides, issue a /STA DB or UPDATE DB
START(ACCESS) command on the primary DEDB database to load the updated
DEDB Partition Selection exit routine.

Communicating with IMS

IMS uses the entry registers, parameter list, and exit registers to communicate with
the routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of parameter list mapped by DBFPTDBP macro

13 Address of save area chain for use by this routine.

14 Return address of IMS.

15 Entry point of exit routine.

Contents of registers on exit

Before returning to IMS, the routine must restore all registers except for register 15,
which must contain one of the following:

Return code Meaning

0 Successful completion

4 Unsuccessful. If the exit function was initialization, this return code indicates
that the primary DEDB is marked unavailable for access. If the exit function
was termination, the primary DEDB is unaffected.

DEDB Partition Selection parameter list

The following table describes the parameter list for the DEDB Partition Selection
exit routine (mapped by DBFPTDBP). The DBFPTDBP parameter list macro is
located in the IMS macro target library SDFSMAC.
Related concepts:

DEDB partitioned secondary indexes (Database Administration)

88 Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dag/ims_dedbpartsecindex.htm#ims_dedbpartsecindex

Sample data entry database randomizing routines (DBFHDC40 /
DBFHDC20 DBFHDC44 / DBFHDC24 DBFHDC2S)

A data entry database randomizing module is required for placing root segments
in or retrieving them from a DEDB.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 91

About this routine

Several DEDBs can share the same routine, but all areas in a DEDB must use the
same routine.

If you are using data sharing, you must use the same randomizing routine on both
systems.

IMS supplies sample DEDB randomizing modules (DBFHDC40, DBFHDC20,
DBFHDC44, and DBFHDC24) on IMS.SDFSSMPL. You can use one of these
IMS-supplied routines or you can write your own.

Sample randomizer module DBFHDC2S is in IMS.ADFSSMPL data set. You must
understand the key structure of the database and modify this sample appropriately
before you use it.

DBFHDC20 and DBFHDC24 are limited two-stage randomizers that are intended
for use with the DEDB Alter Utility.

DBFHDC20 is a two-stage randomizer that is based on DBFHDC40, and
DBFHDC24 is a two-stage randomizer that is based on DBFHDC44. They have the
same attribute and interface as DBFHDC40 and DBFHDC44.

These randomizers first hash the root key to an area by using an arbitrary 4K
RAPs/area, and then re-hash the key within the selected area by using the
standard DBFHDC4x technique. As a result, a key will not move between areas
even if the total number of RAPs in the DEDB changes as a result of changes to
the ROOT or UOW parameters for any particular areas in the DBD.

However, if the number of areas that are defined in the DBD changes, a key might
move between areas across the DBD change. In that sense, they are limited
two-stage randomizers because a true two-stage randomizer would not move a key
between areas even if the number of areas that are defined in the DBD changes.
Such randomizers are usually table-driven and require a detailed knowledge of the
key structure and key frequency distribution.

For purposes of the DEDB Alter utility, a DEDB that uses DBFHDC20 or
DBFHDC24 can be the target of a DBD alteration that enlarges or reduces the
UOW or ROOT parameters of individual areas, so long as the number of areas in
DBD does not change.

Restrictions: When you first convert from DBFHDC40 or DBFHDC44, a full
unload and reload of the DEDB is required because DBFHDC20 and DBFHDC24
will not randomize keys to the same area or RAP as DBFHDC40 or DBFHDC44.

Chapter 2. Database Manager exit routines 89

|

|

|
|

|

|

|

|

|
|

|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

DBD can be changed to specify RMNAME=(DBFHDC20,2) or (DBFHDC24,2).
However, the restriction on changing the number of areas must be obeyed because
it is not enforced by IMS. Adding or deleting an area is a database-level change for
purposes of online change, even with a randomizer that is defined as “two stage”.
If the DBD is changed to add or delete an area, a full unload and reload of the
DEDB is required.

The following table shows the attributes of the Data Entry Database Randomizing
routine.

Table 22. Data Entry Database randomizing routine attributes

Attribute Description

IMS environments DB/TM, DBCTL

Naming convention The name given to the load module used for randomizing functions
with a specific database should also appear in the DBD generation
that is associated with the database. The load module name must be
the value of the “mod” parameter of the RMNAME= operand on
the DBD statement in the DEDB DBD generation.

Binding After you compile and test your randomizing module, bind it into
IMS.SDFSRESL, SYS1.LINKLIB, or any operating system partitioned
data set that can be accessed by a JOBLIB or STEPLIB JCL statement
for the IMS control and SAS regions.

Including the routine No special steps are needed to include this routine.

IMS callable services This exit is not eligible to use IMS callable services.

Sample routine
location

IMS.SDFSSMPL (member name DBFHDC40) IMS.SDFSSMPL
(member name DBFHDC20) IMS.SDFSSMPL (member name
DBFHDC44) IMS.SDFSSMPL (member name DBFHDC24)
IMS.ADFSSMPL (member name DBFHDC2S)

Loading the routine

All randomizing modules are loaded from their resident library by IMS. The name
of the module is the name that you specified in the RMNAME parameter of the
DBD statement of the database description (DBD).

Related Reading: For details on coding the RMNAME parameter, see IMS Version
13 System Utilities.

You can use one copy of the randomizing module to service several databases that
are concurrently open. At initialization time, the randomizing module can be
placed in the main storage or the LPA (link pack area). When running under z/OS,
the randomizing module is loaded into the Common Service Area (CSA). If you
are to bind with RMODE ANY, you can load it into the Extended Common Service
Area (ECSA).

Activating the routine

When an application program issues a Get Unique or Insert call that operates on a
root segment of a DEDB database, the user-supplied randomizing module is
activated.

The source of the root key that IMS supplies to the randomizing routine is as
follows:
v For a root insert, it is taken from the I/O area containing the root to be inserted.

90 Exit Routines

|
|
|
|
|
|

|
|

||

||

||

||
|
|
|
|

||
|
|
|

||

||

|
|
|
|
|
|
|

|

|
|
|

|
|

|
|
|
|
|
|

|

|
|
|

|
|

|

v For a call qualified on the root key, it is the key value in the segment search
argument.

Related Reading: For information about processing Get Next (GN) calls qualified
on the root key and calls with root qualification that allow a range of key values,
see IMS Version 13 Application Programming.

The key is supplied to the randomizing module for conversion to a relative block
number and anchor point number within the database. In addition to the key
supplied by an application program, parameters from the DBD generation
associated with the database being used are available to the randomizing module.

Communicating with IMS

IMS uses the entry and exit registers to communicate with the routine.

Contents of registers on entry

On entry to the randomizing module, the registers contain the following:

Register Contents

0 Number of entries in the MRMB (total number of areas in the DEDB).

1 Address of first MRMB the routine uses.

2 Size of an entry in the MRMB.

3 Address of the root key.

4 Length of the root key in bytes.

5 Total number of RAPs in the DEDB.

6 Address of an eight-word area that the randomizing module can use.

10 Address of the EPST (Extended Partition Specification Table).

11 Address of the ESCD (Extended System Content Directory).

13 Address of save area. The routine must not change the first three words

14 Return address to IMS.

15 Entry point of randomizing module.

The randomizing module must neither change the key value nor modify any
control blocks.

Note: When you run z/OS batch utilities (such as DBFUCDX0 or MSDB-to-DEDB
conversion), register 10 contains decimal -1 (X'FFFFFFFF') and register 11 contains
zeros. Specific utilities might have additional communication requirements.

Description of parameters

MRMB

To support the facility of randomizing within an area, the routine is passed the
address of a Randomizing Module Block (MRMB).

Each area has one 3-word entry. MRMB entries are built in the same order as
their associated AREA macros in the DBDGEN for the database. The content of
an entry is mapped by DBFMRMB macro and contains the following:

Chapter 2. Database Manager exit routines 91

|
|

|
|
|

|
|
|
|

|

|

|

|

|||

||

||

||

||

||

||

||

||

||

||

||

||
|

|
|

|
|
|

|

|

|
|

|
|
|

MRMB DSECT
MRMBARTD DS 0F START IS WORD-ALIGNED
MRMBARTC DS F ADDRESS OF THE AREA SELECTED
MRMBARTI DS F NUMBER OF ANCHOR POINTS IN THIS AREA
MRMBARTN DS F CUMULATIVE NUMBER OF ANCHOR POINTS
* IN ALL AREAS OF THE DEDB UP TO AND
* INCLUDING THIS ONE
MRMBARTZ DS 0F END OF THIS ENTRY, START OF NEXT
MRMBARTL EQU MBMBARTZ-MRMBARTD
* LENGTH OF A SINGLE ENTRY

Caller Environment
This field contains 4-byte characters to allow the XCI randomizer to distinguish
between the IMS online or OS batch caller. The value 'IMS ' indicates IMS
online caller, and the value 'OS ' indicates OS batch caller.

Contents of registers on exit

Before returning to IMS, your routine must restore all registers, except for registers
0, 1, and 15, which must contain the following:

Register Contents

0 Relative root anchor point number within the selected area (0 for first root
anchor point).

1 DMAC address of the area selected.

15 Return code interpreted as follows:

Return code Meaning

0 Register 1 contains the address of the area selected. If the area
is not contained in the DMCB or the HSSP sublist,
ABENDU1021 is issued.

4 Status 'FM' needs to be issued.

Any other return code causes ABENDU1021 to be issued.

When randomizing through the entire DEDB, the randomizing module must
derive an area and a relative root anchor point number to conform to the exit
interface. You can use the third word of the MRMB entry to accomplish this.
Related concepts:
Chapter 1, “Guidelines for writing IMS exit routines,” on page 3
Related reference:
“Routine binding restrictions” on page 9

Database Description (DBD) Generation utility (System Utilities)

Sample DEDB randomizing routines (DBFHDC40)
You can use the IMS-supplied sample DEDB randomizing modules DBFHDC40 on
IMS.DBSOURCE.

The sample exit routine is based on the generalized Randomizing Routine
(DFSHDC40) and has been modified to work with DEDB databases. The
modifications are:
1. The module uses the DEDB input and output interfaces.
2. The module can return an anchor point in block 1, because DEDB areas do not

use a bit map at this location.

92 Exit Routines

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|

|||

||
|

||

||

|||

||
|
|

||

||
|

|
|
|

|

|

|

|

|

|

|
|

|
|
|

|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdgen.htm#ims_dbdgen

Extended call interface (XCI) option
The XCI option specifies that this DEDB uses the extended call interface when
making calls to the randomizer.

The extended call interface (XCI) option can be specified in the RMNAME=
parameter list in the DBD statement of a DBDGEN.

Subsections:
v “About this routine”
v “Communicating with IMS”

About this routine

The XCI option specifies that this DEDB uses the extended call interface when
making calls to the randomizer. This option allows the XCI randomizer to be called
in 3 different ways. On initialization of IMS, or during a /START DB command, IMS
will first load the randomizer and then make an 'INIT' call to the randomizer to
invoke its initialization routines. During a /DBR DB command, IMS will make a
'TERM' call to the randomizer to invoke the termination routines before unloading
the randomizer. The normal randomizing call is made when the application issues
a GU or ISRT call on a root segment. The XCI randomizer option is valid only for
DEDBs.

Attributes of the routine

The attributes of the routine are the same as the non-XCI randomizer.

Invoking the routine

An XCI randomizer is invoked with an initialization call during Fast Path
initialization and during a /START DB command. The XCI randomizer is invoked
with a termination call during a /DBR DB command. Otherwise, a regular
randomizing call is made to the XCI randomizer when an application program
issues a GU or ISRT call which operates on a root segment of a DEDB database,
just as in a non-XCI randomizer.

Communicating with IMS

IMS uses the entry and exit registers to communicate with the routine.

Note: In an OS batch caller environment, you can set the values of the IMS name
and ECB address fields to zeros. These fields are normally used for randomizing,
initialization, and termination calls, but are not used in an OS batch caller
environment.

Contents of registers on entry for a randomizing call

On entry for a randomizing call, register 0 contains the constant 'XCI ' (be sure to
include a space after the 'XCI').

Register 1 contains the address of the parameter list with the following layout.

Chapter 2. Database Manager exit routines 93

|

|
|

|
|

|

|

|

|

|
|
|
|
|
|
|
|
|

|

|

|

|
|
|
|
|
|

|

|

|
|
|
|

|

|
|

|

Table 23. Sample Parameter List for a Randomizing Call

Hex
Offset

Contents

X'0' 0

X'4' Number of areas

X'8' Address of randomizing module block (MRMB)

X'C' Size of MRMB

X'10' Address of key

X'14' Key length

X'18' Total number of route anchor points (RAPs)

X'1C' Address of work area

X'20' Any user data

X'24' 0 (XCI parameter version field)

X'28' 8-byte IMS name with trailing blanks

X'30' IMS level, specified as the value of the &DFSLEV variable of the DFSLEV macro

X'34' 8-byte PSB name with trailing blanks

X'3C' 8-byte caller environment label with trailing blanks: IMS for an online IMS caller
or OS for an OS batch caller

Contents of registers on entry for an initialization call

On entry for an initialization call, register 0 contains the constant 'XCI ' (be sure to
include a space after the 'XCI').

Register 1 contains the address of the parameter list with the following layout.

Table 24. Sample Parameter List for an Initialization Call

Hex
Offset

Contents

X'0' 4

X'4' Address of the DEDB master control block (DMCB)

X'8' Address of an event control block (ECB)

X'B' Any user data

X'10' 0 (XCI parameter version field)

X'14' 8-byte IMS name with trailing blanks

X'1C' IMS level, specified as the value of the &DFSLEV variable of the DFSLEV macro

X'20' 8-byte caller environment label with trailing blanks: IMS for an online IMS
caller or OS for an OS batch caller

Contents of registers on entry for a termination call

On entry for a termination call, register 0 contains the constant 'XCI ' (be sure to
include a space after the 'XCI').

Register 1 contains the address of the parameter list with the following layout.

94 Exit Routines

||

|
||

||

||

||

||

||

||

||

||

||

||

||

||

||

||
|
|

|

|
|

|

||

|
||

||

||

||

||

||

||

||

||
|
|

|

|
|

|

Table 25. Sample Parameter List for a Termination Call

Hex
Offset

Contents

X'0' 8

X'4' Address of the DEDB master control block (DMCB)

X'8' Address of an event control block (ECB)

X'B' Any user data

X'10' 0 (XCI parameter version field)

X'14' 8-byte IMS name with trailing blanks

X'1C' IMS level, specified as the value of the &DFSLEV variable of the DFSLEV macro

X'20' 8-byte caller environment label with trailing blanks: IMS for an online IMS caller
or OS for an OS batch caller

XCI Parameter Version Field

The content of the XCI parameter version field is determined by the version of IMS
that is using the XCI randomizer.

If the XCI randomizer runs on multiple versions of IMS, you must check the XCI
version number. The version number will be incremented when new fields are
added. Before accessing fields that are added with a new version number, the
version must be checked to ensure that the fields exist.

Contents of registers on exit from a randomizing call

The contents of registers on exit from a randomizing call are as follows:

Register Contents

0 Relative root anchor point number within the selected AREA (0 for first root
anchor point).

1 DMAC address of the AREA selected.

15 Return code interpreted as follows:

Return Code Meaning

0 Register 1 contains the address of the area selected. If the area
is not contained in the DMCB or the HSSP sublist,
ABENDU1021 is issued.

4 Status 'FM' needs to be issued.

Any other return code causes ABENDU1021 to be issued.

Contents of registers on exit from an initialization call

Register Contents

1 Reason code for a non-zero return code.

15 Return code.

Contents of registers on exit from a termination call

The contents of registers on exit from a termination call are as follows:

Chapter 2. Database Manager exit routines 95

||

|
||

||

||

||

||

||

||

||

||
|
|

|

|
|

|
|
|
|

|

|

|||

||
|

||

||

||

||
|
|

||

||
|

|

|||

||

||
|

|

|

Register Contents

1 Reason code for a non-zero return code.

15 Return code.

Data Entry Database Resource Name hash routine (DBFLHSH0)
The IMS DEDB Resource Name hash routine is used with the Internal Resource
Lock Manager (IRLM) and enables IMS and DBCTL to maintain and retrieve
information about the control intervals (CIs) used by sharing subsystems.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 97

About this routine

The routine performs a hashing function on the high-order three bytes of the
relative byte address (RBA) representing a CI and uses the hashing result as a
displacement into the hash table. If you are using IRLM in your system, the
routine IMS supplies (DBFLHSH0) or the replacement routine that you write
yourself is called automatically.

You can write the routine and bind it as reentrant (RENT) like the one supplied by
IMS. It receives control and must return control in 31-bit addressing mode. It must
be able to execute in cross-memory and TASK modes.

Important: All IMS systems sharing data must use the same hashing routine or the
contents of DEDBs might be lost. IMS does not check to ensure that the routines
are the same.

Attributes of the routine

The following table shows the attributes of the Data Entry Database Resource
Name Hash routine.

Table 26. Data Entry Database resource name hash routine attributes

Attribute Description

IMS environments DB/DC, DBCTL

Naming convention You must name this exit routine DBFLHSH0.

Binding After you compile and test the routine, bind it into IMS.SDFSRESL or to the library
specified in the USERLIB= parameter of the IMSGEN macro statement.

Including the routine At system definition time, you must specify the name of your routine in the UHASH
parameter of the DBC, FDR, or IMS procedure.

Related Reading: For details, see the on the UHASH and the above procedures in IMS
Version 13 System Definition.

IMS callable services This exit is not eligible to use IMS callable services.

Sample routine location IMS.SDFSSMPL (member name DBFLHSH0)

Assembling the routine

96 Exit Routines

|||

||

||
|

|

In a multiple-IMS environment, all IMS systems must use the same hashing routine
and compile that routine at the same time. If you write your own routine, you
must store the compile time in the module using &SYSDATE and &SYSTIME. You
also must place the address of the date and time in the first field of the routine's
CSECT.

Communicating with IMS

IMS uses the entry registers and parameter list, and the exit registers to
communicate with the routine.

Contents of registers on entry

On entry, the routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of Extended Partition Specification Table (EPST).

13 Address of save area. The routine must not change the first three words.

14 Return address to IMS.

15 Entry point of hash routine.

Description of parameters

As input to the hashing routine, you need to supply one of the following:
v the high-order byte of an RBA.
v the names of both a database and an area.

The routine performs an EXCLUSIVELY OR on this input, stores it in a field, and
returns a hash value result to the field EPSTRSHS.

EPST (Extended Program Specification Table) input to the routine

Register 1 points to the extended program specification table (EPST) that contains
this input as follows:

Field name Content

EPSTRSHS Hashing routine result. Only the low-order 14 bits are significant.

Chapter 2. Database Manager exit routines 97

Field name Content

EPSTRSID Start of the lock name to be hashed. Lock resource name consists the
following are shown in the following list:

EPSTLKID
A lock identifier. If EPSTLKID = 0, resource name is for CI. If
EPSTLKID is not zero, name is for the area. 1 byte. See the
following figure.

EPSTRBA
Bit 0 through 23 of RBA. 3 bytes.

EPSTDMCB
DB Number as defined by DBRC. 2 bytes.

EPSTAREA
Area number. 1 byte.

EPSTDBNM
Database name. 8 bytes.

EPSTARNM
Area name. 8 bytes.

EPST DSECT

The DSECT of the extended program specification table (EPST) (name: DBFEPST),
and the DEDB area control list (DMAC) (name: DBFDMAC) can be used. The
DMAC address is set at the EPSTDMAA field.
Related concepts:
Chapter 1, “Guidelines for writing IMS exit routines,” on page 3

Resource name hash routine (Database Administration)

Figure 3. Lock resource name

98 Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dag/ims_resnamehash.htm#ims_resnamehash

Sample hashing routine result format
Be aware that the IMS-supplied sample hashing routine (DBFLHSH0) has a
particular layout and organization for the segments it contains.

The following figure shows the layout of the hash value stored in EPSTRSHS using
the IMS-supplied routine DBFLHSH0.

The following table describes the segments within a hash value and their sizes.

Table 27. Segments of a hash value

Segment Description Size

A Bits 0 - 17 of EPSTRSHS 18 bits

B Bits 21 - 25 of CI RBN XOR'd
COMB value

5 bits

C Bits 26 - 29 of CI RBN ¹ 4 bits

D Bits 16 - 20 of CI RBN XOR'd
COMB value ²

5 bits

Note:

1. COMB VALUE (bits 3 - 7) = bits 11 - 15 of DMCB XOR'd with bits 7, 6, 5, 4,
and 3 of the area number.

2. CI RBN = RBA divided by the CI size.

Data Entry Database Sequential Dependent Scan utility exit routine
(DBFUMSE1)

You can write an exit routine that is used with the DEDB Sequential Dependent
Scan utility to copy and process a subset of the segments that are scanned by the
utility.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 100

About this routine

The DEDB Sequential Dependent Scan utility might change both the content and
length of the segments scanned. You can choose to sort or not to sort the segments.

If you do not write an exit routine, the Scan utility defaults to passing unchanged
segment contents through the range you have specified for scanning. If you do not
specify a limit on the range of segments that the utility can scan, the utility scans
and copies all of the dependent segments.

Indoubt segments are not passed to this exit routine.

Figure 4. Format of a hash value

Chapter 2. Database Manager exit routines 99

Related Reading: For guidance-level information to help you determine whether to
write an exit routine for use with the Scan utility, see IMS Version 13 Database
Utilities.

You can write the routine and bind it as reentrant (RENT) like the one supplied by
IMS. The routine receives control and must return control in 31-bit addressing. The
routine must be able to execute in cross-memory and TASK modes.

Attributes of the routine

The following table shows the attributes of the Data Entry Database Sequential
Dependent Scan Utility exit routine.

Table 28. Data Entry Database sequential dependent scan utility exit routine attributes

Attribute Description

IMS environments DB/DC, DBCTL.

Naming convention This exit routine has no specific naming requirements or restrictions;
standard naming conventions apply.

Link editing After you compile your routine, include it into IMS.SDFSRESL or
into any operating system partitioned data set to which access is
provided with a JOBLIB or STEPLIB control region JCL statement.

Including the
routine

No special steps are needed to include this routine.

IMS callable services This exit routine is not eligible to use IMS callable services.

Calling the routine

If you want IMS to call your routine instead of the IMS-supplied routine
(DBFUMSE0), you must specify the name of your routine in the EXIT control
statement of the SYSIN DD data set of the Scan Utility JCL.

Related Reading: For details, see IMS Version 13 Database Utilities.

Communicating with IMS

IMS uses the entry registers, parameter list, and exit registers to communicate with
the routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of parameter list. The parameter list is mapped by macro
DBFUTDW.

13 Address of save area. The exit routine must not change the first three words.

14 Return address of IMS.

15 Entry point of exit routine.

Contents of registers on exit

100 Exit Routines

Before returning to IMS, the routine must restore all registers except for register 15,
which must contain one of the following:

Return code Meaning

0 Use segment.

4 Do not use segment.

Related concepts:
Chapter 1, “Guidelines for writing IMS exit routines,” on page 3
Related reference:
“Exit routine naming conventions” on page 3
“Routine binding restrictions” on page 9

Sample DEDB Sequential Dependent Scan utility exit routine
(DBFUMSE1)

The sample DEDB sequential dependent scan utility exit routine is an example
showing entry and exit code to help you write your own scan routine.

The following code sample is not a usable exit routine provided by IMS nor is it
found in IMS.SDFSSMPL library.

TITLE ’DBFUMSE1 IMS DEDB ONLINE UTILITY SCAN EXIT’

* *
* MODULE NAME : DBFUMSE1 *
* *
* TITLE : STANDARD EXIT FROM SCAN UTILITY *
* *
* CONTAINS RESTRICTED MATERIALS OF IBM *
* COPYRIGHT : REFERENCE MODULE DBFCOPYR *
* *
* ENTRY POINT(S)/PURPOSE : DBFUMSE1 *
* *
* FUNCTION : THIS IS A SAMPLE OF THE SCAN UTILITY USER EXIT. *
* ITS PURPOSE IS TO DEFINE THE INTERFACE BETWEEN *
* THE UTILITY AND THE EXIT. IT IS NOT INTENDED TO *
* BE A USABLE EXIT. IN THIS EXAMPLE, OUTPUT TO THE *
* SCAN DATASET IS SUPPRESSED IF THE SEGMENT BEGINS *
* WITH HEX ZEROES. *
* *
* ENTRY INTERFACES: *
* *
* REGISTERS AT ENTRY : R1 ADDRESS OF USER PARAMETER LIST *
* R13 ADDRESS OF SAVE AREA *
* R14 ADDRESS OF RETURN POINT *
* R15 ADDRESS OF ENTRY POINT *
* REGISTERS ARE SAVED AND RESTORED BY THE *
* CALLING MODULES. *
* *
* CONTENT OF PARAMETER LIST (UTDWUSER) : *
* UTDWDATA - ADDRESS OF SEGMENT (FULLWORD) *
* ZERO AFTER LAST SEGMENT *
* 1. AT ENTRY ADDRESS OF SEGMENT *
* 2. AT EXIT ADDRESS OF DATA TO BE *
* PICKED UP AND PUT INTO SCAN *
* OUTPUT DATA SET REFERRED TO *
* BY SCANCOPY DD CARD. *
* UTDWMIN - MINIMUM LENGTH OF SEGMENT (HALFWORD) *
* AS IN DBD-GENERATION *
* UTDWMAX - MAXIMUM LENGTH OF SEGMENT (HALFWORD) *
* AS IN DBD-GENERATION *

Chapter 2. Database Manager exit routines 101

* UTDWUFLD - FIELD FOR USER (FULLWORD) *
* ZERO WITH FIRST SEGMENT, *
* UNCHANGED BY THE UTILITY *
* UTDWMOUT - MAXIMUM SEGMENT LENGTH (HALFWORD) *
* *
* NOTE: THE USER MAY CHANGE LENGTH AND *
* CONTENT OF THE SEGMENT USING HIS *
* OWN WORKSPACE. IF HOWEVER THE LENGTH*
* EXCEEDS THE LENGTH OF THE SCAN *
* OUTPUT BUFFER - 8 THE UTILITY IS *
* TERMINATED. *
* *
* DATA/OTHER : NONE *
* *
* EXIT INTERFACES : *
* REGISTERS AT EXIT : R15 CONTAINS RETURN CODE *
* RETURN CODES : 00 USE SEGMENT *
* 04 DO NOT USE SEGMENT *
* *
* DATA/OTHER : NONE *
* *
* EXTERNAL ROUTINES CALLED : NONE *
* *
* TABLES/WORKAREAS : NONE *
* *
* REGISTER USAGE : R1 PARAMETER LIST *
* R2 SEGMENT ADDRESS *
* R12 MODULE BASE REGISTER *
* R14 RETURN ADDRESS *
* R15 RETURN CODE - 00 WRITE SEGMENT *
* 04 DO NOT WRITE SEGMENT *
* *
* MESSAGE NUMBERS : NONE *
* *
* ABEND CODES : NONE *
* *

EJECT ,
*PCODE:

* *
* IF SEGMENT EXISTS *
* IF THE SEGMENT STARTS WITH X’00’S *
* SET RC=4 (DON’T WRITE THE SEGMENT) *
* ELSE *
* SET RC=0 (WRITE THE SEGMENT) *
* ENDIF *
* ELSE *
* SET RC=4 (DON’T WRITE THE SEGMENT) *
* ENDIF *
* RETURN *
* *

*ENDPCODE:

SPACE 10
PRINT NOGEN
REQUATE
DBFUTDW DSECT FOR PARM LIST
SPACE 10

DBFUMSE1 CSECT
USING DBFUMSE1,R12 MODULE BASE REGISTER
USING UTDWUSER,R1 PARAMETER LIST BASE REGISTER
L R2,UTDWDATA GET ADDRESS OF SEGMENT
LTR R2,R2 IS THERE A SEGMENT?
BZ NOWRITE NO SEGMENT, DON’T WRITE

*
LA R2,2(,R2) SKIP PAST SEGMENT LENGTH

102 Exit Routines

CLC 0(6,R2),ZEROES DOES SEGMENT START WITH 0’S?
BNE WRITESEG NON-ZERO DATA. WRITE IT.

* OTHERWISE, DON’T WRITE IT.
NOWRITE DS 0H

LA R15,4
BR R14

WRITESEG DS 0H
XR R15,R15
BR R14

ZEROES DC XL6’00’
END

HALDB Partition Selection exit routine (DFSPSE00)
You can develop a HALDB Partition Selection exit routine so that PHDAM,
PHIDAM, or PSINDEX databases can select partitions by criteria other than high
key.

This topic contains Product-sensitive Programming Interface information.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 105

About this routine

You can specify the name of the HALDB Partition Selection exit routine during
DBD generation, with the HALDB Partition Definition utility, or on the DBRC
INIT.DB command.

Use one of the following options to specify the name of the exit routine:
v During DBD generation, use the PSNAME keyword.
v With the HALDB Partition Definition utility, specify the exit routine name as the

Partition Selection name.
v Use the PARTSEL keyword on the DBRC INIT.DB command when you register a

HALDB database with DBRC.

If you do not specify an exit routine, IMS selects a partition using the high key
method and does not invoke the HALDB Partition Selection exit routine.

The following table shows the attributes of the HALDB Partition Selection exit
routine.

Table 29. HALDB partition selection exit routine attributes

Attribute Description

IMS environments DB/DC, DBCTL.

Naming convention
The name given to the load module used for partition selection
appears in the DBD associated with the database, the HALDB
Partition Definition utility, or the DBRC INIT.DB command. The
load module name must be the value of the parameter of the
PSNAME operand on the DBD statement, Partition Selection name
in the HALDB Partition Definition utility, or value of the parameter
PARTSEL on the DBRC INIT.DB command.

Chapter 2. Database Manager exit routines 103

Table 29. HALDB partition selection exit routine attributes (continued)

Attribute Description

Binding
After you compile and test your exit routine, bind it into
IMS.SDFSRESL, SYS1.LINKLIB, or any operating system partitioned
data set that can be accessed by a JOBLIB or STEPLIB JCL statement
for the IMS control and SAS regions.

Including the routine
No special steps are needed to include this routine.

IMS callable services
This exit is not eligible to use IMS callable services.

Sample routine
location

IMS.SDFSSMPL.

Loading and deleting the routine

One HALDB Parttion Selection exit routine can be shared by multiple HALDBs. A
HALDB Partition Selection exit routine can be placed in the IMS.SDFSRESL,
SYS1.LINKLIB, or any operating system partitioned data set that can be accessed
by a JOBLIB or STEPLIB JCL statement for the IMS control region and SAS region.

When a HALDB definition in the RECON data set includes a HALDB Partition
Selection exit routine definition, IMS loads the exit during IMS initialization if the
HALDB is resident, during the first application scheduling if the HALDB is
non-resident, or at the /START DB partition_name OPEN or UPDATE DB
NAME(partition_name) START(ACCESS) OPTION(OPEN) command if the exit has
not already been loaded.

When a HALDB database is taken offline, the associated HALDB Partition
Selection exit routine is logically deleted from system memory. When all HALDB
databases sharing a HALDB Partition Selection exit routine are offline, the exit
routine is physically deleted from system memory. The following commands will
delete the exit routine:
v UPDATE DB NAME(HALDB_master_name) STOP(ACCESS)
v UPDATE DB NAME(HALDB_master_name) STOP(UPDATES)
v /DBR DB HALDB_master_name

v /DBD DB HALDB_master_name

When a HALDB Partition Selection exit routine is not loaded, you can update or
refresh the exit routine in the library where it is stored.

Calling the routine

IMS loads this routine at IMS initialization time.

The HALDB Partition Selection exit routine receives control during modification of
the internal partition definition control block and when a DL/I call requires the
selection of a partition. The following processing activities activate the HALDB
Partition Selection exit routine:
v Control block initialization
v Control block termination
v Control block modification

104 Exit Routines

v Selection of first partition
v Selection of next partition
v Selection of target partition

IMS calls a HALDB Partition Selection exit routine when an exit routine is
specified for the database. When the internal partition definition control blocks are
created, modified, or terminated, this call to the exit routine allows your exit to be
aware of the current configuration of the HALDB partitions and to have some
influence on its validity for subsequent DL/I processing. The initialization call that
indicates that the control blocks were created occurs prior to authorizing and
opening the partition data sets.

Cross memory mode

The following factors determine whether your HALDB Partition Selection exit
routine is called in cross-memory mode:
v The IMS environment, either online (DLI) or batch (DBB)
v The call type, either control block manipulation or partition selection

Call type
Cross memory mode in batch
environment

Cross memory mode in online
environment

Control block
manipulation calls

No No

Partition selection calls No Yes

Communicating with IMS

IMS communicates with the HALDB Partition Selection exit routine through the
entry registers.

Contents of registers on entry

The HALDB Partition Selection exit routine is called with the following registers
established:

Register
Contents

1 Specifies the address of the parameter list that identifies the call. The
parameters are:

1 A full word that contains the number of parameters in the list. The
value of 2 is specified.

2 The Exit Communication Area that is mapped by DFSPECA.

3 The Partition Definition Area that is mapped by DFSPDA.

13 Address of a standard save area. Four pre-chained save areas are provided
for this exit routine to use.

14 Return address to IMS.

15 Exit entry point address.

Area mapping

Chapter 2. Database Manager exit routines 105

DFSPECA
Partition Exit Communication Area Mapping. Dynamically initialized from
static storage.

DFSPDA
Partition Definition Area Mapping. Allocated and initialized during
internal partition definition control block initialization.

Contents of registers on exit

The HALDB Partition Selection exit routine is involved in the processing of
internal partition definition control block initialization, termination, rebuild, and
partition selection. The exit routine can identify some processing and control block
conditions as errors, according to your specifications. The exit routine informs IMS
of the response to the error condition by specifying a return code. The return code
is returned in field PECRC of the Partition Exit Communication Area (DFSPECA).
The action that IMS takes depends on both the return code that is supplied by the
exit routine and the call reason for invoking the exit routine. The exit routine can
request IMS to stop the database or issue a pseudo abend. The following return
codes can be sent to IMS:

Return code
Description

0 Normal return. No exception processing required.

4 Abnormal return. IMS can stop the database during control block calls, and
IMS passes a status code FM back to the application program.

8 Pseudo abend return. IMS issues user abend 3499.

12 Exception return. No more partitions are available for Select Next
processing. IMS treats this condition as the end of the HALDB.

Depending on the call reason and call history, IMS takes certain actions when
return code 12 is received from the HALDB Partition Selection exit routine. The
rules are as follows:
1. When the exit routine is called for control block initialization, termination, or

modification (rebuild), the return codes can be 0, 4, or 8. A return code of 12 or
above is not supported. The return code from a control block termination
(PECTERM) call is ignored by IMS if it is 0, 4, or 8 (12 and above are not
supported). IMS terminates the control block in all cases when the return code
is 0, 4, or 8 for the PECTERM call.

2. When the exit routine is called for partition selection, return codes 0, 4, 8, and
12 are supported. If the partition selection is "Select Next", return code 12 from
the exit routine indicates that no partitions are available. If the partition
selection is "Select Target" or "Select First", return code 12 indicates a request
for ABEND 3499.

3. When the exit routine is called for any partition selection, a check is made to
see whether any prior call from the control block initialization, termination, and
rebuild has resulted in a pending request for ABEND 3499. If such a request
has been made, ABEND 3499 is issued.

Related tasks:

Creating HALDB databases with the HALDB Partition Definition utility
(Database Administration)
Related reference:
“Routine binding restrictions” on page 9

106 Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dag/ims_createhaldbpartdef.htm#ims_createhaldbpartdef
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dag/ims_createhaldbpartdef.htm#ims_createhaldbpartdef

Database Description (DBD) Generation utility (System Utilities)

INIT.DB command (Commands)

Sample partition selection exit routine (DFSPSE00)
DFSPSE00 contains code that supports control block initialization, termination, and
modification calls, as well as partition selection calls.

Be aware that the actual partition selection processing in the sample DFSPSE00 is
based on a high key value and not a user defined string value. The sample exit is
written in assembler language and located in the IMS Sample library.

The sample exit routine demonstrates the use of the interface and control blocks.
The sample exit performs partition selection processing by using partition high key.

Partition exit communication area mapping (DFSPECA)
The HALDB Partition Selection exit routine uses the DFSPECA communication
area to communicate the result of exit processing.

The DFSPECA storage area is dynamically initialized from static storage for each
invocation of the HALDB Partition Selection exit routine. The DFSPECA DSECT
can be obtained by assembling DFSPSEIB.

DFSPECA Field Definitions:

Field Description

PECDBN
The name of the HALDB.

PECRSWD1
Not used; the contents are unpredictable.

PECRC
Return code indicating the result of exit processing.

PECFDB
Exit feedback area consisting of two halfword fields.

The exit returns the partition ID of the partition selected in field PECFDB2.

PECKEY
Address of the key associated with the DL/I call.

PECCPID
Current Partition ID.

The partition ID of the last partition selected.

PECKEYL
The length of the key minus 1.

PECACT
The invocation action informing the exit what processing is required.

PECFLAG1
IMS control data flag. Defines additional information for exit processing.

PEC1NEWP
A flag indicating that one or more new partitions were added to the
internal partition definition control block. To indicate that the entry defines

Chapter 2. Database Manager exit routines 107

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdgen.htm#ims_dbdgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_initdb.htm#ims_cr3initdb

a partition that was not previously defined, set flag PDAFLAG1 to
PDAF101 in each related PDA entry. Set the flag for the exit REBUILD call
and then reset.

PECFLAG2
Flag byte available for exit use.

Note: The user exit can set PECFLAG2 to any value, but that value is not
preserved across calls to the exit routine.

PECVRSN
A halfword with the value PECURVER that is set by IMS before invoking
the partition selection exit. The user exit can check the version number in
PECVRSN with the constant PECURVER to ensure it is using the same or
higher version of the DFSPECA control block passed by IMS. If the
PECVRSN value is less than PECURVER value, a mismatch exists because
the exit has been compiled with a higher version of the DFSPECA than the
one used by IMS.

PECUSER
Dynamic work area for exit use. This work area storage is not preserved
across calls to the exit routine.

Partition definition area mapping (DFSPDA)
The HALDB Partition Selection exit routine uses the DFSPDA partition definition
area to define internal partition control blocks.

The DFSPDA storage area is allocated and initialized during initialization of the
internal partition definition control block. DFSPDA storage area is maintained until
the control block changes. Any control block change causes the storage to be
released and a new area allocated and initialized. Each invocation of the HALDB
Partition Selection exit routine passes the DFSPDA area. The DFSPDA DSECT can
be obtained by assembling DFSPSEIB.

DFSPDA field definitions

PDAPDE
The address of the first partition definition entry.

PDANUM
The number of DFSPDA entries.

PDARSWD1
Not used; the contents are unpredictable.

PDALSTRL
The length of the longest string that is defined for the partitions.

PDADORG
The database organization: PHDAM, PHIDAM, or PSINDEX.

PDAUSRn
Five words that are available for exit use (PDAUSR1, PDAUSR2,
PDAUSR3, PDAUSR4, and PDAUSR5).

The exit routine can use these words to anchor storage that has been
allocated by the exit and these values will be available for use the next
time the exit is called. The exit can also use the GETMAIN and
FREEMAIN macros.

108 Exit Routines

PDAPLEN
The length of the Partition Definition Area Prefix.

DFSPDAE field definitions

PDAPN
The name of the associated partition.

PDASTRG
The address of the user-defined Partition String value. If PDASTRG is zero,
it indicates a null Partition String. This 256–byte area contains the string
value that you define. You can modify this area during Structure
Initialization processing to assist in selection processing.

PDAPID
The partition ID of the associated partition.

PDARAP
The number of Root Anchor Points defined for the partition. Provided for
PHDAM organization only; otherwise, it contains zeros.

PDABLKR
The number of blocks containing Root Anchor Points. Provided for
PHDAM organization only; otherwise, it contains zeros.

PDASTRGL
The length of the user string minus 1.

PDAFLAG1
IMS control data flag. Defines unique PDA entry information for exit
processing.

PDAF101
A flag within PDAF101 indicating whether this PDA entry defines a new
partition that was not previously defined. When PDAF101 is on for the
control block modification call, it indicates that this entry is for a new
partition; when off, PDAF101 indicates a previously defined partition.

PDAELEN
The length of the Partition Definition Area entry.

Length added to the entry address to provide the address of the next entry.

HDAM and PHDAM randomizing routines (DFSHDC40)
The DL/I HDAM and PHDAM access method requires you to supply a
randomizing module for placing root segments in, or retrieving them from, an
HDAM and PHDAM database.

This topic contains Product-sensitive Programming Interface information.

Subsections:
v “About these routines” on page 110
v “Communicating with IMS” on page 112
v “Sample HDAM and PHDAM randomizing routines” on page 114

Chapter 2. Database Manager exit routines 109

About these routines

Several databases can share the same routine, but each of those databases must be
associated with a single randomizing routine. If you are using data sharing, you
must use the same randomizing routine on all systems that share a given database.

A randomizing module uses a mathematical technique to convert a key into an
address. A specific key always converts to the same address. The randomizing
module required by IMS must convert a key field value into a relative block
number and an anchor point number. The result of a randomizing routine is a
relative block number that ranges from 1 to 224-1. The anchor point number ranges
from 1 to the number of anchor points per block as defined in the database's DBD.
The maximum is 255.

The key field value is supplied by an application program in the data itself for
inserting segments into the database and in an application program in an SSA
(segment search argument) for retrieving segments from a database.

Four randomizing modules are supplied with IMS. Although four are supplied,
DFSHDC40 is the only one recommended for use. You can use this one or write
your own randomizing module.

Related Reading: To help you determine the module that best meets your need,
see IMS Version 13 Database Administration.

If you write your own module, follow the guidelines included in this topic.

Attributes of the routine

The following table shows the attributes of the HDAM and PHDAM Randomizing
routine.

Table 30. HDAM and PHDAM randomizing routine attributes

Attribute Description

IMS environments DB/DC and DBCTL.

Naming convention
The name you give to the load module used for randomizing
functions with a specific database must appear in the DBD
generation associated with the database. The load module name
must be the value of the “mod” parameter of the RMNAME=
operand on the DBD statement in the HDAM and PHDAM DBD
generation.

Related Reading: For details on coding this parameter, see
“Database description (DBD) generation”, in IMS Version 13 System
Utilities.

Link editing
After you compile and test a randomizing module, bind it into
IMS.SDFSRESL, SYS1.LINKLIB, or into any operating system
partitioned data set that can be accessed by a JOBLIB or STEPLIB
JCL statement for the IMS control, SAS, and batch regions.

To ensure that the routines run as they did in prior IMS releases,
bind them as neither reentrant nor reusable.

Including the routine No special steps are needed to include this routine.

IMS callable services This exit routine is not eligible to use IMS callable services.

110 Exit Routines

Table 30. HDAM and PHDAM randomizing routine attributes (continued)

Attribute Description

Sample routine
location

For the latest version of the sample routine (DFSHDC40), see
IMS.ADFSSRC; member name is DFSHDC40.

You must write, compile, and bind the randomizing module as one of the
following:

REENTRANT
IMS does not serialize the database before calling the routine. A single
copy of the routine is used for the databases.

REUSABLE
IMS serializes the database before calling the routine. If the routine is used
for multiple databases, it must be written and compiled as reentrant, even
if it is not bound as reentrant.

NONREUSE
IMS serializes the database before calling the routine. Each database has its
own copy of the routine.

All modules receive control and must return control in 31-bit addressing mode.
They must be able to execute in cross-memory and task modes.

Loading the routine

IMS loads all randomizing modules from their resident library when the database
is opened. IMS obtains the name of the randomizing module from the name you
have specified in the RMNAME parameter of the DBD statement of the database
description (DBD).

Related Reading: For details on coding the RMNAME parameter, see IMS Version
13 Database Utilities.

The necessary randomizing module associated with a specific database is brought
into main storage at the time the associated database is opened. It can also be
placed in the LPA (link pack area). This allows one copy of the module to service
several databases that are concurrently open.

If you use any of the Local Storage Options (LSO), the randomizing module is
loaded in CTL or DL/I SAS private storage. Otherwise, the module is loaded into
CSA.

Calling the routine

When an application program issues a Get Unique or Insert call that operates on a
root segment of an HDAM and PHDAM database, the randomizing module is
called.

The source of the root key that IMS supplies to the randomizing routine is as
follows:
v For a root insert, IMS takes the key from the I/O area containing the root to be

inserted.
v For a call qualified on the root key, IMS uses the key value in the segment

search argument.

Chapter 2. Database Manager exit routines 111

Related Reading: For information on processing Get Next (GN) calls qualified on
the root key and calls with root qualification that allows a range of key values, see
IMS Version 13 Application Programming.

The key is supplied to the randomizing module for conversion to a relative block
number and anchor point number within the database. In addition to the key
supplied by an application program, parameters from the DBD generation for the
database are available to the randomizing module.

Communicating with IMS

IMS uses the entry and exit registers to communicate with the randomizing
routine.

Contents of registers on entry

On entry, the randomizing routine must save all registers using the provided save
area. The registers contain the following:

Register Content

0 Address of Data Management Block (DMB).

1 Address of the DMBDACS CSECT.

7 Address of Partition Specification Table (PST).

9 Address of first byte of key field value supplied by an application program.

13 Address of save area. The exit routine must not change the first three words.

14 Return to IMS address.

15 Entry point of randomizing module.

If an HDAM and PHDAM database does not have a sequence field defined:
v The executable key length field in the CSECT named RDMVTAB is not

initialized and must not be used.
v The value in register 9 module contains the address of the first byte of the

segment.

If an HDAM and PHDAM database does not have a sequence field defined at the
root level, the randomizing module is given control on an insert call. All retrieval
calls result in a scan of the root-level qualification. On Get Unique (GU) calls, the
scan starts at the beginning of the database. On Get Next (GN) calls, the scan starts
at the current root-level position within the database.

The randomizing module is invoked on Get calls, particularly when the database
contains a secondary index or a logical relationship. The randomizing module
must produce the same results on the Get call as it did on the Insert call.

The first eight words of the PST are available to the randomizing module as a
work area. These words are also used by DL/I and must not be used by other exit
routines. If an additional work area is needed, CSECT RDMVTAB can be expanded
to provide additional space.

Internal IMS control blocks that can be of value to a randomizing routine are the
Partition Specification Table (PST), the Physical Segment Description Block (PSDB)
for the root segment, and the first Field Description Block (FDB). The FDB is the
root segment key field format description.

112 Exit Routines

Description of parameters

The parameters from DBD generation are available to randomizing modules. Their
area is described by the DMBDACS DSECT. It contains information such as the
randomizing routine's name, anchor point information, and the total area length.
You can extend the area by an assembly and bind process to contain any data or
algorithm information.

The root 32 bytes of the RDMVTAB CSECT (described by the DMBDACS DSECT)
contains constants defined by DBDGEN. If you extend the area to include
additional parameters, this field must be duplicated. The DMBDASZE field must
be updated to reflect the total length of this area (including the added parameters).

After assembly, you can bind the expanded RDMVTAB CSECT to replace the old
one. Use an ENTRY statement specifying the name of the DBD and an ORDER
statement to make sure the original order of the multiple CSECTs is maintained.
For more information, see information on the z/OS binder and loader in the z/OS
product library.

The following DSECT defines the format of the area pointed to by register 1:
DMBDACS DSECT
DMBDANME DS CL8 NAME OF ADDR ALGORITHM LOAD MODULE
DMBDAKL DS CL1 EXECUTABLE KEY LENGTH OF ROOT

DS CL3
DMBDASZE DS H SIZE OF THIS CSECT
DMBDARAP DS H NUMBER OF ROOT ANCHOR POINTS/BLOCK
DMBDABLK DS F NUM OF HIGHEST BLOCK DIRECTLY ADDRSD
DMBDABYM DS F MAX NUMBER OF BYTES BEFORE OFLOW TO

2NDARY
DMBDARC DS CL1 RETURN CODE FROM RANDOMIZER

DS CL3 RESERVED
DMBDACP DS F RESULT OF LAST ADDRESS CONVERSION

Contents of registers on exit

Before returning to IMS, the randomizing routine must restore all registers. The
parameter list pointed to by register 1 can contain one of the following return
codes:

Return code Meaning

0 Continue processing; randomizing properly.

4 Set FM status code and return to caller.

8 U812 abend.

For any randomizing routine that passes these return codes, ensure that application
programs that use the database can accept the return codes.

The return code from a randomizing module can be in either character or binary
form. In other words, X'F0' and X'0' are both valid for a return code of zero. This
return code must be placed in the DMBDARC field of the CSECT addressed by
register 1.

You do not need to explicitly set a return code of zero in DMBDARC, because it is
the default return code and the field is preset to zero.

Results of the routine on exit

Chapter 2. Database Manager exit routines 113

The result of a randomizing module conversion must be in the form BBBR where
BBB is a 3-byte binary number of the block into which a root segment is inserted
or from which it is retrieved and R is a 1-byte binary number of the appropriate
anchor point, within a relative block, within a data set of the database.

This result must be placed in the CSECT addressed by register 1 in the 4-byte fixed
name DMBDACP. If the result exceeds the content of the field DMBDABLK, the
result is changed to the highest block and last anchor point of that block.

Sample HDAM and PHDAM randomizing routines

IMS supplies four randomizing module samples (DFSHDC10, DFSHDC20,
DFSHDC30, and DFSHDC40) to help you write your own HDAM and PHDAM
randomizing module. The modules are linked into the IMS.SDFSRESL data set
during system definition. The modules use the following randomizing techniques:
v Modular or division method (DFSHDC10)
v Binary halving method (DFSHDC20)
v Hashing method (DFSHDC30 and DFSHDC40)

Module DFSHDC40 is recommended; the source code for all four modules resides
in the IMS.SOURCE library. The next provides guidelines for using the sample
module, DFSHDC40.

Restriction: These routines do not support nonsequenced HDAM and PHDAM
databases. They all use the key length in their calculations.
Related concepts:
Chapter 1, “Guidelines for writing IMS exit routines,” on page 3

Sample HDAM and PHDAM generalized randomizing routine
(DFSHDC40)

You can use the IMS-supplied sample DEDB randomizing modules DFSHDC40 on
IMS.SOURCE.

If root keys are unique and totally random storage is desired, this routine can be
used for any HDAM and PHDAM database without performing an analysis of key
distributions.

This randomizing routine works with the entire key and has the following
characteristics:
v It is reentrant.
v Keys can contain any of the 256 characters, and key length can be from 1 to 256

bytes.
v It converts any key distribution (with unique key values) to a totally random

address distribution.
v It never returns an address in block 1, which is always a bit map block in

HDAM and PHDAM. You can specify any number of blocks and RAPs.
v The number of blocks must be in the range between 2 and 224-1; the number of

RAPs must be in the range of 2 to 231-1 when RAPs are multiplied by blocks.
The RBN subparameter of the RMNAME= parameter of the DBD statement
must be specified for the upper limit, together with DFSHDC40 as the “mod”
subparameter, if this randomizing routine is chosen.

114 Exit Routines

v It allows the insertion of a dummy root at the highest block-RAP to ensure the
formatting of the entire root addressable area at load time.

The basic logic of the routine is:
1. Convert the key into a 4-byte binary number by translating the key digits

twice. Determine the offset into the translation table using the key length and
individual digits. For example:
Key 123456

Digits are used in series of threes. Two work areas are used. In the first pass,
the first work area contains X'F2F3'; the second contains X'F1F2F3'.
The first work area is translated into the translation table with a zero point of 4
(key length 2). The second work area is translated into the translation table
with a zero point of X'F5', the fifth digit. These two translated numbers are
multiplied and added into an accumulator. The remaining digits are converted
and added into the accumulator.
The conversion number for key 123456 is X'45683199'.

2. Translate the converted number, and set the top bit to zero to ensure a positive
number.

3. Multiply the maximum number of blocks minus one by the number of RAPs.
Multiply the result by the translated key.

4. After adjustment to ensure block 1 is not used, store the result in DMBDACP.

Secondary Index Database Maintenance exit routine
You can use the Secondary Index Database Maintenance exit routine to control the
density of a secondary index by selectively suppress secondary indexing.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 117

About this routine

Two options are available to the Database Manager to control the volume of entries
in secondary index databases: the NULLVAL operand and the index maintenance
exit routine. To build and maintain a sparse index, you can use suppression of
indexing, the process of withholding a prospective index pointer segment from the
index.

Use the NULLVAL operand to suppress indexing when the entire indexed field
contains one specified character or value. For example, you might want to use
NULLVAL to suppress indexing when the indexed field contains only blanks. A
different NULLVAL can be specified for each indexed segment.

Alternatively, secondary indexing allows you to specify, during the DBDGEN, a
user-supplied exit routine that can selectively suppress secondary indexing. One
exit routine is allowed for every secondary index; however, one generalized routine
can be written to serve several index relationships.

If you bind this exit routine as reentrant (RENT), it must be truly reentrant (it
cannot depend on any information from a previous invocation and it cannot store
into itself).

Chapter 2. Database Manager exit routines 115

If you bind this exit routine as reusable (REUSE), it must be truly reusable (it
cannot depend on any information in itself from a previous call), but it can depend
on information that it saves in the specific database segment block that is passed to
it. In addition, if the same exit routine is used for two different segments, the
single copy of the exit can be called concurrently for each segment. In this case, the
exit routine must be written as reentrant.

If you bind this exit routine so that it is neither RENT nor REUSE, it can store into
itself and depend on the information saved in the database segment block that is
passed to it.

The following table shows the attributes of the Secondary Index Database
Maintenance exit routine.

Table 31. Secondary index database maintenance exit routine attributes

Attribute Description

IMS environments DB/DC, DBCTL.

Naming convention Each exit routine must have a name unique with respect to all IMS module names and
to any other exit routines in the IMS libraries. The name of this exit routine is specified
for each DBD with the EXTRTN parameter of the XDFLD statement submitted to the
DBDGEN utility.

Before an index source segment in a database can be loaded or updated, its EXTRTN
routine must be in the system library.

Link editing After an exit routine has been compiled and tested, it can be placed into the
IMS.SDFSRESL data set, from which it is loaded by IMS. It can also be placed in
SYS1.LINKLIB, or in any operating system partitioned data set to which access is
provided with a JOBLIB or STEPLIB JCL statement.

Including the routine No special steps are need to include this routine.

IMS callable services This exit routine is not eligible to use IMS callable services.

Loading the routine

The first time that an exit routine associated with the specific database is
referenced, it is loaded into storage in either the IMS online control program region
or batch processing region when the associated database is opened. The loaded
routine will be used by any other databases that require the same exit routine. This
allows one copy of the module to service several databases that are open
concurrently. The routine is not refreshed during the current IMS execution.

When an index maintenance exit routine is used in either the IMS online control
region or a DL/I batch processing region and the exit routine does not exist in
LINKPACK, you must provide space in the IMS control region or in the DL/I
separate address space (DLISAS) to accommodate the exit routines that can be
used for online databases.

Calling the routine

When an application program issues a REPL, ISRT, or DLET call of a segment
serving as an index source segment for one or more indexing relationships, the
DL/I index maintenance routine is invoked.

DLET call

116 Exit Routines

In the case of DLET, an indexing segment is built corresponding to the existing
index source segment. If it passes the null value test, the index exit routine is
invoked. This routine indicates whether this indexing segment should appear in
the index. If it should appear, the actual indexing segment is retrieved and deleted;
otherwise, no delete is attempted.

ISRT call

In the case of ISRT, the indexing segment is built to correspond to the segment to
be inserted, and the null value test and the exit routine tests are performed. If no
suppression of indexing is indicated by either, it is inserted into the index.

REPL call

A REPL call can be a combination of a DLET call and an ISRT call, a simple
replace, or a NOP, depending on the fields changed in the replace. If a field in the
Index Source Segment (ISS) is changed by a REPL call that changes the indexed
data or subsequent data, the existing indexing segment is deleted and a new one
inserted. The index edit routine is invoked for each operation. If the change in the
ISS affects a source data field, a replace operation on the indexing segment is
executed, unless the index exit routine indicated that indexing was suppressed. If
the ISS replace made no changes in the indexing segment, no action is taken.

The suppression of indexing by the exit routine must be consistent. The same
indexing segment cannot be examined at two different times and have suppression
indicated only once. If the indexing segment contains user data, this user data
cannot be used to evaluate suppression, since the actual indexing segment is seen
by the exit routine just before the insertion of a new one. In the cases of replace
and delete, only a prototype is passed. The prototype contains the constant,
indexed data, subsequence data, duplicate data, and any symbolic pointer that was
added. Therefore, index suppression must not be based on any user data.

The exit routine issues a return code and indicates either that the present index
pointer segment belongs in the index or that it should be suppressed. The exit
routine must not change any IMS control blocks, or any fields in the indexing
segment.

You can include additional information about the segment in the exit routine
CSECT. This CSECT is part of the DBD, and as such can be replaced by a bind. It
is of variable-length and contains a fixed-format header. A separate CSECT is
provided for each XDFLD in the DBD for which an exit routine is specified. The
availability of this CSECT is described in the exit routine specifications. You can
replace this control section in the same manner as you can the segment
compression control section.

Communicating with IMS

IMS communicates with the exit routine through the entry and exit registers.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of Partition Specification Table (PST).

Chapter 2. Database Manager exit routines 117

Register Contents

2 Address of proposed or existing index segment.

3 Address of Index Maintenance Routine Parameters CSECT.

4 Address of Index Source Segment.

13 Address of save area. The exit routine must not change the first three words.

14 Return address to IMS.

15 Entry point of exit routine.

Description of parameters

On entry to the routine, IMS passes the address of the CSECT shown in the
following figure.

The following DSECT defines the format of this CSECT:
DMBXMPRM DSECT
DMBXMSGN DS CL8 Name of indexed segment
DMBXMXDN DS CL8 Name of indexed field
DMBXMXNM DS CL8 Name of exit routine
DMBXMXEP DS A Entry point addr
DMBXMPLN DS H Total length of CSECT

DS H Not Used

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except register
15, which contains one of the following return codes:

Indexed segment name
0

8

16

24

28

32

Indexed field (XDFLD) name

CSECT length

Indexed Maintenance
exit routine name

RSVD

Entry point address

User data

Figure 5. Index maintenance exit routine parameter list CSECT

118 Exit Routines

Return code Meaning

0 The indexing segment should appear in the index for this database segment.

4 Indexing should be suppressed.

Related reference:
“Routine binding restrictions” on page 9

Sample Secondary Index Database Maintenance exit routine
The sample secondary index database maintenance exit routine shows entry and
exit code to help you write your own routine.

The following secondary index database maintenance exit routine example is not a
usable exit routine provided by IMS, nor is it found in the IMS.SDFSSMPL library.
SAMPLE TITLE ’SAMPLE OF SECONDARY INDEX EXIT ROUTINE’
* *
* *
* SAMPLE OF SECONDARY INDEX DATA BASE MAINTENANCE EXIT ROUTINE *
* *
* THIS SAMPLE IS NOT INTENDED TO BE A USABLE EXIT ROUTINE. *
* IT IS PROVIDED HERE TO SHOW ENTRY AND EXIT CODE. *
* THIS SAMPLE SUPPRESSES THE INDEX ENTRY IF ALL BYTES OF THE *
* INDEX KEY ARE BLANK. *
* *
* *
* REGISTERS ON ENTRY *
* R1 - PARTITION SPECIFICATION TABLE (PST) ADDRESS *
* R2 - ADDRESS OF (PROPOSED OR EXISTING) INDEX SEGMENT *
* R3 - ADDRESS OF INDEX MAINTENANCE ROUTINE PARMS CSECT *
* R4 - ADDRESS OF INDEX SOURCE SEGMENT *
* R13 - SAVE AREA ADDRESS *
* R14 - RETURN ADDRESS *
* R15 - ENTRY ADDRESS *
* *
* REGISTERS ON EXIT *
* R15 - 0 TO NOT SUPPRESS THE INDEX ENTRY *
* - 4 TO SUPPRESS THE INDEX ENTRY *
* R0 THRU R13 ARE RESTORED *
* *
* *

SPACE 1
INDEXXIT CSECT

STM R14,R12,12(R13) SAVE REGISTERS 14 THRU 12
L R13,8(R13) SET 13 TO NEXT IMS PRE-CHAINED SAVE SET
LR R12,R15 SET 12 AS BASE
USING INDEXXIT,R12 USE R12 AS BASE FOR PROGRAM
USING PST,R1 USE R1 AS BASE FOR PST
USING XRECORD,R2 USE R2 AS BASE FOR INDEX RECORD
USING DMBXMPRM,R3 USE R3 AS BASE FOR INDEX CSECT
USING XSOURCE,R4 USE R4 AS BASE FOR INDEX SOURCE SEGMENT
SPACE 2

* *
* *
* LOGIC SHOULD BE PROVIDED HERE TO DECIDE WHETHER THE INDEX RECORD *
* SHOULD BE SUPPRESSED. *
* *
* THE FOLLOWING CODE WILL TEST WHETHER THE KEY OF THE INDEX *
* RECORD IS ALL BLANK. IF THE FIELD IS ALL BLANK, THE INDEX ENTRY *
* WILL BE SUPPRESSED. *
* *
* *

SPACE 1
CLC XFIELD1,BLANKS IS FIELD BLANK
BE SUPPRESS YES, SUPPRESS INDEX FOR FIELD
B NOSUPP NO, ALLOW INDEX FOR FIELD
SPACE 2

* *
* *
* SUPPRESS RETURN, SET 4 IN R15 TO TELL IMS TO SUPPRESS THE ENTRY *
* *
* *

SPACE 1

Chapter 2. Database Manager exit routines 119

SUPPRESS DS 0H
L R13,4(R13) BACK UP TO PRIOR SAVE AREA
RETURN (14,12),RC=4 RETURN WITH 4 IN R15
SPACE 2

* *
* *
* NORMAL RETURN, SET 0 IN R15 TO TELL IMS TO NOT SUPPRESS THE INDEX *
* *
* *

SPACE 1
NOSUPP DS 0H

L R13,4(R13) BACK UP TO PRIOR SAVE AREA
RETURN (14,12),RC=0 RETURN WITH 0 IN R15
SPACE 2

BLANKS DC CL255’ ’ CONSTANT OF 255 BLANKS
SPACE 2

* *
* *
* GENERATE DSECT FOR THE INDEX RECORD *
* *
* *

SPACE 1
XRECORD DSECT
XFIELD1 DS CL5

SPACE 2
* *
* *
* GENERATE DSECT FOR THE INDEX SOURCE SEGMENT *
* *
* *

SPACE 1
XSOURCE DSECT DSECT FOR INDEX SOURCE SEGMENT
XSFIELD1 DS CL5 FIELD 1 OF INDEX SOURCE SEGMENT

SPACE 2
* *
* *
* DSECT FOR INDEX MAINTENANCE EXIT ROUTINE PARAMETER CSECT *
* *
* *

SPACE 1
DMBXMPRM DSECT
DMBXMSGN DS CL8 NAME OF INDEXED SEGMENT
DMBXMXDN DS CL8 NAME OF INDEXED FIELD
DMBXMXNM DS CL8 NAME OF USER EXIT ROUTINE
DMBXMXEP DS A EXIT ROUTINE ENTRY POINT ADDRESS
DMBXMPLN DS H TOTAL LENGTH OF CSECT

DS H NOT USED
DMBUSERD DS C START OF USER DATA IF ANY

SPACE 2
* *
* *
* GENERATE DSECT FOR THE IMS PST WHICH IS PASSED IN R1 *
* *
* *

SPACE 1
PRINT NOGEN
IDLI PSTBASE=0
PRINT GEN
SPACE 2

* *
* *
* GENERATE EQUATES FOR SYMBOLIC REGISTERS *
* *
* *

SPACE 1
REQUATE
SPACE 2
END

Segment edit/compression exit routines
You can write a segment edit/compression exit routine to compress and expand
segments of data.

120 Exit Routines

This topic describes the segment edit/compression exit routine, its attributes, how
to activate it, how the routine communicates with IMS, and the restrictions that
apply. The topic also provides a description of sample segment
compression/expansion modules.

Subsections:
v “About this routine”
v “Restrictions” on page 128
v “Communicating with IMS” on page 128

About this routine

Segment compression saves space and can result in reduced logging. You can write
an exit routine to:
v Edit or compress both fixed- and variable-length segments
v Accomplish either data edit/compression (DEDBs or full-function databases) or

key edit/compression (full-function databases only).

If you write your own exit routine, you can also allow for editing, such as
encoding and decoding segments for security purposes, and for validating and
formatting data. The logic for data encoding and decoding (or for other desired
editing or formatting) can be based on information contained within the
user-written routine itself. It also can be based on information from an external
source, such as data provided in the DBD block, or from tables examined at
execution time.

Segment compression is possible for both full-function databases and data entry
databases (DEDBs). You can use either DFSCMPX0 or DFSKMPX0, write your own,
or generate one which invokes hardware data compression.

You can apply the same exit routine to multiple segment types within the same or
different databases.

Recommendation: Use the DFSCMPX0 sample routine, because it uses z/OS
services.

The segment edit/compression exit routine is optional. No default routine is called.
The sample exit routines only perform segment compression and expansion. The
exit routines should be implemented by those having overall systems or database
responsibility for an installation. These routines should be transparent to the
application programs that access the databases.

Related Reading: For a list of the specific full-function databases that are
supported and for additional guidance-level information, see IMS Version 13
Database Administration.

Restriction: The DEDB Sequential Dependent Scan utility (DBFUMSC0) provides
support for SDEP segment decompression only if the EXPANDSEG command is
specified.

Related Reading: For details on coding the EXPANDSEG command, see IMS
Version 13 Database Utilities.

The following table shows the attributes of the segment edit/compression exit
routine.

Chapter 2. Database Manager exit routines 121

Table 32. Segment edit/compression exit routine attributes

Attribute Description

IMS environments All environments that support databases.

Naming convention According to user's naming convention.

Link editing After an edit routine has been compiled and tested and before it is
used by the IMS system, it must be placed into IMS.SDFSRESL,
SYS1.LINKLIB, or into any operating system partitioned data set to
which access is provided with a JOBLIB or STEPLIB control region
JCL statement. You must also specify one entry point to the exit
routine.

Including the routine Routine is specified in the SEGM macro for the DBDGEN.

IMS callable services To use IMS callable services with this routine, you must do the
following:

v Issue an initialization call (DFSCSII0) to obtain the callable service
token and a parameter list in which to build the function-specific
parameter list for the desired callable service.

v Use the PST address found in register 1 as the ECB.

v Link DFSCSI00 with your user exit.

Sample routine
location

IMS.ADFSSMPL.

Attributes of the Routine

The following list describes the attributes of the segment edit/compression exit
routine.

Minimum Authorization
Supervisor state in key 7.

APF Authorization
Must reside in either in IMS.SDFSRESL, SYS1.LINKLIB, or in an authorized
PDS library specified in JOBLIB or STEPLIB. It can also reside in any
library specified in LNKLSTxx of SYS1.PARMLIB. It can be in SYS1.LPALIB
only if the library is included in IEAAPFxx of SYS1.PARMLIB.

Cross Memory Mode
Exit can be entered in cross-memory mode in the online environment but
not in batch mode.

AMODE, RMODE
Exit resides in 24-bit and can be entered only in 24-bit.

Handling Abnormal Conditions
Any error conditions that are returned by system services on
compression/expansion are handled by the sample routine DFSCMPX0,
which sets register 0 and register 15 with abend code 2990 and reason code
before returning to caller. See the reason codes in Table 26. However, the
action modules normally pseudoabend the application with a U840 abend.

The following attributes of the segment edit/compression exit routine differ
depending on the type of database that uses the routine.

Full-Function Database
The exit routine must be coded to be serially reusable.

122 Exit Routines

IMS does not reload the routine between consecutive calls to the exit. IMS
loads the routine once per segment reference. If the exit is link-edited as
reusable (REUS), the same physical copy of the load module in storage is
used to satisfy all load requests.

Because IMS calls the exit by branch and link, there is no operating system
serialization of exit calls. IMS internally serializes calls to full-function
database compression exits at the database level. For HALDB database
compression exits, this means that all calls to the database, regardless of
which partition the segments reside in, are serialized through the
compression exit.

If the same exit name is used across more than one database or is used in a
HALDB database organization, the exit must either be coded and
link-edited (bound) as reentrant and reusable, or it must be coded as
reusable but link-edited as not-reusable. If the exit is link-edited as
not-reusable, a separate copy of the exit is loaded for each segment
reference and used only by that segment reference. Code the exit as
logically reentrant so that it is also serially reusable.

DEDB If the segment edit/compression exit routine is used with DEDBs, you
must write it and bind it as reentrant. In addition, the exit routine is
loaded during control region initialization rather than during the opening
of a database (as it is with a full-function database).

Loading the routine

Each time a database is opened, IMS examines each segment description to
determine whether edit/compression has been specified for that segment type. If
so, the exit routine is loaded from its resident library by IMS. IMS obtains the
name of the routine from the COMPRTN parameter of the SEGM statement of the
DBD.

An IMS restart is required to refresh the loaded exit routine with a new version.

Related Reading: For details on coding the COMPRTN parameter, see IMS Version
13 System Utilities. Adequate storage for the edit/compression routine must be
provided for both batch and online systems.

How the segment edit/compression facility works

When a segment requiring editing or compression is accessed, IMS gives your edit
routine control and provides it with the following information:
v Address of the data portion of the segment.
v Address of the segment work area.

Definition: Although the exit can be used for functions other than compression,
from this point on the use of the term compression refers to the process of
converting the segment from the application program form to the form written to
external storage. The term expansion refers to the process of converting the segment
from the external storage form to the application program form.

Two types of segments can be presented to the routine: fixed length segments, with
a data length that is static and is reflected in control blocks; and variable-length
segments, with its data length contained within a field in the first two bytes of the
segment itself. While a routine dealing with a single-segment type normally does
not need to recognize the differences, a more general purpose module involved

Chapter 2. Database Manager exit routines 123

with multiple segment types can obtain sufficient information to differentiate
between them. This is done by examining data provided in the segment
compression control section.

Segments being processed using the segment edit/compression facility are stored
as variable-length segments in the database. Variable-length segments have a size
field in the first two bytes of the data portion of the segment. This size field
defines the length of the data portion of the segment. When segments are defined
to the application program as fixed length, your routine must expand it to the
fixed length expected by the application program. In reverse, if the application
program presents a fixed-length segment, your edit routine must add the size field
to the compression segment. If the segment is a variable-length segment, it must
update the size field with the correct segment length.

Example

Although your edit routine can modify the key fields in a segment, the segment's
position in the database is determined by the original key field.

Example: If the key field of a segment type is based on last names and the
database has segments for people named McIvor, Hurd, and Caldwell, these
segments are maintained in alphabetic sequence—Caldwell, Hurd, and McIvor.
Assume your edit routine encodes the names as follows:
Caldwell ------> 29665
Hurd ------> 16552
McIvor ------> 24938

The encoded value is put in the key field. However, the segments in the database
remain in their original sequence (Caldwell, Hurd, McIvor) rather than in the
numeric sequence of the encoded values (16552, 24938, 29665). Because segments in
the database are maintained in their original sequence, application programs can
issue GN calls and retrieve the correct segment even though segments are encoded.
This is also true for secondary index fields contained in index source segments.

Using the DBD table

The DBD control block has a table appended to it in the form of an assembler
language CSECT. One CSECT is filled in for each segment type that specifies the
use of the segment edit/compression facility. The CSECT contains basic
information, such as the name of your edit routine and the name of the segment
type. You can extend the CSECT to contain any editing parameters or criteria you
want. In other words, some or all of the logic for editing a segment type can be
put in the CSECT. You can perform different editing operations on different
segment types with a single edit routine. If you want additional information for
editing a segment type, any external source can provide it, not just the table in the
DBD.

Related Reading: For information on the DBD control statement SEGM, see the
section “SEGM Statement” in IMS Version 13 Database Administration.

Activating the routine

When the application program is activated and begins accessing segments, IMS
interfaces with the segment edit/compression exit routine as described in this
section. In all cases, IMS passes an entry code to the exit routine. Your exit routine
must examine this entry code to determine the function to be performed.

124 Exit Routines

Activating the routine for compression

For compression, regardless of the format at the source address, the segment at the
destination address must be in variable-length format. The following figure shows
the input (a fixed- or variable- length segment) in expanded format that is passed
to the edit/compression routine and output (as a variable-length segment) in
compressed format. The first data field of the destination segment is a 2-byte
segment size field.

Segment length

If a fixed- or variable-length segment requires compression, and the data format is
such that compression cannot take place, the addition of control information by
your exit routine (indicating the segment could not be compressed) lengthens the
segment beyond the maximum length definition. To allow for this expansion, and
to allow IMS to check the validity of compression results, you can increase the size
of your segment. You can increase the size of fixed-length segments by up to 10
bytes:
v For full-function fixed-length segments, you can increase the segment size by

more than 10 bytes if the value for the COMPRTN parameter of the DBD SEGM
statement specifies more. You can increase the size of a full-function variable
length segment up to the maximum defined size.

v You can increase the size of a DEDB variable length segment up to the
maximum defined size plus 10 bytes, but it must not exceed 120 bytes less than
the control interval (CI) size.

The length of the segment to be moved is provided in one of two places:
v If the segment length specified in the DBD is fixed, the source length is in the

DMBCPSGL field.
v If the segment is defined as variable in length, the source length is provided as a

binary value in the first two bytes at the source address.

Figure 6. Segment compression

Chapter 2. Database Manager exit routines 125

In either case, the move operation provided by the edit/compression routine must
result in a 2-byte length field, followed by the corresponding quantity of data in
the segment work area.

IMS might pad a segment to a length greater than that created by your exit
routine. IMS pads full-function variable-length segments to their minimum length.
IMS pads full-function fixed-length segments to their pad length if it is specified
on the COMPRTN parameter of the DBD SEGM statement. IMS does not pad
DEDB segments.

Activating the routine for expansion

For expansion, the input segment has a variable-length format. The following
figure shows the input (a variable-length segment) in compressed format that is
passed to the edit/compression routine and output (as a fixed- or variable- length
segment) in expanded format.

Entry code determination

For segment expansion that occurs during the segment retrieval process, IMS
examines the application program request. If the request is satisfied by a
compressed segment, a test is made to determine the type of compression used,
either key or data. Then, depending on the type of retrieval request, either entry
code 4 or 8 is passed to the expansion routine. The following criteria are used as a
basis for the decision:
v If the segment can be accepted without analysis of either a key or data field,

control is transferred using entry code 4. The segment is expanded to the form
presented to the user.

v If the value of the segment sequence field requires examination prior to segment
selection, an additional check is performed to determine data or key
compression. Data compression requires no additional processing, while key
compression requires activation of entry code 8. If the segment is qualified for
presentation after the key field is validated, IMS formats the segment using
entry code 4 and passes it to the exit routine.

Figure 7. Segment expansion

126 Exit Routines

v If data field analysis is necessary to properly satisfy the DL/I call, proper
expansion of the segment by entry code 4 occurs. When the correct segment is
found, it is passed to the user.

The format of the segment presented through entry codes 4 and 8 of the
compression routine is identical to that of a variable-length segment (a 2-byte
segment size field followed by the appropriate quantity of data). The exit routine
must expand the segment at the destination address in correct format, either fixed
or variable-length. In the case of key compression, the exit routine must expand
the segment from its start to the sequence field. For variable-length segments, the
segment data length field, after processing by the key expansion, must reflect the
length of the expanded portion of the segment at the destination address.

Using the routine with tabled data information

You have two options for processing tabled data information:
v Include the tabled data in the DBD module itself.

For each segment defined during DBDGEN as eligible for edit/compression, an
entry is developed in an assembly language control section. This control section
can be extended by assembling and binding it to contain any desired data or
algorithm information.

v Load the tabled data when the exit routine is initialized.
Specifying INIT on the COMPRTN parameter of the SEGM statement in the
DBD causes the routine to be called for initialization processing. The routine can
issue IMS callable services calls to provide functions equivalent to the
LOAD/DELETE or GETMAIN/FREEMAIN macro instructions. These calls bring
additional information into storage in the form of modules from IMS.SDFSRESL
library. For example, the routine can maintain a table of substitution characters
that is separate from the executable code. This table can reflect different
combinations for different segments, resulting in a general purpose, table-driven
routine capable of processing several segment types.

IMS provides two additional entry codes that allow you to process tabled data
information. IMS calls a segment edit/compression exit routine with these entry
codes if you specify the INIT keyword on the COMPRTN parameter of the SEGM
statement. With these codes, IMS passes control to the initialization and
termination subroutines immediately after the full-function database or DEDB area
is opened, and immediately before the full-function database or DEDB area is
closed. Any processing required for the database segments that cannot be directly
related to any one segment can be done at this time using these options.
Initialization processing and termination processing can include the loading and
deleting of the compression algorithm table.

Code Description

12 Initialization processing call. Control is obtained for algorithm initialization
processing immediately after the full-function database or DEDB area is
opened. Registers 2 and 3 are unpredictable.

16 Termination processing call. Control is obtained for algorithm termination
processing immediately before the full-function database or DEDB area is
closed. Registers 2 and 3 are unpredictable.

When control is passed to the exit routine as a result of these two entry codes,
execution is not in cross-memory mode. For online systems, execution is in the
control region address space or, if a DL/I separate address space is used (LSO=S),

Chapter 2. Database Manager exit routines 127

execution is in the DL/I separate address space.

Restrictions

Keep the following restrictions in mind when using the segment edit/compression
Facility:
v Because this routine becomes a part of the IMS control or batch region, any

abnormal termination of this routine terminates the entire IMS region. Any
user-written segment edit/compression exit routine should return to IMS with
an abend code and a reason code instead of initiating a standard abend.

v The exit routine cannot use operating system macros such as LOAD, GETMAIN,
SPIE, or STAE.

v All editing or compression of segments occurs as the segments are described in
a physical database only. For specific restrictions, see IMS Version 13 Database
Administration.

v The exit routine must not modify or alter the relative position of a key field in a
DEDB segment. If the key field in a DEDB segment changes or moves during a
compress or expand call, IMS issues abend 0799, subcode 1. For more
information about this abend, see IMS Version 13 Messages and Codes, Volume 3:
IMS Abend Codes.

v When you specify the maximum size of the data portion of the segment in the
DBD, if you use the segment edit/compression exit routine with full-function
variable-length segments, you might need to include extra bytes. These extra
bytes are needed if your exit routine makes the segment larger than its
maximum size. For example, if the maximum length of your data is 100 bytes
and your exit routine might add 2 bytes to the segment, specify 102 bytes as the
maximum size. Increasing the maximum size accounts for the size of the
segment from the application program (100 bytes) and the 2 bytes added by the
exit routine. This restriction does not apply to full function fixed-length
segments or to segments in DEDBs. Using the segment edit/compression exit
routine for both types of segments might increase their data sizes to values that
are larger than those specified in the DBD.

Communicating with IMS

All IMS control blocks provided to the segment edit/compression exit routine are
for reference only; no data can be changed, including the segment at the source
area address. The only modification allowed is the alteration of the segment during
the move operation from the source to the destination address. DSECT
addressability to the control blocks is provided by the IMS IDLI macro.

Contents of registers on entry

On entry to the exit routine, the registers contain the following:

Register Contents

0 Set to zero before call to exit routine. Can contain Abend code U2990 on
return if the exit routine detected an error.

1 Address of the Partition Specification Table (PST).

2 Address of the first byte of the segment to be modified (source address).

128 Exit Routines

Register Contents

3 Address where the modified segment is returned (destination address). For
DEDB segments, this area is 10 bytes larger than the maximum segment size.
For full-function fixed-length segments, this area is 10 bytes larger than the
maximum segment size, unless a larger size was specified in the DBD. For
full-function variable-length segments, this area is the maximum segment
size.

4 Address of the physical segment description block (PSDB). From this block,
the field description blocks (FDB) can be located. (Register 4 is always zero
when a DEDB is accessed by the exit routine, because the PSDB does not
exist for DEDBs.)

5 Address of the segment edit/compression control section.

6 Entry code (detailed in the following section):

0 Segment compression call

4 Entire segment expansion call

8 Partial segment expansion call (full-function databases only)

12 Full-function database or DEDB area open call

16 Full-function database or DEDB area close call

7 For DEDB only, the minimum length as coded in DBD (SDBLMIN). Register
7 is only valid for function code 0 (segment compression) and function code
4 (segment expansion).

13 Address of save area. The exit routine must not change the first three words.

14 Return address to IMS.

15 Entry point of exit routine.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers.

Compressing and expanding segments

The following two entry codes are required for segment compression and
expansion; they are used when you specify the DATA compression operand.

Code Description

0 Segment compression call. The source address points to an uncompressed
segment image as it appears in the application program input/output area.

4 Entire segment expansion call. The source address points to a compressed
segment. Application program requests qualified on a data field require the
use of entry code 4 for normal retrieval expansions.

To reduce the amount of processing overhead required with the movement of data,
the following third entry is required when the KEY compression operand is used.
The KEY operand is for use with full-function databases only. Key compression is
not supported for DEDBs.

Chapter 2. Database Manager exit routines 129

Code Description

8 Partial segment expansion call with the KEY operand (full-function databases
only). Expansion takes place from the start of the segment through the
sequence field. This facility is required if you elect to use key compression,
or if you compress any field that alters the starting position of the key field.
All DL/I calls using sequence field qualification on key compressed
segments require the use of this entry code.

Description of entry codes

The entry code that is passed to the exit routine in register 6 indicates the reason
IMS called the exit routine. The five possible entry codes are described in the
following sections.

Description of parameters

The length of the segment to be moved is provided in one of two places:
1. If the segment length specified in the DBD is a fixed length, the source length

is in the DMBCPSGL field.
2. If the segment is defined as variable in length, the source length is provided as

a binary value in the first two bytes at the source address.

In either case, the move operation provided by the edit/compression routine must
result in a 2-byte length field, followed by the corresponding quantity of data in
the segment work area.

To help you provide parameters to the edit/compression routine, the DBD control
block has a table appended to it that is made up of assembly language control
sections. One control section is developed for each segment type to be edited or
compressed. Each control section has a CSECT name equal to that of the segment
name.

These control sections are placed at the end of the DBD module. They contain
information such as the segment edit/compression routine name, the name of the
segment, and the total length of that control section. Each control section can be
extended to contain any desired data or algorithm information. A sample segment
control section is shown in the following table.

Table 33. Segment edit/compression control section (DMBCPAC)

Hex
offset

Contents

+0 Segment name

+8 Routine name

+10 Entry point address Flag byte Sequence
field

length -1

Sequence field
offset

+18 Segment length /
maximum length

Total length of
CSECT

Reserved for exit routine

+20 Any user data (length varies)

Information in the various fields shown in the previous code sample are as
follows:

130 Exit Routines

DMBCPAC DSECT
DMBCPCNM DS CL8 Segment name
DMBCPCSG DS CL8 edit/compression routine name
DMBCPEP DS A Entry point address
DMBCPFLG DS XL1 Flag byte
DMBCPKEY EQU X’02’ Segment has key compression

option
DMBCPNIT EQU X’01’ Initialization processing is

required
DMBCPVLR EQU X’04’ Segment is variable-length
DMBCPSEQ EQU X’08’ Segment has key sequence field

defined
DMBCPJJD EQU X’10’ Exit caller requests a return code

rather than hard abending.
DMBCPSQF DS XL1 Executable length of sequence

field, if defined
DMBCPSQL DS H Sequence field offset
DMBCPSGL DS H For fixed length segments -

segment length; for variable
length segments - maximum
length

DMBCPLNG DS H Total length of CSECT; fixed
length plus length of
user-defined parameters (always
a multiple of 8)

DMBCPUSR DS 0F Any quantity of user-defined
data.

The first 28 bytes are constants defined by DBDGEN. When the new table is
defined to include additional parameters, these fields must be duplicated. The only
exception to this rule is that the CSECT length field must be updated to reflect the
new length. After an assembly of the new table, bind is done to exchange the new
table for the old one. User-added code should not contain address constants,
because this CSECT is moved after it is loaded. Use an ENTRY statement to
specify the name of the DBD when this operation takes place, as well as an
ORDER statement to ensure that the original order of multiple CSECTs is
maintained. For details about this, see the section on automatic CSECT replacement
in the z/OS product library.

If your exit routine references IMS control blocks other than the one shown in
Table 33 on page 130, you need to reassemble the routine using the current release
of IMS.
Related reference:
“Initialization of IMS callable services (DFSCSII0)” on page 17
“Routine binding restrictions” on page 9

Description of sample segment compression/expansion
modules

Use the sample segment compression/expansion modules to compress three, four
or more repeated strings.

Subsections:
v “About this routine” on page 132
v “The compression routine” on page 132
v “The initialization processing routine” on page 133
v “Program messages and codes” on page 133
v “Program assumptions” on page 135

Chapter 2. Database Manager exit routines 131

About this routine

Compression/expansion examples are provided as guidance to the IMS system
user.

DFSCMPX0 and DFSKMPX0 can be used by either full-function databases or
DEDBs. Both routines perform segment compression. The only differences are:
v DFSCMPX0 compresses three or more repeated strings. This exit routine

employs z/OS services to accomplish segment compression and expansion. For
more information on these services, see the z/OS library. (DFSCMPX0 is the
recommended compression routine.)

v DFSKMPX0 compresses four or more repeated strings. This exit routine relies on
programming logic to accomplish segment compression and expansion.
(DFSKMPX0 is not recommended, but it will continue to be supplied and
supported for compatibility reasons.)

When control is given to DFSCMPX0 or DFSKMPX0, the program checks the entry
code passed in register 6. The entry code indicates whether the request is for
compression of a segment or for the partial (full-function databases only) or entire
expansion of a compressed segment. It then branches to an appropriate routine to
perform the required task. On normal completion of the task, it returns control to
the IMS Control Program with a return code of 0.

Specific rules and restrictions followed in compression and expansion of a segment
are detailed in this topic. For sample code, see the IMS.SDFSSMPL library.

For the latest versions of DFSCMPX0 and DFSKMPX0, see the IMS.SDFSSMPL
library; the member names are DFSCMPX0 and DFSKMPX0. Because DFSCMPX0
provides improved performance and possibly better compression, IBM does not
recommend the use of DFSKMPX0.

The compression routine

Compression of a segment requires different data handling according to the data
organization of the segment. The two data formats are fixed and variable-length.

You can specify the KEY (full-function databases only) or DATA operand for either
of the two data formats. The following figure shows data before and after
compression for both fixed- and variable-length segments.

132 Exit Routines

D data

K pointer to the 1st CCB

LL' new statement

LL original segment length

D' and K'
compressed data and key

Compression of a segment results in one of the four formats listed in the preceding
figure, depending on the original record format and the operand specified.

The initialization processing routine

When specified, IMS gives control to the segment edit/compression routine
immediately after the databases are opened and immediately before the databases
are closed.

When a command code is given to branch to the initialization processing routine
or to the termination processing routine in the DFSKMPX0 program, the
DFSKMPX0 program returns to the calling program. No processing of particular
data is attempted at this stage.

Program messages and codes

When a Segment Edit/Compression exit routine detects a problem and initiates a
standard abend, that abend can bring down the IMS. This severely impacts all
other IMS applications running in an online IMS environment. The Segment
Edit/Compression exit routines return to the caller with an abend code in register
0 and a reason code in register 15. Thus, abends in Segment Edit/Compression exit
routines are converted to IMS abend U0840s so that only the dependent region that
the abending application is running in is brought down.

The following table lists the abend codes.

Figure 8. Data handling formats

Chapter 2. Database Manager exit routines 133

Table 34. Program messages and codes - abend codes

User abend Description

2989
A segment data organization is variable-length, but its length field is
2>N>32767

A fixed-length record, but the segment length in Compaction Control
Table indicates: 0>N>32767

2990
A command code passed by the control program is out of a valid range:
0>N>16

1. REASON - D4D7E701: During a compression request, the input length
of the variable length segment is less than 2 bytes.

2. REASON - D4D7E702: During an expansion request, the input length
of the compressed segment is less than 2 bytes.

3. REASON - D4D7E703: During an expansion request, a non-zero
return code was returned by the z/OS expansion service.
(CSRCESRV).

4. REASON - D4D7E704: INIT was not specified in the COMPRTN
parameter of the SEGM statement.

5. REASON - D4D7E705: Invalid function code. A command code passed
by the control program is out of valid range.

6. REASON - D4D7E706: The key field length (sequence field) plus the
offset of the key field within the segment is greater than the segment
length indicated in the segment length field of a Compression Control
Table.

7. REASON - D4D7E707: The length of a segment indicated in the
segment length field of a Compression Control Table is negative.

2991
A command code is passed to compress after, or expand up to, a
sequence field of a segment. No sequence field is defined in the segment.

134 Exit Routines

Table 34. Program messages and codes - abend codes (continued)

User abend Description

2992
Any of the following conditions results in an abend with this code.

Applicable to both fixed- and variable-length segments:

v A D/K length is greater than an SCL length of a segment.

Applicable only to a variable-length segment:

v A D/K length is greater than a LL length.

v A LL length is greater than an SGL length.

v A LL length is less than 2.

v An SGL length is less than 2.

Applicable to a fixed segment:

v An SGL length is a negative value.

D/K length =
A sum of length from the beginning of a segment to the end
of a key field (SEQUENCE FIELD).

SGL length =
A length of a segment indicated in the segment length field of
a Compression Control Table.

LL length =
A length of a variable-length record indicated in the first two
bytes of a precompressed segment.

Program assumptions

All parameters and data passed by the IMS control program, such as the address
of the input segment data, the output data area address, and the length of an input
segment, are considered valid data.

The IMS control program passes an address of an input segment data area in
register 2 and an address of an output data area in register 3.

The size of output data area is:
v A segment length plus two bytes for a fixed-length segment.
v The maximum segment length for a variable-length segment.
v No segment length greater than 32,767 bytes.

All segments processed by the compression routine are treated as variable-length
by the IMS system control program, regardless of their precompression format.

Although no DFSKMPX0 sample exit routine is provided here, the exit routine is
supported and supplied in the IMS.ADFSMPL library.

Hardware data compression support
You can compress or expand full-function and DEDB databases by using Hardware
Data Compression support.

Hardware Data Compression (HDC) reduces DASD storage requirements for
databases, reduces database I/O, and improves database performance.

Chapter 2. Database Manager exit routines 135

With HDC support, you can generate exit routines to activate the
hardware-assisted data compression available on processors. The processors use a
compression technique that uses a fixed number of bits to replace a variable
number of bytes.

If compression hardware is installed, the segment is compressed or expanded
using the hardware instruction CMPSC. If compression hardware is not installed,
the standard HDC exit routine calls the z/OS CSRCMPSC macro to compress or
expand the segment by activating software simulation.

HDC compresses and expands segment data by calling a compression exit routine
that has been specified on the SEGM statement during DBDGEN. This exit routine
is created by binding a user-defined dictionary and an IMS-supplied base exit
routine.

The space saved by compression depends on the user-defined dictionary, which
performs the translation between compressed and uncompressed data. Different
dictionaries are built for different sets of data. You receive the best results by
creating a dictionary that compresses the most frequently occurring data in the
largest databases.

If a fixed or variable-length segment requires compression and the data format is
such that compression cannot take place, then the exit routine adds control
information which indicates that the segment could not be compressed. This
addition of the control information will lengthen the segment beyond the
maximum length definition. To allow for this expansion and to allow IMS to
validity check the compression results, you can add an arbitrary value of 10 bytes
to the segment length.

If the segment length specified in the DBD is variable and the database is a DEDB,
the length can exceed the maximum by up to 10 bytes but must not exceed 120
bytes less than the control interval (CI) size. If the segment length specified in the
DBD is variable and the database is a HIDAM, HISAM, HDAM, or PHADM the
length cannot exceed the DBDGEN maximum.

Implementing HDC support
Using the Hardware Data Compression Dictionary (HDCD) utility (DFSZLDU0),
you can implement hardware compression, build a hardware compression
dictionary, and compare hardware compression statistics.

To implement hardware data compression with HISAM, HIDAM, PHIDAM,
HDAM, PHDAM, and DEDB databases, follow these steps:
1. Create an HDC dictionary, using the Hardware Data Compression Dictionary

utility (DFSZLDU0).
2. Bind the HDC dictionary to an IMS-supplied base exit routine, which produces

a segment edit/compression routine. The base module is about 1 KB and is
bound with 64-KB dictionaries. Therefore, the user exit routines require slightly
more than 64 KB of memory.

3. In the DBDGEN SEGM statement COMPRTN parameter, specify the newly
created segment edit or compression routine and the INIT keyword. The name
of the routine must not be the same as the DBDNAME.

4. Unload the database using the old DBD.
5. Create the new DBD specifying the new exit routine.
6. Reload the database using the new DBD. (A new DBD requires that you run

ACBGEN.)

136 Exit Routines

Building the HDC dictionary

To build the HDC dictionary, use a sequential variable-length file as input to the
HDCD utility. This must be a QSAM file of a variable record format and contain
uncompressed segments, which are used to build the dictionary. You can create
this QSAM file with a user-written unload program, or with the HD
Reorganization Unload utility (DFSURGU0). Use your own data analysis to
determine what uncompressed segments to use. Use the QSAM data set with the
procedure.

Exception: If you use a QSAM file created by the DFSURGU0 utility, the dictionary
build process includes (will not ignore) the header and trailer records created by
the DFSURGU0 utility. Also, the dictionary build process includes (will not ignore)
the prefix added to each data segment by the DFSURGU0 utility.

Other HDCD utility functions

In addition to creating the HDC dictionary, the HDCD utility provides:
v Compression statistics program, which is generated from the QSAM input file or

from an alternate file. By using an alternate file, you can compare statistics and
evaluate the dictionary's effectiveness.
The compression statistics program:
– Calculates the potential storage savings percentage as follows:

SAVINGS=(100-((average compressed segment size/average precompressed
segment size)*100)).
If the potential storage savings do not meet the HDCDCTL default
parameter's criteria, a dictionary object file is not built.

– Prints the following statistics:
- HDCDCTL parameters.
- Number of segments read.
- Smallest precompressed and compressed segment sizes.
- Largest precompressed and compressed segment sizes.
- Average precompressed and compressed segment sizes.
- Potential storage savings percentage.
The value shown for either the smallest or largest uncompressed segment
could represent the length of the DFSURGU0 utility header or trailer segment.

– Produces data integrity validation option.
– Produces an object file for the specific HDC dictionary, provided that the

following compression criteria are met:
- Precompressed data matches expanded data if the data integrity validation

option is specified.
- Potential storage savings exceed the user-specified minimum percentage.

Related reference:
“Sample JCL procedure”

Sample JCL procedure
To build the hardware compression dictionary, you must create a QSAM data set
containing uncompressed database segments that can be used with JCL procedures.

Use the QSAM data set with the following JCL procedure.

Chapter 2. Database Manager exit routines 137

//HDCDBLD PROC
// HDCDNAM=DFSZHDCD, /*USER SUP. DICT NAME,8 CHARS*/
// QSAMIN=’USER.QSAM’, /* INPUT QSAM FILE NAME */
// QSAMIT=’USER.QSAMALT’, /* ALTERNATE QSAM FILE NAME*/
// DICTLIB=’HDC.DICTLIB’, /* DICTIONARY LOAD LIBRARY */
// DICTNAM=’DFSZHXYZ’, /* USER DICT. MEMBER NAME */
// CMPXIT=’USER.COMPLIB’, /* COMPRESSION EXIT LIBRARY*/
// CMPMBR=’CMPXIT01’, /* USER EXIT MEMBER NAME */
// RGN=2048K,
// SYS2=,
// SOUT=*,
// UNIT=SYSDA,
// VOLSER=,

// CYL=TRK,PRIM=5,SEC=2,BLKSZ=3120
//**
//* CREATE STATISTICS AND HDC DICTIONARY OBJECT FILE. *
//**

//HDCDGEN EXEC PGM=DFSZLDU0,REGION=&RGN,PARM=&DICTNAM
//STEPLIB DD DSN=IMS.&SYS2.SDFSRESL,DISP=SHR
//SYSPRINT DD SYSOUT=&SOUT
//SYSUDUMP DD SYSOUT=&SOUT
//HDCDIN DD DSN=&QSAMIN,DISP=SHR;
//HDCDIT DD DSN=&QSAMIT,DISP=SHR;
//HDCDOUT DD DSN=IMS.&HDCDNAM.HDCDOBJ,
// DISP=(,CATLG,DELETE),
// UNIT=&UNIT,
// SPACE=(&CYL,(&PRIM,&SEC),RLSE),
// DCB=(LRECL=80,BLKSIZE=&BLKSZ,RECFM=FB)
//HDCDCTL DD DUMMY /* ’DUMMY’ USES DEFAULT PARMS */
//*
//***
//* CREATE LOAD MODULE FROM DICTIONARY OBJECT TEXT DECK. *
//***

//LINK1 EXEC PGM=IEWL,COND=(0,NE),

// PARM=’SIZE=(180K,20K),RENT,REFR,NCAL,LET,XREF,LIST’
//SYSLMOD DD DSN=&DICTLIB(&DICTNAM),DISP=SHR
//SYSUT1 DD UNIT=&UNIT,DISP=(,DELETE),
// SPACE=(CYL,(10,1),RLSE)
//SYSPRINT DD SYSOUT=&SOUT
//SYSLIN DD DSN=IMS.&HDCDNAM.HDCDOBJ,DISP=(OLD,DELETE,KEEP)
//*
//***
//* THE USER COMPRESSION EXIT ROUTINE IS BUILT BY LINKING *
//* MODULE DFSZLDX0 AND THE HDC DICTIONARY TOGETHER. THE *
//* THE HDC DICTIONARY MUST BE THE FIRST CSECT WITHIN THE *
//* USER EXIT ROUTINE AND ALSO BE ON A PAGE BOUNDARY. *
//***
//LINK2 EXEC PGM=IEWL,

// PARM=’SIZE=(180K,20K),RENT,REFR,NCAL,LET,XREF,LIST’
//SYSLMOD DD DSN=&CMPXIT(&CMPMBR),DISP=SHR
<litdata>
//SYSUT1 DD UNIT=&UNIT,DISP=(,DELETE),
// SPACE=(CYL,(10,1),RLSE)
//SYSPRINT DD SYSOUT=&SOUT
//SDFSRESL DD DSN=IMS.&SYS2.SDFSRESL,DISP=SHR
//DICTLIB DD DSN=&DICTLIB,DISP=SHR;
//***

138 Exit Routines

//*THE FOLLOWING CONTROL STATEMENTS MUST BE IN THE ORDER AS *
//* ILLUSTRATED. *
//* *
//* DFSZHXYZ: THE HDC DICTIONARY NAME FOR THE SEGMENT. *
//* (&DICTNAM) THIS HAS TO BE CHANGED TO A FIXED NAME OF *
//* DFSZHDCD SO THAT THE COMPRESSION EXIT DRIVER *
//* CAN BE LINKED TO IT. *
//* *
//* DFSZLDX0: THE COMPRESSION EXIT DRIVER ROUTINE. *
//* *
//* &CMPMBR: USER SPECIFIED COMPRESSION/EXPANSION EXIT *
//* ROUTINE NAME THAT IS USED ON THE *
//* SEGM COMPRTN= (&CMPMBR,DATA) DBD STATEMENT. *
//***
//SYSLIN DD *

CHANGE &DICTNAM(DFSZHDCD) (&DICTNAM) DICTIONARY NAME
INCLUDE DICTLIB(&DICTNAM) DICTIONARY MUST BE 1ST CSECT
INCLUDE SDFSRESL(DFSZLDX0) STANDARD COMPRESSION EXIT
PAGE DFSZHDCD
ENTRY DFSZLDX0
NAME &CMPMBR(R) (&CMPMBR) COMPRESSION EXIT

/*
// PEND

Subsection:
v “DD name descriptions”

DD name descriptions

HDCDIN DD
The input sequential variable length data set that contains the IMS database
segment data that you extracted.

HDCDIT DD
The input sequential variable length data set or an alternate file that is used to
calculate the compression statistics.

HDCDOUT DD
Output HDC dictionary object deck. The z/OS format dictionary is built and
converted into a bind compatible object deck for subsequent use in the
dictionary link edit step.

SYSPRINT DD
Compression analysis statistics.

HDCDCTL DD
A data set containing the following control statements. The value specified for
a control statement must conform to the rules described for each control
statement. Code the value after the keyword for the control statement. Use a
blank or a comma to separate control statements.

RECS=
The number of input records to be processed. The default is ALL. Specify a
number between zero and 2147483647. If any number outside this range is
specified, the default ALL is used.

PERC=
The percentage of storage savings to be realized. The default is 5 percent.
One or two digits are allowed.

INTEG=
By specifying Y or N, this keyword checks or does not check the data
integrity of compressed segments. The default is N.

Chapter 2. Database Manager exit routines 139

Tips for hardware data compression
Hardware data compression (HDC) can help you save I/O and storage.

To decide whether to use HDC, run the HDCD utility and analyze the output
statistics to determine how much storage and I/O savings you can achieve.

You might want to limit the use of HDC to one time per database, since its
implementation requires an unload and reload of the database.

Recommendation: Evaluate all the segments in a database before implementing
compression. If you use compression for multiple segment types, implement
compression for all of them at the same time.

Because uniquely tailored dictionaries yield the most compression, you should use
the dictionaries for high-volume segments to maximize savings.

You can create more generally-tailored dictionaries for other reasons. If you know
the type of data in most segments, you can create dictionaries by using a sampling
of similar data from many of those segments. For example, you might want
general dictionaries for upper-case text, mixed-case text, numeric, alphabetic, and
general mixed data. You can use these dictionaries for multiple segment types,
eliminating the need to produce unique dictionaries for each segment type.

Compression usually saves I/O for sequential processing and can also save I/O for
random processing. Typically, savings for random processing is realized with large
database records, especially if the record is spread over multiple blocks or CIs.
Compression can reduce the number of blocks or CIs that must be read to access a
segment. This is likely to apply to twin chains of multiple blocks or CIs, even after
reorganizations.

Return codes from the HDCD utility
The HDCD utility ends and issues one of five return codes.

The following return codes can be issued from the HDCD utility:

Code Description

0 Utility ended successfully and issued the accompanying DFSZ1170I message.

4 Utility ended successfully and issued the accompanying DFSZ1171W
message, but it did not build a dictionary because the requested storage
savings percentage was not met.

8 Utility ended successfully and issued the accompanying DFSZ1172E message,
but it did not build a dictionary because data integrity checks were detected
between a source QSAM input record and its equivalent re-expanded record.

12 Utility ended unsuccessfully and issued the accompanying DFSZ1173W
message, because z/OS CSRCMPSC is not installed on the machine.

16 Utility ended unsuccessfully and issued the accompanying DFSZ1174E
message, because a logic error occurred during invocation of the CSRCMPSC
compression service macro.

Related Reading: For more information about these messages, refer to IMS Version
13 Messages and Codes, Volume 4: IMS Component Codes.

140 Exit Routines

Sequential Buffering Initialization exit routine (DFSSBUX0)
This exit routine can dynamically control the use of Sequential Buffering (SB) for
online and batch IMS subsystems, as well as DBCTL.

Subsections:
v “About this routine”
v “Communicating with IMS”

About this routine

By using one of the five sample SB routines that IMS provides or one that you
write, you can:
v Disallow the use of SB.
v Specify that SB be conditionally activated by default whenever IMS detects a

sequential I/O pattern in batch or BMP regions.
v Change the IMS default values for the number of buffer sets in each SB buffer

pool.

The SB exit routine (DFSSBUX0) is called before each application program or
utility. This enables the exit routine to dynamically change SB options and
parameters and dynamically control how your system uses SB.

The following table shows the attributes of the Sequential Buffering Initialization
exit routine.

Table 35. Sequential Buffering initialization exit routine attributes

Attribute Description

IMS environments DB/DC, DBCTL.

Naming convention You must name this exit routine DFSSBUX0.

Binding After you compile and test your module, bind it into IMS.SDFSRESL, SYS1.LINKLIB,
or into any operating system partitioned data set that can be accessed by a JOBLIB or
STEPLIB JCL statement for the IMS control, SAS, and batch regions.

Including the routine No special steps are needed to include this routine.

IMS callable services This exit is not eligible to use IMS callable services.

Loading the routine

IMS loads the routine at IMS initialization time.

Considering performance

DFSSBUX0 is called frequently during the scheduling of MPPs and PSBs of CICS
in a DBCTL environment. If you modify an SB sample routine or write your own
routine, code it to minimize overhead during the call to the routine for these
programs.

Communicating with IMS

IMS uses the entry registers, parameter list, and exit registers to communicate with
the exit routine.

Chapter 2. Database Manager exit routines 141

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of parameter list.

10 Address of partition specification table (PST).

11 Address of SCD.

13 Address of save area. The exit routine must not change the first three words.

14 Return address of IMS.

15 Entry point of exit routine.

Description of parameters

DFSSBUX0 receives the address of a parameter area in Register 1. This parameter
area is mapped by the DFSSBUXP macro and contains:
v The region type (batch, BMP, MPP, Fast Path, DBCTL) in the SBPRMREG field.
v The job, program, and PSB names. (Exceptions: IMS utilities executed without a

PSB have a DBD name instead of a PSB name.)
v The message classes of the message region (when running in an MPP region).
v The IMS default values for SB options and parameters.

The following paragraphs describe how DFSSBUX0 can change the default values
of SB options in the SB parameter area. Each change applies only to the current
application program or utility being invoked. The DSECT of the parameter area is
presented at the end of the discussion.

Disallowing the use of SB

The SBPRMPDI bit determines whether the use of SB is disallowed. The default
value for this bit is off. DFSSBUX0 can set this bit on, however, to disallow the use
of SB and cause IMS to ignore any PSBGEN or SB control card requests to the
contrary. You can set this bit during peak periods of online use to save real storage
space, especially if your system's real-storage is already constrained.

Conditionally activating SB by default

The SBPRMPAD bit determines whether IMS conditionally activates SB by default.
The default value for this bit is off. DFSSBUX0 can set this bit on, however, so that
IMS samples I/O reference pattern statistics of batch and BMP application
programs. If IMS detects both a sequential I/O pattern and a reasonable activity
rate, IMS activates SB. This occurs only if PSBGEN and SB control cards provide
no specifications to override this process.

Exception: Since statistic sampling has an initialization overhead each time an
application program is scheduled, IMS does not support conditionally activating
SB by default for MPPs, Fast Path regions, or CICS applications.

You might want to use DFSSBUX0 to conditionally activate SB by default in the
following situations:

142 Exit Routines

v To activate SB for specific batch and BMP programs and for IMS utilities by
setting the bit according to the program, job, or PSB name for a program

v To always set the bit to activate SB for all BMP and batch programs and for
utilities for z/OS systems that are not storage-constrained

v To set the bit depending on the time of day (for example, during night batch
processing when most sequential applications are running and a lot of storage is
available for buffering purposes)

Changing the number of SB buffer sets

The SBPRMPNR full word field specifies a default value for the number of buffer
sets (BUFSETS) in each SB buffer pool. The default value for this field is 4.
However, DFSSBUX0 can set this field to a value ranging from 1 to 25, inclusive. If
this value is greater than 1, SB can anticipate the future database calls of a BMP or
batch program by concurrently reading the next set of blocks while IMS is
processing current database calls.

Recommendation: If your databases are well organized, set a default BUFSETS
value of 2 or 3 to save virtual storage space. If your databases are poorly
organized, however, you can set a default BUFSETS value of 6 or greater to
increase the chance that what your application program or utility is looking for is
already in a buffer set.

DFSSBUX0 can also change the default BUFSETS value based on the time of day.
For example, you might want DFSSBUX0 to choose a small value for BUFSETS
during daytime main online processing time and a larger value during night batch
processing time.

The following DSECT describes the format of the SB parameter area:
SBPRMP DSECT
*
SBPRMP1 EQU * ***** READ-ONLY INFO FOR EXIT
SBPRMJOB DC CL8’ ’ JOBNAME
SBPRMPGM DC CL8’ ’ PGM NAME (BLANK FOR CICS)
SBPRMPSB DC CL8’ ’ PSB NAME
SBPRMCLA DC CL4’ ’ IMS MESSAGE CLASSES
SBPRMREG DC X’00’ REGION-TYPE
SBPRMRE1 EQU 1 ...BATCH (EXCLUSIVE CICS)
SBPRMRE2 EQU 2 ...CICS
SBPRMRE3 EQU 3 ...BMP
SBPRMRE4 EQU 4 ...MPP
SBPRMRE5 EQU 5 ...IFP (FAST PATH)

DC XL3’00’ RESERVED
*

DS 0F
SBPRMP2 EQU * ***** MODIFIABLE SB PARMS FOR EXIT
SBPRMPNR DC F’0’ NBR OF BUFFER-SETS
SBPRMPFL DC X’00’ FLAGS
SBPRMPDI EQU X’80’ ...DISALLOW USAGE OF SB
SBPRMPAD EQU X’40’ ...CONDITIONAL SB ACTIVATION BY DEFAULT
*
SBPRMPL EQU *-SBPRMP LENGTH OF PARAMETER AREA

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers.
Related concepts:
Chapter 1, “Guidelines for writing IMS exit routines,” on page 3

Chapter 2. Database Manager exit routines 143

OSAM sequential buffering (Database Administration)
Related reference:
“Routine binding restrictions” on page 9

Sample SB initialization routines
Use the sample SB initialization routines in present form, modify, or use as
guidelines for writing your own SB routine.

IMS supplies five SB sample routines. The first module disallows the use of SB; the
next four cause IMS to conditionally activate SB by default.

SB sample
routines

Description

DFSSBU1 The sample Sequential Buffering (SB) exit routine disallows the use of
SB.

For the latest version of the DFSSBU1 source code, see the
IMS.SDFSSMPL library.

DFSSBU2 This sample exit routine causes IMS to activate Sequential Buffering (SB)
by default when IMS detects a sequential I/O reference pattern and
reasonable activity rate. This exit routine can be used for DataRefresher™

IMS utilities that can benefit from SB in both batch and BMP regions.

For the latest version of the DFSSBU2 source code, see the
IMS.SDFSSMPL library.

DFSSBU3 This sample exit routine causes IMS to activate Sequential Buffering (SB)
by default when it detects a sequential I/O reference pattern and
reasonable activity rate. In batch regions, this applies to all application
programs and utilities; in BMP regions, this applies to DataRefresher, as
well as those IMS utilities that can benefit from SB.

For the latest version of the DFSSBU3 source code, see the
IMS.SDFSSMPL library.

DFSSBU4 This sample exit routine causes IMS to activate Sequential Buffering (SB)
by default when it detects a sequential I/O reference pattern and
reasonable activity rate. This applies to all application programs and
utilities in both batch and BMP regions.

For the latest version of the DFSSBU4 source code, see the
IMS.SDFSSMPL library.

DFSSBU9 This sample exit routine either disallows the use of sequential buffering
(SB) or causes IMS to activate SB by default based on specific times of
day. The routine is coded as follows:

v The time between 1100 hours and 1400 hours is the peak period for
processing online transactions. During this time frame, SB is
disallowed.

v During the time between 0900 hours and 1100 hours, and 1400 hours
and 1700 hours, SB is neither disallowed nor activated by default for
batch and BMP regions.

v The rest of the time, SB is conditionally activated by default for batch
and BMP regions.

For the latest version of the DFSSBU9 source code, see the
IMS.SDFSSMPL library.

144 Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dag/ims_osamseqbuffer.htm#ims_osamseqbuffer

Chapter 3. Transaction Manager exit routines

Transaction Manager exit routines provide support for message processing,
including specialized routing and editing of messages. Additional routines perform
terminal functions, provide security, and facilitate sign on and sign off support.

2972/2980 Input edit routine (DFS29800)
The 2972/2980 Input Edit Routine processes each entered message segment after
that message segment has been translated by IMS.

This topic contains Product-sensitive Programming Interface information.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 146

About this routine

An input edit routine is required to perform terminal-related functions inherent in
the design of the 2972/2980 General Banking Terminal system. IMS passes control
to the 2972/2980 Input Edit Routine to process each entered message segment after
that message segment has been translated by IMS.

The 2972/2980 Input edit routine must perform the following functions:
1. Determine the IMS destination (SMB or CNT) of messages entered from a 2980

teller or administrative station.
2. Determine end-of-message of multisegment messages (by setting DECCSWST

bit 7 to indicate EOM).
3. Reposition the entered data at the beginning of the input buffer for IMS

processing. The entered segment must be in standard IMS input message
format after edit processing; a two-byte length field is followed by the text.

In addition to performing the preceding required functions, the 2972/2980 Input
edit routine can add input terminal status information to the entered segment, such
as the presence or absence of a passbook or auditor key on the input terminal. The
2972/2980 Input edit routine can initiate retransmission of the last successfully
transmitted message to a 2980 logical terminal by a return code to the calling
routine.

The following table shows the attributes of the 2972/2980 Input Edit exit routine.

Table 36. 2972/2980 input edit exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFS29800.

Including the routine Because the Input Edit Routine will be called directly by the IMS 2972/2980 device
dependent module (DFSDN110), you must bind the input edit routine with the IMS
control region nucleus.

© Copyright IBM Corp. 1974, 2017 145

Table 36. 2972/2980 input edit exit routine attributes (continued)

Attribute Description

IMS callable services To use IMS callable services with this routine, you must issue an initialization call
(DFSCSII0) to obtain the callable service token and a parameter list in which to build
the function-specific parameter list for the desired callable service. Use the ECB in
register 9 for the DFSCSII0 call. This exit is automatically linked to DFSCSI00 by IMS.
No additional linking is required to use IMS callable services.

Sample routine location No sample is provided.

Communicating with IMS

Familiarity with IMS terminal handling procedures and control blocks is required
for a user to write an Input edit routine to interface with IMS routines in the IMS
control region. Examination of these control blocks might be required, but
modification of IMS control blocks by a user-written routine seriously endangers
the integrity of the entire system.

Contents of registers on entry

On entry to the exit routine, all registers must be saved using the save area
provided. The registers contain the following:

Register Contents

0 Length of input buffer.

1 Address of the input area.

2 Length of input data. (The length of the area pointed to in register 1.)

7 Address of CTB.

9 Address of CLB.

11 Base of SCD.

13 Address of save area. The first three words must not be changed.

14 Return address to IMS.

15 Entry point of exit routine.

The format of the data contained in the buffer pointed to by register 1 at entry to
the exit routine is as follows:
1. 9 blanks
2. Terminal address
3. Entered text

If the entered text is from a 2980-4, the first byte of the entry is the teller
identification.

Contents of registers on exit

On return to IMS, all registers must be restored except for registers 2, 10, and 15,
which must contain the following:

Register Contents

2 Data length after edit (a zero length signifies a no-data segment).

146 Exit Routines

Register Contents

10 The inputting CNT address if a retransmission of the last successfully
outputted message is required.

15 One of the following return codes:

Return code Meaning

0 Process the entered segment.

4 Re-send the last message to the CNT in register 10.

Related reference:
“Routine binding restrictions” on page 9
“Initialization of IMS callable services (DFSCSII0)” on page 17

4701 Transaction Input Edit routine (DFS36010)
The 4701 Transaction Input Edit routine appends a blank and the eight-byte node
name to a transaction input message. The routine also allows MPP to set up the
appropriate change call for output.

This topic contains Product-sensitive Programming Interface information.

Subsections:
v “About this routine”
v “Communicating with IMS”

About this routine

This exit is provided as a sample routine that appends a blank and the eight-byte
node name to a transaction input message. If you have established a naming
convention that relates node names to LTERM names, the node name can be used
by the MPP to set up the appropriate change call for output.

The following table shows the attributes of the 4701 Transaction Input Edit routine.

Table 37. 4701 transaction input edit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFS36010.

Including the routine No special steps are required to include this routine.

IMS callable services To use IMS callable services with this routine, you must issue an initialization call
(DFSCSII0) to obtain the callable service token and a parameter list in which to build
the function-specific parameter list for the desired callable service. Use the ECB found
in register 9 for the DFSCSI00 call. This exit is automatically linked to DFSCSI00 by
IMS. No additional linking is required to use IMS callable services.

Sample routine location IMS.ADFSSMPL (member name DFS36010).

Communicating with IMS

IMS uses the entry and exit registers to communicate with the exit routine.

Contents of registers on entry

Chapter 3. Transaction Manager exit routines 147

On entry to the exit routine, all registers must be saved using the save area
provided. The registers contain the following:

Register Contents

1 Address of the input buffer

7 Address of CTB

9 Address of CLB

11 Address of SCD

13 Address of save area

15 Entry point of exit routine

Contents of registers on exit

On return to IMS, all registers must be restored except for register 15, which must
contain the following return code:

Return code Meaning

0 Normal processing

Related reference:
“Routine binding restrictions” on page 9
“Initialization of IMS callable services (DFSCSII0)” on page 17

Build Security Environment user exit (BSEX)
The Build Security Environment user exit provides users with a mechanism to tell
IMS whether or not to build the RACF® or equivalent security environment in an
IMS dependent region for an application that has received its input message from
neither OTMA nor an LU 6.2 device.

Use the Build Security Environment user exit to tell IMS⌂ whether to build the
RACF® or equivalent security environment in an IMS dependent region for an
application that has not received its input message from OTMA or from an LU 6.2
device.

You can also use this user exit to request that IMS bypass some part of the security
processing in the dependent region when one of the following events occurs for a
message that did not originate from an OTMA or LU6.2 device:
v CHNG call.
v AUTH call.
v Deferred conversational program switch on the local system (when the system

where the inputting terminal is active). Security authorization for the deferred
conversational program switch occurs only on the local system.

Subsections:
v “About this routine” on page 149
v “Communicating with IMS” on page 150

148 Exit Routines

|

About this routine

The Build Security Environment user exit receives control before the first or next
input message is given to an IMS application program and the input message is
from neither OTMA nor an LU 6.2 device.

This routine executes in key 7, non-cross-memory mode under the dependent
region TCB.

The following table shows the attributes of the Build Security Environment user
exit.

Table 38. Build security environment user exit attributes

Attribute Description

IMS environments DB/DC, DCCTL.
Note: Also supported in a DBCTL environment for non-message
driven BMPs.

Naming convention You can name this exit routine DFSBSEX0 and link it into a library
that is included in the STEPLIB concatenation.

Alternatively, you can define one or more exit routine modules with
the EXITDEF parameter of the USER_EXITS section of the
DFSDFxxx member of the IMS.PROCLIB data set. The routines are
called in the order they are listed in the parameter.

Binding
You must write this user exit using reentrant coding techniques. You
must link your user exit into the IMS.SDFSRESL library.

If you use IMS callable services, you must link DFSCSI00 with your
user exit. The following is an example of the bind JCL statements
needed:

INCLUDE LOAD(DFSBSEX0)
INCLUDE LOAD(DFSCSI00)
ENTRY DFSBSEX0
NAME DFSBSEX0(R)

Including the routine The module or modules must be included in an authorized library
in the JOBLIB, STEPLIB, or LINKLIST concatenation. No additional
steps are necessary to use a single exit routine that is named
DFSBSEX0. If you use multiple exit routines, specify
EXITDEF=(TYPE= BSEX,EXIT=(exit_names)) in the EXITDEF
parameter of the USER_EXITS section of the DFSDFxxx member of
the IMS.PROCLIB data set.

IMS callable services To use IMS callable services with this user exit, examine the value
of the SXPLATOK field in the “IMS standard user exit parameter
list” on page 5:

v If SXPLATOK is zero, you cannot use IMS callable services with
this user exit.

v If SXPLATOK is non-zero, the value is the callable services token
for this user exit. You can use the 256-byte work area addressed
by the SXPLAWRK field to call DFSCSIF0.

Sample routine
location

No sample exit routine is provided.

Chapter 3. Transaction Manager exit routines 149

|
|

|
|
|
|

|
|
|
|
|
|
|

Communicating with IMS

IMS uses the entry registers, the Standard User exit parameter list (SXPL), and the
Build Security Environment user exit (BSEX) parameter list to communicate with
this routine.

This routine uses register 15 to communicate with IMS.

Contents of registers on entry

The contents of the registers on entry are as follows:

Register Contents

Register Contents

1 Address of the IMS Standard User exit parameter list (SXPL).

13 Address of a single standard z/OS save area.

14 Return address to IMS.

15 Address of BSEX.

All other registers are undefined.

Contents of registers on exit

The contents of the registers on exit are as follows:

150 Exit Routines

|
|
|

Register Contents

15 Return code indicating requested action:

Return Code (decimal)
Meaning

00 IMS is not to build the security environment during the
scheduling phase of the transaction. The security environment
can be built later if needed for processing a CHNG call, AUTH
call, or a deferred conversational program switch.

04 IMS is to build the security environment during the scheduling
phase of the transaction. If the security environment is needed
later by a CHNG call, AUTH call, or a deferred conversational
program switch, this same security environment is used. If the
application program does not ever need the security
environment, the build of the security environment is
unnecessary.

08 Invoke the SAF interface (RACF, or equivalent product) on a
CHNG call, an AUTH call, and a deferred conversational
program switch, but bypass the dynamic creation of the
security environment. If the transaction is running in the local
system, and the user who entered the transaction is still signed
on, the security environment created by SIGNON is used.
Otherwise, the default security environment of the IMS control
region or the IMS dependent region is used for the SAF call.
Normally, the security environment of the dependent region is
used. However, if the dependent region is running with LSO=Y
or is a BMP with PARDLI=1 specified, then the security
environment of the Control Region is used.

12 Bypass invoking the SAF interface on a CHNG call, an AUTH
call, and a deferred conversational program switch.

16 Bypass invoking the SAF interface on a CHNG call, an AUTH
call, and a deferred conversational program switch, and bypass
the calls to the DFSCTRN0 and DFSCTSE0 user exits.

20 Invoke the SAF interface on a CHNG call, an AUTH call, and
deferred conversational program switch, and bypass the calls to
the DFSCTRN0 and DFSCTSE0 user exits.

Note:

1. For return codes 08, 12 and 16, IMS does not dynamically build the security
environment during transaction scheduling, or later for a CHNG call, an AUTH
call, or a deferred conversational program switch.

2. When return code 16 is used, the application gets a status code in the IOPCB of
blanks. For the AUTH call, the status field in the I/O area has the value 24
(X'18'): transaction authorization not active.

All other registers are to be restored by this routine.

“IMS standard user exit parameter list” on page 5

This user exit uses the Version 6 standard exit parameter list. The address of the
work area passed to this user exit in SXPLAWRK can be different each time that
this user exit is called.

Chapter 3. Transaction Manager exit routines 151

If your BSEX user exit can be called in an enhanced user exit environment,
additional user exit routines might be called after your routine. When your user
exit routine finds a transaction upon which to act, it can set SXPL_CALLNXTN in
the byte that SXPLCNXT points to. This tells IMS to not call additional exit
routines.

Build Security Environment user exit (BSEX) parameter list

The address of the BSEX parameter list (mapped by DFSBSEXP) on entry to this
routine is contained in field SXPLFSPL of the IMS Standard User Exit parameter
list. The following table describes the BSEX parameter list.

Table 39. BSEX parameter list (mapped by DFSBSEX0)

Offset Field length Description

X'00' 4 bytes Transaction scheduling class.

X'04' 8 bytes Transaction code of the input transaction.

X'0C' 8 bytes PSB name.

X'14' 8 bytes Program name.

X'1C' 8 bytes User ID. Specifies one of the following:

v Actual user ID of the user who entered the transaction.

v LTERM name of the terminal from which the transaction
was entered.

v Blanks.

This is the user ID for which the security environment will
be built if requested by this exit routine.

X'24' 8 bytes Group name.

X'2C' 32 bytes Application parameter (APARM= on dependent region
JCL).

X'4C' 64 bytes First 64 bytes of the input message or zeros if the input
transaction is conversational.

X'8C' 8 bytes User ID of the dependent region address space.

X'94' 1 byte Indicator for contents of user ID field:

U User ID

L LTERM

P PSB name

O Other name

X'95' 3 bytes Reserved.

Related reference:
“Routine binding restrictions” on page 9
“Resource Access Security user exit (RASE)” on page 431
“IMS callable services” on page 13
“IMS standard user exit parameter list” on page 5

152 Exit Routines

|
|
|
|
|

|

|
|
|

|

|

Conversational Abnormal Termination exit routine (DFSCONE0)
The Conversational Abnormal Termination exit routine (DFSCONE0) provides an
application program to clean up, if required, when a conversation is prematurely
terminated.

This topic contains Product-sensitive Programming Interface information.

A conversational process terminates abnormally when:
v A conversation is ended by an /EXIT or /START command.
v A conversational application program terminates abnormally during a

conversation.
v A conversational program fails to insert a message into a response PCB or into

an alternate PCB that represents another conversational program.
v A non-correctable IMS conversational error occurs.

If used, the Conversational Abnormal Termination exit routine can be scheduled
twice: once when an /EXIT or /START command is issued, and again either when
an application program inserts a SPA, or when the conversational response is
received from a remote system.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 154

About this routine

You can provide an application program to clean up, if required, when a
conversation is prematurely terminated. On entry, this program's I/O PCB contains
the name of the terminal that had its conversation abended. An exit routine to
schedule the application program is required. IMS provides a sample exit routine
named DFSCONE0, or you can write your own. To use the IMS-provided routine,
you must:
v Define a transaction code named DFSCONE.
v Write a nonconversational application program to be activated by DFSCONE.

When the sample exit routine (DFSCONE0) is finished, the IMS conversational
processor determines whether the transaction DFSCONE has been defined. If
DFSCONE is not defined, the conversation terminates and the SPA is discarded. If
DFSCONE is defined, the conversational processor schedules the transaction
DFSCONE with the SPA of the terminated conversation as a nonconversational
single-segment message.

As an alternative, you can provide a more tailored exit routine. For example, you
might want to interrogate the conversation control block (CCB) to determine the
transaction that was in process when the conversation terminated, or you might
want to inspect the SPA to find out what had occurred before the conversation
terminated. No DL/I calls can be issued by your exit routine. A message
processing program should be scheduled to handle database inquiries and updates
or extensive analysis of the conversation. The application program can send
messages to the terminal associated with the terminated conversation.

To cause your application program to be scheduled, your exit routine must:

Chapter 3. Transaction Manager exit routines 153

v Place the 8-byte name of the nonconversational transaction into the SPA (offset 6
bytes into the SPA).

v Set the desired length of the SPA.
v Insert information to be communicated to the scheduled program into the SPA.
v Set a return code of X'10' in register 15.

The transaction code inserted into the SPA must be for a valid, nonconversational
transaction. Otherwise, no transaction will be scheduled, the SPA is discarded, and
the response message (if available) is sent to the input terminal.

If you do not provide a DFSCONE0 exit routine, IMS processing is the same as if
an exit routine existed and it returned a return code of 0. The default IMS action is
as follows:
1. Terminate the conversation if it is still active.
2. Discard the SPA.
3. Discard the response message if available.

Attributes of the Routine

The following table shows the attributes for the Conversational Abnormal
Termination exit routine.

Table 40. Conversational abnormal termination exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSCONE0.

Binding You must write this routine using reentrant coding techniques. You
must link your routine into the IMS.SDFSRESL library.

If you choose to use IMS callable services, you must link DFSCSI00
with your routine. The following is an example of the bind JCL
statements needed:

INCLUDE LOAD(DFSCONE0)
INCLUDE LOAD(DFSCSI00)
ENTRY DFSCONE0
NAME DFSCONE0(R)

Including the routine No special steps are required to include this routine. To use the
sample user exit, you need to define the transaction DFSCONE.

IMS callable services
To use IMS callable services with this routine, you must issue an
initialization call (DFSCSII0) to obtain the callable service token and
a parameter list in which to build the function specific parameter
list for the desired callable service. Use the ECB in Register 9 for
IMS callable services.

Sample routine
location

IMS.ADFSSMPL (member name DFSCONE0).

Communicating with IMS

IMS uses the entry and exit registers to communicate with the exit routine.

Contents of registers on entry

154 Exit Routines

Register 0 contains a flag that identifies the reason why the conversation was
terminated.

Byte Contents

0
Flags Meaning

X'01' Request for termination that is no longer active.

X'02' The /EXIT or /START command was issued by a different terminal
than the one in conversation; this causes the conversation to be
terminated. If this flag is not on, the request for termination of the
conversation is from the terminal in conversation.

X'04' The input CNT could not be found. The master terminal of the
current system is set as the input terminal.

X'08' The transaction was discarded by the processing of the /EXIT
command.

1
Return Code

Meaning

X'01' Conversation was terminated previously by an /EXIT, /START, or
IMS cold start. The conversation transaction processed successfully,
and IMS is sending (queuing) the response message to the input
terminal.

2 Reserved

Chapter 3. Transaction Manager exit routines 155

Byte Contents

3 A flag byte that indicates the calling reason:

Flag Reason

X'00' Conversational application program abended.

X'04' Reserved.

X'08' /EXIT command for input or other (remote) terminal processed.

X'0C' /START LINE or NODE command processed for terminal in
conversation. The /START LINE command is valid only if no PTERMs
are specified.

X'10' SPA received for an inactive conversation.

X'14' Inconsistent conversational definitions found in a multisystem
conversation. Execute the /MSVERIFY command to show the
inconsistencies.

X'18' /EXIT command terminated the conversation and the latest SPA is
not currently available. (It is queued for processing in this system, or
it is in the MSC network.) The SPA passed to the exit routine is either
the one from the previous step of the conversation, or a short SPA
with just the header information.

The exit routine is called with vector 10 when the current step in
progress completes; at this time the latest (and last) SPA for the
conversation is passed to the exit routine. This can not occur if an
IMS restart results in the loss of the SPA in this or another IMS
system.

X'1C' The explanation for the /START LINE or NODE command is the same
as for Vector 18.

X'20' A conversational application program terminated without inserting to
a response PCB or an alternate PCB that represents another
conversational program.

X'28' /EXIT command for input or other (remote) ISC terminal processed.

X'30' The link receive entry point of the TM and MSC Message Routing
and Control user exit routine (DFSMSCE0) canceled the input
transaction.

The contents of the remaining registers are as follows:

Register Contents

1 Address of the SPA.

2 Pointer to a parameter list that contains SPA processing options. See "SPA
Options Parameter List" for a list of the parameters.

6 Address of the CCB for the terminal in conversation, if the conversation is
still active. Zero if the conversation is already terminated.

7 If zero, the conversation is already terminated. If positive, the register
contains the address of the CTB for the terminal in conversation (if the
conversation is active). If negative, the register contains the complemented
address of the SPQB for the signed-off user, which can be the result of the
exit being called because of an /EXIT CONV USER command.

09 Address of the ECB.

11 Address of the SCD.

156 Exit Routines

Register Contents

13 Address of save area. The exit routine must not change the first three words.

14 Return address to IMS.

15 Entry point of DFSCONE0.

The following table shows the SPA options parameter list. This parameter list is
mapped in the sample exit routine.

Table 41. SPA options parameter list

Field Description

CONESPAH Maximum SPA length

CONESPAL Current SPA length

CONEFLG1 Flag 1. This flag can be set as follows:

CONE1TDO (X'80')
If this flag is set, register 1 points to a SPA buffer that
contains the SPA at the maximum length. If this flag is not
set, register 1 points to a SPA that is the length of the SPA
for the current transaction. Truncated data option is set for
the SPA parameter in the TRANSACT macro.

CONE1SQ (X'40')
shared queues are active.

Contents of registers on exit

On return to IMS, all registers must be restored except for register 15, which must
contain one of the following return codes:

Reason code Meaning

X'00' Exit has completed all cleanup required; no further action is necessary. IMS
does the following:

v Terminates the conversation (if still active).

v Discards the SPA.

v Discards the response message (if available).

X'04' The conversation is ended. The name field is used as a transaction code for a
new nonconversational transaction. The remaining data in the SPA is used as
input data for a new transaction.

IMS does the following:

v Terminates the conversation (if still active).

v Attempts to queue the SPA to the indicated transaction and schedule it.

v Discards the response message (if available).

X'08' Exit has completed all cleanup required. No further action is necessary.

IMS does the following:

v Terminates the conversation (if still active).

v Discards the SPA.

v Sends the response message to the input terminal (if available).

Chapter 3. Transaction Manager exit routines 157

Reason code Meaning

X'0C' The conversation is ended. The name field is used as a transaction code for a
new non-conversational transaction. The remaining data in the SPA is used
as input for a new transaction.

IMS does the following:

v Terminates the conversation (if still active).

v Attempts to queue the SPA to the indicated transaction and schedule it.

v Sends the response message to the input terminal (if available).

X'10' The conversation is ended. The name field is used as a transaction code for a
new non-conversational transaction. The remaining data in the SPA is used
as input data for a new transaction.

IMS does the following:

v Terminates the conversation (if still active).

v Attempts to queue the SPA to the indicated transaction and schedule it.

v Discards the response message (if available).

Notes for Contents of Registers on Exit:

1. If the SPA cannot be queued to the transaction because the transaction is not
defined or defined incorrectly, the response message is still discarded.

2. On entry, if bit 7 in register 0, byte 1, is set on (R0='XX01XXXX'), the response
message is available.

3. If the SPA cannot be queued to the transaction because the transaction is not
defined or defined incorrectly, the response message is not discarded but is sent
to the input terminal. On entry, if bit 7 in register 0, byte 1, is set on
(R0='XX01XXXX'), the response message is available.

Related reference:
“Initialization of IMS callable services (DFSCSII0)” on page 17

Destination Creation exit routine (DFSINSX0)
The Destination Creation exit routine creates an LTERM or a transaction when a
destination for a message does not exist.

This topic contains Product-sensitive Programming Interface information.

Subsections:
v “About this routine”
v “Restrictions” on page 159
v “Communicating with IMS” on page 160

About this routine

IMS will call the Destination Creation exit routine to create an LTERM or a
transaction when a destination for a message does not exist. DFSINSX0 tells IMS
which type of destination to create: LTERMs, transactions for queuing, or
transactions for scheduling. LTERM is the default destination.

The following table illustrates the types of destinations that are enabled under
specific conditions that are specified for your environment in the IMS PROCLIB
members:

158 Exit Routines

Table 42. Environment specifications and destination types created by DFSINSX0

Environment specification: Destination type:

ETO=Y LTERM

SHAREDQ=name Transaction for queuing

MODBLKS=DYN Transaction for scheduling

Attributes of the routine

The following table shows the attributes of the Destination Creation exit routine.

Table 43. Destination Creation exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSINSX0.

Binding This exit routine must be reentrant.

The exit routine can be called in cross-memory mode.

Including the routine If you want IMS to call the Destination Creation exit routine, include it in an
authorized library in the JOBLIB, STEPLIB, or LINKLIST library concatenated in front
of the IMS.SDFSRESL. If the exit routine is included, IMS automatically loads it.

IMS callable services
To use IMS callable services with this routine, you must do the following:

v Issue an initialization call (DFSCSII0) to obtain the callable service token and a
parameter list in which to build the function-specific parameter list for the desired
callable service.

v Use the ECB found at offset 0 of the Destination Creation exit routine parameter list
for the DFSCSII0 call.

v Link DFSCSI00 with your user exit.

Sample routine location IMS.ADFSSMPL (member name DFSINSX0).

Restrictions

The following restrictions apply to the use of the Destination Creation exit routine
(DFSINSX0):
v DFSINSX0 is not called during XRF tracking on an XRF alternate system.
v When DFSINSX0 is used to create LTERMs, then DFSINSX0 and the Signon exit

routine (DFSSGNX0) are corequisite. If you provide one exit routine to supply
queue data for additional LTERMs, you must provide the other exit routine also.
Both exit routines create the user control block structure and related LTERMs
(including multiple LTERMs for a user): DFSINSX0 using an LTERM name and
DFSSGNX0 using the user ID. These exit routines must contain the same logic so
that the user structure is identical, regardless of which exit routine created it.
However, DFSINSX0 cannot return the address of a user descriptor. The address
of a user descriptor can only be provided using the Signon exit routine
(DFSSGNX0).

v When extended terminal option is inactive (ETO=N), you cannot write
DFSINSX0 to create dynamic LTERMs. When ETO=N, you can write DFSINSX0
only to create dynamic transactions.

v When dynamic resource definition is disabled (MODBLKS=OLC) in the
DFSCGxxx or the DFSDFxxx member of the IMS.PROCLIB members, you can

Chapter 3. Transaction Manager exit routines 159

write DFSINSX0 to create transactions that can only be used for queuing
messages on the shared queues. You cannot write DFSINSX0 to create
transactions that can be scheduled when dynamic resource definition is disabled.

v When shared queues are not active (the SHAREDQ= parameter is not specified
on the IMS Procedure), you cannot use DFSINSX0 to supply destinations for
queuing transactions.

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of the “IMS standard user exit parameter list” on page 5 (Version 1)

13 Save area address

14 Return address to IMS

15 Entry point address of exit routine

The following table shows the Destination Creation exit routine parameters. The
address of this parameter list is in the standard exit parameter list field SXPLFSPL.

This parameter list is mapped by DSECT INSXMAIN, which can be found in the
DFSINSXP macro.

Table 44. Destination creation exit parameter list

Offset Length Description

+0 4 ECB address.

+4 4 SCD address.

+8 4 User Table address.

+12 4 Address of a buffer for use by the exit routine to
return user ID and queue data. The mapping of the
buffer is DSECT USEQDATA in USEQDATA COPY.
For additional details on the content and format,
refer to the prolog in the sample routine (DFSINSX0
in IMS.SDFSSMPL).

The value is zero for the following conditions:

v An XRF alternate system.

v The destination must be a transaction and there is
an indicator at offset +20.

160 Exit Routines

Table 44. Destination creation exit parameter list (continued)

Offset Length Description

+16 4 Address of a buffer for use by the exit routine to
return Autologon Override parameters. The mapping
of the buffer is DSECT ATLGPARM in DFSINSXP
macro. For additional details on the content and
format, refer to the prolog in the sample routine
(DFSINSX0 in IMS.SDFSSMPL).

The value is zero for the following conditions:

v An XRF alternate system.

v The destination must be a transaction and there is
an indicator at offset +20.

+20 4 Address of a buffer containing destination name, and
other environment flags, including indicators for the
following:

v Dynamic resource definition, ETO, or shared
queues is enabled.

v LTERMs or transaction control blocks can be
created.

v The exit routine output is an LTERM or a
transaction control block.

The mapping of the buffer is DSECT INSXDATA in
DFSINSXP macro.

+24 4 Address of a buffer for use by the exit routine. The
mapping of the buffer is DSECT INSXTRNQ in
DFSINSXP macro. The buffer returns information that
is used to create a transaction control block if the
destination is a transaction, including transaction
attributes. The value is zero if the destination is an
LTERM.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for
register 15, which contains one of the following return codes. If an application
INSERT call forced the LTERM creation, IMS ignores the return code.

Return code Meaning

0 IMS creates the destination.

nonzero IMS rejects the destination creation attempt for alternate PCBs. If an
application INSERT call caused IMS to attempt the destination creation, the
nonzero return code is returned to the application as an 'A1' status code. I/O
PCBs force LTERM creation and ignore the return code.

In addition to the return codes, the exit routine can indicate whether to create an
LTERM (set INSXTYPE equal to INSXCNT in the INSXDATA DSECT) or a
transaction (set INSXTYPE equal to INSXSMB in the INSXDATA DSECT).
Related concepts:

Remote LTERMs (Communications and Connections)

MSC descriptors (System Definition)
Related reference:

Chapter 3. Transaction Manager exit routines 161

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_msc_ovrvw_011.htm#ims_msc_ovrvw_011
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_ie0i2tla1041768.htm#ie0i2tla1041768

“Routine binding restrictions” on page 9
“Initialization of IMS callable services (DFSCSII0)” on page 17
“Signon exit routine (DFSSGNX0)” on page 283
“IMS standard user exit parameter list” on page 5

DFSINSX0 when extended terminal option is active
When ETO=Y, you can write DFSINSX0 to supply queue data that will create local
or remote LTERMS, when the destination does not exist.

You can specify that the extended terminal option is active by stating that ETO=Y
in the IMS or DCC startup procedure.

Based on the selected user descriptor when ETO=Y, DFSINSX0 can perform the
following tasks:
v If the selected user descriptor is the DFSUSER descriptor,

– Add additional LTERMs to the structure and supply queue data for those
additional LTERMs, based on supplied autologon parameters such as LU
name, user ID, logon descriptor name, and mode table name.

– Override queue data and autologon parameters.
– Override the user ID derived from the user structure.
– Provide the correct user ID for the user receiving messages.
– Use the correct user ID to create the name of the user control block structure,

including LTERM control blocks.
v If the selected user descriptor is a non-DFSUSER descriptor,

– Override queue data and autologon parameters for only one LTERM that is
derived from the non-DFSUSER descriptor.

– Cannot override the user ID.

If no user ID is supplied and extended terminal option is active, the name of the
user structure is the name of the target LTERM. If no user control block structure
exists, IMS uses the same name for both the target LTERM and the selected user
descriptor.

IMS creates LTERMs from information in the selected user descriptor, from
information that the Destination Creation exit routine supplies, or, in the case of
remote LTERMS, IMS will use Multiple Systems Coupling (MSC) descriptors. If an
LTERM is not available (that is, it is already assigned to another user), the user
control block is created without the LTERM. LTERMs can be added later using the
/ASSIGN command.

Related reading:

v See IMS Version 13 Communications and Connections for more information
regarding ETO.

v The Destination Creation exit routine creates destinations based on
environmental specifications. For more information on these specifications, see
the prolog of sample DFSINSX0.

Providing queue data and autologon parameters

Depending on the user descriptor selected, the Destination Creation exit routine
can provide queue data (LTERM data) and autologon parameters. If the exit

162 Exit Routines

routine returns data that it is not allowed to return (as discussed in the following
cases), IMS rejects the LTERM creation attempt.

There are two cases which describe what data the Destination Creation exit routine
can supply. The two cases are based on whether a DFSUSER (Case 1) or a
non-DFSUSER (Case 2) descriptor is selected. (For this exit routine, non-DFSUSER
descriptors are descriptors based on the target LTERM name.) Each case is
discussed in the sections that follow.

If the Destination Creation exit routine does not provide data to override the
existing queue data, IMS proceeds as if you did not include the Destination
Creation exit routine; IMS uses the information in the selected user descriptor to
create the LTERMs.

Case 1

If the DFSUSER descriptor is selected, the Destination Creation exit routine:
v Can supply any of the fields defined in the interface (including LTERM names).

The exit routine can change LTERM data, but not the actual name of the first
LTERM provided.

v Can provide data for additional LTERMs.
v Can provide the correct user ID to override the user ID derived from the target

LTERM.
v Can override autologon parameters. If the user structure already exists, the

user's existing autologon parameters are not changed.

Case 2

If a non-DFSUSER descriptor is selected, the Destination Creation exit routine can
only specify queue data to override data derived from the user descriptor. The exit
routine:
v Can supply queue data (except LTERM names) to override data that the

descriptor provides,
v Can override autologon parameters. If the user structure already exists, the

user's existing autologon parameters are not changed.
v Cannot provide data for additional LTERMs or override the user ID.

In both cases, IMS verifies the additional LTERMs that are specified against the
LTERMs that already exist in the system. IMS automatically allocates the user to
the indicated node and attempts to establish a session with that node. If an LTERM
that is specified as an additional LTERM already exists in the system, IMS assumes
that this LTERM has been assigned to a different user, and it is not made part of
the user structure of the user for which messages are queued.

Identifying which user descriptor IMS selected

If the user control block structure already exists for the user for whom messages
need queuing but for which the target LTERM is missing, IMS selects the user
descriptor that was used to build the user structure and calls the exit routine. If
IMS locates the target LTERM name, it selects that user descriptor and calls
DFSINSX0.

If IMS does not find a descriptor that contains the target LTERM name, it selects
DFSUSER to create the user structure. IMS renames the descriptor, giving it the

Chapter 3. Transaction Manager exit routines 163

name of the target LTERM, and equates the user ID to this name. IMS then calls
DFSINSX0, which can supply the correct user ID, overriding the one derived from
the target LTERM.

If no user descriptor can be found, including DFSUSER, IMS rejects the LTERM
creation request.

Remote LTERM creation for Multiple Systems Coupling

If Multiple Systems Coupling (MSC) is being used, the exit routine can request that
a remote LTERM (RCNT) be built instead of a local ETO LTERM (CNT) if the
destination of the message is an LTERM in a remote system. The exit routine
supplies the associated MSC MSNAME and the remote LTERM name in field
INSXMSN in the INSXDATA input parameter list. This name is a link name
(MSNAME) rather than a descriptor name.

The MSNAME and remote LTERM input creates the RCNT, similar to if an MSC
descriptor had been used. Do not change any other parameter values in the
INSXDATA input parameter list. The RCNT is assigned to the link name (LNB)
representing the MSNAME.

Related Reading: For more information on MSC descriptors, see IMS Version 13
System Definition.

DFSINSX0 when shared queues are active
You can use the Destination Creation exit routine (DFSINSX0), formerly called the
Output Creation exit routine, to create a transaction that queues messages in the
shared message queues.

Before enabling dynamic resource definition or shared queues, evaluate any
existing DFSINSX0 exit routines. The DFSINSX0 exit might need to be changed so
that it checks whether LTERM creation is allowed before it accesses the
USEQDATA parameter list that is related to LTERM processing. If LTERM creation
is not allowed, the USEQDATA buffer address (INSXAUSQ) is zero.

If you specify that shared queues are active (SHAREDQ=name) in the IMS
PROCLIB members, you can create a transaction that queues messages in the
shared message queues and can be processed by another IMS in the IMSplex. The
transaction cannot be scheduled on the local IMS system unless DRD is also
enabled.

When the exit routine indicates that the destination is a transaction, IMS creates a
transaction control block. DFSINSX0 returns information to IMS about the
transaction, including whether the transaction is in conversational or response
mode, and the SPA size if applicable. The transaction control block is not deleted
until IMS is restarted. IMS can use the same transaction control block if it
encounters additional instances of the undefined transaction input message.

The Destination Creation exit routine creates destinations based on environmental
specifications. For more information about these specifications, see the prolog of
sample DFSINSX0.
Related information:

DFS3824 (Messages and Codes)

164 Exit Routines

|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.msgs/msgs/dfs3824.htm#dfs3824

DFSINSX0 when dynamic resource definition is enabled
If dynamic resource definition is enabled, DFSINSX0 can create transactions that
can be used for queuing messages and it can create transactions that can be
scheduled. When DFSINSX0 creates transactions that can be scheduled, DFSINSX0
also has the ability to create programs for those transactions.

Before enabling dynamic resource definition or shared queues, evaluate any
existing DFSINSX0 exit routines. The DFSINSX0 exit might need to be changed so
that it checks whether LTERM creation is allowed before it accesses the
USEQDATA parameter list that is related to LTERM processing. If LTERM creation
is not allowed, the USEQDATA buffer address (INSXAUSQ) is zero.

If you specify that dynamic resource definition (DRD) is enabled
(MODBLKS=DYN) in the IMS PROCLIB members, DFSINSX0 can create a
transaction and an application program for scheduling on the local IMS system.

If inconsistent or invalid transaction attributes are returned, the new transaction is
not created, and the message for that transaction code is rejected as an invalid
destination. Any transactions or application programs created by DFSINSX0 inherit
the global TRANSTAT parameter, as specified in the DFSDFxxx IMS.PROCLIB
member.

Transactions created for scheduling
Transactions that are created for scheduling can be enqueued, scheduled,
and executed. The DFSINSX0 exit routine can set attributes for the
transaction and application program in the appropriate fields in the
INSXTRNQ parameter list DSECT.

Transactions created only for queuing
Transactions that are created only for queuing by the DFSINSX0 exit
routine have a status of DYN. The purpose of a queue-only transaction is
to queue a message to the shared queues. Queue-only transactions are not
recovered at restart unless they are stopped or a checkpoint has not yet
occurred since creation of the transaction.

Before DFSINSX0 is called, you do not have to define the application program that
is scheduled to process the transaction. If the application program is not already
defined, DFSINSX0 can create the program with specific attributes. The DFSINSX0
exit routine can set the same attributes as those that are set by the CREATE TRAN
command.

DFSINSX0 does not require Resource Manager (RM) to dynamically create a
transaction. However, if RM is using a resource structure, and the transaction is
created for queuing or scheduling in any IMS system, the new transaction name is
registered with RM. This prevents another IMS system from creating an LTERM
with the same name.

The Destination Creation exit routine (DFSINSX0) exit might fail with a completion
code of 1D7 and the DFS3824 message if the default descriptor is being imported
from the IMS change list in the IMSRSC repository or was not successfully
imported from the change list. This error can occur if the default descriptor is not
the IMS system-defined default descriptor.

Subsections:
v “Creating transactions across an IMSplex” on page 166
v “Creating default or duplicate transactions” on page 167

Chapter 3. Transaction Manager exit routines 165

|
|
|
|
|

|
|
|
|
|

v “Exporting resource definitions to the IMSRSC repository” on page 168

Creating transactions across an IMSplex

DFSINSX0 exit routine can create transactions on other IMS systems in an IMSplex
in specific environments. The following table lists these environments, and the
options available to DFSINSX0 in these environments.

Table 45. Environments in which the DFSINSX0 exit routine can create transactions across
an IMSplex

Environment
Options that the DFSINSX0 exit routine can use to create
transactions

Non-shared queues Dynamic transactions that the DFSINSX0 exit routine creates
are always for scheduling. Bit TRNQ_FC_SCHD is ignored;
however, if you set this bit, your exit does not need to be
recoded if you move to a shared queues environment.

Shared queues, without the
Structured Call Interface
(SCI)

Dynamic transactions that the DFSINSX0 exit routine creates
can be either for queuing (TRNQ_FC_SCHD = 0) or for
scheduling (TRNQ_FC_SCHD = 1). The transaction is created
on the local IMS system only (the system in which the
DFSINSX0 exit routine is called). The dynamic transaction
definition is not propagated to other IMS systems in the
IMSplex.

166 Exit Routines

Table 45. Environments in which the DFSINSX0 exit routine can create transactions across
an IMSplex (continued)

Environment
Options that the DFSINSX0 exit routine can use to create
transactions

Shared queues with SCI Dynamic transactions that the DFSINSX0 exit routine creates
can be either for queuing (TRNQ_FC_SCHD = 0) or for
scheduling (TRNQ_FC_SCHD = 1). The transaction can be
created for the following:

Queuing on the local IMS only
If TRNQ_FC_SCHD is set to 0, the transaction is
created for queuing on the local IMS system only.
Field TRNQ_IMS is ignored. This is the default if
your exit does not modify bit TRNQ_FC_SCHD.

Scheduling on the local IMS only
If TRNQ_FC_SCHD is set to 1 and no name is set in
field TRNQ_IMS, the transaction is created for
scheduling on the local IMS. It is not created on any
other IMS in the IMSplex.

Scheduling on one local IMS and one additional IMS,
while queuing on all other IMS systems

If TRNQ_FC_SCHD is set to 1 and the name
(IMSID) of an IMS is specified in the TRNQ_IMS
field, a transaction is created for scheduling on both
the local IMS and on the IMS whose IMSID is
specified in the TRNQ_IMS field. If the IMSID
specified in the TRNQ_IMS field refers to the local
IMS, the transaction is created for scheduling on the
local IMS only. In both cases, the transaction is
created for queuing on the other active IMS systems
in the IMSplex. If the transaction is already created
for scheduling on one or more of the other IMS
systems in the IMSplex, it will not be changed to a
queuing-only transaction. The transaction will still
be able to be scheduled on those IMS systems.

Scheduling on all IMS systems in the IMSplex
If TRNQ_FC_SCHD is set to 1 with an asterisk (*) in
field TRNQ_IMS, the transaction is created for
scheduling on all IMS systems that are currently
active in the IMSplex.

Creating default or duplicate transactions

If you want the DFSINSX0 exit routine to create a transaction using the current set
of system defaults (that is, as specified by the current transaction default
descriptor), do not set any of the definition bits in the INSXTRNQ DSECT. If you
want the DFSINSX0 exit routine to create a transaction that matches an existing
transaction or descriptor, specify the name of the transaction or descriptor in the
TRNQ_TRAND field of the INSXTRNQ DSECT. You may need to specify the
program name if the descriptor does not have a program name defined.

If you create a transaction or program but specify an invalid attribute combination
in the INSXTRNQ parameter list, you will receive message DFS3424I to help
diagnose the problem. Message DFS3424I contains the resource name, return code,
reason code, and completion code, if applicable.

Chapter 3. Transaction Manager exit routines 167

Exporting resource definitions to the IMSRSC repository

The transaction and program resources that are created by DFSINSX0 can be
defined to be exported by setting TRNQ_FC_EXPORT=1 on the exit parameter list.
If IMS is defined to use the repository, the resources created by DFSINSX0 are
exported to the repository when one of the following conditions is satisfied:
v The names of the resources are specified with the NAME keyword on the

EXPORT TARGET(REPO) command
v An EXPORT DEFN TARGET(REPO) OPTION(CHANGESONLY) command is

issued after DFSINSX0 creates the resources
v The resources are created in-between the range specified by the STARTTIME and

ENDTIME keywords on the EXPORT DEFN TARGET(REPO) command

Related reading:

v The Destination Creation exit routine creates destinations based on
environmental specifications. For more information about these specifications,
see the prolog of the sample DFSINSX0 module in IMS.ADFSSMPL.

Related concepts:

Monitoring transaction-level statistics (System Administration)

Dynamic resource definition (System Definition)
Related reference:

EXPORT command (Commands)

CREATE TRAN command (Commands)

DFSDFxxx member of the IMS PROCLIB data set (System Definition)

Fast Path Input Edit/Routing exit routine (DBFHAGU0)
The Fast Path Input Edit/Routing exit routine (DBFHAGU0) provides the
minimum level of support required for IMS to use Fast Path's Expedited Message
Handler (EMH).

IMS systems with a very high transaction rate use EMH. EMH is a performance
option that speeds up message processing by imposing restrictions on message
lengths and segmentation. To use EMH, an edit/routing routine must receive
control from the Input exit routine and determine the eligibility of an incoming
message for Fast Path processing. The sample exit provides the minimum level of
support required to use IMS Fast Path.

Subsections:
v “About this routine”
v “Using the routine with shared EMH queues” on page 169
v “Restrictions” on page 170
v “Communicating with IMS” on page 170

About this routine

The Fast Path EMH buffer is dynamically allocated and might not be present at
entry. Therefore, DBFHAGU0 can receive the message in an EMH buffer or queue
buffer, depending on the terminal type. The exit routine is not permitted to move
the data out of the input location. If the message is in a queue buffer at entry, the

168 Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_monit_translvlstats.htm#ims_monit_translvlstats
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dynamic_system_definition.htm#dynamic_system_definition
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_export.htm#ims_cr1export
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_createtran.htm#ims_cr1createtran
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib

Fast Path system moves it to an EMH buffer. In editing the input message, the
application should not increase the length beyond a length that fits in any message
buffer.

If an EMH buffer cannot be obtained, the following message is sent to the input
terminal:
DFS3971 Unable to process Fast Path due to EMH buffer shortage

The following table shows the attributes for the Fast Path Input Edit/Routing exit
routine.

Table 46. Fast Path input edit/routing exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL

Naming convention You must name this exit routine DBFHAGU0.

Binding This exit routine must be reentrant if APPC/IMS support is active.

Including the routine DBFHAGU0 is a separately linked module in the IMS.SDFSRESL.
IMS automatically loads it during Fast Path initialization. If IMS
cannot find DBFHAGU0, IMS terminates abnormally with
ABENDU1011 and displays the following message:

DFS2730A UNABLE TO LOAD FP INPUT ROUTING EXIT: DBFHAGU0

IMS callable services
To use IMS callable services with this routine, you must issue an
initialization call (DFSCSII0) to obtain the callable service token and
a parameter list in which to build the function-specific parameter
list for the desired callable service. Use the ECB found at offset X'0'
of the Fast Path Input Edit/Routing Exit parameter list for the
DFSCSII0 call. This exit routine is automatically linked to DFSCSI00
by IMS. No additional linking is required to use callable services.

Sample routine
location

IMS.SDFSSMPL (member name DBFHAGU0).

Expanding the routine

A transaction that is not Fast Path-exclusive can be directed to EMH processing by
an expanded edit/routing routine, based on some condition or conditions beyond
transaction code. For example, certain transactions can be routed to EMH if they
originate at specified physical or logical terminals or if they reference the content
of some portion of the message (for example, account number). The user-supplied
DBFHAGU0 would have to develop appropriate routing codes based on such
conditions.

Using the routine with shared EMH queues

If your installation uses shared EMH queues, DBFHAGU0 can place messages on
the shared-queue structure for processing by any sharing IMS subsystem in the
sysplex.

You can modify the exit routine to specify an application name for the application
program used to process Fast Path input messages. If you do not specify an
application name, Fast Path locates the transaction or routing code in the local IMS
subsystem. Fast Path rejects the input message if it cannot locate the transaction or
routing code.

Chapter 3. Transaction Manager exit routines 169

You can also specify a sysplex processing code that determines how a message
transaction or routing code is processed. The following sysplex routing options are
available:

Local First
Specifies that the message is processed on the local subsystem if an IFP
region is available. If no IFP region is available, the message is passed to
the EMH queue structure. A program name specified in the exit routine for
message processing overrides the transaction or routing code. Local First is
the default.

Local Only
Specifies that Fast Path does not place the message on the EMH queue
structure. Fast Path input messages are processed on the local IMS
subsystem.

Global Only
Specifies that Fast Path places the input message on the EMH queue
structure. The application program that processes the input message must
be active on all sharing IMS subsystems. If the application is not active,
Fast Path discards the input message and issues an error message. A
program name specified in the exit routine for message processing
overrides the transaction or routing code.

Recommendation: To avoid implicit priority for Local Only messages over Local
First messages, process Local First and Local Only messages under separate
program names. IMS places Local Only messages on the balancing group (BALG)
queue and Local First messages on the shared EMH queue. When an IFP region
becomes available, it checks the BALG queue for messages to process before it
checks the shared EMH queue. This sequence gives implicit priority to Local Only
messages that are processed in the same program.

Restrictions

You must rewrite your Fast Path Input Edit/Routing exit routine for this release of
IMS, based on the DBFHAGU0 sample (located in the IMS.SDFSSMPL library) and
the guidelines in this .

The exit routine cannot move the data out of the input location.

The exit routine must not increase the length of the message beyond a length that
fits in any message buffer.

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of Standard Exit Parameter List.

13 Save area address.

170 Exit Routines

Register Contents

14 Return address to IMS.

15 Entry point address of exit routine.

This exit routine uses the Version 1 standard exit parameter list.

The following table lists the Fast Path exit parameters. The address of this
parameter list is in the standard exit parameter list field SXPLFSPL.

Table 47. Fast Path input edit/routing exit parameter list

Offset
(decimal)

Length
(decimal) Description

+0 4 ECB address.

+4 4 SCD address.

+8 4 Input message.

+12 4 Address of routing code table entry if this is a Fast Path
exclusive transaction, or zero.

+16 4 Eight-character work area to supply a routing code name.

+20 4 Address of ESCD.

+24 4 The length of the EMH Buffer for this application.

+28 4 Address of the DBFHAGU0 extended parameter list. This
parameter list exists if shared EMH queues are used.
Otherwise, the extended parameter list is 0.

The following table lists the Extended Parameter list parameters.

Table 48. DBFHAGU0 extended parameter list

Offset
(decimal)

Length
(decimal)

Description

+0 4 Address of the 8-byte PSB name

+4 4 Sysplex processing code (decimal)

0 Local First (Default)

4 Local Only

8 Global Only

+8 4 Address of the Local PSB name table

+12 4 Address of the Global PSB name table

+16 4 System definition code (decimal)

0 Transaction Defined in local system

4 Transaction not defined in local system

+20 4 Input message code (decimal)

0 Fast Path exclusive transaction

4 Fast Path potential transaction

Note:

1. The sample DSECT for the local program name table and the global program name table
can be found in the DBFPGNT macro.

Chapter 3. Transaction Manager exit routines 171

Contents of registers on exit

On return, all registers must be restored except for register 1 and 15, which must
contain the following:

Register Contents

1 Message number to send to inputting terminal.

15 One of the following return codes:

Return code
(decimal)

Meaning

00 Schedule with Fast Path. Register 3 points to the RCTE to be
used.

04 Schedule with Fast Path using transaction code as the routing
code.

08 Schedule with Fast Path using the routing code you provide.

12 Return to IMS for processing.

16 Schedule with Fast Path using transaction code if the routing
code equal to transaction code is active; otherwise, let IMS
process it.

20 Schedule with Fast Path using routing code provided the
routing code is active; otherwise, let IMS process it. This is the
same action as user exit return code 08.

24 Discard input, send message from user table back to inputting
terminal.

28 Discard input, send message from system message table.

Related reference:
“Initialization of IMS callable services (DFSCSII0)” on page 17
“IMS standard user exit parameter list” on page 5

Front-End Switch exit routine (DFSFEBJ0)
The Front-End Switch (FES) exit routine allows you to keep the input terminal in
response mode while it is waiting for the reply from the processing system for
messages entered in an IMS system by a front-end switchable VTAM node and
processed in another system (such as IMS or CICS).

This topic contains Product-sensitive Programming Interface information.

Subsections:
v “About this routine”
v “Restrictions” on page 173
v “Communicating with IMS” on page 174

About this routine

During system definition, you specify the FES exit routine on the COMM macro
with the FESEXIT parameter, and you specify which VTAM nodes can do
front-end switching.

The connection between intermediate IMS systems must be through Intersystem
Communication (ISC), although connections with non-IMS back-end systems can

172 Exit Routines

be any VTAM protocol that IMS supports, such as SLUTYPEP or SLUTYPE2.
IMS-to-IMS and IMS-to-non-IMS interconnections are referred to as
intermediate/back-end or IBE links, and front-end systems are referred to as FE
systems.

Front-End Switch is not related to Multiple Systems Coupling (MSC), and cannot
be used with MSC for the processing of the same transaction. Front-End Switch is
designed to connect an IMS network to non-IMS systems, and MSC is used for
homogeneous IMS networks.

Attributes of the routine

The following table shows the attributes of the Front-End Switch exit routine.

Table 49. Front-end switch exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSFEBJ0.

Binding
This routine must be reentrant.

Including the routine If you want IMS to call the exit, include it in an authorized library
in the JOBLIB, STEPLIB, or LINKLIST library concatenated in front
of IMS.SDFSRESL. If the exit routine is included, IMS automatically
loads it each time IMS is initialized.

IMS callable services
To use IMS callable services with this routine, you need to issue an
initialization call (DFSCSII0) to obtain the callable service token and
a parameter list in which to build the function-specific parameter
list for the desired callable service.

Use the ECB found in Register 9 for IMS callable services. This exit
is automatically linked to DFSCSI00 by IMS. No additional linking
is required to use IMS callable services.

Sample routine
location

IMS.ADFSMPL.

You must code the exit routine for AMODE=31. You can define the RMODE as
ANY.

Restrictions

The following restrictions apply to the Front-End Switch exit routine:
v The FES function can be used with the COMM macro statement specifying

OPTIONS=BLKREQD or NOBLANK. However, you must specify a blank
following the transaction code regardless of the option specified.

v If the back-end or intermediate system detects an error for an input transaction,
the error message can not be sent back to the input terminal. It is sent to the
MTO of the system detecting the error. It also can be sent back over the IBE
session that sent the original input, or the input message can be sent to an ERP,
if one is specified.
If an error is sent over the ISC session, IMS will CLSDST the session thus
making the error more visible and keep future ones from occurring. This can be
valuable during a debugging period of a new FES exit or application; however,
it can prove bothersome during production time. To avoid this, specify a

Chapter 3. Transaction Manager exit routines 173

FEIBERPN when processing input from an ISC session and develop an
application to log or process these errors should they occur.

v Conversational transactions are not supported.
v If the front-end system is part of an XRF complex, the terminal operator might

not get the reply to a switched message in case of a takeover even if the reply
comes in time. The terminal receives an IMS message instead.

v For a local transaction defined as full-function, nonresponse mode, the exit
routine switches a transaction (TXNA) to a local transaction (TXNB) and turns
on the timer facility. TXNB executes locally and replies to the originating
terminal. However, the terminal is left in response mode. When the timeout
transaction processes, a response is sent to the terminal, which resets the
response mode.

v If the back-end system is non-IMS, the reply message that the back-end system
sends to IMS must be asynchronous (nonresponse) and expect no
counter-response from IMS. You can do this in one of two ways:
– End the response with an end bracket (EB).
– Append the FMH6 SCHEDULER header to the FMH5 header at attach time,

and use a change direction (CD) indicator.
Related Reading: For more information, see IMS Version 13 Communications and
Connections.

Communicating with IMS

IMS uses the entry and exit registers to communicate with the exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Content

1 Address of the FEIB. The FEIB contains all the information necessary for the
exit to function. The exit routine must store additional information in the
FEIB which is required for successful processing.

9 Address of ECB.

13 Address of save area. The exit routine must not change the first three words.

14 Return address to IMS.

15 Entry point of exit routine.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for
register 15, which must contain one of the following return codes:

Return code Meaning

0 No message switching

2 New destination from FE

6 New destination from IBE

8 Reply message

12 User table error

174 Exit Routines

Related reference:
“Routine binding restrictions” on page 9
“Initialization of IMS callable services (DFSCSII0)” on page 17

Terminal input processing
By the time the message arrives for terminal input, it already has been edited by
routines such as Basic Edit, ISC (Intersystem Communication), and MFS Edit.

The Front-End Switch exit routine gains control from an IMS system when the first
segment of an input message is received before IMS determines the destination of
the message. All input from FES-capable nodes and from ISC links are processed
by this exit routine. Both MFS Edit and Basic Edit can remove characters that have
a value less than X'41'.

For a diagram of the relationships among the front-end system, the intermediate
system, and the back-end system with regard to message switching, see the
following figure.

This exit routine can do any of the following:
v Indicate a destination change for an input message to an IBE destination or local

transaction program defined in this IMS system. Changing the destination forces
the originating terminal to be in response mode. (Front-end system processing.)

v Indicate a destination change for an input message from an IBE link to another
IBE destination or to a local transaction program defined in this IMS system.
(Intermediate system processing.)

v Define a transaction code that can be initiated when a specified time interval
expires after switching the message. (Timeout processing.)

v Specify the message that can be sent directly to the input terminal for timeout
processing.

v Provide IMS with additional routing information to expand the original message
for any IBE system.

v Specify the name of a transaction program (full-function response mode or Fast
Path) that processes or logs input messages due to user exit routine failures
detected in other than the original terminal input (for example, ISC input).

The exit routine must provide additional routing information to identify the reply
to this message when it comes back to the IMS front-end system. The user can tell
IMS to remove the added information before the reply message is sent to the
original terminal.

LTERM1
message

origin

input

Intermediate
systems

LU 6.1
ISC
link

LU 6.1
ISC
link

Back-end
system

Message

Front-end system

IMS IMS

Basic
or MFS
Edit

DFSFEBJ0
User exit
routine

IMS
or
CICS

Figure 9. Message flow with the front-end switch exit routine

Chapter 3. Transaction Manager exit routines 175

In the preceding figure, the reply path is not shown to keep the diagram simple.
The reply would usually follow the same path back through the intermediate
system or systems to the front-end, and then to the originating terminal.

IBE input processing
Correlate the reply message to a previously switched input message as part of IBE
input processing. A reply to an input message, when received from another system,
is treated by IMS as an input message.

The exit routine takes control of each message that comes from an ISC or
FES-defined link. You must correlate the reply message to a previously switched
input message.

The exit routine at this point can:
v Analyze the message text.
v Copy the LTERM name from the message text into the FEIBLTRM field.
v Copy the message identifier from the message text into the FEIBUNID field.
v Specify a destination for a late reply message in the FEIBLDST field.
v Tell IMS to remove the routing data from the message by specifying a length > 0

in the FEIBULNG field.
v Set the FEIBRPQ1 indicator if the reply message has to be sent directly to the

original input terminal.
v Indicate the change of the destination code to a local transaction code

(full-function non-response mode) in the FEIBNDST field.
v Set FEIBRPN to an error processing program (ERP) name that receives the input

message if errors are detected in the verification of the exit parameters. An error
message appears on the MTO of the system detecting the error.

Front-end interface block
A Front-End Interface Block (FEIB) is created for each FES capable terminal. The
FEIB is used to communicate between the Front-End Switch exit routine and IMS.

For a VTAM node (excluding ISC) defined as FES capable (by an OPTIONS=FES
on the TERMINAL, or TYPE macro, or ETO logon descriptor), the FEIB is allocated
when the session has been established. The block is released when the VTAM
session terminates and no reply for an FES message is outstanding.

Related Reading: For more information on the Extended Terminal Option (ETO)
feature, see IMS Version 13 Communications and Connections.

The interface block is also allocated for each ISC parallel session. This is done
automatically without special system definition at LOGON or OPEN DEST time.
The interface block is destroyed at LOGOFF time, at CLOSE DEST time, or at
session failure.

If the exit routine is not defined in the system or if the VTAM node is not defined
as FES capable, the FEIB will not be allocated.

Register 1 on entry to the exit contains the address of the interface block.

The FEIB layout is in the following example.

176 Exit Routines

* FEIB - FRONT END MESSAGE SWITCH INTERFACE BLOCK DSECT *

FEIB DSECT
FEIBIFLG DS X USER EXIT INPUT FLAGS
FEIBISC EQU X’80’ MESSAGE FROM AN ISC LINK
* EQU X’40’ RESERVED BY IBM
* EQU X’20’ RESERVED BY IBM
* EQU X’10’ RESERVED BY IBM
* EQU X’08’ RESERVED BY IBM
* EQU X’04’ RESERVED BY IBM
* EQU X’02’ RESERVED BY IBM
* EQU X’01’ RESERVED BY IBM
FEIBOFLG DS X USER EXIT OUTPUT FLAGS
FEIBRPQ1 EQU X’80’ QUEUE RESPONSE TO ORIG DEVICE
* ELSE QUEUE SMB NAMED IN FEIBNDST
FEIBERP EQU X’40’ ON TIMEOUT CALL ERP, ELSE ERR MSG
* EQU X’20’ RESERVED BY IBM
FEIBTMED EQU X’10’ TIME RESPONSE WITH SYSDEF VALUE
* EQU X’08’ RESERVED BY IBM
* EQU X’04’ RESERVED BY IBM
* EQU X’02’ RESERVED BY IBM
* EQU X’01’ RESERVED BY IBM
FEIBMSGN DS H TIMEOUT ERROR MESSAGE NUMBER
* ONLY USED IF FEIBERP OFF
FEIBLTRM DS CL8 LTERM NAME OF ORIGINAL TERMINAL
* ONLY AVAILABLE IF FEIBISC OFF
FEIBMSG DS A POINTER TO INPUT MESSAGE BUFFER
FEIBUNID DS F UNIQUE ID NUMBER (FULL WORD BIN)
FEIBNDST DS CL8 NAME OF NEW DEST TO QUEUE MESSAGE
FEIBERPN DS CL8 NAME OF ERP TO CALL ON TIMEOUT
* ONLY USED IF FEIBERP ON
FEIBLDST DS CL8 NAME OF DEST TO QUEUE LATE MESSAGE
FEIBULNG DS H LENGTH OF DATA IN USER AREA
FEIBUSER DS CL40 USER AREA FOR DATA TO PREFIX MSG
* ONLY USED IF FEIBULNG > 0.
FEIBIMID DS CL4 IMS IDENTIFIER
FEIBTIME DS H TIMEOUT INTERVAL (SECONDS)
FEIBPRN DS CL8 PRIMARY RESOURCE NAME ADDED

TO USER DATA BY ISC EDIT

Description of the FEIB fields
Correlate the reply message to a previously switched input message by associating
message components with the values in the front-end interface block (FEIB) fields.

The following table provides a description of the FEIB fields.

Table 50. Description of the FEIB fields

Field Description

FEIBIFLG Input flag:

FEIBISC (bit 0)

v on: message is from an ISC link

v off: message is from an FES capable device

FEIBISC (bits 1–7)
Reserved

Chapter 3. Transaction Manager exit routines 177

Table 50. Description of the FEIB fields (continued)

Field Description

FEIBOFLG Output flags:

FEIBRPQ1 (bit 0)

v on: reply message has to be sent directly to the original input terminal

v off: reply message has to an SMB named in FEIBNDST

FEIBERP (bit 1)

v on: on timeout, schedule the SMB named in FEIBERPN

v off: on timeout send text of error message defined in FEIBMSGN to the
original input terminal (only used if FEIBTMED is ON.)

FEIBTMED (bit 3)

v on: release terminal from response mode when the timeout value is exceeded

v off: timeout facility is not used for this message

FEIBDELT (bit 4)

v on: defer timeout facility until FP sync–point

v off: timeout facility will be activated immediately at input message processing
(only used if FEIBTMED is ON)

FEIBDELT (bits 2, 5–7)
Reserved

FEIBMSGN User message number from table (DFSCMTU0) which is sent to the original input
terminal in the case of a timeout. The message number can only be specified if the
FEIBERP bit is off. Values range from 1-999. (Binary Number.)

FEIBLTRM Logical Terminal Name (LTERM) of the input terminal. For a reply message, DFSFEBJ0
must store the LTERM name into this field, padding with blanks on the right.

FEIBMSG Pointer to the DC buffer containing the input message.

FEIBUNID Unique message identifier is only available if the FEIBISC bit is off on input to the exit
routine. The exit routine must store the unique identifier (a binary number) into this field.

FEIBNDST New destination name for the message. This identify an IBE destination or a transaction
code. (Blank padded on right.)

FEIBERPN Error processing program name (transaction code) to be scheduled in the case of a
timeout. The FEIBERP bit must be set on if the program name is specified. (Blank padded
on right.) This field is also used to specify an optional ERP if the input is from an IBE
session. In this case, FEIBERP need not be set, and the ERP is scheduled with the input
from the IBE session.

FEIBLDST Transaction name that is scheduled when a reply message arrives after timeout. (Blank
padded on right.)

FEIBULNG This field must contain the length of the user data for an input message. It is used by IMS
to expand the original message. This field can contain the length of the user data to be
removed by IMS from the reply message for an output message.

FEIBUSER User data area for routing information that IMS uses to expand the message. This field is
used for input messages only if the FEIBULNG field is greater than zero.

FEIBIMID At input to the exit routine, this field contains the identifier for the IMS system as
specified during system definition on the IMSCTRL macro.

FEIBTIME Timeout interval override (in seconds). This field is used to override the system
Front-End-Switch timeout value as supplied on the COMM macro. If a value of 0 is in
this field, the system default override value is used.

FEIBPRN At input to the exit routine, this field contains the primary resource name that was added
to the user data by ISC edit.

178 Exit Routines

The following table shows the FEIB usage.

Table 51. FEIB usage

Entry name and
data Type

Input message processing Reply message processing

Front-end
system

Back-end
system

Intermediate
system

Front-end
system

Intermediate
system

Back-end
system

In Out In Out In Out In Out In Out In Out

FEIBMSG DS A X X X N/A N/A X X

FEIBLTRM DS CL8 X X X N/A N/A X X X

FEIBERPN DS CL8 X X N/A N/A X X

FEIBMSGN DS H X N/A N/A

FEIBNDST DS CL8 X X N/A N/A X X

FEIBUNID DS F X N/A N/A X

FEIBLDST DS CL8 N/A N/A X

FEIBULNG DS H X N/A N/A X

FEIBUSER DS CL40 X N/A N/A

FEIBISC EQU BIT X(0) X(1) X(1) N/A N/A X(1) X(1)

FEIBRPQ1 EQU BIT N/A N/A X

FEIBERP EQU BIT X N/A N/A

FEIBTMED EQU BIT X N/A N/A

FEIBIMID DS CL4 X X X N/A N/A X X

FEIBTIME DS H X N/A N/A

FEIBPRN DS CL8 X X X N/A N/A

Return code (R15) 2-New
destination
from FE

6-New
destination
from IBE

0-Nothing N/A 6-New
destination
from IBE

8-Reply

Note: X(0) = off X(1) = on

Related reference:
“Routing information” on page 181

Input and output fields
Depending on the system, front-end interface block (FEIB) fields will be used for
input, which are stored by IMS, while other FEIB fields will be used for output
and stored by the Front-End Switch exit routine.

The following table show the input fields and the output fields

Chapter 3. Transaction Manager exit routines 179

Table 52. FES data flow for input message processing

System Input Output

Front-end system FEIBLTRM (CL8) FEIBERPM (CL8)

FEIBMSG (A) FEIBMSGN (H)

FEIBUNID (F) FEIBNDST (CL8)

FEIBIMID (CL4) FEIBUSER (CL40)

FEIBPRN (CL8) FEIBULNG (H)

FEIBTIME (H)

Return codes:

0 - nothing

12 - Table error

Flags: FEIBISC Flags: FEIBERP, FEIBTMED

Intermediate system FEIBMSG (A) FEIBNDST (CL8)

FEIBIMID (CL4) FEIBERPN (CL8)

FEIBLTRM (CL8)

FEIBPRN (CL8)

Return codes:

6 - New destination from IBE

12 - Table error

Flags: FEIBISC Flags: N/A

Back-end system FEIBMSG (A)

FEIBIMID (CL4)

FEIBLTRM (CL8)

FEIBPRN (CL8)

Return codes:

0 - Nothing

Flags: FEIBISC Flags: N/A

The following table shows the input and output fields for reply message
processing.

180 Exit Routines

Table 53. FES data flow for reply message processing

System Input Output

Front-end system FEIBMSG (A) FEIBLTRM (CL8)

FEIBIMID (CL4) FEIBUNID (F)

FEIBLTRM (CL8) FEIBLDST (CL8)

FEIBNDST (CL8)

FEIBULNG (H)

FEIBERPN (CL8)

Return codes:

0 - nothing

8 - Reply

12 - Table error

Flags: FEIBISC Flags: FEIBRPQ1

Intermediate system FEIBMSG (A) FEIBNDST (CL8)

FEIBIMID (CL4) FEIBERPN (CL8)

FEIBLTRM (CL8)

Return codes:

0 - Nothing

6 - New destination from IBE

12 - Table error

Flags: FEIBISC Flags: N/A

Back-end system N/A N/A

Routing information
You are responsible for the format and the contents of the routing information.

If the value of the FEIBULNG field is greater than zero, IMS adds the user data on
an input message from an FE device to the input message between the old
destination and the message text.Both MFS edit and Basic Edit can remove
characters that have a value less than X'41'. As part of the routing information, the
following is required:
v A unique identifier assigned to the input message from the originating terminal.

This identifier must be sent with the user data to identify the reply to this
message when it comes back to IMS. For messages being processed by either
MFS or Basic Edit, the identifier value must be translated into unpacked format.

v The LTERM name of the originating terminal. IMS does not have access to the
control blocks of the originating terminal when the reply to a switched message
arrives. Therefore the exit routine must add the LTERM name of the originating
terminal to the user data. This LTERM name is to be rerouted with the reply
from the back-end system and must not be removed or changed by any
intermediate system.

When the exit routine gains control from IMS on input of the reply message, it
obtains the LTERM name and the unique identifier from the message text and
stores them into the corresponding fields of the FEIB. IMS then determines the

Chapter 3. Transaction Manager exit routines 181

original input terminal and checks if timeout has already occurred. The destination
of the message is determined by the result of this check.

If the timer has not expired, one of the following occurs:
v The message is sent directly to the original input terminal.
v The message is queued to a local transaction, which can cause a reply message

to be sent to the originating LTERM using the I/O PCB.

Be aware that the TPCBTSYM field of the I/O (TPPCB) might contain the ISC
LTERM name when the application does an ISRT reply back to the originating
LTERM. This choice is decided by the exit routine.

If the timer has expired, the message is no longer expected at the original terminal,
because it is already released from response mode. The message is then sent to the
destination defined by the exit routine for late reply messages.

Besides required routing information, the routine can store additional information,
such as a unique system identification throughout all connected systems.

Application programs processing FES messages must understand that the input
message contains routing information which must be rerouted to the front-end
system. The routing information in all the involved systems must be in agreement.
The routing information in the input message must be included in the output
message.

Message expansion
Combine the original message with the routine information and store it in the new
buffer.

Because the DC buffer is not large enough to store the routing information, use the
FEIBUSER field of the FEIB. The length of the user data must be stored in the
FEIBULNG field of the FEIB. The maximum length of user data is 40 bytes. IMS
combines the original message with the user data and stores both into the new
buffer. The new destination (FEIBNDST) is also stored into the new buffer.

The following figure shows the original and new buffer formats.

New_Dest
New destination from FEIBNDST field

User_Data
User data from FEIBUSER field

Figure 10. Old and new buffer formats

182 Exit Routines

The old destination and the new destination are both followed by a blank. You
must lay out the routing information. After IMS has expanded the message, the
routing information should precede the original message text.

Timer facility
The timer facility controls each input message that is routine to a back-end system.

When the specified time interval expires without a reply to the input message, the
input terminal is released from response mode. The timeout value is specified
during system definition on the COMM macro and can be overwritten by the
FESTIM parameter on the IMS procedure, or by specifying a non-zero value in the
FEIBTIME field during front-end processing of an input message. To make use of
the timer, set the FEIBTMED flag in the FEIB. In addition, you must specify the
action which has to be taken at timeout. This can be done by specifying either the
name of a program that is to be given control (FEIBERPN field) or a message that
is to be issued (FEIBMSGN field). The message number must be included in the
user message table DFSCMTU0. See DFSCMTU0 for more information. The
program can send a message to the input terminal using the I/O PCB. This
response releases the terminal from response mode. The message text is directly
sent to the input terminal if you define a message number.

If the reply comes in time, the timer request for the input message is canceled. No
timeout can occur if you do not set the FEIBTMED indicator. If no reply is
received, the terminal is not released from response mode.

If the input terminal is in an active conversation status, the timer facility will not
be activated.

When switching to a local Fast Path transaction, the timeout facility can be
deferred until Fast Path sync-point by setting the FEIBDELT flag.

FEIBRPQ1 indicator
The FEIBRPQ1 indicator must be set in the FEIB for a reply message to be sent
directly to the original input terminal.

This indicator can only be set when a reply message has a return code of 8 in
register 15. If you do not set it, you have to store a new destination into the
FEIBNDST field of the FEIB. IMS checks the indicator and sends the message,
depending on the values in the FEIB.

If you change the destination code of an input message to a local transaction which
sends a message across a link, the timer supervisor includes the elapsed time for
the local transaction.

If the destination of a reply message is changed to a local transaction, the original
input terminal is released from the timer supervisor before the local transaction is
scheduled. If the transaction is not available or if the application program does not
send an output message to the original input terminal, the terminal is not released
from response mode.

Example of the front-end switch exit routine (DFSFEBJ0)
A front-end switch exit routine allows you to keep the front-end system in
response mode while it is waiting for the reply from the intermediate system for
messages entered in a back-end system.

Chapter 3. Transaction Manager exit routines 183

Subsections:
v “Routing scheme”
v “Description of sample exit routine” on page 185

Routing scheme

In the following figure, three IMS systems are connected by ISC links. SFIMS2 acts
as the front-end system, and LAIMS1 and NYIMS1 can act as a back-end system.
In addition, LAIMS1 can act as an intermediate system.

In each system, you can enter a transaction FESTX1. This is not defined as a
transaction in the system, but is a special transaction code used by the sample exit
routine that identifies this message as an FES transaction. The exit routine in the
front-end system (SFIMS2) changes the transaction code to FESTX2, which must be
defined in the system as a valid transaction.

There is an eight-digit location code (LOC-code) in the user data. The decision as
to which system processes the transaction depends on this LOC-code. If the
transaction is to be processed in another system, the exit routine changes the
destination to LAIMS1 so that either LAIMS1 or NYIMS1 processes the transaction
FESTX2.

The following location codes are defined:

System Location code (LOC-code)

SFIMS2 20000000 - 39999999

LAIMS1 40000000 - 59999999

NYIMS1
00000000 - 19999999
60000000 - 99999999

The system that processes the transaction FESTX2 generates an output message
containing the transaction code FESTX3 in front of the message text. As with FESTX1,
this is not defined as a transaction in the system, but is a special transaction code
used by the sample exit routine that identifies this message as a reply to an FES
transaction. This output message has to be routed to the front-end system where
the corresponding FESTX1 transaction was entered which is now the target system
for the reply message.

The following tables show routing information for each system.

Figure 11. Routing scheme of front-end switch exit routine example

184 Exit Routines

Table 54. SFIMS2 tables

SFIMS2 - table I SFIMS2 - table II1

1st digit of LOC-code
Next
system

Target
system

Next
system

0
1
4
5
6
7
8
9

LAIMS1
LAIMS1
LAIMS1
LAIMS1
LAIMS1
LAIMS1
LAIMS1
LAIMS1

LAIMS1
NYIMS1

LAIMS1
LAIMS1

Note: 1 This table is used only if it is an intermediate system

Table 55. LAIMS1 tables

LAIMS1 - table I LAIMS1 - table II

1st digit of LOC-code
Next
system

Target
system

Next
system

0
1
2
3
6
7
8
9

NYIMS1
NYIMS1
SFIMS2
SFIMS2
NYIMS1
NYIMS1
NYIMS1
NYIMS1

SFIMS2
NYIMS1

SFIMS2
NYIMS1

Table 56. NYIMS1 tables

NYIMS1 - table I NYIMS1 - table II¹

1st digit of LOC-code
Next
system

Target
system

Next
system

2
3
4
5

LAIMS1
LAIMS1
LAIMS1
LAIMS1

LAIMS1
SFIMS2

LAIMS1
LAIMS1

Note: 1 This table is used only if it is an intermediate system

Description of sample exit routine

The example in this section is based on the assumption that ISCEDIT is used for
editing the messages going across ISC links. ISCEDIT removes the first data field
of the message text on output to an ISC destination.

Chapter 3. Transaction Manager exit routines 185

The exit routine is designed to run in each of the three systems without modifying
the code. It has to process different tables with routing information for each
system, and has to know the name of the owning system. This is obtained from the
FEIBIMID field. In this example:
v NYIMS1='IMS1' back-end system
v LAIMS1='IMS2' back-end or intermediate system
v SFIMS2='IMS3' front-end system

The exit routine in each system must analyze the transaction code and the
LOC-code in the message text:
v If the transaction code is FESTX1, and

– Change the transaction code to FESTX2.
– If the LOC-code is in table I:

- Change the transaction code to FESTX2.
- Change the destination to the corresponding destination from table I

(FEIBNDST).
- Set the FEIBTMED indicator on, if appropriate.
- Set the FEIBERP indicator on, if appropriate.
- Set the transaction code for ERP (FEIBERPN), if appropriate.
- Store the following routing information into the user area of the FEIB

(FEIBUSER) as shown in the following figure.
The FEIBUNID value is unpacked into zoned format to prevent MFS Edit

or Basic Edit from removing characters less than X'41'.
- Set the user data length field to 24 (FIEBULNG).
- Set the RC=02 in register 15.

– Else Set RC=00 in register 15.
v If the transaction code is FESTX2 and the LOC–code is in table I:

– Change the destination to the corresponding destination from table I
(FEIBNDST).

– Set the RC=06 in register 15.
v If the transaction code is FESTX3:

– Analyze the routing information.
– If the name of the target system in the routing information (FE–ID) is not the

name of the owning system:
- Change the destination to the corresponding destination from table II

(FEIBNDST).
- Set the RC=06 in register 15.

– If the name of the target system is not table II, set RC=12 in register 15.
– If the name of the target system in the routing information is the name of the

owning:

Figure 12. User area of FEIB (FEIBUSER)

186 Exit Routines

- Get the LTERM name from the routing information and store it into the
interface block (FEIBLTRM).

- Get a unique identifier from the routing information, change it from zoned
to packed format, and store it in the interface block (FEIBUNID).

- Set the transaction code for a message which comes too late (FEIBLDST).
- Set the FEIBRPQ1–indicator.
- Set the user data length field to 31 (FIEBULNG).
- Set the RC=08 in register 15.

v In all other cases no action is taken by the exit routine.1

Global Physical Terminal (Input) edit routine (DFSGPIX0)
The Global Physical Terminal (Input) edit routine (DFSGPIX0) is called before the
IMS Basic Edit routine and eliminates the overhead associated with defining the
edit routine for each terminal through system definition.

This topic contains Product-sensitive Programming Interface information.

This topic describes the Global Physical Terminal Input edit routine. This routine is
a user-written edit routine that performs the same functions as the Physical
Terminal Input edit routine (DFSPIXT0).

Subsections:
v “About this routine”
v “Communicating with IMS” on page 189

About this routine

If you write and include the routine in your system, IMS calls it for all terminals
that do not have the Physical Terminal Input edit routine specified. By using the
Global Physical Terminal Input edit routine instead of the Physical Terminal Input
edit routine, you can eliminate the overhead associated with defining the edit
routine for each terminal through system definition.

If the input message is processed by MFS, the Global Physical Terminal (Input) edit
routine is not called. This edit routine is only called when a non-LU 6.2 message is
entered from a terminal; it is not called when the message is inserted by a
program-to-program switch.

Message segments are passed one at a time to the Global Physical Terminal (Input)
edit routine, and the edit routine can handle them in one of the following ways:
v Accept the segment and release it for further editing by the IMS Basic Edit

routine.
v Modify the segment (for example, change the transaction code or reformat the

message text) and release it for further editing by the IMS Basic edit routine.
Examples of segment modifications that can be made are:
– changing the transaction code.
– reformatting the message text.

v You can make any required modifications within the original segment because
IMS has not yet performed destination or security checking.

1. In an IMS back–end system, which processes TX2, an application program generates the output message with TX3.

Chapter 3. Transaction Manager exit routines 187

v You cannot alter the length of this segment.
v Cancel the segment.
v Cancel the message and request that IMS send a corresponding message to the

terminal operator.
v Cancel the message and request that IMS send a specific message from the User

Message Table to the terminal operator.

The following table shows the attributes of the Global Physical Terminal (Input)
Edit exit routine.

Table 57. Global physical terminal input edit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSGPIX0.

Including the routine No special steps are required to include this routine.

IMS callable services To use IMS callable services with this routine, you must do the
following:

v Issue initialization call (DFSCSII0) to obtain the callable service
token and a parameter list in which to build the function-specific
parameter list for the desired callable service.

v Use the ECB found in register 9 for the DFSCSII0 call.

v Link DFSCSI00 with your user exit.

Sample routine
location

No sample exit routine is provided. Instead, use the
IMS.ADFSSMPL distribution library (member name DFSPIXT0).

The sample is identical to the Physical Terminal (Input) edit routine
(DFSPIXT0), because the two edit routines perform the same
function.

This routine performs the following functions:

v Scans the input message segment for an expected
format—TESTEXIT.

v Generates return codes (XX) based on the input request
(TESTEXIT,XX).

v Verifies the user message number (YYY) if specified
(TESTEXIT,XX,YYY).

v Replaces TESTEXIT with ERROR if return code or message
number is invalid and passes the segment to IMS (return code 0).

Note: The sample exit routine is not reentrant. You must assemble
it with PARM='OBJECT,NODECK,NORENT' and link-edit it with
PARM='NCAL,LET,LIST,XREF,SIZE(880K,64k)'.

Bypassing Basic Edit

If the IMS application program supplies DFS.EDTN in the MOD name parameter
for the output message, IMS bypasses the Basic Edit routine, except for transaction
code and password validation.

Related Reading: For further information see “MFS Bypass for 3270 or SLU 2” in
the “Application Programming Using MFS” in IMS Version 13 Application
Programming APIs.

188 Exit Routines

|
|
|

The Physical Terminal Input edit routine must position the transaction code, and
optionally the password, if the terminal is not operating in conversational or preset
destination mode. The edit routine should detect errors and have IMS send a
message to the terminal operator if the routine finds any errors.

IMS maintains a flag in the CTB (bit CTB6TRNI in the CTBFLAG6 field) to indicate
when 3270 MFS bypass, nonconversational, no preset destination and first segment
exist on input to the Global Physical Terminal (Input) edit routine. This flag
notifies the Global Physical Terminal Input edit routine that it can add a minimum
of one byte and a maximum of 18 bytes to the front of the message segment for a
transaction code and optional password. The minimum of one byte to be added to
the front of the message segment consists of a one-byte transaction code. If
NOBLANK is not specified at system definition, a minimum of two bytes is added
to the front of the message segment, consisting of a one-byte transaction code and
one blank, which is necessary as a separator. To add a transaction code and
optional password, the exit routine can put a return code of 16 in register 15 and
set register 1 to point to an LLZZ field followed by the data to be added. You
cannot, however, alter the length of the segment passed in to the exit. If you need
to insert a transaction or destination code, and an optional password, set register 1
to the address of a static data field that consists of a halfword length (LL), a
halfword of binary zeroes (ZZ), and zero to 14 bytes of user data.

Specifying the routine

You must assemble and bind the edit routine into the IMS execution time library or
user library concatenated in front of the IMS execution time library.

IMS calls the Global Physical Terminal Input edit routine (DFSGPIX0) for each
terminal that does not have EDIT=(,YES) coded on the TERMINAL macro or ETO
logon descriptor.

For terminals that do have EDIT=(,YES) specified on the TERMINAL macro or
ETO logon descriptor, IMS calls the Physical Terminal Input edit routine
(DFSPIXT0).

Related Reading:

v For more information on the TERMINAL macro, see IMS Version 13 System
Definition.

Communicating with IMS

IMS uses the entry and exit registers to communicate with the exit routine.

Contents of registers on entry

On entry to the edit routine, all registers must be saved using the save area
provided. The registers contain the following:

Chapter 3. Transaction Manager exit routines 189

Register Content

1 Address of the input message segment buffer. IMS editing has not been
performed. The first two bytes of the buffer contain the segment length
(binary length includes the 4-byte overhead). The third and fourth bytes of
the buffer are binary zeros. The message text begins in the fifth byte of the
buffer.

If the device was defined with MFS support, but this message is not being
processed by MFS, the first segment of the message has backspace error
correction performed before entry to this edit routine. If escape (**) was
entered by the terminal operator, the first two data bytes have been changed
to binary zeros.

7 Address of CTB for the physical terminal from which the message was
entered.

9 Address of CLB for the physical terminal from which the message was
entered.

13 Address of save area. The exit routine must not change the first three words.

14 Return address to IMS.

15 Entry point of edit routine.

The edit routine you supply can edit the message segment in the buffer pointed to
by register 1.

You can reduce the length of the message segment to any size by replacing the
length in the buffer with the appropriate value. The length field must appear in the
same place at exit as at entry, and bytes 3 and 4 must not be changed.

Contents of registers on exit

Before returning to IMS, the edit routine must restore all registers except for
register 1, which contains a message number if register 15 contains a value of 12;
otherwise register 1 is ignored. Register 15 contains one of the following return
codes:

Return codes Meaning

00 Segment is processed normally.

04 Segment is canceled.

08 Message is canceled and the terminal operator is notified.

12 Message is canceled, and the message identified by register 1 is sent to the
terminal.

16 Insert the transaction code and optional password following the LLZZ
pointed to by register 1. This return code is only valid for 3270 MFS bypass
terminals.

When the entering terminal is not a 3270 MFS bypass terminal, and the
physical terminal input exit gives a return code of 16, IMS issues an error
message, and the transaction code is not inserted in the message.

Any other return code causes the message to be canceled and the terminal operator
to be notified.
Related reference:
“Routine binding restrictions” on page 9

190 Exit Routines

“IMS callable services” on page 13
“Physical Terminal (Input) edit routine (DFSPIXT0)” on page 261

Greeting Messages exit routine (DFSGMSG0)
The Greeting Messages exit routine (DFSGMSG0) allows you to tailor how IMS
handles messages issued during the logon and signon process.

The exit also allows you to:
v Change the MFS Message Output Description (MOD) name without changing

the message. (However, if the terminal is the Master Terminal and is master
formatted, the request to change the MOD name is ignored.)

v Change the message without changing the MOD name.
v Send a null message (no data) for formatting purposes.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 192

About this routine

IMS builds a message based on the calling module's request. This message, plus
information useful to the exit and a buffer for returning an alternate message built
by the exit, are passed as input to the exit. The exit indicates by a return code if
the message built by IMS should be used, or if an alternate message has been
returned and should be used. The message length returned must be at least five
bytes (four bytes for the length field and a one-byte message).

The following table shows the attributes of the Greeting Messages exit routine.

Table 58. Greeting messages exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSGMSG0.

Including the routine You can assemble the sample exit routine, or one that you write (using the standard
IMS macro and copy files), and include it in an authorized library in the JOBLIB,
STEPLIB, or LINKLIST library concatenated in front of the IMS.SDFSRESL. If the
Greeting Messages exit routine is included, IMS automatically loads it each time IMS is
initialized.

IMS callable services To use IMS callable services with this routine, you must do the following:

v Issue an initialization call (DFSCSII0) to obtain the callable service token and a
parameter list in which to build the function-specific parameter list for the desired
callable service.

v Use the ECB found at offset 0 of the Greeting Messages Exit parameter list.

v Link DFSCSI00 with your user exit.

Sample routine location IMS.ADFSSMPL (member name DFSGMSG0).

The sample exit uses the DFS3649 and DFS2467 messages built by IMS, but it converts
the DFS3650 message to a single-segment message. You can also write your own exit
routine.

Chapter 3. Transaction Manager exit routines 191

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of the “IMS standard user exit parameter list” on page 5 (Version 1)

13 Save area address

14 Return address to IMS

15 Entry point address of exit routine

The following table shows the greeting messages exit parameters. The address of
this parameter list is in the standard exit parameter list field SXPLFSPL.

Table 59. Greeting messages exit parameter list

Offset Length Description

+0 4 ECB address.

+4 4 SCD address.

+8 4 Pointer to User Table.

+12 4 Address of parameter list for this exit. For additional
details on the content and the format of these
parameters, see the prolog in the sample routine.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for
register 15, which contains the return code. The returns codes are as follows:

Register Contents

15 One of the following return codes:

Return code
Meaning

X'00' Use the message built by IMS.

X'04' Use the message in the alternate buffer (single segment).

X'08' Use the message in the alternate buffer (multiple segment).

X'0C' Send a null message so that the device is formatted with the MFS
format specified by IMS or returned by the exit.

X'10' Bypass password verification. Valid only for message DFS3656A.

Related reference:
“Routine binding restrictions” on page 9
“IMS callable services” on page 13
Related information:

192 Exit Routines

DFS3656A (Messages and Codes)

IMS Adapter for REXX exit routine (DFSREXXU)
The IMS Adapter for REXX exit routine (DFSREXXU) gets control before the
environment is built, just before an exec is executed, and just after it ends.

You can use DFSREXXU with the IMS adapter for the REXX environment. It is
optional and can be omitted from the bind step. The user exit routine is used more
for an installation than for a specific execution. The user exit routine is provided
by the IMS adapter for REXX and is called only when a new REXX transaction is
scheduled and ends. The user exit is not associated with the standard REXX exits
provided by TSO. A sample user exit routine (DFSREXXU) is shipped with IMS (in
source code only). For the latest version of the DFSREXXU source code, see the
IMS.SDFSSRC distribution library; member name is DFSREXXU.

The routine has the ability to do the following:
v Override the exec name to be executed. This name defaults to the IMS program

name.
v Choose not to execute any exec and have the IMS adapter for REXX return to

IMS.
It is the exit routine's responsibility to do any required processing such as
issuing a GU (Get-Unique) call if the region type is MPP.

v Issue DL/I calls using the AIB interface as part of its logic in determining what
exec to execute.

v Set REXX variables (through IRXEXCOM) before the exec is started. The
variables are then available to the exec.

v Extract REXX variables (through IRXEXCOM) after the exec ends. These
variables were set earlier by the exec or exit routine.

v Change the initial default IMSRXTRC tracing level.

The user exit routine must conform to all of the restrictions that apply to IMS
application programs.

Subsections
v “About this routine”
v “Parameters” on page 194

About this routine

The following table shows the attributes of the IMS Adapter for REXX exit routine.

Table 60. IMS Adapter for REXX exit routine attributes

Attribute Description

IMS environments DB/DC, DBCTL, DCCTL.

Naming convention The user exit routine must be named DFSREXX0.

Binding You must bind the user exit with DFSREXX1 during installation of
the IMS adapter for REXX.

Including the routine No special steps are required to include this routine.

IMS callable services This exit routine is not eligible to use IMS callable services.

Chapter 3. Transaction Manager exit routines 193

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.msgs/msgs/dfs3656a.htm#dfs3656a

Table 60. IMS Adapter for REXX exit routine attributes (continued)

Attribute Description

Sample routine
location

IMS.SDFSSRC distribution library.

The routine must be written to be reentrant (RENT), AMODE 31, RMODE ANY.

Parameters

Entry parameters are:

R0 Pointer to REXX Environment Block as described in z/OS TSO/E REXX
Reference.

R1 Pointer to parameter list

R13 Pointer to save area

R14 Return address

R15 Entry point address

On exit, all registers except R15 must be restored. Only the parameters can be
altered. The content of R15 is ignored on exit.

The parameter list contains a list of pointers to the parameters. All character data is
left justified and padded with blanks, if necessary. Omitted fields are set to blanks.
All fields are read-only unless otherwise specified. The following table shows the
user exit parameter list format.

Table 61. User exit parameter list

Name Offset
(decimal)

Data type Length
(decimal)

Description

Function 0 Pointer 4 Pointer to one word function type. Func=0 on Setup Call,
Func=1 on Entry Call, Func=2 on Exit Call.

EXECParm 4 Pointer 4 Pointer to 128-byte area containing parameters that are
passed to the REXX interpreter. The format of the area is
a halfword length field that contains the length of the
text string that follows. The first blank separated word or
the entire string if no blanks are present is the exec name
to execute. On entry this field is set to the program name
followed by one blank and the transaction code if
available. The exit can rebuild this field when called on
entry to alter the exec name or parameters that are
passed. The length field can be set to zero indicating no
exec is to be executed.

PgmName 8 Pointer 4 Pointer to 8-byte area containing the Program name that
was scheduled.

TranCode 12 Pointer 4 Pointer to 8-byte area containing the Transaction Code
that was scheduled, if available (MPP,BMP,IFP).

User_ID 16 Pointer 4 Pointer to 8-byte area containing the current user ID for
the scheduled program, if available (MPP,BMP,IFP).

194 Exit Routines

Table 61. User exit parameter list (continued)

Name Offset
(decimal)

Data type Length
(decimal)

Description

IMSRXTRC 20 Pointer 4 Pointer to one word IMSRXTRC level. This value defaults
to 1 at exec startup but can be overridden by the user
exit. See IMS Version 13 Application Programming for more
information on values. Note that the level field here is a
FULLWORD and not EBCDIC.

UserArea 24 Pointer 4 Pointer to 8-byte (word aligned) user area that is passed
on entry and is preserved verbatim on exit. This field is
set to binary zeros whenever the REXX environment is
built in the dependent region. The user area can be
altered by the user exit and is provided as an anchor.

RetCode 28 Pointer 4 Pointer to one word return code. The return code must
be set to zero.

UseridInd 32 Pointer 4 Pointer to one-byte User ID Indicator that describes the
content of the user ID field. The indicator can be: U-User
ID, L-LTERM, P-PSBname, or O-Other.

Note:

1. When on a Setup call the next four parameters are not available; their addresses are 0.

For each user exit parameter described in the preceding table, the following table
shows the corresponding DFSREXXU parameter.

Table 62. DFSREXXU parameter list

User exit parameter DFSREXXU parameter

Function pointer FUNCTION_CODE DS F FUNC_SETUP EQU 0
FUNC_BEFORE EQU 1 FUNC_AFTER EQU 2

EXECParm pointer EXEC_PARM DS 0CL128 EXEC_PARM_LL DS H
EXEC_PARM_TXT DS CL126

PgmName pointer PGM_NAME DS CL8

TranCode pointer TRAN_CODE DS CL8

User_ID pointer USER_ID DS CL8

IMSRXTRC pointer IMSRXTRC_LEV DS F

UserArea pointer USER_AREA DS 2F

RetCode pointer RETURN_CODE DS F

Useridind pointer USERID_IND DS F

Related concepts:

z/OS: Using the environment block

Initialization exit routine (DFSINTX0)
Use the Initialization exit routine (DFSINTX0) to create two user data areas that
can be used by some of your installation's exit routines.

This topic contains Product-sensitive Programming Interface information.

IMS calls the Initialization exit routine during initialization as a common
Transaction Manager exit routine. Certain IMS user exit routines are called before

Chapter 3. Transaction Manager exit routines 195

|
|

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ikja300/ebuse.htm

the DFSINTX0 user exit routine is called. These user exit routines are: DFSPSE00,
DFSHINT0, DFSZINT0, RASE, DFSAOE00, and DFSQSPC0/DFSSSSP0.
v General user data area

The address of this user data area is passed as part of the IMS standard user exit
interface. Any exit routine that uses this interface will have access to this data
area (if it exists). The address of this data area is also passed as part of the
nonstandard interface to the following exit routines:

Command Authorization exit routine (DFSCCMD0)
Greeting Messages exit routine (DFSGMSG0)
Logoff exit routine (DFSLGFX0)
Logon exit routine (DFSLGNX0)
Destination Creation exit routine (DFSINSX0)
Signoff exit routine (DFSSGFX0)
Signon exit routine (DFSSGNX0)

The general user data area is not available to some IMS user exit routines when
they are called during IMS initialization, because the DFSINTX0 user exit routine
is called during IMS initialization after these user exit routines are called. The
user data area is not available to the following exit routines when they are called
during IMS initialization: DFSAOE00, DFSPSE00, DFSHINT0, DFSZINT0, RASE,
and DFSQSPC0/DFSSSSP0.
Other TM exit routines can address the user data table through SCDINTXP.
Refer to the topic for each exit routine for information on the routine's parameter
list.

v LU 6.2 user data area
The LU 6.2 user data area is not passed as part of the IMS standard user exit
interface. It is passed as part the nonstandard interface to the LU 6.2 Edit exit
routine.

You can also use this exit routine to alter the setting for the Extended Terminal
Option (ETO) feature. You can leave ETO activated or override the setting to
indicate that ETO is not required, even if you previously requested it.

This exit is also used to enable password verification. The IMS default processing
is to disable password verification. With password verification, users signing on to
VTAM terminals that change their password are prompted to verify the new
password.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 197

About this routine

The Initialization exit routine is optional. If the exit is included in the system, IMS
calls it before IMS loads the ETO descriptors and any exit routine that requires
ETO to be active. If ETO is required for an exit routine, the documentation for the
routine states that requirement. If the Initialization exit routine returns a return
code indicating that ETO should not be made available, the ETO exit routines and
descriptors will not be loaded. If this exit is not included in the system, IMS
proceeds using the setting for the ETO= keyword that is specified as an EXEC
parameter or in the DFSPBxx of IMS.PROCLIB.

196 Exit Routines

|
|

|
|
|
|
|
|

The initialization exit routine can optionally enable password verification and an
alternate ETO ALOT=0 option by setting the appropriate flags in the exit routine
parameter list.

Attributes of the routine

The following table shows the attributes of the Initialization exit routine.

Table 63. Initialization exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSINTX0.

Binding This exit routine must be reentrant.

Including the routine If you want IMS to call the Initialization exit routine, include it in
an authorized library in the JOBLIB, STEPLIB, or LINKLIST library
concatenated in front of the IMS.SDFSRESL. If the exit routine is
included, IMS automatically loads it and calls it at initialization.

IMS callable services DFSINTX0 can use callable storage services. To use IMS callable
services with this routine, you must do the following:

v Issue an initialization call (DFSCSII0) to obtain the callable service
token and a parameter list in which to build the function-specific
parameter list for the desired callable service.

v Use the ECB found at offset X'0' of the IMS Initialization exit
parameter list.

v Link DFSCSI00 with your user exit.

Sample routine
location

IMS.ADFSSMPL (member name DFSINTX0).

About user data areas

The user data areas can be used to provide access to user tables that can then be
referenced by any user exit that has access to the data area. An example of the use
of general user data area is for ETO. You can use the general user data area to
define access limits for terminals or users by total number, department, time of
day, or other criteria. You can also use the data area to define LTERM-to-user or
user-to-terminal relationships to aid your installation logon and signon exit routine
processes.

For APPC, you can use the LU6.2 user data area along with the LU6.2 User Edit
exit routine to emulate MFS. To do so, the LU6.2 user data area is built by
DFSINTX0 to hold a list of LTERM and MOD names available to the I/O PCB. IMS
then passes the address of the LU6.2 user data area LU 6.2 Edit exit routine for
input and output messages from a LU6.2 destination. The LU 6.2 Edit exit routine
can use the list of LTERM names to redirect output to a non-LU6.2 destination, or
the list of MOD names to format a message.

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the exit routine.

Contents of registers on entry

Chapter 3. Transaction Manager exit routines 197

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

R1 Address of the “IMS standard user exit parameter list” on page 5 (Version 1)

R13 Save area address

R14 Return address to IMS

R15 Entry point address of exit routine

The following table shows the IMS initialization exit parameters. The address of
this parameter list is in the IMS standard user exit parameter list field SXPLFSPL.
The Initialization exit routine parameter list is mapped by macro DFSINTXP.

Table 64. IMS initialization exit parameter list

Offset Length Description

+0 4 CLB address

+4 4 SCD address

+8 4 0, as an indication that no user table exists

+12 4 0, as an indication that no LU 6.2 user table exists

+16 1 Input/Output Flag Byte

X'80'

0 No password verification (default).
To enable password verification, set
this flag to 1.

X'40'

0 Default ETO ALOT=0 process

X'10'

0 Static ISC resource sharing (default)

X'08'

0 ETO LU type 3 is not allowed to
log on as a SLU1 (default)

X'04'

0 ETO LU type 3 is not allowed to
log on as a 3270 printer (default)

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for
register 15, which contains the return code.

The address of the general user data area created by this exit routine can be
returned in the Initialization exit parameter list at +8. If zero, no general user data
area was created. If non-zero, IMS saves the address in the SCD control block at
SCDINTXP.

198 Exit Routines

The address of the LU 6.2 user table created by this exit routine can be returned in
the Initialization exit parameter list at +12. If zero, no LU 6.2 user table was
created.

Register Contents

15 One of the following return codes:

Return code Meaning

0 Initialization of IMS continues.

4 Regardless of ETO specification, ETO terminal support is not
required. Message DFS3648 is sent to the system console.
Setting RC=4 resets both ETO function and logon user data
support.

8 Regardless of ETO specification, ETO terminal support is not
required but logon user data is supported for static terminals.
Message DFS3648 is sent to the system console. Setting RC=8
resets ETO function only.

Table 65. IMS initialization exit parameter list

Offset Length Description

+16 1 Input/Output Flag Byte

X'80'

0 No password verification (default)

1 Enable password verification

X'40'

0 Default ETO ALOT=0 process

1 Alternate ETO ALOT=0 process

X'20'

0 Default VGR for ISC

1 Disable VGR for ISC

X'10'

0 Normal static ISC resource sharing
(default)

1 Disable resource sharing for static
ISC terminals in the IMSplex

X'08'

0 ETO LU type 3 is not allowed to
log on as a SLU1 (default)

1 ETO LU type 3 is allowed to log on
as a SLU11

X'04'

0 ETO LU type 3 is not allowed to
log on as a 3270 printer (default)

1 ETO LU type 3 is allowed to log on
as a 3270 printer1

Chapter 3. Transaction Manager exit routines 199

Table 65. IMS initialization exit parameter list (continued)

Offset Length Description

Notes:

1. ETO LU type 3 is allowed to log on either as SLU1 or 3270 printer, but not both.

Related tasks:

Using the MOD name and LTERM interface (Communications and
Connections)
Related reference:
“LU 6.2 Edit exit routine (DFSLUEE0)” on page 215
“IMS callable services” on page 13
“IMS standard user exit parameter list” on page 5

Input Message Field edit routine (DFSME000)
Use the Input Message Field edit routine (DFSME000) to perform common editing
functions and simplify programming.

This topic contains Product-sensitive Programming Interface information. \

This topic describes how to write an Input Message Field edit routine. Because this
routine is usually used with the Input Message Segment edit routine, you'll find
references to both routines throughout the following paragraphs.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 201

About this routine

MFS application designers should consider the use of Input Message Field and
Segment edit routines to perform common editing functions such as numeric
validation or conversion of blanks to numeric zeros. Field and Segment edit
routines can simplify programming by using standard field edits to perform
functions that would otherwise have to be coded in each application program.

The following table shows the attributes of the Input Message Field Edit routine.

Table 66. Input message field edit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSME000.

Binding A Field edit routine must have a CSECT name of DFSMEnnn, where nnn is a number
from 001 to 126 that corresponds with the routine number specified in the MFLD
statement.

The edit routine needs to be linked into the library specified by the USERLIB
parameter of the IMSGEN Stage 1 macro before running the IMSGEN. The default for
this parameter is IMS.SDFSRESL.

The Field edit routine can only modify the data in the field created by MFS and must
not cause any waits.

200 Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_appcad_apps_usingmodname.htm#ims_appcad_apps_usingmodname
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_appcad_apps_usingmodname.htm#ims_appcad_apps_usingmodname

Table 66. Input message field edit routine attributes (continued)

Attribute Description

Including the routine No special steps are required to include this routine.

IMS callable services To use IMS callable services with this routine, you must issue an initialization call
(DFSCSI00) to obtain the callable service token and a parameter list in which to build
the function-specific parameter list for the desired callable service.

Use the ECB found in register 9 for IMS callable services. This exit is automatically
linked to DFSCSI00 by IMS. No additional linking is required to use IMS callable
services.

Sample routine location IMS.SDFSSMPL (member name DFSME000).

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the exit routine.

Contents of registers on entry

On entry, the edit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of parameter list.

9 Address of CLB/ECB.

13 Address of save area. The exit routine must not change the first three words.

14 Return address to IMS.

15 Entry point of edit routine.

Description of parameter list format

IMS.ADFSMAC contains a DSECT of the parameter list addressed by register 1
(use COPY MFSFLDE) as follows:

Byte Contents

0

Bit Contents

0,1 Message formatting option:

v 00 = option 1

v 01 = option 2

v 11 = option 3

2 Zero (Field edit routine)

3 Reserved

4 1 if the first 2 bytes in the field contains attribute information

5 1 if the field contains extended field attribute information

6 Reserved

7 Reserved

1 Zeros

Chapter 3. Transaction Manager exit routines 201

Byte Contents

2 The number of reserved extended field attribute bytes in the field. These
bytes appear immediately after the 3270 attribute bytes, if any.

3 The entry vector in binary (0 to 255).

4-7 The execute length (length-1) of the field as defined in the MFLD statement.
If ATTR=YES is specified, this field contains (length-3).

8-11 The field address after MFS editing (before uppercase translation and null
compression for option 1 and 2 fields). If ATTR=YES is specified, this is the
address of the first data byte after the two attribute bytes. For option 3, this
is the address of the 2-byte field length, which begins the completed option 3
field.

Contents of registers on exit

Before returning to IMS, the edit routine must restore all registers except for
register 15, which must contain one of the following return codes:

Register Contents

15 Return code value from 0 to 255

Function of the sample routine

The functions of this IMS-supplied routine are as follows:

Vector Resulting action

0 Converts blanks to zoned decimal zeros (X'F0').

1 Converts blanks to zoned decimal zeros (X'F0') and replaces non-zoned
decimal characters with a question mark (?). If ? is inserted, the routine sets a
return code of 8 and, if an attribute (ATTR) area is present, sets the
CURSOR,HI attributes.

2 Converts the binary cursor address field to zoned decimal if its length is 4
bytes. If the field is not 4 bytes, a return code of 8 is set.

>2 Sets a return code equal to the entry vector (if the vector is greater than 2).

This routine will handle option 1, 2, and 3 formats. For option 1 and 2, MFLD
FILL=NULL and an entry vector of 1 can produce undesirable results.
Related reference:
“Input Message Segment edit routine (DFSME127)” on page 204
“IMS callable services” on page 13
“Routine binding restrictions” on page 9

Calling the Input Message Field edit routine
Call the Input Message Field edit routine after MFS editing.

Field edit routines are given control after MFS editing (before Segment edit
routines, uppercase translation for all options, and null compression for option 1 or
2). The routine can validate or alter the data and pass a return code to MFS. MFS
maintains the highest return code of all Field edit routines for each segment and
passes that code to the Segment edit routine after all fields for that segment are
edited.

202 Exit Routines

Defining edit routines
Assign routine numbers and entry vectors for the Input Message Field edit routine
in the MFSEXIT parameter in the COMM macro.

Field edit routines are defined in the MID's MFLD statements in terms of a routine
number and entry vector.

Routine numbers identify the routine to be used for this field/segment. Routine
numbers range from 000 to 127. IMS-provided routines use numbers 000 (field edit,
DFSME000) and 127 (segment edit, DFSME127).

If you are using both the Field edit and Segment edit routines with your IMS
system, the Field edit routine should be assigned routine numbers that are lower
than the numbers assigned for the Segment edit routine. Therefore, the Field edit
number should be a decimal number greater than or equal to 0, and less than the
default or specified value for the Segment edit routine number parameter. The
default for the Field edit routine is 0.

An installation standard should be established regarding the assignment of routine
numbers. For example, you could assign Field edit routines numbers in ascending
sequence from 001 to 063 (and if you're using Segment edit routines as well, assign
them numbers in descending sequence from 126 to 064).

Recommendation: Assign lower numbers to field exit routines and higher number
to segment exit routines.

Entry vectors are passed to the edit routine when it is activated. Entry vector
values can range from 0 to 255. The entry vector value can be thought of as an
additional qualification of the routine to be activated. For example, routine number
025 can perform numeric validation of a field; entry vector 0 can replace leading
blanks with zeros, and entry vector 1 can perform numeric validation.

If data is entered from the terminal in lowercase, the data is in lowercase when it
is presented to the edit routine. If data in an input segment is in nongraphic form,
GRAPHIC=NO should be specified in the SEG statement to prevent null
compression and uppercase translation. A valid byte value of a binary field could
be equivalent to a null character (X'3F') or some lowercase alphanumeric (for
example, a=X'81'). In this case, GRAPHIC=NO should be specified.

Related Reading: For a description of which characters MFS considers graphic, see
the SEG statement section in IMS Version 13 System Utilities.
Related information:

COMM macro statement (System Definition)

Performance considerations
When Field and Segment edit routines are used, extra processing occurs in the IMS
control region and, if used extensively, a measurable performance cost is incurred.

These edit routines also can improve performance by reducing processing time in
the message processing region, by reducing logging and queuing time, and by
allowing field verification and correction to be accomplished without scheduling
an application program. Efficiency of these user-written routines should be a prime
concern. Because these routines execute in the IMS control region, an abend in the
edit routine causes the IMS control region to abend.

Chapter 3. Transaction Manager exit routines 203

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_ie0i2exm1002472.htm#ie0i2exm1002472

Input Message Segment edit routine (DFSME127)
The Input Message Segment edit routine (DFSME127) can be used by MFS
application designers to perform common editing functions such as numeric
validation or conversion of blanks to numeric zeros. Field and Segment edit
routines can simplify programming by using standard field edits to perform
functions that would otherwise need to be coded in each application program.

This topic contains Product-sensitive Programming Interface information.

This topic describes how to write an Input Message Segment edit routine. Because
this routine is usually used with the Input Message Field edit routine, you will
find references to both routines throughout the following paragraphs.

Subsections:
v “About this routine”
v “Communicating with IMS”
v “Function of the sample routine” on page 206

About this routine

The following table shows the attributes of the Input Message Segment edit
routine.

Table 67. Input message segment edit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSME127.

binding
A Segment edit routine must have a CSECT name of DFSMEnnn,
where nnn is a number from 001 to 126 that corresponds with the
routine number specified in the SEG statement. It must be stored in
USERLIB before Stage 2 of IMS system definition is executed.

Including the routine No special steps are required to include this routine.

IMS callable services To use IMS callable services with this routine, you must issue an
initialization call (DFSCSII0) to obtain the callable service token and
a parameter list in which to build the function-specific parameter
list for the desired callable service.

Use the ECB found in register 9 for IMS callable services. This exit
is automatically linked to DFSCSI00 by IMS. No additional linking
is required to use IMS callable services.

Sample routine
location

IMS.ADFSSRC (member name DFSME127)

Communicating with IMS

IMS uses the entry registers, parameter list, and exit registers to communicate with
the edit routine.

Contents of registers on entry

On entry to the edit routine, all registers must be saved using the save area
provided. The registers contain the following:

204 Exit Routines

Register Contents

0 Address of CLB.

1 Address of parameter list.

9 Address of CLB/ECB.

13 Address of save area. The edit routine must not change the first three words.

14 Return address to IMS.

15 Entry point of edit routine.

Description of parameter list format

IMS.ADFSMAC contains a DSECT of the parameter list addressed by register 1
(use COPY MFSSEGE) as follows:

Byte Contents

0

Bit Contents

0, 1 Message formatting option:

00 = option 1

01 = option 2

11 = option 3

2 1 (Segment edit routine)

3

1 If this message can be routed back to the device
by specifying return code 16. This bit is set on
when the following conditions are met:

v PAGDEL=YES or OPTIONS=(...,PAGDEL,...) is
specified in the TERMINAL macro for this
device.

v The device has an output logical terminal.

If the message contains a valid operator logical
paging request, bit 3 can be set on. However,
this message is not returned to the terminal if
requested.

4-7 Reserved

1,2 Zeros

3 The entry vector is binary (0 to 255).

4-7 The maximum segment length.

8-11 The segment address.

12-15 The highest return code from the Field edits for this segment.

16-23 The next MOD name.

The Segment Edit routine can modify only the segment contents, the save area,
and the next MOD name field of the parameter list. The MOD name field name
should be changed when the edit routine returns the input message to the device.
If the segment is option 1 or 2, the routine can set the segment length field to any
value from 0 to the maximum segment length. The Segment Edit routine must not
cause any waits.

Chapter 3. Transaction Manager exit routines 205

Contents of registers on exit

On return to IMS, all registers must be restored except for register 15, which must
contain one of the following return codes:

Return code Meaning

0 Continue processing.

4 Cancel this segment.

8 Cancel this message (IMS sends the message DFS298 INPUT MESSAGE
CANCELED BY MFS EXIT).

12 Cancel this message and return to the user the message whose number is in
register 1.

16 Return this message to the input device. This code is allowed only when bit
3 of byte 0 in the parameter list is set on.

All segments of a multisegment message are edited before the message is returned
to the device (return code 16); if return code 8 or 12 is specified for a segment
other than the final one, the message is canceled immediately and the remaining
segments are not edited.

In IMS releases with ETO, the Input Message Segment edit routine cannot use
return code 16 during the ETO signon process. This is due to the lack of a valid
output LTERM.

Function of the sample routine

The functions of this routine are based on the entry vector and the highest Field
edit routine return code (FLD-RC) for the segment. This routine only performs
modifications of messages using formatting options 1 and 2. The functions are
shown in the following table.

Table 68. Input message segment edit routine functions based on the entry vector.

Input
vector FLD-RC Resulting function action SEG-RC

0 < 4 None. 0

>= 4 Places EBCDIC return code in last 3 bytes of the
segment.

0

1 < 4 None. 0

>= 4 Places EBCDIC return code in last 3 bytes of the
segment.

0

< 8 None. 4

2 < 4 None. 0

=4 <8 Places EBCDIC return code in last 3 bytes of the
segment.

0

>= 8 None. 8

3 <4 None. 0

=4 <8 Places EBCDIC return code in last 3 bytes of the
segment.

>=8 None. 6

4 ANY Sets FLD-RC as user message number. 12

206 Exit Routines

Table 68. Input message segment edit routine functions based on the entry
vector (continued).

Input
vector FLD-RC Resulting function action SEG-RC

Notes:

1. To continue processing

2. To cancel this segment

3. To cancel this message

4. To send this message back to the entering terminal

5. To cancel this message and send the user message, whose number is in register 1, back
to the entering terminal

Related reference:
“Input Message Field edit routine (DFSME000)” on page 200
“Routine binding restrictions” on page 9
“IMS callable services” on page 13

Calling the Input Message Segment edit routine
Segment edit routines are given control when all the MFS editing and editing by
Field edit routines is complete for a message (before uppercase translation, but
after null compression for messages using option 1 and 2, and after field sort for
option 3 messages).

Based on the return code received from Field or Segment edit routine, the Segment
edit routine can:
v Continue processing.
v Modify the segment.
v Cancel the segment.
v Cancel the message and IMS will notify the operator using the message DFS298

INPUT MESSAGE CANCELED BY MFS EXIT.
v Return a predefined message to the terminal.
v Return the input message to the terminal.

Restriction: The following applies only to IMS releases with ETO. During the ETO
dynamic terminal signon process, the Input Message Segment edit routine cannot
use return code 16 to return the input message to the terminal. This is because a
valid output LTERM has not yet been established.

Defining edit routines
Assign a routine number and an entry vector for the Input Message Segment edit
routine in the MFSEXIT parameter in the COMM macro.

Segment edit routines are defined in the MID's SEG statements. Each routine is
defined in terms of a routine number and an entry vector.

Routine numbers identify the routine to be used for this field or segment. Routine
numbers range from 000 to 127. IMS-provided routines use numbers 000 (Field
edit, DFSME000) and 127 (Segment edit, DFSME127).

If you are using both the Field edit and Segment edit routines with your IMS
system, the Field edit routine should be assigned routine numbers lower than the

Chapter 3. Transaction Manager exit routines 207

numbers assigned for the Segment edit routine. Therefore, the Field exit number
should be a decimal number greater than or equal to 0, and less than the default or
specified value for the Segment exit routine number parameter. The default for the
Field edit routine is 0.

An installation standard should be established regarding the assignment of routine
numbers. For example, you could assign Segment edit routines numbers in
descending sequence from 126 to 064 (and if you're using Field edit routines as
well, assign them numbers in ascending sequence from 001 to 063).

Recommendation: Assign lower numbers to Field edit routines and higher
numbers to Segment edit routines.

Entry vectors are passed to the edit routine when it is activated. Entry vector
values can range from 0 to 255. The entry vector value can be thought of as an
additional qualification of the routine to be activated. For example, routine number
025 can perform numeric validation of a field; entry vector 0 can replace leading
blanks with zeros, and entry vector 1 can perform numeric validation.

If data is entered from the terminal in lowercase, the data is in lowercase when it
is presented to the edit routine. If data in an input segment is in nongraphic form,
GRAPHIC=NO should be specified in the SEG statement to prevent null
compression and uppercase translation. A valid byte value of a binary field could
be a null character (X'3F') or some lowercase alphanumeric (for example, a=X'81').
In this case, GRAPHIC=NO should be specified.
Related reference:

SEG statement (System Utilities)
Related information:

COMM macro statement (System Definition)

Performance considerations
Efficiency of the Input Message Segment edit routine should be a prime concern.

When Field and Segment edit routines are used, extra processing occurs in the IMS
control region and, if used extensively, a measurable performance cost is incurred.
At the same time, these edit routines can improve performance by reducing
processing time in the message processing region, by reducing logging and
queuing time, and by allowing field verification and correction to be accomplished
without scheduling an application program.

Logoff exit routine (DFSLGFX0)
The Logoff exit routine handles all non-MSC, non-LU 6.2 VTAM nodes with which
IMS communicates.

This topic contains Product-sensitive Programming Interface information.

This topic describes how you can use the Logoff exit routine to perform processing
that complements the Logon exit routine (DFSLGNX0).

Subsections:
v “About this routine” on page 209
v “Communicating with IMS” on page 210

208 Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_mfslangsegstmt.htm#ims_mfslangsegstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_ie0i2exm1002472.htm#ie0i2exm1002472

About this routine

IMS calls the Logoff exit routine for all non-MSC, non-LU 6.2 VTAM nodes with
which IMS communicates and for all master terminal operator (MTO) logoffs, even
if it did not call the Logon exit routine for the MTO at logon. (Keep this in mind if
your installation maintains a logon count.) All attempts to log off of ACF/VTAM
terminals cause IMS to call this exit routine.

Recommendation: Although the Logon exit routine and the Logoff exit routine are
optional, if you include one, you should also include the other to perform any
necessary cleanup operations.

The following table shows the attributes of the Logoff exit routine.

Table 69. Logoff exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSLGFX0.

Including the routine If you want IMS to call this exit routine, include it in an authorized library in the
JOBLIB, STEPLIB, or LINKLIST library concatenated in front of the IMS.SDFSRESL. If
the Logoff exit routine is included, IMS automatically loads it each time IMS is
initialized.

IMS callable services To use callable services with this routine, you must do the following:

v Issue an initialization call (DFSCSI00) to obtain the callable service token and a
parameter list in which to build the function-specific parameter list for the desired
callable service.

v Use the ECB found at offset 0 of the Logoff user exit parameter list.

v Link DFSCSI00 with your user exit.

Sample routine location IMS.ADFSSMPL (member name DFSLGFX0).

Extended Recovery Facility (XRF) considerations

Each time IMS calls the Logoff exit routine, the exit routine receives information on
the XRF status of IMS. IMS calls the exit routine if XRF tracking fails.

Resetting the significant status

You can use this exit to reset the significant status for a terminal in one of the
following states:

Conversational
Exclusive
Test
Preset
MFS test
Full-function response
Fast Path response

Note: Test and preset states are nonrecoverable, so IMS resets the significant status
automatically.

Chapter 3. Transaction Manager exit routines 209

A parameter passed to the exit routine indicates the status of the terminal or ETO
user at signoff. All users except ETO terminals can reset the status in the output
parameters.

For conversation mode, IMS performs the equivalent of an /EXIT command for the
conversation.

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

R1 Address of the “IMS standard user exit parameter list” on page 5 (Version 1)

R13 Save area address

R14 Return address to IMS

R15 Entry point address of exit routine

The following table lists the logoff exit parameters. The address of this parameter
list is in the standard exit parameter list field SXPLFSPL.

Table 70. Logoff exit parameter list

Offset Length Description

+0 4 Current ECB address

+4 4 SCD address

+8 4 Address of User Table

+12 4 Address of the STATUS_IN and STATUS_OUT
vectors. The status vectors are mapped by the
DFSSTCHK macro. For the contents of the
STATUS_IN vector see the following table.

Contents of STATUS_IN

The input status vector is a two-byte field that indicates the significant status of a
terminal when the exit routine is called. The second byte of the field is reserved.
The first byte of the field contains a value that indicates the significant status as
follows:

Value Description

X'80' Conversation

X'40' Exclusive

X'20' Test

X'10' Preset

X'08' MFS test

X'04' Full-function response

210 Exit Routines

Value Description

X'02' Fast Path response

Contents of STATUS_OUT

The output status vector is a two-byte field that indicates changes to the terminal's
significant status made by the exit routine. IMS uses the contents of STATUS_OUT
as an indicator to exit a conversation and reset significant status. The default for
this field is zeros, indicating that no significant status is reset.

The second byte of the field is reserved. The first byte of the field contains a value
that indicates the significant status as follows:

Value Description

X'80' Exit conversation

X'40' Reset exclusive

X'20' Reset test

X'10' Reset preset

X'08' Reset MFS test

X'04' Reset full-function response

X'02' Reset Fast Path response

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for
register 15. The content of registers on exit is as follows:

Register Contents

15 Ignored by IMS in all cases.

Related reference:
“Logon exit routine (DFSLGNX0)”
“Routine binding restrictions” on page 9
“IMS standard user exit parameter list” on page 5

Logon exit routine (DFSLGNX0)
The Logon exit routine (DFSLGNX0) handles all non-MSC, non-LU 6.2 VTAM
nodes (excluding MTOs at IMS initialization) with which IMS communicates. The
Logon exit routine enables you to control the way logons are processed.

This topic contains Product-sensitive Programming Interface information.

Subsections:
v “About this routine” on page 212
v “Communicating with IMS” on page 213

Chapter 3. Transaction Manager exit routines 211

About this routine

The exit routine must handle all non-MSC, non-LU 6.2 VTAM nodes (excluding
MTOs at IMS initialization) with which IMS communicates. All attempts to log on
to ACF/VTAM terminals if ETO is active cause IMS to call this exit routine.

Depending on your installation's needs, you can write the Logon exit routine to:
v Select the logon descriptor that you want IMS to reference when building the

terminal control block structure for the logical unit (LU) that is logging on.
v Create or modify the user data that you want IMS to pass to the Signon exit

routine (DFSSGNX0). The user data can be entered as autologon data, with the
/OPNDST command, or with the VTAM internal commands INITSELF or
INITOTHER. Alternatively, the Logon exit routine can build the user data.

v Allow or disallow a logon attempt based on the maximum number of sessions,
or manage logons according to the time of day, certain terminal names, or other
criteria that you specify.

v Specify or override the autologoff (ALOT), autosignoff (ASOT), screen size, or
model values.

v Override the AUTOSIGN and NOAUTSGN keywords for static terminals.
v Override the default status recovery mode for the following terminals:

– Static terminals
– SLUP dynamic terminals
– FINANCE dynamic terminals
– ISC dynamic terminals

The Logon exit routine is optional.

Recommendation: If you include this exit routine, you should also include the
Logoff exit routine (DFSLGFX0) to perform any necessary cleanup operations.

If you do not supply the Logon exit routine, logons proceed as usual with the
chosen logon descriptor.

The following table shows the attributes of the Logon exit routine.

Table 71. Logon exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSLGNX0.

Including the routine
If you want IMS to call the Logon exit routine, include it in an authorized library in
the JOBLIB, STEPLIB, or LINKLIST library concatenated in front of the IMS.SDFSRESL.
If the exit routine is included, IMS automatically loads it each time IMS is initialized if
ETO=Y (after the Initialization exit routine, DFSINTX0, changed the ETO= keyword).

212 Exit Routines

Table 71. Logon exit routine attributes (continued)

Attribute Description

IMS callable services
To use callable services with this routine, you must do the following:

v Issue an initialization call (DFSCSII0) to obtain the callable service token and a
parameter list in which to build the function-specific parameter list for the desired
callable service.

v Use the current address ECB found at offset 0 for the DFSCSII0 call.

v Link DFSCSI00 with your user exit.

Restriction: Global terminal or user resource information is not available to user exit
DFSLGNX0. Callable services will only return local information for DFSLGNX0.

Sample routine location IMS.ADFSSMPL

Extended Recovery Facility (XRF) considerations

During XRF tracking mode, IMS calls the Logon exit routine in the alternate
system when the terminal control blocks are created for an XRF type 1 session with
an ETO terminal. If processing is on an XRF alternate system, IMS ignores the
contents of register 15 on exit. The exit routine is called during XRF alternate
tracking only for the logon of a class 1 terminal.

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

Register Contents

R1 Address of the “IMS standard user exit parameter list” on page 5 (Version 1)

R13 Save area address

R14 Return address to IMS

R15 Entry point address of exit routine

The following table lists the user logon parameters. The mapping for this
parameter list is DSECT LGNXPARM in DFSLGNXP macro. The address of this
parameter list is in the standard exit parameter list field SXPLFSPL.

Table 72. User logon exit parameter list

Offset Length Description

+0 4 Current ECB address.

+4 4 SCD address.

+8 4 Pointer to User Table.

Chapter 3. Transaction Manager exit routines 213

Table 72. User logon exit parameter list (continued)

Offset Length Description

+12 4 Pointer to the parameter list received from
ACF/VTAM when application logon or SCIP bind
exit routines are scheduled. If processing is on an
XRF system, this value is zero.

+16 4 Pointer to multi-word parameter list, mapped by
DSECT LGNXPARM in DFSLGNXP macro.

+20 4 CLB pointer for the node trying to logon. If the node
does not yet exist, this value is zero. The node
always exists on an XRF system.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for
register 15, which contains one of the following return codes:

Register Contents

15 One of the following return codes:

Return code Meaning

0 LOGON accepted

4 LOGON rejected

Related reference:
“Logoff exit routine (DFSLGFX0)” on page 208
“Routine binding restrictions” on page 9
“IMS callable services” on page 13
“IMS standard user exit parameter list” on page 5

z/OS: LOGON exit

Selecting a logon descriptor
If the terminal control block structure already exists for the terminal that is logging
on, no logon descriptor is needed, and IMS uses the existing terminal control block
structure.

If no terminal control block structure exists for the terminal, you can write the
Logon exit routine to select the logon descriptor, select a logon descriptor by using
the LOGOND= keyword, or let IMS select the logon descriptor using the LU name
or default descriptor.

The following figure shows the search order IMS uses to select the logon
descriptor. IMS selects the first valid logon descriptor that it finds and uses that
logon descriptor to build the terminal control block structure. If IMS cannot find a
valid logon descriptor, including the default logon descriptor, it rejects the logon
request.

214 Exit Routines

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.istprg0/snasess.htm

If the exit routine supplies the name of a valid logon descriptor, IMS uses the
logon descriptor associated with that name to build the terminal control block
structure. If the Logon exit routine does not choose a logon descriptor, or if the exit
routine is not included in the system, IMS uses the logon descriptor requested on
the LOGOND= keyword (entering the keyword and descriptor as user data when
you log on). If neither the exit routine nor the LOGOND= keyword identifies a
valid logon descriptor, IMS searches for a logon descriptor with the same name as
the logical unit (LU). If IMS cannot locate a logon descriptor with this name, IMS
uses the default logon descriptor table shown in the following table to select the
logon descriptor.

Table 73. Default logon descriptor table

CINIT LUTYPE CINIT TS Default logon descriptor

X'06' Not applicable DFSLU61

X'04' Not applicable DFSSLU4

X'02' Not applicable DFSSLU2

X'01' Not applicable DFSSLU1

X'00' X'04' DFSSLUP

X'00' X'03' DFS3270

IMS cannot generate DFSFIN or DFSNTO logon descriptors because of conflicting
CINIT information. The wrong default logon descriptors are chosen for the
FINANCE and NTO terminal types unless you do all of the following:
v Write the Logon exit routine so that it always supplies the appropriate logon

descriptor name.
v Rename DFSFIN to DFSSLUP if no SLU P terminals exist.
v Rename DFSNTO to DFSSLU1 if no SLU1 terminals exist.

If you do not want dynamic logons for a certain LU type, delete the default logon
descriptor for that type from the system, and be sure that the exit routine does not
attempt to choose it.

Regardless of how the logon descriptor is selected, the descriptor must agree with
the LUTYPE and TS fields (in the MODEENT macro of the VTAM mode table), or
IMS rejects the logon request.

LU 6.2 Edit exit routine (DFSLUEE0)
The LU 6.2 Edit exit routine (DFSLUEE0) enables you to edit input and output LU
6.2 messages for IMS-managed LU 6.2 conversations. It is also called if a message
is inserted from an alternate PCB destined for an LU 6.2 destination.

This topic describes the LU 6.2 Edit exit routine. This exit routine is for use with
standard IMS and modified IMS application programs. It is not called for CPI
Communications driven application programs.

Figure 13. Logon descriptor search order

Chapter 3. Transaction Manager exit routines 215

Subsections:
v “About this routine”
v “Communicating with IMS” on page 217

About this routine

You can write the LU 6.2 Edit exit routine to:
v Change the APPC local LU name of an asynchronous LU 6.2 outbound

conversation.
v Change the synchronization level of an asynchronous LU 6.2 conversation.
v View the contents of a message segment and continue processing.
v Change the contents of a message segment and continue processing.
v Discard a message segment.
v Perform a DEALLOCATE_ABEND of the LU 6.2 conversation.

For input messages, IMS calls the LU 6.2 Edit exit routine for each message
segment before the message segment is inserted to the IMS message queue. The
exit routine can edit message segments as necessary before the application program
processes the input message.

For output messages, IMS calls the LU 6.2 Edit exit routine for each message
segment before the message segment is sent to the LU 6.2 program. The exit
routine can intercept the data sent by the application program and edit it for the
particular destination.

The following table shows the attributes of the LU 6.2 Edit exit routine.

Table 74. LU 6.2 edit exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSLUEE0.

Binding
The LU 6.2 Edit exit routine must be reentrant.

The IMS-provided default exit routine specifies a return code of zero. If you write your
own exit routine, replace the IMS default routine by binding the one you wrote into
the IMS.SDFSRESL or including it in an authorized library in the JOBLIB, STEPLIB, or
LINKLIB library concatenated in front of IMS.SDFSRESL.

Including the routine No special steps are required to include this routine.

IMS callable services This exit routine is not eligible to use IMS callable services.

Sample routine location IMS.ADFSSRC (member name DFSLUEE0).

This sample is a default exit routine, which IMS always calls for LU 6.2 messages
processed under the DL/I call interface.

Changing a message segment

The LU 6.2 Edit exit routine can change the message length and contents, provided
that it resets the message length field to reflect the new length. The exit routine can
increase the message length by up to 256 bytes, but the total length (length field,
flag field, and message) cannot exceed 32,767 bytes. If the message exceeds this

216 Exit Routines

limit, IMS truncates the message and issues DFS1967 to the master terminal
operator (MTO) to indicate a message buffer overlay. The exit routine can reduce
the message length without restriction.

Changing a local LU name

The LU 6.2 Edit exit routine can change the local LU name. Word 12 points to the
local LU name that is used to allocate outbound conversations. The LU 6.2 Edit
exit routine can be used to change that name. The local LU name can be changed
only for outbound conversations.

Network-qualified names

Network-qualified LU names can be up to 17 bytes long.

MOD name support for APPC

An LU 6.2 application program can send the LTERM and the MOD name in the
first segment of the message. IMS saves the LTERM and MOD name in the I/O
PCB.

At entry, IMS provides the address of the MOD name in the first segment of the
message sent to the LU 6.2 Edit exit routine (DFSLUEE0). DFSLUEE0 checks the
contents of the first message segment. If IMS finds the MOD name, it uses the
MOD name to format the output message. If IMS finds the LTERM, it can use the
LTERM to change the destination of the output.

Use the Initialization exit routine (DFSINTX0) to create the user table. This exit
routine must pass the address of the user table to IMS, and IMS passes the address
to DFSLUEE0.

Communicating with IMS

IMS uses the entry and exit registers and a parameter list to communicate with the
exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Chapter 3. Transaction Manager exit routines 217

Register Contents

1 Address of parameter list. The parameter list contains the following
addresses.

Bytes Content

00-03 Address of a flag field indicating what type of message caused
IMS to call the exit routine. This field contains one of the
following flags (fixed length, right justified, padded with
zeros):

0 Input message

4 Output message

04-07 Address of the area containing either the input or output
message segment length, message flag, and message segment
(variable length, left justified). The value in the length field
includes the length field, flag field, and message.

08-11 Address of transaction code (fixed length, left justified, padded
with blanks).

12-15 Address of LU name (fixed length, left justified, padded with
blanks).

16-19 Address of user ID (fixed length, left justified, padded with
blanks).

20-23 Address of return code, which is an exit parameter.

24-27 Address of LTERM (fixed length, left justified, padded with
blanks).

28-31 Address of MOD name (fixed length, left justified, padded with
blanks).

32-35 Address of user table, which is an entry parameter.

36-39 Address of message flag (if bit zero of the message flag equals
1, it is the first segment).

40-43 Address of user ID indicator byte, which describes the content
of the user ID field and can have a value of one of the
following: U (user ID), L (LTERM), P (PSBname), or O (Other).

44–47 For asynchronous outbound conversations the exit can change
the address of the synchronization level (one byte). The
synchronization level can be N (None), C (Confirm), or S
(Syncpoint). For asynchronous conversations the exit can
change the synchronization level. Note that only
synchronization level N and C are supported for asynchronous
conversations.

48-52 Address of the local LU name (8 bytes) or the base LU if no
local LU name has been used. For asynchronous outbound
conversations, the exit can change it to another LU defined for
this IMS.

13 Address of save area. The exit routine must not change the first three words.

14 Return address to IMS.

15 Entry point of exit routine.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers. The registers
contain the following:

218 Exit Routines

Register Contents

1 Address of parameter list (provided at entry). The parameter list contains the
following addresses.

Bytes Content

00-03 Used on entry only.

04-07 Address of the area containing the message segment length,
message flag, and message segment (variable length, left
justified). The value in the length field is the total length and
includes the length field, flag field, and message.

08-19 Used on entry only.

20-23 Address of the area for one of the following return codes from
the exit routine. (IMS treats any other value as 0.)

0 IMS performs the default action: continue processing.

2 For asynchronous conversations, IMS must discard
the message if it is not deliverable.

4 Discard this message segment.

8 DEALLOCATE_ABEND the conversation.

24-27 Address of LTERM (exit parameter).

28-31 Address of MOD name (entry and exit parameter).

32-35 Address of User Table (entry parameter).

36-39 Address of message flag (Bit 0 = 1 then first segment) (entry
parameter).

40-43 Address of user ID indicator.

44-47 For asynchronous outbound conversations the exit can change
the address of the synchronization level (one byte). The
synchronization level can be N (None), C (Confirm), or S
(Syncpoint). For asynchronous conversations the exit can
change the synchronization level. Note that only
synchronization level N and C are supported for asynchronous
conversations.

48-52 Address of the local LU name (8 bytes) or the base LU if no
local LU name has been used. For asynchronous outbound
conversations, the exit can change it to another LU defined for
this IMS.

Data format of parameters

The following table shows the data type, length, and format of the fields to which
the parameter list (addressed by register 1) points.

Table 75. Format of parameters

Bytes Data address Parameter use Data type Data length Data format1

00-03 Address of flag Fixed length, right
justified, padded
with zeros

Input 4 bytes X'flag'

04-07 Address of message
segment length,
message flag, and
message segment

Variable length, left
justified

Input and output n bytes2 LLZZmessage

Chapter 3. Transaction Manager exit routines 219

Table 75. Format of parameters (continued)

Bytes Data address Parameter use Data type Data length Data format1

08-11 Address of transaction
code

Fixed length, left
justified, padded
with blanks

Input 8 bytes codebbbb

12-15 Address of LU name Fixed length, left
justified, padded
with blanks

Input 17 bytes namebbbb

16-19 Address of user ID Fixed length, left
justified, padded
with blanks

Input 8 bytes user IDbb

20-23 Address of return
code

Fixed length, right
justified, padded
with zeros

Output 4 bytes X'code'

24-27 Address of LTERM Fixed length, right
justified, padded
with zeros

Output 8 bytes ltermname

28-31 Address of MOD
name

Fixed length,
left-justified, padded
with blanks

Input and output 8 bytes modname

32-35 Address of user table Variable length Output ? bytes3 usertablename

36-39 Address of message
flag

Fixed length Output 1 byte X'code'

40-43 Address of user ID
indicator

Fixed length Input 1 byte indicator

44–47 Address of
synchronization level

Fixed length Input and output 1 byte APPC
synchronization
level

48-52 Address of the local
LU name

Fixed length Input and output 8 bytes APPC local LU
name

Note:

1ZZ = flag field; LL = length field; bb = blanks; words in italics represent data values. The value in the length field LL
includes the length field, flag field, and message.

2The exit routine can increase the message length by up to 256 bytes, but the total length cannot exceed 32,767 bytes.

3The length of this user table is determined by the user.

Related tasks:

Qualifying network LU names (Communications and Connections)
Related reference:
“Routine binding restrictions” on page 9

Message Control/Error exit routine (DFSCMUX0)
You can use the Message Control/Error exit routine (DFSCMUX0) to control
transactions, responses, and message switches that are in error.

This topic contains Product-sensitive Programming Interface information.

220 Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_appcad_qualif_netnames.htm#ims_appcad_qualif_netnames

This topic describes the Message Control/Error exit routine. The exit routine can
request that IMS handle the messages that are in error, depending on the condition
that led IMS to call the exit routine. The /DEQUEUE command supports the
MSNAME keyword so that this control is extended to messages queued on
Multiple Systems Coupling (MSC) links.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 223

About this routine

You can write the Message Control/Error exit routine to:
v Perform processing at MSC link start and link termination time that is unique to

your installation, such as obtaining and freeing additional storage, and activating
and deactivating a program.

v Reroute a message to a different local or remote transaction, local or remote
LTERM, or an LU 6.2 destination. The target LTERM must be an existing
LTERM; IMS does not dynamically create the LTERM, even if the Extended
Terminal Option (ETO) feature is active. For more information about the ETO
feature, see Overview of the Extended Terminal Option (Communications and
Connections).

v Discard a message and send an informational message to the current master
terminal operator (MTO) or input terminal to indicate that the message is
discarded.

v Suppress the /DEQUEUE command, or suppress the command and send an
informational message to the entering to indicate that the command is
suppressed.

v Process late or redundant response messages that are sent in response to a
synchronous program switch request. A late response message is any message
that is sent after the original request timed out. A redundant response message
is any message that is sent after the request receives the first response. The
default action for a late or redundant response message is to dequeue it. You can
write a DFSCMUX0 exit routine to route late or redundant response messages to
a logical terminal or an OTMA destination instead.

A sample exit routine is available from the IMS library. The sample exit routine is
the default routine. IMS calls the sample exit routine unless you replace it with
your own version. The sample exit routine includes code that supports the
following keywords on the /DEQUEUE command:

lterm

node

msname

luname plus tpname

The default action for this exit routine is to proceed with the /DEQUEUE
command.

The following table shows the attributes of the Message Control/Error exit routine.

Table 76. Message control/error exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Chapter 3. Transaction Manager exit routines 221

|
|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_eto_overview.htm#ims_eto_overview
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_eto_overview.htm#ims_eto_overview

Table 76. Message control/error exit routine attributes (continued)

Attribute Description

Naming convention You must name this exit routine DFSCMUX0.

Binding This exit routine must be reentrant.

The sample exit routine is a default routine. If you write your own exit routine, you
must bind it with the IMS control region SDFSRESL.

IMS callable services This exit routine cannot use callable services.

Sample routine location IMS.SDFSSMPL (member name DFSCMUX0).

The sample routine provided is compatible with the MSC error handling and
/DEQUEUE command processing that exists for prior releases of IMS. You can ensure
compatibility by including this sample exit routine logic in your customized version.

The sample exit routine prolog contains additional usage information.

The MSNB DSECT is located in IMS.SDFSSMPL (member name MSNB).

Calling the routine

IMS calls the Message Control/Error exit routine and sets an entry flag in the
interface block as a result of one of the following:
v Link start.

A RSTART LINK command is entered to start an MSC link or when the MSC
link is started by the partner system (MSC environment only).

v Link termination.
This exit routine is called at link termination time mainly when a PSTOP link
command is entered from IMS, or the link is stopped by the partner IMS, for all
access methods of MSC. Most errors (such as, invalid data, queue error, or access
method) in MSC do not cause the link to be terminated.
For MSC VTAM, the exit routine is also called in the following cases:
– CLSDST/TERMSESS complete
– Lost term error
– Request canceled by CLSDST
– Error during start
– Clean up or Notify
– Z-net or cancel

v Send error.
– z/OS cross-system coupling facility send failed.
– An invalid data block (send error) is detected during a transmission (MSC

environment only). The sender must handle the message that is in error. You
can write the exit routine to check if the link is down or stopped at this time.
DFS2140 with reason code 2146 indicates a send error.

– An LU 6.2 session failed while sending an output message to an LU 6.2
program. The exit routine can only reroute or discard the message. The
default action is to discard the message.

– A send to an LU 6.2 program is rejected with a deallocate or with a send
error. The exit routine can only ask IMS to reroute or discard the message.
The default action is to discard the message.

222 Exit Routines

Restriction: When the exit routine discards a message from an LU 6.2
conversation because a send error occurred, the exit routine must not send an
informational message to the originating LU 6.2 application. The informational
message can be rejected for the same reason that the original message was
rejected.
If a send error occurs while sending a reply from an IMS local conversational
transaction or a Fast Path transaction to an LU 6.2 program, this exit routine is
not called. If the reply is from a remote transaction or a local nonconversational
transaction, this exit routine is called.

v Receive error
An input message error (receive error) is detected by the receiver of a message
(MSC environment only). The following messages indicate a receive error:
DFS064, DFS065, DFS076, DFS1959E, DFS2125, DFS2126, DFS2127, DFS2128,
DFS2129, DFS2130, DFS2131, DFS2132, DFS2133, DFS2134, DFS2137, DFS2141,
DFS2143, DFS2163, DFS2164, DFS2165, DFS2167, DFS2174, DFS2175, DFS2176,
and DFS3470.

v A /DEQUEUE command with the specified lterm, node, msname, luname plus tpname
and tmember name plus tpipe name keyword is entered. IMS calls the exit routine
before processing each message on the queue.

Communicating with IMS

IMS uses the entry and exit registers, and the MSNB interface control block to
communicate with the exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers in the provided save area. The
registers contain the following information:

Register Contents

1 Address of Message Control/Error exit interface block, MSNB.

13 Address of save area. The exit routine must not change the first 3 words.

14 Return address to IMS.

15 Entry point of exit routine.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers. The contents of
the interface block pointed to by register 1 can be different.
Related reference:
“Routine binding restrictions” on page 9

Rerouting messages
Given certain conditions, the Message Control/Error exit routine enables you to
reroute transactions, responses, and message switches that are in error.

The Message Control/Error exit routine enables you to reroute transactions,
responses, and message switches that are in error. When you reroute a message to
a different destination, that destination must be a local or remote transaction, a
local or remote LTERM, an LU 6.2 destination, or OTMA tmember and tpipename.
The new destination must be capable of processing the message.

Chapter 3. Transaction Manager exit routines 223

Restriction: You cannot reroute a message to a CPI-C driven application program.

An LU 6.2 destination is the LU 6.2 application program and is always defined
with the LU name, plus the TP name.

A message that is rerouted to a transaction (conversational or nonconversational)
can include the interface block if your exit routine sets the MSX2QBK bit in the
MSXFLG2 field of the MSNB interface block. If this bit is on, a new message (with
the interface block included) is built and enqueued to the new destination. If this
bit is off, the original message is enqueued.

The format of the message depends on the message type and the new destination
type as shown in the following table. Each destination type is discussed in the
topic following the figure.

Table 77. Rerouting messages to new destinations

Message type New destination
Message format (if
MSX2QBK is turned on)

1. Conversational Conversational transaction SPA + interface block +
message

2. Conversational Nonconversational
transaction

Interface block + unpacked
SPA + message

3. Nonconversational (but not
message switch)

Nonconversational
transaction

Interface block + message

4. Message switch Nonconversational
transaction

Interface block + message

5. Message switch LTERM Original message

6. All types Luname, tpname

7. OTMA Transaction, lterm, luname +
tpname, or OTMA member
name + tpipe name

Interface block + message if
the new destination is
transaction or lterm, the
message format rules for
message types 1 through 5
are applicable.

Recommendation: If a message must be rerouted, reroute it to a local
nonconversational transaction to avoid further error. This nonconversational
transaction is a special-purpose error processing transaction and can process all
messages that are rerouted to it.

Attention: During the rerouting process, the original message is dequeued first,
and then the newly built message is enqueued to the new destination. If a system
failure occurs between the dequeue and enqueue processing, the message can be
lost.

Subsections:
v “Rerouting to a conversational transaction” on page 225
v “Rerouting to a nonconversational transaction” on page 225
v “Rerouting to an LTERM” on page 226

224 Exit Routines

Rerouting to a conversational transaction

When a conversational message is rerouted to another conversational transaction,
the scratchpad area (SPA) is the first segment, and the interface block is the next
segment (if your exit routine sets the MSX2QBK bit). If you reroute a
conversational transaction to a different conversational transaction, make sure that
both transactions have the same SPA size.

Rerouting to a nonconversational transaction

When the new destination is a nonconversational transaction, the interface block is
the first segment of the rerouted message (if your exit routine sets the MSX2QBK
bit).

If the message is conversational, the segment following the interface block is the
unpacked SPA and should be treated as a data segment by the new destination's
application program. If the message is conversational or is in response mode (or
both), it is the user's responsibility to end the conversation and take the input
terminal out of response mode. One of the following can be done to end the
conversation or take the terminal out of response mode:
v Enter the /EXIT command from the input terminal, if the keyboard is not locked.
v If the input terminal is a static terminal, from the MTO or system console of the

input system, enter:
–

/DISPLAY CONVERSATION HELD NODE nodename
or
/DISPLAY CONVERSATION BUSY NODE nodename

(to determine the conversation ID)
– /STOP NODE nodename

– /EXIT CONVERSATION conversation id NODE nodename

– /START NODE nodename

(if appropriate)

These commands can also be issued from an AOI program.
v If the input terminal was dynamically created using the Extended Terminal

Option (ETO) feature, from the MTO or system console of the input system,
enter:
–

/DISPLAY CONVERSATION HELD USER username or
/DISPLAY CONVERSATION BUSY USER username

(to determine the conversation ID)
– /STOP USER username

– /EXIT CONVERSATION conversation id USER username

– /START USER username

(if appropriate)
These commands can be issued from an AOI program.

Related Reading: For more information on these commands, see IMS Version 13
Commands, Volume 1: IMS Commands A-M.

Chapter 3. Transaction Manager exit routines 225

Rerouting to an LTERM

When the new destination for a message is an LTERM and a message is rerouted
from one physical terminal type to another, IMS rejects the message and issues an
error message (such as DFS2078) if the new destination cannot handle the data.

Related Reading: For more information, see IMS Version 13 Messages and Codes,
Volume 1: DFS Messages.
Related reference:
“Message Control/Error Exit Interface Block (MSNB)”

Message Control/Error Exit Interface Block (MSNB)
The interface block for the Message Control/Error exit routine contains all of the
information about the message, including contents of key fields as they appear on
entry and exit. The exit fields are used to return information to IMS.

The entry flag (MSNFLG1) indicates the reason the exit routine is called, and the
exit flag (MSXFLG1) determines what action will be performed when control is
returned to IMS. MSNBSEG1 points to the first segment of the message. If the
segment is a SPA, IMS unpacks it before passing control to the exit routine. The
exit routine can place any information that it needs into the user work area
(MSNBUSRA); IMS does not disturb the contents of this work area.

The Message Control/Error exit routine can only modify seven fields: MSNBRTPG,
MSNBRTPN, MSNBDEST, MSNBRINF, MSNBUSRA, MSXFLG1, and MSXFLG2.
All other fields are read-only. If the exit routine modifies MSNBDEST, it must
modify MSNBRINF. If the exit routine modifies MSNBRTPG and MSNBRTPN, it
must modify MSNBRINF. In addition, the exit routine can modify MSXFLG2 if the
exit routine modifies MSNBDEST and MSNBRINF, or MSNBRTPG, MSNBRTPN
and MSNBDEST.

Subsections:
v “Contents of interface block on entry”
v “Contents of interface block on exit” on page 228
v “Logging the interface block” on page 230

Contents of interface block on entry

The following table shows the contents of key fields in the Message Control/Error
exit interface block as they appear on entry.

226 Exit Routines

Table 78. Key fields of interface block on entry

Byte Field name Contents

X'C' MSNFLG1
Entry Flag

Meaning

X'80' MSC link start

X'40' MSC link termination

X'20' Send error detected

X'10' Receive error detected

X'08' /DEQUEUE command entered

X’04’ /DEQUEUE command called CONU0 before exit

X'02' DFS message send error detected

X’01’ Late response message to a synchronous program switch request

X'D' MSNFLG2
Entry Flag

Meaning

X'80' Message prefix error detected

X'40' Invalid data block detected

X'20' LU 6.2 session failed or send action was rejected

X'04' z/OS cross-system coupling facility send action failed

X'E' MSNFLG3
Entry Flag

Meaning

X'80' DEQUEUE NODE command entered

X'40' DEQUEUE LTERM command entered

X'20' DEQUEUE MSNAME command entered

X'10' DEQUEUE LUNAME TPNAME command entered

X'08' DEQUEUE TMEMBER TPIPE name entered

X'F' MSNFLG4
Entry Flag

Meaning

X'80' Message is a transaction

X'40' Message is a message switch

X'20' Message is a response

X'10' SPA in the message

X'08' Response mode message

X'04' Conversation starting

X'02' Message switch from DFSAPPC

X'01' Message from APPC type message

X'26' MSNBOSID Source SYSID (if MSC)

X'28' MSNBDSID Destination SYSID (if MSC)

X'2A' MSNBMGID Error message number (if receive error)

X'2C' MSNBORGN Message origin source name 1

X'5C' MSNBDSNM Final destination of message

Chapter 3. Transaction Manager exit routines 227

||

||

Table 78. Key fields of interface block on entry (continued)

Byte Field name Contents

X'88' MSNBRTPG Length of TP name from /DEQ LU name TP name command

X'8A' MSNBRMEM Rerouted destination member name for OTMA or tmember name of /DEQ
tmem/tpipe

X'8A' MSNBRTPN TP name from /DEQ LU name TP name command

X'CA' MSNBDEST v Node if /DEQ node command

v LTERM if /DEQ lterm command

v MSNAME if /DEQ msname command

v LU name TP name if /DEQ luname tpname command

X'14E' MSNBUSRA User work area

Note: 1 In an LU 6.2 conversation, when the outbound message is re-enqueued across restart, the message origin
source name (MSNBORGN) is blank.

Contents of interface block on exit

The following table shows the contents of key fields in the Message Control/Error
exit interface block as they appear on exit. The exit routine uses these fields to
return information to IMS.

228 Exit Routines

Table 79. Key fields of interface block on exit

Byte Field name Contents

X'84' MSXFLG1
Exit Flag

Meaning

X'00' No message is involved. (Perform the default action,
which is the same action as in the prior release.) You
can modify the exit routine to perform:

v Initialization processing (including external IMS
System Services) at link start

v Clean-up processing at link termination

X'80' Reroute the message to a different local or remote
transaction, a local or remote LTERM, or an LU 6.2
destination. The exit routine must provide the new
destination name in the MSNBDEST field, and set
MSNBRINF to indicate an LTERM, a transaction, or
an LU 6.2 destination.

X'60' Perform actions of both X'20' and X'40'.

X'40' Discard the message or proceed with the /DEQUEUE
command.

X'30' Perform actions of both X'10' and X'20'.

X'20' If the exit routine selects this action, IMS sends an
informational message:

v If the /DEQUEUE command was entered, IMS sends
DFS2185 to the entering terminal.

v If IMS detected a receive error, IMS sends DFS2184
to the current MTO or input terminal.

v If IMS detected a send error, IMS sends DFS2184 to
the current MTO.

If this action is selected by default and not by the exit
routine, IMS sends an informational message:

v On a send error, IMS sends DFS2140.

v On a receive error, IMS sends the message number
in the MSNBMGID field.

This exit flag can be specified only in combination
with exit flag X'10' or X'40'.

X'10' Suppress the /DEQUEUE command. The /DEQUEUE PURGE
operation is terminated if the exit routine requests to
suppress the command.

X'85' MSXDFT1
Exit Flag

Meaning

X'00' No message involved (link start or link termination)
or the default action.

X'80' Reroute message to a different destination.

X'40' Discard the message or proceed with the /DEQUEUE
command.

X'20' Send error message to current MTO or input
terminal.

X'10' Suppress the /DEQUEUE command.

Chapter 3. Transaction Manager exit routines 229

Table 79. Key fields of interface block on exit (continued)

Byte Field name Contents

X'86' MSXFLG2
Exit Flag

Meaning

X'80' MSX2QBK field; include interface block in the
message when rerouting to a different destination.

X'88' MSNBRTPG Length of rerouted TP name.

X'8A' MSNBRMEM Rerouted destination member name for OTMA or tmember
name of /DEQ tmem/tpipe

X'8A' MSNBRTPN Rerouted TP name.

X'CA' MSNBDEST Destination name of local or remote transaction or local or
remote LTERM, or reroute LU name or reroute netid.luname
(left-justified, padded with blanks) if reroute the message.

X'105' MSNBRINF
Exit Flag

Meaning

X'80' Destination is a transaction.

X'40' Destination is an LTERM.

X'20' Destination is a dynamic local LTERM.

X'10' Destination of LU name plus TP name.

X'08' Destination of OTMA member plus tpipe.

X’04’ Destination is the OTMA tmember and tpipe
specified in the descriptor for a late response message
to a synchronous program switch request.

X'107' MSNBRFL1
Exit Flag

Meaning

X'80' Destination is a local transaction.

X'40' Destination is a remote transaction.

X'20' Destination is a remote LTERM.

X'10D' MSMFLG1
Exit Flag

Meaning

X'80' Next segment is a SPA.

X'40' The two-byte SID was provided in the MSC
extension.

X'12A' MSNBMSG Message area when error encountered in the interface module.

X'14E' MSNBUSRA User work area.

Logging the interface block

Two copies of the interface block are added to the existing X'6701' log record. The
first copy is labeled “MSNB” and represents the interface block before IMS calls
the Message Control/Error exit routine with the log record ID of CMEA. The
second copy is labeled “USR MSNB” and represents the interface block after IMS
calls the exit routine with the log record ID of CMEB. The X'6701' log record can be
logged for informational reasons or to indicate an error in preparing to call the exit
routine, or in performing the action(s) requested by the exit routine. The trace ID is

230 Exit Routines

||
|
|

CMEI. These log entries are forced entries for a send error, a receive error, and a
/DEQUEUE command, regardless of any trace options that are specified. For link
start and link termination, the interface block is only logged if the trace option is in
effect on the link or node involved.

Related Reading: For more information on this log record, see IMS Version 13
Diagnosis.

Valid flags and default actions
IMS performs the default actions if the exit routine returns control to IMS without
modifying the exit flag field, if the exit routine requests an invalid exit flag, or if
IMS encounters an error while trying to perform the action requested by the exit
routine

Default actions are specified in the MSXDFT1 field. The exit flag field (MSXFLG1)
is located in the interface block. If an invalid exit flag is requested, IMS sends error
message DFS2184 to the current MTO, in addition to performing the default action.

The following table shows valid entry flags, exit flags, and default actions.

Table 80. Flags and default actions

Entry flag (MSNFLG1) Valid exit flags (MSXFLG1) Default action (MSXDFT1)

X'80' X'00' X'00'

X'40' X'00' X'00'

X'20' X'00', X'40', X'60', X'80' X'60' + stop MSNAME

X'10' X'00', X'40', X'60', X'80' X'60'

X'08' X'00', X'10', X'30', X'40', X'80' X'40'

Note: The default action for a send error (entry flag = X'20') includes STOP MSNAME. In
addition, the default action for the DEQUEUE command is to proceed with the command. If
you do not want these actions to take place, specify a different exit flag depending on the
actions that you want to occur.

If any errors are encountered while IMS tries to perform the requested action, the
action is ignored and the default action is performed. The MSNBMSG field of the
interface block of the forced 6701 CMEI log record will contain one of the
following brief descriptions that describe the error encountered, if applicable:
v No storage for message buffer
v Invalid destination for reroute
v Cannot reroute MSG switch to CONV
v Error while building rerouted MSG
v Reroute destination not found
v Cannot reroute CONV MSG to LTERM
v Cannot reroute non-CONV MSG to CONV
Related reference:
“Message Control/Error Exit Interface Block (MSNB)” on page 226

Chapter 3. Transaction Manager exit routines 231

Message Switching (Input) edit routine (DFSCNTE0)
This Message Switching (Input) edit routine (DFSCNTE0) is called when a message
is entered from a terminal with EDIT=(YES,...) in the NAME macro to another
terminal

This topic contains Product-sensitive Programming Interface information.

This topic describes the Message Switching (Input) Edit routine. Information about
using a sample routine is provided at the end of this topic.

Subsections:
v “About this routine”
v “Communicating with IMS”

About this routine

A facility similar to the Transaction Code (Input) Edit is provided for message
switching. The optional user-written routine, whose CSECT and load module name
must be DFSCNTE0, is included in the system at IMS system definition time. Only
one Message Switching edit routine can be specified for an IMS online control
program. This routine is specified for inclusion with the online control program by
specifying EDIT=(YES,...) in one or more NAME macros during system definition.
It is not called when the message is inserted using a program-to-program switch.

The Message Switching (Input) edit routine does not support terminals that are
defined dynamically using the Extended Terminal Option (ETO) feature.

Related Reading: For more information on ETO, see IMS Version 13
Communications and Connections.

The following table shows the attributes of the Message Switching (Input) edit exit
routine.

Table 81. Message switching (input) edit exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSCNTE0.

Including the routine No special steps are required to include this routine.

IMS callable services To use IMS callable services with this routine, you must issue an initialization call
(DFSCSII0) to obtain the callable service token and a parameter list in which to build
the function-specific parameter list for the desired callable service. Use the ECB found
in register 9 for the DFSCSII0 call.

This exit routine is automatically linked to DFSCSI00 by IMS. No additional linking is
required To use IMS callable services.

Sample routine location IMS.ADFSSMPL (member name DFSCNTE0).

Communicating with IMS

IMS uses the entry and exit registers to communicate with the routine.

Contents of registers on entry

232 Exit Routines

On entry, the edit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 The buffer location of the input message segment after translation to EBCDIC
and after IMS Basic Editing. The first two bytes of the buffer contain a binary
message length. The third byte of the buffer is binary zeros. The binary count
includes the 4-byte prefix. The fifth byte contains the first byte of message
text.

7 Address of CTB.

9 Address of CLB.

13 Address of save area. The exit routine must not change the first three words.

14 Return address to IMS.

15 Entry point of edit routine.

Use the message segment in the buffer addressed by register 1 as input to the edit
routine.

The edit routine must place the text of the edited message segment to be returned
to IMS in the buffer addressed by register 1. If the input was processed by the IMS
Basic Edit, this buffer is always 10 bytes greater than the 2-byte binary count at the
beginning of the message segment. The length of the message segment can be
expanded or reduced to any desired size. The format of the edited message
segment in the buffer on return to IMS must be two bytes of binary count (LL),
two bytes of binary zeros (ZZ), and edited text. The second two bytes (ZZ) should
not be changed or edited. The LLZZ field is the first four bytes of the message
segment.

Contents of registers on exit

Before returning to IMS, the edit routine must restore all registers except register
15, which must contain one of the following return codes.

Return code Meaning

00 Segment is processed normally.

04 Segment is canceled.

08 Message is canceled and the terminal operator is notified.

12 Message is canceled and the user message identified by register 1 is sent to
the terminal.

Register 1 contains the message number if register 15 contains a return code of 12;
otherwise it is ignored. Any other value causes the message to be canceled and the
terminal operator to be notified.
Related reference:
“Routine binding restrictions” on page 9
“Initialization of IMS callable services (DFSCSII0)” on page 17

Using the sample message switching edit routine (DFSCNTE0)
The edit routine can be used to identify, in the text of the message to the output
terminal, the logical terminal name from which the message was entered and the
message number.

Chapter 3. Transaction Manager exit routines 233

In the example, the input logical terminal name is used. This name is found in the
Communication Name Table (CNT), which is the IMS control block for the input
logical terminal. The CNT is addressed by a field called CTBCNTPT in the
Communication Terminal Block. The field in the CNT containing the logical
terminal name is called CNTNAME. Control blocks are defined in IMS Version 13
Diagnosis.

Non-Discardable Messages user exit (NDMX)
The Non-Discardable Messages exit routine provides users with a mechanism to
tell IMS what to do with the input message associated with an abended
application program.

If IMS does not call the Non-Discardable Messages exit routine, IMS arbitrarily
discards messages from the system and issues message DFS555I.

Subsections:
v “About this routine”
v “Processing options” on page 235
v “Restrictions” on page 237
v “Communicating with IMS” on page 237

About this routine

The Non-Discardable Messages exit routine receives control when an IMS
application abends with an input message in process.

The following table shows the attributes of the Non-Discardable Messages exit
routine.

Table 82. Non-discardable messages exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You can name this exit routine DFSNDMX0 and link it into a library
that is included in the STEPLIB concatenation.

Alternatively, you can define one or more exit routine modules with
the EXITDEF parameter of the USER_EXITS section of the DFSDFxxx
member of the IMS.PROCLIB data set. The routines are called in the
order that they are listed in the parameter.

Binding This exit routine must be reentrant. It executes in non-cross-memory
mode.

234 Exit Routines

|

|
|

|
|
|
|

Table 82. Non-discardable messages exit routine attributes (continued)

Attribute Description

Including the routine If you write your own exit routine and plan to use IMS callable
services, you must manually link edit the routine with DFSCSI00
and you must link the routine with IMS.SDFSRESL. The following
example shows the required bind JCL statements.

INCLUDE LOAD(DFSNDMX0)
INCLUDE LOAD(DFSCSI00)
ENTRY DFSNDMX0
NAME DFSNDMX0(R)

The module or modules must be included in an authorized library
in the JOBLIB, STEPLIB, or LINKLIST concatenation. No additional
steps are necessary to use a single exit routine that is named
DFSNDMX0. If you use multiple exit routines, specify
EXITDEF=(TYPE=NDMX,EXIT=(exit_names)) in the EXITDEF
parameter of the USER_EXITS section of the DFSDFxxx member of
the IMS.PROCLIB data set.

IMS callable services To use callable services with this routine examine the value of the
SXPLATOK field in the IMS standard user exit parameter list to see
if a callable services token is passed to the routine.

v If SXPLATOK is zero, you cannot use callable services with this
routine.

v If SXPLATOK is non-zero, the callable services token is included,
and you can use callable services. You can use the 256-byte work
area addressed by SXPLAWRK in the standard user exit
parameter list to call DFSCSIF0.

Sample routine
location

IMS.ADFSSMPL (member name DFSNDMX0). The mapping of the
NDM interface block is available from the IMS library
IMS.ADFSMAC (member name DFSNDM).

Processing options

The following processing options are valid for DFSNDMX0. If you request an
option that is not valid, IMS ignores your request and continues normal processing
(the default option).

Continue normal processing

Continue normal processing is the default option. Request this option by setting
register 15 to zero before returning to IMS. IMS proceeds as if this exit routine had
not been called.

Depending on the type of application abend that initiated the exit routine, IMS
might delete the message, issue a DFS555I message to the originating terminal and
master terminal, and issue a DFS554A message to the master terminal.

Delete the input message from the system

Request this option by setting register 15 to 4 before returning to IMS. If you
request this option, IMS does the following:
1. Issues a DFS555I message to the originating terminal (if possible) and to the

master terminal
2. Deletes the input message from the system
3. Issues a DFS554A message to the master terminal

Chapter 3. Transaction Manager exit routines 235

|
|
|
|
|
|
|

Queue the message to the suspend queue

Request this option by setting register 15 to 8 before returning to IMS. If you
request this option, IMS queues the input message to the suspend queue of the
transaction that was being processed when the application abended. IMS suspends
the transaction and, depending on the type of abend, might issue a DFS554A
message to the master terminal.

Requeue the input message to the original transaction

Request this option by setting register 15 to 12 before returning to IMS. If you
request this option, IMS queues the input message to the normal processing queue
of the transaction that was being processed when the application abended. IMS
USTOPs the transaction unless directed to do otherwise by the contents of
NDMTRNST and, depending on the type of abend, might issue a DFS554A
message to the master terminal.

Queue the message to an alternate destination

Request this option by setting register 15 to 16 before returning to IMS and placing
a valid destination name in the NDMDEST field of the NDM interface block. The
following table shows the valid destination types and how to specify them in
NDMDEST.

Table 83. Valid alternate destinations

Alternate destination NDMDEST value

LTERM Specify a local, remote, or ETO LTERM, using the LTERM name or
ETO user descriptor name.

OTMA Specify the OTMA TPIPE name, or a name that is meaningful to the
OTMA exit routines.

LU 6.2 Specify a local LU 6.2 device descriptor. The LU 6.2 device must be
on the local IMS subsystem.

Transaction Specify a local or remote transaction code. The following transaction
types are not valid destinations:

v Fast Path exclusive transaction.

v Conversational transaction.

v SAA communications-driven transaction (that is, a CPI-C driven
transaction).

If you specify an invalid transaction type, IMS ignores the request
and continues normal processing.

If NDMDEST contains an invalid destination, such as zeros or blanks, IMS ignores
the request to change the destination and continues normal processing.

If NDMDEST contains a destination that is unknown to IMS, processing depends
on whether OTMA, and ETO or shared queues are active.

With OTMA, and ETO or shared queues active
IMS invokes the OTMA exit routines before invoking the Destination
Creation exit routine (DFSINSX0).

Without OTMA, ETO, or shared queues
IMS ignores the request and continues normal processing.

236 Exit Routines

When IMS requeues the input message to a valid destination, IMS completes the
message processing as follows:
1. Issues a DFS550I message (succeeded version) to the master terminal
2. Issues a DFS555I message to the originating terminal (if possible) and to the

master terminal
3. Deletes the input message from the abended transaction
4. Issues a DFS554A message to the master terminal

Restrictions

Not all destinations are valid alternates for input messages. You can use this exit
routine to requeue messages to alternate destinations.

Communicating with IMS

This exit routine uses a parameter list, entry and exit registers, and the
Non-Discardable Messages interface block (NDM) to communicate with IMS.

Contents of registers on entry

At entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Content

1 Address of the “IMS standard user exit parameter list” on page 5

13 Address of a single standard z/OS save area

14 Return address to IMS

15 Entry point of this exit routine

Standard user exit parameter list

This exit routine uses the Version 6 standard exit parameter list. The address of the
work area passed to this exit routine in SXPLAWRK can be different each time that
this exit routine is called.

If your NDMX user exit can be called in an enhanced user exit environment,
additional user exit routines might be called after your routine. When your user
exit routine finds a transaction upon which to act, it can set SXPL_CALLNXTN in
the byte that SXPLCNXT points to. This tells IMS to not call additional exit
routines.

NDM interface block

The following table shows the contents of the NDM interface block. The address of
this parameter list is in the standard user exit parameter list (field name
SXPLFSPL). The mapping of the NDM interface block is available from the IMS
library IMS.ADFSMAC (member name DFSNDM).

Table 84. NDM interface block

Field Offset Length Content

NDMEYE X'00' 4 NDM eye catcher.

Chapter 3. Transaction Manager exit routines 237

|
|
|
|
|

Table 84. NDM interface block (continued)

Field Offset Length Content

NDMTRAN X'04' 8 Transaction that the application was
processing when it abended. This transaction
is associated with the input message pointed
to by NDMMSGA.

NDMPSBN X'0C' 8 PSB associated with the application that
abended.

NDMUSID X'14' 8 User ID.

NDMGRPNM X'1C' 8 Group name.

NDMUSIDI X'24' 1 Character flag for contents of user ID field
NDMUSID:

Character
Meaning

U User ID

L LTERM

P PSB name

O Other name

NDMSRCFL X'25' 1 A flag that indicates the origin of the input
message. This flag is set with one of the
following values:

Value Meaning

0 NDMLTERM

The source of the input message is
an LTERM. Subsequent fields contain
information about the LTERM.

1 NDMOTMA

The source of the input message is
OTMA. Subsequent fields contain
information about the OTMA source.

2 NDMLU62

The source of the input message is
an LU 6.2 device. Subsequent fields
contain information about the LU 6.2
device.

NDMSRCIN X'26' 1 Start of source description.

NDMLTERM X'26' 8 Name of the originating LTERM if
NDMSRCFL is set to NDMLTERM (value 0).

NDMTPIPE X'26' 8 OTMA TPIPE name if NDMSRCFL is set to
NDMOTMA (value 1).

NDMMEM X'2E' 16 OTMA member name.

NDMTPSYN X'3E' 1 OTMA TPIPE synchronization level.

NDMMGSYN X'3F' 1 OTMA message synchronization level.

NDMLUNM X'26' 8 LU name if NDMSRCFL is set to NDMLU62
(value 2).

NDMNWID X'2E' 8 Network identifier.

NDMSIDE X'36' 8 APPC side information name.

238 Exit Routines

Table 84. NDM interface block (continued)

Field Offset Length Content

NDMMODE X'3E' 8 VTAM mode table name.

NDMTPNML X'46' 2 Length of TP name contained in NDMTPNM.

NDMTPNM X'48' 64 TP name.

NDMCONV X'88' 1 APPC conversation type.

NDMSYNC X'89' 1 APPC synchronization level.

X'8A' 18 Reserved.

NDMABEND X'9C' 4 Abend code in system format 00sssuuu,
where:

sss z/OS system abend code

uuu IMS user abend code

NDMTSLCL X'A0' 8 The local time stamp of the arrival of the
input message in the system. NDMTSLCL
contains the two fields NDMDLCL and
NDMTLCL.

NDMDLCL X'A0' 4 The local date that the message arrived in the
system. The date format is YYYYDDDf, where:

YYYY Year

DDD Julian day

f X'F'

NDMTLCL X'A4' 4 The local time that the message arrived in the
system. The time format is HHMMSSTf, where:

HH Hour

MM Minutes

SS Seconds

T Tenths of the second

f X'F'

Chapter 3. Transaction Manager exit routines 239

Table 84. NDM interface block (continued)

Field Offset Length Content

NDMTSUTC X'A8' 12 The UTC time stamp of the arrival of the
input message in the system. The time stamp
format is the following:

Year/day
YYYYDDDf

Time HHMMSSTHmiju

Offset Aqq$

The time stamp fields include the following:

YYYY Year

DDD Julian day

f X'F'

HH Hour

MM Minutes

SS Seconds

T Tenths of the second

H Hundredths of the second

m Milliseconds

i Tenths of a millisecond

j Hundredths of a millisecond

u Microseconds

A Attribute of the time value

qq Quarter-hours of offset from UTC

$ Decimal sign for the offset, either
positive (X'C') or negative (X'D')

NDMSPAA X'B4' 4 Address of the SPA if the transaction in
NDMTRAN is a conversational transaction.
Otherwise, this field contains zeros.

If the SPA is present, the format is as follows:

LL ZZZZ transaction_code data

LL Two-byte length field that includes
the length of LLZZZZ

ZZZZ Four-byte field that always contains
zeros

transaction_code
Eight-byte field that contains the
transaction code for the conversation
or blanks

data SPA user data

240 Exit Routines

Table 84. NDM interface block (continued)

Field Offset Length Content

NDMMSGA X'B8' 4 Contains the address of the input message if
this field is non-zero. If this field is zero, there
is no message segment and can be an SPA
segment only. The message format is as
follows:

LL ZZ message-segment

LL Two-byte length field that includes
the length of LLZZ

ZZ Two-byte field that always contains
zeros, except for the last message
segment which contains X'FFFF'

message-segment input

message
segment

For a single-segment message:
LL=NDMMSGL and ZZ=X'FFFF'

For a multi-segment message, the pattern is:

v NDMMSGA=address of first segment

v NDMMSGA+LL=address of second
segment

v NDMMSGA+LL+LL= address of third
segment

NDMMSGL X'BC' 4 Total length of input message

X'C0' 20 Reserved

NDMABRSN X'D4' 4 Abend reason code if available.

Chapter 3. Transaction Manager exit routines 241

Table 84. NDM interface block (continued)

Field Offset Length Content

NDMTRNST X'D8' 4 Transaction status flag. DFSNDMX0 can set
this field to any one of the following values.
IMS examines this field on return from
DFSNDMX0.

Value Description

1 Do not (U)STOP the abended
transaction and do not STOP the
abended program.

2 Do not send the DFS555I message.

3 Do not (U)STOP the abended
transaction and do not STOP the
abended program, and, do not send
the DFS555I message.

4 Allow messages to continue to queue
for the transaction, but do not allow
the transaction to continue to be
scheduled. This is equivalent to the
PSTOP TRAN command for this
transaction only. The PSB and
application program are not affected.

5 Allow the transaction to continue to
schedule, but do not allow messages
to continue to queue for the
transaction. This is equivalent to the
PURGE TRAN command for this
transaction only. The PSB and
application program are not affected.

6 Stop the transaction. This is
equivalent to the STOP TRAN
command. The PSB and application
program are not affected.

7 Start the transaction. This is
equivalent to the START TRAN
command. The PSB and application
program are not affected.

NDMDEST X'DC' 8 Name of the alternate destination to which
the input message is to be queued. IMS only
examines this field if you pass return code 16
in register 15. Otherwise, IMS ignores this
field.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except register
15, which must contain one of the following return codes:

Return code Meaning

0 Continue normal processing.

4 Delete the input message from the system.

8 Queue the input message to the suspend queue.

242 Exit Routines

Return code Meaning

12 Requeue the input message to the original transaction.

16
Queue the message to an alternate destination that is named in the
NDMDEST field in the NDM interface block.

Related reference:
“Routine binding restrictions” on page 9
“Initialization of IMS callable services (DFSCSII0)” on page 17
“IMS standard user exit parameter list” on page 5
“OTMA User Data Formatting exit routine (DFSYDRU0)” on page 251
“OTMA Input/Output Edit user exit (DFSYIOE0 and other OTMAIOED type
exits)” on page 247
“OTMA Destination Resolution user exit (DFSYPRX0 and other OTMAYPRX type
exits)”
“Destination Creation exit routine (DFSINSX0)” on page 158

OTMA Destination Resolution user exit (DFSYPRX0 and other
OTMAYPRX type exits)

The OTMA Destination Resolution user exit determines whether an asynchronous
output message needs to be routed to an OTMA destination or a non-OTMA
destination. If the message should be routed to an OTMA destination, the user exit
can determine the final OTMA destination client or Tpipe.

You can use OTMA destination descriptors as an alternative to coding an
OTMAYPRX user exit.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 244

About this routine

The following rules apply for this user exit:
v This routine is optional, and can be written so that IMS data is not prerouted.
v If the destination name is an IMS scheduler message block (SMB) name, this

routine cannot change it.
v Transaction output can be directed to an OTMA client, even if the transaction

originates from a non-OTMA source.
v Transaction output can be directed to a non-OTMA destination, even if the

transaction originates from an OTMA client.
v In an IMS subsystem, only one OTMA Destination Resolution user exit is

allowed.

Important: Within a shared-queues group, ensure that the OTMAYPRX user exit is
the same for both front-end and back-end IMS systems. If these exit routines differ
on one or more back-end IMS systems, asynchronous output might be sent to
different destinations, depending on which back-end IMS system processed the
input.

Chapter 3. Transaction Manager exit routines 243

|
|

|
|

|

|

|
|
|
|

|
|

|
|
|
|
|

If multiple user exits routines are used, ensure the OTMARTUX user exit routines
are defined in the same order on front-end and back-end IMS systems.

The following table shows the attributes of the OTMA Destination Resolution user
exit.

Table 85. OTMA Destination Resolution user exit attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You can name this exit routine DFSYPRX0 and link it into a library that is included in
the STEPLIB concatenation.

Alternatively, you can define one or more exit routine modules with the EXITDEF
parameter of the USER_EXITS section of the DFSDFxxx member of the IMS.PROCLIB
data set. The routines are called in the order that they are listed in the parameter.

Link editing The OTMA Destination Resolution user exit must be reentrant.

The OTMA Destination Resolution user exit must be included in an authorized library
in the JOBLIB, STEPLIB, or LINKLIST library concatenated in front of the
IMS.SDFSRESL. This exit routine is optional.

Including the routine Add Including the routine section of the OTMA Destination Resolution user exit
routine attributes that says the following: The module or modules must be included in
an authorized library in the JOBLIB, STEPLIB, or LINKLIST concatenation. No
additional steps are necessary to use a single exit routine that is named DFSYPRX0. If
you use multiple exit routines, specify
EXITDEF=(TYPE=OTMAYPRX,EXIT=(exit_names)) in the EXITDEF parameter of the
USER_EXITS section of the DFSDFxxx member of the IMS.PROCLIB data set.

IMS callable services This user exit is eligible to use IMS callable services. To use callable services, examine
the value of the SXPLATOK field in the IMS standard exit parameter list to determine
if a callable services token was passed to the routine. If the value of the field is zero,
no callable services are available. If the value is non-zero, examine the value of the
SXPLAWRK field in the parameter list for the address to a 256-byte work area. Use the
work area to issue calls to DFSCSIF0.

Sample routine location IMS.ADFSSMPL (member name DFSYPRX0).

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the user exit.

Contents of registers at entry

At entry, the user exit must save all registers using the provided save area. The
registers contain the following:

Register Contents

R1 Address of the “IMS standard user exit parameter list” on page 5

R13 Save area address (points to a single save area, not a save area chain)

R14 Return address

R15 Entry point address

Standard exit parameter list

244 Exit Routines

|
|

|
|

|
|
|

|
|
|
|
|
|
|

This user exit uses the Version 6 standard exit parameter list. The address of the
work area passed to this user exit in SXPLAWRK will be the same each time that
this exit routine is called.

If your OTMAYPRX user exit can be called in an enhanced user exit environment,
additional user exit routines can be called after your routine. When your user exit
routine finds a message upon which to act, it can set SXPL_CALLNXTN in the
byte SXPLCNXT points to. This tells IMS to not call additional exit routines.

Function specific parameter list on entry

The following table describes the contents of the OTMA Destination Resolution
user exit parameter list. The address of this parameter list is in standard exit
parameter list field SXPLFSPL.

Table 86. Contents of the OTMA Destination Resolution user exit parameter list

Offset
(decimal) Description

+0 Name of the originating LTERM or OTMA transaction pipe.

+8 Destination name.

+16 Transaction name or program name.

+24 Flag byte:

Flag bits
Description

X'80' An OTMA prefix exists.

X'20' An OTMA message was submitted by an OTMA client with super
member support. The OTMA state data pointed to by the input
parameter list contains a 1-4 byte super member name at offset X'E'
from the start of the state data.

X'10' A DL/I ICAL call for synchronous program switch was issued. If the
X'80' flag is also set, this flag indicates that an OTMA transaction
initiated the ICAL call and the LTERM or tpipe name and input client
member name in the exit parameter list are from the original OTMA
transaction.

X'08' The destination name matches an entry in the OTMA destination
descriptor. The name is for an IMS Connect destination.

X'04' The destination name matches an entry in the OTMA destination
descriptor. The name is for an IBM MQ destination.

X'02' The destination name matches an entry in the OTMA destination
descriptor. The name is for a non-OTMA destination.

+25 Synchronization level.

+26 Reserved.

+27 A 1-byte field that indicates the version of the exit routine parameter list:

X'80' If set, indicates that at offset +88, the user exit parameter list includes
the 4-byte address of the OTMA destination descriptor information.

+28 User ID.

+36 Group name.

+44 Address of the PST block.

+48 Name of the originating OTMA client, if the message originated from an
OTMA client; otherwise zeros.

Chapter 3. Transaction Manager exit routines 245

|
|
|
|

||
|
|
|
|

||
|

||
|

||
|

||

||
|

Table 86. Contents of the OTMA Destination Resolution user exit parameter list (continued)

Offset
(decimal) Description

+64 Address of the input Message Control Information prefix section of the OTMA
message.

If this call is from an ICAL request for synchronous program switch, the
message control information is generated by IMS. The information is not
propagated from the original message prefix. However, the LTERM or TPIPE
name and input client name are passed from the original OTMA message.

+68 Address of the input State Data prefix section of the OTMA message.

Check the prefix flag in the Message Control Information section to determine
the specific type of State Data section specified.

If this call is from an ICAL request for synchronous program switch, the state
data information is generated by IMS. The information is not propagated from
the original message prefix. However, the correlator field, TMAMHCOR, is
passed from the original OTMA state data. The LTERM or TPIPE name and
input client name are also passed from the original OTMA message.

+72 Address of the input User Data prefix section of the OTMA message.

+76 Address of SCD control block.

+80 Address of the 16-byte client override name, if any, to be returned to IMS.

This field is set by IMS at entry. It points to a 16-byte buffer area to which the
OTMA client name is written, if one does not exist at entry. Do not alter this
address.

The OTMA client name is written when the transaction originates from a
non-OTMA LTERM and is to be routed to an OTMA destination.

If the transaction is invoked from an OTMA client and the OTMAMD
initialization parameter is set to Y in the DFSPBxxx PROCLIB member, the
client override name is accepted.

+84 Address of the 8-byte Tpipe override name, if any, to be used for OTMA
output message queuing and transmission. If blank, this field is ignored.

+88 Address of the OTMA destination descriptor. The address points to a location
where the routing information that is defined in the descriptor for IBM MQ
and IMS Connect is stored. If the destination name is for a non-OTMA
destination, or if the destination name does not match any entry in the OTMA
destination descriptor, this field is set to 0.

For detailed information about IMS Connect destination routing, see the
TMAMICON_DESCRIPTOR DSECT mapping.

For detailed information about IBM MQ destination routing, see the
TMAMMQS_DESCRIPTOR DSECT mapping.

Any other return code generates a DFS2370I message.

Contents of registers at exit

Before returning to IMS, the exit routine must restore all registers, except register
15, which must contain one of the following return codes:

246 Exit Routines

|
|
|
|

|
|
|
|
|

||
|
|
|
|

|
|

|
|

|

Return code Meaning

0 Input message came from OTMA, destination is same or different OTMA
client. Or, input message did not come from OTMA, output is not OTMA

4 The message did not originally come from OTMA, but its destination is
OTMA.
Note: You must set the z/OS cross-system coupling facility member
name of the OTMA client

8 The message came from OTMA, but the destination is not OTMA.

100 Use the routing information from the destination descriptor without
modification. If the destination is IMS Connect or IBM MQ, the
DFSYDRU0 exit routine is called and can modify the routing information.
This return code is valid only when EXIT=Y is specified for the
destination descriptor.

For the OTMAYPRX user exit, any other return code generates a DFS2370I message
with the return code listed in hex. The hex equivalents for the return codes are:

0 X'00'

4 X'04'

8 X'08'

100 X'64'

Error conditions

An A1 status code is returned to the application program when the following
errors occur:
v Incorrect 16-byte OTMA client override name is specified. The client name

cannot contain all blanks or zeroes. If the client name is shorter than 16 bytes, it
must be padded with blanks.

v Incorrect return code is specified for the exit.
Related concepts:

OTMA destination descriptors (Communications and Connections)
Related reference:
“OTMA User Data Formatting exit routine (DFSYDRU0)” on page 251
“Routine binding restrictions” on page 9

OTMA Input/Output Edit user exit (DFSYIOE0 and other OTMAIOED
type exits)

You can use the OTMA Input/Output Edit user exit to modify or cancel IMS Open
Transaction Manager Access (OTMA) input and output messages. You can also use
this user exit to format the User Prefix section of an OTMA input or output
message.

Subsections:
v “About this routine” on page 248
v “Communicating with IMS” on page 249

Chapter 3. Transaction Manager exit routines 247

||
|
|
|
|

|
|

||

||

||

||

|

|

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_otma_admin_006.htm#ims_otma_admin_006

About this routine

This user exit can do the following for OTMA input and output messages:
v Modify the length or data of a message segment.

IMS sends the modified message after it receives control from the user exit.
v Cancel a message segment.
v Cancel a message.

However, this user exit cannot be used for OTMA synchronous callout messages
using DL/I ICAL calls.

If your OTMAIOED user exit can be called in an enhanced user exit environment,
additional user exit routines might be called after your routine. When your user
exit routine finds a transaction upon which to act, it can set SXPL_CALLNXTN in
SXPL_FLGA. This tells IMS to not call additional exit routines.

Table 87. Canceling a message segment

Segment being
canceled IMS sends

First The full OTMA message prefix, with null data.

Last The last segment, with null data.

Other Nothing. IMS does not send the message segment.

Table 88. Canceling a message

Segment being
canceled IMS sends

First Nothing. IMS does not send the message, and returns a status
code.

Other The last segment, with null data. In the OTMA prefix, the “discard
chain” flag is set.

The length of each message segment is limited to 32 KB. If a message segment
exceeds this limit, IMS issues message DFS1294E, and processes the message as
follows:

Segment being
processed IMS sends

First The full OTMA message prefix, with null data.

Last The last segment, with null data.

Other Nothing. IMS does not send the message segment.

The following table shows the attributes of the OTMA Input/Output Edit user exit.

Table 89. OTMA input/output edit exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

248 Exit Routines

|
|
|
|

Table 89. OTMA input/output edit exit routine attributes (continued)

Attribute Description

Naming convention You can name this user exit DFSYIOE0 and link it into a library that
is included in the STEPLIB concatenation.

Alternatively, you can define one or more user exit modules with
the EXITDEF parameter of the USER_EXITS section of the
DFSDFxxx member of the IMS.PROCLIB data set. The routines are
called in the order that they are listed in the parameter.

Binding The OTMA Input/Output Edit user exit must be reentrant.

The OTMA Input/Output Edit user exit must be included in an
authorized library in the JOBLIB, STEPLIB, or LINKLIST library
concatenated in front of the IMS.SDFSRESL. This user exit is
optional.

Including the routine The module or modules must be included in an authorized library
in the JOBLIB, STEPLIB, or LINKLIST concatenation. No additional
steps are necessary to use a single user exit that is named
DFSYIOE0. If you use multiple user exits, specify EXITDEF=(TYPE=
OTMAIOED,EXIT=(exit_names)) in the EXITDEF parameter of the
USER_EXITS section of the DFSDFxxx member of the IMS.PROCLIB
data set.

IMS callable services This user exit is eligible to use IMS callable services.

To use IMS callable services with this routine, examine the value of
the SXPLATOK field in the “IMS standard user exit parameter list”
on page 5 to see if a callable services token is available. If the value
of SXPLATOK is zero, you cannot use callable services with this
routine. If the value of SXPLATOK is non-zero, the callable services
token is included, and you can use callable services. You can use
the 256-byte work area addressed by SXPLAWRK in the standard
user exit parameter list to call DFSCSIF0.

Sample routine
location

IMS.ADFSSMPL (member name DFSYIOE0).

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the user exit.

Contents of registers at entry

At entry, the user exit must save all registers using the provided save area. The
registers contain the following:

Register Contents

R1 Address of the “IMS standard user exit parameter list” on page 5

R13 Save area address

R14 Return address

R15 Entry point address

Standard exit parameter list

Chapter 3. Transaction Manager exit routines 249

|
|

|
|
|
|

|
|
|
|
|
|
|

This user exit uses the “Version 6 standard exit parameter list” on page 6. The
address of the work area passed to this user exit in SXPLAWRK will be the same
each time that this exit routine is called.

If your OTMAIOED user exit can be called in an enhanced user exit environment,
additional user exit routines might be called after your routine. When your user
exit routine finds a transaction upon which to act, it can set SXPL_CALLNXTN in
the byte that SXPLCNXT points to. This tells IMS to not call additional exit
routines.

Function-specific parameter list on entry

The following are the contents of the OTMA Input/Output Edit user exit
parameter list. The address of this parameter list is in standard exit parameter list
field SXPLFSPL.

Table 90. OTMA Input/Output Edit user exit parameter list

Offset Contents

+0 Input/output flag. Set to 0 for an input message segment; set to 4 for an output
message segment.

+1 Segment-type flag. Set to 0 for the first message segment; set to 4 for any other
message segment.

+2 Reserved.

+4 Address of the message segment. The segment has the format LLZZDD:
LL Total length (2 bytes)
ZZ Flag (2 bytes). Z1 is reserved for IMS. The exit routine can change Z2.
DD Message segment

If the user exit modifies the message segment, it must also modify the LL with the
new segment length. For null segments, LL must be set to 4 (2 bytes for LL and 2
bytes for ZZ).

The user exit can increase any segment to a maximum of 256 bytes. The overall
message, however, cannot exceed 32767 bytes (including the LL and ZZ fields). If
a segment exceeds the 256-byte limit, IMS truncates it and issues message
DFS1967.

+8 Address of the transaction code.

+12 Address of the OTMA transaction pipe name.

+16 Address of the z/OS cross-system coupling facility member name.

+20 Address of the user ID.

+24 Address of the OTMA user table, if any.

+28 Address of the message control region, available from input/output message
prefix. This is an entry parameter only.

+32 Address of state data, available from input/output message prefix. This is an
entry parameter only.

+36 Address of user data, available from input/output message prefix. This area can
be used to return modified user data, but the length of user data cannot be
changed. The format of the user data is:
0-1 Length of the user data that follows (including this length field). This

user exit cannot change the length of user data.
2 User data.

250 Exit Routines

|
|
|
|
|

Table 90. OTMA Input/Output Edit user exit parameter list (continued)

Offset Contents

+40 Address of the output parameter list. The output parameter list is used to return
information to IMS and is defined as follows:
+00 8-byte LTERM override. This field is used to override the destination

override specified in the state data.
+08 8-byte map name override. This field is used to override the map name

specified in the state data.
+16

Flag Description
X'80' Wait for write for CM1 Fast Path transaction
X'00' Request check write for CM1 Fast Path transaction.

+17 Reserved.

+44 Address of the SCD.

Contents of registers at exit

Before returning to IMS, the user exit must restore all registers, except register 15,
which must contain one of the following return codes:

Return code Meaning

0 Processing continues.

4 Discard the message segment.

8 Terminate processing for the transaction.

12 Destination is invalid.

Status AX will be returned to the application program and a 67D0 log
record will be issued indicating error return code X'24'.

IMS treats any other return code as if it were 0, and processing continues.
Related reference:
“Routine binding restrictions” on page 9
“IMS standard user exit parameter list” on page 5

OTMA User Data Formatting exit routine (DFSYDRU0)
The OTMA User Data Formatting exit routine can determine and change the final
destination of OTMA messages. The DFSYDRU0 exit routine can also format the
User Prefix section of an OTMA asynchronous output message.

The DFSYDRU0 exit routine can change the final destination of OTMA messages
by specifying OTMA member names, transaction pipe (Tpipe) names, or names of
remote IMS systems.

You can specify OTMA C/I to use the HOLDQ when asynchronous output is
created before the OTMA C/I client has established via client-bid. This is optional,
as any queued output is moved by OTMA to the HOLDQ once the OTMA C/I
client has connected and specified it is HOLDQ capable.

You can use the OTMA destination descriptor to avoid coding this user exit. See
DFSYDTx in IMS Version 13 System Definition for full details on specifying OTMA
descriptors.

Chapter 3. Transaction Manager exit routines 251

|
|
|
|

Subsections:
v “About this routine”
v “Communicating with IMS” on page 253
v “Error conditions” on page 258

About this routine

The following rules apply for this exit routine:
v This routine is optional.
v This routine is not called if the destination is an IMS scheduler message block

(SMB) name.
v This routine cannot override the originating LTERM name.
v This routine can only set the final destination once.

If output is routed from one OTMA client to another, that client cannot use its
own Destination Resolution exit routine to set a different final destination.

Recommendation: Within a shared-queues group, ensure that the DFSYDRU0 exit
routine is the same for both front-end and back-end IMS systems. If these exit
routines differ on one or more back-end IMS systems, asynchronous output might
be sent to different destinations, depending on which back-end IMS system
processed the input.

An OTMA client should not use a transaction name as a transaction pipe name (or
routing key) because of potential conflict with the SMB name.

In a single IMS, multiple OTMA Destination Resolution exit routines are allowed.
To display the DFSYDRU0 exit routine associated with an OTMA client, issue the
/DISPLAY TMEMBER command.

IMS identifies the OTMA User Data Formatting exit routine for an OTMA client by
searching, in the order listed, the following:
1. The exit routine specified on the client-bid call
2. The OTMA client descriptor
3. The default exit routine name, DFSYDRU0, if it exists

The exit routine specified on the client-bid call overrides the OTMA descriptor. The
OTMA descriptor overrides the default exit routine name. If the default exit
routine name does not exist, the OTMA User Data Formatting exit routine is not
used.

The following table shows the attributes of the OTMA User Data Formatting exit
routine.

Table 91. OTMA User Data Formatting exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention Different clients can have different exit routine names, or the clients
can all use the default exit routine name of DFSYDRU0.

252 Exit Routines

Table 91. OTMA User Data Formatting exit routine attributes (continued)

Attribute Description

Binding The OTMA User Data Formatting exit routine must be reentrant.

The OTMA User Data Formatting exit routine must be included in
an authorized library in the JOBLIB, STEPLIB, or LINKLIST library
concatenated in front of the IMS.SDFSRESL. This exit routine is
optional.

Including the routine No special steps are required to include this routine.

IMS callable services This exit routine is eligible to use IMS callable services.

Sample routine
location

IMS.ADFSSMPL (member name DFSYDRU0).

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the exit routine.

Contents of registers at entry

At entry, the exit routine must save all registers using the provided save area. The
registers contain the following information:

Register Contents

R1 Address of the “IMS standard user exit parameter list” on page 5

R13 Save area address (points to a single SAVEAREA, not a SAVEAREA
chain)

R14 Return address

R15 Entry point address

This exit routine uses the Version 6 standard exit parameter list. The address of the
work area that is passed to this exit routine in SXPLAWRK can be different each
time that this exit routine is called.

The following table describes the contents of the OTMA User Data Formatting exit
routine parameter list. The address of this parameter list is in the standard exit
parameter list field SXPLFSPL.

Table 92. Contents of the OTMA User Data Formatting exit routine parameter list.

Offset
(decimal)

Contents

+0 Name of the originating LTERM or OTMA transaction pipe.

+8 Destination name. If the destination is for OTMA and no Tpipe name is
specified in the output area, this field is used as the name of the Tpipe to
queue and deliver the output message.

When a matching destination descriptor with EXIT=YES is found and the
DFSYPRX0 exit routine either sets RC=100 or does not exist, this field
contains the TPIPE name that is specified in the destination descriptor.

+16 Transaction name or program name.

Chapter 3. Transaction Manager exit routines 253

|
|
|

Table 92. Contents of the OTMA User Data Formatting exit routine parameter
list (continued).

Offset
(decimal)

Contents

+24 Flag byte:

X'80' An OTMA prefix exists.

X'40' The exit routine can override the client name.

X'20' OTMA message submitted by OTMA client with super member
support. The OTMA state data pointed to by the input parameter list
has the 1-4 bytes super member name at offset x'E' from the
beginning of the state data.

X'10' The exit routine is called to process a late response to a synchronous
program switch request. If the X'80' flag is also set, the LTERM or
TPIPE name and input client member name in the parameter list are
propagated from the original OTMA transaction that initiated the
ICAL call.

X'08' The destination name matches an entry in the OTMA destination
descriptor for IMS Connect.

X'04' The destination name matches an entry in the OTMA destination
descriptor for IBM MQ.

X'02' The destination name matches an entry in the OTMA destination
descriptor for a non-OTMA destination.

+25 Synchronization level.

+26 Destination type flag:

X'80' Transaction pipe exists for the client.

X'40' LTERM exists in IMS (non-maintenenced versions).

X'20' LU 6.2 descriptor exists.

X'10' ETO is available.

X'08' Client is active.

X'04' Tpipe trace is active.

+27 A 1-byte field that indicates the version of the exit routine parameter list:

X'80' If set, indicates that at offset +100, the parameter list includes the
address of the information from the OTMA destination descriptor
for IBM MQ or IMS Connect.

X'40' If set, indicates that at offset +104, the parameter list includes the
original CHNG call value.

+28 User ID.

+36 Group name.

+44 The 16-byte name of the destination OTMA client.

When a matching descriptor with EXIT=YES is found and the DFSYPRX0 exit
routine either sets RC=100 or does not exist, this field contains the tmember
name that is specified in the destination descriptor.

+60 Address of the PST block.

+64 Name of the originating OTMA client, if the message originated from an
OTMA client; otherwise zeros.

254 Exit Routines

||
|
|
|
|

||
|

||
|

||
|

||
|
|

||
|

|
|
|

Table 92. Contents of the OTMA User Data Formatting exit routine parameter
list (continued).

Offset
(decimal)

Contents

+80 Address of the input Message Control Information prefix section of the
OTMA message.

If the exit is called to process a synchronous program switch response and
the original transaction is from OTMA, this message control information is
generated by IMS. The original message prefix from the OTMA client is not
propagated to the exit routine. However, the LTERM or TPIPE name and the
input client member name in this parameter list are from the original OTMA
message.

+84 Address of the input State Data prefix section of the OTMA message.

Check the prefix flag in the Message Control Information section to
determine the specific type of State Data section specified.

If the OTMA super member feature is used, the super member name is
located at offset +14 from the beginning of the state data. See the
TMAMSPNM field of the DFSYMSG macro.

If the exit is called to process a synchronous program switch response and
the original transaction is from OTMA, this state data information is
generated by IMS. The state data prefix from the OTMA client is not
propagated to the exit routine. However, the correlator field (TMAMHCOR),
the LTERM or TPIPE name, and the input client member name in this
parameter list are from the original OTMA message.

+88 Address of the input User Data prefix section of the OTMA message.

The area is also used to return new or modified user data, up to a maximum
of 1024 bytes.

+92 Address of the SCD block.

+96 Address of the output parameter list. This parameter list is used to return
information to IMS. The contents of the output parameter list are shown in
the following table.

+100 Address of the routing information defined in the OTMA destination
descriptor for IBM MQ and IMS Connect. If the destination name matches a
non-OTMA destination descriptor, or the name does not match any entry in
the OTMA destination descriptor, this field contains 0.

See the TMAMICON_DESCRIPTOR DSECT mapping for the layout of the
routing information for an IMS Connect destination.

See the TMAMMQS_DESCRIPTOR DSECT mapping for the layout of the
routing information for an IBM MQ destination.

+104 The 8-byte destination name from the original CHNG call. If the name is less
than 8-bytes, it is left-justified and padded with blanks. This is an entry
parameter only.

Contents of the output parameter list

The following table shows the contents of the output parameters list.

Chapter 3. Transaction Manager exit routines 255

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

||
|
|
|

|
|

|
|

||
|
|

Table 93. Contents of the output parameter list

Offset (decimal) Contents

+0 The 16-byte client override name, if any.

This field is used when the destination is a
different OTMA client. A return code of 8
must also be set.

+16 Output flag.

X'80' If this flag is set, a synchronized
transaction pipe must be created.
However, if the OTMASP
initialization parameter is set to Y in
the DFSPBxxx PROCLIB member,
the synchronized transaction pipe is
always created. This flag can be set
only if the return code is 0.

X'40' If this flag is set, the message is
persistent and a recoverable
sequence number must be set. This
flag is valid only if a synchronized
transaction pipe is specified.

X'20' If this flag is set, this ALT_PCB
output is for an OTMA hold queue
capable client, such as IMS Connect.
This is an optional flag that is used
only in the following scenario:

In the shared queues back-end IMS,
the first call to DRU exit is to
process a message from a
non-OTMA client instead of an
OTMA hold queue capable client.

If this flag is set, OTMA ensures that
the output is always saved in a hold
queue. However, without this flag
set in this scenario, the output is
stored in the regular tpipe queue
instead of in the hold queue.

X'10' If set, indicates that this ALT-PCB
output message is to be sent to a
remote IMS system for processing
by way of an IMS Connect to IMS
Connect TCP/IP connection. You
must build a user data prefix that
includes at least the names of both
the destination remote IMS system
and the remote IMS Connect that
supports the remote IMS system.

+17 Reserved (3 bytes).

+20 The 8-byte Tpipe name, if any. This field
specifies the name of the Tpipe that is used
for queuing and transmitting the output
message. If it contains all blanks, the
destination name is used for the Tpipe name.
(This field is valid only when the return code
is 0.)

256 Exit Routines

Table 93. Contents of the output parameter list (continued)

Offset (decimal) Contents

+28 The 4-byte super member name.

This field specifies the name of the super
member and is used only in the following
scenario:

In the shared queues back-end IMS, the first
call to DRU exit is to process a message from
a non-OTMA client instead of an OTMA hold
queue capable client. And, the output is
destined to a hold queue capable client
which supports super member.

This field is valid only when the return code
of DRU exit is set to 0 and the output flag
byte is set to X'20'.

Contents of registers at exit

Before returning to IMS, the exit routine must restore all registers, except register
15, which must contain one of the following return codes:

Return code Meaning

X'00' Destination is the OTMA TPIPE.

When the destination client name is from a matching destination
descriptor with EXIT=YES, the descriptor defines the default destination
for output message. However, if any value in the output parameter list is
set, the user exit then determines the output destination instead of the
descriptor.

X'04' Destination is a non-OTMA LTERM.

X'08' Destination is a different OTMA client (need to specify). The new client
DRU0 exit will be invoked.
Note: The OTMA Destination Resolution user exit (OTMAYPRX) can
make all routing decisions by setting OTMAMD=Y in the DFSPBXXX
PROCLIB member.

X'0C' Destination is invalid. AL status on CHNG call. Can also be used to
indicate any error in module processing.

X'64' Use the routing information from the destination descriptor without
modification.

X'100' The matching OTMA destination descriptor determines both the
destination and the user data prefix in the output message. This return
code is accepted when EXIT=YES is specified in the matching OTMA
destination descriptor.

X'101' The matching OTMA destination descriptor determines the destination
only. The DFSYDRU0 exit routine determines the user data prefix in the
output message. Any value in the output parameter list are ignored.

Any other return code causes IMS to generate a DFS2370I message.

Chapter 3. Transaction Manager exit routines 257

|
|
|
|
|

|
|
|

||
|

||
|
|
|

||
|
|

Error conditions

An A1 status code will be returned to the application program when the following
errors occur:
v Incorrect 16-byte OTMA client override name is specified. The client name

cannot contain all blanks or zeroes. If the client name is shorter than 16 bytes, it
must be padded with blanks.

v The length of modified OTMA user data is over 1K.
v Incorrect return code is specified for the exit.
Related reference:
“Routine binding restrictions” on page 9
“IMS standard user exit parameter list” on page 5

OTMA Resume TPIPE Security user exit (OTMARTUX)

The OTMA Resume TPIPE Security user exit (OTMARTUX) provides one of two
possible layers of security for RESUME TPIPE calls that are issued to retrieve
messages queued to the OTMA asynchronous hold queue.

This topic contains Product-sensitive Programming Interface information.

This level of security authorization interfaces with SAF and RACF only if the
default resource class, RIMS, is defined to RACF. IMS installations can use this exit
routine to authorize both the user ID and the transaction pipe name that is in the
Resume TPIPE call message, to receive the output contained in the Resume TPIPE
call message, in order to receive the output messages before any of these messages
are sent to an OTMA client.

If the OTMARTUX user exit is defined to IMS, it is invoked, regardless of whether
the first level authorization procedure is performed.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 259

About this routine

The OTMA Resume TPIPE Security exit is invoked when a RESUME TPIPE call is
received by OTMA if the user exit exists in the appropriate library. There are two
security procedures with regard to TPIPE name and user ID authorization:
v RACF security procedure

Verifies the existence of RACF resource name, RIMS or Rxxxxxxx, where xxxxxxx
is the value from the RCLASS EXEC parameter, the DFSPBxxx PROCLIB
member or the DFSDCxxx PROCLIB member, and RACF authorization of the
Resume TPIPE name and user ID combination.

v User exit security procedure
– Invokes the OTMARTUX user exit. Your exit might take the result of the

RACF security procedure, override its result, or add more restrictive security
rules.

If authorization is successful, output messages in the hold queue are returned to
the OTMA client. A rejection message (NAK) of the RESUME TPIPE call is sent to the

258 Exit Routines

|

|
|
|

|
|

|
|
|
|

|
|
|

|
|

client if authorization fails. If the user exit is not modified (that is, invoked as a
passthru), the value of the sense code and the reason code in the message prefix
remains the same. The return code in register R15 and the reason code in register
R0 are the values from the first security procedure if performed. If not, register R15
and register R0 should contain zeroes. If the user exit is modified, you can
complement the RACF security procedure or ignore it.

Attributes of the routine

The exit routine can serve the following functions for OTMA input and output
messages:
v Override the results of the SAF and RACF interaction.
v Function as stand-alone resume transaction pipe security.
v Complement or supplement the security that is defined to RACF.
v Be invoked as a passthru module.

The following table shows the attributes of the OTMA Resume TPIPE Security exit
routine.

Table 94. OTMA Resume TPIPE Security exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You can name this exit routine DFSYRTUX and link it into a library that is included in
the STEPLIB concatenation.

Alternatively, you can define one or more exit routine modules with the EXITDEF
parameter of the USER_EXITS section of the DFSDFxxx member of the IMS.PROCLIB
data set. The routines are called in the order that they are listed in the parameter.

Binding The OTMA Resume TPIPE Security exit routine must be reentrant.

IMS callable services This exit routine is eligible for callable services. To use IMS callable services with this
exit routine, examine the value of the SXPLATOK field in the “IMS standard user exit
parameter list” on page 5:

v If SXPLATOK is zero, you cannot use IMS callable services with this exit routine.

v If SXPLATOK is non-zero, the value is the callable services token for this exit
routine. You can use the 256-byte work area addressed by the SXPLAWRK field to
call DFSCSIF0.

Including the routine The module or modules must be included in an authorized library in the JOBLIB,
STEPLIB, or LINKLIST concatenation. No additional steps are necessary to use a single
exit routine that is named DFSYRTUX. If you use want the exit to be refreshable,
specify EXITDEF=(TYPE=OTMARTUX,EXIT=(exit_names)) in the EXITDEF parameter
of the USER_EXITS section of the DFSDFxxx member of the IMS.PROCLIB data set.

Sample routine location IMS.SDFSSMPL (member name DFSYRTUX).

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the exit routine.

Contents of registers at entry

Normal linkage convention is used on entry and exit to and from this routine.

Chapter 3. Transaction Manager exit routines 259

|
|
|
|
|
|

|
|

|
|
|

||
|
|
|
|

Register Contents

R0 Reason code

R1 Address of the “IMS standard user exit parameter list” on page 5

R13 Save area address

R14 Return address

R15 Entry point address

Standard exit parameter list

This exit routine uses the Version 6 standard exit parameter list. The address of the
work area that is passed to this exit routine in SXPLAWRK can be different each
time that this exit routine is called.

If your OTMARTUX user exit can be called in an enhanced user exit environment,
additional user exit routines might be called after your routine. When your user
exit routine finds a transaction upon which to act, it can set SXPL_CALLNXTN in
the byte that SXPLCNXT points to. This tells IMS to not call additional exit
routines.

Contents of registers at exit

Return code Meaning

0 Authorization is successful. TPIPE protected.

4 Authorization is successful. TPIPE unprotected. all users/groups allowed
access

8 Authorization Failure. See list of reason codes below under RTUPRSNC.

If register R15 is X'04', the sense code in the message prefix TMAMCSNC is X'33'.
This sense code indicates that there must be a reason code in the message prefix
TMAMCRSC. The applicable reason codes are listed in the following table under
RTUPRSNC.

The following table describes the parameter list (DFSYRTUP) for the OTMA
Resume TPIPE Security exit routine.

Table 95. Contents of the interface, DFSYRTUP

Label Description

RTUPVERS Version number of the parameter list.

RTUPTPNM Address of the TPIPE name.

RTUPUSID Address of the user ID. If this address is zero, there is no user ID
(user ID is provided by the client).

RTUPSENC Address of the sense code. The sense code for a failure in Resume
TPIPE authorization is X'33'.

260 Exit Routines

|
|
|
|
|

Table 95. Contents of the interface, DFSYRTUP (continued)

Label Description

RTUPRSNC Address of the reason code. The following reason codes are possible:

v X'01': Security header was not provided in the message prefix

v X'02': User ID was not provided in the message prefix

v X'03': Group ID was not provided in the message prefix

v X'04': User token was not provided in the message prefix

v X'05': TPIPE name was not provided in the message prefix

v X'06': RACF system failure

v X'07': RACF security violation; no profile was defined for the user

v X'08': User ID or Group ID is not authorized

RTUPRRET Address of the return code from RACF. If this address is zero, the
SAF parameter area does not exist.

RTUPRREA Address of the reason code from RACF. If this address is zero, the
SAF parameter area does not exist.

RTUPSFRC Address of the return code from SAF. If this address is zero, the SAF
parameter area does not exist.

RTUPSFRS Address of the reason code from SAF. If this address is zero, the SAF
parameter area does not exist.

RTUPSAFP Address of SAF.

RTUPAMCI Address of MCI.

RTUPASTD Address of the prefix for state data.

RTUPASEC Address of the prefix for security data. If this address is zero, there is
no security data section in the prefix provided by the client.

RTUPINRC Return code at entry to the exit routine.

RTUPINRS Reason code at entry to the exit routine.

Related reference:
“Routine binding restrictions” on page 9

Physical Terminal (Input) edit routine (DFSPIXT0)
The Physical Terminal (Input) edit routine (DFSPIXT0) user-written edit routine
gains control before the IMS Basic Edit routine. It is used to accept, modify, and
cancel segments and messages.

This topic contains Product-sensitive Programming Interface information.

This chapter describes the Physical Terminal (Input) Edit routine. This user-written
edit routine gains control before the IMS Basic Edit routine. If the input message is
processed by MFS, the Physical Terminal (Input) edit routine is not called. This edit
routine is called only when inserted from a terminal; it is not called when the
message is inserted by a program-to-program switch. This edit routine is not called
for LU 6.2 terminal input.

Subsections:
v “About this routine” on page 262
v “Communicating with IMS” on page 263

Chapter 3. Transaction Manager exit routines 261

About this routine

Message segments are passed one at a time to the Physical Terminal Input edit
routine, and the edit routine can handle them in one of the following ways:
v Accept the segment and release it for further editing by the IMS basic edit

routine.
v Modify the segment and release it for further editing by the IMS basic edit

routine. Examples of segment modifications that can be made are changing the
transaction code and reformatting the message text. Make any required
modifications, because IMS has not yet performed destination or security
checking.

v Cancel the segment.
v Cancel the message and request that the terminal operator be notified

accordingly.
v Cancel the message and request that a specific message from the User Message

Table be sent to the terminal operator.

The Physical Terminal Input edit routine requests these actions by specifying
different return codes that are interpreted and acted on by IMS.

The following table shows the attributes of Physical Terminal (Input) edit routine.

Table 96. Physical terminal (input) edit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must provide 1-byte to 8-byte name.

Binding
This routine must be reentrant.

Including the routine When the routine is specified in the EDIT parameter of the
LINEGRP or TYPE macro, stage 2 system definition will contain an
ORDER DFSPIXT0 statement and an INCLUDE
USERLIB(DFSPIXT0) statement, which will bind the routine into
DFSVNUCx.

If the exit is only defined on an ETO descriptor, and not on any
static terminal LINEGRP or TYPE macros, then it will be loaded
dynamically if it is included into an authorized library in the
JOBLIB, STEPLIB, or LINKLIST library concatenated in front of the
IMS.SDFSRESL.

IMS callable services
To use IMS callable services with this routine, you must issue an
initialization call (DFSCSII0) to obtain the callable service token and
a parameter list in which to build the function-specific parameter
list for the desired callable service. Use the ECB found in register 9
for the DFSCSII0 call.

This exit is automatically linked to DFSCSI00 by IMS. No additional
linking is required to use IMS callable services.

Sample routine
location

IMS.ADFSSMPL.
Note: The sample exit routine is not reentrant. You must assemble
it with PARM='OBJECT,NODECK,NORENT' and link-edit it with
PARM='NCAL,LET,LIST,XREF,SIZE(880K,64k)'.

Bypassing Basic Edit

262 Exit Routines

|
|
|

If the IMS application program supplies DFS.EDTN in the MOD name parameter
for the output message, the IMS basic edit routine will be bypassed except for
transaction code and password validation.

Related Reading: For further information, see “MFS Bypass for the 3270 or SLU 2”
in the “Application Programming Using MFS” chapter in IMS Version 13
Application Programming APIs.

The Physical Terminal Input edit routine must position the transaction code, and
optionally the password, if the terminal is not operating in conversational or preset
destination mode. The exit routine should detect errors and return a message to
the terminal operator if any errors are found.

IMS maintains a flag in the CTB (bit CTB6TRNI in the CTBFLAG6 field) to indicate
when 3270 MFS bypass, nonconversational, no preset destination, and first segment
exist on input to the Physical Terminal Input exit routine. This flag notifies the
Physical Terminal Input exit routine that it can add a minimum of 1 and a
maximum of 18 bytes to the front of the message segment for a transaction code
and optional password. The minimum of 1 byte to be added to the front of the
message segment consists of a 1-byte transaction code. If NOBLANK is not
specified at system definition, a minimum of 2 bytes is added to the front of the
message segment, consisting of a 1-byte transaction code and 1 blank, which is
necessary as a separator. To add a transaction code and optional password, the exit
routine can put a return code of 16 in register 15 and set register 1 to point to an
LLZZ field, followed by the data to be added.

Specifying the routine

The Physical Terminal Input exit routine (DFSPIXT0) is specified on the LINEGRP
or TYPE macros as part of the EDIT parameter. If you are using both the Physical
Terminal Input and Output edit routines, you must specify (YES,YES) on the EDIT
parameter of the TERMINAL macro or Extended Terminal Option (ETO) logon
descriptor.

The CSECT name for this edit routine is the name specified in the TYPE or
LINEGRP macro statement for which this edit routine applies. You must also
specify YES in the EDIT parameter of the TERMINAL macro statement or ETO
logon descriptor.

The Global Physical Terminal Input edit routine (DFSGPIX0) performs the same
functions as this edit routine but does not require system definition.

Related Reading:

For information on coding the LINEGRP, TYPE, and TERMINAL macros, see
IMS Version 13 System Definition.
For more information on the ETO feature, see IMS Version 13 Communications
and Connections.

Communicating with IMS

IMS uses the entry and exit registers to communicate with the exit routine.

Contents of registers on entry

Chapter 3. Transaction Manager exit routines 263

On entry to the edit routine, all registers must be saved using the save area
provided. The registers contain the following:

Register Contents

1 Address of the input message segment buffer. IMS editing has not been
performed. The first two bytes of the buffer contain the segment length
(binary length includes the 4-byte overhead). The third and fourth bytes of
the buffer are binary zeros. The message text begins in the fifth byte of the
buffer.

If the device was defined with MFS support but this message is not being
processed by MFS, the first segment of the message has backspace error
correction performed before entry to this edit routine. If escape (**) was
entered by the terminal operator, the first two data bytes have been changed
to binary zeros.

7 Address of CTB for the physical terminal from which the message was
entered.

9 Address of CLB for the physical terminal from which the message was
entered.

13 Address of save area. The first three words must not be changed.

14 Return address to IMS.

15 Entry point of edit routine.

The edit routine you supply can edit the message segment in the buffer pointed to
by register 1.

You can reduce the length of the message segment to any size by replacing the
length in the buffer with the appropriate value. The length field must appear in the
same place at exit as at entry, and bytes 3 and 4 must not be changed.

Contents of registers on exit

On return to IMS, all registers must be restored except for register 1, which
contains a message number if register 15 contains a value of 12; otherwise it is
ignored. Register 15 contains one of the following return codes:

Return code Meaning

00 Segment is processed normally.

04 Segment is canceled.

08 Message is canceled and the terminal operator is notified.

12 Message is canceled, and the message identified by register 1 is sent to the
terminal.

16 Insert the transaction code and optional password following the LLZZ
pointed to by register 1. This return code is only valid for 3270 MFS bypass
terminals.

When the entering terminal is not a 3270 MFS bypass terminal, and the
physical terminal input exit gives a return code of 16, IMS issues an error
message, and the transaction code is not inserted in the message.

Any other return code causes the message to be canceled and the terminal operator
to be notified.
Related reference:

264 Exit Routines

“Routine binding restrictions” on page 9
“Initialization of IMS callable services (DFSCSII0)” on page 17
“Global Physical Terminal (Input) edit routine (DFSGPIX0)” on page 187

Sample Physical Terminal (Input) edit routine (DFSPIXT0)
Use the Sample Physical Terminal (Input) edit routine (DFSPIXT0) to test input
message segments.

This routine performs the following functions:
v Scans the input message segment for an expected format (TESTEXIT)
v Generates return codes (XX) based on the input request (TESTEXIT,XX)
v Verifies the user message number (YYY) if specified (TESTEXIT,XX,YYY)
v Replaces TESTEXIT with ERROR if return code or message number is invalid

and passes the segment to IMS (return code 0)

Physical Terminal (Output) edit routine (DFSCTTO0)
The Physical Terminal (Output) edit routine enables you to edit output messages
immediately before they are sent to a terminal.

This topic contains Product-sensitive Programming Interface information.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 267

About this routine

During system definition, you specify which physical terminals or set of VTAM
nodes use the defined edit routine for output editing. You can use these edit
routines to meet your special editing needs associated with different
communication terminals.

An output message can be processed by 1) a Physical Terminal Output edit routine
and the IMS Basic Edit routine or 2) a Physical Terminal Output edit routine and
MFS (Message Format Service). Output editing is performed in this sequence.
Therefore, the input to the edit routine is the output of the application program,
and the output of the edit routine is the input to MFS or the IMS Basic Edit
routine.

You can also specify that this edit routine cancel an output message so that it is not
delivered to the terminal. Instead, the routine can optionally request that an error
message be sent in place of the canceled message.

The following criteria apply to message cancellation:
v Output messages can be canceled if they are destined for VTAM terminals only.
v Conversational output and IMS in-core system messages cannot be canceled.

Such cancellation requests from the exit are ignored, and the output message is
sent.

v The request to cancel must be made for the first segment of a message. Requests
for non-first segments of a message to be canceled are ignored, causing normal
output processing to continue for the message.

Chapter 3. Transaction Manager exit routines 265

v This routine is not activated for messages going across an MSC VTAM link, so
these messages cannot be canceled.

The following table shows the attributes of the Physical Terminal (Output) edit
routine.

Table 97. Physical terminal (output) edit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must provide a 1-byte to 8-byte name.

Binding This routine must be reentrant.

Including the routine When the routine is specified in the EDIT parameter of the
LINEGRP or TYPE macro, stage 2 system definition will contain an
ORDER DFSCTTO0 statement and an INCLUDE
USERLIB(DFSCTTO0) statement, which will bind the routine into
DFSVNUCx.

If the exit is only defined on an ETO descriptor, and not on any
static terminal LINEGRP or TYPE macros, then it will be loaded
dynamically if it is included into an authorized library in the
JOBLIB, STEPLIB, or LINKLIST library concatenated in front of the
IMS.SDFSRESL.

IMS callable services
To use IMS callable services with this routine, you must issue an
initialization call (DFSCSII0) to obtain the callable service token and
a parameter list in which to build the function-specific parameter
list for the desired callable service. Use the ECB found in register 9
for the DFSCSII0 call.

If this exit routine is used exclusively by static terminals, this exit is
included in the IMS nucleus and is therefore automatically linked to
DFSCSI00 by IMS. No additional linking is required to use IMS
callable services.

If this exit routine is used exclusively by ETO terminals, this exit
must exist standalone in SDFSRESL and an additional link is
required to use IMS callable services. If you do not perform this
additional link, the IMS control region will abnormally terminate
with a SOC1 code.

If this exit routine is used by both static and ETO terminals, then
this exit is automatically linked to DFSCSI00 in the same manner as
exits that are used by only static terminals.

Sample routine
location

IMS.ADFSSMPL.

Specifying the routine

The Physical Terminal Output edit routine (DFSCTTO0) is specified on the
LINEGRP or TYPE macro as part of the EDIT= parameter. If you are using both
the Physical Terminal Input and Output edit routines, you must specify (YES,YES)
on the EDIT= parameter of the TERMINAL macro.

Related Reading: For information on coding the LINEGRP, TYPE, and TERMINAL
macros, see the section on “Macros” in IMS Version 13 System Definition.

266 Exit Routines

Communicating with IMS

IMS uses the entry and exit registers to communicate with the exit routine.

Contents of registers on entry

On entry, the edit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 The address of a buffer containing the output message segment to be edited.
The first two bytes are a binary count of the message segment length. The
second two bytes are control information provided by the application
program that constructed the message. The text of the output message starts
in byte 5. The count includes the first four bytes in length.

This register contains zeros if flag CTBAEOM in field CTBACTL of the CTB
is on, indicating end-of-message. Any exit that modifies the contents of the
buffer passed in register 1 should test for an end-of-message condition.

2 The address of an 8-byte field that contains either binary zeros or the user ID
associated with the output message. The contents of the user ID field are
described in IMS Version 13 Application Programming in the section on “I/O
PCB Masks” in “Defining Application Program Elements”.

The user ID in the output message can be compared to the user ID in the
CTB (CTBUSID) to determine editing requirements. The user ID is only
checked on the first segment of a multisegment message. DFSCTTO0 uses
CTBAEOM and ENTSTAT to determine which segment is being processed.

3 Address of storage area. For details of the format of this storage area, see the
prolog in the sample routine (IMS.ADFSSRC; member name is DFSCTTO0).

7 CTB address for the destination terminal.

CTBFLAGC field: CTBCDSDT bit on means that session restart has occurred
for this terminal. If the edit routine is called with the CTBCDSDT on, the edit
can assume that this is the first application output message selected for
output processing since the session has restarted (provided that the bit is
turned off by the edit routine after the first message is processed).

IMS turns this bit on every time SDT (Start Data Traffic) for VTAM occurs.
The edit routine is responsible for resetting this flag after it receives the first
message.

CTBFLAG4 field: CTB4RESP bit on means that the terminal is in response
mode. After a system restart, IMS resets CTB4RESP.

9 Address of CLB. This block starts with a DECB. The content of the
DECAREA field in the DECB is equivalent to the content of register 1.

11 Address of SCD.

13 Address of save area. The edit routine must not change the first three words.

14 Return address to IMS.

15 Entry point of edit routine.

The output message segment that your edit routine returns to IMS from must be
pointed to by the contents of the DECAREA field of the DECB. The first four bytes
must be in a format as received at input with the binary count updated to the
edited message segment length inclusive of the four bytes of prefix.

Chapter 3. Transaction Manager exit routines 267

Contents of registers on exit (if no cancel request)

Before returning to IMS, the edit routine must restore all registers. If you are
editing the message in place, you can increase its length by a maximum of ten
bytes.

When the last segment of a message has been edited, IMS returns control to the
routine. The routine has no new message data to edit.

Whenever a Physical Terminal Output edit routine is called, the CTB is in register
7. A 1-byte field, CTBACTK, in the CTB contains a 1 in the second bit position if
this entry to the routine is for end of message (EOM).

Contents of registers on exit (if cancel request)

On return, registers must be restored except for register 15, which must contain the
following return code.

Return code Meaning

0 Message canceled without error message DFS3489. The buffer length must
be set to zero.

4 Message canceled. The buffer length must be set to zero.

All registers are not restored when a cancel request is made and the edit requests
that IMS send an error message DFS3489 to the terminal for a non-response-mode
message.

In order for IMS to cancel an output message before it is sent to the terminal, the
Physical Terminal Output edit routine must make a request when the first segment
of an output message is presented to it. The edit makes this request by setting the
length of the first segment to zero in the buffer pointed to by DECAREA.

If the edit routine wants IMS to send error message DFS3489 in place of the
canceled message, it places a return code of 4 in register 15 (in addition to zeroing
the length field of the first segment).

If the terminal is in response mode, IMS always replaces the canceled message
with error message DFS3489. Across a system restart, response mode is reset.
Therefore, if an output message is canceled after the system restart, no error
message is sent.

If the terminal is not in response mode, the edit routine is not required to have
IMS send error message DFS3489. Nevertheless, it might be necessary to have IMS
send the error message to prevent a hang condition for certain device types that
are expecting a message.

Related Reading: For an explanation of error message DFS3489, see IMS Version 13
Messages and Codes, Volume 1: DFS Messages.
Related reference:
“Links with your exit routine and DFSCSI00” on page 16
“Initialization of IMS callable services (DFSCSII0)” on page 17
“Routine binding restrictions” on page 9

268 Exit Routines

Sample Physical Terminal (Output) edit routine (DFSCTTO0)
The Sample Physical Terminal (Output) edit routine (DFSCTTO0) shows how to
extend an output message and how to attach a prefix.

IMS callable services are used to get and release storage. This example applies to
single-segment or multisegment messages, and to as many devices as the edit
routine's table is assembled to handle. The default table size allows for five
devices, but can be changed by modifying the label NUMENTS. If the table
capacity is exceeded, an ABENDU55 results. If the prefix had not increased the
message length by more than ten bytes, it could have been attached without the
creation of an additional buffer area.

Queue Space Notification exit routine (DFSQSPC0/DFSQSSP0)
The Queue Space Notification exit routine (DFSQSPC0) is activated and a message
is issued when a logical record is assigned to or released from a message queue
data set.

This topic contains Product-sensitive Programming Interface information.

This routine causes a message to be issued when one of following occurs:
v The number of records currently in use exceeds upper threshold percentage

value of the maximum number assignable before initiation of automatic
shutdown.

v The number of records currently in use falls below the lower threshold
percentage value of the same maximum.

IMS sets an upper threshold value of 75 percent, and a lower threshold value of 60
percent. You can modify these values by using the QTU and QTL parameters of
the IMS procedure.

QTU has a range of 2 percent through 100 percent, and QTL has a range of 1
percent through 99 percent.

The exit routine can also be called optionally when a BMP's unit of work is
completed.

In a shared-queues environment, the Queue Space Notification exit routine is
DFSQSSP0. The following information is passed when this exit routine runs.
v The shared queue structure is in an overflow state.
v The destination queue in a shared-queues environment is in an overflow state.

Subsections:
v “About this routine”
v “Restrictions” on page 272
v “Communicating with IMS” on page 272

About this routine

By using the SHUTDWN parameter of the MSGQUEUE macro, you can reserve a
number of records in each message queue data set. If the data set fills up with
unprocessed messages, the system automatically shuts down with an internal
CHECKPOINT DUMPQ.

Chapter 3. Transaction Manager exit routines 269

If unprocessed messages overflow a message queue data set before the automatic
shutdown completes, a U0758 abend occurs.

This exit routine provides a warning before the automatic shutdown is initiated, so
you can reduce message queue buildup, possibly avoiding the automatic shutdown
and, most importantly, the U0758 abend.

You can replace the IMS-supplied exit routine with your own to establish your
own threshold algorithm or issue user messages, which can then be captured by
the AOI exit routine to reduce queue usage.

As an option, for certain units of work, you can modify this exit to find the
number of records currently in use by the calling task. You can also request
information that can be used to terminate the unit of work. For each application,
LU 6.2 conversation, or OTMA session, IMS maintains counts of short and long
message queue records (DRRNs) assigned, and supplies them to
DFSQSPC0/DFSQSSP0 if this option is used.

If you use this option, the expanded parameter list contains an output field that
allows you to tell IMS that you want the unit of work stopped because one or both
of the counts have exceeded specified limits. Different count limits can be
established for different tasks.

For most program types, the record counts are reset when one of the following
occurs:
v A message is retrieved (GU call) from the message queues.
v A sync point occurs.
v A rollback occurs.
v The application terminates normally.

Exception: For non-message-driven BMPs, and for multiple-mode transactions
(MODE=MULT specified on the TRANSACT macro), the queue counts are not
reset until normal termination. If the unit of work is a DC transaction or
conversation the counts are not provided.

For LU 6.2 conversations, the record counts are reset for each new message.

For OTMA sessions, the record counts are reset:
v For each new incoming message.
v For each IMS conversational iteration.
v When MSC remote output is received at the original IMS. The original IMS will

then deliver the output to the OTMA client.

The exit routine terminates a unit of work in the following ways:
v For an application program, an 'A7' status code is returned to the application. If

the AIBTDLI call interface was used, the application also gets an AIB return
code (X'104') and a reason code (X'190'). If the application tries to insert a
message after the unit of work terminates or to a destination that is stopped, the
application immediately receives an 'A7' status code and the call is not
processed.

v For an LU 6.2 conversation, message DFS0777I is sent and the conversation is
deallocated.

v For an OTMA session, message DFS1289I is sent.

270 Exit Routines

After the unit of work terminates, message queue records in use are released.

The sample exit routine DFSQSPC0/DFSQSSP0 (IMS.ADFSSRC) describes how to
enable this option. Using this option creates some additional overhead from
building the expanded parameter list. The default for this option is NO.

The following table shows the attributes of the Queue Space Notification exit
routine.

Table 98. Queue space notification exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSQSPC0 (or DFSQSSP0 for shared queues).

Binding This routine must be reentrant. It can be called in cross-memory mode.

DFSCSI00 (callable services module) must be included in this load module if you plan
to use IMS callable services from this exit routine. An example of the bind control
statements is:

INCLUDE LOAD(DFSQSPC0) SPACE NOTIFY USER EXIT
INCLUDE LOAD(DFSCSI00) IMS callable services
MODE AMODE(31),RMODE(ANY)
ENTRY DFSQSPC0
NAME DFSQSPC0(R)

Including the routine DFSQSPC0 is a separately linked composite module in the IMS.SDFSRESL. If you
write your own exit routine, it must be linked into IMS.SDFSRESL.

IMS callable services
To use callable services with this routine, you must issue an initialization call
(DFSCSII0) to obtain the callable service token and a parameter list in which to build
the function-specific parameter list for the desired callable service.

The IMS-provided version of DFSQSPC0/DFSQSSP0 includes an example that uses
callable services to obtain working storage during an initialization call to
DFSQSPC0/DFSQSSP0.

Use the ECB passed in parameter list QSPCECB for IMS callable services.

Sample routine location IMS.ADFSSRC (member name DFSQSPC0 or DFSQSSP0).

The DFSPARM macro is in IMS.ADFSMAC (member name DFSPARM).

Exit routine call types

The following call types are recognized by the Queue Space Notification exit
routine. Some of the parameters that are passed to the exit routine vary with the
call type.

Call type Description

1 Initialization call

2 Application assigned DRRN (for example, a DL/I application)

3 LU 6.2 assigned DRRN

5 Free the DRRN

6 OTMA assigned DRRN

7 MSC DRRN ASSIGN CALL

8 BMP unit of work completed (optional)

Chapter 3. Transaction Manager exit routines 271

Restrictions

The following restrictions apply to DFSQSPC0/DFSQSSP0:
v z/OS services are unavailable to programs that are running in cross-memory

mode unless the service's documentation specifically states that it is available.
v Code running in cross-memory mode cannot issue any SVCs except ABEND.

Because this exit is called every time a message queue data set record is assigned
or released, the logic you add to this exit can have a negative effect on system
performance. IWAITs, time-consuming algorithms, and excessive use of IMS
callable services should be avoided.

If you want to issue user messages instead of IMS system messages DFS2013
through DFS2018, you must provide an exit that returns user message keys in
register 15. The value that is returned in register 15 is actually the negative of the
key in the user message table. In addition to returning the appropriate message
key in register 15, ensure that the message text is in the user-supplied message
table, DFSCMTU0.

Communicating with IMS

The queue space notification exit routine is called whenever a logical record is
assigned to or released from a message queue data set. A parameter list is passed
to the exit routine. Its contents depend on whether the user-provided
DFSQSPC0/DFSQSSP0 takes advantage of the optional capabilities that are
provided by IMS. The IMS-provided DFSQSPC0/DFSQSSP0 does not use the
optional capabilities, although it does describe how they can be used.

To take advantage of the optional capabilities, you must modify
DFSQSPC0/DFSQSSP0 to recognize the initialization call type (Type 1). When the
call is made, if bit QSPCF2IN in the parameter list field QSPCFLG2 is turned on,
IMS will set a flag in the SCD. The SCD flag tells IMS to provide the expanded
parameter list to DFSQSPC0/DFSQSSP0. To activate optional call type of BMP, set
bit QSPCF3BT in the parameter list field QSPCFLG3. This will set a flag in the
QSCD that tells IMS to call the exit when a BMP Unit of Work has completed. The
INIT call is made only during early IMS (Queue Manager) initialization to enable
the user exit to obtain working storage that is always to be available to DFSQSPC0
through the parameter list.

User-provided versions of DFSQSPC0/DFSQSSP0 need not change if the message
record count capability is not used.

The parameter list is mapped by the macro DFSPARM. The parameter list has the
following parts:
1. Message queue data set in-use count and threshold status
v The number of records currently in use

The high-order byte of the in-use count is used as a flag byte.
v The maximum number of records assignable before shutdown (not provided

for shared queues)
The exit routine interrogates these values and sets the parameter flag and a
return code (register 15) based on their values. The return code is either zero
or an error message number.

2. Pointers to control blocks and thresholds
These fields are always passed to DFSQSPC0/DFSQSSP0:

272 Exit Routines

v Address of the SCD control block
v Address of the ECB (required for IMS callable services).
v Address of user exit's work area or zero

– During the initialization call to DFSQSPC0/DFSQSSP0, you can use IMS
callable services to obtain working storage for your exit. The address that
you store in the parameter list is saved by IMS and returned to your exit
on every call. IMS only saves the address returned by the exit during the
initialization call. Addresses that are returned during other calls are
overlaid by the address that is returned from the initialization call, or by
zero if no address was returned.

– User-provided exit is responsible for obtaining the work area during the
initialization call to DFSQSPC0/DFSQSSP0 and storing its address in the
parameter list.

v Upper and lower threshold limits (Same values as found in QSCDQTU and
QSCDQTL). The threshold values will not be set on a call type of 8.

v DFSQSSP0 is passed the same fields as DFSQSPC0, except for the upper and
lower threshold limits.

The parameter list fields QSPCQTU and QSPCQTL contain the upper and
lower threshold values (DFSQSPC0 only). The thresholds are either:
v IMS defaults (75 percent and 60 percent).
v Your default values specified in QTU and QTL in the DFSPBxxx member.
v QTU and QTL values specified in the IMS procedure.

3. Type of Call and other input/output flags
The following fields are only used while processing call types: 1, 2, 3, 5, 6, and
8. In all other cases, the call type is set to zero. For call type 8, only the call
type is set.
v Call type
v Assign/Free DRRN indicator
v Message Queue record count exceeded flag - set by exit
The following flags can be set if shared queues are active (DFSQSSP0):
v Shared queue structure is in an overflow state.
v Destination queue is in an overflow state.

4. Unit of work information
These fields are only used while processing a DL/I (Call Type 2) application,
an LU 6.2 (Call Type 3) terminal request, or an OTMA (Call Type 6) request:
v Accumulated counts of short and long message queue records assigned by

this unit of work
v Identification of the unit of work making the call:

For a DL/I application: TRAN name, PSB name, and Terminal Symbolic
For an LU 6.2 Terminal: LU name, TP name and length, Side name
For an OTMA client: Tpipe name, z/OS cross-system coupling facility
member name, and override LTERM name

5. Message destination name
The message destination name is used while processing Call types 2, 3, 5, and
6. If the destination name is not available at the time of the call, this field is set
to zero.

The IMS-supplied Queue Space Notification exit routine, which is found in
IMS.ADFSSRC, can be used as a guide in creating your own exit routine.

Chapter 3. Transaction Manager exit routines 273

If you want to change the threshold notification algorithm, note the following
interface requirements.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

0 Data set indicator:

00 QBLKS data set or Call Type 8. For Call Type 8, there is no
data set indicator value to put in Register 0.

04 SMSGQ data set

08 LMSGQ data set

2 Address of parameter list

9 Address of ECB

10 Address of SCD

14 Return address to IMS

15 Entry point of exit routine

Description of parameters

The macro DFSPARM generates the DSECT for the parameter area passed to
DFSQSPC0/DFSQSSP0 by IMS. For more information, refer to the DFSPARM
macro included in IMS.ADFSMAC.

A pointer to the SCD is contained in the input field QSPCSCD as well as in
Register 10.

Recommendation: Get addressability to the SCD from the parameter list rather
than register 10.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for
register 15. Register 15 must contain one of the following return codes, except for
call type 8, which does not check for a return code.

Return code Meaning

0 No message is issued

Message key Queue Manager issues a message

Negative User-defined message is sent

Related concepts:
Chapter 1, “Guidelines for writing IMS exit routines,” on page 3

Recovery-related EXEC parameters for the control region (System Definition)
Related reference:
“Routine binding restrictions” on page 9
“Initialization of IMS callable services (DFSCSII0)” on page 17
“User Message table (DFSCMTU0)” on page 478

274 Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_sdr64.htm#sdr64

Security Reverification exit routine (DFSCTSE0)
The Security Reverification exit routine (DFSCTSE0) allows you to reevaluate
transaction authorization checking on the DL/I CHNG Call.

Transaction Manager applications that use Multiple System Coupling (MSC),
CHNG calls, and AUTH calls on a remote IMS system can benefit from coding this
exit routine. By coding this exit routine, you can avoid a security failure that
occurs when RACF or a non-RACF security environment is called in a destination
MSC system by a user that is not signed on to that particular IMS system.

This routine is optional when IMS dynamically creates a security environment in a
remote IMS back-end system (or a local IMS system if the user has signed off) to
accomplish the RACF authorization check. You can control the creation of the
security environment by using the Build Security Environment user exit (BSEX).
IMS calls this routine, if available, to provide compatibility.

The IMS security exit routines do not need to be bound to the IMS nucleus, can
run in 31-bit storage, and can share a work storage area. The following security
exit routines have these attributes:
v Signon/off security exit routine (DFSCSGN0)

DFSCSGN0 is called during IMS initialization to give the exit routine the chance
to acquire a work storage area. The exit routine passes the address back to IMS.
Then, IMS passes the address to the other security exit routines every time they
are called.

v Security Reverification exit routine (DFSCTSE0)
v Transaction Authorization exit routine (DFSCTRN0)

Subsections:
v “About this routine”
v “Communicating with IMS” on page 276

About this routine

This exit routine is an entry point in DFSCTRN0. If you do not code this entry
point, IMS does not call it.

The following table shows the attributes of the Security Reverification exit routine.

Table 99. Security reverification exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSCTSE0.

Chapter 3. Transaction Manager exit routines 275

|
|
|
|
|

|
|
|

|

|
|
|
|

|

|

Table 99. Security reverification exit routine attributes (continued)

Attribute Description

Binding DFSCTSE0 can be bound to DFSCTRN0, or coded as an explicit part of DFSCTRN0. If
you code this entry point, it must have access to a table of valid user IDs, passwords,
and transactions associated with each valid user ID, or contain some algorithm to
derive this authorization information. For addressability, this table must reside in this
module, in the /SIGN ON exit (DFSCSGN0), or in the IMS nucleus.

In IMS Version 12 and earlier, the security exit routines must be bound to the IMS
nucleus because the SECURITY macro is included in the IMS nucleus. In IMS Version
13 and later, the SECURITY macro is not supported and the security exit routines can
be bound separately.

If the security exit routines are linked in one of the STEPLIB or LINKLIST libraries,
IMS loads the exit routine. There is no startup parameter to specify whether to load
the routines. Message DFS1937I is issued for every exit routine that is loaded into
31-bit storage.

If the exit routines cannot be linked separately or cannot use a common work area,
they must be linked in the following manner:

v If the CSECT of DFSCTSE0 is part of DFSCTRN0 source, DFSCTSE0 must be linked
as an ALIAS of DFSCTRN0.

v If virtual address spaces are used to exchange data between DFSCSGN0,
DFSCTRN0, and DFSCTSE0, you must link DFSCTSE0 and DFSCSGN0 as ALIASs of
DFSCTRN0.

Including the routine If DFSCTSE0 is link edited to DFSCTRN0, it is called on return from DFSCTRN0.

IMS callable services To use callable services with this routine, you must do the following:

v Issue an initialization call (DFSCSII0) to obtain the callable service token and a
parameter list in which to build the function-specific parameter list for the desired
callable service.

v Use the ECB found in register 9 for the DFSCSII0 call.

v Link DFSCSI00 with your user exit routine.

Sample routine location No sample is provided.

Communicating with IMS

You can call the exit routine in the following environments:
v If you are operating in a RACF environment and the RACF FRACHECK call

returns a valid return code (0 or 4), IMS immediately calls the exit routine
DFSCTRN0 if DFSCTRN0 exists. On returning from DFSCTRN0, regardless of its
return code, IMS immediately calls DFSCTSE0 if DFSCTSE0 exists. This applies
to AUTH and CHNG calls only.

v If you are operating in a non-RACF environment and DFSCTSE0 is coded as an
entry point, IMS calls this entry point following each call to DFSCTRN0 if
DFSCTRN0 exists. This applies to AUTH and CHNG calls only. IMS calls this
entry point regardless of the return code received from DFSCTRN0.

Whether you are operating in a RACF or non-RACF environment, DFSCTRN0
passes the return code directly to DFSCTSE0 in register 3.

Contents of registers on entry

On entry, the exit routine must save all registers using the save area provided. The
registers contain the following:

276 Exit Routines

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

|
|
|

Register Contents

0 Address of the user ID from PST (PSTUSID)

1
Address of the password or zero
For AUTH call, address of GENERIC class
For TRAN call, address of TRAN class
For FIELD call, address of FIELD class
For DATABASE call, address of DATABASE class
For SEGMENT call, address of SEGMENT class
For OTHER call, address of OTHER class

2 Calling routine number as follows:

12 (X'0C')
DFSDLA30 for DFSCTSE0 only, CHNG call

32 (X'20')
DFSDLA30 for DFSCTSE0 only, AUTH call

12 (X'0C')
DFSDLA30 for DFSCTSE0 only, CHNG call

32 (X'20')
DFSDLA30 for DFSCTSE0 only, AUTH call

3 Return code from prior routines

4 For details of the format of this storage area, see the prolog in the sample
routine (IMS.SDFSSMP; member name is DFSCTRN0).

7 Address of source CTB or zeros.
Recommendation: Do not write an application that requires the contents of
this register, because they vary depending on the type of call to the exit
routine and the environment from which the call is made.

9 Address of PST.

10 Address of transaction code or resource name.

11 Address of SCD.

13 Address of save area. The exit routine must not change the first three words.

15 Entry point of exit routine.

Contents of registers on exit

On return, all registers must be restored except for register 15, which must contain
one of the return codes shown in the following table, to indicate the success or
failure of the user's authorization to issue a AUTH or CHNG call.

Return code Meaning

0 IMS accepts the CHNG call.

4 The resource is not protected.

8 The user is not authorized.

Positive IMS rejects the CHNG call.

Negative User is authorized. The negative value is the complemented address that
points to user data provided by RACF (AUTH call).

Related reference:
“Transaction Authorization exit routine (DFSCTRN0)” on page 313
“Initialization of IMS callable services (DFSCSII0)” on page 17

Chapter 3. Transaction Manager exit routines 277

|
|

Shared Printer exit routine (DFSSIML0)
The Shared Printer exit routine (DFSSIML0) decides whether a terminal that is
unavailable can be automatically acquired by IMS or an AOI application program.

This information documents Product-sensitive Programming Interface and
Associated Guidance Information provided by IMS.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 279

About this routine

To acquire SLU 1, or 328X BSC/VTAM printers that are defined to IMS as shared,
the IMS message router activates a Shared Printer exit routine. This is a routine
that you write to decide whether a terminal that is unavailable can be
automatically acquired by IMS or an AOI application program. The Shared Printer
exit routine should return the name of the AOI application program.

A Shared Printer exit routine is not necessary to use shared printing. If no exit
routine exists, the message router simulates a /OPN command when the terminal
is defined as shared.

Attributes of the routine

The following table shows the attributes of the Shared Printer exit routine.

Table 100. Shared printer exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSSIML0.

Including the routine No special steps are required to include this routine.

IMS callable services To use IMS callable services with this routine, you must issue an initialization call
(DFSCSII0) to obtain the callable service token and a parameter list in which to build
the function-specific parameter list for the desired callable service. Use the ECB found
in register 9 for the DFSCSII0 call.

This exit is automatically linked to DFSCSI00 by IMS. No additional linking is required
to use IMS callable services.

Sample routine location IMS.ADFSSMPL (member name DFSSIML0).

Special considerations

If you decide to write a Shared Printer exit routine, here are some things you need
to know:
v If the exit routine returns a bad return code, it is disabled and message DFS2084

is sent to the master terminal operator. A bad return code, in this case, is a
return code of 8 when no transaction name is in the area pointed to by register 1
or when the transaction name returned is invalid. After the exit routine has been
disabled, a return code of 0 is assumed. For the exit routine to be enabled, IMS
must be restarted.

v The exit routine must not issue any waits, OS macros, or SVCs.

278 Exit Routines

v The exit routine can examine output destination but cannot modify it.
v The exit routine should return the name of the AOI application program in the

field provided by the message router.
v The exit routine receives control of the messages after they are queued.
v Because the exit routine runs in the IMS control region, your installation must

maintain security. Installation procedures should not let an unauthorized routine
be linked into the nucleus.

Communicating with IMS

IMS uses the entry and exit registers to communicate with the routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of the area where the AOI transaction name is to be returned.

6 Address of CNT.

7 Address of CTB.

9 Address of CLB.

11 Address of SCD.

13 Address of save area. The exit routine must not change the first three words.

14 Return address to IMS.

15 Entry point of exit routine.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for
register 15, which must contain one of the following return codes:

Return code Meaning

0 A SIMLOGON with the Q and RELRQ options is issued. This tells the other
subsystem or VTAM application connected to the printer that IMS needs the
printer.

4 No special processing is required. Normal processing continues.

8 The AOI transaction is activated. This transaction cannot be a conversational,
Fast Path, remote, or password-protected transaction.

Related reference:
“Routine binding restrictions” on page 9
“Initialization of IMS callable services (DFSCSII0)” on page 17

Signoff exit routine (DFSSGFX0)
Signoff exit routine (DFSSGFX0) performs processing that complements the Signon
exit routine (DFSSGNX0). You can also use this exit routine to reset the significant
status for terminals during user signoff.

This topic contains Product-sensitive Programming Interface information.

Chapter 3. Transaction Manager exit routines 279

Subsections:
v “About this routine”
v “Restrictions” on page 281
v “Communicating with IMS” on page 281

About this routine

All attempts to sign off from ACF/VTAM terminals cause IMS to call this exit
routine. The Signoff exit routine is also called if either RACF or the Signon/off
Security exit routine (DFSCSGN0) fails a signon attempt.

Recommendation: Although the Signon exit routine and this exit routine are
optional, if you include one, you should also include the other to perform any
cleanup operations that are necessary.

The following table shows the attributes of the Signoff exit routine.

Table 101. Signoff exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSSGFX0.

Including the routine If you want IMS to call the Signoff exit routine, include it in an authorized library in
the JOBLIB, STEPLIB, or LINKLIST library concatenated in front of the IMS.SDFSRESL.

IMS callable services To use callable services with this routine, you must do the following:

v Issue an initialization call (DFSCSII0) to obtain the callable service token and a
parameter list in which to build the function-specific parameter list for the desired
callable service.

v Use the current address ECB found at offset 0 for the DFSCSII0 call.

v Link DFSCSI00 with your user exit.

Sample routine location IMS.ADFSSMPL (member name DFSSGFX0).

Extended Recovery Facility (XRF) considerations

Each time IMS calls the Signoff exit routine, the exit routine receives information
on the XRF status of IMS. The exit routine can check this information and return
the appropriate error message if necessary. IMS calls the exit routine if XRF
tracking fails.

Resetting the significant status

You can use this exit to reset the significant status for a terminal in one of the
following states:

Conversational
Exclusive
Test
Preset
MFS test
Full-function response
Fast Path response

280 Exit Routines

Note: Test and preset states are nonrecoverable, so IMS resets the significant
status automatically.

A parameter passed to the exit routine indicates the status of the terminal or ETO
user at sign off. You can reset the status in the output parameters.

For conversation mode, IMS performs the equivalent of an /EXIT command for the
conversation.

Restrictions

The Signoff exit routine cannot be used by LU 6.2 terminals.

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

R1 Address of the “IMS standard user exit parameter list” on page 5 (Version 1)

R13 Save area address

R14 Return address to IMS

R15 Entry point address of exit routine

The following table lists the sign off parameters. The address of this parameter list
is in the standard exit parameter list field SXPLFSPL.

Table 102. Signoff exit parameter list

Offset (decimal) Length Description

+0 4 Current ECB address.

+4 4 SCD address.

+8 4 Address of the user table created by initialization
user exit DFSINTX0 or zero, if none.

+12 4 Address of USERID associated with Sign Off.

+16 4 CLB address.

+20 4 Address of the STATUS_IN and STATUS_OUT
vectors. The status vectors are mapped by the
DFSSTCHK macro.

Contents of STATUS_IN

The input status vector is a 2-byte field that indicates the terminal's significant
status when the exit routine is called. The second byte of the field is reserved. The
first byte of the field contains a value that indicates the significant status as
follows:

Chapter 3. Transaction Manager exit routines 281

Value Description

X'80' Conversation

X'40' Exclusive

X'20' Test

X'10' Preset

X'08' MFS test

X'04' Full-function response

X'02' Fast Path response

Contents of STATUS_OUT

The output status vector is a two-byte field that indicates changes to the significant
status made by the exit routine. IMS uses the contents of STATUS_OUT as an
indicator to exit a conversation and reset significant status. The default for this
field is zeros, indicating that no significant status is reset.

The second byte of the field is reserved. The first byte of the field contains a value
that indicates the significant status to be reset as follows:

Value Description

X'80' Exit conversation

X'40' Reset exclusive

X'20' Reset test

X'10' Reset preset

X'08' Reset MFS test

X'04' Reset full-function response

X'02' Reset Fast Path response

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for
register 15, which contains one of the following return codes:

Return code Meaning

0 Normal return.

Negative
value

The specified user message is sent to the terminal signing off. This message
can be used to trigger an AOI facility following a signoff operation.

Related reference:
“Routine binding restrictions” on page 9
“Initialization of IMS callable services (DFSCSII0)” on page 17
“IMS standard user exit parameter list” on page 5

282 Exit Routines

Signon exit routine (DFSSGNX0)
IMS calls the Signon exit routine for signon processing if ETO=Y is specified as an
execution parameter.

This topic contains Product-sensitive Programming Interface information.

This topic describes the Signon exit routine. All attempts to sign on to ACF/VTAM
terminals if the Extended Terminal Option (ETO) feature is active cause IMS to call
this exit routine. The Signon exit routine cannot be used by LU 6.2 terminals.

IMS calls the Signon exit routine before RACF validation (if requested) is
performed and before the Signon/off Security exit routine (DFSCSGN0) is called.
This exit routine contains logic and function that complement the Signon/off
Security exit routine. Review your use of the Signon/off Security exit routine to
determine if the function that it provides is necessary or conflicts with the Signon
exit routine.

Related Reading:

v For more information on ETO and LU 6.2, see IMS Version 13 Communications
and Connections.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 286

About this routine

You can write the Signon exit routine to:
v Select the user descriptor (based on the user ID, node name, or DFSUSER) that

you want IMS to reference when building the control block structure for the user
that is signing on.

v Provide queue data for the user that is signing on. This could be data to
override the queue data derived from the user descriptor. If the user descriptor
is DFSUSER, the exit routine can also supply queue data to add additional
LTERMs to the structure.

v Supply parameters that you want IMS to reference when building associated
printer control block structures.

v Allow or disallow a signon attempt based on a maximum number of users, or
according to any criteria that you specify.

v Specify, or override, autologoff parameter and autosignoff (ASOT) value.
v Override the default Status Recovery Mode for dynamic non-STSN terminals

(terminals other than SLUP, FINANCE, and ISC).

For the latest version of DFSSGNX0, see the IMS.SDFSSMPL library; member name
is DFSSGNX0. If you write your own Signon exit routine or modify the sample,
you must include the portion of the sample exit routine (or the equivalent logic)
that removes extraneous blank fields that RACF (if used) creates. (When the
Signon exit routine is not included in the system, internal IMS logic removes these
extraneous blank fields.) The sample exit routine also provides an example of
associated printing.

When the Signon exit routine (DFSSGNX0) is not included in the system and the
MFS formats for the DFS3649 message have not been modified, internal IMS logic

Chapter 3. Transaction Manager exit routines 283

removes these extraneous blank fields. If the MFS formats for the DFS3649 message
have been modified, corresponding changes to the logic in the Signon exit routine
that removes the extraneous blank fields might be necessary. This logic is included
in the Signon exit routine so that adjustments can be made when changes are
made to the DFS3649 MFS formats.

The Signon exit routine and the Destination Creation exit routine (DFSINSX0) are
corequisite exit routines, under the following conditions. If you provide one exit
routine to supply queue data for additional LTERMs, you must provide the other
exit routine also. They both create the user control block structure and related
LTERMs (including multiple LTERMs for a user): the Signon exit routine using the
user ID and the Destination Creation exit routine using an LTERM name. Both exit
routines must have the same logic so that the structure created is identical,
regardless of which exit routine created it.

You can use the Signoff exit routine (DFSSGFX0) to complement any processing
that the Signon exit routine performs.

The following table shows the attributes of the Signon exit routine.

Table 103. Signon exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention
You must name the Signon exit routine DFSSGNX0.

Including the routine If you want IMS to call the Signoff exit routine, include it in an
authorized library in the JOBLIB, STEPLIB, or LINKLIST library
concatenated in front of the IMS.SDFSRESL.

IMS callable services
To use IMS callable services with this routine, you must do the
following:

v Issue an initialization call (DFSCSII0) to obtain the callable service
token and a parameter list in which to build the function-specific
parameter list for the desired callable service.

v Use the current address ECB found at offset 0 for the DFSCSII0
call.

v Link DFSCSI00 with your user exit.

Sample routine
location

IMS.ADFSSMPL.

Assembling and loading the routine

A sample Signon exit routine is provided in IMS.SDFSSMPL. Alternatively, you can
write your own exit routine. You can assemble the sample exit routine or one that
you write (using the standard IMS macro and copy files), and include it in an
authorized library in the JOBLIB, STEPLIB, or LINKLIST library concatenated in
front of the IMS.SDFSRESL. If the Signon exit routine is included, IMS
automatically loads it each time IMS is initialized if ETO=Y (after the Initialization
exit routine, DFSINTX0, has changed the ETO= parameter).

If you want associated printing, be sure to specify the following when you
assemble the sample exit routine:
&ASSOCPRT SETC ’YES’

284 Exit Routines

This specification ensures that the associated printing sample code is generated.

User ID

The Signon exit routine informs the external subsystem of the user ID associated
with the transaction input message. The user ID can be one of the following:
v The inputting LTERM name if the terminal user is not signed on
v The ID of the terminal user
v The RACF/user-authorized user ID associated with a non-message driven BMP

or CPIC application
v The PSB name specified on the JOB statement

IMS determines the user ID in the following order.

For CPIC application:
1. RACF ID if the accessor environment element (ACEE) is cloned in the

dependent region
2. PSTBUSER if the field does not contain binary zeros or blanks
3. PSTUSID if the field does not contain blanks
4. PSTSYMB0 if the field does not contain blanks
5. PDIRSYM

For a message driven BMP that has done a GU, or IFP that has done a GU, or
MPP:
1. PSTUSID if the field does not contain blanks
2. PSTSYMB0 if the field does not contain blanks
3. PSTBUSER if the field does not contain binary zeros or blanks
4. PDIRSYM

For message driven BMP that has not done a GU or IFP that has not done a GU:
1. PSTBUSER if the field does not contain binary zeros or blanks
2. PDIRSYM

For non-message driven BMP:
1. PSTBUSER if the field does not contain binary zeros or blanks and the

DFSDCxxx PROCLIB member specifies BMPUSID=USERID
2. PDIRSYM

When a dependent region connection is initially established, the Signon exit
routine is activated before a thread is created by the Create Thread exit routine. All
subsequent Signon requests result in the exit routine being activated after a thread
is created. For example, Signon is activated for each message processed during a
single scheduling, whether or not the messages are separated by commit
processing.

Extended Recovery Facility (XRF) considerations

IMS calls the Signon exit routine in the XRF alternate system for a type 1 session
with ETO. When IMS calls the exit routine in the alternate system, the exit routine
is not allowed to change anything related to the terminal or user structures,
including fields that the exit routine can normally change.

Chapter 3. Transaction Manager exit routines 285

Each time IMS calls the Signon exit routine, the exit routine receives information
on the XRF status of IMS.

Supporting associated printing

Associated printing is the ability to direct application printer output to a printer
logical unit (LU) name. This LU name is provided at either logon or sign on time.
If the Logon exit routine (DFSLGNX0) is written to detect LU names entered as
logon user data, IMS passes these LU names to the Signon exit routine.

If you modify the DFS3649A MFS format to allow LU names to be entered as
/SIGN ON user data, the Signon exit routine must be able to detect the LU names.
If the user can enter LU names directly at sign on, the exit routine must determine
the queue name that is allocated to each printer. There should be a unique
relationship between the user ID and the queue name. The Signon exit routine
passes the queue name to IMS, which creates the control block structure. An
application program can use the same algorithm to determine the queue name
when the application processes a transaction scheduled for a particular user ID.

The exit routine must insert a period (.) in the sign-on user verification string
(UVS) after building the associated printer buffer.

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

R1 Address of the “IMS standard user exit parameter list” on page 5 (Version 1)

R13 Save area address

R14 Return address to IMS

R15 Entry point address of exit routine

The following table lists the signon exit parameters. The address of this parameter
list is in the standard exit parameter list field SXPLFSPL.

Table 104. Signon exit parameter list

Offset (decimal) Length Description

+0 4 Current ECB address.

+4 4 SCD address.

+8 4 Address of the user table created by Initialization
User Exit routine DFSINTX0 or zero, if none.

286 Exit Routines

Table 104. Signon exit parameter list (continued)

Offset (decimal) Length Description

+12 4 Address of a buffer for use by your user exit to
return user descriptor and queue data exit
parameters. For additional details on the content and
the format, refer to the prolog in the sample routine.

Set to zero:

v For a static terminal.

v If processing on an XRF alternate system.

v If processing /SIGN ON ETO STSN device.

The USEQDATA DSECT is provided for parameter
area mapping.

+16 4 Address of a buffer for use by your user exit to
return associated printer exit parameters. For
additional details on the content and the format, refer
to the prolog in the sample routine.

Set to zero, if processing on an XRF alternate system.

+20 4 Address of a parameter list created by one of the
following:

v Session initiation from LOGON data.

v Input from the /SIGN ON command.

For additional details on the content and the format,
refer to the prolog in the sample routine.

Set to zero, if processing XRF alternate.

+24 4 Address of a parameter list, which contains pointers
to available user control block structures (SPQBs) and
default autosignoff values. For additional details on
the content and the format, refer to the prolog in the
sample routine.

Set to zero:

v For a static terminal.

v If processing on an XRF alternate system.

v If processing /SIGN ON ETO STSN device.

+28 4 CLB address.

+32 4 Table of existing user structures. For additional
details on the content and the format, refer to the
prolog in the sample routine.

+36 4 Address of general Input/Output parameters. For
additional details see DSECT DFSSGNXP macro for
the format.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for
register 15, which contains one of the following return codes.

The content of register 15 will be ignored if processing is on an XRF alternate
system.

Chapter 3. Transaction Manager exit routines 287

Return code Meaning

0 IMS continues SIGNON processing.

4 IMS rejects the SIGNON attempt. The SIGNON required message, DFS3649,
is resent to the terminal with some added information indicating the reason
for rejection.

Negative The same as return code 4, but IMS sends the specified user message
instead of DFS3649.

Related reference:
“Signon/off Security exit routine (DFSCSGN0)” on page 291
“Routine binding restrictions” on page 9
“Initialization of IMS callable services (DFSCSII0)” on page 17
“IMS standard user exit parameter list” on page 5

User descriptor selection
If the user control block structure already exists for the user that is signing on, IMS
searches for the user structure and passes the addresses of the existing nodename
structure along with the address of any existing user ID structure to the exit
routine in the parameter list ESPQBTAB.

The exit routine can determine whether to use the user ID structure or the
nodename structure by examining the passed structure without making an explicit
IMS callable service routine call to find the nodename user structure.

If the exit routine chooses the nodename as the user structure name, the user ID is
hashed to a non-SPQB user hash table.

If no user control block structure exists, you can select a user descriptor by using
the USERD= keyword, write the Signon exit routine to select the user descriptor, or
let IMS select a descriptor. The following figure shows the search order that IMS
uses to select the user descriptor.

You can use the USERD keyword (entering it as user data with the /SIGN ON
command) to select the user descriptor. If your Signon exit routine does not choose
a user descriptor, IMS uses the user descriptor requested by the USERD parameter.

The Signon exit routine is called with the parameter list SPQBPTRS, which
contains the address of the USERD= keyword specified, and the addresses of the
user ID descriptor, node name descriptor, and DFSUSER descriptor. The exit
routine can choose among these descriptors by specifying the descriptor's address
in the USEQUSED field of the USEQDATA DSECT. If the exit routine selects one of
these user descriptors, IMS uses it to create the user control block structure. (A
user descriptor that the exit routine specifies overrides any descriptor specified on
the USERD= keyword.)

The exit routine can also create an arbitrary user structure name by specifying the
name in the eight-byte USEQUSTN field in the USEQDATA parameter list. IMS

Figure 14. User descriptor selection order

288 Exit Routines

creates the user structure with the name from this field and stores the returned
name in the SPQB user hash table. Security is based on the original user ID that
the user signed on with and is stored in the non-SPQB user hash table.

If no user descriptor is specified on the USERD= keyword and the Signon exit
routine does not return the address of a user descriptor, IMS selects the first
descriptor address that it finds in the SPQBPTRS among the user ID descriptor,
node name descriptor, and the DFSUSER descriptor, respectively. IMS uses this
descriptor to create the user control block structure.

If none of these methods returns a user descriptor, IMS uses DFSUSER to create
the user structure. If no user descriptor can be found, including DFSUSER, IMS
rejects the signon request.

Regardless of how the user descriptor is chosen, only DFSUSER or descriptors
associated with the user ID or node name are valid. There is no user-based output
security if the selected descriptor is the node name descriptor.

Providing queue (LTERM) data
Depending on the user descriptor selected, the exit routine can provide queue data.
If the exit routine returns data that it was not authorized to return, IMS rejects the
sign-on request.

Cases
Four cases describe what data the Signon exit routine (DFSSGNX0) can supply. The
four cases are based on whether the user structure exists and whether DFSUSER or
a non-DFSUSER descriptor is selected.

For the Signon exit routine, non-DFSUSER descriptors are descriptors based on the
user ID or node name.

Table 105. Case numbers identifying what data DFSSGNX0 can provide

Descriptor User structure exists User structure does not exist

DFSUSER Case 1 Case 2

Non-DFSUSER Case 3 Case 4

Case 1

The Signon exit routine is called using the descriptor, DFSUSER, that was used to
create the user control block structure. The exit routine can:
v Supply queue data (except LTERM names) to override data of the existing

structure
v Provide data for additional LTERMs, if it supplies the data for the existing

LTERMs first and in the order in which they are chained

IMS verifies the additional LTERMs that are specified (but are not in the existing
user structure) against the LTERMs that already exist in the system. If an LTERM
that is specified as an additional LTERM already exists in the system, IMS assumes
that this LTERM has been assigned to a different user, and it is not made part of
the user structure of the user that is signing on. If this is the only LTERM that the
descriptor or the Signon exit routine specifies for this user, IMS rejects the signon
attempt.

Chapter 3. Transaction Manager exit routines 289

Case 2

If DFSUSER is selected and no user control block structure exists, the Signon exit
routine:
v Can supply any queue data desired (including LTERM names)

If the exit routine does not provide queue data, one LTERM (named for the user
ID) is created. If any queue data is passed, this default user ID LTERM is not
created and must be specified in the queue data if it is desired.

IMS verifies the additional LTERMs that are specified against the LTERMs that
already exist in the system. If an LTERM that is specified already exists in the
system, IMS assumes that this LTERM has been assigned to a different user, and it
is not made part of the user structure of the user that is signing on. If this is the
only LTERM that the descriptor or exit routine specifies for this user, IMS rejects
the sign-on attempt.

Case 3

The Signon exit routine is called with the same non-DFSUSER descriptor that was
used to create the user control block structure (either the user ID or node name
descriptor). The exit routine:
v Can supply any queue data (except LTERM names) to override data of the

existing structure
v Cannot provide data for additional LTERMs

IMS verifies the LTERMs that are specified in the descriptor (but are not in the
existing structure) against the LTERMs that already exist in the system. If an
LTERM is specified in the descriptor but is not in the existing structure, IMS
assumes that this LTERM has been assigned to a different user and deleted. The
LTERM is given back to the user and is made part of the user structure of the user
that is signing on.

Case 4

If a non-DFSUSER descriptor is selected and no user control block structure exists,
the Sign On exit routine:
v Can supply queue data (except LTERM names) to override data that the

descriptor provides
v Cannot provide data for additional LTERMs

IMS verifies the LTERMs specified in the descriptor against the LTERMs that
already exist in the system. If an LTERM that is specified in the descriptor already
exists in the system, IMS assumes that this LTERM has been assigned to a different
user, and it is not made part of the user structure of the user that is signing on. If
this is the only LTERM that the descriptor or exit routine specifies for this user,
IMS rejects the signon attempt.
Related tasks:
“User descriptor selection” on page 288

290 Exit Routines

Signon/off Security exit routine (DFSCSGN0)
Use the Signon/off Security exit routine (DFSCSGN0) to verify a user's ID and
password.

This topic contains Product-sensitive Programming Interface information.

This chapter describes the Signon/off Security exit routine. You can use this exit
routine to verify a user's ID and password.

This exit routine can conflict with the Signon exit routine (DFSSGNX0).

Subsections:
v “About this routine”
v “Communicating with IMS” on page 292

About this routine

You can use the Signon/off Security exit routine with or without RACF to verify
the user ID and password. IMS calls this exit routine after RACF /SIGN ON
verification has been performed. If the /SIGN ON request is rejected by RACF,
IMS does not call this exit routine. If the RACF option is not selected in the IMS
system definition, you can use this exit routine to verify the user's identification
and passwords at /SIGN ON time.

If ETO=Y is specified as an execution parameter, the Signon exit routine
(DFSSGNX0) performs signon processing before IMS calls RACF or the Signon/off
Security exit routine. If the Signon exit routine rejects the signon attempt, IMS does
not call the Signon/off Security exit routine.

If shared queues are active and the security environment for a transaction is
created on the back-end IMS subsystem, IMS does not call this exit routine.

The Signon/off Security exit routine should have access to a table of valid user IDs
and the passwords associated with each ID. The exit routine should note successful
/SIGN ONs to prevent additional attempts to perform the /SIGN ON function.
When the /SIGN ON command is executed, the exit routine should mark that user
ID as available for /SIGN ON. For logging purposes, the exit routine can also
place information into the data portion of the user verification string that is passed
to the exit.

If you plan to use the Signon exit routine, review how you use the Signon/off
Security exit routine to determine if the function that this exit routine provides is
necessary or might even conflict with the Signon exit routine.

Like both the Security Reverification exit routine (DFSCTSE0) and the Transaction
Authorization exit routine (DFSCTRN0), the Signon/off Security exit routine does
not need to be bound to the IMS nucleus, can run in 31-bit storage, and can share
a work storage area using a standard technique.

The Signon/off Security exit routine is called during IMS initialization to give the
exit routine the chance to acquire a work storage area. If storage is acquired, the
exit routine passes the address back to IMS in register 2. Then, IMS passes the
address to the DFSCTSE0, DFSCTRN0, and DFSCSGN0 security exit routines every
time they are called.

Chapter 3. Transaction Manager exit routines 291

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

If the Signon/off Security exit routine is linked in one of the STEPLIB or LINKLIST
libraries, IMS loads the exit routine. There is no startup parameter to specify
whether to load the routines. Message DFS1937I is issued when the Signon/off
Security exit routine is loaded.

Signon/off Security exit routine is called after the Initialization exit routine
(DFSINTX0) is called.

The following table shows the attributes of the Signon/off Security exit routine.

Table 106. Signon/off security exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSCSGN0.

Including the routine No special steps are required to include this routine.

IMS callable services
To use callable services with this routine, you must issue an initialization call
(DFSCSII0) to obtain the callable service token and a parameter list in which to build
the function-specific parameter list for the desired callable service. Use the ECB found
in register 9 for callable services. This exit is automatically linked to DFSCSI00 by IMS.
No additional linking is required to use callable services.

Sample routine location IMS.ADFSSMPL (member name DFSCSGN0).

Communicating with IMS

IMS uses the entry and exit registers to communicate with the exit routine.

Contents of registers on entry

On entry to the exit routine, all registers must be saved using the save area
provided. The registers contain the following:

Register Contents

0 /SIGN function (ON or OFF):

0 /SIGN ON

1 /SIGN OFF

2 /SIGN ON in XRF alternate system.

3 /SIGN OFF in XRF alternate system.

4 IMS initialization. The exit can return an address that is passed to
DFSCTRN0, DFSCTSE0, and DFSCSGN0.

1 Pointer to the variable-length user verification string, if the SIGN function is
/SIGN ON. The string format is LLZZ (4 bytes), followed by the text, starting
with the first character of the user ID.

Address of the user ID if the SIGN function is /SIGN ON in an XRF
environment.

Insignificant if the SIGN function is /SIGN OFF.

292 Exit Routines

|
|
|
|

|
|

||
|

Register Contents

7 Address of source CTB or zeros.
Recommendation: Do not write an application that requires the contents of
this register, because the contents of this register vary depending on the type
of call to the exit routine and on the environment from which the call was
made.

9 Address of ECB.

11 Address of SCD.

13 Address of save area. The exit routine must not change the first three words.

14 Return address to IMS.

15 Entry point of exit routine.

Contents of registers on exit

On return to IMS, all registers must be restored except for register 15, which
contains one of the following return codes:

Return code Meaning

0 IMS accepts the /SIGN ON

4
(initialization
only)

IMS stores the address returned by this exit routine and passes it to
DFSCTRN0, DFSCTSE0, and DFSCSGN0.

Positive IMS rejects the /SIGN ON. IMS sends message DFS2467 if sign-on is not
required and message DFS3649 if sign-on is required. This return causes a
“BY IMS EXIT” to be appended to the message to indicate that the exit
routine caused the return code.

Negative IMS rejects the /SIGN ON command and sends a user-defined message. The
message number is complemented into a message number. This number
must be less than -24, otherwise a DFS2467 message is sent instead. You
must list the absolute value of this message number in the User Message
Table, DFSCMTU0.

Exception: The exit routine does not check this return code on return from
RACF or during /SIGN OFF processing.

Related tasks:

Extended Terminal Option (ETO) (Communications and Connections)
Related reference:
“Signon exit routine (DFSSGNX0)” on page 283
“Transaction Authorization exit routine (DFSCTRN0)” on page 313
“Security Reverification exit routine (DFSCTSE0)” on page 275
“Routine binding restrictions” on page 9
“Initialization of IMS callable services (DFSCSII0)” on page 17
“User Message table (DFSCMTU0)” on page 478

Chapter 3. Transaction Manager exit routines 293

|
|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ccg_part_eto.htm#ims_ccg_part_eto

Time-Controlled Operations (TCO) Communication Name Table (CNT)
exit routine (DFSTCNT0)

The Time-Controlled Operations (TCO) Communication Name Table (CNT)
controls which IMS LTERMs are allowed to load TCO scripts.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 295

About this routine

The Time-Controlled Operations (TCO) Communication Name Table (CNT) exit
routine gets control from the IMS Communication Analyzer module (DFSICIO0)
whenever both of the following conditions are true:
v TCO is active.
v A message switch occurs for the DFSTCF LTERM.

The message switch acts as a load command from DFSTCF to load another TCO
script. Use this exit routine to control which LTERMs are allowed to load TCO
scripts.

The default exit routine immediately returns control to DFSICIO0, and you can
load TCO scripts from any terminal.

This routine cannot be used in a DBCTL environment.

The following table shows the attributes of the TCO CNT exit routine.

Table 107. TCO CNT exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention If you are writing your own routine, you can give it any name. If you are using the
IMS-supplied routine, use the name DFSTCNT0.

294 Exit Routines

Table 107. TCO CNT exit routine attributes (continued)

Attribute Description

Binding You should write, compile, and bind the routine as re-entrant (RENT). The following
JCL is an example of binding a routine named MYEXIT to DFSICIO0.

//XIT JOB 1, MSGLEVEL=1
//LINK EXEX PGM=IEWL, PARM=RENT
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(20,20))
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSN=IMS.SDFSRESL,DISP=SHR
//INLIB DD DSN=IMS.OBJ,DISP=SHR
//SYSLIN DD *

INCLUDE INLIB(MYEXIT)
INCLUDE INLIB(DFSICIO0)
NAME MYEXIT(R)

/*

In this example, IMS.SDFSRESL is an authorized library that contains all load modules.
IMS.OBJ is a library that contains all object modules. The JCL in this example expects
to find the object modules of the exit routine (MYEXIT) and the IMS Communication
Analyzer module (DFSICIO0) in IMS.OBJ and places the result of the into
IMS.SDFSRESL.

After you've compiled and tested your routine (or if you are using the routine
supplied by IMS), you must bind the exit routine with the TCO Language Interface
module (DFSTDLI0).

IMS callable services This exit is not eligible to use IMS callable services.

Sample routine location IMS.SDFSSMPL (member name DFSTCNT0).

Communicating with IMS

IMS uses the entry and exit registers to communicate with the routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 The buffer location of the input message segment after translation to EBCDIC
and after IMS Basic Editing. The first two bytes of the buffer contain a binary
message length. The third byte of the buffer is binary zeros. The binary count
includes the 4-byte prefix. The fifth byte contains the first byte of message
text.

7 Address of CTB.

9 Address of CLB.

13 Address of save area. The exit routine must not change the first three words.

14 Return address to IMS.

15 Entry point of edit routine.

Use the message segment in the buffer addressed by register 1 as input to the exit
routine.

The exit routine must place the text of the edited message segment to be returned
to IMS in the buffer addressed by register 1. If the input was processed by the IMS

Chapter 3. Transaction Manager exit routines 295

Basic Edit, this buffer is always 10 bytes greater than the 2-byte binary count at the
beginning of the message segment. The length of the message segment can be
expanded or reduced to any desired size. The format of the edited message
segment in the buffer on return to IMS must be two bytes of binary count (LL),
two bytes of binary zeros (ZZ), and edited text. The second two bytes (ZZ) should
not be changed or edited. The LLZZ field is the first four bytes of the message
segment.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except register
15, which must contain one of the following return codes.

Return code Meaning

00 Segment is processed normally.

04 Segment is canceled.

08 Message is canceled and the terminal operator is notified.

12 Message is canceled and the user message identified by register 1 is sent to
the terminal.

Register 1 contains the message number if register 15 contains a return code of 12;
otherwise it is ignored. Any other value causes the message to be canceled and the
terminal operator to be notified.

Time-Controlled Operations (TCO) exit routine (DFSTXIT0)
The TCO exit routine inserts messages in the message queue at a specific time for
processing.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 297

About this routine

The TCO exit routine inserts messages that are the commands, transactions, and
message switches that you specify in the time schedule requests and message sets
that make up a script member. The TCO exit routine passes any data found in
columns 56 through 71 of the time schedule request to IMS to be processed.

You do not have to write your own exit routine. You can schedule predefined
commands, transactions, and message switches at predefined times with
DFSTXIT0, the TCO exit routine IMS supplies. If you do write your own, you can
write it in COBOL or assembler.

Restriction: PL/I and C language exit routines are not supported. Cobol routines
running under Language Environment for z/OS are not supported.

This routine cannot be used in a DBCTL environment.

The following table shows the attributes of the Time-Controlled Operations (TCO)
exit routine.

296 Exit Routines

Table 108. Time-Controlled Operations (TCO) exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention If you are writing your own routine, you can name it anything you want. If you are
using the IMS-supplied routine, use the name DFSTXIT0.

Binding You should write, compile, and bind the routine as serially reusable (REUS).

The following JCL is an example of binding a routine named MYEXIT to DFSTDLI0.

//XIT JOB 1, MSGLEVEL=1
//LINK EXEX PGM=IEWL, PARM=REUS
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(20,20))
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSN=IMS.SDFSRESL,DISP=SHR
//INLIB DD DSN=IMS.OBJ,DISP=SHR
//SYSLIN DD *

INCLUDE INLIB(MYEXIT)
INCLUDE INLIB(DFSTDLI0)
NAME MYEXIT(R)

/*

In this example, IMS.SDFSRESL is an authorized library that contains all load modules.
IMS.OBJ is a library that contains all object modules. The JCL in this example expects
to find the object modules of the exit routine (MYEXIT) and the TCO Language
Interface module (DFSTDLI0) in IMS.OBJ and places the result of the bind into
IMS.SDFSRESL.

After you've compiled and tested your routine (or if you are using the routine
supplied by IMS), you must bind the exit routine with the TCO Language Interface
module (DFSTDLI0) and place them into IMS.SDFSRESL.

Including the routine To load and execute the routine, it must be referred to in a time schedule request in
the script member that is executing.

Related Reading: For more information about time schedule requests and script
members, see IMS Version 13 Operations and Automation.

The following is an example of a time schedule request in a script member that wants
the routine “MYEXIT” to be executed.

*TIME 1200 MYEXIT
v Columns 1-5 contain the Identification field. '*TIME' is in this field.
v Columns 7-10 contain the initial dispatch time. In this example it is 12:00 p.m.
v Columns 12-19 contain the name of the exit routine, left-justified and padded with

blanks. The name in this example is 'MYEXIT'.

IMS callable services This exit is not eligible to use IMS callable services.

Sample routine location IMS.SDFSSRC (member name DFSTXIT0).

Communicating with IMS

IMS uses the entry and exit registers, and parameters to communicate with the exit
routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Chapter 3. Transaction Manager exit routines 297

Register Contents

1 Address of a parameter list that contains the address of the program
communication block (PCB) used in the exit routine calls.

10 Reserved for TCO.

13 Address of save area. The exit routine must not change the first three words.

14 Return address to IMS.

15 Entry point of exit routine.

The PCB

The program communication block (PCB) contains the actual scheduling time for
the time-initiated message processing. It is in the PCBTIME field (PCB + 16).
Under most circumstances, this is the same time as the time initiated request. In
very busy systems, however, that actual scheduled time can differ from the
schedule request. For example, if you request your exit routine to be scheduled at
12:01 and a busy system prevents it from being scheduled until 12:03, the PCB
contains 12:03.

DL/I calls

The calls you can use in this exit routine are:

GU Get the message that caused scheduling.

ISRT Put a message segment into the queue for processing.

PURG Terminate the prior segments as a message and insert the first segment on
the next message (if an I/O area is provided).

GSCD Get the address of the IMS system contents directory. The address is
returned in the first word of the I/O area, which must begin on a word
boundary.

The TCO exit routine calls the TCO Language Interface module (DFSTDLI0) to
process these calls. You can call DFSTDLI0 or CBLTDLI0 (for COBOL) to process
the call.

You must pass a parameter list with the call in standard DL/I format (for example,
register 1 contains the address of a 2- or 3-word parameter list whose end is
indicated by a X'80' in the high-order byte). The PURG call can have two or three
parameters. The other calls require three parameters.

The parameter list consists of:
1. The call function
2. The address of the I/O PCB
3. The address of the I/O area (optional with PURG)

Status codes

A blank status code is returned to the exit routine after a successful call.

The following status codes can be returned to the exit routine after an unsuccessful
call:

AB The call didn't specify an I/O area.

298 Exit Routines

AD The function parameter on the call is invalid or is not supplied. The
functions recognized by TCO are GU, ISRT, PURG, and GSCD.

AX The I/O PCB name was invalid.

AZ An ISRT or PURG call with an unacceptable message count was issued.

QC There are no additional input messages to process for this time request.

QX The ISRT or PURG call could not be processed because of insufficient
storage.

Message formats

A GU call always retrieves a message in one of these formats:
v A 20-byte example as shown in the following figure.

v An 8-byte example as shown in the following figure.

v An example in which the address of a message set is retrieved as shown in the
following figure.

The last message of the message set contains binary zeros in the “next segment”
field.

If the message set is broken into individual messages and segments (by the use of
a space and an S in column 72), this is shown in the ZZ field of each segment. The
values are as follows:

Figure 15. Format of 20-byte message example

Figure 16. Format of 8-byte message example

Figure 17. Format of message where the address of a message set is retrieved

Chapter 3. Transaction Manager exit routines 299

Value Meaning

0001 First segment of a message

0000 Middle segment of a message

0002 Last segment of a message

0003 First and last (only) segment of a message

TM and MSC Message Routing and Control User exit routine
(DFSMSCE0)

The TM and MSC Message Routing and Control User exit routine (DFSMSCE0)
provides maximum routing control for TM and MSC messages.

This topic contains Product-sensitive Programming Interface information.

Subsections:
v “About this routine”
v “Sample IMS configurations” on page 301
v “Defining entry points” on page 304
v “Authorization checking” on page 305
v “Attributes of the routine” on page 306
v “Communicating with IMS” on page 307

About this routine

The DFSMSCE0 user exit routine does the following:
v Eases TM and MSC coding and maintenance requirements, and reduces the

number of exit modules.
v Supports a consistent set of routing capabilities across all of the exit entry points

(or functions).
This exit routine receives control for all User Type messages from:
– Terminal/message input
– MSC link input
– Application program output

Restriction: The DFSMSCE0 user exit routine is not called for DL/I ICAL
requests for synchronous program switch.
In turn, the exit is allowed to affect the routing of most of these messages.
Exceptions are cases where rerouting would violate IMS architecture or cause
problems such as hung terminals or incorrect application program operation. For
example, rerouting application program output messages to the I/O PCB is one
of these exceptions (it is not allowed), or affinity routing of synchronous
APPC/OTMA transaction messages to another IMS in a shared queues
environment when the resource recovery service or APPC/OTMA enablement
service is not set.
For details on the routing capabilities for each exit entry point, see the user
reroute flags MSTRFL2 (terminal), MSLRFL2 (MSC link), and
MSPRFL2/MSPRFL3 (application) in the DFSMSCEP user parameter list
mapping tables in Table 110 on page 308. Messages will be canceled or rerouted
if you have set one of more of these flags in conjunction with the destination
type.

300 Exit Routines

|
|

The user reroute request flags are MSTRFL2 (terminal), MSLRFL2 (MSC link),
and MSPRFL2/MSPRFL3 (application). Setting one or more of these flags in
conjunction with changing destination type fields, causes the message to be
canceled or rerouted (see following note).
See the DFSMSCE0 sample exit for examples of message routing.
For affinity routing restrictions, see the topic "Managing APPC and OTMA
messages in a sysplex environment" in IMS Version 13 System Administration.
DFSMSCEP parameters that the exit can set or change to affect message routing
are marked with a "U" or "B" as follows:

I IMS SETS (EXIT MUST NOT CHANGE)

U USER EXIT SETS

B BOTH IMS/USER EXIT SET (OR CHANGE)
v Provides a common parameter list interface and linkage interface to the various

entry points (or functions).
v Provides the ability to append an optional user prefix segment to TM and MSC

messages which TM and MSC user exit routines can use to communicate and
control user-customized routing needs.

v Provides new entry points:
– Control at IMS initialization and termination
– Control of messages in an MSC intermediate system
– Application program inserts to a non-modifiable PCB

All the entry points are optional, using a vector table that you code at the
beginning of the common exit module.

v Logs routing errors and footprints in the message to indicate those exit routines
that reroute the message.

Note: The DFSMSCE0 exit routine replaces the following exit routines:
v Input Message Routing exit routine (DFSNPRT0)
v Link Receive exit routine (DFSCMLR0/DFSCMLR1)
v Program Routing exit routine (DFSCMPR0)
v Terminal Routing exit routine (DFSCMTR0)

Sample IMS configurations

These samples describe four separate IMS configurations and the points where the
DFSMSCE0 exit routine receives control during the flow of a transaction and
response message.

Single IMS system

In a single IMS environment, the TR exit routine can receive control when a
message is received from the terminal. The PR exit routine receives control when
an application program issues a CHNG call to a modifiable PCB or on an ISRT call
to a I/O or ALT PCB to insert a message, or a GU call to the I/O PCB.

Chapter 3. Transaction Manager exit routines 301

Multiple Systems Coupling environment

In an MSC environment, the following occurs:
1. The TR exit routine receives control when a message is received from a

terminal.
2. The PR exit routine receives control when the application program issues a

CHNG call to a modifiable PCB or on an ISRT call to an I/O or ALT PCB to
insert a message, or a GU call to the I/O PCB.

3. The LR exit routine receives control each time a message is received on an MSC
link. The following figure shows the message flow when the transaction is
received on the MSC link in IMSB (LR1) and on the MSC link in IMSC (LR2).
In the response message flow, the LR exit receives control when the message
arrives on the MSC link in IMSB (LR3) and when it arrives in IMSA (LR4).

Shared-queues environment

A shared-queues environment is similar to a single-IMS environment. The TR exit
routine receives control on the front-end IMS system, when the message is received
from the terminal. The PR exit routine receives control on the back-end IMS system
when the application program receives control and issues a CHNG or ISRT call to
insert a message (PR).

The PR exit routine receives control when the application program issues a CHNG
call to a modifiable PCB or on an ISRT call to the I/O or ALT PCB to insert a

Single IMS

Input
terminal

IMSA

Transaction message
TR

Response
PR

Application
program

Figure 18. Single IMS system environment

Local
IMS

Intermediate
IMS

MSC
link

MSC
link

Input
terminal

IMSA IMSB IMSC

Remote transaction message

Response message

Remote
IMS

Application
program

TR LR1 LR2

LR4 LR3 PR

Figure 19. MSC environment

302 Exit Routines

message, or a GU call to the I/O PCB.

Shared-queues MSC environment

The following occurs in a shared-queues MSC environment:
1. The TR exit routine receives control in the front-end IMS system when the

transaction message is received from the terminal.
2. The PR exit routine receives control in the front-end IMS (PR1), the back-end

IMS (PR2), or the remote IMS (PR3) systems when the application program
receives control and issues a CHNG call to a modifiable PCB or on an ISRT call
to the I/O or ALT PCB to insert a message, or a GU call to the I/O PCB.

3. The LR exit routine receives control in the remote IMS system when the
transaction message is received on the MSC link (LR1), and then in the
back-end IMS system when the response message is received on the MSC link
(LR2).

In a shared-queues environment, two additional levels of affinity routing are
available for messages destined to a transaction. One level requests the transaction
message to be routed locally on the current IMS system. This is referred to as local
affinity. The other level requests the transaction message to be routed to the
back-end IMS system. This is referred to as back-end affinity. Affinity routing is
available in the terminal, link receive, and program routing entry points.

Front-end
IMS

Back-end
IMS

Shared
queues

Input
terminal

IMSA IMSB

Transaction message

Response message

Application
program

TR

PR

Figure 20. Shared-queues environment

Chapter 3. Transaction Manager exit routines 303

Defining entry points

You can define the entry points and conditions for IMS to call the DFSMSCE0 exit
routine by coding the user vector table macro (DFSMSCVT). In the front of the
module, code the VECTOR=MSCVTABLE parameter in the DFSMSCSV macro to point to
the resulting vector table. The DFSMSCVT macro supports 12 entry points that you
can specify to select those conditions for which the exit routine is called (2 for IMS
initialization and termination, and 10 entry points in the flow of TM message
processing).

The entry points enable:
v Rerouting a message to a different destination name or a different remote IMS in

a MSC system.
v Requesting transaction affinity processing (processing messages in a specific

IMS) in a shared queues IMSplex system by requesting that the message process
locally in the current IMS or in a different back-end IMS.

v Rejecting the message

The DFSMSCE0 user exit routine can change the routing of a message by setting
flags and fields in the user parameter list that IMS passes to the exit routine. This
parameter list is mapped by the DFSMSCEP macro, and then returned to IMS. The
parameter list contains:
v Fields and flags to indicate IMS conditions, such as MSC or shared-queues

system definition
v Information regarding the message, such as source and destination names and

MSC system identifiers (SYSIDs) for routing control

Front-end
IMS

Back-end
IMS

MSC
link

Input
terminal

IMSA IMSB IMSC

Remote transaction message

Response message

Remote
IMS

Application
program

Application
program

Application
program

TR LR1

PR1 PR2 LR2

PR3Shared
queue

Figure 21. Shared-queues MSC environment

304 Exit Routines

Some of the information in the parameter list is for reference only, while other
information can be changed to affect the rerouting of the message. See the
DFSMSCEP macro, described in Table 110 on page 308 through Table 115 on page
310, for more information.

At any of the user exit entry points (other than the initialization or termination
entry points), the exit routine can request a user prefix segment to be added to the
message. If a user prefix is already obtained for this message by a previous call to
the exit routine, IMS passes the address of the user prefix to the exit routine. The
exit routine can reference or change the user prefix, but cannot delete it or change
its length. This prefix can contain user routing information that can be passed to
the other routing exit entry points to be used to reroute the message. After the user
prefix is obtained, it remains appended to the message and is logged with the
message (for example, a type 01 or type 03 message log record is mapped by the
QLOGMSGP macro).

For each routing request, the user exit routine is passed a 512–byte work area that
is initialized to zeros and that the user exit routine can use as a work area, such as
for creating a user prefix.

No IMS System Definition changes are needed to invoke the DFSMSCE0 exit
routine, and MSC does not need to be available; however, several of the routing
functions are only available for MSC messages. The DFSMSCE0 exit routine is
loaded at IMS initialization, provided that the load module is link edited into
IMS.SDFSRESL or a user library concatenated to IMS.SDFSRESL.

Authorization checking

The exit call during link receive processing controls the level of authorization
checking. The level of authorization is controlled by the field MSLRFL3 of the
parameter list during link receive. IMS sets one of the flags in MSLRFL3 when
calling the link receive entry points to indicate which level of security checking is
active. If the message is a local transaction message, resetting or changing this flag
will override the level of security to be performed for this message. Flag MSLRFL1
can be tested to determine if the message is a local transaction. The following
parameters in the MSLRFL3 field specify the level of authorization:

MSLR3MSN
Authorization by MSNAME. The accessor environment element (ACEE)
dynamically created for first authorization, then reused.

The specification of MSLR3MSN causes the security environment based on
the MSNAME to be built the first time it is needed for an authorization
check. Thereafter, the environment is saved and is reused for subsequent
checking.

MSLR3CTL
Authorization by CTL address space security. The specification of
MSLR3CTL uses the security environment of the CTL address space that
already exists.

MSLR3USR
Authorization by user ID of input terminal. ACEE dynamically created and
deleted for each authorization.

The specification of MSLR3USR causes the security environment based on
the user ID of the input terminal (that entered the transaction) to be built
each time it is needed for an authorization check.

Chapter 3. Transaction Manager exit routines 305

MSLR3XIT
Authorization by user exit (DFSCTRN0). MSLR3XIT can be specified by
itself, or with either MSLR3MSN, MSLR3CTL, or MSLR3USR. The
specification of MSLR3XIT causes DFSCTRN0 or DFSCTSE0 to be called, if
they exist.

MSLR3NON
No security authorization checking.

MSLR3NON can only be specified without any of the other four options.
The specification of MSLR3NON bypasses all security checking, and allows
the use of the transaction destination.

MSLR3MSN, MSLR3CTL, and MSLR3USR are mutually exclusive. The use of
MSLR3MSN, MSLR3CTL, or MSLR3USR causes RACF (or an equivalent product)
to be called for authorization of the use of the transaction destination.

On entry, the MSLRFL3 field contains the system default value from
MSCSEC=(,xxx) in the DFSDCxxx PROCLIB member. The exit can then override
the system default, or leave it as is.

Attributes of the routine

The TM and MSC Message Routing and Control user exit routine must be written
as reentrant. The exit routine receives control while running in a 31-bit addressing
mode, and must return control in that mode. The exit routine is called in TASK
mode, with no locks held, and can be in cross memory, non_AR mode.

The following table shows the attributes of the TM and MSC Message Routing and
Control User exit routine.

Table 109. TM and MSC message routing and control user exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention Must be named DFSMSCE0.

Binding This exit routine must be reentrant.

The sample exit routine is a default routine. If you write your own
exit routine, you must bind it with the IMS control region
SDFSRESL.

Link edit stand alone, NAME/ENTRY = DFSMSCE0,
RMODE=ANY, AMODE=31, and Reentrant (RENT). Program
routing entry points (DFSMSCVT ENTRYP=PRCHNG, PRISRT)
execute in cross-memory mode under the dependent region TCB.
All other entry points execute under the control region TCB.

Including the routine IMS loads and initializes the exit if found in IMS.SDFSRESL or
concatenated library. The module has 12 possible entry points
selectable by the ENTRYP parameter of the DFSMSCVT macro
coded in the module (see sample DFSMSCE0).

306 Exit Routines

Table 109. TM and MSC message routing and control user exit routine attributes (continued)

Attribute Description

IMS callable services To use callable services with this exit routine, it must be given a
callable services token by IMS when it is given control. To
determine if you can use callable services, check the value of the
SXPLATOK field in the “IMS standard user exit parameter list” on
page 5:

v If the value of SXPLATOK is zero, you cannot use callable
services with this exit routine.

v If the value of SXPLATOK is non-zero, the callable services token
is included and you can use callable services with this routine.
Use the 256-byte work area addressed by the SXPLAWRK field to
call DFSCSIF0.

Sample routine
location

Recommendation: Use the sample DFSMSCE0 exit routine that is
shipped in IMS.ADFSSMPL and tailor it when first coding the user
exit routine. This sample contains examples of the following:

v Routing messages, using all the supported routing options (by
setting the appropriate flags and fields in the DFSMSCEP area).

v Canceling messages.

v Using the DFSMSCVT (entry vector table) macro and all 12 entry
points.

v Using the DFSMSCSV (save) macro to set up the entry
environment.

v Using the DFSMSCLV (leave) macro to return to IMS.

v Chaining and using the 6 save sets that are passed to the exit
routine.

v Using the 512–byte work area to build a user prefix and
requesting that IMS obtain a prefix buffer to build a prefix.

v Storing information in the user prefix

Communicating with IMS

This section provides information about how to communicate with IMS using the
DFSMSCE0 user exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

R1 Address of the “IMS standard user exit parameter list” on page 5

R13 Address of save area

R14 Return address

R15 Address of entry point

This exit routine uses the Version 6 standard exit parameter list. The address of the
work area that is passed to this exit routine in SXPLAWRK can be different each
time that this exit routine is called.

The DFSMSCE0 user parameter list and field definitions are mapped by the
DFSMSCEP macro.

Chapter 3. Transaction Manager exit routines 307

Table 110. Main user exit parameter list mapped by the DFSMSCEP macro

Field Offset Length Description

MSCEIMID 00 8 IMSID of this IMS

MSCEIMSR 08 1 Source IMS release number

MSCEIMSL 09 1 Source IMS mod level

MSCEPLVER 0A 2 DFSMSCEP parameter list version (current
version=0004)

MSCEFL1 0C 1 Main flag 1

MSCEFL2 0D 1 Main flag 2

MSCEFL3 0E 1 Main flag 3

MSCEFL4 0F 1 Main flag 4

MSCEECB 10 4 Address of ECB

MSCESCD 14 4 Address of SCD

MSCESIDT 18 4 Address of SID_Table

MSCESEG 1C 4 Address of MSG_Segment

MSCEUPR 20 4 Address of User_PFX_Seg

MSCEIPR 24 4 Address of IMS_PFX_Seg

MSCEUPRL 28 2 User_PFX_Len (halfword)

MSCEIPRL 2C 2 IMS_PFX_Len (halfword)

MSCESSET 2E 4 Address of Save_sets

MSCEMSEB 30 4 Address of DFSMSCEB

34 4 Reserved

MSCEUSID 38 8 User ID

MSCEGRPN 40 8 Group name

MSCEUSII 48 1 User ID indicator

49 3 Reserved

MSCEAFIN 4C 8 IMSID to route message for shared queues
affinity routing

54 20 Reserved

68 End main parameters

The initialization entry parameter list and field definitions are mapped by the
DFSMSCEP macro.

Table 111. Initialization entry parameters for user exit parameter list mapped by the
DFSMSCEP macro

Field Offset Length Description

MSINFL1 68 1 Initialization flag1

MSINFL2 69 1 Initialization flag2

MSINFL3 6A 1 Initialization flag3

MSINFL4 6B 1 Initialization flag4

6C 12 Reserved

78 End of IMS initialization parameters

308 Exit Routines

The termination entry parameter list and field definitions are mapped by the
DFSMSCEP macro.

Table 112. Termination entry parameters for user exit parameter list mapped by the
DFSMSCEP macro

Field Offset Length Description

MSTEFL1 68 1 Termination flag1

MSTEFL2 69 1 Termination flag2

MSTEFL3 6A 1 Termination flag3

MSTEFL4 6B 1 Termination flag4

6C 12 Reserved

78 End of IMS termination parameters

The terminal routing parameter list and field definitions are mapped by the
DFSMSCEP macro.

Table 113. Terminal routing parameters for user exit parameter list mapped by the
DFSMSCEP macro

Field Offset Length Description

MSTRFL1 68 1 XL1 TR flag1

MSTRFL2 69 1 XL1 TR flag2

MSTRFL3 6A 1 XL1 TR flag3

MSTRFL4 6B 1 XL1 TR flag4

MSTRDEST 6C 8 DEST_NAME

MSTRSRCE 74 8 SRCE_NAME

MSTRLUNM 7C 4 LU_NAME

MSTRMSGR 80 4 APPC_WORK

MSTRDMSN 84 8 MSNAME

MSTRDSID 8C 2 Dest_SID

MSTRKEY 8E 2 MSG_KEY

MSTRLTMN 90 8 OTMA destination override name

98 16 Reserved

A8 End of terminal routing parameters

The link receive parameter list and field definitions are mapped by the DFSMSCEP
macro.

Table 114. Link receive routing parameters for user exit parameter list mapped by the
DFSMSCEP macro

Field Offset Length Description

MSLRFL1 68 1 Link receive flag1

MSLRFL2 69 1 Link receive flag2

MSLRFL3 6A 1 Link receive flag3

MSLRFL4 6B 1 Link receive flag4

MSLRDEST 6C 8 DEST_NAME

Chapter 3. Transaction Manager exit routines 309

Table 114. Link receive routing parameters for user exit parameter list mapped by the
DFSMSCEP macro (continued)

Field Offset Length Description

MSLRSRCE 74 8 SRCE_NAME

MSLRDMSN 7C 8 DST_MSNAME

MSLRDSID 84 2 DEST_SID

MSLRSMSN 86 8 SRC_MSNAME

MSLRSSID 8E 2 Source_SID

MSLRKEY 90 2 MSG_KEY

92 22 Reserved

A8 End of link receive routing parameters

The program routing parameter list and field definitions are mapped by the
DFSMSCEP macro.

Table 115. Program routing parameters for user exit parameter list mapped by the
DFSMSCEP macro

Field Offset Length Description

MSPRFL1 68 1 Program routing flag1

MSPRFL2 69 1 Program routing flag2

MSPRFL3 6A 1 Program routing flag3

MSPRFL4 6B 1 Program routing flag4

MSPRDEST 6C 8 DEST_NAME

MSPRSRCE 74 8 SRCE_NAME

MSPRDMSN 7C 8 DST_MSNAME

MSPRDSID 84 2 DEST_SID

MSPRDMSN 86 8 DEST_MSNAME

MSPRSSID 8E 2 Source_SID

MSPRSTAT 90 2 Status_Code

92 22 Reserved

A8 End of program routing parameters

The DFSMSCE0 exit routine is called with one caller save area in R13. Field
MSCESSET in DFSMSCEP points to six preformatted save sets for the exit routine's
use. The routine (INITSAV) in the sample exit routine (DFSMSCE0) chains these
save sets to the caller save set and moves R13 to the first save set in MSCESSET.
This allows the DFSMSCE0 exit routine to call other routines and to pass a save set
chain. When DFSMSCE0 returns to IMS, the DFSMSCLV macro (Linkage=Yes)
returns to the caller save set and restores registers.

Callable services

Storage services and control block services can be performed by invoking IMS
callable services. This exit routine can use callable services with the ECB passed at
MSCEECB of the user exit PARMLIST.

310 Exit Routines

This exit routine can use IMS Callable Storage Services. This exit routine is defined
to IMS as an IMS standard user exit. Exit routines that are defined to IMS receive
the callable services token in the standard exit parameter list. This exit routine does
not need to issue an initialization call (DFSCSII0) to use IMS callable services.

The exit routine receives control at the following points: the Terminal Routing (TR)
call, the Link Receive (LR) call, and the Program Routing (PR) call. In each
situation, if the DFSMSCE0 user exit routine is called (based on the DFSMSCVT
vector entry) and obtains a user prefix, IMS attaches the prefix to the message and
passes it on to other DFSMSCE0 entry points.

For each entry point parameter selected by the DFSMSCVT macro, the exit routine
must provide a label for the entry point, as shown in the following table.

Table 116. Labels for entry point parameters selected by the DFSMSCVT macro

Parameter Label Function/when called

1. INIT IMS_INITIALIZATION IMS initialization

2. TERM IMS_TERMINATION IMS termination

3. TRBTAM TERMINAL_ROUTING_BTAMS System console message

4. TRVTAM TERMINAL_ROUTING_VTAM VTAM messages

5. TRAPPC TERMINAL_ROUTING_APPC APPC messages

6. TROTMA TERMINAL_ROUTING_OTMA OTMA messages

7. LRTRAN LINK_RECEIVE_LOCAL_TRANSACTION Local tran messages

8. LRLTERM LINK_RECEIVE_LOCAL_LTERM Local LTERM messages

9. LRDIR LINK_RECEIVE_LOCAL_DIRECT_ROUTING Local DIR RTE messages

10. LRINT LINK_RECEIVE_INTERMEDIATE Intermediate messages

11. PRCHNG PROGRAM_ROUTING_CHNG_CALL Application program
CHNG call

12. PRISRT PROGRAM_ROUTING_ISRT_CALL First message segment ISRT
call

13. PRGU PROGRAM_ROUTING_ISRT_CALL Application program issued
GU call

The DFSMSCVT macro parameters listed in the preceding table have the following
characteristics:

INIT entry point
Receives control at IMS initialization, immediately after the exit routine is
loaded.

TERM entry point
Receives control at IMS termination when IMS is shutting down. The INIT
and TERM entry points are not associated with a message.

The next 4 entry points are for the Link Receive (LR) user exit routine:

LRTRAN
Receives control when a message is received on an MSC link, and the
destination is a local transaction in the received system.

LRLTERM
Receives control when a message is received on an MSC link, and the
destination is a local LTERM in the received system.

Chapter 3. Transaction Manager exit routines 311

LRDIR
Receives control when a direct-routed message is received for the local IMS
system. The destination can be an LTERM or a transaction. Direct-routed
messages are created by an application program running in a remote MSC
system that inserts messages using directed routing (in other words, inserts
messages to a PCB MSNAME destination).

LRINT
Receives control for any message received on an intermediate IMS system
(in other words, a message received on an MSC link that is destined to
another remote MSC system). This includes intermediate messages that are
inserted by a remote IMS system using directed routing.

The next 2 entry points are for the Program Routing (PR) user exit routine:

PRCHNG
Receives control when an application program issues a CHNG call to a
modifiable PCB.

PRISRT
Receives control when an application program issues the first ISRT call
(first segment) to a modifiable PCB, non-modifiable PCB, or I/O PCB.

PRGU Receives control when an application program issues a GU call to a I/O
PCB. The exit may request or update a user prefix but no message routing
is supported.

Using user prefixes

Messages contain a variety of prefixes that IMS uses to route and process the
message. These prefixes are mapped by the QLOGMSGP macro, and are in front of
the message, before the user data segments. These prefixes are for internal IMS
use. DFSMSCE0 can add a user prefix to this message. This prefix is mapped by
the DFSMSCUP macro. The exit routine can build this prefix in one of two ways:
v Test the field MSCEUPR in DFSMSCEP for zero to see if a user prefix already

exists. If not obtained (zero), build a prefix in the 512–byte work area by
addressing some area in the work area that is large enough to hold the prefix.
Set bytes 0 and 1 to the prefix length (5 to 512 bytes), storing the address back in
MSCEUPR. The exit routine can then alter the user data portion of the prefix
(bytes 4 to 512). When the exit routine returns control to IMS, IMS sets the prefix
code (byte 2 = 8E) and the reserved flag (byte 3) and copies the prefix to the
message.

v Test the field MSCEUPR in DFSMSCEP for zero to see if a user prefix already
exists. If not obtained (zero), set flag MSCE2UPR=1 and field MSCEUPRL to the
length of the requested prefix (5 to 512 bytes) and return to IMS. IMS obtains
storage that is large enough for the user prefix and stores the address in
MSCEUPR, resets flag MSCE2UPR, and returns control to the exit routine. The
exit routine can then alter the user data portion of the prefix (bytes 4 to 512).
When the exit routine returns control to IMS, IMS sets the prefix code (byte 2 =
8E) and the reserved flag (byte 3) and copies the prefix to the message, and then
frees the original prefix storage.

Note: If the user prefix is obtained for the DFSMSCE0 exit, the size of that prefix
should be considered along with the accumulated size of the other prefix items
when calculating the record lengths for the short and long message queue records.

312 Exit Routines

Related reading: For more information on MSGQUEUE macro message prefix sizes
for each supported IMS release, see IMS Version 13 System Definition.
Related reference:
“Routine binding restrictions” on page 9
“IMS standard user exit parameter list” on page 5

Transaction Authorization exit routine (DFSCTRN0)
The Transaction Authorization exit routine works with the Security Reverification
exit routine (DFSCTSE0) and the Signon/off Security exit routine (DFSCSGN0) to
check an individual user ID for authority to use a transaction.

This information documents Product-sensitive Programming Interface and
Associated Guidance Information provided by IMS.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 314

About this routine

This exit routine can be used with or without RACF to verify that the user's ID is
authorized to run a transaction. If the RACF option is selected and the Transaction
Authorization exit routine is loaded, the exit is activated after RACF verifies the
transaction. If the transaction request is rejected by RACF, the exit is not called. If
the RACF option is not selected in the IMS system definition, this exit routine can
be used to verify the user's authorization and the password, if required, for that
transaction.

Attention: Changing RCF=N to RCF=R requires a cold start of the IMS control
region.

The exit routine should have access to a table of valid user IDs, and the passwords
and transactions associated with each valid user ID.

If you want to generate your own messages for the routine, you need to make the
message number negative in register 15 to issue a specific message, and you need
to list the absolute value of this message number in the User Message Table,
DFSCMTU0. For details, see “User Message table (DFSCMTU0)” on page 478.

If you do not list this message in the User Message Table, message DFS060I is
issued instead of the message you wanted to send.

The IMS security exit routines do not need to be bound to the IMS nucleus, can
run in 31-bit storage, and can share a work storage area. The following security
exit routines now have these attributes:
v Signon/off security exit routine (DFSCSGN0)

DFSCSGN0 is called during IMS initialization to give the exit routine the chance
to acquire a work storage area. The exit routine passes the address back to IMS.
Then, IMS passes the address to the other security exit routines every time they
are called.

v Security Reverification exit routine (DFSCTSE0)
v Transaction Authorization exit routine (DFSCTRN0)

Chapter 3. Transaction Manager exit routines 313

|
|
|
|
|
|
|

|
|
|

|

|
|
|
|

|

|

If the security exit routines are linked in one of the STEPLIB or LINKLIST libraries,
IMS loads the exit routine. There is no startup parameter to specify whether to
load the routines. Message DFS1937I is issued for every exit routine that is loaded
into 31-bit storage.

The following table shows the attributes of the Transaction Authorization exit
routine.

Table 117. Transaction authorization exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSCTRN0.

Binding The Security Reverification exit routine (DFSCTSE0) can be bound to DFSCTRN0 or
coded as an explicit part of DFSCTRN0. If you code this entry point, it should have
access to a table of valid user IDs, passwords, and transactions associated with each
valid user ID, or contain some algorithm to derive this authorization information. For
addressability, this table should reside in this module, in the /SIGN ON exit
(DFSCSGN0), or in the IMS nucleus.

The security exit routines can be bound separately.

If the security exit routines are linked in one of the STEPLIB or LINKLIST libraries,
IMS loads the exit routine. There is no startup parameter to specify whether to load
the routines. IMS issues message DFS1937I each time a DFSCSGN0, DFSCTRN0, or
DFSCTSE0 exit routine is loaded.

If the exit routines cannot be linked separately or cannot use a common work area,
they must be linked in the following manner:

v If the CSECT of DFSCTSE0 is part of DFSCTRN0 source, DFSCTSE0 must be linked
as an ALIAS of DFSCTRN0.

v If virtual address spaces are used to exchange data between DFSCSGN0,
DFSCTRN0, and DFSCTSE0, then DFSCTSE0 and DFSCSGN0 must be linked as
ALIASs of DFSCTRN0.

Including the routine Include the exit routine by linking it in either the STEPLIB or LINKLST library. IMS
detects and loads it automatically. You do not need to specify any system definition or
startup parameters. IMS confirms that the exit routine is loaded by issuing a DFS1937I
message.

IMS callable services To use callable services with this routine, you must issue an initialization call
(DFSCSII0) to obtain the callable service token and a parameter list in which to build
the function-specific parameter list for the desired callable service. Use the ECB in
register 9 for the DFSCSII0 call. This exit is automatically linked to DFSCSI00 by IMS.
No additional linking is required to use callable services.

Sample routine location IMS.ADFSSMPL (member name DFSCTRN0).

Communicating with IMS

IMS uses the entry and exit registers to communicate with the exit routine.

Contents of registers on entry

On entry to the exit routine, all registers must be saved using the save area
provided. The registers contain the following:

314 Exit Routines

|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

|
|

|
|

|
|
|

|
|
|
|

Register Contents

0 Register contents is dependent on what is processed:

v To process a deferred program-to-program switch (R2 = 8), or DL/I CHNG
call (R2 = C), then R0 = pointer to user ID (PSTUSID).

v To process receipt of a transaction received on an MSC link from a remote
IMS system (R2 = 4), then R0 = pointer to user ID in the security prefix of
the message.

This exit routine is called when R2 = 4 depending on the MSCSEC
par\ameter in DFSDCxxx and on the MSLRFL3 response in the
DFSMSCE0 parameter list for Link Receive. For more information on the
MSCSEC parameter, see IMS Version 13 System Definition.

1
Address of the password or 0:
For AUTH call, address of GENERIC class
For TRAN call, address of TRAN class
For FIELD call, address of FIELD class
For DATABASE call, address of DATABASE class
For SEGMENT call, address of SEGMENT class
For OTHER call, address of OTHER class

2 Calling routine number:

Number
Name

X'0' Transaction input from terminal

X'4' Transaction from remote MSC system

X'8' Deferred conversation program-to-program switch

X'C' CHNG DL/I call

X'10' /SET command

X'14' /LOCK command

X'1C' /RELEASE command

X'20' AUTH call

X'24' LU 6.2 AUTH call

X'28' Transaction input from OTMA

X'2C' /LOCK and /UNLOCK transaction

X'30' /LOCK and /UNLOCK program

X'34' /LOCK and /UNLOCK database

X'38' /LOCK and /UNLOCK LTERM

X'3C' Remote deferred program switch

3 Address of storage area. For details of the format of this storage area, see the
prolog in the sample routine (IMS.ADFSSRC; member name is DFSCTRN0).

7 Address of source CTB or zeros.
Recommendation: Do not write an application that requires the content of
this register, because they vary depending on the type of call to the exit
routine and the environment from which the call is made.

Chapter 3. Transaction Manager exit routines 315

Register Contents

9 Address of the ITASK control block:

If Register 2 is
Address of Register 9 will be

X'0' CLB

X'4' LLB

X'8' PST

X'C' PST

X'10' CLB

X'14' CLB

X'1C' CLB

X'20' PST

X'24' CLB

X'28' PST

X'2C' CLB

X'30' CLB

X'34' CLB

X'38' CLB

X'3C' CLB

10 Address of transaction code or resource name.

11 Address of SCD.

13 Address of save area. The exit routine must not change the first three words.

14 Return address to IMS.

15 Entry point of exit routine.

Contents of registers on exit

On return to IMS, all registers must be restored except for register 15, which must
contain one of the following return codes to indicate the success or failure of the
user's authorization to a transaction.

Return code Meaning

0 Accept the transaction.

4 The resource is not protected.

8 The user is not authorized.

316 Exit Routines

Return code Meaning

Positive Reject the transaction and send DFS2469 message with register 15 halfword
contents as a subcode if the transaction is entered from a terminal. The IMS
system translates the subcode of message DFS2469 as follows:

Subcode
Meaning

08 Transaction not authorized (user is not authorized).

12 RACF is not active.

16 Invalid exit return code.

36 No password (password reverification is required, but no password
was supplied).

40 Wrong password (password reverification failed).

Others IMS exit CD (subcode generated by IMS exit).

Negative For Resource Authorization:

User is authorized. The negative value is the complemented address that
points to user data provided by RACF (AUTH call).

Negative For Transaction Authorization:

Reject the transaction and send a user-defined message number, if
appropriate, to the user. If the calling routine is DFSCON10 or DFSDLA30,
no message is sent, but an A4 status code is passed to the application
program. The message number passed must be less than -24.

Related reference:
“Security Reverification exit routine (DFSCTSE0)” on page 275
“Signon/off Security exit routine (DFSCSGN0)” on page 291
“Routine binding restrictions” on page 9
“Initialization of IMS callable services (DFSCSII0)” on page 17

Transaction Code (Input) edit routine (DFSCSMB0)
Use the Transaction Code (Input) edit routine (DFSCSMB0) to define IMS
transactions.

This topic contains Product-sensitive Programming Interface information.

This topic describes the Transaction Code (Input) Edit routine.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 319

About this routine

Messages that are entered for the transaction are passed to the Transaction Code
Input edit routine before they are queued for scheduling. This sequence enables
you to edit input messages before they are placed on the message queues. The
Transaction Code Input edit routine is called in addition to the IMS Basic Edit
routine or MFS (Message Format Service) editing. The message is passed to the
input edit routine before it is translated to uppercase characters.

Chapter 3. Transaction Manager exit routines 317

Transaction code input edit routines can be defined to IMS either through the
system definition process or dynamically by using a DRD command. You can
define up to 255 different Transaction Code Input edit routines for each IMS.

You can define a Transaction Code Input edit routine during system definition by
using the EDIT parameter on the TRANSACT macro. The edit routine must reside
in the IMS.USERLIB data set prior to IMS system definition stage 2 execution. Edit
routines that are included in the IMS.USERLIB data set and are referenced by a
TRANSACT macro are included in the IMS nucleus as part of the system definition
process.

You can dynamically define a Transaction Code Input edit routine by using DRD
commands. The EDITRTN parameter can be specified on the CREATE and
UPDATE commands to define a transaction with a Transaction Code Input edit
routine. The edit routine must be included in one of the IMS.SDFSRESL
concatenated data sets.

The Transaction Code Input edit routine must store the edited message segment to
be returned to IMS in the buffer that is addressed by register 1. If the input was
processed by the IMS Basic Edit routine, this buffer is always 10 bytes greater than
the 2-byte binary count at the beginning of the message segment, and the message
segment can be expanded or reduced to any size. The format of the edited message
segment in the buffer on return to IMS must be two bytes of binary count,
followed by bytes 3 and 4 unchanged from the original message and edited text.

If the input was processed by MFS, the length of this buffer is in the first two
bytes of the buffer. No extra space is provided in this buffer for edit routines.

This edit routine is called only when a transaction is entered from a terminal; it is
not called when the transaction is inserted by a program-to-program switch or for
LU 6.2 terminals.

If specified, a Transaction Code Input edit routine gains control after each message
data segment is processed by the IMS Basic Edit routine or MFS, and after
transaction code validity and security are checked. If the transaction code is the
only data in the message segment and the transaction is a conversational
transaction, the edit routine is not entered.

The following table shows the attributes of the Transaction Code (Input) Edit exit
routine.

Table 118. Transaction code (input) edit exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention This name must be alphanumeric (A-Z, 0-9, #, $, and @). The name cannot include a
blank, comma, period, hyphen, or equal sign, and cannot include the wildcard
characters * or %.

Including the routine If the transaction code input edit routine is specified on a TRANSACT macro, the edit
routine must reside in the IMS.USERLIB data set prior to IMS system definition stage 2
execution. If the edit routine is defined dynamically on a CREATE or UPDATE
command, the edit routine must reside in one of the IMS.SDFSRESL concatenated data
sets.

318 Exit Routines

Table 118. Transaction code (input) edit exit routine attributes (continued)

Attribute Description

IMS callable services To use IMS callable services with this routine, you must do the following:

v Issue an initialization call (DFSCSII0) to obtain the callable service token and a
parameter list in which to build the function-specific parameter list for the desired
callable service.

v Use the ECB found in register 9 for the DFSCSII0 call.

v Link DFSCSI00 with your user exit.

Sample routine location IMS.ADFSSMPL (member name DFSCSMB0).

Communicating with IMS

IMS uses the entry and exit registers to communicate with the exit routine.

Contents of registers on entry

On entry to the edit routine, all registers must be saved using the save area
provided. The registers contain the following:

Register Contents

1 Address of the buffer location of the input message segment after translation
to EBCDIC and after IMS Basic Editing.

The first two bytes of the buffer contain the binary message length. The third
byte of the buffer is binary zeros. The binary count includes the 4-byte prefix.
If Basic Edit is used, the fourth byte of the message segment (Z2) is X'00'. If
MFS is used, the fourth byte can contain either a X'01', X'02', or X'03'
signifying that option 1, 2, or 3 respectively was selected for the message by
the format designer. The fifth byte contains the first byte of the message text.

If the input was processed by MFS, the length of this buffer is in the first
two bytes of the buffer. No extra space is provided in this buffer for edit
routines.

7 CTB address of the physical terminal from which the message is entered.

9 Address of CLB for the communication line from which the message is
entered.

10 Address of SMB.

11 Address of SCD.

13 Address of save area. The first three words must not be changed.

14 Return address to IMS.

15 Entry point of edit routine. The entry point name and load module name for
an edit routine must be the same as the name used for the edit routine in
system definition.

Contents of registers on exit

On return to IMS, all registers must be restored except for register 15, which must
contain one of the return codes shown in the following table. Register 1 contains
the message number if register 15 contains a value of 12; otherwise it is ignored.
Any other value causes the message to be canceled and the terminal operator to be
notified.

Chapter 3. Transaction Manager exit routines 319

Return code Meaning

00 Segment is processed normally.

04 Segment is canceled.

08 Message is canceled and the terminal operator is notified.

12 Message is canceled and the message identified by register 1 is sent to the
terminal.

Related reference:
“Routine binding restrictions” on page 9
“Initialization of IMS callable services (DFSCSII0)” on page 17

Sample transaction code (input) edit routine (DFSCSMB0)
Use the sample transaction code (input) edit routine (DFSCSMB0) to define a
multisegment transaction named ICS and allow further input flexibility.

Assume a multisegment transaction named ICS. Normally, the first segment of this
message contains ICS GN (meaning to get the next segment of a given message),
or it contains ICS CAN (meaning to cancel this message). A user-supplied edit
routine allows further input flexibility, as shown in the following decision table.

Segment
Message as received and edited by
IMS

Message as reedited by user edit
routine

First
Segment

ICS GN
ICS
ICS CAN
Any other

As received
ICS GN
Cancel message
Cancel message

Other
Segment

GN
CAN
Any other

As received
Cancel message
Cancel message

The Transaction Code edit routine allows the input for the ICS GN message
segment to be shortened.

320 Exit Routines

Chapter 4. IMS system exit routines

Use IMS system exit routines to maintain, enhance, or extend your IMS online
system or IMSplex.

Buffer Size Specification facility (DSPBUFFS)
When you use serial access, the Buffer Size Specification facility allows you to
control the number of buffers used for RECON data sets when either the local
shared resource (LSR) or the nonshared resource (NSR) buffering option is used.

When you use parallel RECON access, VSAM RLS manages a system-wide buffer
tool. In this case, you cannot control the number of buffers on a data set basis.

Subsection:
v “About this facility”

About this facility

DBRC provides a CSECT, DSPBUFFS, for you to override the default number of
buffers used. The values in the CSECT are used to build the VSAM local shared
resource pool for LSR support or to specify the number of index and data buffers
if NSR buffering mode is used.

This facility can be used in DBRC environments.

Binding the CSECT

After assembling the source code, bind the object code of the CSECT into the IMS
load module DSPCINT0.

DSPBUFFS layout

The following code sample shows the layout of the DSPBUFFS CSECT. You can
assemble your own version of this CSECT and replace it in load module
DSPCINT0 using the standard binder setup included in the System Modification
Program (SMP) process, or modify the existing version of the CSECT supplied by
IBM.
DSPBUFFS CSECT , DECLARE NBR OF INDEX & DATA BUFFERS

DC CL8’DSPBUFFS’ REQUIRED EYECATCHER FOR DUMPS
*
* DECLARE THE NUMBER OF INDEX AND DATA BUFFERS TO BE USED IN EACH
* OF THE DEFINED OPERATING MODES WHEN USING THE LSR OPTION OF VSAM.
* APPLIES TO AN ESA* OR XA ENVIRONMENT ONLY. BOTH BUFFER NUMBERS GIVEN
* IN EACH CASE MUST BE AT LEAST 4 ELSE DBRC REVERTS TO NSR MODE USING
* THE NSR BUFFER NUMBERS BELOW THAT CORRESPOND TO THE SAME OPERATING
* MODE. THIS FEATURE CAN BE USED TO INHIBIT THE USE OF LSR IN ANY OF
* THE OPERATING MODES SHOULD SOME PROBLEM ARISE. REMEMBER THAT UNDER
* LSR THE INDEX/DATA BUFFERS DEFINED APPLY TO ALL THE ACTIVE RECONS.
*
LSRONLIN DC AL2(60,120) IMS ONLINE DBRC
LSRCICS DC AL2(60,120) CICS USE OF DBRC
LSRBATCH DC AL2(60,120) OFFLINE/BATCH DBRC
*
* DECLARE THE NUMBER OF INDEX AND DATA BUFFERS TO BE USED IN EACH

© Copyright IBM Corp. 1974, 2017 321

* OF THE DEFINED OPERATING MODES WHEN USING THE NSR OPTION OF VSAM.
* APPLIES IF THE LSR OPTION HAS BEEN INHIBITED ABOVE FOR ONE OR
* MORE OF THE DEFINED OPERATING MODES. THE MINIMUM NUMBER OF INDEX
* AND DATA BUFFERS ASSIGNED TO EACH RECON IS TWO.
* REMEMBER THAT UNDER NSR THE NUMBER OF INDEX/DATA BUFFERS
* DEFINED APPLY TO EACH OF THE RECONS. NOT SHARED AS WITH LSR.
*
NSRONLIN DC AL2(2,2) IMS ONLINE DBRC
NSRCICS DC AL2(2,2) CICS USE OF DBRC
NSRBATCH DC AL2(2,2) OFFLINE/BATCH DBRC

END

As the comments and structure of preceding code sample indicate, the first three
pairs of halfwords control the number of index and data buffers that are used for
LSR. The second three pairs of halfwords control the number of index and data
buffers that are used for NSR. DBRC always uses the VSAM LSR option unless it
is inhibited through DSPBUFFS (see comments in the CSECT to see how this is
done).

In either LSR or NSR mode, DBRC determines which pair of index/data values to
use based on the “operating mode” for each execution. During initialization,
DBRC:
1. Uses LSR/NSR pair 1 for IMS control regions
2. Uses LSR/NSR pair 3 for batch jobs or utilities

In effect, by changing or creating your own version of DSPBUFFS, you can specify
separate buffering values for batch and online environments. If NSR buffering is
used, individual values for BUFNI and BUFND can be specified in the JCL DD
statements used to override the default buffer size. For VSAM LSR, only the first
three pairs of values are used, so there is no advantage in allocating the RECON
data sets through JCL and specifying BUFNI or BUFND values. Similarly, the
BUFFERSPACE parameter used when defining a RECON data set through Access
Method Services (AMS) is only applicable to the NSR buffering technique and is
not used for LSR.

Because the VSAM LSR pools are built while the RECON data sets are open in
NSR mode, values for the BUFFERSPACE, BUFNI, and BUFND parameters should
not be specified when defining the VSAM clusters and when allocating the
RECON data sets using JCL. Because the VSAM LSR pools are built prior to
opening the RECON data sets for LSR, supplying values for BUFFERSPACE,
BUFNI, or BUFND that exceed VSAM's minimum default only increases the virtual
storage needed to support DBRC for batch regions.

Use DSPBUFFS to specify the number of buffers for NSR, even though it is
optional. With NSR specified, more efficient use of virtual storage can be achieved
than by using the BUFFERSPACE parameter (when defining the RECON clusters)
and adjusting the number of index and data buffers through the use of JCL. As a
result, the RECON data sets can be dynamically allocated in nearly all applications.

Using IMS callable services with this routine

IMS callable services are not applicable for use with this exit routine.

Example of specifying buffers
Review this example of specifying buffers to see how the Buffer Size Specification
facility (DSPBUFFS) overrides the number of buffers to expand the total amount of
buffer storage used.

322 Exit Routines

Company XYZ shares RECON data sets between two processors. Processor A is an
ESA machine, processor B is not— a coexistence environment involving an earlier
release of IMS is on processor B. In this case, each IMS system uses a separate
copy of the following example.

XYZ frequently runs batch jobs using DBRC under TSO. However, tight region
restrictions exist for jobs run under TSO, so they must limit the amount of storage
used by DBRC in these circumstances. However, DBRC storage is not limited when
executing as a control region task, so they have replaced DSPBUFFS with the
following values:

DSPBUFFS example
DSPBUFFS CSECT , DECLARE NBR OF INDEX & DATA BUFFER

DC CL8’DSPBUFFS’ REQUIRED EYECATCHER FOR DUMPS
*
* processor A (LSR) SETUP
LSRONLIN DC AL2(10,26) ESA ENVIRON - IMS ONLINE DBRC
LSRCICS DC AL2(6,12) ESA ENVIRON - CICS USE OF DBRC
LSRBATCH DC AL2(6,14) ESA ENVIRON - OFFLINE/BATCH DBRC
*
* processor B (NSR) SETUP
NSRONLIN DC AL2(4,9) NONESA ENVIRON - IMS ONLINE DBRC
NSRCICS DC AL2(2,2) NONESA ENVIRON - CICS USE OF DBRC
NSRBATCH DC AL2(3,5) NONESA ENVIRON - OFFLINE/BATCH DBRC

END

When run as an IMS online region, DBRC in processor A (LSR) creates 10 index
buffers and 26 data buffers to be shared between the 2 active RECON data sets. In
processor B (NSR), DBRC assigns 4 index buffers and 9 data buffers to each
RECON data set. When both active RECON data sets are opened for NSR, a total
of 8 index and 18 data buffers are implied. Remember that under NSR, when the
spare RECON data set is opened, it too will be assigned 4 index and 9 data
buffers. For brief periods of time in processor B, the total number of index and
data buffers used are 12 and 27, respectively.

Under LSR, when the spare RECON data set is opened (initially in NSR mode, a
VSAM requirement), it is assigned 2 index and 2 data buffers. These values cannot
be overridden. For brief periods of time in processor A, the total number of index
and data buffers used are 12 and 28, respectively. Thus the total amount of storage
that is used for RECON buffers is approximately the same in both processors.

When running batch jobs, DBRC in processor A creates 6 index buffers and 14 data
buffers to be shared between the 2 active RECON data sets. In processor B, DBRC
assigns 3 index buffers and 5 data buffers to each RECON data set opened with
NSR buffering. Again, during those periods of time that all 3 RECON data sets are
open, the total amount of buffer storage used is approximately the same in both
processors (8 index and 16 data buffers in processor A, 9 index and 15 data buffers
in processor B).

Command Authorization exit routine (DFSCCMD0)
The Command Authorization exit routine (DFSCCMD0) can be used to verify that
a command is valid from a particular origin. DFSCCMD0 is an optional exit
routine for commands entered from IMS terminals, including LU 6.2 and OTMA.

This topic contains Product-sensitive Programming Interface information.

Chapter 4. IMS system exit routines 323

DFSCCMD0 is a required exit routine if it is specified to authorize commands
entered from:
v ICMD DL/I calls (from automated operator applications)
v z/OS MCS or E-MCS consoles

This exit routine verifies that the user is authorized to issue a particular command.
IMS does not call this exit routine for internally generated or auto-restart
commands.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 326

About this routine

You can use the Command Authorization exit routine with a security product, such
as RACF. The return code that the exit routine issues ultimately determines the
success or failure of the command authorization; the exit routine can override the
outcome of RACF.

The Command Authorization exit routine is optional. For the latest version of
DFSCCMD0, see the IMS.SDFSSMPL library; the member name is DFSCCMD0.
This sample includes routines for terminals defined using the Extended Terminal
Option (ETO) feature, commands entered with ICMD calls, and commands entered
from MCS/E-MCS consoles.

Restriction: The Command Authorization exit routine cannot be used to secure
type–2 commands; it can secure only type–1 commands. Use the OM user exit
routine to secure type-2 commands.

The following table shows the attributes for the Command Authorization exit
routine.

Table 119. Command authorization exit routine attributes

Attribute Description

IMS environments DB/DC, DBCTL, DCCTL

Naming convention You must name this exit routine DFSCCMD0.

Link editing You can assemble the sample exit routine or one that you write using the standard
IMS macro and copy files and include it in IMS.SDFSRESL. You must manually link
edit this routine with DFSCSI00 to use IMS callable services.

Including the routine Include DFSCCMD0 in IMS.SDFSRESL.

This routine is required if one or both of the following parameters is specified in the
IMS, DBC, or DCC procedures:

v AOIS=A or C

v CMDMCS=B or C

If you specify one of these parameters and do not include DFSCCMD0 in
IMS.SDFSRESL, IMS system initialization ends with a U0718 abend.

Otherwise, the routine is optional.

324 Exit Routines

Table 119. Command authorization exit routine attributes (continued)

Attribute Description

IMS callable services This exit routine can use callable storage services. DFSCCMD0 is defined to IMS as a
standard user exit. Exit routines that are defined to IMS receive the callable service
token in the standard exit parameter list. This exit routine must issue an initialization
call (DFSCSII0) to use callable services and you must manually bind with DFSCSI00.

Sample routine location IMS.ADFSMPL

Using the routine with AO (Automated Operator) applications that issue CMD or
ICMD calls

The Command Authorization exit routine can be used with automated operator
(AO) applications that issue a CMD or ICMD call. The routine is called for AO
applications that issue ICMD calls when the AOIS parameter is specified as A or C
in the IMS, DBC, or DCC procedure. The routine is called for AO applications that
issue CMD calls when the AOI1 parameter is specified as A or C in the IMS or
DCC procedure.

DFSCCMD0 is called during CMD and ICMD processing to check that the AO
application is authorized to issue the command that it issued. DFSCCMD0 lets you
secure commands issued in the CMD and ICMD calls at the command verb,
keyword, and resource name level.

Using the routine with LU 6.2 application programs

When an IMS command is received from an LU 6.2 application program, the
Command Authorization exit routine is called. The exit routine is called after a
RACF (or equivalent) call is made, regardless of the result of the RACF security
check. If neither RACF or the Command Authorization exit routine is available to
authorize the command, a default level of command security is provided by IMS
for commands from LU 6.2 application programs. The commands included in the
default are /BROADCAST, /LOG, and /RDISPLAY.

Using the routine with static terminals

The Command Authorization exit routine can be used with terminals defined
statically at system definition. The return code from the default security is passed
to the Command Authorization exit routine. IMS calls the exit routine (if it is
included in the system) regardless of the result of the default security check; the
return code from the exit routine determines authorization.

Using the routine with ETO terminals

The Command Authorization exit routine can be used with terminals that are
defined dynamically using ETO. If RACF (or an equivalent security product) is
requested and the user is signed on, RACF performs the command authorization.
IMS passes the RACF return code to the Command Authorization exit routine. IMS
calls the exit routine (if it is included in the system) regardless of the result of the
RACF security check.

If RACF is not requested but the Command Authorization exit routine is included
in the system, IMS calls the exit routine and performs command authorization

Chapter 4. IMS system exit routines 325

only. If neither RACF nor the Command Authorization exit routine is included,
IMS provides command authorization equivalent to the default security available
for static terminals.

The /SIGN and /RCLSDST commands are the only commands that can be entered
from an ETO terminal before signon. Although these commands cause IMS to call
the Command Authorization exit routine, neither RACF nor the exit routine
authorizes the commands.

Using the routine with commands from MCS/E-MCS consoles

This exit routine can be used with commands entered from MCS/E-MCS consoles.
The routine is called for commands from MCS/E-MCS consoles when the
CMDMCS parameter is specified as B or C in the IMS, DBC, or DCC procedure.

DFSCCMD0 is called during command processing to check that the console is
authorized to issue the command. DFSCCMD0 lets you secure commands at the
command verb, keyword, and resource levels.

Using the routine with IMS Open Transaction Manager Access

The Command Authorization exit routine can be used with IMS Open Transaction
Manager Access (OTMA).

Using the routine in a shared-queues environment

When running in a non-shared-queues environment, the name in the field
CNTNAME1 of the CNT representing the WTOR LTERM will be WTOR. In a
shared-queues environment, the name in field CTNAME1 of the CNT representing
the WTOR LTERM will be IMSID if it is running in a non-XRF environment and
RSENAME if it is running in an XRF environment.

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of the “IMS standard user exit parameter list” on page 5 (Version 1)

13 Address of the save area. Your exit routine must not change the first three
words of this save area.

14 Return address of IMS.

15 Entry point address of exit routine.

The macro DFSCCMD generates the DSECT for the function-specific parameter list
passed to DFSCCMD0 by IMS. For additional information, see DFSCCMD included
in IMS.ADFSMAC.

Contents of registers on exit

326 Exit Routines

Before returning to IMS, the exit routine must restore all registers except for
register 15, which contains the return code. See the following table:

Register Contents

15 One of the following return codes:

Return code Meaning

0 USER/TERMINAL is authorized to use command

4 USER/TERMINAL is not authorized

Negative
value

USER/TERMINAL is not authorized. The specified user
message is sent to the terminal where command originated.

Related concepts:

Defining security during DB/DC and DCCTL system definition (System
Administration)
Related reference:
“CSL OM user exit routines” on page 593
“IMS callable services” on page 13

DBRC Command Authorization exit routine (DSPDCAX0)
The DBRC Command Authorization exit routine (DSPDCAX0) can be used to
verify that a user is authorized to issue a particular command or DBRC application
programming interface (API) request.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 328

About this routine

DSPDCAX0 is an optional exit routine and is selected using the following DBRC
commands:
v BACKUP.RECON
v CHANGE
v CLEANUP.RECON
v DELETE
v GENJCL
v INIT
v LIST
v NOTIFY
v RESET.GSG

DSPDCAX0 can be used with RACF or another security product. The security
product is invoked first, and return and reason codes are passed to DSPDCAX0.
The return code from DSPDCAX0 then determines the success or failure of the
authorization. DSPDCAX0 overrides the outcome of the security product. DBRC
messages issued as a result of unsuccessfully invoking the security product are
suppressed.

Chapter 4. IMS system exit routines 327

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_secur_sysdef.htm#ims_secur_sysdef
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_secur_sysdef.htm#ims_secur_sysdef

DSPDCAX0 is required if the COMMAND AUTH setting in the RECON status
record is EXIT or BOTH.

DSPDCAX0 must be found in an authorized library or in LINKLST. If DSPDCAX0
is found in a concatenated STEPLIB or JOBLIB, only the data set containing
DSPDCAX0 must be authorized. If DSPDCAX0 is found in LINKLST, no
authorization check is performed.

The following table shows the attributes for the DBRC Command Authorization
exit routine.

Table 120. Command authorization exit routine attributes

Attribute Description

IMS environments DB/DC, DBCTL, DCCTL

Naming convention You must name this exit routine DSPDCAX0.

Binding You must bind this routine into an authorized data set as a separate
reentrant (RENT) load module, DSPDCAX0.

Including the routine No special steps are needed to include this routine. The exit is only
included if DBRC command authorization (CMDAUTH) is set to
EXIT or BOTH.

IMS callable services This exit is not eligible to use IMS callable services.

Sample routine
location

DSPDCAX0 is provided in the IMS.SDFSSMPL data set, and you
can modify it to work in both BPE and non-BPE DBRC
environments.

Communicating with IMS

IMS uses the entry and exit registers to communicate with the routines.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of the DBRC command authorization exit parameter list

13 Address of the save area

14 Return address to DBRC

15 Entry point address of exit routine

The following table lists the exit parameter list. It is mapped by the DBRC
Command Authorization (DCA) Interface Parameter Block (DSPDCABK).

Table 121. DCA Interface Parameter Block description

Field name Offset
Length
in bytes

Field
Usage Description

DCABLKID X'00' X'08' Input Eye catcher “DSPCABK”

DCABLKLN X'08' X'04' Input Length of the block

DCARNPTR X'0C' X'04' Input Address of the resource name (RN)

DCARNLEN X'10' X'04' None Resource name length

328 Exit Routines

Table 121. DCA Interface Parameter Block description (continued)

Field name Offset
Length
in bytes

Field
Usage Description

DCARHPTR X'14' X'04' Input Address of RN high-level qualifier

DCARHLEN X'18' X'04' Input Length of RN high-level qualifier

DCARVPTR X'1C' X'04' Input Address of RN command verb

DCARVLEN X'20' X'04' Input Length of RN command verb

DCARMPTR X'24' X'04' Input Address of RN command modifier

DCARMLEN X'28' X'04' Input Length of RN command modifier

DCARQPTR X'2C' X'04' Input Address of RN command qualifier

DCARQLEN X'30' X'04' Input Length of RN command qualifier

DCAUserID X'34' X'08' Input User ID of command issuer

DCAExitAddr X'3C' X'04' None Address is 0 for BPE user exit

DCAFlags X'40' X'04' Input Miscellaneous flags:

X'80' Security product was called.

X'40' Security exit DSPDCAX0
was called.

X'20' 1st call (REQUEST=LIST)
done.

X'10' DBRC API Request

X'08' BPE user exit was called

DCASAFRetCode X'44' X'04' Input Security product (RACF or
equivalent) return code

DCARACFRetCode X'48' X'04' Input RACF return code

DCARACFRsnCode X'4C' X'04' Input RACF reason code

DCAExitRetCode X'50' X'04' Output Security exit return code

DCAUserAreaPtr X'54' X'04' Input Address is 0 for BPE user exit

DCAUserAreaLen X'58' X'04' Input Length is 0 for BPE user exit

DCARACRReq X'5C' X'08' Input RACROUTE request type

DCAVersion X'64' X'04' Input Parameter list version number
(00000001)

X'68' X'20' None Reserved

Contents of registers on exit

Before returning to DBRC, the exit routine must restore all registers except for
register 15, which contains the following return code.

The following table reflects the register contents for non-BPE based DBRC exit
routines.

Register Contents

15 One of the following return codes:

Chapter 4. IMS system exit routines 329

Register Contents

Return code Meaning

0 USER is authorized to use the DBRC command.

nonzero USER is not authorized to use the DBRC command.

Related reference:
Chapter 7, “BPE-based DBRC user exit routines,” on page 533
“Routine binding restrictions” on page 9
“DBRC Security exit routine” on page 535

DBRC SCI registration exit routine (DSPSCIX0)
The DBRC SCI Registration exit routine (DSPSCIX0), formerly called the SCI
Registration exit routine, supplies the IMSplex name needed for DBRC's Structured
Call Interface (SCI) registration.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 331

About this routine

The DBRC SCI Registration exit routine (DSPSCIX0) is called by DBRC before
registering with the SCI. DSPSCIX0 supplies the IMSplex name needed for SCI
registration. The exit can also supply a DBRC group ID to identify unique RECON
sharing groups. If the exit is not used, DBRC will behave as if the sample version
of the exit was being used.

DSPSCIX0 must be found in an authorized library or in LINKLST. If DSPSCIX0 is
found in a concatenated STEPLIB or JOBLIB, only the data set containing
DSPSCIX0 must be authorized. If DSPSCIX0 is found in LINKLST, no authorization
check is performed. In a TSO environment, the library must be located in the task
library (TASKLIB).

The following table shows the attributes for the DBRC SCI Registration exit
routine.

Table 122. DBRC SCI registration exit routine (DSPSCIX0)

Attribute Description

IMS environments DB/DC, DBCTL, DCCTL.

Naming convention You must name this exit routine DSPSCIX0.

Binding You must bind this routine into an authorized data set as a separate reentrant (RENT)
load module, DSPSCIX0.

Including the routine No special steps are needed to include this routine. If the exit is not used, DBRC will
behave as if the sample version of the exit was being used.

IMS callable services This exit is not eligible to use IMS callable services.

Sample routine location IMS.ADFSSMPL (member name DSPSCIX0).

330 Exit Routines

Communicating with IMS

IMS uses the entry and exit registers to communicate with the routines.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of the DBRC SCI registration exit parameter list

13 Address of the save area

14 Return address to DBRC

15 Entry point address of exit routine

DSPSCIX0 uses standard linkage conventions. It is passed six parameters using a
standard format parameter list. The following six parameters are passed to
DSPSCIX0:
v A RECON data set name. Any one of the RECON data set names in use can be

passed to the exit.
v A 5 byte area in which DSPSCIX0 returns an IMSplex name.
v If the IMSPLEX EXEC statement parameter is specified, the value of the

IMSPLEX parameter is passed as this parameter. The EXEC statement referred to
can be on any job step that uses DBRC.

v A full word containing the version of the parameter list.
v A 3-byte area in which DSPSCIX0 returns a DBRC group ID initialized to '001'.
v If the DBRCGRP EXEC statement parameter is specified, the value of the

DBRCGRP parameter is passed as this parameter. The EXEC statement referred
to can be on any jobstep that uses DBRC.

Contents of registers on exit

Before returning to DBRC, the exit routine must restore all registers except for
register 15, which contains the following return code.

Register Contents

15 One of the following return codes:

Return code Meaning

0 DBRC expects a valid IMSplex name and DBRC group ID to
be returned in the parameter list. The IMSplex name and
group ID are used for registration with SCI.

4 Access is attempted without SCI registration. If the RECON
indicates that RECON Loss Notification is active or PRA is
active, DSP1136A is issued and RECON access fails.

8 Access is attempted without SCI registration. RECON access is
forced without regard to RECON content. DSP1143I is issued.
Access to the RECON will be done in serial mode regardless
of the access setting in the RECON data sets. If another
instance has the RECONs opened in parallel mode, this access
will fail with an OPEN failure.

12 RECON access fails and message DSP1139I is issued.

Chapter 4. IMS system exit routines 331

Register Contents

Any other
value

Will behave as RC12 in this implementation.

Related reference:
“Routine binding restrictions” on page 9
“IMS standard user exit parameter list” on page 5
Chapter 7, “BPE-based DBRC user exit routines,” on page 533

Sample DBRC SCI registration exit routine
Use the sample DBRC SCI registration exit routine to return the IMSPLEX
parameter value and the group ID value specified by the DBRCGRP EXEC
parameter.

For the latest version of DSPSCIX0, see the IMS.ADFSSMPL library, member name
DSPSCIX0.

The sample version of DSPSCIX0 will issue a return code 4 in register 15 unless an
IMSplex name is supplied through the IMSPLEX EXEC parameter. If an IMSplex
name is supplied, DSPSCIX0 will return the IMSPLEX parameter value and the
group ID value specified by the DBRCGRP EXEC parameter. If an IMSplex EXEC
parameter is specified but no DBRCGRP EXEC parameter is specified, the sample
exit will return the IMSplex parameter value and the default group ID '001'.

The sample version of DSPSCIX0 contains a table of RECON data set names and
associated IMSplex names and DBRC group IDs. As shipped, the exit responds to
any RECON name with return code 4 and the table has no other entries. To
activate the RECON Loss Notification or use parallel RECON access, either specify
an IMSplex name through the IMSPLEX EXEC parameter on all jobs which use
DBRC, or add RECON data set names, associated IMSplex names, and DBRC
group IDs to the table.

The first entry in the table follows the label PLEXTABL. Each entry consists of a
44-byte RECON data set name, left justified and padded with blanks, followed by
a 5-byte character IMSplex name, a 3-byte group ID, and a 4-byte hexadecimal
return code. The last entry is the default entry consisting of an asterisk (*) for a
RECON data set name and, unless altered by the user, a blank IMSplex name, a
default group ID '001,' and a return code of 4. While the default response can be
changed, the entry containing the asterisk marks at the end of the table should not
be removed unless the associated exit logic is changed as well.

A table modified for a production IMSplex and a test IMSplex could appear as
follows:
PLEXTABL DS 0H
* production RECONs and associated IMSplex

DC CL44’PROD.RECON1’ RECON name
DC CL5’PLEXA’ IMSplex name
DC CL3’GP1’ Group ID
DC XL4’00000000’ RC00 = use the IMSplex name
DC CL44’PROD.RECON2’ RECON name
DC CL5’PLEXA’ IMSplex name
DC CL3’GP1’ Group ID
DC XL4’00000000’ RC00 = use the IMSplex name
DC CL44’PROD.RECON3’ RECON name
DC CL5’PLEXA’ IMSplex name
DC CL3’GP1’ Group ID

332 Exit Routines

DC XL4’00000000’ RC00 = use the IMSplex name
* test RECONs and associated IMSplex

DC CL44’TEST.RECON1’ RECON name
DC CL5’PLEXT’ IMSplex name
DC CL3’GT1’ Group ID
DC XL4’00000000’ RC00 = use the IMSplex name
DC CL44’TEST.RECON2’ RECON name
DC CL5’PLEXT’ IMSplex name
DC CL3’GT1’ Group ID
DC XL4’00000000’ RC00 = use the IMSplex name
DC CL44’TEST.RECON3’ RECON name
DC CL3’GT1’ Group ID
DC CL5’PLEXT’ IMSplex name
DC XL4’00000000’ RC00 = use the IMSplex name

* 2nd test RECON group - same plex as Test RECON group 1
DC CL44’TEST2.RECON1’ RECON name
DC CL5’PLEXT’ IMSplex name
DC CL3’GT2’ Group ID
DC XL4’00000000’ RC00 = use the IMSplex name
DC CL44’TEST2.RECON2’ RECON name
DC CL5’PLEXT’ IMSplex name
DC CL3’GT2’ Group ID
DC XL4’00000000’ RC00 = use the IMSplex name
DC CL44’TEST2.RECON3’ RECON name
DC CL3’GT2’ Group ID
DC CL5’PLEXT’ IMSplex name
DC XL4’00000000’ RC00 = use the IMSplex name

* end of table - default exit response is not to use SCI for unknown RECONs
DC CL44’*’ RECON name
DC CL5’ ’ unusable IMSplex name
DC CL3’001’ Default Group ID
DC Xl4’00000004’ RC04 = no SCI registration

Dependent Region Preinitialization routines
Dependent Region Preinitialization routines enable you to perform any
application-unique dependent region initialization.

Subsections:
v “About these routines”
v “Communicating with IMS” on page 335

About these routines

Dependent Region Preinitialization routines can activate any z/OS system or data
management services for which they are authorized, although they cannot issue
DL/I calls or activate IMS system services. Because they receive control after
module preload, but before IMS scheduling, you might want to use these routines
for such tasks as building an internal table for your applications to access during
dependent region processing.

For example, you can use a preinitialization routine to build a table for application
decision making. You can maintain this table by using z/OS services in the
following manner:
v Using z/OS storage management services, the preinitialization routine can

acquire and format a main storage table.
v Using z/OS Name/Token callable services, the preinitialization routine can

establish a name/token pair for the storage that provides the user application
access to the storage area.

Chapter 4. IMS system exit routines 333

This name/token pair can then be used by the dependent region applications using
the Name/Token services to access the table. It is your responsibility to determine
what these preinitialization routines do, and how the information is made available
to user applications.

Preinitialization routines are not intended to control the IMS dependent region
environment. These routines provide installation information that can be shared
between applications. This information can be used to control the applications and
allow the application to make decisions based on the information in these tables.

The preinitialization routines must not be system-type routines (for example, z/OS
services, Language, or Access Method) but rather user-written routines.

Related Reading: For guidance-level information to help you decide whether or
not you want to write these routines to initialize dependent regions, see
“Establishing IMS Security” in IMS Version 13 System Administration.

The following table shows the attributes of Dependent Region Preinitialization
routines.

Table 123. Dependent region preinitialization routines attributes

Attribute Description

IMS environments DB/DC, DBCTL.

Naming convention
Using standard z/OS conventions, you can give the routine any
name up to eight characters in length. Be sure that the name is
unique and does not conflict with the existing members of the data
set in which this routine is stored. Because most IMS-supplied
routines begin with the prefix “BPE,” “CQS,” “CSL,” “DFS,” “DBF,”
“DSP,” or “DXR,” choose a name that does not begin with these
letters.

Binding
Before a dependent region can be initialized, you must assemble all
required dependent region preinitialization routines and bind into a
concatenation of //STEPLIB. Normally, this is IMS.PGMLIB or the
associated application program library.

You must bind the routine as reentrant (RENT).

Including the routine See this topic.

IMS callable services
This exit routine is not eligible to use IMS callable services.

Sample routine
location

None.

Activating the routine

The Dependent Region Preinitialization routines get control after the dependent
region has IDENTIFIED or SIGNED-ON to the associated Control Region, but
before IMS scheduling is attempted. These routines execute under the IMS
Program Control Task whenever it:
v Is attached or reattached in problem program state/user key 8
v Receives control in the order specified in the PROCLIB member

334 Exit Routines

Each Preinitialization exit routine is identified by an 80-byte record in a DFSINTxx
member of IMS.PROCLIB, where xx is a suffix specified by the PREINIT keyword
of the IMS dependent region procedures IMSBATCH, DFSMPR, and IMSFP.

Related Reading: For details about these procedures, see IMS Version 13 System
Definition.

Each record identifies one program in IMS.PGMLIB that is to receive control
during dependent region initialization (or reinitialization after an IMS user
application program abnormal termination).

The 80-byte record identifying each preinitialization routine is as follows:

Column Contents

1-71 Routine names and entry points. The last name on a record is denoted by a
comma followed by one or more blanks; the last name on the last record is
followed by one or more blanks.

72-80 Must remain blank. Ignored.

The routines are given control in the order specified in the member. If a requested
routine is not found, the dependent region abnormally terminates with a U0588.

Communicating with IMS

IMS uses the entry and exit registers to communicate with the routines.

Contents of registers on entry

On entry, the routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Zero.

13 Address of save area. The routine must not change the first three words.

14 Return address to IMS.

15 Entry point of routine.

Contents of registers on exit

Before returning to IMS, the routine must restore all registers except register 15,
which must contain the following:

Register Contents

15 0

Dump Override Table (DFSFDOT0)
Use the Dump Override Table to either force or suppress dumps for specified
abends.
v “About this table” on page 336

Chapter 4. IMS system exit routines 335

About this table

The IMS Dump Override Table is used to override default dump processing for
IMS abends that occur after early IMS initialization. You can use this table to force
a dump to be taken for abend codes for which dumps are normally suppressed.
You can also use it to prevent dumps for abend codes for which dumps are
normally taken.

If DFSFDOT0 is present in IMS.SDFSRESL, IMS will load it during IMS
initialization. If an abend occurs, this table will be searched for an entry that
matches the abend code. If a matching entry is found, IMS will either create a
memory dump or not create a memory dump based on the action specified on the
entry's DFSFDOT macro invocation (FORCE or SUPPRESS). If a matching entry is
not found, or if DFSFDOT0 is not present in IMS.SDFSRESL, IMS will use its
default logic to decide whether or not to create a memory dump.

The Dump Override Table suppresses only IMS Control Region, IMS DLS Region,
and DBRC Region abend dumps. IMS Dependent region dumps cannot be
suppressed with the Dump Override Table.

The only change that the Dump Override Table makes to the dumping process is
to force or suppress the initial dump decision. IMS still creates only one dump,
even when multiple abends occur and matching entries are found in the Dump
Override Table.

A sample Dump Override Table is shipped with a default set of entries. The entries
in this sample are the same as the default processing that IMS performs if there is
no DFSFDOT0 present in IMS.SDFSRESL. Modify DFSFDOT0 to fit your own
needs. If you want no entries in the Dump Override Table, you must create a
DFSFDOT0 with no entries. After you assemble your customized version, link it
into the system to activate the changes.

The following table shows the attributes of Dump Override table.

Table 124. Dump Override Table attributes

Attribute Description

IMS environments DB/DC, DBCTL, DCCTL.

Naming convention This table must be named DFSFDOT0.

Link editing This table has no executable code. It must be linked into an
authorized data set as a separate, serially reusable (REUS) load
module, DFSFDOT0.

Including the routine No special steps are needed to include this table. If DFSFDOT0 does
not exist, IMS will use the default dump override values that are
included in DFSFDMP0.

IMS callable services IMS callable services are not applicable for use with this table.

Sample routine
location

IMS.ADFSSMPL (member name DFSFDOT0).

DFSFDOT macro

The DFSFDOT macro is an IMS-provided macro that is used to generate the
DFSFDOT0 table. A DFSFDOT macro call must be coded for each abend for which
you want to force a dump to be taken, and for which you want to suppress a

336 Exit Routines

dump. Though this macro is used to build the Dump Override Table, the macro is
separate from the Dump Override Table to maintain IMS integrity.

DFSFDOT parameters and descriptions

Parameters are required and must be specified when defining the Dump Override
Table.

DFSFDOT BEGIN
This parameter is required at the start of the Dump Override Table definition.
It must be coded before any other DFSFDOT invocations. When BEGIN is
specified, no other options are allowed. If any options are specified, they are
ignored.

DFSFDOT END
This parameter is required at the end of the Dump Override Table and must be
the last DFSFDOT invocation in DFSFDOT0. When END is specified, no other
options are allowed. If any options are specified, they are ignored.

ABEND=
This parameter specifies a user or system abend for which a dump is either to
be forced or suppressed. The abend is specified in one of the following forms:

UNNNN, where NNNN is the four-digit decimal number (U0780, U4095) of
the abend.
SXXX, where XXX is the three-digit hexadecimal number (S075, S3E7) of the
abend.

DUMP=
This parameter specifies whether the abend dump is forced or suppressed.
This parameter overrides IMS dump decision logic and the z/OS dump
request bit. It has two options:

FORCE generates a dump for a non-dumping ABEND. There is no default
value for DUMP=.
SUPPRESS prevents unwanted dumps. Default = none.

The Dump Override Table can specify an abend code and an action of SUPPRESS.
However, IMS cannot suppress all dumps. For example, z/OS or another
component can write the dump prior to IMS receiving control. In the case of
system abend code S122, z/OS causes the dump to be written before the abend is
issued and before IMS receives control. IMS then issues message DFS3984I stating
that the dump has been suppressed. This message is misleading, but as far as IMS
is concerned the dump has been suppressed. IMS cannot suppress dumps
produced by abends that occur after IMS has already processed the Dump
Override Table. In the case of ABENDU0002, IMS has already processed the Dump
Override Table.

IMS documentation does not explicitly list every abend that supplies a dump that
cannot be suppressed by using the Dump Override Table.

Sample Dump Override Table (DFSFDOT0)
This example shows you how to use the DFSFDOT to either force or suppress
dumps for specified abends using a Dump Override Table.

The table in this example forces dumps for ABENDS S075, U780, and S222; the
table suppresses dumps for ABENDS S80A and U790.

Chapter 4. IMS system exit routines 337

DFSFDOT BEGIN
DFSFDOT ABEND=S075,DUMP=FORCE
DFSFDOT ABEND=U0780,DUMP=FORCE
DFSFDOT ABEND=S80A,DUMP=SUPPRESS
DFSFDOT ABEND=S222,DUMP=FORCE
DFSFDOT ABEND=U0790,DUMP=SUPPRESS
DFSFDOT END

Entries need not be in order.

You can generate a Dump Override Table with no FORCE or SUPPRESS by coding
a single DFSFDOT BEGIN/END pair, as follows:
DFSFDOT BEGIN
DFSFDOT END

Errors

Possible errors include:

ASSEMBLY ERROR
An assembly error is issued when an invalid abend code is specified or
conflicting dispositions for an abend code are found.

ABEND U0718
An ABEND U0718 (MODULE LOAD FAILURE) is issued if DFSFDOT0 cannot
be loaded.

Messages

DFSFDMP0 issues message DFS3984I when a TCB ABEND code matches an entry
in the Dump Override Table. The message appears as:
DFS3984I DUMP FOR ABEND _____ FORCED BY DUMP OVERRIDE TABLE
DFS3984I DUMP FOR ABEND _____ SUPPRESSED BY DUMP OVERRIDE TABLE.

ESAF In-Doubt Notification exit routine (DFSFIDN0)
Use the optional External Subsystem Attach Facility (ESAF) In-Doubt Notification
exit routine (DFSFIDN0) to identify external subsystem in-doubt units if an IMS
failure occurs.

With this information, you can resolve the in-doubt work before restarting the
failed IMS. This routine is optional. If it is not used, IMS attempts to resolve the
in-doubt data when it can.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 339

About this routine

During an emergency restart or an FDBR start, when scanning the units of work
for recovery, IMS provides to the user exit routine the identities of all external
subsystem units of work, the names of the external subsystems, and the final
resolutions of the data.

338 Exit Routines

IMS synchronously calls the exit routine one time for each in-doubt external
subsystem unit of work. Because these are synchronous calls, consider the
performance impact on FDBR when writing the exit routine.

In an XRF environment, consider the performance impact of the exit routine during
an XRF takeover.

Attributes of the ESAF In-Doubt Notification exit routine are described in the
following table.

Table 125. ESAF In-Doubt Notification exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL, and DBCTL.

Naming convention The exit routine must be named DFSFIDN0.

Including the routine To use this optional exit routine, you must name it DFSFIDN0 and link-edit it into an
APF-authorized library. This library can be either the JOBLIB or STEPLIB for the FDBR
region.

IMS callable services This exit routine is not eligible to use IMS callable services.

The routine is called in TCB mode with AMODE=31. SVCs are allowed.

Sample routine location No sample exit routine is provided.

Communicating with IMS

IMS uses the entry and exit registers to communicate with the exit routine.

Contents of registers on entry

The registers on entry contain the following information:

Register Contents

1 Address of the DFSRNID parameter list.

13 Address of the save area. This save area is not chained to any IMS save area.

14 Return address to IMS.

15 Entry address of this exit routine.

The DFSRNID parameter list contains the following information:

Table 126. ESAF In-Doubt Notification exit routine parameter list

Offset Length Field name Description

0 4 RNIDID Eye catcher

4 4 RNIDLEN Length of DFSRNID block

8 2 RNIDVER Version

10 2 RNIDREL Release

12 4 RNIDIMS IMS ID

16 4 RNIDSSYS External subsystem ID that owns
in-doubt data

Chapter 4. IMS system exit routines 339

|
|
|

Table 126. ESAF In-Doubt Notification exit routine parameter list (continued)

Offset Length Field name Description

20 2 RNIDRESO Unit-of-work resolution action:

CO Commit

AB Abort

22 4 Reserved

28 4 RNIDUOW Address of unit of work
identification

26 2 RNIDUOWL Length of unit-of-work
identification

Contents of registers on exit

All registers must be restored on return.
Related concepts:

Accessing external subsystem data (System Definition)

External Subsystem Attach Facility (ESAF) (Communications and Connections)

Related reference:
“Routine binding restrictions” on page 9

ESAF subsystem exit routines
IMS uses the External Subsystem Attach Facility (ESAF) to activate external
subsystem-supplied exit routines. These routines perform prescribed subsystem
unique attachment functions.

IMS uses the module names in the external subsystem module table (ESMT)
specified for the control region to load the exit routines during control region
initialization. The ESMT specified (or defaulted to) for a dependent region is used
to load the exit routines into the dependent region.

Most of the exit routines execute functions that are required for attach processing;
others are optional. When an exit routine required to support connection
processing is not present, IMS terminates the connection to the external subsystem,
if one exists, and issues an informational message (DFS3068I). If an application
program is involved, it is terminated with a user abend (U3049).

General exit routine interface

This topic describes general interfaces for all the External Subsystem exit routines.
You need to familiarize yourself with these interfaces.

Exit parameter list (EPL)

IMS activates an external subsystem exit routine, passing the address of an exit
parameter list (EPL) in register 1 (see the following figure). The EPL contains the
addresses of the parameters required by the exit routine. IMS passes to an exit
routine only the specific parameters it requires, so the contents and length of the
EPL differ between exit routines. The parameters for each exit routine are specified
in the individual exit routine description topics that follow.

340 Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_accessing_external_subsystems.htm#accessing_external_subsystems
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_esaf.htm#ims_esaf

The general format of the EPL is an array of fullword fields (4-byte fields, fullword
aligned), each containing the address of a parameter required for the exit routine
being activated. The first word in the EPL always contains the address of a 4-byte
parameter count field. The binary value in the count field is the number of
parameters being passed minus the count parameter (see the following figure).

Contents of registers

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of exit parameter list (EPL).

13 Address of save area. The exit routine must not change the backward chain
field, but it can alter the forward chain field.

14 Return address to IMS.

15 Entry point of exit routine.

Before returning to IMS, the exit routine must restore all registers except for
register 15, which must contain a return code. IMS provides one standard register
save area (address in register 13) in the appropriate storage protect key into which
the exit routine can save the entry register contents. The save area backward chain
field must not be altered (such as to chain the save area into a save area set). The
exit routine can alter the forward chain field.

Return codes

Return codes are exit routine specific. The return codes are shown in hexadecimal
format. Return code 20 is supported for all exit routines and is described as
follows.

Unsupported return codes

If register 15 on return from an exit routine contains a return code that is not
supported for the exit routine, it is treated as an error. IMS terminates the
connection for the region that activated the exit routine if one exists. If an
application program is involved, it terminates with a U3049 abend.

Figure 22. Exit parameter list

Chapter 4. IMS system exit routines 341

Return code 20

Return code 20 is used by all exit routines to indicate a 'should not occur'
condition and is described as follows:

Return code Meaning

20 Should not occur. The exit routine encountered a 'should not occur' condition
while processing the request. Such conditions include invalid save areas,
protocol violations, invalid work areas, and invalid parameter lists.

Action:

v If an application program is involved, it terminates with abend U3044. If
the external subsystem does not respond or responds incorrectly to the
control region echo request, the connection to that subsystem terminates.

v If the external subsystem does respond, the identify for the dependent
region terminates. A subsequent external subsystem request causes the
structure to be rebuilt.

v If a connection exists when the error is encountered, it terminates by
activating the Terminate Identify exit routine.

Related reference:
“Abort Continue exit routine” on page 344

Exit routine interface control blocks
Exit routine interface control blocks can contain the prefix for the external entry
vector table and the vector table itself, which contains the addresses of external
subsystem exit routine modules.

This topic describes the prefix for the external entry vector table and the vector
table itself.

External entry vector table prefix (EEVTP)

The address of an external entry vector table prefix (EEVTP) control block is
always passed in the EPL on exit routine activations. The EEVTP is the primary
external subsystem interface control block and contains the:
v Address of the external entry vector table (EEVT)
v Address of the resource translation table (RTT)
v Environment indicator (control or dependent region TCB)
v Address of the IMS service exit routine router module

External entry vector table (EEVT)

The external entry vector table (EEVT) contains the addresses of external
subsystem exit routine modules. IMS gets exit routine addresses from this control
block to activate the exit routines. IMS creates an EEVT (and EEVTP) in the control
region and in each dependent region before loading the modules defined in the
ESMT into the region. When the modules are loaded their addresses are stored in
the EEVT.

The EEVT is an IMS control block, however, module addresses are placed in the
control block based on the module definitions contained in the ESMT. Therefore,

342 Exit Routines

the external subsystem, in creating the ESMT, must make sure that exit routine
module definitions provide for placement of exit routine addresses in the EEVT
according to the EEVT mapping layout used by IMS. The ESAP can manipulate
addresses in this vector table if it chooses.

In addition to exit routine modules, the external subsystem can define other
modules in the ESMT, for example, modules that would be activated by exit
routines and not by IMS. IMS loads all modules defined in the ESMT and stores
their addresses as specified in the definitions.

Because of how definition and loading of external subsystem modules is done, it is
possible for the external subsystem to 'extend' the EEVT to include the addresses
of non-exit-routine modules.

Note: Extending the EEVT to include the addresses of non-exit-routine modules is
not recommended. IMS might add fields to the EEVT at a later time, in which case,
the external subsystem might have to respecify module definitions (that is,
regenerate the ESMT) and recompile modules.
Related concepts:

Loading external subsystem modules (Communications and Connections)

Control block mapping
The DFSEEVTP DSECT maps the EEVTP control block and the DFSEEVT DSECT
maps the EEVT control block.

The EEVTP is the prefix of the EEVT and contains the address of the EEVT.

DFSEEVTP

The following fields are of interest to the external subsystem:

Offset Field length Field name Description

X'0' X'4' EEVPNAME Eye catcher - 'EEVP'

X'8' X'4' EEVPEEA EEVT ADDRESS

X'10' X'4' EEVPEWA Available for external subsystem

X'14' X'4' EEVPRTA Recovery token address

X'1C' X'4' EEVPRTTA Resource translation table address

X'20' X'4' EEVTLDIR Available for external subsystem

X'28' X'4' EEVPESGL DFSESGL0 address

X'2E' X'1' EEVPF1 Environment indicators

- - EEVPCR = X'01'; Control region

- - EEVPMPP = X'02'; MPP dependent region

- - EEVPBMP = X'04'; BMP dependent region

- - EEVPIFPN = X'08'; Fast Path non-message
driven

- - EEVPIFPM = X'10'; Fast Path message driven

- - EEVPBMPN = X'20'; Non-message driven BMP

- - EEVPBDB2 = X'80'; Batch DB2 region

Chapter 4. IMS system exit routines 343

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_esaf_process_load_esmods.htm#ims_esaf_process_load_esmods

Offset Field length Field name Description

X'2F' X'1' EEVPF2 Environment indicators

- - EEVPDRPG = X'01'; Running under dependent
region; program controller TCB

X'34' X'8' EEVPSOTN Signon token

X'3C' X'4' EEVPESMT ESMT address

X'40' X'4' EEVPSVA EESV address

- - EEVPLGTH = X'44'; Length of EEVP

DFSEEVT

The following fields are of interest to the external subsystem:

Offset Field length Field name Description

X'0' X'4' EEVTNAME Eye catcher - 'EEVT'

X'4' X'4' EEVTINIT Initialization exit address

X'8' X'4' EEVTID Identify exit address

X'C' X'4' EEVTRID Resolve indoubt exit address

X'10' X'4' EEVTSO Signon exit address

X'14' X'4' EEVTCT Create thread exit address

X'18' X'4' EEVTCP Commit prepare exit address

X'1C' X'4' EEVTCC Commit continue exit address

X'20' X'4' EEVTA Abort exit address

X'24' X'4' EEVTTT Terminate thread exit address

X'28' X'4' EEVTSF Signoff exit address

X'2C' X'4' EEVTTI Terminate identify exit address

X'30' X'4' EEVTSNO Subsystem not operational exit address

X'34' X'4' EEVTSST Subsystem termination exit address

X'38' X'4' EEVTNC Normal call exit address

X'3C' X'4' EEVTECHO Echo exit address

X'40' X'4' EEVTCMD Command exit address

X'44' X'4' EEVTCV Commit verify exit address

X'48' X'4' EEVTIC Not used

X'4C' X'4' EEVTABE Not used

X'50' X'4' Reserved

X'54' X'4' Reserved

- - EEVTLGTH = X'58'; Length of EEVT

Abort Continue exit routine
The Abort Continue exit routine is activated when the application issues an IMS
DL/I ROLB call or an external subsystem votes 'no' to a commit prepare request.

344 Exit Routines

The Abort Continue exit routine is activated by IMS for all transaction types. The
external subsystem resource managers hold onto the resources they have acquired
on behalf of the application. The application will continue using the current
recovery token.

Subsections:
v “Activating the routine”
v “Contents of register 15 on return”

Activating the routine

The exit routine is activated in key 7, supervisor state. The EEVT prefix (EEVTP)
indicates a dependent region environment (dependent region TCB).

The EPL contains:

Offset
hexadecimal Decimal Content

X'0' 0 Address of the parameter count field. The count field
contains the value F'2'.

X'4' 4 Address of the EEVT prefix.

X'8' 8 Address of the 16-byte recovery token associated with this
instance of the transaction. The recovery token identifies the
unit of work across one or more subsystems.

Contents of register 15 on return

Processing of return codes received from the exit routine:

Return code Meaning

0
Abort Continue successful.

Action: IMS continues normal processing.

4
Abort Continue unsuccessful. ESAP or external subsystem processing of the
request failed.

Action: IMS terminates the application with abend U3045 (the input message
is discarded; DL/I resources are backed out). The control region performs
resolve indoubt processing for the recovery token. The dependent region is
terminated; which implicitly terminates the dependent region connection to
the external subsystem; the Signoff and Terminate Identify exit routines are
not called). BMP jobs must be resubmitted; they resume processing at the
prior commit point.

20
Should not occur.

Related reference:
“Resolve Indoubt exit routine” on page 361

Command exit routine
The Command exit routine allows external subsystem commands to be entered
from IMS terminals and Automated Operator Interface (AOI) applications.

Chapter 4. IMS system exit routines 345

IMS activates the optional external subsystem Command exit routine when IMS
discovers the subsystem's unique command recognition character (CRC) as the first
non-blank character in the text portion of the /SSR command.

IMS passes the command output destination name (LTERM name) to the exit
routine. The external subsystem can send a command response to this destination
by using the IMS Message Service.

For commands from an AOI program or from an input-only device not associated
with an output device, the output destination is the IMS MTO; otherwise it is the
inputting terminal.

IMS also provides the user ID associated with the command, if any, that the
external subsystem might use for security authorization checking.

IMS sends message DFS3612I to the inputting terminal if an /SSR command is
entered and a Command exit routine was not provided by the external subsystem.

Subsections:
v “Activating the routine”
v “Contents of register 15 on return” on page 347

Activating the routine

The exit routine is activated in key 7, supervisor state. The EEVT prefix (EEVTP)
indicates a control region environment (control region TCB). The following table
explains the contents of the EPL.

Table 127. EPL contents

Offset
Offset
(decimal) Content

X'0' 0 Address of the parameter count field. The count field
contains the value F'5'.

X'4' 4 Address of EEVT prefix.

X'8' 8 Address of the variable length external subsystem
command input. See the next table for the format of the
command input.

X'C' 12 Address of the 8-byte alphanumeric destination name (that
is, LTERM name) where the command response message, if
any, is to be sent. The name is left justified and padded
with blanks on the right.

X'10' 16 Address of the 8-character user ID associated with the
command input message. The user ID is left justified and
padded with blanks on the right. If IMS extended security
(SIGNON|SIGNOFF) is not active, or the inputting
terminal did not sign on, the user ID field contains the
output destination LTERM name.

X'14' 20 Address of the 8-byte RACF group name for the user ID
that entered the command. The name is left justified and
padded with blanks on the right. The area contains blanks
if RACF checking is not in effect.

346 Exit Routines

Table 128. Command input format

Offset Offset (decimal) Name Length/Alignment Description

X'0' 0 MSGLL 2 record length

X'2' 2 MSGZZ 2 reserved length

X'4' 4 CRC 1 command recognition
character

X'5' 5 CMDDATA nnn external subsystem
command

Contents of register 15 on return

Processing of return codes received from the exit routine:

Return code Meaning

0 Command exit routine successful. The Command exit routine accepted
the command input message.

4 Command exit routine unsuccessful. The Command exit routine rejected
the command input message.

20 Should not occur.

Related reference:
“Message Service exit routine” on page 379

Commit Continue exit routine
The Commit Continue exit routine provides the second phase of the two-phase
commit process.

In other words, the data associated with the current PSB is committed to the
database, locks are released, and cleanup is performed. This exit routine is
activated after all participating subsystems have voted 'yes' (return code 0 from
Commit Prepare exit routine) to the commit prepare request.

Subsections:
v “Activating the routine”
v “Contents of register 15 on return” on page 348

Activating the routine

The exit routine is activated in key 7, supervisor state. The EEVT prefix (EEVTP)
indicates a dependent region environment (dependent region TCB).

The EPL contains:

Offset
(hexadecimal) Decimal Content

X'0' 0 Address of the parameter count field. The count field contains
the value F'2'.

X'4' 4 Address of the EEVT prefix.

Chapter 4. IMS system exit routines 347

Offset
(hexadecimal) Decimal Content

X'8' 8 Address of the 16-byte recovery token associated with this
instance of the transaction. The recovery token identifies the
unit of work across one or more subsystems.

Contents of register 15 on return

Processing of return codes received from the exit routine:

Return code Meaning

0 Commit Continue successful.

Action: IMS continues normal processing.

4 Commit Continue unsuccessful. ESAP or external subsystem processing
of the request failed.

Action: IMS terminates the application with abend U3046 (the input
message is processed; DL/I resources are committed). The control region
performs resolve indoubt processing for the recovery token. The
dependent region is terminated, which implicitly terminates the
dependent region connection to the external subsystem (Signoff and
Terminate Identify exit routines are not called). BMP jobs that must be
resubmitted resume processing after the commit point.

20 Should not occur.

Related reference:
“Commit Prepare exit routine”
“Resolve Indoubt exit routine” on page 361

Commit Prepare exit routine
The Commit Prepare exit routine is activated by IMS when an update or
non-update transaction reaches a sync point.

Sync points include:
v Get unique (GU) call to the message queue
v Application-initiated checkpoint
v Application program termination

On return, the exit routine must indicate whether it is prepared to commit all
uncommitted changes initiated by the currently scheduled application. The exit
routine can indicate whether or not the second phase of the commit process
(commit continue) is required. If the transactions associated with the sync point
processing are non-update transactions, they do not need to be committed, in
which case the exit routine returns with a return code of X'C', requesting that IMS
not call the Commit Continue exit routine.

Subsections:
v “Activating the routine” on page 349
v “Contents of register 15 on return” on page 349

348 Exit Routines

Activating the routine

The exit routine is activated in key 7, supervisor state. The EEVT prefix (EEVTP)
indicates a dependent region environment (dependent region TCB).

The EPL contains:

Offset
(hexadecimal)

Decimal

Content

X'0' 0 Address of the parameter count field. The count field
contains the value F'2'.

X'4' 4 Address of the EEVT prefix.

X'8' 8 Address of the 16-byte recovery token associated with this
instance of the transaction. The recovery token identifies the
unit of work across one or more subsystems.

Contents of register 15 on return

Processing of return codes received from the exit routine:

Return code Meaning

X'00'
Commit Prepare successful.

Action: IMS continues normal processing.

X'04'
Commit Prepare unsuccessful. The external subsystem is not prepared to
perform commit processing at this time.

Action:

v If the application is not terminating, IMS drives the Abort Continue
exit routine. An internal ROLB is performed, which returns the input
message to the application.

v If the sync point was the result of the application terminating, IMS
activates the Terminate Thread exit routine with the abort option. The
application is terminated with abend U3055, updates are discarded,
and the input message is re-enqueued.

X'08'
Commit Prepare unsuccessful. Prepare processing failed in the external
subsystem.

Action: IMS activates the Abort Continue exit routine for all
participating subsystems (if the application is not terminating) or the
Terminate Thread exit routine with the abort option. The application
terminates with abend U3044 and updates are discarded.

X'0C'
Commit Prepare successful for nonupdate transactions.

Action: IMS continues normal processing but does not call the Commit
Continue exit routine. The external subsystem indicated that it is
processing nonupdate transactions that do not need to be called for the
second phase of commit processing. If the application program is
terminating, IMS calls the Terminate Thread exit routine.

Chapter 4. IMS system exit routines 349

Return code Meaning

X'18'
Commit Prepare unsuccessful. The request was rejected because the
recovery token presented by IMS at commit prepare already existed in
the external subsystem. One of the following conditions occurred:

v Outstanding recovery was not resolved by the Resolve indoubt exit
routine, probably due to errors in the external subsystem.

v IMS was cold started and the contents of the recovery token occurred
once again.

Action: IMS pseudo abends the application program with abend U3053
and backs out the previous updates. The application is immediately
rescheduled. The dependent region connection is reestablished
whereupon a new recovery token is presented to the Signon exit routine.

X'20'
Should not occur.

Related reference:
“Terminate Thread exit routine” on page 374
“Resolve Indoubt exit routine” on page 361

Commit Verify exit routine
IMS calls the Commit Verify exit routine during Get Unique (GU) message
processing when the transaction is defined as MODE=MULT.

This kind of transaction allows multiple messages to be processed without an
intervening commit action.

IMS calls the exit routine before the next message is dequeued and presented to
the application program. The exit routine allows the external subsystem to decide
if it can properly process a new message without initiating a commit for the
previous message. The external subsystem returns to IMS with a return code that
requests that IMS continue with normal MODE=MULT (or CMTMODE(MULT))
processing or initiate a commit action. If a commit action is requested, IMS will
initiate the commit action before dequeuing the next message and will terminate
the application program with a “QC” status code.

Subsections:
v “Activating the routine”
v “Contents of register 15 on return” on page 351

Activating the routine

The exit routine is activated in key 7, supervisor state. The EEVT prefix (EEVTP)
indicates a dependent region environment (dependent region TCB).

The EPL contains:

Offset
(hexadecimal) Decimal Content

X'0' 0 Address of the parameter count field. The count field
contains the value F'3'.

X'4' 4 Address of the EEVT prefix.

350 Exit Routines

Offset
(hexadecimal) Decimal Content

X'8' 8 Address of the 8-character user ID, left justified and padded
with blanks. The user ID is associated with the message that
is currently being processed (the next message has not yet
been dequeued) and is identical to the one that was
presented to the external subsystem at the time IMS last
called the Signon exit routine.

X'C' 12 Address of the 16-byte recovery token associated with this
instance of the transaction. The recovery token identifies the
unit of work across one or more subsystems. This recovery
token is identical to the one that was presented to the
external subsystem when IMS last called the Signon exit
routine.

Contents of register 15 on return

Processing of return codes received from the exit routine:

Return code Meaning

0
Commit Verify processing successful. The external subsystem indicates that it
can support MODE=MULT processing without initiating a commit action.

Action: IMS continues normal MODE=MULT processing. The next message
will be dequeued and presented to the application program without
initiating a commit action.

4
Commit Verify processing successful. The external subsystem indicates that it
cannot support MODE=MULT processing at this time. IMS needs to initiate a
commit action.

Action: IMS terminates the application with a “QC” status and initiates
commit processing. Following the commit action, IMS reschedules the
application program and the next message is presented for processing.

8
Commit Verify unsuccessful. Commit Verify processing failed in the external
subsystem.

Action: IMS terminates the application program with abend U3044 and
discards all updates.

20
Should not occur.

Create Thread exit routine
The Create Thread exit routine is activated by IMS to create a thread to the
external subsystem.

Threads can be created only after the TCB that the application runs under has been
identified to the external subsystem. A thread is created for each application that
makes a request to the external subsystem. The first request by the application
program directed at the selected subsystem initiates the activation. Once the thread
is created, application requests flow directly to the external subsystem through the
Normal Call exit routine.

Chapter 4. IMS system exit routines 351

Subsections:
v “Activating the routine”
v “Contents of register 15 on return”

Activating the routine

The exit routine is activated in key seven, supervisor state. The EEVT prefix
(EEVTP) indicates a dependent region environment (dependent region TCB).

The EPL contains:

Offset
(hexadecimal) Decimal Content

X'0' 0 Address of the parameter count field. The count field
contains the value F'5'.

X'4' 4 Address of the EEVT prefix.

X'8' 8 Address of the eight-character application program name,
left justified and padded with blanks to the right.

X'C' 12 Address of the eight-character PSB name, left justified and
padded on the right with blanks.

X'10' 16 Address of the contents of register 0 in the application save
area. When register 0 was saved, it contained the address of
the external subsystem-directed parameter list constructed
by the language interface.

X'14' 20 Address of a two-character transaction characteristic field.
The fields are described from left to right.

Byte one contains one of the following:

U Indicates the transaction was defined by the
installation as capable of update.

N Indicates the transaction was defined by the
installation as non-update.

Byte two contains one of the following:

S Indicates the transaction was defined by the
installation as mode=single.

M Indicates the transaction was defined by the
installation as mode=multiple.

Contents of register 15 on return

Processing of return codes received from the exit routine:

Return code Meaning

X'00'
Create Thread successful.

Action: IMS continues normal processing.

352 Exit Routines

Return code Meaning

X'04'
Create Thread unsuccessful. The external subsystem rejected the specified
request.

Action: IMS activates the Subsystem Not Operational exit routine. The return
code from the Subsystem Not Operational exit routine determines further
processing.

Return code 4, coupled with a return code 4 out of the Subsystem Not
Operational exit routine, causes an application loop unless the application
checks the return code presented by the API.

X'08'
Create Thread temporarily unsuccessful. The external subsystem was unable
to complete the request due to the unavailability of a required resource
(resource allocation failure).

Action: IMS terminates the application program with abend U3048.

X'0C'
Create Thread permanently unsuccessful. The request failed in the external
subsystem.

Action: IMS terminates the application program with abend U3045.

X'10'
Create Thread unsuccessful. The request failed in the external subsystem
because communications with it are broken.

Action: IMS terminates the application program with abend U3044.

X'14'
Create Thread unsuccessful. The external subsystem was unable to complete
the request due to a definitional conflict.

Action: IMS terminates the application program with abend U3047.

X'20'
Should not occur.

X'24'
Create Thread unsuccessful. A resource deadlock was detected by the
external subsystem.

Action: IMS terminates the application program with abend U777. All
changes are backed out and the application is rescheduled.

Related reference:
“Normal Call exit routine” on page 359
“Subsystem Not Operational exit routine” on page 367

Echo exit routine
The Echo exit routine is activated to determine whether IMS can communicate
with the external subsystem.

Activation normally occurs after IMS terminates an application program due to an
error processing an external subsystem request. The Echo exit routine is expected
to send a 'are you there' message or signal to the external subsystem, soliciting a
response.

Subsections:
v “Activating the routine” on page 354

Chapter 4. IMS system exit routines 353

v “Contents of register 15 on return”

Activating the routine

The exit routine is activated in key seven, supervisor state. The EEVT prefix
(EEVTP) indicates a control region environment (control region TCB).

The EPL contains:

Offset
(hexadecimal) Decimal Content

0 0 Address of the parameter count field. The count field
contains the value F'1'.

4 4 Address of the EEVT prefix.

Contents of register 15 on return

Processing of return codes received from the exit routine:

Return code Meaning

0
Echo successful. The external subsystem responded to the Echo exit routine
indicating it is able to continue communication.

Action: IMS continues normal application scheduling and processing.

4
Echo unsuccessful. The external subsystem has not responded to the Echo
exit routine or responded in error.

Action: IMS PSTOPs the transaction in question.

20
Should not occur.

Related reference:
“Resolve Indoubt exit routine” on page 361

Identify exit routine
IMS activates the Identify exit routine to establish a connection from the control
region or a dependent region to the external subsystem.

Initial contact from the region to the external subsystem is through this exit
routine. (The Identify exit routine is expected to communicate with the external
subsystem whereas the Initialization exit routine, if provided, might only perform
ESAP initialization and not actually communicate with the external subsystem.)
Successful activation of the exit routine (for example, return code 0) is necessary in
order for the region to be able to communicate with the external subsystem.

An aspect of the identify concept is the identification of IMS TCBs to the external
subsystem. When an IMS TCB terminates abnormally and in some cases when a
dependent region terminates normally, IMS does not inform the external subsystem
of the termination. The external subsystem should monitor, with z/OS end-of-task
(EOT) exit routines, the TCBs for the regions that identify so that it can be notified
by z/OS of a termination that was not communicated by IMS.

354 Exit Routines

In the control region and in an MPP- or IFP-dependent region, the Identify exit
routine is activated during region initialization processing unless the Initialization
exit routine returned with return code 4 (do not identify). The Identify exit routine
(control or dependent region) is also activated when the external subsystem
activates (through an exit routine) the Subsystem Startup Service supplied by IMS.

IMS passes a notify message on the control region identify request. If the exit
routine returns with return code 4 (notify message accepted), IMS waits for the
external subsystem to send the notify message before reactivating the exit routine
to establish the connection. This return code is intended to be used (optionally) in
the case where the external subsystem is not active when IMS attempts to identify.

Related Reading: See IMS Version 13 Communications and Connections for more
information about notify message.

IMS also passes the address of a termination ECB to the control region Identify exit
routine. The external subsystem can post this ECB to cause IMS to terminate the
connection; for example, when the external subsystem is shutting down.

Related Reading: Refer to “Terminating the external subsystem connection” in IMS
Version 13 Communications and Connections for more information.

Subsections:
v “Activating the routine from the control region”
v “Contents of register 15 on return” on page 356
v “Activating the routine from the dependent region” on page 356
v “Contents of register 15 on return” on page 357

Activating the routine from the control region

The exit routine is activated in key seven, supervisor state. The EEVT prefix
(EEVTP) indicates control region environment (control region TCB).

The exit parameter list (EPL) contains:

Offset
(hexadecimal) Decimal Content

X'0' 0 Address of the parameter count field. The count field
contains the value F'5'.

X'4' 4 Address of the EEVT prefix.

X'8' 8 Address of the 4-character external subsystem name.

X'C' 12 Address of the 8-character field containing the IMS system
ID (4 characters blank filled to 8 bytes). In an XRF complex,
this field contains the RSENAME.

X'10' 16 Address of the notify message area. See IMS Version 13
Communications and Connections.

X'14' 20 Address of the subsystem termination ECB.

Chapter 4. IMS system exit routines 355

Contents of register 15 on return

Processing of return codes received from the exit routine:

Return code Meaning

X'0'
Identify successful.

Action: IMS performs resolve indoubt processing in the control region.

X'4'
Identify unsuccessful. The external subsystem will send the notify message
when it is ready to connect.

Action: The external subsystem connection is not established. IMS waits for
receipt of the notify message before activating the Identify exit routine again.
Calling the IMS Subsystem Startup Service after Identify return code 4 does
not cause the Identify exit routine to be reactivated.

X'8'
Identify unsuccessful. The notify message was accepted on a previous
identify request.

Action: IMS waits for receipt of the notify message before activating the exit
routine again.

X'C'
Identify unsuccessful. The identify process failed, either in the ESAP or the
external subsystem.

Action: If an application is involved, it terminates with abend U3044.

X'20'
Should not occur.

Activating the routine from the dependent region

The exit routine is activated in key seven, supervisor state. The EEVT prefix
(EEVTP) indicates a dependent region environment (dependent region TCB).

The EPL contains:

Offset
(hexadecimal) Decimal Content

X'0' 0 Address of the parameter count field. The count field contains
the value F'3'.

X'4' 4 Address of the EEVT prefix.

X'8' 8 Address of the four-character external subsystem name.

X'C' 12 Address of the IMS system ID.

356 Exit Routines

Contents of register 15 on return

Processing of return codes received from the exit routine:

Return code Meaning

X'0'
Identify successful. The dependent region TCB has successfully identified to
the external subsystem.

Action: Signon processing follows.

X'C'
Identify unsuccessful. The identify process failed, either in the ESAP or the
external subsystem.

Action: If an application is involved, it terminates with abend U3044.

X'20'
Should not occur.

Related reference:
“Resolve Indoubt exit routine” on page 361

Initialization exit routine
IMS activates the optional Initialization exit routine to allow the ESAP to initialize
work areas or control blocks.

IMS activates the optional Initialization exit routine to allow the ESAP to initialize
work areas or control blocks in the following instances:
v During the initial stages of establishing a connection from the control or

dependent regions. Activation occurs after IMS has constructed its required
control blocks as well as the control blocks for the external subsystem. This
action takes place before the control or dependent regions have their respective
Identify exit routine activated.

v In a dependent region after an application program abend.

If the Initialization exit routine sets the 'do not identify' return code (return code
4), or if an Initialization exit routine is not supplied, IMS does not automatically
perform identify processing for the region. See IMS Version 13 Communications and
Connections for information on how the identify process is eventually performed.

Subsections:
v “Activating the routine from the control region”
v “Contents of register 15 on return” on page 358
v “Activating the routine from the dependent region” on page 358
v “Contents of register 15 on return” on page 359

Activating the routine from the control region

The exit routine is activated in key 7, supervisor state. The EEVT prefix (EEVTP)
indicates a control region environment (control region TCB).

The EPL contains:

Chapter 4. IMS system exit routines 357

Offset
(hexadecimal) Decimal Content

0 0 Address of the parameter count field. The count field contains
the value F'2'.

4 4 Address of the EEVT prefix.

8 8 Address of the 1-byte alphabetic region error option (REO)
character defined by the installation. The exit routine should
save the error option for future reference when a decision
concerning the application is required.

Contents of register 15 on return

Processing of return codes received from the exit routine:

Return code Meaning

0
Initialization successful.

Action: IMS attempts to initiate a connection with the external subsystem by
activating the Identify exit routine.

4
Initialization successful. Do not identify to the external subsystem.

Action: IMS does not perform identify processing during control region
initialization. It is now the responsibility of the external subsystem to initiate
the connection using the IMS Subsystem Startup Service.

8
Initialization unsuccessful.

Action: IMS does not initiate a connection to the subsystem. The external
subsystem is marked as unstartable. The /START SUBSYS command resets the
condition.

20
Should not occur.

Activating the routine from the dependent region

The exit routine is activated in key 7, supervisor state. The EEVT prefix (EEVTP)
indicates a dependent region environment (dependent region TCB).

The EPL contains:

Offset
(hexadecimal) Decimal Content

0 0 Address of the parameter count field. The count field contains
the value F'2'.

4 4 Address of the EEVT prefix.

8 8 Address of the 1-byte alphabetic region error option character.
The region error option is user-defined as part of the
SSM.PROCLIB member. The exit routine code should save the
error option for future reference when a decision concerning
the application is required.

358 Exit Routines

Contents of register 15 on return

Processing of return codes received from the exit routine:

Return code Meaning

0
Initialization successful.

Action: For an MPP or IFP region, IMS initiates a connection to the external
subsystem during region initialization. (IMS does not automatically initiate a
connection for a BMP region. See the description for return code 4.)

4
Initialization successful. Do not identify to the external subsystem.

Action: IMS does not automatically initiate a connection for the dependent
region. When the region processes the first application call to the external
subsystem, the ESAP is expected to activate the IMS Subsystem Startup
Service (from the Subsystem Not Operational exit routine.

This is always the case for BMP regions (that is, when return code 0 is set).
Return code 4 has significance only for MPP and IFP regions.

8
Initialization unsuccessful.

Action: IMS does not initiate a connection to the subsystem for the life of the
execution of this dependent region.

20
Should not occur.

Related reference:
“Subsystem Not Operational exit routine” on page 367
“Subsystem Startup Service exit routine” on page 381

Normal Call exit routine
The subsystem-supplied Normal Call exit routine is activated by IMS when a
subsystem-directed request is made by an application program and a thread to the
subsystem is present.

The subsystem-supplied Normal Call exit routine is activated by IMS when a
subsystem-directed request is made by an application program and a thread to the
subsystem is present. It is the responsibility of the Normal Call exit routine to:
v Communicate normal call and data to the external subsystem.
v Handle responses.
v Supply status codes to the application program.

Subsections:
v “Activating the routine”
v “Contents of register 15 on return” on page 360

Activating the routine

The exit routine is activated in the caller's key. The caller is IMS, an application
program, or an external subsystem-supplied exit routine, and is either authorized
or unauthorized. If the caller is authorized, the exit routine is activated in key 7,

Chapter 4. IMS system exit routines 359

supervisor state. If the caller is unauthorized, the exit routine is activated in key 8,
problem program state. The EEVT prefix (EEVTP) indicates a dependent region
environment (dependent region TCB).

The EPL contains:

Offset
Offset
(decimal) Content

X'0' 0 Address of the parameter count field. The count field contains
the value F'6'.

X'4' 4 Address of the EEVT prefix.

X'8' 8 Address of the contents of register 0 in the application save
area. At this time register 0 contains the address of the external
subsystem-directed parameter list as constructed by the
language interface.

X'C' 12 Address of the contents of register 1 in the application save
area. Register 1 contains the address of the application
parameter list.

X'10' 16 Address of the 16-byte recovery token associated with this
instance of the transaction. The recovery token identifies the
unit of work across one or more subsystems.

X'14' 20 Address of a one-character field which identifies the
authorization state:

A The caller is authorized and the exit routine is
activated in key seven, supervisor state.

U The caller is unauthorized and the exit routine is
activated in key eight, problem program state.

X'18' 24 Address of a 12-word buffer area provided for specific
language function calls. External subsystems that require IMS
to call internal exit routines for post-normal call processing can
use this buffer to pass data to the internal exit routine. If
post-normal call processing is required, IMS passes the address
of the buffer to the associated internal exit routine. If
post-normal call processing is not required, the external
subsystem should not use this parameter. For more
information, see return code 12.

Restriction: The use of this address field is restricted to those
external subsystems that have negotiated the definition and
use of an internal exit routine for post-normal call processing.
Requests for this support should be made through the IBM
User Requirements Process, which includes GUIDE, SHARE,
and vendor requirements processing.

Contents of register 15 on return

Processing of return codes received from the exit routine:

Return code Meaning

X'0'
Normal Call successful.

Action: IMS continues normal processing.

360 Exit Routines

Return code Meaning

X'4'
Normal Call unsuccessful. A resource deadlock is detected by the external
subsystem.

Action: IMS terminates the application program with abend U777. All
changes are backed out and the application is rescheduled.

X'8'
Normal Call unsuccessful. A failure in the external subsystem occurred while
processing the request.

Action: IMS terminates the application with abend U3044.

X'C'
Normal Call successful. The external subsystem requested the scheduling of
an associated internal exit routine for post-normal call processing. IMS calls
the internal exit routine before returning control to the application program.

Action: If there is an internal exit routine associated with the language
function call, IMS calls the associated internal exit routine and passes the
address of the buffer. If there are no internal exit routines associated with it,
IMS ignores the request and performs the processing associated with return
code 0.

The actual interface to an internal exit routine is unique to that routine and
depends on the type of external subsystem. The external subsystem-specific
interfaces are not documented.

X'20'
Should not occur.

Resolve Indoubt exit routine
The Resolve Indoubt exit routine provided by the external subsystem aids in the
coordination of recovery between the two subsystems.

The Resolve Indoubt exit routine provided by the external subsystem aids in the
coordination of recovery between the two subsystems. IMS, as the recovery
coordinator, always calls this exit routine after successful completion of the identify
process. IMS indicates in the EPL whether or not recovery must take place for the
units of work in question.

The Resolve Indoubt exit routine is activated once for each outstanding IMS
recovery token. It is called after the Echo exit routine. The external subsystem
directs IMS to save or destroy the recovery token. More information on exit routine
responses is in “Contents of register 15 on return” on page 363.

The Resolve Indoubt exit routine has the option of allowing the two subsystems to
continue communication with or without all recovery tokens resolved. If
communication continues and outstanding recovery tokens exist, an authorized
operator can direct IMS to delete its recovery tokens using the /CHANGE command.

Related Reading: Refer to IMS Version 13 Commands, Volume 1: IMS Commands
A-M for information on the /CHANGE command.

If the Resolve Indoubt exit routine address is not present in the EEVT and
outstanding recovery tokens do not exist, IMS allows the connection process to
continue. However, if a recovery token does exist, IMS terminates the connection
and informs the MTO with message DFS3602I.

Chapter 4. IMS system exit routines 361

The Resolve Indoubt exit routine is also activated after the abend of an application
program that had a connection (thread) to the external subsystem.

Subsections:
v “Activating the routine”
v “Contents of register 15 on return” on page 363

Activating the routine

The exit routine is activated in key seven, supervisor state. The EEVT prefix
(EEVTP) indicates a control region environment (control region TCB).

The EPL contains:

Offset
(hexadecimal) Decimal Content

0 0 Address of the parameter count field. The count field contains
the value F'4'.

4 4 Address of the EEVT prefix.

8 8 Address of a two-character field:

v Byte 1 contains an indicator, either 'C' or 'W', on the first
activation of the Resolve Indoubt exit routine during the
current IMS execution. On subsequent activations, the byte
contains binary zeroes. (For example, if the external
subsystem terminates and restarts while IMS remains
active, when the connection is reestablished, the byte will
contain binary zeroes.)

C Indicates IMS was cold started. All subsequent
fields in the parameter list contain binary zeroes.

W Indicates IMS was warm started.

v Byte 2 is set to 'L' after the last recovery token of the
current sequence is processed. For all other activations, the
byte is set to binary zeroes.

L Indicates either that there are no recovery tokens
to be resolved, or that all recovery tokens that
were to be resolved at this time have been
processed. If 'L' is not set on an activation of the
exit routine, the exit routine should expect to be
activated one or more times (once per recovery
token) until 'L' is set. A recovery token is not
passed on the last ('L') activation.

When 'C' is set in byte one, 'L' is always set
because IMS does not save recovery information
across a cold start.

C 12 Address of a two-character field indicating whether the
recovery unit should be aborted or committed.

CO Commit

AB Abort

10 16 Address of the 16-byte recovery token associated with this
instance of the transaction. The recovery token identifies the
unit of work across one or more subsystems.

362 Exit Routines

Contents of register 15 on return

Processing of return codes received from the exit routine:

Return code Meaning

0
Resolve Indoubt successful.

Action: IMS continues normal processing. The recovery token is destroyed.

4
Resolve Indoubt unsuccessful. Return code 4 should be set when the external
subsystem chooses not to resolve (commit or abort as directed) the unit of
work at this time and expects IMS to pass the recovery token for resolve
indoubt processing at a later time. This return code is not intended for the
case where resources have become inconsistent or the possibility exists (see
return code C).

Action: IMS saves the recovery token. The connection status remains
unchanged. IMS assumes that the indicated unit of work is indoubt status in
the external subsystem (for example, resources have not become
inconsistent). The saved recovery token will be included in the resolve
indoubt processing for the next establishment of the connection. IMS does
not inform the installation that the unit of work was not resolved.

8
Resolve Indoubt unsuccessful. Return code 8 can be used when the external
subsystem chooses not to resolve the unit of work during exit processing but
saves the commit direction so that IMS does not need to save the recovery
token. This return code is not intended for the case where resources have
become inconsistent (see return code C).

Return code 8 might be used when the indicated unit of work is not in
indoubt status in the external subsystem but resource consistency is not
jeopardized, however, caution is advised. External subsystem-specific
processing that is not coordinated with IMS can result in IMS holding a
recovery token in indoubt status when the unit of work is not indoubt in the
external subsystem (for example, external subsystem “cold start”, or manual
recovery of a unit of work by the installation if allowed by the external
subsystem). If the external subsystem can determine that its prior resolution
of a unit of work (explicit or implicit) agrees with the commit direction
passed to the exit routine, return code 8 can be set; otherwise, return code C
should be set.

Action: IMS destroys the recovery token. The connection status remains
unchanged (IMS assumes that resource consistency is maintained).

The IMS action is the same as for return code 0. Setting return code 8 allows
for an audit trail of the “not-quite-normal” cases.

Chapter 4. IMS system exit routines 363

Return code Meaning

C
Resolve Indoubt unsuccessful. Return code C should be used when resources
in IMS and the external subsystem have become inconsistent or when the
possibility exists. It is intended to be used, for example, when the recovery
token passed to the exit does not exist (is unknown) in the external
subsystem, or when the external subsystem has indoubt recovery tokens
remaining when IMS has finished processing its indoubt list. The external
subsystem should take appropriate additional action to maintain integrity
and assist the installation in resolving resource inconsistencies.

Action: IMS terminates the connection and saves all remaining recovery
tokens. IMS also issues message DFS3602I to notify the installation of a
resource problem.

v If a recovery token was passed on the exit routine activation (for example,
L was not set), IMS terminates the connection to the external subsystem.
The recovery token passed and all remaining recovery tokens are saved.

v If this is the last activation (L was set), the connection status is unchanged.
Dependent regions are allowed to connect to the external subsystem.

20
Should not occur.

Signoff exit routine
The Signoff exit routine is activated by IMS during shutdown or termination of
IMS subsystems.

The Signoff exit routine is activated by IMS when:
v IMS is shutting down.
v The external subsystem activates the IMS Subsystem Termination Service.
v The subsystem termination notification ECB is posted.
v The /STOP SUBSYS command is entered and IMS is terminating all the subsystem

connections.

IMS attempts to activate the exit routine as part of an orderly/catastrophic
shutdown process of the two subsystems.
v “Activating the routine”
v “Contents of register 15 on return” on page 365

Activating the routine

The exit routine is activated in key 7, supervisor state. The EEVT prefix (EEVTP)
indicates a dependent region environment (dependent region TCB).

The EPL contains:

Offset
(hexadecimal) Decimal Content

0 0 Address of the parameter count field. The count field contains
the value F'1'.

4 4 Address of the EEVT prefix.

364 Exit Routines

Contents of register 15 on return

Processing of return codes received from the exit routine:

Return code Meaning

0
Signoff successful.

8
Signoff unsuccessful. The ESAP or external subsystem processing of the
request failed.

Action: IMS terminates the dependent region connection with the external
subsystem, allowing other dependents to continue processing.

20
Should not occur.

Signon exit routine
The Signon exit routine informs the external subsystem of the user ID associated
with the transaction input message.

The user ID can be:
v The inputting LTERM name (if the terminal user is not signed on)
v The RACF/user-authorized user ID associated with a non-message driven BMP

or CPI-C application
v The PSB name specified on the job card
v The ID of the terminal user

The following table lists, in search order, the fields that IMS will check when it
searches for a user ID. For each field, it lists the criteria that IMS uses to validate
the user ID. When IMS finds a valid user ID, IMS extracts the ID and passes it to
the Signon exit routine.

Table 129. Determining the signon user ID

Type of application Field Criteria for authorized user ID

CPI-C 1. RACF user ID if the accessor
environment element (ACEE) is
cloned in the dependent region

Value passed without validation

2. PSTBUSER The value is not binary zeroes or blanks

3. PSTUSID The value is not blanks

4. PSTSYMBO The value is not blanks

5. PDIRSYM Value passed without validation

v Message-driven BMP
that has done a Get
Unique call

v IFP that has done a Get
Unique call

v MPP

1. PSTUSID The value is not blanks

2. PSTSYMBO The value is not blanks

3. PSTBUSER The value is not binary zeroes or blanks

4. PDIRSYM Value passed without validation

Chapter 4. IMS system exit routines 365

Table 129. Determining the signon user ID (continued)

Type of application Field Criteria for authorized user ID

v Non-message-driven
BMP

v Message-driven BMP
that has not done a Get
Unique call

v IFP that has not done a
Get Unique call

1. PSTBUSER The value is not binary zeroes or blanks

2. PDIRSYM Value passed without validation

When a dependent region connection is initially established, the Signon exit
routine is activated before a thread is created by the Create Thread exit routine. All
subsequent requests result in the exit routine being activated after a thread is
created. For example, Signon is activated for each message processed during a
single scheduling, whether or not the messages are separated by commit
processing.
v “Activating the routine”
v “Contents of register 15 on return” on page 367

Activating the routine

The exit routine is activated in key 7, supervisor state. The EEVT prefix (EEVTP)
indicates a dependent region environment (dependent region TCB).

The EPL contains:

Offset
(hexadecimal) Decimal Content

0 0 Address of the parameter count field. The count field contains
the value F'7'.

4 4 Address of the EEVT prefix.

8 8 Address of the eight-character user ID, left justified and
padded on the right with blanks.

C 12 Address of the 16-byte recovery token associated with this
instance of the transaction. The recovery token identifies the
unit of work across one or more subsystems.

10 16 Address of the 8-byte RACF group name for the user ID that
entered the transaction. The name is left justified and padded
with blanks on the right. The area contains blanks if RACF
checking is not in effect.

14 20 Address of the field containing the performance block token
for z/OS workload management support.

18 24 Address of the XID token associated with this transaction.
The XID token identifies participants in a Distributed
Syncpoint environment.

366 Exit Routines

Contents of register 15 on return

Processing of return codes received from the exit routine:

Return code Meaning

0 Signon successful.

Action: IMS continues normal processing.

4 Signon unsuccessful. The external subsystem rejected the specified request.

Action: IMS activates the Subsystem Not Operational exit routine. The return
code from the Subsystem Not Operational exit routine determines further
processing.

8 Signon temporarily unsuccessful. The external subsystem was unable to
complete the request due to the unavailability of a required resource
(resource allocation failure).

Action: IMS terminates the application program with abend U3048.

C Signon permanently unsuccessful. The request failed in the external
subsystem.

Action: IMS terminates the application program with abend U3045.

10 Signon unsuccessful. The request failed in the external subsystem because
communications with it are broken.

Action: IMS terminates the application program with abend U3044.

14 Signon unsuccessful. The external subsystem was unable to complete the
request due to a resource definitional conflict between the two subsystems.

Action: IMS terminates the application program with abend U3047.

18,1C Signon unsuccessful. The request was rejected because the recovery token
presented by IMS at signon already exists in the external subsystem. One of
save following conditions occurred:

v Outstanding recovery was not resolved by the Resolve Indoubt exit
routine, probably due to errors in the external subsystem.

v IMS was cold started and the contents of the recovery token occurred once
again.

Action: IMS pseudo abends the application program with abend U3053 and
backs out the previous updates. The application is immediately rescheduled.
The dependent region connection is re-established whereupon a new
recovery token is presented to the Signon exit routine.

20 Should not occur.

Related reference:
“Subsystem Not Operational exit routine”
“Resolve Indoubt exit routine” on page 361

Subsystem Not Operational exit routine
The Subsystem Not Operational exit routine is typically activated when IMS
encounters an unusual situation.

The Subsystem Not Operational exit routine is viewed as a utility type of exit
routine. IMS activates this exit routine when:

Chapter 4. IMS system exit routines 367

v An application program directs a request to the external subsystem and a
connection does not exist. The Subsystem Not Operational exit routine can
activate the IMS Subsystem Startup Service exit routine to initiate a connection.

v Return code 4 is returned from the Signon or Create Thread exit routines.
v The external subsystem tells IMS it is quiescing before creation of a thread.

Subsections:
v “Activating the routine”
v “Contents of register 15 on return” on page 370

Activating the routine

The exit routine is activated in the caller's key. The caller is IMS, an application
program, or an external subsystem-supplied exit routine, and is either authorized
or unauthorized. If the caller is authorized, the exit routine is activated in key
seven, supervisor state. If the caller is unauthorized, the exit routine is activated in
key eight, problem program state. The EEVT prefix (EEVTP) indicates a dependent
region environment (dependent region TCB).

The EPL contains:

Offset
(hexadecimal) Decimal Content

0 0 Address of the parameter count field. The count field contains
the value F'10'.

4 4 Address of the EEVT prefix.

8 8 Address of the contents of register 0 in the application
program save area. At this time register 0 contains the address
of the external subsystem-directed parameter list as
constructed by the language interface.

C 12 Address of the contents of register 1 in the application
program save area. Register 1 contains the address of the
application parameter list.

368 Exit Routines

Offset
(hexadecimal) Decimal Content

10 16 Address of a one-character information field. The contents
indicate why the Subsystem Not Operational exit routine is
being activated. The field contains:

A Return code 4 was returned by the Signon or Create
Thread exit routines.

C The IMS control region has not identified to the
external subsystem. This condition was discovered
when an application directed a request to the
subsystem. The Subsystem Not Available exit routine
can activate the IMS Subsystem Startup Service to
initiate a connection.

D An application issued a call to the external
subsystem but the dependent region has not
identified. The Subsystem Not Operational exit
routine can activate the IMS Subsystem Startup
Service to initiate a connection.

Q The external subsystem notified IMS that it is
terminating in a quiesce fashion. Prior to the creation
of a thread is the only interval where 'Q' is passed to
the external subsystem (applicable mainly when the
region error option (REO) is an 'R').

T The external subsystem notified IMS that it is either
abnormally terminating or terminating in a quick
fashion. It is highly likely that a subsystem-directed
request will fail. IMS notifies the external subsystem
when servicing a subsystem request (such as Create
Thread).

14 20 Address of a one-character default application option field.
This field contains the region error option (REO) defined by
the installation in the external subsystem PROCLIB member
to take effect in the event an application issues a
subsystem-directed request when a complete authorized
connection does not exist. This field is always valid.

If an option is not specified, IMS uses its elected default ('R').

18 24 Address of a four-byte character format field containing the
name of the subsystem associated with the request. The name
is left justified and padded with blanks.

1C 28 Address of a fullword where the Subsystem Not Operational
exit routine optionally returns a z/OS format abend code.

20 32 Address of the application program name scheduled at this
time. The name is assumed to be left justified and padded
with blanks to the left. The maximum length is eight bytes.

24 36 Address of the 16-byte recovery token associated with this
instance of the transaction. The recovery token identifies the
unit of work across one or more subsystems.

Chapter 4. IMS system exit routines 369

Offset
(hexadecimal) Decimal Content

28 40 Address of a one-character field which identifies the
authorization state:

A The caller is authorized and the exit routine is
activated in key seven, supervisor state.

U The caller is unauthorized and the exit routine is
activated in key eight, problem program state.

Contents of register 15 on return

Processing of return codes received from the exit routine:

Return code Meaning

0
Subsystem Not Operational call successful.

Action: IMS continues normal processing. Normal processing in this case
means activating the Signon and Create Thread exit routines to complete the
external subsystem connection.

4
Subsystem Not Operational call successful/unsuccessful. This exit routine
elected to pass status feedback to the application.

Action: IMS returns control to the application program. The application is
permitted to continue running.

A loop between the Create Thread exit routine and the Subsystem Not
Operational exit routine might result if the application program does not
check for nonzero return codes from the API.

8
Subsystem Not Operational call unsuccessful.

Action: IMS terminates the application program with abend U3044. The
transaction input is saved and all uncommitted changes are backed out. The
dependent region remains available for application processing.

C
Subsystem Not Operational call unsuccessful.

Action: IMS terminates the application program with abend U3047 and
discards the input. The dependent region remains available for application
processing.

10
Subsystem Not Operational call unsuccessful.

Action: IMS uses the z/OS format abend code returned by this exit routine
to abend the application.

20
Should not occur.

Related reference:
“Signoff exit routine” on page 364
“Create Thread exit routine” on page 351

370 Exit Routines

Subsystem Termination exit routine
The Subsystem Termination exit routine is activated in the control region when
IMS or the external subsystem terminate; activation follows the Terminate Identify
exit routine. The Subsystem Termination exit routine is used for cleaning up work
areas or freeing memory.

The Subsystem Termination exit routine should execute in parallel with normal
and abnormal IMS or external subsystem termination processing. External
subsystem termination is recognized when the subsystem posts the termination
ECB.
v “Activating the routine”
v “Contents of register 15 on return” on page 372

Activating the routine

The exit routine is activated in key 7, supervisor state. The EEVT prefix (EEVTP)
indicates a control region environment (control region TCB).

The EPL contains:

Offset
(hexadecimal) Decimal Content

0 0 Address of the parameter count field. The count field
contains the value F'2'.

4 4 Address of the EEVT prefix.

Chapter 4. IMS system exit routines 371

Offset
(hexadecimal) Decimal Content

8 8 Address of a 1-byte character format field indicating the
reason for subsystem termination. The field contains one of
the following:

A IMS is shutting down in a normal fashion
(/CHECKPOINT FREEZE). IMS makes sure new
connections are not established and permits existing
ones to terminate normally.

B IMS is shutting down abnormally (abend). Some
abend conditions might prohibit the activation of
this exit routine.

C The external subsystem notified IMS that it is
terminating in a quiesce fashion. IMS makes sure
new connections are not established and permits
existing ones to terminate normally.

D The external subsystem notified IMS that it is
terminating abnormally (catastrophic). IMS makes
sure new connections are not attempted and
terminates existing ones.

E The connection between the subsystems is being
quiesced by IMS. IMS is not shutting down but
remains available. The termination of the
connection is the result of the /STOP command, a
bad return code from an exit routine, or a required
exit routine missing.

F The connection between the subsystems is being
terminated because the IMS Subsystem Termination
Service exit routine was activated by an external
subsystem exit routine.

Contents of register 15 on return

Processing of return codes received from the exit routine:

Return code Meaning

0
Subsystem Termination successful.

Action: IMS continues subsystem termination.

8
Subsystem Termination unsuccessful. The ESAP or the external subsystem
encountered a failure in processing the termination notification.

Action: IMS continues termination processing. Future connection requests are
honored.

20
Should not occur.

372 Exit Routines

Terminate Identify exit routine
The Terminate Identify exit routine is activated by IMS to terminate the
hierarchical structure established between control regions and their dependent
regions.

Each IMS region that has an external subsystem connection must first identify to
the subsystem. Identify must first be complete for the control region before any
dependent regions identify. This hierarchical structure allows the control region to
act as recovery coordinator for the dependent regions. If a dependent region were
to fail, the control region intervenes and instructs the external subsystem to
commit or abort the dependent region units of work.

The Terminate Identify exit routine is activated by IMS to terminate this
hierarchical structure when:
v IMS is shutting down.
v The subsystem activates the IMS Subsystem Termination Service.
v The subsystem termination notification ECB is posted.
v The /STOP SUBSYS command is entered.

Activation is part of an orderly/catastrophic shutdown or disconnecting process of
the two subsystems.

Subsections:
v “Activating the routine from the control region”
v “Activating the routine from the dependent region”
v “Contents of register 15 on return” on page 374

Activating the routine from the control region

The exit routine is activated in key 7, supervisor state. The EEVT prefix (EEVTP)
indicates a control region environment (control region TCB).

The EPL contains:

Offset
(hexadecimal) Decimal Content

0 0 Address of the parameter count field. The count field
contains the value F'1'.

4 4 Address of the EEVT prefix.

Activating the routine from the dependent region

The exit routine is activated in key 7, supervisor state. The EEVT prefix (EEVTP)
indicates a dependent region environment (dependent region TCB).

The EPL contains:

Chapter 4. IMS system exit routines 373

Offset
(hexadecimal) Decimal Content

0 0 Address of the parameter count field. The count field
contains the value F'1'.

4 4 Address of the EEVT prefix.

Contents of register 15 on return

Processing of return codes received from the exit routine:

Return code Meaning

0
Terminate Identify successful.

Action: IMS continues termination processing.

8
Terminate Identify unsuccessful. The ESAP or external subsystem processing
of the request failed.

Action: IMS continues connection termination processing without affecting
other dependent region connections.

20
Should not occur.

Terminate Thread exit routine
The Terminate Thread exit routine disconnects the application from the external
subsystem. It is activated when the application program terminates normally.

The second phase of the commit processing at application termination is done
through the Terminate Thread exit routine. Therefore, a commit option is specified
on the activation.
v “Activating the routine”
v “Contents of register 15 on return” on page 375

Activating the routine

The exit routine is activated in key 7, supervisor state. The EEVT prefix (EVVTP)
indicates a dependent region environment (dependent region TCB).

The EPL contains:

Hexadecimal Decimal Content

0 0 Address of the parameter count field. The count field
contains the value F'3'.

4 4 Address of the EEVT prefix.

374 Exit Routines

Hexadecimal Decimal Content

8 8 Address of the four-byte commit option character string:

COMM
Commit and terminate the thread. (Normal
application termination is an example of when
this option is set).

ABRT Abort and terminate the thread.

DEAL Deallocate resources with terminate thread
(nothing to commit).

C 12 Address of the 16-byte recovery token associated with
this instance of the transaction. The recovery token
identifies the unit of work across one or more
subsystems.

Contents of register 15 on return

Processing of return codes received from the exit routine:

Return code Meaning

0
Terminate Thread successful.

Action: IMS continues normal processing.

4
Terminate Thread unsuccessful. The ESAP or external subsystem processing
of the request failed.

Action: IMS terminates the application with an abend. The dependent region
connection to the external subsystem is also terminated. Resolve indoubt
processing for the recovery token is performed in the control region.

v For the COMM (commit) option: The application is terminated with abend
U3046 (the input message is processed; DL/I resources are committed).
BMP jobs must be resubmitted; they resume processing after the commit
point.

v For the ABRT (abort) option: The application is terminated with abend
U3045 (the input message is deleted; DL/I resources are backed out). BMP
jobs must be resubmitted; they resume processing at the prior commit
point.

8
Terminate Thread unsuccessful. The Terminate Thread exit routine has either
detected an error with the request information or considers the request
invalid at this time. This return code should only be used when the commit
option character string is 'DE'.

Action: IMS continues normal processing.

20 Should not occur.

Related reference:
“Resolve Indoubt exit routine” on page 361

Chapter 4. IMS system exit routines 375

ESAF synchronous exit routines
The External Subsystem Attach Facility (ESAF) can activate IMS-supplied
synchronous exit routines to provide prescribed IMS services.

External subsystem exit routines can request IMS to:
v Write a log record on the IMS log (Log Service exit routine).
v Send a message to an IMS destination (Message Service exit routine).
v Initiate a connection (Subsystem Startup Service exit routine).
v Terminate a connection (Subsystem Termination Service exit routine).

External subsystem exit routines are organized alphabetically.

General system service exit routine interface

To activate an IMS system service exit routine, the ESAP loads the address of an
IMS service router module from EEVPESGL in the EEVTP control block and
branches to it. The ESAP passes required parameters using an exit routine
parameter list (EPL) in the same general format as the EPL passed to external
subsystem exit routines. Each exit routine has a unique function code. The address
of the function code defined for the exit routine being activated must be supplied
in the EPL. If a function code address is not passed, the invalid parameter list
return code, X'20', is returned to the caller.

On entry, the system service exit routine saves all registers using the provided save
area. The registers contain the following:

Register Contents

1 Address of exit parameter list (EPL)

13 Address of save area

14 Return address

15 Address obtained from EEVPSEGL in the EEVTP

Before returning to the ESAP, the system service exit routine restores all registers
except register 15, which contains a return code. The parameters and return codes
for each system service exit routine are described in the following topics.

The storage key of the save area should be that of the caller, for example, key 8 for
the Normal Call exit routine; key 7 for the Subsystem Termination exit routine.

The key of the storage passed to the system service exit routines (Log exit routine,
Message exit routine) must be the same as the caller's. For example, if the Identify
exit routine wants to place data on the IMS log, that data must exist in storage
obtained while the Identify exit routine was running in key 7 before calling the
Log exit routine.

IMS system service exit routines should not be activated from TCBs attached by
the ESAP. The system service modules expect to be activated under an IMS
internal structure that is only available under IMS TCBs.

376 Exit Routines

PDSE resource restrictions

The following restrictions, which are associated with extended partitioned data sets
(PDSE), apply to resources (tables and exit routines) that are associated with an
external subsystem:
v All executable code, such as exit routines, must have link attributes that are

reentrant. These subsystem exit routines must take appropriate actions to
prevent access errors.

v Non-executable tables are loaded in the TCB key, or key 0.

Before IMS loads a subsystem resource, IMS locates the resource and determines
the type of data set that holds the resource. If the data set type is a PDS, IMS
manages the key and subpool of the resource. If the data set is a PDSE, the linkage
attributes of the resource determine the key and subpool of that resource.

Non-reentrant code that resides on a PDSE is loaded into TCBKEY(8-15),
fetch-protected storage. When IMS gives control to these routines, it does so in
IMSKEY(7), which causes fetch-protection errors.

Reentrant code that resides on a PDSE is loaded into KEY0, non-fetch-protected
storage. This does not cause fetch-protection errors.

Non-executable tables that reside on a PDSE and are linked as non-reentrant must
be referenced in TCBKEY. Otherwise, fetch-protection errors also occur. By linking
these tables as reentrant, these errors are prevented.

Log Service exit routine
An external subsystem uses this exit routine when it wants IMS to write a log
record.

IMS reserves log record type X'55' for external subsystem usage. The exit routine
does not accept any other log record types.

Subsections:
v “Activating the routine”
v “Contents of register 15 on return” on page 378

Activating the routine

The EPL contains:

Offset
(hexadecimal) Decimal Content

0 0 Address of the parameter count field. The count field must
contain the value F'3'.

4 4 Address of the 1-character logging service function code,
X'16'. If an address is not present, return code X'20' is
returned to the caller.

8 8 Address of the EEVT prefix. The EEVT prefix must be fully
initialized.

Chapter 4. IMS system exit routines 377

Offset
(hexadecimal) Decimal Content

C 12 Address of the log record area. The exact contents are written
to the log. IMS does not alter this area. The log record must
be in the following format:

The log record prefix must contain the LL, ZZ, and C fields
as follows:

LL A 2-byte field that must contain the total length of
the record. The total length (prefix + data) cannot
exceed the logical record length (LRECL) for the
system log data set minus 4 bytes.

ZZ A 2-byte field that must contain binary zeroes.

C A 1-byte field that must contain the log record type,
X'55'.

Recommendation: The remaining prefix fields are suggested
to allow log records for a particular external subsystem to be
identified.

IMS does not check the contents of the fields.

T A 1-byte field that contains a system or function
type.

RC A 2-byte field that contains a reason code.

SSN An 8-byte field that contains the external subsystem
name.

Contents of register 15 on return

Register 15 contains one of the following return codes on return:

Return code Meaning

0 Log request successful. The log record passed by the caller was written to the
IMS log.

4 Log request unsuccessful. A failure (or error) was encountered in attempting
to process the log request. The record was not logged.

8 Log request unsuccessful. The caller attempted to log an invalid log record
type. Only type X'55' log records are accepted by the Log exit routine. The
record was not logged.

20 Log request unsuccessful. Invalid data was detected in the exit parameter
list. The record was not logged.

Possible errors:

v Invalid log record address—the EPL contains zeroes or a negative value.

v Invalid log record length—the length field contains zeroes or a negative
value.

378 Exit Routines

Message Service exit routine
An external subsystem uses this exit routine when it wants IMS to send a message
to an IMS destination (MTO or input terminal).

Two types of messages are accepted by the exit routine: preedit (prebuilt) and key
call (message number).

Preedit messages are assumed to be formatted by the caller. Single or multiple
segment preedit messages are accepted. The address of the message is passed to
the exit routine.

On a key call, the address of the message number is passed. The message itself is
supplied in the user message table.

Subsections:
v “Activating the routine”
v “Contents of register 15 on return” on page 381

Activating the routine

The EPL contains:

Offset Decimal Content

X'0' 0 Address of the parameter count field. The count field must
contain the value F'5'.

X'4' 4 Address of the 1-character message service function code,
X'15'. If an address is not present, return code X'20' is returned
to the caller.

X'8' 8 Address of the EEVT prefix. The EEVT prefix must be fully
initialized.

X'C' 12 Address of the message area for preedit messages; address of
the message number for key call (user) messages. IMS assumes
the message number to be a two-byte binary value. IMS does
not alter the message area.

X'10' 16 Address of the 8-byte alphanumeric destination name (that is,
the LTERM name). If this field contains binary zeroes, the
default message destination is the IMS master terminal. The
name is left justified and padded with blanks on the right.

Chapter 4. IMS system exit routines 379

Offset Decimal Content

X'14' 16 Address of the 2-character message type indicators. The first
character indicates the message type. The second character
indicates system versus pageable message.

The supported message types in character format are:

S Message is a single segment and can be pre-edited.

M Message might consist of a variable number of
segments, each segment is prefixed by its own length.
The entire message is prefixed by the entire message
length.

U Indicates a user message is sent. When specified, IMS
expects the address of a message number passed in
the input parameter list. The message is assumed to
be present in the IMS user message table.

The second character indicates to IMS where the message is to
be placed on the master terminal in the event the z/OS split
screen master terminal format is used. Traditionally, the top
part of the screen is reserved for unsolicited output such as
I/O error messages and immediate command response
message (that is, command complete, command in progress,
invalid keyword or parameter).

The lower portion of the screen is where display output
(/DISPLAY LTERM ALL) is directed. This allows the MTO to page
through the output message using the PA keys. If the split
screen master terminal format is not being used, output is
displayed, taking advantage of the entire screen.

The supported screen format indicators in character format are:

S Indicates the message being sent is to be placed on
the top portion of the screen (system area)

P Indicates the message being sent is to be placed on
the lower portion of the screen (pageable area,
typically used for /DISPLAY command output)

The format for single segment messages (message type S) is:

OFFSET LENGTH/
HEX DEC NAME ALIGNMENT DESCRIPTION

0 0 MSGLL 2 record length
2 2 MSGZZ 2 reserved bytes
4 4 MSGDATA nnn substance of message

The format for multiple segment messages (message type M)
is:

OFFSET LENGTH/
HEX DEC NAME ALIGNMENT DESCRIPTION

0 0 MSGLL 2 total record length
2 2 MSGZZ 2 reserved bytes
4 4 MSGLL 2 message segment length
6 6 MSGZZ 2 reserved bytes
8 8 MSGDATA 10 first segment of message
12 18 MSGLL 2 message segment length
14 20 MSGZZ 2 reserved bytes
16 22 MSGDATA 20 second segment of message

380 Exit Routines

Contents of register 15 on return

Return code Meaning

0 Message request successful. The message was enqueued to the master
terminal or the specified destination.

4 Message request unsuccessful. The message did not pass validity checking.
The message was not sent.

8 Message request unsuccessful. A failure occurred in processing the message
request. The message was not sent.

20 Message request unsuccessful. Invalid data was detected in the exit
parameter list (that is, invalid destination name specified). The message was
not sent.

Possible errors:

v Invalid EEVTP address—the EPL contains zeroes.

v Invalid destination name—the destination name area contains blanks.

v Invalid message type.

Related reference:
“User Message table (DFSCMTU0)” on page 478

Subsystem Startup Service exit routine
The IMS Subsystem Startup Service exit routine is activated by an external
subsystem exit routine to cause IMS to initiate a connection to the external
subsystem.

If the control region identify or an MPP or IFP dependent region identify was
deferred (for example, not done automatically during region initialization
processing), this service is to be used to establish the necessary connection. It can
also be used to establish the connection for a BMP dependent region. The external
subsystem activates the service from the Subsystem Not Operational exit routine in
the dependent region (key 8) when the first application call to the external
subsystem is processed in the dependent region.

Related Reading: See IMS Version 13 Messages and Codes, Volume 2: Non-DFS
Messages for more information about the external subsystem connection.

If the control region connection has not been established, the Startup Service exit
routine activates the control region identify process before activating the dependent
region identify process. The startup exit routine activation fails if the notify
message passed to the control region Identify exit routine (on a previous
activation) was accepted by the exit routine but the external subsystem has not
sent the message to IMS to indicate that it is ready to establish a connection.

Subsections:
v “Activating the routine” on page 382
v “Contents of register 15 on return” on page 382

Chapter 4. IMS system exit routines 381

Activating the routine

The EPL contains:

Offset
(hexadecimal) Decimal Content

0 0 Address of the parameter count field. The count field must
contain the value F'2'.

4 4 Address of the one-character startup service function code,
X'17'. If an address is not present, return code X'20' is
returned to the caller.

8 8 Address of the EEVT prefix. The EEVT prefix must be fully
initialized.

Contents of register 15 on return

Register 15 contains one of the following return codes on return:

Return code Meaning

0 Subsystem connection successful. The identify has been performed. IMS
continues normal processing.

4 Subsystem connection unsuccessful. The identify process initiated by IMS
resulted in the notify message being queued to the external subsystem.
However, the subsystem has not yet been started. IMS waits for the receipt of
the notify message before continuing the connection process.

8 Subsystem connection unsuccessful. The control region identify was
previously attempted, at which time the Identify exit routine accepted the
notify message. IMS continues to wait for the external subsystem to send the
notify message before reactivating the exit routine to establish the control
region connection.

C Subsystem connection unsuccessful. The connection attempt failed either in
the ESAP or in the external subsystem.

10 Subsystem identify unsuccessful. IMS is shutting down.

14 Subsystem connection unsuccessful. IMS is notified that the external
subsystem is terminating either in a quiesce or catastrophic fashion.

18 Subsystem connection unsuccessful. During the connection initialization
process, the external subsystem Initialization exit routine was activated. The
exit routine responded with the never connect return code (return code 8).

1C Subsystem connection unsuccessful. Resources required to process the
connection request were unavailable. When this condition exists, IMS sends
message DFS3620I to the MTO indicating the resource type. When a required
exit routine is missing, message DFS3608 is also sent to the MTO indicating
the exit routine name. Refer to IMS Version 13 Messages and Codes, Volume 2:
Non-DFS Messages for more information on these messages.

20 Subsystem connection unsuccessful. Invalid data was detected in the exit
parameter list. IMS did not initiate the startup (identify) process.

24 Subsystem connection unsuccessful. The startup request is rejected because
an external subsystem exit activated the IMS Terminate Service exit routine.
IMS is still in the process of terminating the connection between the two
subsystems. Additional dependent region connections are prohibited while in
this state.

382 Exit Routines

Return code Meaning

28 Subsystem connection unsuccessful. The startup request is rejected because
IMS is terminating the connection due to a /STOP SUBSYS command entered.
Additional dependent region connections are prohibited while in this state.

Subsystem Termination Service exit routine
This IMS-provided exit routine prohibits new connections to the external
subsystem but allows the existing connections to terminate normally (quiesce).
When all dependent region connections are terminated, the control region
connection is terminated.

The Subsystem Termination exit routine is activated by the ESAP, possibly when a
subsystem termination command is intercepted by the ESAP exit routine. The
intercepting routine is available whether or not the subsystem is attached and
running in user key.

To perform the necessary processing, the Subsystem Termination exit routine
switches to key 7 supervisor state.

Subsections:
v “Activating the routine”
v “Contents of register 15 on return”

Activating the routine

The EPL contains:

Hexadecimal Decimal Content

0 0 Address of the parameter count field. The count field must contain
the value F'2'.

4 4 Address of the one-character termination service function code,
X'18'. If an address is not present, return code X'20' is returned to
the caller.

8 8 Address of the EEVT prefix. The EEVT prefix must be fully
initialized.

Contents of register 15 on return

Register 15 contains one of the following return codes on return:

Return code Meaning

0 Subsystem termination successful. IMS terminates subsystem connections in
all dependent regions. When the dependent region connections are all
terminated, the control region connection is terminated.

4 Subsystem termination unsuccessful. A failure (or error) was encountered in
attempting to process the termination request. IMS terminates the connection
to the subsystem as stated under return code 0.

20 Subsystem termination unsuccessful. Invalid data was detected in the exit
parameter list. IMS did not initiate termination processing.

Chapter 4. IMS system exit routines 383

IMS Command Language Modification facility (DFSCKWD0)
Use the IMS Command Language Modification facility (DFSCKWD0) to modify the
command keyword table.
v “About this facility”
v “Changing the table” on page 385
v “Error messages” on page 386

About this facility

Several reasons exist for altering the keyword table. For example, you might want
to tailor the keywords and synonyms to satisfy unique requirements. A new
keyword or keyword synonym in a new IMS release can conflict with a name
already assigned by your installation to a resource such as an LTERM or a
transaction. If a new keyword “ABC” is introduced and you already have an
LTERM with the name “ABC”, you can change the keyword name to “ABCDEFG”
and remove the source of the conflict. If the source of the conflict is the new
keyword synonym, you can change or delete the synonym.

Another reason you might want to modify the table is to limit the use of the ALL
parameter for certain keywords by changing the parameter's default value from
ALL=YES to ALL=NO or ALL=DIS. Using ALL=YES allows the operator to enter IMS
commands with the ALL option; this requires a significant increase in storage in the
IMS general pool and adversely affects IMS performance. To avoid these negative
consequences, you can specify ALL=NO or ALL=DIS to be used with IMS commands
except those associated with AOI transactions.

To obtain a listing of the command keyword table, print DFSCKWD0, a member of
IMS.SDFSSMPL. It contains the IMS keywords and synonyms described in IMS
Version 13 Commands, Volume 1: IMS Commands A-M.

Restriction: DFSCKWD0 can only modify type-1 command keywords.

Details about ALL=NO and ALL=DIS options and instructions for modifying them are
discussed in the following topics.

The following table shows the attributes of the IMS Command Language
Modification facility.

Table 130. IMS command language modification facility attributes

Attribute Description

IMS environments DB/DC, DCCTL, DBCTL.

Naming convention You must name this routine DFSCKWD0 with ALIAS CKWDTABL.

384 Exit Routines

Table 130. IMS command language modification facility attributes (continued)

Attribute Description

Binding
Example: This shows you how to bind the exit routine into
IMS.SDFSRESL.

//LINKIT JOB 1,MSGLEVEL=1
//LINK EXEC PGM=IEWL,PARM=(RENT,REFR,NCAL,XREF,LIST)
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(20,20),RLSE)
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSN=IMS.SDFSRESL,DISP=SHR
//OBJIN DD DSN=IMS.USERLIB,DISP=SHR
//SYSLIN DD *
INCLUDE OBJIN(DFSCKWD0)
MODE AMODE(31),RMODE(ANY)
ALIAS CKWDTABL
ENTRY DFSCKWD0
NAME DFSCKWD0(R)
/*

Including the routine No special steps are needed to include this routine.

IMS callable services IMS callable services are not applicable for use with this module.

Routine location For the latest version of DFSCKWD0, see the IMS.SDFSSMPL
library; member name is DFSCKWD0.

Changing the table

Two of the macro statements that appear in the table, KEYWD and SYN, can be
replaced to modify the keywords and synonyms. One way of modifying the table
is:
1. Edit module DFSCKWD0.
2. Change the KEYWD and SYN macro statements.
3. Reassemble DFSCKWD0.
4. Relink the reassembled DFSCKWD0 in IMS.SDFSRESL.

Related Reading: IMS Version 13 Commands, Volume 1: IMS Commands A-M
contains the list of reserved words, including command keywords, keyword
synonyms, and reserved parameters.

Changes to DFSCKWD0 cannot conflict with the names in this list. Keywords can
be changed and keyword synonyms can be added, changed, or deleted, as long as
the new keyword or synonym is not a reserved word. For example, a new
synonym of “MSDB” for MSDBLOAD cannot be added, because “MSDB” is a
reserved parameter. If “MSDB” is made a keyword synonym, the /DBDUMP
DATABASE MSDB command fails with a syntax error.

KEYWD macro statements must be substituted one-for-one in the table. No new
KEYWD macro statements can be added.

KEYWD macro

KEYWD
keyword,LAST=NO|YES,ALL=YES|NO|DIS

Where keyword is the new or changed keyword. LAST=NO and ALL=YES are the
defaults and need not be supplied. LAST=YES must be specified if it is the last
macro call in the module. A keyword cannot exceed 12 characters in length.

Chapter 4. IMS system exit routines 385

Specifying ALL=NO prevents the use of the ALL parameter with all IMS commands
that apply to the keyword being changed (except for commands issued from AOI
programs).

For example, specifying ALL=NO for the keyword LTERM prevents the use of the ALL
parameter for the following commands:

/BROADCAST LTERM ALL

/DISPLAY ASSIGNMENT LTERM ALL

/DISPLAY LTERM ALL

/LOCK LTERM ALL

/PSTOP LTERM ALL

/PURGE LTERM ALL

/START LTERM ALL

/STOP LTERM ALL

/UNLOCK LTERM ALL

Specifying ALL=DIS prevents the use of the ALL parameter with all /DISPLAY
commands that apply to the keyword being changed (except for commands issued
from AOI programs).

For example, specifying ALL=DIS for the keyword LTERM prevents the use of the ALL
parameter for the following commands:
v /DISPLAY ASSIGNMENT LTERM ALL

v /DISPLAY LTERM ALL

SYN macro

SYN synonym,LAST=YES|NO

Where synonym is the desired synonym. LAST=NO is the default and need not be
specified. LAST=YES must be coded if this is the last macro call in the assembly.
Synonyms cannot exceed 12 characters in length; they must be defined under the
keyword to which they apply.

Error messages

Any error in a macro statement terminates assembly of the keyword table and
results in generation of an error message. The remaining macro statements are
error checked, but nothing is generated. All macro assembly errors are severity
code 16 errors.

KYTBL001 - SEQUENCE ERROR. XXX CANNOT FOLLOW IKEY
A macro was called which cannot immediately follow an IKEY macro call. XXX
is either IKEY or SYN. IKEY calls cannot be modified.

KYTBL002 - XXX CALLED WITHOUT ANY PARAMETER
A macro was called without any parameter. XXX is either IKEY, KEYWD, or
SYN.

KYTBL003 - XXX IS NOT A VALID INTERNAL KEYWORD
The parameter specified on an IKEY call (XXX) is not known to the system.
IKEY calls cannot be modified.

386 Exit Routines

KYTBL004 - KEYWORD TABLE ASSEMBLY TERMINATED
This message appears as a comment after the first error message in a keyword
table assembly. All subsequent macro calls will only perform error checking.
No code will be generated.

KYTBL005 - SEQUENCE ERROR. KEYWD MUST FOLLOW AN IKEY CALL
A KEYWD macro was called that does not immediately follow an IKEY call.

KYTBL006 - LENGTH ERROR. XXX TOO LONG
The parameter specified on a KEYWD or SYN macro is more than 12
characters in length.

KYTBL007 - INTERNAL KEYWORD 'XXX' HAS NOT BEEN USED
LAST=YES was specified on either a KEYWD or SYN macro call, but not all
internal keywords known to the system have been generated. IKEY calls
cannot be modified. LAST=YES must appear only on the last macro call in the
assembly.

KYTBL008 - XXX CANNOT BE SPECIFIED AGAIN
Internal keyword 'XXX' has already been used. IKEY macro calls cannot be
modified.

KYTBL009 - KEYWD MACRO PARAMETER ALL IS INVALID
ALL=NO was erroneously specified on the KEYWD macro at the time the IMS
Command Keyword Table (DFSCKWD0) was modified.

Message DFS058 COMMAND COMPLETED EXCEPT xxx y z... uses the keyword
table to replace 'xxx' with the keyword associated with the command that caused
the message. Therefore, keywords defined by KEYWD macro calls appear in this
message. Other messages, however, are prebuilt, and keywords that might have
changed will still appear in these.
Related reference:
“Routine binding restrictions” on page 9

Sample IMS Command Language Modification facility
The sample IMS Command Language Modification facility, located in the
IMS.SDFSSMPL library, demonstrates how to change the command keyword table.

For the latest version of DFSCKWD0, see the IMS.SDFSSMPL library. The member
name is DFSCKWD0.

IMS Initialization and Termination user exit
The IMS initialization and termination user exit is called early in the IMS
initialization process and during normal and abnormal IMS termination. Use the
IMS Initialization and Termination user exit to perform any setup that your user
exits require. For example, use INITTERM during IMS initialization to allocate
storage that is used to share information between user exits.

This topic contains Product-sensitive Programming Interface information.

About this routine

This exit is called only if it is defined in the DFSDFxxx member of the
IMS.PROCLIB data set. There is no default exit routine for this exit. Multiple exit
routines can be defined so that they are called sequentially.

Chapter 4. IMS system exit routines 387

|
|

Table 131. Initialization and termination exit routine attributes

Attribute Description

IMS environments All IMS regions

Naming convention Any name can be used.

Including the routine Specify EXITDEF=(TYPE=INITTERM,EXITS(exit_names)) in the
USER_EXITS section of the DFSDFxxx member of the IMS.PROCLIB
data set. The exit routine module or modules must be included in
an authorized library that is included in the JOBLIB, STEPLIB, or
LINKLIST concatenation for the system.

IMS callable services To use callable services with this exit routine, it must be given a
callable services token by IMS at the time it is given control. Check
the value of the SXPLATOK field in the “IMS standard user exit
parameter list” on page 5:

v If SXPLATOK is zero, you cannot use callable services with this
routine.

v If SXPLATOK is non-zero, the callable services token is included,
and you can use callable services. You can use the 256-byte work
area addressed by the SXPLAWRK field to call DFSCSIF0.

Sample routine
location

IMS.SDFSSMPL (member name DFSITRX0)

Contents of the registers when the exit is called

Register
Contents

1 Address of the “IMS standard user exit parameter list” on page 5. This exit
routine uses the Version 6 standard exit parameter list.

13 Save area address. The exit routine must not change the first three full
words of this save area. This save area is not chained to any other save
areas.

14 Return address.

15 Entry point of the exit routine.

Exit routine parameter list

The address for this parameter list is passed to the exit routine in the SXPLFSPL
field of the “IMS standard user exit parameter list” on page 5. This parameter list
is mapped by the DFSITXP macro.

Table 132. Parameter list for the Initialization and termination user exit type

Field name Offset Length Usage Description

ITXP_PVER X’00’ X’04’ Input Parameter list version number (X’00000001’)

ITXP_FUNC X’04’ X’04’ Input Function code:
1 IMS initialization

2 IMS normal termination

3 IMS abnormal termination

ITXP_LEN X’08’ X’04’ Input Parameter list length

388 Exit Routines

|

Table 132. Parameter list for the Initialization and termination user exit type (continued)

Field name Offset Length Usage Description

ITXP_RGNTYPE X’0C’ X’04’ Input Region type:
1 DB/DC
2 DBCTL
3 DCCTL
4 FDBR

Contents of the registers when the routine returns control to IMS

There is no requirement for exit registers and there are no defined return and
reason codes.

Language Environment User exit routine (DFSBXITA)
Use the Language Environment User exit routine to dynamically update IBM
Language Environment for z/OS runtime parameters for an IMS application.

This topic contains Product-sensitive Programming Interface information.

This topic describes the CEEBXITA Assembler User exit routine, DFSBXITA, and
provides information about the attributes of the routine, how the routine is called
and how the routine communicates with IMS.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 390

About this routine

DFSBXITA is the IMS-specific version of the LE-defined user exit CEEBXITA. To
use dynamic runtime parameters with an IMS application, DFSBXITA must be
linked as CEEBXITA in one of two ways:
v Linked with the application, in which case DFSBXITA functions as an

application-specific user exit
v Linked with the LE initialization/termination library routines, in which case

DFSBXITA functions as an installation-wide user exit

Note: If your z/OS environment includes software other than IMS that uses
CEEBXITA, be aware that if DFSBXITA is linked with the LE initialization/
termination library routines, it will be called by the non-IMS software that
previously called CEEBXITA. You must provide logic to ensure that programs that
need to use CEEBXITA can access it.

DFSBXITA executes only when the first routine in an LE enclave is initialized. It
ignores all other calls. DFSBXITA issues a DL/I INQY LERUNOPT call to
determine if applicable runtime override parameters exist. If so, the INQY call
returns the address of the parameter string. DFSBXITA returns that address to LE
in the field CEEAUE_OPTION. The string includes a halfword length field
followed by the dynamic runtime parameters as they are specified to IMS. The
length of the string does not include the length field. A zero is returned in
CEEAUE_OPTION if:
v No dynamic runtime override parameters exist.

Chapter 4. IMS system exit routines 389

v An error occurs during exit processing.
v An error occurs during INQY call processing.

Table 133. Language Environment user exit routine attributes

Attribute Description

IMS environments DB/DC, DBCTL and DCCTL.

Naming convention Must be named CEEBXITA.

Binding After you compile your routine, include it into IMS.SDFSRESL or
into any operating system-partitioned data set to which access is
provided by using a JOBLIB or STEPLIB JCL statement.

Including the routine No special steps required.

IMS callable services This exit routine is not eligible to use IMS callable services.

Sample routine
location

IMS.ADFSSMPS

Calling this routine

LE calls this exit routine using standard linkage conventions.

Communicating with IMS

IMS communicates with this routine through the entry registers, a parameter list,
and the exit registers.

Content of Registers on Entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Content

1 Input parameter list address (CEEAUE)

12 Pointer to the common anchor area (CAA), which is mapped by CEECAA

13 Caller's save area address

14 Return address

15 Entry point address

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers.
Related reference:
“Routine binding restrictions” on page 9

Log Archive exit routine
The Log Archive exit routine produces an edited subset of the complete IMS log.

Subsections:
v “About this routine” on page 391
v “Restrictions” on page 391
v “Communicating with IMS” on page 392

390 Exit Routines

About this routine

You can use the sample Log Archive exit routine to produce an edited subset of
the complete IMS log. The subset log contains the records needed by the Tivoli®

Performance Reporter z/OS, (Program Number 5695-101). The Tivoli Performance
Reporter z/OS (PR) collects statistics about IMS transactions and schedules.

Restriction: The IBM-supplied sample exit routine is applicable only to an IMS
DB/TM system and should not be used in a DBCTL environment.

However, a user-written exit routine can run in a DBCTL environment.

The following table shows the attributes of the Log Archive exit routine.

Table 134. Log archive exit routine attributes

Attribute Description

IMS environments Only used by the Log Archive utility.

Naming convention Must match name specified on Log Archive EXIT statement.

Binding You must bind the exit routine into RESLIB (or a library
concatenated with it) as a separate reentrant or reusable load
module. If the module is not present in the load library, the IMS
Log Archive utility does not load or call it.

Example: This shows you how to bind the exit routine into
IMS.SDFSRESL.

//LINKIT JOB 1,MSGLEVEL=1
//LINK EXEC PGM=IEWL,PARM=RENT
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(20,20))
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSN=IMS.SDFSRESL.,DISP=SHR
//OBJIN DD DSN=IMS.USERLIB.,DISP=SHR
//SYSLIN DD *

INCLUDE OBJIN(IMSEXIT)
MODE AMODE(24),RMODE(24)
NAME IMSEXIT(R)

/*

Including the routine Use the Utility Control EXIT statement.

IMS callable services This exit routine is not eligible to use IMS callable services.

Sample routine
location

No sample exit routine is provided.

Attributes of the routine

You must write this exit routine in assembler language. This exit routine receives
control running in 24-bit addressing mode and must return control in that mode.

Using IMS callable services with this routine

This exit routine is not eligible to use IMS callable services.

Restrictions

An abend in the exit routine causes the utility to abend. IMS macros cannot be
used in the exit routine. Because the performance of the exit routine affects the
total performance of the utility, the logic of the exit routine should not be so

Chapter 4. IMS system exit routines 391

|
|
|
|

complicated as to delay the OLDS from being used by the online region.

Communicating with IMS

IMS communicates with the Log Archive exit routine through the entry registers,
parameter list, and exit registers.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of parameter list.

13 Address of save area. The exit routine must not change the first three words.

14 Return address to the calling RECON access routine.

15 Entry point of exit routine.

Parameter list

The parameter list contains the following:

Exit Routine Word (Word 1)
This word belongs to the exit routine. On the initialization call entry to the exit
routine, this word contains binary 0. The routine can store any value in this
word. For example, the word can point to an area allocated for use by the exit
routine through the GETMAIN macro. On subsequent calls to the exit routine,
this field contains the value left by the routine on its previous invocation.

Call Type Indicator Field Address (Word 2)
Address of a one-byte area containing the call type indicator.

X'01' Initialization call

X'02' Log record processing call

X'03' Termination call

The call type indicator identifies the reason for calling the exit routine, and the
exit routine can have a separate routine for each call type. The user exit should
not change this field.

Address of Area Containing the Current Input Log Record or Utility Return
code (Word 3)

The high-order bit of this word is ON to indicate the end of the list. The
contents of the remainder of the word depends on the type of call:
v On an initialization call, this word is zero.
v On a log record processing call, this word will have the address of an area

containing the current input log record. The first four bytes of the log record
are a BSAM RDW (Record Descriptor Word).

v On a termination call, this word will contain the return code for the current
utility.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except register
15, which must contain one of the following return codes:

392 Exit Routines

X'00' Active utility continues processing

non-0 Active utility terminates and IMS issues an error message

Termination due to the exit routine on an initialization call or a log record
processing call prevents successful execution of the utility. Termination due to the
routine on a termination call results in an error message and a nonzero return
code, but successful execution is not prevented, because DBRC has already been
notified of archive completion.
Related reference:
“Routine binding restrictions” on page 9

Sample Log Archive exit routine
Use the Sample Log Archive exit routine to review the record types, DCB
information, and truncation instances in an edited subset of the complete IMS log.

The following sample shows the Sample Log Archive exit routine.
IMSEXIT CSECT ,
START OF MODULE SPECIFICATION
* *
* MODULE-NAME = IMSEXIT *
* *
* DESCRIPTIVE-NAME = SAMPLE IMS ARCHIVE FUNCTION EXIT *
* *
* COPYRIGHT = NONE *
* *
* *
* FUNCTION: *
* WRITES THE RECORDS USED BY SLR V3 (IBM PP, PROG NO 5665-397) *
* INTO THE FILE WITH DDNAME IMSLOG. THE FOLLOWING RECORD TYPES *
* ARE WRITTEN (ALL IN HEX): 01, 03, 06, 07, 31, 34, 35, 36, 38, *
* 4001, 4003, 4004, 4098, 42. MESSAGE TEXTS OF 01 AND 03 *
* RECORDS ARE TRUNCATED TO 24 BYTES. *
* *
* LOGIC: *
* CASE INIT. *
* GETMAIN STORAGE FOR WORK AREAS AND ANCHOR IT IN THE USER *
* WORD. *
* OPEN OUTPUT FILE. *
* END CASE INIT. *
* *
* CASE NORMAL. *
* SUBCASE RECORD TYPES 01, 03. *
* CALCULATE TOTAL LENGTH OF ALL TEXT SEGMENTS. *
* IF (LENGTH OF ALL TEXT SEGMENTS > 24 BYTES) THEN *
* TRUNCATE ANY MESSAGE PART TO 24 BYTES. *
* CHANGE SIGN OF TOTAL TEXT LENGTH AND STORE IT BACK AS AN *
* INDICATOR. *
* ELSE. *
* *
* COPY RECORD. *
* END SUBCASE RECORD TYPES 01, 03. *
* *
* SUBCASE RECORD TYPES 06, 07, 31, 34, 36, 38, 42. *
* COPY RECORD. *
* END SUBCASE RECORD TYPES 06, 07, 31, 34, 36, 38, 42. *
* *
* SUBCASE RECORD TYPES 4001, 4003, 4004, 4098. *
* COPY RECORD. *
* END SUBCASE RECORD TYPES 4001, 4003, 4004, 4098. *
* END CASE NORMAL. *
* *
* CASE TERMINATE. *
* CLOSE OUTPUT FILE. *
* FREEMAIN STORAGE FOR WORK AREAS AND RESET ANCHOR POINTER. *
* END CASE TERMINATE. *
* *
* NOTES = SEE BELOW *
* *
* DEPENDENCIES = NONE *
* *
* RESTRICTIONS = NONE *

Chapter 4. IMS system exit routines 393

* *
* REGISTER CONVENTIONS = SEE LINKAGE *
* *
* PATCH LABEL = NONE *
* *
* MODULE-TYPE = PROCEDURE *
* *
* PROCESSOR = ASSEMBLER *
* *
* MODULE-SIZE = SEE ASSEMBLER LISTING *
* *
* ATTRIBUTES = REENTRANT *
* *
* ENTRY-POINT = IMSEXIT *
* *
* PURPOSE = SEE FUNCTION *
* *
* LINKAGE = STANDARD OS LINKAGE *
* *
* INPUT: *
* REGISTER 1 POINTS TO A 3-WORD PARAMETER LIST: *
* *
* USERWORD - PTR(31). CONTAINS ZERO AT INIT CALL, AND A POINTER *
* TO A WORKAREA AT NORMAL AND TERM CALLS. *
* TYPEPTR - PTR(31). POINTS TO A 1-BYTE AREA, THAT CONTAINS: *
* X’01’ - INIT CALL *
* X’02’ - NORMAL CALL *
* X’03’ - TERM CALL *
* RECPTR - PTR(31). FOR NORMAL CALL, POINTER TO A LOG RECORD. *
* *
* FEEDBACK: *
* USERWORD - PTR(31). FILLED IN WITH A POINTER TO A GETMAINED *
* WORK AREA AT INIT CALL. *
* *
* OUTPUT: *
* SELECTED LOG RECORDS WRITTEN TO DDNAME IMSLOG *
* *
* MESSAGES: *
* 001 - UNABLE TO GET STORAGE *
* 002 - UNABLE TO OPEN FILE IMSLOG *
* 003 - ERROR DURING PUT TO IMSLOG *
* 004 - INVALID CALL TYPE *
* *
* ABEND CODES: *
* NONE. *
* *
* EXTERNAL-REFERENCES = NONE *
* *
* ASSEMBLER MACROS: *
* DCB *
* DCBD *
* FREEMAIN *
* CLOSE *
* GETMAIN *
* OPEN *
* PUT *
* *
* *
* NOTES: *
* THE FOLLOWING REGISTERS ARE IN THE CODE: *
* *
* R6 = RECPTR: POINTER TO THE INPUT RECORD *
* R9 = PBLDREC: POINTER TO THE RECORD TO WRITE *
* R10 = ENTIND: ENTRY TYPE *
* *
END OF MODULE SPECIFICATION

* *
* PROLOG CODE *
* - SET UP ADDRESSABILITY *
* - GETMAIN STORAGE IF INIT CALL *
* *

USING *,R15
B PROLOG * BRANCH PAST MODULE ID
DC AL1(16) * MODULE ID LENGTH
DC C’IMSEXIT 82.103’ * MODULE ID
DROP R15

PROLOG STM R14,R12,12(R13) * SAVE REGS
LR R12,R15 * SET NEW BASE REG

394 Exit Routines

USING IMSEXIT,R12 * SET ADDRESSABILITY
LR R11,R1 * SAVE PARM LIST ADDRESS
L R1,0(,R1) * GET WORK AREA POINTER (OR 0)
L R7,4(,R11) * COPY
SLR ENTIND,ENTIND * ENTRY
IC ENTIND,0(,R7) * INDICATOR
LTR ENTIND,ENTIND * IS ENTRY TYPE ZERO ?
BZ OTHCASE * YES, SKIP TO ISSUE MSG
CL ENTIND,TERMCALL * IS ENTRY TYPE TOO GREAT ?
BH OTHCASE * YES, SKIP TO ISSUE MSG
C ENTIND,INITCALL * NO, IS THIS INIT ENTRY ?
BNE NOGETMAN * NO, DON’T ISSUE GETMAIN
L R0,SIZEWORK * GET SIZE OF DYNAMIC AREA
GETMAIN R,LV=(0) * GET STORAGE FOR DYNAMIC AREA
LTR R15,R15 * REQUEST OK ?
BZ GETMOK * YES, SKIP ON

* * NO, SEND A MESSAGE
WTO ’IMSE001 - UNABLE TO GET STORAGE’,ROUTCDE=11,DESC=7
B NOFREEMN * SKIP TO EPILOG & RETURN

GETMOK ST R1,0(,R11) * SAVE ADDR IN USER WORD
NOGETMAN LTR R1,R1 * ANY STORAGE GOTTEN ?

BZ NOFREEMN * NO, SKIP TO EPILOG & RETURN
USING WORKAREA,R1 * SET TEMP LOCATE OF NEW SAVEAREA
ST R13,SAVEAREA+4 * SET CHAIN BACK PTR IN NEW SAVEAR
DROP R1 * DROP TEMP LOCATE
ST R1,8(,R13) * SET CHAIN FORWARD PTR IN OLD SAV
LR R13,R1 * POINT TO NEW SAVE AREA
USING WORKAREA,R13 * LOCATE NEW SAVEAREA
L RECPTR,8(,R11) * COPY RECORD POINTER
SLR PBLDREC,PBLDREC * ZERO OUTPUT RECORD POINTER
C ENTIND,INITCALL * IS THIS INITIAL CALL ?
BNE NOTINIT * IF NOT, SKIP ON

* *
* INIT CALL *
* *

MVC DYNDCB(LENDCB),LISTDCB * COPY STATIC TO DYNAMIC DCB
OI DYNOPEN,X’80’ * SET HIGH ORDER BIT IN OPEN LIST
LA R5,DYNDCB * POINT TO DYNAMIC DCB
OPEN ((R5),OUTPUT),MF=(E,DYNOPEN) * OPEN DYNAMIC DCB
USING IHADCB,R5 * LOCATE DCB
TM DCBOFLGS,DCBOFOPN * OPEN OK ?
BO EPILOG * YES, SKIP TO EPILOG

* * NO, SEND A MESSAGE
WTO ’IMSE002 - UNABLE TO OPEN FILE IMSLOG’,ROUTCDE=11,DESC=7
L ENTIND,TERMCALL * INDICATE TO TERMINATE
B EPILOG * SKIP TO EPILOG AND RETURN
DROP R5 * DROP DCB ADDRESS

* *
* NORMAL CALL *
* *

NOTINIT C ENTIND,NORMCALL * IS THIS NORMAL CALL ?

BNE TERMCASE * IF NOT, SKIP TO TERMINATE CASE
SLR R7,R7 * INSERT RECORD TYPE
IC R7,RECTYPE(,RECPTR) * INTO WORK REGISTER

* BRANCH TO APPROPRIATE RECORD PROCESSING ROUTINE *
* VIA BRANCH TABLE *

C R7,TYPE01 * RECORD TYPE 01 ?
BL RECEND * NO, SOMETHING LESS, IGNORE IT
BE REC0103 * YES, GO PROCESS IT
C R7,TYPE42 * NO, RECORD TYPE 42 ?
BH RECEND * NO, SOMETHING LARGER, IGNORE
BE RECCOPY * YES, GO PROCESS IT
BCTR R7,0 * CONVERT RECORD TYPE 02 - 41
SLL R7,2 * TO A 4-BYTE INDEX

BRANCHTB B BRANCHTB(R7) * USED TO BRANCH IN TABLE
B RECEND * RECORD TYPE 02, NOT USED HERE
B REC0103 * RECORD TYPE 03
DC 2S(X’7F0’(4),RECEND) * RECORD TYPES 04 AND 05, NOT USED

* ABOVE INSTRUCTION IS EQUIVALENT TO 2 BRANCHES TO RECEND
B RECCOPY * RECORD TYPE 06
B RECCOPY * RECORD TYPE 07
DC 41S(X’7F0’(4),RECEND) * RECORD TYPES 08 - 30, NOT USED

* ABOVE INSTRUCTION IS EQUIVALENT TO 41 BRANCHES TO RECEND
B RECCOPY * RECORD TYPE 31

Chapter 4. IMS system exit routines 395

DC 2S(X’7F0’(4),RECEND) * RECORD TYPES 32 AND 33, NOT USED
* ABOVE INSTRUCTION IS EQUIVALENT TO 2 BRANCHES TO RECEND

B RECCOPY * RECORD TYPE 34
B RECCOPY * RECORD TYPE 35
B RECCOPY * RECORD TYPE 36
B RECEND * RECORD TYPE 37, NOT USED HERE
B RECCOPY * RECORD TYPE 38
DC 7S(X’7F0’(4),RECEND) * RECORD TYPES 39 - 3F, NOT USED

* ABOVE INSTRUCTION IS EQUIVALENT TO 7 BRANCHES TO RECEND
B REC40 * RECORD TYPE 40
B RECEND * RECORD TYPE 41, NOT USED HERE

* RECORD PROCESSOR FOR 01, 03 RECORDS *
* - COPY AT MOST 24 BYTES OF MESSAGE TEXT *

REC0103 DS 0H * PROCESS RECORDS 01, 03

LA PBLDREC,RECAREA * POINT TO OUTPUT BUFFER
LH R2,RECPRELL(,RECPTR) * LOAD RECORD PREFIX LENGTH
LH R7,RECLL(R2,RECPTR) * SAVE LENGTH OF 1ST SEGMENT
LH R5,RECLL(,RECPTR) * CALCULATE TEXT (REMAINING)
SLR R5,R2 * LENGTH
LA R8,24
CR R5,R8 * MORE THAN 24 BYTES ?
BNH LESS24 * NO, USE THIS LENGTH

* - RECORD MUST BE TRUNCATED. *
* CALCULATE TEXT LENGTH OF ALL SEGMENTS *
* TO INDICATE THAT RECORD WAS TRUNCATED, CHANGE SIGN OF LENGTH *

LA R7,0(R2,RECPTR) * POINT TO 1ST TEXT SEGMENT
S R5,SUFFLEN * SUBTRACT SEQUENCE NUMBER FROM LEN
SLR R3,R3 * ZERO TEXT LENGTH COUNTER

NEXTSEG LH R4,0(R3,R7) * LOAD TEXT SEGMENT LENGTH
LTR R4,R4 * TEST FOR ZERO
BZ ALLSEGS * SKIP IF ZERO
AR R3,R4 * ACCUMULATE LENGTH

CR R3,R5 * COMPARE TO TOTAL LENGTH
BL NEXTSEG * BRANCH IF LESS THAN TOTAL

ALLSEGS LNR R7,R3 * INDICATE RECORD WAS TRUNCATED
LR R5,R8 * ONLY USE 1ST 24 BYTES OF TEXT

LESS24 ALR R5,R2 * GET WHOLE LENGTH TO MOVE
LR R0,R5 * SAVE LENGTH
LR R2,PBLDREC * POINT TO TARGET AREA
LR R4,RECPTR * POINT TO SOURCE AREA
LR R3,R5 * SET LENGTH OF SOURCE
MVCL R2,R4 * MOVE RECORD
STH R0,RECLL(,PBLDREC) * ADJUST TARGET LENGTH
LH R2,RECPRELL(,RECPTR) * LOAD RECORD PREFIX LENGTH
STH R7,RECLL(R2,PBLDREC) * ADJUST TARGET TEXT LENGTH
B RECEND * END PROCESS RECORDS 01, 03

* RECORD PROCESSOR FOR 06, 07, 31, 34, 36, 38, AND 42 RECORDS *
* - COPY RECORD AS IT IS *

RECCOPY DS 0H * RECORDS TO COPY

LR PBLDREC,RECPTR * POINT TO INPUT RECORD
B RECEND * END PROCESS COPY-ONLY RECORDS

* RECORD PROCESSOR FOR TYPE 40 (CHECKPOINT) RECORDS *
* - COPY SUBTYPES 01, 03, 04, 98 *
* - IGNORE THE REST *

REC40 DS 0H * RECORD 40 - CHECKPOINT

SR R7,R7 * CLEAR WORK REGISTER
IC R7,RECSUBT(,RECPTR) * GET RECORD SUBTYPE
C R7,TYPE03 * CNT TYPE RECORD ?
BE REC40USE * YES, GO COPY IT
C R7,TYPE04 * SMB TYPE RECORD ?
BE REC40USE * YES, GO COPY IT
C R7,TYPE01 * START CHECKPOINT RECORD ?
BE REC40USE * YES, GO COPY IT
C R7,TYPE98 * END CHECKPOINT RECORD ?
BNE RECEND * NO, IGNORE IT

REC40USE DS 0H * YES,
LR PBLDREC,RECPTR * INDICATE TO COPY RECORD

* CHECK IF ANYTHING INTERESTING FOUND *
* IF SO, PUT THE RECORD *

396 Exit Routines

RECEND DS 0H * END PROCESS RECORDS
LTR PBLDREC,PBLDREC * ANYTHING INTERESTING FOUND ?
BZ EPILOG * NO, SKIP TO EPILOG
LA R1,DYNDCB * YES, LOAD DCB ADDRESS
USING IHADCB,R1 * LOCATE DCB
CLC RECLL(2,PBLDREC),DCBLRECL * IS DEFINED LRECL BIG ENOUGH?
BH SYNAD * NO, TREAT AS I/O ERROR
PUT (1),(PBLDREC) * YES, PUT RECORD
DROP R1 * DROP BASE REG FOR DCB
B EPILOG * SKIP TO EPILOG

* SYNAD EXIT - SEND A MSG, CLOSE, AND DEACTIVATE *

SYNAD WTO ’IMSE003 - ERROR DURING PUT TO IMSLOG’,ROUTCDE=11,DESC=7

L ENTIND,TERMCALL * INDICATE TO TERMINATE
B TERMCASE * SKIP TO CLOSE AND TERMINATE

* END SYNAD EXIT *

* *
* TERMINATE CALL *
* *

TERMCASE C ENTIND,TERMCALL * IS THIS THE TERMINATE CASE ?

BNE OTHCASE * IF NOT SKIP ON
OI DYNCLOSE,X’80’ * SET HIGH ORDER BIT IN CLOS LIST
LA R5,DYNDCB * LOCATE DCB
CLOSE ((R5)),MF=(E,DYNCLOSE) * CLOSE IT
B EPILOG * END OF TERMINATE CASE

* *
* OTHER CALL, ISSUE MESSAGE AND RETURN *
* *

OTHCASE DS 0H * START OF OTHER CASE
* * ERROR, SEND A MESSAGE

WTO ’IMSE004 - INVALID CALL TYPE’,ROUTCDE=11,DESC=7
B NOFREEMN * SKIP TO TERMINATE

* *
* EPILOG *
* - FREEMAIN STORAGE FOR TERMINATE CALL *
* *

EPILOG DS 0H

LR R1,R13 * POINT TO DYNAMIC AREA
L R13,SAVEAREA+4 * POINT TO OLD SAVE AREA
C ENTIND,TERMCALL * IS THIS TERMINATION CALL ?
BNE NOFREEMN * NO, DON’T FREE STORAGE
L R0,SIZEWORK * PICK UP LENGTH OF DYNAMIC AREA
FREEMAIN R,LV=(0),A=(1) * FREE IT
SLR R15,R15 * GET A ZERO
ST R15,0(,R11) * STORE IT INTO THE USER WORD

NOFREEMN SLR R15,R15 * CLEAR RETURN CODE
L R14,12(,R13) * RESTORE RETURN REGISTER
LM R0,R12,20(R13) * RESTORE OTHER REGS
BR R14 * RETURN TO CALLER

* *
* STATIC DATA AREA *
* *

DS 0F
INITCALL DC F’1’
NORMCALL DC F’2’
TERMCALL DC F’3’
SUFFLEN DC F’16’
TYPE01 DC XL4’01’
TYPE03 DC XL4’03’
TYPE04 DC XL4’04’
TYPE42 DC XL4’42’
TYPE98 DC XL4’98’

DS 0F
SIZEWORK DC AL1(0)

DC AL3(((ENDWORKA-WORKAREA+7)/8)*8)
DS 0D
PRINT NOGENLISTDCB DCB MACRF=PM,DDNAME=IMSLOG,DSORG=PS,EXLST=EXITLIST, *

SYNAD=SYNAD
LENDCB EQU *-LISTDCB * LENGTH OF DCB

Chapter 4. IMS system exit routines 397

EXITLIST DC XL1’85’,AL3(DCBEXIT) * DCB EXIT ADDRESS
DCBD DSORG=PS

* *
* DCB EXIT *
* - FORCE RECFM = VB *
* - ENSURE LRECL AND BLOCK SIZE ARE LARGE ENOUGH *
* *

IMSEXIT CSECT
DCBEXIT DS 0H

USING *,R15 * SET ADDRESSABILITY
LR DCBPTR,R1 * LOAD DCB POINTER
USING IHADCB,DCBPTR * LOCATE DCB
NI DCBRECFM,DCBRECV+DCBRECSB+DCBRECBR

* * SET NOT NEEDED FLAGS OFF
OI DCBRECFM,DCBRECV+DCBRECBR * SET RECFM=VB
CLC DCBBLKSI,IMSBLOCK * IS BLOCK SIZE
BNL BLOCKOK * GREAT ENOUGH ?
MVC DCBBLKSI,IMSBLOCK * NO, SET TO USUAL SIZE

BLOCKOK EQU * * YES, OK
CLC DCBLRECL,TESTLREC * IS LRECL
BNL LRECLOK * GREAT ENOUGH ?
MVC DCBLRECL,MAXLRECL * NO, SET TO MAX VALUE

LRECLOK EQU * * YES, OK
LH R9,DCBLRECL * LOAD LRECL
S R9,BDWLEN * SUBTRACT BDW LENGTH
CH R9,DCBBLKSI * LRECL > BLOCK SIZE - 4 ?
BNH SPANNOK * NO, SKIP ON
OI DCBRECFM,DCBRECSB * YES, FORCE SPANNED RECORDS

SPANNOK EQU * * SPANNED FLAG OK
DROP R15 * DROP BASE REG
BR R14 * RETURN TO OPEN

MAXLRECL DC H’32756’
IMSBLOCK DC H’6144’
TESTLREC DC H’6140’
BDWLEN DC F’4’

* END DCB EXIT *

* *
* DYNAMIC WORK AREA *
* *

WORKAREA DSECT

DS 0F
SAVEAREA DS 18F
PARMLIST DS 3FDYNDCB DCB MACRF=PM,DDNAME=IMSLOG,DSORG=PS,EXLST=EXITLIST
DYNOPEN OPEN (,),MF=L
DYNCLOSE CLOSE (,),MF=L
RECAREA DS 0D

DS 128CL256
ENDWORKA EQU *
IMSEXIT CSECT
R0 EQU 00 EQUATES FOR REGISTERS 0-15
R1 EQU 01
R2 EQU 02
R3 EQU 03
R4 EQU 04
R5 EQU 05
R6 EQU 06
R7 EQU 07
R8 EQU 08
R9 EQU 09
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
DCBPTR EQU R2
RECPTR EQU R6
ENTIND EQU R10
PBLDREC EQU R9

* *
* IMS RECORD MAPPING *
* *

398 Exit Routines

RECORD EQU 0 * START OF RECORD
RECLL EQU RECORD * RECORD LENGTH
RECTYPE EQU RECORD+4 * RECORD TYPE
RECSUBT EQU RECORD+5 * RECORD SUBTYPE
RECPRELL EQU RECORD+16 * TOTAL RECORD PREFIX LENGTH

END IMSEXIT

Subsection:
v “IMSLOG”

IMSLOG

The following record types are selected and written to the data set connected to
the DD name IMSLOG:

Record
type

Message

01 Input message.

03 Output message.

06 IMS start/stop.

07 Application accounting (MPP or BMP end).

31 Message queue get unique.

34 Message cancel.

35 Message placed on message queue.

36 Message removed from message queue.

38 Transaction reschedule.

40 Checkpoint records. Only header, trailer, SMB, and CNT block records are
written (subtypes 01, 03, 04, and 98 respectively).

42 IMS log header record.

To limit the size of the written log, the message text parts of the 01 and 03 records
are truncated to 24 bytes. However, when this truncation occurs, the total length of
all message segments is calculated and stored as a negative value in the length
field of the first message segment. SLR uses this field to calculate the number of
bytes transferred.

The following DCB information applies to the file IMSLOG:

Keyword Accepted Default

RECFM VB VB

BLKSIZE 6144 or greater 6144

LRECL 6140 or greater 32760 and RECFM=VBS

A program dependent on the sequence numbers of the IMS log records should not
be used to process the written log data set.

Chapter 4. IMS system exit routines 399

Log edit user exit (LOGEDIT)
The log edit exit routine allows you to alter the content of messages in IMS log
data. This exit routine may be used to provide additional security by eliminating
the logging of sensitive information under limited circumstances.

This topic contains Product-sensitive Programming Interface information.

After the message is edited, the message-related record is then logged. Even
though the altered record is logged, IMS processes the original version of the
message. After a subsequent restart, IMS processes the edited version of the
message. If restart reschedules an edited message, the transaction might fail
because of the edits.

Attention: The log edit user exit can potentially damage system information, such
as the system segments in a type01 record. Use it only when no alternative exists.
Test the routine rigorously before using it in a production environment.

Subsections:
v “About this routine”
v “Restrictions” on page 402
v “Communicating with IMS” on page 402

About this routine

You can write a log edit exit routine that is called before each message-related log
record is written to the log. The exit overlays segments of the record data with
other data. The record types that are presented to the exit are controlled through
the LOGEDIT statement in the PROCLIB member DFSVSMxx. If you want to use
the REFRESH USEREXIT command to add the LOGEDIT user exit, you must have
selected log records to edit when IMS initialized. If no records were selected,
message DFS4586E is issued and the LOGEDIT user exit is not added.

The user exit cannot directly edit log data. Instead, it returns an offset and length
where data is to be changed and the address of a replacement. IMS overwrites the
actual record starting at the specified offset for the specified length using the data
at the address indicated for replacement data.

The user exit can specify that no alterations are to be made. Or, after specifying an
edit, it can indicate that further edits are needed in the same record.

If the offset or length that is specified extends outside the data portion of the
record, no editing occurs, and the user exit is notified on the next call. The user
exit can assess the situation, but no further editing of the record is allowed. After
the user exit returns, it is called for the next record.

This user exit is optional. No default user exit and no samples are provided. The
following table shows the attributes of the log edit user exit.

Table 135. Log Edit User Exit Attributes

Attribute Description

IMS environments DB/DC, DBCTL.

400 Exit Routines

|

|
|
|
|
|
|
|

Table 135. Log Edit User Exit Attributes (continued)

Attribute Description

Naming convention You can name this exit routine DFSFLGE0 and link it into a library
that is included in the STEPLIB concatenation.

Alternatively, you can define one or more exit routine modules with
the EXITDEF parameter of the USER_EXITS section of the
DFSDFxxx member of the IMS.PROCLIB data set. The routines are
called in the order that they are listed in the parameter.

Binding You must bind the exit routine into IMS.SDFSRESL (or a library
concatenated with it) as a separate reentrant load module. If the
module is not present in the load library, the IMS logger does not
load or call it.

The following example demonstrates how to bind the exit routine
into IMS.SDFSRESL.

//LINKIT JOB 1,MSGLEVEL=1
//LINK EXEC PGM=IEWL,PARM=RENT
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(20,20))
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSN=IMS.SDFSRESL,DISP=SHR
//OBJIN DD DSN=IMS.USERLIB,DISP=SHR
//SYSLIN DD *

INCLUDE OBJIN(DFSFLGE0)
MODE AMODE(31),RMODE(ANY)
NAME DFSFLGE0(R)

//

Including the routine The module or modules must be included in an authorized library
in the JOBLIB, STEPLIB, or LINKLIST concatenation. No additional
steps are necessary to use a single exit routine that is named
DFSFLGE0. If you use multiple exit routines, specify
EXITDEF=(TYPE= LOGEDIT,EXIT=(exit_names)) in the EXITDEF
parameter of the USER_EXITS section of the DFSDFxxx member of
the IMS.PROCLIB data set

IMS callable services This exit routine can use IMS callable services. This exit routine is
defined to IMS as an IMS standard user exit. Exit routines that are
defined to IMS receive the callable services token in the standard
exit parameter list. This exit routine does not need to issue an
initialization call (DFSCSII0) to use IMS callable services. This exit
routine must be manually link-edited with DFSCSI00.

Sample routine
location

No sample exit routine is provided.

Attributes of this routine

The log edit user exit must be written as reentrant. The user exit receives control
running in 31-bit addressing mode and must return control in that mode. It is
called in TASK mode, with no locks held, and in non-cross memory, non-AR mode.
In an online IMS environment, the log edit user exit runs in key 7, supervisor state,
in the IMS control region address space.

Calling this routine

The log edit user exit is called at each of the times described in the list that
follows. The type of call is determined when IMS calls the user exit.

Chapter 4. IMS system exit routines 401

|
|

|
|
|
|

|
|
|
|
|
|
|

Initialization call
IMS calls the LOGEDIT user exit when the logger is initialized. IMS makes
this call when it opens the first OLDS.

Edit record call
The log edit user exit is called immediately before the log record (OLDS or
WADS) is written.

Termination call
IMS calls the LOGEDIT user exit when the logger is terminated. IMS
makes this call after it closes the output log and notifies DBRC. If IMS
terminates abnormally, it attempts to make this call from the log task
ESTAE routine.

If IMS terminates abnormally, there might be cases when the logger cannot
make the termination call to LOGEDIT. Therefore, your user exit must be
able to tolerate not being called for termination.

Restrictions

The log edit user exit is subject to the following restrictions:
v This user exit should not modify any storage other than the parameter lists and

associated work areas.
v All addresses, entry register contents, and parameter list contents can change

from one call of the LOGEDIT user exit to the next call. One call should not
depend on addresses from a prior call. The sole exception is the content of the
work area indicated by SXPLAWRK, which will persist across calls.

v This user exit can call only z/OS services that it is authorized to call. It must not
call any internal IMS services.

Important: The IMS logger is critical to performance. Avoid coding the exit routine
to do things that could negatively affect performance in the IMS logger, such as
WAITs and other z/OS services that could cause long delays before returning to
your exit routine.

Communicating with IMS

IMS communicates with this user exit through the entry registers, a parameter list,
and the exit registers.

Content of Registers on Entry

On entry, the user exit must save all registers using the provided save area. The
registers contain the following:

Register Content

1 Address of the “IMS standard user exit parameter list” on page 5

13 Address of the save area. Your user exit must not change the first three
words of this save area. This save area is not chained to any other IMS save
area.

14 Return address to IMS.

15 Entry point of this user exit.

Standard exit parameter list

402 Exit Routines

|
|
|

|
|
|
|

|
|
|

|
|
|
|

This user exit uses the Version 6 standard exit parameter list. The address of the
work area passed to this user exit in SXPLAWRK will be the same each time that
this user exit is called.

If your LOGEDIT user exit can be called in an enhanced user exit environment,
additional user exit routines might be called after your routine. When your user
exit routine finds a transaction upon which to act, it can set SXPL_CALLNXTN in
the byte that SXPLCNXT points to. This tells IMS to not call additional exit
routines.

Function-specific parameter list on entry

The following table shows the content of the function-specific parameter list. The
address of this parameter list is in the standard IMS user exit parameter list field
SXPLFSPL.

Table 136. Function-specific parameter list for log edit user exit (Mapped by LGEXPL, which
is included in LCDSECT)

Field Offset Length Content

LGEXVERA X'0' X'4' Address of parameter list version number.

LGEXTYPA X'4' X'4' Address of call type field.

The remaining fields apply only to the edit record call type:

LGEXRCDA X'8' X'4' Address of log record image.

LGEXEINA X'C' X'4' Address of edit instruction area.

LGEXFBKA X'10' X'4' Address of feedback field.

LGEXVERA points to LGEXVER, described in the following table:

Table 137. LGEXVERA field

Field Offset Length Content

LGEXVER X'0' X'4' Parameter list version number.

LGEXTYPA points to LGEXCTYPE, described in the following table:

Table 138. LGEXTYPA field

Field Offset Length Content

LGEXCTYP X'0' X'4' Call type:

v 1 = initialization call

v 2 = record edit call

v 3 = termination call

As shown in the preceding table, some fields apply only to the record edit call.
v LGEXRCDA points to a copy of the log record. It does not point into a log

buffer.
v LGEXEINA points to the edit instructions area mapped by LGEXEI (included in

LCDSECT). These fields are described in the following table.
v LGEXFBKA points to the feedback field, described in Table 140 on page 404:

Chapter 4. IMS system exit routines 403

|
|
|
|
|

Table 139. LGEXEI - edit instruction information

Field Offset Length Content

LGEXFUNC X'0' X'4' Functions.

LGEXFNC1 X'0' X'1' Functions byte 1.

v X'80' = edit record using the information
provided in the LGEXOFFS, LGEXLENG, and
LGEXREPL fields.

v X'40' = redrive exit for this record.

X'1' X'3' Functions, reserved bytes.

LGEXOFFS X'4' X'4' Offset for the record edit call.

LGEXLENG X'8' X'4' Length for the record edit call.

LGEXREPL X'C' X'4' The address of the replacement data for the
record edit call

Table 140. LGEXFBKA - feedback field information

Field Offset Length Content

LGEXFDBK X'0' X'4' Feedback field, which includes feedback to the
exit routine from IMS:

v 0 = success on prior call

v 4 = error in edit parameters

The user exit cannot actively edit log data. Instead, it returns an offset and length
where data is to be changed and the address of a replacement. IMS overwrites the
actual record starting at the specified offset for the specified length using the data
at the address indicated for replacement data.

The edit instruction area is cleared before each record edit call. IMS edits the
record only if LGEXEDIT is set on return to IMS. If the user exit needs to make
another change in the same record, it must also set LGEXHOLD to have the same
record presented again. The previous edit does not appear in the record image.
IMS changes only the actual record.

If the offset or length specified extends outside the data portion of the record, no
editing occurs, and the exit is called again with LGEXFDBK set to LGEXEDER. The
edit instruction area will not have been cleared, so the erroneous values are
present. The exit can assess the situation, but no further editing of the record is
allowed. After the exit returns, it is called for the next record.

Note: The data portion of the record is defined as everything between the record
type field and the clock value and sequence number at the end of the record. The
logger is unaware of the significance of any part of this area. Consequently,
damage to the system segments in a type01 record would go undetected and cause
unpredictable results when encountered during restart. Use caution to edit only the
message data.

Contents of registers on exit

Before returning to IMS, the user exit must restore all registers except for register
15, which must contain the following:

404 Exit Routines

Register Contents

15 0

Related reference:

Defining DASD logging initialization parameters (System Definition)
“Routine binding restrictions” on page 9
“IMS callable services” on page 13
“IMS standard user exit parameter list” on page 5

Log Filter exit routine (DFSFTFX0)
You can use the Log Filter exit routine to control the amount of log data sent to the
tracking subsystem, by acting as a filter. Thus you can choose which log records to
send to the tracking site.

IMS supplies a default filter exit routine, which eliminates database records for:
v Databases not defined as covered
v Diagnostic data
v Block padding data

Subsections:
v “About this routine”
v “Communicating with IMS” on page 407
v “Recovery environment” on page 408
v “Initialization and termination calls” on page 408
v “IMS-supplied filter exit routine” on page 409

About this routine

You can replace the IMS default filter exit routine with one of your own. Your
replacement exit routine must return valid IMS log records, valid log record
lengths, and valid IMS log record sequence numbers. The exit routine can only
filter a particular log record by replacing it with a X'4304' log record containing the
same log sequence number as the record being filtered.

The performance of your exit routine can affect the logging of both RSR and the
active IMS subsystem.

The Log Filter exit routine is called in the following three cases:
v IMS and ILS Initialization

The Log Filter exit routine is called during IMS initialization and during isolated
log sender (ILS) instance initialization. You can use the log filter exit to perform
setup or initialization work during IMS and ILS initialization.
The initialization call can return a token, which is passed to the filtering exit
routine on each subsequent call. The second word of the parameter list, on
return, contains a 0 or the address of the token.

v Log Buffer Send
The Log Filter exit routine is called each time a log buffer is to be sent to the
tracking site and filters which log buffers are sent.

v IMS and ILS Termination

Chapter 4. IMS system exit routines 405

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsvsmxx_proclib_dasd_logging.htm#definingdasdlogginginitializationparameters

The Log Filter exit routine is called during IMS termination and during isolated
log sender (ILS) instance termination. You can use the log filter exit to perform
cleanup or termination work during IMS and ILS termination.

The Log Filter exit routine must take into account the fact that it is possible to
have multiple instances of the isolated log sender in one address space.

The mapping definition for the X'4304' log record is contained in the source code
of the IMS DFSLOG43 macro.

You must write this exit routine so that it is reentrant. It must be compiled with
AMODE=31 and RMODE=ANY. It runs in supervisor state in user protect key 7.
Its primary address space can be either CTL, DBCTL, DCCTL, batch, or isolated
log sender.

The following table shows the attributes of the Log Filter exit routine.

Table 141. Log filter exit routine attributes

Attribute Description

IMS environments DB/DC, DBCTL, batch.

Naming convention Must be named DFSFTFX0.

Binding
You must bind the exit routine into IMS.SDFSRESL (or a library
concatenated with it) as a separate reentrant load module. If the
module is not present in the load library, the IMS logger does not
load or call it.

This JCL shows you how to bind the exit routine into
IMS.SDFSRESL.

//LINKIT JOB 1,MSGLEVEL=1
//LINK EXEC PGM=IEWL,PARM=RENT
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(20,20))
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSN=IMS.SDFSRESL.,DISP=SHR
//OBJIN DD DSN=IMS.USERLIB.,DISP=SHR
//SYSLIN DD *

INCLUDE OBJIN(DFSFTFX0)
MODE AMODE(31),RMODE(ANY)
NAME DFSFTFX0(R)

/*

Including the routine No special steps required.

IMS callable services IMS callable services are not applicable for use with this exit
routine.

Sample routine
location

IMS.ADFSSRC.

The routine can be given process mode of SRB or TCB for log buffer send. Because
an enabled unlock task (EUT) functional recovery routine (FRR) exists, no SVCs
can be issued by the routine, nor can it hold any locks.

The input parameters are available until the exit routine returns to its caller; at that
time, the storage is freed. The result is that the exit routine must copy any data
you want to be preserved.

406 Exit Routines

The log filter exit must ensure that filtered data has a format appropriate for the
level of IMS that generated the data. X'4304' log records, for instance, must match
the X'4304' log record DSECT for that level of IMS.

Use the RELEASE parameter of the ILOGREC macro to generate DSECTs for log
records of different levels of IMS.

Communicating with IMS

IMS communicates with this exit through the entry and exit registers.

Contents of registers at entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of a standard parameter list (a series of words containing the
parameters' addresses)

13 z/OS standard save area address (not an IMS pre-chained save area)

14 Return address (set with the assembly BALR instruction)

15 Filter exit routine entry address

The parameters are:
1. Function Code.

This function code is one word in length and is set to the following:

X'0' An IMS or ILS initialization

X'4' A log buffer send

X'8' An IMS or ILS termination

X'12 A log buffer send from a 64-bit address
2. Optionally created token from initialization entry point call.

If you do not provide a token, this parameter value is 0.
3. Log data being sent (from 0 to n log records). If the function code is X'12', this

is a pointer to a second, 64-bit format pointer to the log data being sent.
For both initialization and termination calls, this parameter value is 0.

4. 1-word length of log data in bytes.
For both initialization and termination calls, this parameter value is 0.

5. Data area.
The exit routine moves the log data to this area. This area must be large
enough to contain the unfiltered log data. For both initialization and
termination calls, this parameter value is 0.

6. Sink area data length in words.
This is supplied by the exit routine. For both initialization and termination
calls, this parameter value is 0.

7. Package descriptor.
The package descriptor contains information about the log data. If the filter exit
encounters data from more than one level of IMS, reference the package
descriptor to determine which level of IMS generated the log data.

Chapter 4. IMS system exit routines 407

Two formats of package descriptor are possible:
v Log data from IMS is accompanied by a package descriptor mapped by the

DFSPKR macro.
v Data from ILS is accompanied by a package descriptor described by the IPD

DSECT in the DFSILT macro.
The halfword at offset 2 will contain a 1 for the DFSPKR type and a 2 for the
IPD type.
The level of IMS that generated the log data is indicated by the value in field
PKRRELSE (DFSPKR) or IPDRELSE (DFSILT). The values correspond to values
defined in the DFSLOGRC macro.
Whether or not log data from more than one level of IMS will be encountered,
the filter exit must ensure that filtered data has a format appropriate for the
level of IMS that generated the data.
Use the RELEASE parameter of the ILOGREC macro to generate DSECTs for
log records of different levels of IMS.

Contents of registers at exit

Before returning to IMS, the exit routine must restore all registers except for
registers 0, 1, and 15.

Also before returning to IMS, be sure to set the token in the parameter list (on the
initialization call) if you want to use a token, and be sure the data and data length
have been set (on the send call).

Recovery environment

For initialization and termination calls, an ESTAE is established for the recovery
environment; for log buffer send calls, a functional recovery routine (FRR) is
established for the recovery environment. If the FRR exit routine is driven, it will
SDUMP. If retry is allowed, it turns off filtering for the duration of the IMS
instance. (This exit routine is not reloaded as a result of a /START SERVGRP or /STOP
SERVGRP command.) If an error is detected in the filtered record, filtering is turned
off for the duration of the IMS instance. If retry is not allowed, the component
abends.

Initialization and termination calls

IMS calls the Log Filter exit routine during IMS initialization and normal
termination and for ILS instance initialization and termination. You can thereby
prepare for log filtering or clean up after termination. If you do not return a token
on the initialization call, IMS sets the token to zero for all subsequent filter exit
routine calls.

The attributes of the routine for initialization and termination is the same as for log
buffer send, except that the routine can only be given a process mode of TCB, thus
allowing SVC calls.

The recovery environment for initialization and termination calls is different than
for log buffer send calls. An ESTAE environment is created to cover the
initialization and termination call. If the ESTAE is driven and retry is allowed, it
turns off log filtering for the duration of the IMS instance and issues an error
message. If retry is not allowed, the component abends (under certain
circumstances, such as CANCEL, z/OS does not allow a retry).

408 Exit Routines

IMS-supplied filter exit routine

This exit routine includes a summary of which log records can be filtered by the
Log Filter exit routine. It also summarizes which log records can be filtered if you
do not need to restart transaction manager at the tracking site.

The filter exit module supplied with IMS is table driven, with the tables already set
up to filter some log records. These records are replaced with a X'4304' dummy log
record. The log filter exit module contains complete information about which log
records can be eliminated or changed. The name of this module is DFSFTFX0. Use
the prolog and tables in the exit routine as a reference.

The module also indicates how to eliminate data communication log records. This
causes filtering of message queue records, scratchpad areas, Fast Path output
messages, DC sequence number records, and DC-related checkpoint records. Using
this option reduces log volume but requires a COLDCOMM emergency restart at
the tracking site after remote takeover to restart transaction manager.

Attention: You should be very careful when writing the replacement for the Log
Filter exit routine, because incorrect filtering of the log data can make the tracking
SLDS data invalid or unusable. You also need to consider that multiple copies of
the exit routine can run for concurrent IMS jobs and ILS instances.
Related reference:
“Routine binding restrictions” on page 9

Logger user exit (LOGWRT)

You can write a LOGWRT user exit that is called during IMS logger execution. IMS
passes the user exit all log data after the data is written to the IMS log. Your user
exit can then process this data for recovery purposes.

Subsections:
v “About this routine”
v “Calling the routine” on page 411
v “Restrictions” on page 412
v “Communicating with IMS” on page 412

About this routine

IMS calls the LOGWRT user exit with an initialization call when the logger is
opened and with a termination call when the logger is closed. At these times, your
exit routine can get or free any additional storage that it needs to run. IMS also
calls the exit routine and passes log data to it with a write call whenever a block of
data is written to the logger.

This exit routine is optional. No default and no sample are provided.

The following table shows the attributes of the LOGWRT user exit.

Attention: The IMS logger is critical to performance. Avoid coding the user exit
to do something that could negatively affect performance in the IMS logger, such
as WAIT and other z/OS services that could cause long delays before returning to
your user exit.

Chapter 4. IMS system exit routines 409

|

|
|
|

Table 142. LOGWRT user exit attributes

Attribute Description

IMS environments DB/DC, DBCTL, DCCTL, batch.

Naming convention You can name this exit routine DFSFLGX0 and link it into a library
that is included in the STEPLIB concatenation.

Alternatively, you can define one or more exit routine modules with
the EXITDEF parameter of the USER_EXITS section of the
DFSDFxxx member of the IMS.PROCLIB data set. The routines are
called in the order that they are listed in the parameter.

Binding
You must bind the exit routine into IMS.SDFSRESL (or a library
concatenated with it) as a separate reentrant load module. If the
module is not present in the load library, the IMS logger does not
load or call it.

The following example demonstrates how to bind the exit routine
into IMS.SDFSRESL.

//LINKIT JOB 1,MSGLEVEL=1
//LINK EXEC PGM=IEWL,PARM=RENT
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(20,20))
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSN=IMS.SDFSRESL.,DISP=SHR
//OBJIN DD DSN=IMS.USERLIB.,DISP=SHR
//SYSLIN DD *

INCLUDE OBJIN(DFSFLGX0)
MODE AMODE(31),RMODE(ANY)
NAME DFSFLGX0(R)

/*

Including the routine The module or modules must be included in an authorized library
in the JOBLIB, STEPLIB, or LINKLIST concatenation. No additional
steps are necessary to use a single exit routine that is named
DFSFLGX0. If you use multiple exit routines, specify
EXITDEF=(TYPE=LOGWRT,EXIT=(exit_names)) in the EXITDEF
parameter of the USER_EXITS section of the DFSDFxxx member of
the IMS.PROCLIB data set.

IMS callable services This exit routine can use IMS Callable Storage Services. This exit
routine is defined to IMS as an IMS standard user exit. Exit routines
that are defined to IMS receive the callable services token in the
standard exit parameter list. This exit routine does not need to issue
an initialization call (DFSCSII0) to use IMS callable services. You
must manually bind this exit routine with DFSCSI00.

Sample routine
location

No sample exit routine is provided.

Attributes of the routine

The LOGWRT user exit must be written as reentrant. The exit routine receives
control running in 31-bit addressing mode and must return control in that mode. It
is called in TASK mode, with no locks held, and in non-cross memory, non-AR
mode. In an online IMS environment, the LOGWRT user exit runs in key 7,
supervisor state, in the IMS control region address space. In batch and log recovery
environments, it runs in key 8, problem state.

This information on various IMS environments is for the current release of IMS
and might change in subsequent releases.

410 Exit Routines

|
|

|
|
|
|

|
|
|
|
|
|
|

Calling the routine

The LOGWRT user exit is given control for each of the following three calls. The
call type is determined by when IMS calls the routine.

Initialization call

IMS calls the LOGWRT user exit when the logger is initialized. IMS makes this call
when it opens the first output log.

An initialization call (call type 1) is made for the following:
v Normal initialization (DB/DC, DBCTL, DCCTL, batch)
v Initialization of log recovery during emergency restart processing if log recovery

from the write ahead data set (WADS) is required
v Log Recovery utility initialization (CLS mode)
v Alternate IMS system logger initialization when the alternate IMS opens its first

OLDS for output during an XRF takeover

OLDS/SLDS write call

IMS calls the LOGWRT user exit after a block of data is successfully written to the
online log data set (OLDS) or the system log data set (SLDS). The OLDS is
accessed in a DB/DC, DBCTL, or a DCCTL environment and in the SLDS in a
batch environment.

A pointer to the data that was written is passed to the exit routine. (The blocks of
data might not be presented in sequence.) All processing of the data must be
completed before returning to IMS, because the data address is not valid after
leaving the LOGWRT user exit.

A write call (call type 2) is made for the following:
v Normal block write (a block of data is written to the log during normal IMS

processing).
v Buffer purge (the final block(s) of log data are written to the log during IMS

abnormal termination).
v Log recovery during emergency restart processing (blocks of data are recovered

from the WADS and written to the OLDS).
v Log Recovery utility processing when recovering entries of complete log buffers

from the WADS (CLS mode).

Under some abend or error conditions, one or more blocks might be written to the
log and not passed to the exit routine, or IMS might pass the same blocks to the
LOGWRT user exit several times. Your exit routine must be able to tolerate both of
these situations.

Termination call

IMS calls the LOGWRT user exit when the logger is terminated. IMS makes this
call after it closes the output log and notifies DBRC.

A termination call (call type 3) is made for the following:
v Normal termination
v Abnormal termination (if a terminal call is possible)

Chapter 4. IMS system exit routines 411

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

v Termination of log recovery during emergency restart processing
v Log Recovery utility termination (CLS mode)

If IMS terminates abnormally, there might be cases when the logger is unable to
make the termination call to the LOGWRT user exit. Therefore, your exit routine
must be able to tolerate not being called for termination.

Restrictions

The LOGWRT user exit is subject to the following restrictions:
v This exit routine must not modify the log data passed to it on an OLDS/SLDS

write call. It must not try to locate, access, or modify any IMS control blocks not
specifically passed to it by IMS.

v All addresses, entry register contents, and parameter list contents can change
from one call of the LOGWRT user exit to the next call. One call should not
depend on addresses from a prior call. Similarly, this exit routine must not
assume what TCB it is running under, nor that the TCB is the same from one
call to the next call.

v This exit routine can call only those z/OS services that it is authorized to call. It
must not call any internal IMS services.

v The Log Recovery utility does not support multiple user exit routines. The user
exit must be named DFSFLGX0 for the Log Recovery utility.

Communicating with IMS

IMS communicates with this routine through the entry registers, a parameter list,
and the exit registers.

Content of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Content

1 Address of the “IMS standard user exit parameter list” on page 5

13 Address of the save area. Your exit routine must not change the first three
words of this save area. This save area is not chained to any other IMS save
area.

14 Return address to IMS.

15 Entry point of this exit routine.

Standard exit parameter list

This exit routine uses the Version 6 standard exit parameter list. The address of the
work area passed to this exit routine in SXPLAWRK will be the same each time
that this exit routine is called.

However, the following fields are not passed to the exit when it is called from the
Log Recovery utility because the data is not available:
v SXPLASCD
v SXPLRSEN
v SXPLCNXT

412 Exit Routines

|
|
|

|
|
|
|
|

|
|

|
|

|

|

|

v SXPLFLGA

These fields are set to zero.

Function-specific parameter list on entry

The address of the function-specific parameter list is in the standard exit parameter
list field SXPLFSPL. The content of the function-specific parameter list depends on
whether this exit routine is called by a call type 1, 2, or 3. The following tables
outline the contents of the parameter list for each of these calls.

Table 143. Function-specific parameter list for initialization call, call type 1 (mapped by LGWXPLST, which is included
in LCDSECT)

Field Offset Length Content

LGWXTYPE X'0' 1 Call type: 1

LGWXENVR X'1' 1 Environment type:

X'01'= DB/DC online system

X'02'= Batch IMS system (includes CICS/DLI)

X'03'= Log Recovery utility

X'04'= DBCTL system

X'05'= DCCTL system

LGWXFLG1 X'2' 1 Flag byte:

X'20'
0 Not an /ERE log recovery
1 An /ERE log recovery

X'10'
0 Not an XRF takeover
1 An XRF takeover

X'08'
0 The LGWXTODN field does not exist
1 The LGWXTODN field does exist

X'04'
0 The LGWXVRSN field does not exist
1 The LGWXVRSN field does exist

All other flag bits are reserved.

X'3' 1 Reserved.

LGWXTOD X'4' 8 This field has been left here for compatibility with previous
versions. The old time stamp format value is in the
00YYDDDF HHMMSSTF format.

LGWXSSID X'C' 8 IMS subsystem ID, which is an IMSID for non-XRF online
regions and DBRC=N batch regions, an RSE name for XRF
online regions, and a JOB name for DBRC=Y batch regions.

LGWXBUFR X'14' 4 Unused on this call.

LGWXBSIZ X'18' 4 Unused on this call.

LGWXTODN X'1C' 12 This field contains the current date and time fields, but in the
IMS internal packed-decimal format. For further information
on the internal packed-decimal time stamp format, see IMS
Version 13 Operations and Automation.

LGWXVRSN X'2E' 4 This field contains the version number of the parameter list.

Chapter 4. IMS system exit routines 413

|

|

||||
|
|

Table 143. Function-specific parameter list for initialization call, call type 1 (mapped by LGWXPLST, which is included
in LCDSECT) (continued)

Field Offset Length Content

LGWXBF64 X'32' 8 Unused on this call.

The following table shows the parameter list for call type 2.

Table 144. Function-specific parameter list for OLDS/SLDS write call, call type 2 (mapped by LGWXPLST, which is
included in LCDSECT

Field Offset Length Content

LGWXTYPE X'0' 1 Call type: 2

LGWXENVR X'1' 1 Environment type:

X'01'= DB/DC online system

X'02'= Batch IMS system (includes CICS/DLI)

X'03'= Log Recovery utility

X'04'= DBCTL system

X'05'= DCCTL system

LGWXFLG1 X'2' 1 Flag byte:

X'20'
0 Not an /ERE log recovery
1 An /ERE log recovery

X'10'
0 Not an XRF takeover
1 An XRF takeover

X'08'
0 The LGWXTODN field does not exist
1 The LGWXTODN field does exist

X'04'
0 The LGWXVRSN field does not exist
1 The LGWXVRSN field does exist

X'3' 1 Reserved

LGWXTOD X'4' 8 This field has been left here for compatibility with previous
versions. The old time stamp format value is in the
00YYDDDF HHMMSSTF format.

LGWXSSID X'C' 8 IMS subsystem ID, which is an IMSID for non-XRF online
regions and DBRC=N batch regions, an RSE name for XRF
online regions, and a JOB name for DBRC=Y batch regions.

LGWXBUFR X'14' 4 Address of IMS log block data that has been successfully
written to the OLDS/SLDS. (This might be a copy of the
original IMS buffer.)

If the data is located above the 2 GB boundary, this field will
contain X'7FFFFBAD' and a pointer to the 64-bit address of
the data will be contained in field LGWXBF64.

LGWXBSIZ X'18' 4 Length of log data, in bytes.

414 Exit Routines

|
|
|

Table 144. Function-specific parameter list for OLDS/SLDS write call, call type 2 (mapped by LGWXPLST, which is
included in LCDSECT (continued)

Field Offset Length Content

LGWXTODN X'1C' 12 This field contains the current date and time fields, but in the
IMS internal packed-decimal format. For further information
on the internal packed-decimal time stamp format, see IMS
Version 13 Operations and Automation.

LGWXVRSN X'2E' 4 This field contains the version number of the parameter list.

LGWXBF64 X'32' 8 This field contains the 64-bit address of the log buffer
storage.

The following table shows the parameter list for call type 3.

Table 145. Function-specific parameter list for termination call, call type 3 (mapped by
LGWXPLST, which is included in LCDSECT)

Field Offset Length Content

LGWXTYPE X'0' 1 Call type: 3

LGWXENVR X'1' 1 Environment type:

X'01'= DB/DC online system

X'02'= Batch IMS system (includes CICS/DLI)

X'03'= Log Recovery utility

X'04'= DBCTL system

X'05'= DCCTL system

LGWXFLG1 X'2' 1 Flag byte:

X'80'
0 Normal termination
1 Abnormal termination

X'40'
0 Buffer purge succeeded
1 Buffer purge failed (abend)

X'20'
0 Not an /ERE log recovery
1 An /ERE log recovery

X'08'
0 The LGWXTODN field does

not exist
1 The LGWXTODN field does

exist

X'04'
0 The LGWXVRSN field does

not exist
1 The LGWXVRSN field does

exist

All other flag bits are reserved.

X'3' 1 Reserved.

LGWXTOD X'4' 8 This field has been left here for compatibility
with previous versions. The old time stamp
format value is in the 00YYDDDF HHMMSSTF
format.

Chapter 4. IMS system exit routines 415

Table 145. Function-specific parameter list for termination call, call type 3 (mapped by
LGWXPLST, which is included in LCDSECT) (continued)

Field Offset Length Content

LGWXSSID X'C' 8 IMS subsystem ID, which is an IMSID for
non-XRF online regions and DBRC=N batch
regions, an RSE name for XRF online regions,
and a JOB name for DBRC=Y batch regions.

LGWXBUFR X'14' 4 Unused on this call.

LGWXBSIZ X'18' 4 Unused on this call.

LGWXTODN X'1C' 12 This field contains the current date and time
fields, but in the IMS internal packed-decimal
format. For further information on the internal
packed-decimal time stamp format, see IMS
Version 13 Operations and Automation.

LGWXVRSN X'2E' 4 This field contains the version number of the
parameter list.

LGWXBF64 X'32' 8 Unused on this call.

For calls made during normal IMS operation, the time in the field at offset X'10'
contains the start time of the current IMS system. For calls made during emergency
restart log recovery, this field contains the start time of the previous IMS system,
the one whose log is being recovered.

If log recovery is required during emergency restart processing, the LOGWRT user
exit is called for two sets of initialization/write/termination call sequences. The
first set of calls occurs during log recovery and sets a flag indicating that log
recovery is processing. Only the data from the buffers (recovered from the WADS
and written to the OLDS to close it) is passed. The second set of calls occurs for
normal IMS processing.

Content of registers on exit

Before returning to IMS, the exit routine must restore all registers except for
register 15, which must contain the following:

Register Contents

15 0

Related reference:
“Routine binding restrictions” on page 9
“IMS callable services” on page 13
“IMS standard user exit parameter list” on page 5

Partner Product exit routine (PPUE)
The Partner Product exit routine (DFSPPUE0 or another PPUE type exit routine) is
provided to allow the initialization of products that run with IMS. The exit routine
can load or link one or more partner product routines.

This topic contains Product-sensitive Programming Interface information.

Subsections:

416 Exit Routines

|
|
|
|

|
|
|
|
|
|

v “About this routine”
v “Communicating with IMS”

About this routine

The Partner Product exit routine is entered immediately before IMS is ready for
startup (before the DFS994I start complete message is issued). The exit routine is
deleted after control returns to IMS.

Be aware that the interface to this exit routine might change in future releases of
IMS.

The exit routine must reside on the library pointed to by the STEPLIB DD
statement. If the exit routine exists, it is called.

The following table shows the attributes of the Partner Product exit routine.

Table 146. Partner product exit routine attributes

Attribute Description

IMS environments DB/DC, DBCTL, DCCTL.

Naming convention You can name this exit routine DFSPPUE0 and link it into a library
that is included in the STEPLIB concatenation.

Alternatively, you can define one or more exit routine modules with
the EXITDEF parameter of the USER_EXITS section of the
DFSDFxxx member of the IMS.PROCLIB data set. The routines are
called in the order that they are listed in the parameter.

Including the routine The module or modules must be included in an authorized library
in the JOBLIB, STEPLIB, or LINKLIST concatenation. No additional
steps are necessary to use a single exit routine that is named
DFSPPUE0. If you use multiple exit routines, specify
EXITDEF=(TYPE= PPUE,EXIT=(exit_names)) in the EXITDEF
parameter of the USER_EXITS section of the DFSDFxxx member of
the IMS.PROCLIB data set.

IMS callable services This exit routine can use IMS Callable Storage Services. This exit
routine is defined to IMS as an IMS standard user exit. Exit routines
that are defined to IMS receive the callable services token in the
standard exit parameter list. This exit routine does not need to issue
an initialization call (DFSCSII0) to use IMS callable services. You
must manually bind this exit routine with DFSCSI00.

Sample routine
location

A sample exit named DFSPPEX0 is provided in the IMS.ADFSML
data set.

Communicating with IMS

IMS uses the entry registers, a parameter list, and the exit registers to communicate
with the exit routine.

Content of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Chapter 4. IMS system exit routines 417

Register Contents

1 Address of the “IMS standard user exit parameter list” on page 5

13 Address of the save area. Your exit routine must not change the first three
words of this save area. This save area is not chained to any other IMS save
area.

14 Return address to IMS.

15 Entry point of this exit routine.

Standard IMS user exit parameter list

This exit routine uses the Version 6 standard exit parameter list. The address of the
work area passed to this exit routine in SXPLAWRK will be the same each time
that this exit routine is called.

Function-specific parameter list on entry

The following table shows the content of the function-specific parameter list. The
address of this parameter list is in the standard IMS user exit parameter list field
SXPLFSPL.

Table 147. Function-specific parameter list for partner product exit (mapped by DFSPPUE)

Field Offset Length Content

PPUEIMSD 0 4 IMS identifier

PPUEREL 4 1 IMS level

PPUETYP 5 1 IMS subsystem type

PPUEOSL 6 1 z/OS level

Reserved 7 1

Content of registers on exit

Before returning to IMS, the exit routine must restore all registers except register
15, which must contain one of the following return codes:

Return codes Meaning

0 Processing continues.

non-0 IMS abends with U0740. The exit routine should return this code if critical
tasks do not complete successfully.

If multiple DFSPPUE0 exit routines are called, the highest return code is
returned to the calling program.

Related reference:
“Routine binding restrictions” on page 9
“IMS callable services” on page 13
“IMS standard user exit parameter list” on page 5

418 Exit Routines

Restart exit routine
The Restart exit is called during all types of IMS restart.

This topic contains Product-sensitive Programming Interface information.

Subsections:
v “About this routine”
v “Communicating with IMS”

About this routine

The Restart exit is passed a function code and a code that indicates the type of
restart that is being done. The exit routines are defined to IMS using the EXITDEF
parameter in the USER_EXITS section of the DFSDFxxx member; there is no
default exit name. Multiple routines can be defined. The routines are called in the
order that they are listed in the EXITDEF parameter.

The exit is called at the beginning of restart with a function code of x'01'. It is
called after IMS has determined what type of restart is being performed and before
the log is read.

This exit is called at the end of restart with a function code of X'02'. It is called
immediately before the restart complete message is issued.

Attributes of this routine

Table 148. Restart exit routine attributes

Attribute Description

IMS environments DB/DC, DBCTL, DCCTL.

Naming convention Any name can be used.

Including the routine Specify EXITDEF=(TYPE=RESTART,EXITS(exit_names)) in the
USER_EXITS section of the DFSDFxxx member of the IMS.PROCLIB
data set. The exit routine module or modules must be included in
an authorized library that is included in the JOBLIB, STEPLIB, or
LINKLIST concatenation for the system.

IMS callable services To use callable services with this exit routine, it must be given a
callable services token by IMS at the time it is given control. Check
the value of the SXPLATOK field in the “IMS standard user exit
parameter list” on page 5:

v If SXPLATOK is zero, you cannot use callable services with this
routine.

v If SXPLATOK is non-zero, the callable services token is included,
and you can use callable services. You can use the 256-byte work
area addressed by the SXPLAWRK field to call DFSCSIF0.

Sample routine
location

IMS.SDFSSMPL (member name DFSRSTX0)

Communicating with IMS

IMS uses the entry registers, a parameter list, and the exit registers to communicate
with the exit routine.

Chapter 4. IMS system exit routines 419

Content of registers on entry

Register Contents

1 Address of the “IMS standard user exit parameter list” on page 5

13 Address of the save area. Your exit routine must not change the first three
words of this save area. This save area is not chained to any other IMS save
area.

14 Return address to IMS.

15 Entry point of this exit routine.

Standard IMS user exit parameter list

This exit routine uses the Version 6 standard exit parameter list.

Function-specific parameter list on entry

The following table shows the content of the function-specific parameter list. The
address of this parameter list is in the standard IMS user exit parameter list field
SXPLFSPL.

Table 149. Function-specific parameter list for partner product exit (mapped by DFSPPUE)

Field Offset Length Content

RSTX_PVER 0 4 Parameter List Version (X'00000001')

RSTX_FUNC 4 4 Function Code

1 Restart Begin

2 Restart End

RSTX_TYPE 8 4 IMS restart type

1 Cold start

2 Warm start

3 Emergency restart

4 Cold comm

5 Cold base

6 Cold sys

12 4 Reserved

Content of registers on exit

There is no requirement for exit registers and there are no defined return and
reason codes.
Related reference:
“Exit routine naming conventions” on page 3
“Routine binding restrictions” on page 9
“IMS standard user exit parameter list” on page 5

420 Exit Routines

RECON I/O exit routine (DSPCEXT0)
The RECON I/O exit routine (DSPCEXT0) tracks changes to the RECON data set,
which you can log in a journal. You can use the journal, in turn, as a trace facility,
to monitor the activity of specific record types, or to write your own recovery
utility for the RECON data set.

DBRC gives control to the RECON I/O exit routine (DSPCEXT0) during I/O
operations to the RECON.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 423

About this routine

You can code DSPCEXT0 so that it updates the journal each time a record of the
data set is updated, inserted, deleted, or read. You can also record changes that are
internal to the RECON access modules, such as header record extension control
item changes, or the addition and deletion of multiple update control records
within the data set.

You can use DSPCEXT0 when RECON access is either serial or parallel.

The following table shows the attributes of the RECON I/O exit routine.

Table 150. RECON I/O exit routine attributes

Attribute Description

IMS environments DB/DC, DBCTL, and DCCTL

Naming convention You must name this exit routine DSPCEXT0.

Binding You must write and bind this routine as reentrant (RENT).

After assembling the source code, you need to bind the object code
for this module into the IMS load module DSPCINT0.

Including the routine No special steps are needed to include this routine.

IMS callable services This exit is not eligible to use IMS callable services.

Sample routine
location

The IMS.ADFSSRC data set contains member name DSPCEXT1,
which you can modify to provide support for both BPE and
non-BPE based DBRC environments. DSPCEXT1 must be linked as
DSPCEXT0.

You must write and bind DSPCEXT0 as reentrant. It is entered from DBRC in
31-bit addressing mode and must return to DBRC in 31-bit addressing mode. All
parameters and data areas supplied to DSPCEXT0 by DBRC are located above the
16 MB line. In addition, load module DSPCINT0, in which DSPCEXT0 is located,
resides above the line. Note that due to the residency of DSPCINT0, unless you
specify otherwise, GETMAIN will acquire storage above the 16 MB line when
issued for DSPCEXT0.

No further calls to DSPCEXT0 occur if it terminates abnormally. DBRC recovers the
termination and carries on normally thereafter.

Chapter 4. IMS system exit routines 421

Calling the routine

Control is passed to the RECON I/O exit routine whenever a RECON record has
been successfully read, written, or modified on COPY 1 of the RECON data set,
not necessarily for every physical I/O operation. Changes to the header record
extension also cause the RECON I/O exit routine to be called.

When RECON access is parallel, the RECON data set can be accessed by multiple
DBRC instances concurrently. In this case, multiple instances of the RECON I/O
exit routine can be invoked concurrently.

With serial access, the user can rely on all updates written to the RECON data set.
If an error occurs, and the update is backed out by DBRC, the exit is called for all
the updates made during backout. If the exit is used to mirror updates, the exit can
immediately make the equivalent updates to a mirror data set.

With parallel access, the backout of data is not done by DBRC, which means that
the exit is not called for the backout updates. Updates made during a given series
should not be considered hardened in the RECON data set until a commit call is
made. If the exit is used to mirror updates, it must either be capable of backing out
the updates it mirrors, or it must collect all updates for a given series and only
mirror them if the exit is called with a commit call.

Whenever a record of data is inserted, updated, deleted, or read, this routine is
called after the call or change is made to the RECON data set. For each insert,
delete, and read call, the routine receives a copy of the inserted, deleted, or read
record, respectively. For each update call, the routine receives a copy of the record
as it appeared both before and after it was updated. For delete and update calls,
the copy of the record read must be incomplete if DBRC is unable to locate all
segments for that record. In this case, byte 2 of word 17 in the I/O exit parameter
list is set to X'40'.

The records passed to the exit routine are in the format of the release level of the
RECON data set, and rather than the release level of the DBRC that calls the exit.
In order for the DBRCs of multiple IMS systems at different release levels to
coexist, the RECON data set must be at the level of the highest level system. An
indication of the RECON data set release level exists in the parameter list that is
passed to the exit. When the RECON is upgraded to a new release, the exit routine
can use both the old release format and the new release format. During the
upgrade process, the release level in the parameter list shows the old release level.
A flag in the parameter list indicates that an upgrade is in progress.

The release level of the RECON can change from one Begin Series call to another.
Except during the upgrade process, the release level does not change between the
Begin Series call and the Terminate Series call.

Any modifications to storage that this routine makes must be made to storage that
is obtained by the routine, not to the data areas pointed to by DBRC or IMS or to
those contained within the routine itself.

Each series of I/O accesses that DBRC makes to the RECON data set is indicated
to the routine by a Begin Series call. When the series of I/O operations is complete,
the routine receives a Terminate Series call.

422 Exit Routines

|
|
|
|

Performance recommendations

While this routine is running, the RECON data set is reserved so that no other jobs
can access RECON records. To minimize the affect that this routine's execution has
on your system's performance, you need to:
v Limit the I/O operations that the routine itself performs and simplify the

routine's functions to make efficient use of processing time.
v Be sure that any resources needed solely by the routine (that is, those not

needed by DBRC/IMS in general) are immediately available to z/OS when
DBRC is initialized and in control. You should therefore avoid operations that
can put the routine, and therefore DBRC, in a prolonged wait state (for example,
the ENQUEUE/DEQUEUE of resources that cannot be readily accessed by the
routine or write to operator messages that require waiting for a reply).

v Be aware that with parallel RECON access, the RECON data set is not reserved.
In addition, multiple instances of the RECON I/O exit routine can be invoked
concurrently.

DBRC enables the size of a record in the RECON data set to not be limited by the
defined RecordSize. DBRC divides its own records into segments, each of which
fits into a single Control Interval (CI) and is sent by VSAM as a complete record.
Segmenting allows a logical RECON record to be as large as 16 777 215 bytes. The
RECON I/O exit routine will be presented with complete, unsegmented logical
records.

To minimize the performance impact that the routine's execution has on DBRC, the
routine spools its copy of RECON data records to a data set (specified by a DD
statement with the name DBRCDATA) for later offline processing outside the
DBRC environment. Any data sets that your routine references need to be accessed
by DD statements as well.

Communicating with IMS

IMS uses the entry and exit registers to communicate with the exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of a standard z/OS parameter list. This list consists of a fullword
with the high-order bit ON, indicating the last entry in the list. The
remaining bits comprise the address of a data area containing the RECON
I/O parameter list (DSPRIOX).

13 Address of save area. The exit routine must not change the first three words.

14 Return address to the calling RECON access routine.

15 Entry point of exit routine.

Description of parameters

This routine receives the parameter list from the calling RECON access module at
the first Begin Series call for a job. The parameter list points to the same data area
for all subsequent calls for that job.

Chapter 4. IMS system exit routines 423

The data area pointed to by the parameter list is 24 words (96 bytes) long and
starts on a fullword boundary. Words 9 through 16 of the list are free to be used by
the exit routine and remain unchanged by DBRC after the first Begin Series call.
They initially contain all zeros.

The first byte of word 17 of the list indicates the release level of the RECON in
hexadecimal format. The following table lists RECON release levels by IMS
version:

Version RECON release level in hexadecimal format

IMS Version 13 X'D1'

IMS Version 12 X'C1'

IMS Version 11 X'B1'

Byte 2 of word 17 contains flags. Bytes 3 and 4 of Word 17, and Words 22 through
24 are reserved for future use.

The following tables list the exit parameter list at various exit points in the routine.

Table 151. Begin Series parameter list

Field Name Offset Length Field
Usage

Description

RIOX_EYEC X'00' X'04' Input Eye catcher “CEXT”

RIOX_FUNC X'04' X'04' Input Function Code 1 - “Begin Series”

A binary 1, indicating a Begin Series
call to this routine as a result of a
RESERVE function having been
performed on the RECON data set.

RIOX_TOKEN X'08' X'08' Input
Request token.

v All calls to the exit for this series,
including the Terminate Series call,
will have this request token.

v For serial RECON access, the token
is the RESERVE sequence number
from the control record extension.
This number is incremented by one
in the control record extension each
time DBRC completes a successful
RESERVE of the RECON data set.

v For parallel RECON access, the
token is a store-clock (STCK) value
captured before the RECON I/O exit
is invoked.

424 Exit Routines

||

Table 151. Begin Series parameter list (continued)

Field Name Offset Length Field
Usage

Description

RIOX_CHANGECNT X'10' X'04' Input
Changed record count.

v For serial RECON access, this is the
changed record count from the
control record extension. The
changed record count is a 32-bit
logical value that can eventually
wrap back to zero. This is the count
as of the last DEQUEUE function
that DBRC performs, or that value
plus one if the last DBRC abended.
A change to the RECON data set has
occurred if an ENQUEUE sequence
detects that the last DBRC abended.
For more information about the
changed record count, see the
"Terminate Series" exit call in this
topic.

v For parallel RECON access, the
count is always zero. The RECON
I/O exit routine interprets a zero
count to mean that parallel access is
in effect.

X'14' X'2C' None Reserved.

RIOX_FLAGS X'40' X'04' Input
Byte 1 indicates the release level of the
RECON. For IMS Version 12, the value
is X'C1'.

Byte 2 contains the following flags:

v Bit 0 is ON when upgrade is in
progress.

v Bit 1 is OFF.

v Bit 2 is ON for parallel RECON
access.

Bytes 3 and 4 are reserved.

RIOX_INSTANCE_TOKEN X'44' X'10' Input v For serial RECON access, binary
zeroes.

v For parallel RECON access, the
DBRC instance token. This token is a
binary value that can be used to
distinguish the calls in a given series
in case two DBRC instances present
the same STCK value (request
token). The instance token is unique
across currently executing DBRC
instances.

RIOXVersion X'54' X'04' Input Parameter list version number
(00000001)

X'58' X'08' None Reserved.

Table 152. Insert record parameter list

Field Name Offset Length Field
Usage

Description

RIOX_EYEC X'00' X'04' Input Eye catcher “CEXT”

Chapter 4. IMS system exit routines 425

Table 152. Insert record parameter list (continued)

Field Name Offset Length Field
Usage

Description

RIOX_FUNC X'04' X'04' Input Function Code 3 - “Insert”.

A binary 3, indicating an insert call to
this routine as a result of a record
having been inserted into the RECON
data set.

RIOX_TOKEN X'08' X'08' None Reserved

RIOX_RECORDLEN X'10' X'04' Input Length of the record that has been
inserted.

RIOX_RECORDADR X'14' X'04' Input Address of the record that has been
inserted.

X'18' X'28' None Reserved.

RIOX_FLAGS X'40' X'04' Input Byte 1 indicates the release level of the
RECON.

Byte 2 contains the following flags:

v Bit 0 is ON when upgrade is in
progress.

v Bit 1 is OFF.

v Bit 2 is ON for parallel RECON
access.

Bytes 3 and 4 are reserved.

RIOX_INSTANCE_TOKEN X'44' X'10' Input Unchanged from the Begin Series call.

RIOXVersion X'54' X'04' Input Parameter list version number
(00000001)

X'58' X'08' None Reserved.

Table 153. Update record parameter list

Field Name Offset Length Field
Usage

Meaning or content

RIOX_EYEC X'00' X'04' Input Eye catcher “CEXT”

RIOX_FUNC X'04' X'04' Input A binary 4, indicating an update call to
this routine as a result of a record
having been updated on the RECON
data set.

RIOX_TOKEN X'08' X'08' Input Request token.

v For serial and parallel access, the
value is unchanged from the 'begin
series' call.

RIOX_OLDRECLEN X'10' X'04' Input Length of the record image before
update.

RIOX_OLDRECADR X'14' X'04' Input Address of a copy of the record as it
appeared before the update.

RIOX_NEWRECLEN X'18' X'04' Input Length of the replacement record.

RIOX_NEWRECADR X'1C' X'04' Input Address of the replacement record.

X'20' X'20' None Reserved.

426 Exit Routines

Table 153. Update record parameter list (continued)

Field Name Offset Length Field
Usage

Meaning or content

RIOX_FLAGS X'40' X'04' Input
Byte 1 indicates the release level of the
RECON.

Byte 2 contains the following flags:

v Bit 0 is ON when upgrade is in
progress.

v Bit 1 is ON if the record, before
being changed, had a missing
segment.

v Bit 2 is ON for parallel RECON
access.

Bytes 3 and 4 are reserved.

RIOX_INSTANCE_TOKEN X'44' X'10' Input Unchanged from the Begin Series call.

RIOXVersion X'54' X'04' Input Parameter list version number
(00000001)

X'58' X'08' None Reserved.

Table 154. Delete record parameter list

Field Name Offset Length Field
Usage

Meaning or content

RIOX_EYEC X'00' X'04' Input Eye catcher “CEXT”

RIOX_FUNC X'04' X'04' Input Parameter list version number
(00000001).

RIOX_TOKEN X'08' X'08' None Function Code 5 - “Delete”.

A binary 5, indicating a delete call to
this routine as a result of a record
having been deleted from the RECON
data set.

RIOX_OLDRECLEN X'10' X'04' Input Length of the record that has been
deleted.

RIOX_OLDRECADR X'14' X'04' Input Address of the record that has been
deleted.

X'18' X'28' None Reserved.

RIOX_FLAGS X'40' X'04' Input Byte 1 indicates the release level of the
RECON.

Byte 2 contains the following flags:

v Bit 0 is ON when upgrade is in
progress.

v Bit 1 is OFF.

v Bit 2 is ON for parallel RECON
access.

Bytes 3 and 4 are reserved.

RIOX_INSTANCE_TOKEN X'44' X'10' Input Unchanged from the Begin Series call.

RIOXVersion X'54' X'04' Input Parameter list version number
(00000001)

X'58' X'08' None Reserved.

Chapter 4. IMS system exit routines 427

Table 155. Read record parameter list

Field Name Offset Length Field
Usage

Description

RIOX_EYEC X'00' X'04' Input Eye catcher “CEXT”

RIOX_FUNC X'04' X'04' Input Function Code 6 - “Read”.

A binary 6, indicating a read call to this
routine as a result of a record having
been read from the RECON data set.

RIOX_TOKEN X'08' X'08' None Reserved

RIOX_OLDRECLEN X'10' X'04' Input Length of the record that has been
read.

RIOX_OLDRECADR X'14' X'04' Input Address of the record that's been read.

X'18' X'28' None Reserved

RIOX_FLAGS X'40' X'04' Input Byte 1 indicates the release level of the
RECON.

Byte 2 contains the following flags:

v Bit 0 is ON when upgrade is in
progress.

v Bit 1 is OFF.

v Bit 2 is ON for parallel RECON
access.

Bytes 3 and 4 are reserved.

RIOX_INSTANCE_TOKEN X'44' X'10' Input Unchanged from the Begin Series call.

RIOXVersion X'54' X'04' Input Parameter list version number
(00000001)

X'58' X'08' None Reserved.

Table 156. Commit request parameter list

Field Name Offset Length Field
Usage

Description

RIOX_EYEC X'00' X'04' Input Eye catcher “CEXT”

RIOX_FUNC X'04' X'04' Input Function Code 7 - “Commit”.

A binary 7, indicating a commit call to
this routine. The call results from
previous updates (including inserts and
deletes) for this current series being
committed to the RECON data set. This
call is made only for parallel RECON
access.

RIOX_TOKEN X'08' X'08' None Reserved

X'10' X'30' None Reserved

RIOX_FLAGS X'40' X'04' Input Byte 1 indicates the release level of the
RECON.

Byte 2 contains flags that are defined as
follows:

v Bit 0 is ON when upgrade is in
progress

v Bit 1 is OFF

v Bit 2 is ON for parallel RECON
access.

Bytes 3 and 4 are reserved.

428 Exit Routines

Table 156. Commit request parameter list (continued)

Field Name Offset Length Field
Usage

Description

RIOX_INSTANCE_TOKEN X'44' X'10' Input Unchanged from the Begin Series call.

RIOXVersion X'54' X'04' Input Parameter list version number
(00000001)

X'58' X'08' None Reserved.

Table 157. Backout request parameter list

Field Name Offset Length Field
Usage

Description

RIOX_EYEC X'00' X'04' Input Eye catcher “CEXT”

RIOX_FUNC X'04' X'04' Input A binary 8, indicating a backout call to
this routine. The call results from
previous updates (including inserts and
deletes) for this current series being
backed out of the RECON data set.
This call is made only for parallel
RECON access.

RIOX_TOKEN X'08' X'08' Input Reserved

X'10' X'30' None Reserved

RIOX_FLAGS X'40' X'04' Input
Byte 1 indicates the release level of the
RECON.

Byte 2 contains the following flags:

v Bit 0 is ON when upgrade is in
progress.

v Bit 1 is OFF.

v Bit 2 is ON for parallel RECON
access.

Bytes 3 and 4 are reserved.

RIOX_INSTANCE_TOKEN X'44' X'10' Input Unchanged from the Begin Series call.

RIOXVersion X'54' X'04' Input Parameter list version number
(00000001)

X'58' X'08' None Reserved.

Table 158. Terminate Series parameter list

Field Name Offset Length Field
Usage

Description

RIOX_EYEC X'00' X'04' Input Eye catcher “CEXT”

RIOX_FUNC X'04' X'04' Input Function Code2 - “Terminate Series” A
binary 2, indicating a Terminate Series
call to this routine. This call occurs at
the end of processing a DBRC request.
For serial RECON access, the
DEQUEUE for the RECON has been
performed.

RIOX_TOKEN X'08' X'08' Input Request token. Unchanged from the
Begin Series call.

Chapter 4. IMS system exit routines 429

Table 158. Terminate Series parameter list (continued)

Field Name Offset Length Field
Usage

Description

RIOX_CHANGECNT X'10' X'04' Input
Final changed record count.

v For serial RECON access, this is the
final changed record count as it now
appears on the control record
extension. The changed record count
is a 32-bit logical value that can
eventually wrap back to zero. Either
the count is the same as the Begin
Series call value, or it is that value
plus one if any change has been
made (other than to the record
extension itself) to the RECON data
set since the Begin Series call. By
monitoring the value of this counter
between its value here and the next
Begin Series exit call, you can detect
changes made to the RECON data
set by other occurrences of DBRC.

v For parallel RECON access, the
count is always zero. With parallel
access, you cannot detect when
changes have been made to the
RECON by other DBRC instances.

X'14' X'2C' None Reserved

RIOX_FLAGS X'40' X'04' Input
Byte 1 indicates the release level of the
RECON.

Byte 2 contains the following flags:

v Bit 0 is ON when upgrade is in
progress.

v Bit 1 is OFF.

v Bit 2 is ON for parallel RECON
access.

Bytes 3 and 4 are reserved.

RIOX_INSTANCE_TOKEN X'44' X'10' Input v For serial RECON access, binary
zeroes.

v For parallel RECON access, the
DBRC instance token. This token is a
binary value that can be used to
distinguish the calls in a given series
in case two DBRC instances present
the same STCK value (request
token). The instance token is unique
across currently executing DBRC
instances.

RIOXVersion X'54' X'04' Input Parameter list version number
(00000001)

X'58' X'08' None Reserved.

Contents of registers on exit

Before returning to DBRC, the exit routine must restore all registers except register
15, which must contain one of the following return codes.

430 Exit Routines

The following table reflects the register contents for non-BPE based DBRC exit
routines.

Return code Meaning

0 The exit routine is called.

nonzero No further calls to this exit routine are made.

Related concepts:

Initializing and maintaining the RECON data sets (System Administration)
Related reference:
Chapter 7, “BPE-based DBRC user exit routines,” on page 533
“Routine binding restrictions” on page 9
“RECON I/O exit routine” on page 538

Minimizing impact to system performance
You can minimize the impact of running the RECON I/O exit routine (DSPCEXT0)
on system performance by following three recommended steps.

While this routine is running, the RECON data set is reserved so that no other jobs
can access RECON records. To minimize the affect that this routine's execution has
on system performance:
1. Limit the I/O operations that the routine completes and simplify the functions

of the routine to use processing time efficiently.
2. Ensure that any resources that are needed solely by the routine (needed by

DBRC or IMS) are immediately available to z/OS when DBRC is initialized and
in control. Avoid operations that can put the routine, and therefore DBRC, in a
prolonged wait state (for example, the enqueue or dequeue of resources that
cannot be readily accessed by the routine, or write to operator messages that
require waiting for a reply).

3. Be aware that with parallel RECON access, the RECON data set is not reserved.
In addition, multiple instances of the DSPCEXT0 routine can be invoked
concurrently.

DBRC divides its own records into segments, each of which fits into a single
Control Interval (CI) and is sent by VSAM as a complete record. Segmenting
allows a logical RECON record to be as large as 16 777 215 bytes. The DSPCEXT0
exit routine will be presented with complete, unsegmented logical records.

Resource Access Security user exit (RASE)

The Resource Access Security user exit (RASE) authorizes IMS resources such as
transactions, PSBs, or output LTERM names. This user exit is called after the SAF
interface is called.

Subsections:
v “About this routine” on page 432
v “Communicating with IMS” on page 432

Chapter 4. IMS system exit routines 431

|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/dbrc_admin/ims_recon_int_maint.htm#ims_recon_int_maint

About this routine

This user exit is called during the initialization of an IMS dependent region or
CCTL/AER initialization or connection to allow the user to instruct IMS to
perform one of the functions described in the return codes section. For example,
this user exit can terminate a connection with a code 437 user abend.

This user exit is called to perform pre-authorization processing and can instruct
IMS to skip PSB or transaction authorization processing for any thread instance.
The pre-authorization process is performed only if the exit returns with return
code 4 or 24 from initialization processing, and ISIS=R or ISIS=A is specified or if
ODBASE=Y is specified for an AER thread.

If ISIS=A or ISIS=C is specified, the RASE user exit is required at IMS initialization.
If the exit is not available during IMS initialization, IMS terminates with a U0107
abend, subcode x'04'. The RASE user exit is optional if ISIS=R or if ODBASE=Y
and ISIS=N.

The RASE user exit can be added or deleted using the REFRESH USEREXIT
command. If you delete the RASE user exit with the REFRESH USEREXIT
command, DFS4585W message is issued. The ISIS and ODBASE values are
included in the message text.

Specify the requirement to call the SAF interface and user exit using the ISIS
parameter at system initialization.

This user exit does not support callable services.

The following table shows the attributes for the Resource Access Security user exit.

Table 159. Resource Access Security user exit attributes

Attribute Description

IMS environments DB/DC, DBCTL, DCCTL

Naming convention You can name this exit routine DFSRAS00 and link it into a library that is included in
the STEPLIB concatenation.

Alternatively, you can define one or more exit routine modules with the EXITDEF
parameter of the USER_EXITS section of the DFSDFxxx member of the IMS.PROCLIB
data set. The routines are called in the order that they are listed in the parameter.

Binding You must write the exit routine as reentrant.

Including the routine The module or modules must be included in an authorized library in the JOBLIB,
STEPLIB, or LINKLIST concatenation. No additional steps are necessary to use a single
exit routine that is named DFSRAS00. If you use multiple exit routines, specify
EXITDEF=(TYPE=RASE,EXIT=(exit_names)) in the EXITDEF parameter of the
USER_EXITS section of the DFSDFxxx member of the IMS.PROCLIB data set.

IMS callable services This routine is not eligible for IMS callable services.

Sample routine location IMS.ADFSSMPL

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the user exit.

Contents of registers on entry

432 Exit Routines

|
|
|
|

|
|
|
|

|
|

|
|

|
|
|

|
|
|
|
|

On entry, the user exit must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of the “IMS standard user exit parameter list” on page 5

13 Address of the save area.

14 Return address of IMS.

15 Entry point address of user exit.

IMS standard user exit parameter list (SXPL)

This user exit uses the Version 6 standard exit parameter list. The address of the
work area passed to this user exit in SXPLAWRK can be different each time that
this user exit is called.

If your RASE user exit can be called in an enhanced user exit environment,
additional user exit routines can be called after your routine. When your user exit
routine finds a transaction upon which to act, it can set SXPL_CALLNXTN in the
byte that SXPLCNXT points to. This tells IMS to not call additional exit routines.

Resource Access Security exit routine parameter list

The following table shows the function-specific parameter list that is mapped by
DFSRASL.

Table 160. Function-specific parameter list mapped by DFSRASL

Field Offset Length Content

RASLVER 0 4 Version number for DFSRASL

Chapter 4. IMS system exit routines 433

|
|
|
|

Table 160. Function-specific parameter list mapped by DFSRASL (continued)

Field Offset Length Content

RASLFUNC 4 1 Reason for entering the RASE user exit:

X'01' Initialization

X'02' Authorize transaction (MPP, JMP)

X'03' Authorize PSB (IFP, non-message-driven
BMP, JBP, DRA/CCTL|ODBA)

X'04' Authorize transaction and PSB
(message-driven BMP)

X'05' Authorize PSB and output LTERM
(non-message-driven BMP, JBP)

X'06' Authorize PSB and output transaction
(non-message-driven BMP, JBP)

X'07' Dependent region initialization

X'08' AER/ODBA thread initialization or
connection

X'09' CCTL/DBCTL thread initialization or
connection

X'0A' Pre-authorize PSB or transaction for
dependent region or CCTL/AER
thread. This function skips normal PSB
or transaction authorization for
functions X'02' to X'06' that would
normally be invoked after the
pre-authorization processing.

RASLENVR 5 1 Type of dependent region for which exit was
called:

X'01' MPP

X'02' IFP

X'03' Message-driven BMP

X'04' Non-message-driven BMP

X'05' JMP

X'06' JBP

X'07' DRA thread from a CCTL task

X'08' DRA thread from an ODBA task

X'09' CPI-C MPP

RASFLG1 6 1 Flag byte:

X'04' ISIS=R specified

X'02' ISIS=C specified

X'01' ODBASE=Y specified
Note: If bit X'04' and bit X'02' are both on,
ISIS=A is specified for the IMS system.

RASLESV 7 1 Reserved

RASLTRAN 8 8 Transaction code (for BMPs, from IN= if message
driven, and from OUT= if non-message-driven)

434 Exit Routines

|

||

||

||
|

||
|

||
|

||
|

||

||
|

||
|

||
|
|
|
|
|
|

Table 160. Function-specific parameter list mapped by DFSRASL (continued)

Field Offset Length Content

RASLTSRC 16 4 SAF return code for transaction

RASLTRRC 20 4 RACF (or equivalent) return code for transaction

RASLTRRS 24 4 RACF (or equivalent) reason code for transaction

RASLPSB 28 8 PSB name

RASLPSRC 36 4 SAF return code for PSB

RASLPRRC 40 4 RACF (or equivalent) return code for PSB

RASLPRRS 44 4 RACF (or equivalent) reason code for PSB

RASLLTRM 48 8 Output LTERM name

RASLLSRC 56 4 SAF return code for LTERM

RASLLRRC 60 4 RACF (or equivalent) return code for LTERM

RASLLRRS 64 4 RACF (or equivalent) reason code for LTERM

RASLECB 68 4 ECB address

RASLTCDE 72 8 Input transaction code

RASLPGM 80 8 Program name

RASLUSID 88 8 User ID of dependent region

RASLGRPN 96 8 Group name

RASLSSTY 104 1 IMS environment flag:

X'01' DB/DC system

X'02' DCCTL system

X'03' DBCTL system

RASLROLE 105 1 XRF and RSR role flag:

X'01' XRF active IMS

X'02' XRF alternate IMS

X'03' RSR active IMS

X'04' RSR tracking IMS

RASLMVSL 106 1 z/OS version and release on which IMS was
generated

RASLUIDI 107 1 User ID indicator:

RASLUIDU
User ID in RASLUSID field

RASLUIDL
LTERM in RASLUSID field

RASLUIDP
PSB name in RASLUSID field

RASLUIDO
Other in RASLUSID field

RASLIMSI 108 8 IMS subsystem identifier

RASLIMSL 116 4 IMS version and release

RASLJOBN 144 8 Job name for the dependent region or
CCTL/AER address space

RASLSSNM 152 8 Subsystem name for the CCTL/AER thread

Chapter 4. IMS system exit routines 435

Notes:

1. When the RASE user exit is used to authorize two resources, the exit routine is
called twice: once for each resource. On the first call, one resource field
(RASLTRAN, RASLPSB, or RASLLTRM) contains the resource name and the
other resource field contains binary zeros. If the first call is successful, on the
second call, the resource field that contained zeros in the first call contains the
resource name and the other resource field that contained the resource name
contains binary zeros.
For example, to authorize a PSB and output LTERM, the first call is made with
the RASLPSB containing the PSB name and RASLLTRM containing binary
zeros. On the second call, RASLPSB contains zeros and RASLLTRM contains
the LTERM name.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for
register 15, which contains one of the following return codes:

Return code Meaning

0 Resources valid for this user

4 IMS must perform pre-authorization processing for PSB or transaction
authorization. IMS honors this return code instruction only when the
function code in the RASLFUNC field is X'07', X'08', or X'09'.

8 Resources invalid for this user.

For function codes X'07', X'08', and X'09' in the RASLFUNC field, this
return code instructs IMS to issue a DFS2854A message and terminate the
dependent region or CCTL/AER thread with ABENDU0437.

12 IMS must skip the subsequent PSB or transaction authorization
processing for this instance of this thread. IMS honors this return code
instruction only when the function code in the RASLFUNC field is X'0A'.

16 IMS must skip all subsequent PSB or transaction authorization processing
for all instances of this thread. IMS honors this return code instruction
only when the function code in the RASLFUNC field is X'07', X'08', or
X'09'.

20 IMS must skip the subsequent user authorization processing of the IMS
APPL ID during dependent region initialization or CCTL/AER thread
connection. IMS honors this return code instruction only when the
function code in the RASLFUNC field is X'07', X'08', or X'09'.

If this return code is specified, IMS will skip the SAF FASTAUTH call
that is normally performed for PSB or transaction authorization when
ISIS=A or R is specified for the IMS system.

24 IMS must perform authorization processing as indicated in both return
code 4 and return code 20. IMS honors this return code instruction only
when the function code in the RASLFUNC field is X'07', X'08', or X'09'.

28 IMS must perform authorization processing as indicated in both return
code 16 and return code 20. IMS honors this return code instruction only
when the function code in the RASLFUNC field is X'07', X'08', or X'09'.

32 IMS must perform the subsequent PSB authorization processing for this
instance of this thread, but must skip the subsequent transaction or
LTERM authorization processing that is normally performed. IMS honors
this return code instruction only when the function code in the
RASLFUNC field is X'0A' for a message-driven BMP or for a BMP/JBP
with the OUT= parameter specified.

436 Exit Routines

|
|
|
|
|
|
|

|
|
|
|

Return code Meaning

36 IMS must perform the subsequent transaction or LTERM authorization
processing for this instance of this thread, but must skip the subsequent
PSB authorization processing that is normally performed. IMS honors this
return code instruction only when the function code in the RASLFUNC
field is X'0A' for a message-driven BMP or for a BMP/JBP with the
OUT= parameter specified.

Related reference:
“Routine binding restrictions” on page 9
“IMS standard user exit parameter list” on page 5

System Definition Preprocessor exit routine (input phase) (DFSPRE60)
System Definition Preprocessor exit routine (Input Phase) can be used to alter,
insert, or delete data from stage 1 input before the Preprocessor record scan occurs.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 438

About this routine

DFSPRE60 is a System Definition Preprocessor exit routine. This routine is entered
following the reading each stage 1 input record.

Control passes to DFSPRE60 after each stage 1 input record is read from SYSIN,
and also after each record (if any) is read from SYSLIB, but before any such records
are scanned by the preprocessor. Stage 1 data is presented to DFSPRE60 exactly as
read by the preprocessor. Data can be altered, inserted, or deleted during this exit
routine phase. However, the alterations, insertions, or deletions are not passed to
Stage 1.

Related Reading: For a description of the system definition preprocessor, see IMS
Version 13 System Definition.

You can also use this exit routine for construction of tables or for verification as
required by installation practices. For example, if you want to check if transaction
codes (which are also IMS command keywords) are accidentally defined, this
routine can insert TRANSACT macros for each IMS command keyword. The
results of changes appear in the listing produced by the preprocessor, unless the
exit routine returns a return code of 4. However, no update of the original input is
performed.

If this exit routine is used, you must specify Y as the first positional parameter in
the parameter field of the EXEC card. The routine module must be named
DFSPRE60, and it must reside on the library pointed to by the STEPLIB DD
statement. If concatenation is used, the libraries are searched according to z/OS
rules.

The following table shows the attributes of the System Definition Preprocessor
(Input Phase) exit routine.

Chapter 4. IMS system exit routines 437

Table 161. System definition preprocessor exit routine (input phase) attributes

Attribute Description

IMS environments DB/DC, DCCTL, and DBCTL (with modifications).

Naming convention You must name this exit routine DFSPRE60.

Binding You must bind this routine with RMODE=24; otherwise, an abend
can occur.

Including the routine No special steps are required to include this routine.

IMS callable services IMS callable services are not applicable for use with this exit
routine.

Sample routine
location

IMS.ADFSSMPL (member name DFSPRE60).

Communicating with IMS

IMS communicates with the System Definition Preprocessor exit routine through
the entry and exit registers.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of parameter list.

10 Address of vector table.

13 Address of save area. The exit routine must not change the first three words.

14 Return address to IMS.

15 Entry point of exit routine.

Description of parameters

The parameters are listed in parameter list format and vector table format.

Parameter List Format
A(INPUT) (or A(0) at end of file)

INPUT: These stage 1 source statements reside on the data set
pointed to by the DD statement SYSIN or the copy members
from SYSLIB.

Vector Table Format
A(DFSPRE30) - Entry point to QUICKSORT routine
A(DFSPRE40) - Entry point to duplicate check routine
A(DFSPRE50) - Entry point to cross check routine
A(0) - Reserved for user

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for
register 15, which must contain one of the following return codes:

438 Exit Routines

Return code Meaning

X'00' Normal return; record is processed.

X'04' Do not process record. Record is not printed.

X'08' Return to exit routine. Pass control to this exit routine before reading another
input record. The input buffer, as modified by the exit routine, is processed as
an input record.

X'0C' Do not call this exit routine again. Record is processed.

Related reference:
“Routine binding restrictions” on page 9

Sample system definition preprocessor exit routine
Use the sample system definition preprocessor exit routine to alter, insert, or delete
data from stage 1 input before the Preprocessor record scan occurs.

The input statements are scanned for a comment card indicating that TRANSACT
macros are to be read from a user file, and passed to the preprocessor in the input
buffer area whose address is passed on entry. While the user file is read, the exit
routine returns a code of X'08', indicating that the preprocessor is to continue
calling the exit routine, instead of reading input records from the SYSIN file.

When the end of file is reached on the user file, the exit routine returns a code of
X'0C', indicating that the exit routine is not to be invoked again. The statements
passed to the preprocessor are handled identically to the statements on the SYSIN
file. However, these statements are not written out to the SYSIN file for later
processing by Stage 1.

System Definition Preprocessor exit routine (name check complete)
(DFSPRE70)

The System Definition Preprocessor exit routine (name check complete) DFSPRE70,
can be used to build tables that contain resource names that have been
cross-checked.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 440

About this routine

This exit routine is entered when all cross-checking of resource names is
completed.

To track the changes between IMS system definitions, you can access all tables
constructed by the preprocessor, and write them on files for input to a user
program.

If this exit routine is used, you must specify Y as the second positional parameter
in the parameter field on the EXEC card. The exit module, which must be named
DFSPRE70, must reside on the library pointed to by the STEPLIB DD statement. If
concatenated, the libraries are searched according to z/OS rules. The processing in
this exit routine does not affect the previous preprocessor results or error messages.

Chapter 4. IMS system exit routines 439

The following table shows the attributes of the System Definition Preprocessor exit
routine (name check complete).

Table 162. System definition preprocessor exit routine (name check complete) attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSPRE70.

Including the routine No special steps are required to include this routine.

IMS callable services IMS callable services are not applicable for use with this exit
routine.

Sample routine
location

IMS.SDFSSMPL (member name DFSPRE70).

In the sample routine, the source name tables are written out for
later processing by user programs. The end of each exit routine is
indicated by the insertion of high values (X'FF').

Communicating with IMS

IMS communicates with the System Definition Preprocessor exit routine through
the entry and exit registers.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of parameter list.

10 Address of vector table.

13 Address of save area. The exit routine must not change the first three words.

14 Return address to IMS.

15 Entry point of exit routine.

Description of parameters

These are the addresses and sizes of tables of resource names. The contents of the
count field (fullword) determine the usefulness of the table field. If the count field
is zero, the contents of the table field are not guaranteed and should be ignored. If
the count field is nonzero, the table field contains the address of the table of
resource names.

Table 163. Parameter list

Resource address Contents

A(Table1) DBD names

A(Count1) Number of entries in Table1

A(Table2) PSB names

A(Count2) Number of entries in Table2

A(Table3) Transaction codes

440 Exit Routines

Table 163. Parameter list (continued)

Resource address Contents

A(Count3) Number of entries in Table3

A(Table4) MSNAME linknames

A(Count4) Number of entries in Table4

A(Table5) VTAM node names

A(Count5) Number of entries in Table5

A(Table6) LTERM names

A(Count6) Number of entries in Table6

A(Table7) Subpool names

A(Count7) Number of entries in Table7

A(Table8) Routing codes

A(Count8) Number of entries in Table8

A(Table9 Physical link names

A(Count9) Number of entries in Table9

A(Table10) Remote system VTAM node names

A(Count10) Number of entries in Table10

A(Table11) MSLINK partner IDs

A(Count11) Number of entries in Table11

Table 164. Vector table format

Resource address Contents

A(DFSPRE30) Entry point to QUICKSORT routine

A(DFSPRE40) Entry point to duplicate check routine

A(DFSPRE50) Entry point to cross check routine

A(0) Reserved for user

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers. Register 15 can
contain a return code, but the preprocessor ignores it.
Related reference:
“Routine binding restrictions” on page 9

Type-1 Automated Operator exit routine (DFSAOUE0)
The Type-1 Automated Operator exit routine (DFSAOUE0) is called continuously
for operator-entered commands from terminals, APPC and OTMA devices, and the
command responses to operator-entered commands. The AO exit routine intercepts
these messages before IMS sends the system message, runs the command, or sends
the command response.

This topic contains Product-sensitive Programming Interface information.

Chapter 4. IMS system exit routines 441

You can write two types of Automated Operator (AO) exit routines. The AO exit
routine that is described in this topic is called a type-1 AO exit routine. It can be
used in the DB/DC and DCCTL environments.

The other AO exit routine (DFSAOE00) is called a type-2 AO exit routine and can be
used in the DB/DC, DCCTL, and DBCTL environments.

If both DFSAOUE0 and DFSAOE00 are provided in a DB/DC or DCCTL
environment, DFSAOE00 is called first. DFSAOE00 determines which exit routine
handles the message, command, or command response.

Subsections:
v “About this routine”
v “Restrictions” on page 450
v “Communicating with IMS” on page 450

About this routine

System messages that are destined for terminals other than the master terminal
operator (MTO) and certain commands and command responses do not cause IMS
to call this exit routine.

You can write the exit routine to handle both single and multisegment messages,
and to perform the following functions:
v Ignore selected segments or an entire message.
v Send a copy of a system message, command, or command response to an

alternate destination.
v Send a new message to an alternate destination for a system message, command,

or command response.
v Change a system message.
v Change a system message and send a copy to an alternate destination.
v Change a copy of a command or command response and send the copy to an

alternate destination.
v Delete a system message.
v Delete a system message and send a copy to an alternate destination.
v Request the edited command buffer (when the input is a command).

The following table shows the attributes for DFSAOUE0.

Table 165. Automated operator exit routine attributes (DFSAOUE0)

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSAOUE0.

Binding
DFSAOUE0 is a stand-alone, 31-bit module that you must provide.
Recommendation: Code the exit routine module as reentrant.

You must manually link-edit the routine with DFSCSI00 to include
the routine.

442 Exit Routines

Table 165. Automated operator exit routine attributes (DFSAOUE0) (continued)

Attribute Description

Including the routine You specify DFSAOUE0 by linking it in the IMS.SDFSRESL
concatenation as a stand alone module. DFSAOUE0 is then loaded
and called. If you specify both DFSAOUE0 and DFSAOE00 (the
other AO exit routine), both are loaded. DFSAOE00 is called first
and can either process the message, command, or command
response, or it can return a code indicating DFSAOUE0 should be
called to do the processing instead.

IMS callable services DFSAOUE0 can use callable services for storage and control block
functions.

To use callable services, issue an initialization call (DFSCSII0) to get
the callable services token and a parameter list in which to build
the function-specific parameter list for the callable service you want
to use. Use the ECB found in register 9 for the DFSCSII0 call.

Sample routine
location

IMS.ADFSSMPL

The AO exit routine can work with an AO application. The exit
routine can insert a message to an alternate destination that is an
AOI transaction without using an AO application. (For more
information, see “Using the Sample AO Application (UETRANS) ”
in IMS Version 13 Operations and Automation.) The AO exit routine
and the AO application used together serve as an example of how
to use AOI.

How this routine processes messages

The following figure shows how an AO exit routine intercepts a command that is
entered from a master terminal.
1. The command is entered.
2. The command controller passes a copy of the command to the exit routine

before it runs the command. The exit routine can send a copy of the command
to any destination (LTERM or transaction).

3. The exit routine returns to the command controller, where the command is run.
4. When the response to the command is returned to the command controller, a

message is generated for the master terminal.
5. Before the message is sent, the exit routine receives control and can route a

copy of the message to any destination (LTERM or transaction).
6. The message is then sent to the master terminal.

Chapter 4. IMS system exit routines 443

The following figure shows how an exit routine processes a system message that is
destined for the master terminal. When a system message is generated, the exit
routine receives a copy of the message before the message is sent to the master
terminal. The exit routine can route a copy of the message to any destination. It
can alter or delete any segment of the message.

A sample exit routine is described in Table 165 on page 442.

Activating this routine

DFSAOUE0 is activated after IMS restart is complete. DFSAOUE0 is activated for
each system message, command, and command response.

Figure 23. Processing when a command is entered at the terminal

Figure 24. Processing when a system message is generated

444 Exit Routines

When IMS shutdown processing begins, DFSAOUE0 is disabled and no longer
receives control.

Types of messages passed to this routine

The following sections contain information about which messages are passed to the
exit routine. IMS passes a copy of commands and command responses, and system
messages destined for the master terminal.

A message that is passed to the exit routine can contain multiple segments.

System messages

A system message is a DFS message that is not a direct (synchronous) response to
a command. IMS passes to the exit routine system messages that are destined for
the master terminal. (If the system message is destined for the secondary master
terminal or z/OS system console, IMS does not pass the exit routine a copy of the
message.) Bit UEH1CPYP in the UEHFLG1 flag field of the UEHB (user exit header
block) indicates that the input to the exit routine is a system message. In most
cases, the first system message that causes IMS to call the exit routine is the
DFS994 checkpoint message.

While IMS passes a system message destined for the master terminal, it can also
send a copy of this message to the secondary master terminal or the z/OS system
console. IMS sends this copy before it passes the original message to the master
terminal. The exit routine can change only the original message that is destined for
the master terminal. The copy that the secondary master terminal or z/OS system
console receives does not reflect any changes the exit routine makes to the original
message.

Most system messages are single-segment messages. Some system messages are
multisegment messages (such as DFS802, DFS970, DFS2503, and DFS3222).

Commands

IMS passes the exit routine a copy of each IMS command that is entered except:
v Internally generated commands.
v Commands that are issued by a CMD or ICMD call from an AO application.
v /FORMAT

v /LOOPTEST

v /MSVERIFY

v /RELEASE

v /NRESTART

v /ERESTART

IMS passes the command after the message editing routines have been called to
modify it. This modified input can contain carriage control characters.

Commands with network-qualified LU names

If you use network-qualified LU names at your installation, the LU name can be 17
bytes long. For IMS commands, the network-qualified LU names must be enclosed
in single quotes (for example, 'NETID.LUNAME').

Chapter 4. IMS system exit routines 445

If an IMS command with the network-qualified LU name is passed to the AO exit
routine, IMS modifies the network-qualified LU name in the input command
before the command is passed to the AO exit routine. The single quotes around the
network-qualified LU name are replaced with blanks, and the period that separates
the network-identifier and the LU name is replaced with a colon.

Example: A /DISPLAY command with a network-qualified LU name entered at the
terminal as:
/DISPLAY LUNAME ’NETWORK1.LUNAME1’ LUNAME2 INPUT.

is passed to the AO exit routine or logged to the secondary master as:
/DISPLAY LUNAME NETWORK1:LUNAME1 LUNAME2 INPUT.

Command responses

IMS passes a copy of command responses to the exit routine. A command response
is a copy of the original response that IMS sent to the terminal that entered the
command. Any asynchronous system message that IMS produces as a result of a
command is not considered a command response, and is passed to the exit routine
only if its destination is the master terminal (as is the case with all system
messages that IMS passes to the exit routine). The exit routine can request that the
edited command buffer be made available on the last entry by setting a flag in the
UEHB (user exit header block).

To receive a command response, the exit routine must handle multisegment
messages and check for subsequent segments; this is because the first segment of a
command response is considered the second segment of a command, even if the
response has only one segment. Responses to the /DISPLAY, /RDISPLAY and /RMxxxx
commands are multiple segment responses.

Changes the command editor makes

The command editor translates certain control characters in any commands you
enter from a terminal. You must accommodate this translation when you write
your exit routine.

The translation is shown in the following table:

Table 166. Translation of control characters in commands

From To

X'14' Restore X'5D' Right parenthesis

X'15' New line X'40' Blank

X'24' Bypass X'4D' Left parenthesis

X'40' Blank X'40' Blank

X'4B' Period X'4B' Period

X'4D' Left parenthesis X'4D' Left parenthesis

X'5D' Right parenthesis X'5D' Right parenthesis

X'60' Dash X'60' Dash

X'6B' Comma X'6B' Comma

X'6D' Dash X'40' Blank

X'7E' Equal X'40' Blank

446 Exit Routines

Types of messages not passed to this routine

IMS does not pass all system messages, operator-entered commands, and
command responses to this exit routine. The following are messages that IMS does
not pass to the exit routine:
v Messages resulting from a /BROADCAST command, other than the command and

the initial response
v Messages that are associated with the /FORMAT, /LOOPTEST, /MSVERIFY, and

/RELEASE commands and their responses
v Copies of system messages that are destined for the secondary master terminal

or the z/OS system console
v Copies of message switches, messages that are inserted by application programs,

or messages that result from the /BROADCAST command
v All system messages, commands, and command responses if message queues are

unavailable, which is possible when initializing, restarting, or shutting down
IMS

Single- and multisegment messages

The exit routine cannot determine from the first segment of a message whether it
is a multisegment message or not. You can determine which messages are
single-segment messages, and write the exit routine so that IMS only calls it once.
This practices helps your system avoid additional processing that is incurred when
the exit routine is written to always test for subsequent segments. To handle those
messages that are multisegment messages or for which you cannot predetermine
the number of segments, you can write the exit routine to request all remaining
segments.

If you write the exit routine so that it does not differentiate between single and
multisegment messages and always checks for remaining segments, IMS always
calls it at least twice. A message segment can accompany the last entry to the exit
routine when the message is a multisegment message. No segment is presented to
the exit routine when the message is a single-segment message.

Supporting multisegment messages

Although most messages contain only one segment, some messages are
multisegment messages. System messages DFS970 and the response to a /DISPLAY
command are examples of multisegment messages. Even if a command response is
a single-segment response, the exit routine must be written to handle multisegment
messages; this is because a command always precedes a command response. If the
exit routine does not check for subsequent segments, IMS does not pass the
segments that contain the command response.

You can write the exit routine so that IMS calls it for each segment of a message. If
you write the exit routine to request the remaining segments, the exit routine is
called at least twice for each message, even if the message has only one segment.
In this case, the last entry to the exit routine is not accompanied by a segment; this
is because the message is a single segment. If the message is a multisegment
message, the exit routine is called for the subsequent segments. The exit routine
must test for a segment the last time it is entered.

Chapter 4. IMS system exit routines 447

For subsequent entries to the exit routine for a multisegment message, bit
UEH1SEG is set in the UEHBFLG1 field of the UEHB (user exit header block)
when another segment is being presented. UEHCPYBF points to the next segment
of the message.

The exit routine cannot necessarily tell which segment belongs to which message;
this is because the presentation of segments that are associated with any one
message can be interspersed with segments associated with a different message.
The UEHB is unique for each message, and you can use the UEHURSVD field to
track which message IMS presents to the exit routine.

Format of message segment copies

IMS uses the UEHB (user exit header block) to pass a copy of the message segment
to the exit routine and places the address of that message segment in the
UEHCPYBF field of the UEHB. The format of the copy of a system message,
operator-entered command, or command response is shown in the following
figure.

The message segment copy contains the following fields:

LL 2-byte field that contains the length of the message on first entry to the exit
routine, not including the length of the 20-byte work area. (If your exit
routine deletes or changes a message, or uses the work area, it must
update this length field.)

ZZ 2-byte field reserved for IMS.

message text

System message
The first segment of the message text begins with the DFSxxxx
number, indicating which message caused IMS to call the exit
routine. The message number is followed by the text of the system
message. If it is a multisegment message, the remaining segments
contain additional text, but do not contain the DFSxxxx message
number.

Command
The message text is one segment long and begins with the
delimiter '/', followed by the command.

Command response
The command response is usually a DFSxxxx message or one
segment of a multisegment command.

CR Optional 1-byte field that contains carriage control characters (for example,
X'15'). Input commands do not include a carriage control character. If the
CR field is included, one byte is included in LL.

work area
A 20-byte work area added to the end of the system message, command,
or command response; the exit routine can use this work area to
communicate with the alternate destination for that segment.

Figure 25. Message segment copy format

448 Exit Routines

Viewing the edited command buffer

IMS expands certain commands and places this expanded view into the edited
command buffer. You can examine this buffer by setting the appropriate exit
registers.

One occasion for examining the buffer is when command processing exceptions
occur, indicated by the DFS058 XXX COMMAND COMPLETED EXCEPT message.
When a LINE, LINK, NODE, or PTERM keyword is used with inclusive or range
parameters, or when a LINE, LINK, PTERM, or SUBSYS keyword is used with the
ALL parameter, IMS expands the command in the edited command buffer to
include the actual resource names or numbers, except for the /BROADCAST
command. The PTERM ALL keywords are only expanded for the /PSTOP, /PURGE,
/RSTART, /START, /STOP, and /MONITOR commands. When a NODE, LTERM, or USER
keyword is used with a generic parameter and exceptions occur, IMS expands the
edited command buffer with up to 10 of the specific resource names that are
invalid and that match the generic parameter.

Only parameter passwords are shown in the edited command buffer; command
passwords are not shown.

The following figure shows the format of the edited command buffer.

The fields contain the following information:

FLAG1
Field containing one of the following flags:

X'FE' Beginning of the edited command.

X'FC' An error was found in a parameter and this flag was set by the
command action modules.

CCC First 3 bytes of command.

NK Hexadecimal value of the number of keywords in the edited command
buffer.

FLAG2
Field containing one of the following flags:

X'FC' Parameter that follows is in error.

X'FF' 3-byte keyword abbreviation follows.

X'FE' Count (CNT) field and parameter follow.

X'(' Count (CNT) field and password follow.

F
L
A
G
1

F
L
A
G
2

F
L
A
G
2

F
L
A
G
3

D
D
L

C

N

T

N
K

CCC

Keyword abbreviation

Parameter
or

password

Figure 26. Edited command buffer

Chapter 4. IMS system exit routines 449

Keyword Abbreviation
Refer to DFSCKWD0 to obtain the abbreviation. In some cases, the
abbreviation is the first three characters of the keyword.

CNT Number of characters in the parameter or password that immediately
follow the CNT. This field is a 1-byte binary field.

Parameter or Password
Parameter exactly as entered from the terminal.

DDL Delimiter that is entered after the parameter or password. If the ALL
parameter is expanded to individual parameters, the delimiter is X'80'. If
the parameter is generic, the delimiter is X'10'.

FLAG3
Period indicating the end of the command.

Restrictions

The exit routine can change or delete system messages only. It can modify the copy
of the system message that the original destination (the master terminal) receives.
It can also modify the copy that an alternate destination receives. The exit routine
cannot change or delete the original command or command response. It can
modify the copy of a command or command response that is destined for an
alternate destination, but it cannot change the copy that the primary destination
receives.

Some transactions must reside on the same IMS subsystem as DFSAOUE0 to
process correctly. If your installation uses shared queues, define these local
transactions as SERIAL to guarantee that they are processed on the local IMS
subsystem. A transaction that is not defined as SERIAL can be processed on any
IMS subsystem with a definition for the transaction.

Communicating with IMS

IMS communicates with this exit routine through the entry and exit registers, and
the user exit header block (UEHB). IMS creates a UEHB for each message and
passes it to the exit routine every time the exit routine is called for that message.
Your exit routine can use the UEHURSVD field in the UEHB to store information
about the message between each call to the exit routine for that message. The
UEHB is freed and any values that were previously saved are lost when processing
of the last segment of the message is complete.

Content of registers on entry

On entry, the exit routine must save all registers in the provided save area. The
registers contain the following information:

450 Exit Routines

Register Contents

0 One of the following entry codes:

Entry Code
Meaning

0 First (initial) entry to the exit routine for the message. A segment is
always presented to the exit routine (and the UEH1SEG field in the
UEHB is set) with this entry code. The buffer pointed to by the
UEHCPYBF field contains the first segment of the message that is
being processed. The flag in the UEHBFLG1 field indicates what
type of message it is.

4 Subsequent entry to the exit routine for the message. This entry code
applies only to multisegment messages with three or more segments.
The segment that is presented with this entry code is not the first or
last segment.

8 Last entry to the exit routine for the message. This entry code
applies only if the exit routine returned a return code of 0, 4, or 20
the last time it was called for this message (indicating that IMS
continues to present the remaining segments to the exit routine).

12 Entry to exit routine after it requests storage. IMS passes the address
of the buffer in the UEHUBUFF field. If storage is not available,
UEHUBUFF contains 0 and the UEH1NSTG flag in the UEHBFLG1
field is set. The exit routine can attempt to get storage a second
time, but if the second attempt is also unsuccessful, one of the
following occurs:

v If IMS is processing a command, it stops further processing of this
command.

v If IMS is processing a system message, it examines the size of the
requested storage. If the size requested is greater than twice the
value of UEHCPYSZ (the size of the current segment plus 20
bytes), IMS stops the exit routine for that message. If the size is
equal to or less than this value, the exit routine waits for the
storage to become available.

16 No message is presented to the exit routine. IMS stopped command
processing because of errors in the command. IMS issues error
messages, termination messages, or both. Command responses that
were built and passed to the exit routine are canceled. A new
response is built if the error is encountered while a /DISPLAY
command response is being built.

1 Address of the UEHB.

7 Address of the communication terminal block (CTB).

9 Address of the communication line block (CLB) or partition specification
table (PST).

11 Address of the system contents directory (SCD).

13 Address of the save area. The exit routine must not change the first 3 words.
For external requests, the exit routine can chain down one save area to obtain
the next available save area.

14 Return address to IMS.

15 Entry point of exit routine.

Key UEHB data fields on entry

The following are key UEHB entry fields:

Chapter 4. IMS system exit routines 451

UEHCPYBF
Address of the copy of the message IMS passed to the exit routine. If the
UEH1SEG flag is set, the buffer contains a pointer to a copy of the
message. If the UEH1CPYP flag in the UEHBFLG1 field is set, the buffer
contains a copy of the first segment of a system message. If the UEH1CMD
flag is set, the buffer contains a copy of the first segment of a command. If
the UEH1CMD flag is set and the entry code is non-0, this field contains a
copy of a segment of a command response.

UEHECMD
Address of the edited command buffer if this is the final entry to the exit
routine and the UEH1ECMD flag in the UEHBFLG1 field was set
(requesting the edited command buffer) the first time IMS called the exit
routine.

UEHUBUFF
Address of an additional storage buffer, if the exit routine requests storage.
If additional storage was not available, this field contains 0, and the
UEH1NSTG flag in the UEHBFLG1 field is set.

Content of registers on exit

Before returning to IMS, the exit routine must restore all registers except for
registers 0, 1, and 15, which contain the following:

Register Contents

0 If register 15 contains a return code of 0 or 8 (and your exit routine sets the
destination for the first time or changes it), this register contains the address
of the alternate destination name. The alternate destination can be a
transaction or an LTERM. The alternate destination name must be 8 bytes,
left-justified with blanks. If the alternate destination is not a valid transaction
or LTERM and the Extended Terminal Option (ETO) is set, a dynamic
LTERM is created. (For more information on the ETO feature, see IMS Version
13 Communications and Connections.)

If register 15 contains a return code of 16 (requesting additional storage), this
register contains the size of storage requested for the user buffer.

If the alternate destination was set with a previous return code of 0 (and
your exit routine does not change it), this register contains 0.

1 If register 15 contains a return code of 0 or 8, this register contains the
address of the segment to insert to the alternate destination or register 1
contains 0 to enqueue a previously inserted segment. If the segment to be
inserted is the final segment, register 1 must contain the address of the
message segment.

If the segment is longer than the original segment (such as when your exit
routine changes a message), and the device associated with the LTERM does
not support the segment length, the terminal device can truncate the
segment.

15 One of the following return codes:

452 Exit Routines

Register Contents

Return code Meaning

0 Insert the segment to the alternate destination and continue
presenting the remainder of the segments to the exit routine.

4 Do not insert the segment to an alternate destination. The exit
routine can change the segment, or it can set the segment
length to 0 to delete the segment. IMS continues to present
remaining segments to the exit routine, which it can also
change or delete.

If register 0 contains 8 on entry, this return code causes all
previously inserted segments to be enqueued.

8 If register 1 contains 0, this return code instructs IMS to
enqueue the previously inserted segments to the alternate
destination (not to insert new segments). Processing is
considered complete.

If register 1 contains the address of the segment to insert, this
return code instructs IMS to insert the current segment, if
there is one, to the alternate destination and enqueue all
inserted segments. Even if there are additional segments, this
return code indicates that the remaining segments are not to
be presented to the exit routine. Processing is considered
complete.

12 Cancel any segment already inserted to the alternate
destination and indicate processing is complete.

16 Cancel any segment already inserted to the alternate
destination and indicate processing is complete.

20 Cancel all prior segments inserted to an alternate destination
and continue presenting the remainder of the segments to the
exit routine.

IMS checks to make sure that the return codes and alternate destination name are
valid. If an invalid return code or an invalid alternate destination is returned, the
exit routine is disabled for the remainder of the segments and is not called. IMS
sends a trace record and a DFS2180I AUTOMATED OPERATOR USER EXIT
ERROR - CODE=x message to the master terminal.

Key UEHB data and flag fields on exit

The following are key UEHB exit fields:

UEHCPYBF
Address of buffer that contains a copy of the segment going to the master
terminal if a system message is being processed. If the exit routine changes
the length of the segment in UEHCPYBF, the LL field must also be
changed to reflect the new length. The LL field can be increased by up to
20 bytes or can be set to 0 (to delete the system message destined for the
master terminal).

UEH1ECMD
Flag in the UEHBFLG1 field indicating that the exit routine requests the
edited command buffer. The exit routine must set this flag the first time it
is called.

Chapter 4. IMS system exit routines 453

UEHURSVD
The 20 bytes of storage reserved for the exit routine. The exit routine can
use UEHURSVD to save the message being processed, entry codes, or flags
between each invocation of the exit routine for a particular message.

Messages inserted to transactions by this routine

When you issue a GU call, and an AO application obtains a message that was
inserted by the exit routine, the application I/O PCB contains an input LTERM
name. IMS will determine the LTERM name as follows:
v If IMS calls the exit routine because of a system message, the input LTERM

name is the master terminal name.
v If IMS calls the exit routine because of command input, the input LTERM name

is the LTERM that entered the command.

Restriction: In a shared-queues environment, transactions that must be processed
by the local IMS subsystem must be defined as SERIAL to process correctly. A
transaction that is not defined as SERIAL can be processed on any IMS subsystem
that has that transaction defined.
Related concepts:

IMS Automated Operator Interface (AOI) (Operations and Automation)
Related reference:
“Type-2 Automated Operator exit routine (DFSAOE00)” on page 468
“Routine binding restrictions” on page 9
“IMS callable services” on page 13

AO functions and how to implement them
This example shows how to perform each of the AO functions on all segments of a
multisegment message.

You can write this exit routine to perform a number of functions. You can use this
example as a guideline for writing your own exit routine. You can write the exit
routine to support only single-segment messages. This example requests a user
buffer for some of the functions in which to store a copy of the message segment.
You can use a different storage area to store a copy of the message segment.
Related reference:
“Setting up the exit registers” on page 460

Ignore selected segments or an entire message
If the exit routine is not interested in the message segment, it can set the exit
registers to ignore them and resume processing.

The exit routine is called for system messages destined for the master terminal,
operator-entered commands, and command responses regardless of whether the
exit routine is interested in the message. The segment is ignored by setting the
following register:

Register 0 on
entry Registers on exit

0 Register 15 = 12

454 Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.oag/ims_automate_aoi.htm#ims_automate_aoi

Send copy of message to alternate destination
You can write the exit routine so that IMS sends a copy of a system message
destined for the master terminal, an operator-entered command, or a command
response to an alternate destination in addition to the original destination.

For the first entry to the exit routine, insert the segment to the alternate destination
and request remaining segments, if there are any, by setting the following register:

Register 0 on
entry Registers on exit

0
Register 0 = address of alternate destination name
Register 1 = address of message (UEHCPYBF)
Register 15 = 0

For subsequent entries that are not the last entry, insert the segment to the
alternate destination and request remaining segments by setting the following
register:

Register 0 on
entry Registers on exit

4
Register 0 = address of alternate destination name
Register 1 = address of message (UEHCPYBF)
Register 15 = 0

For the last entry to the exit routine, insert the segment to the alternate destination,
enqueue all of the segments, and indicate that processing is complete by setting the
following register:

Register 0 on
entry Registers on exit

8
Register 0 = address of alternate destination name
Register 1 = address of message (UEHCPYBF)
Register 15 = 8

Send new message to alternate destination
You can write the exit routine to send a new message to an alternate destination
for each system message, operator-entered command, or command response that is
passed to the exit routine. The original message proceeds to its destination
unchanged, and a completely new message is sent to an alternate destination.

For the first entry to the exit routine for this message, the exit routine must request
the storage in which to build each segment of the new message. The buffer
requested during this initial entry must be large enough to fit the largest message
segment you plan to send. The exit routine cannot request additional storage
during subsequent entries for this message. Request enough storage for a message
segment by setting the following register:

Chapter 4. IMS system exit routines 455

Register 0 on
entry Registers on exit

0
Register 0 = size of message segment
Register 15 = 16

For the next entry to the exit routine after successfully getting storage for this
message segment, move the first segment of the new message to the user buffer
(UEHUBUFF), and set the message length in the first 2 bytes. Insert the message
segment to the alternate destination and request remaining segments, if any, by
setting the following register:

Register 0 on
entry Registers on exit

12
Register 0 = address of alternate destination name
Register 1 = address of message segment (UEHUBUFF)
Register 15 = 0

For subsequent entries that are not the last entry, move the next segment of the
new message into the user buffer. The user buffer is reused for each segment of the
message. Set the message length in the first 2 bytes of the user buffer. Insert the
message segment to the alternate destination and request the remaining message
segments by setting the following register:

Register 0 on
entry Registers on exit

4
Register 0 = address of alternate destination name
Register 1 = address of message segment (UEHUBUFF)
Register 15 = 0

For the last entry to the exit routine for this message, move the last segment of the
new message into the user buffer. Set the message length in the first 2 bytes. Insert
the segment to the alternate destination, and indicate that processing is complete
by setting the following register:

Register 0 on
entry Registers on exit

8
Register 0 = address of alternate destination name
Register 1 = address of message segment (UEHUBUFF)
Register 15 = 8

Change system message text
You can change the original text of a system message destined for the master
terminal.

The system message that is passed to the exit routine includes 20 bytes that are
added to the end of the message. The exit routine can use these 20 bytes. Changes
to the system message are limited to the original message length, plus 20 bytes. If
the changed message includes the 20-byte area provided at the end, the exit
routine must increment the message length field by 20.

456 Exit Routines

For each entry to the exit routine for this message, change the system message text.
For the first entry to the exit routine, allow the changed segment to proceed to its
master terminal destination and request remaining message segments by setting
the following register:

Register 0 on
entry Registers on exit

0 or 8 Register 15 = 4

Related reference:
“Change message text and send to alternate destination”

Change message text and send to alternate destination
The exit routine can change the copy of a system message destined for the master
terminal and send the changed message to both the master terminal and an
alternate destination.

If the copies sent to the master terminal and the alternate destination are different,
your exit routine needs to request storage for the user buffer for the copy sent to
the alternate destination. The exit routine cannot change the copy of the command
or command response that is in the copy buffer.

The copy of the message passed to the exit routine has an additional 20 bytes
added to the end, which the exit routine can use. Changes to the message are
limited to the original message length, plus this 20 bytes. If the changed message
includes the 20-byte area, the exit routine must increment the message length field
by 20.

For the first entry to the exit routine for this message, change the message text. If
the changed message includes the 20-byte area provided at the end, increment the
message length field by 20. Insert the segment to an alternate destination, and
request the remaining segments by setting the following register:

Register 0 on
entry Registers on exit

0
Register 0 = address of the alternate destination name
Register 1 = address of the message (UEHCPYBF)
Register 15 = 0

For subsequent entries that are not the last entry, change the message segment text.
If the changed message includes the 20-byte area provided at the end, increment
the message length field by 20. Insert the message segment, and send it to an
alternate destination by setting the following register:

Register 0 on
entry Registers on exit

4
Register 0 = address of the alternate destination name
Register 1 = address of the message (UEHCPYBF)
Register 15 = 0

For the last entry to the exit routine for this message, change the message text. If
the changed message includes the 20-byte area provided at the end, increment the

Chapter 4. IMS system exit routines 457

message length field by 20. Insert the segment to an alternate destination, enqueue
all of the segments, and indicate that processing is complete by setting the
following register:

Register 0 on
entry Registers on exit

8
Register 0 = address of the alternate destination name
Register 1 = address of the message (UEHCPYBF)
Register 15 = 8

Delete system message to MTO
Your exit routine can delete a system message segment that is destined for the
master terminal. Delete a segment by setting the length field in the message buffer
(the first two bytes) to 0. Your exit routine cannot delete commands and command
responses.

For the first entry to the exit routine for the message, set the length field of the
message to 0, and obtain the second segment by setting the following register:

Register 0 on
entry Registers on exit

0 Register 15 = 4

For subsequent entries that are not the last entry, set the length field of the
message to 0, and obtain the next segment by setting the following register:

Register 0 on
entry Registers on exit

4 Register 15 = 4

For the final entry to the exit routine for the message, set the length field of the
message to 0, and indicate that processing is complete by setting the following
register:

Register 0 on
entry Registers on exit

8 Register 15 = 12

Delete system message to MTO and send copy to alternate
destination
Your exit routine can delete a system message destined for the master terminal and
send a copy to an alternate destination instead. It cannot delete commands and
command responses.

Before deleting the system message, the exit routine must request storage for a
user buffer in which to put a second copy of the message. Your exit routine must
request enough storage to fit the largest segment of the message.

For the first entry to the exit routine for the system message, your exit routine can
request storage by setting the following register:

458 Exit Routines

Register 0 on
entry Registers on exit

0
Register 0 = size of the largest message segment
Register 15 = 16

For the next entry after successfully getting storage for the largest message
segment, move the first segment of the message from UEHCPYBF into the user
buffer (UEHUBUFF), including the length in the first 2 bytes. Delete the message
destined for the master terminal by setting the length field of the message segment
pointed to by UEHCPYBF to 0. Insert the message copy to the alternate
destination, and request the next segment by setting the following register on exit:

Register 0 on
entry Registers on exit

12
Register 0 = address of the alternate destination name
Register 1 = address of message segment (UEHUBUFF)
Register 15 = 0

For the last entry to the exit routine for this message, move the last segment of the
message into the user buffer. The user buffer is reused for each segment of the
message. Delete the last segment destined for the master terminal by setting the
length field of the message segment pointed to by UEHCPYBF to 0. Insert the last
segment, enqueue the entire message, and indicate that processing is complete by
setting the following register on exit:

Register 0 on
entry Registers on exit

8
Register 0 = address of alternate destination name
Register 1 = address of the message segment (UEHUBUFF)
Register 15 = 8

Request the edited command buffer
Your exit routine can request the edited buffer that was created for an input
command.

On first entry, request the edited command buffer by setting flag UEH1ECMD on
in the UEHBFLG1 field. Request the next command response segment by setting
the following register on exit:

Register 0 on
entry Registers on exit

0 Register 15 = 4

For subsequent entries that are not the last entry to the exit routine for this
command response, continue requesting the next command response segment by
setting the following register on exit:

Chapter 4. IMS system exit routines 459

Register 0 on
entry Registers on exit

4 Register 15 = 4

For the last entry to the exit routine for this command response message, the
UEHECMD field contains the address of the edited command buffer. If the edited
command buffer is not available (such as when there are command syntax errors),
the UEH1CBNA flag is set in the UEHBFLG1 field, and the UEHECMD field
contains 0.

Setting up the exit registers
Set up exit registers to perform and support certain functions for single-segment
and multisegment messages.

The following tables describe how to set up exit registers to perform certain
functions for single-segment and multisegment messages. Refer to both tables if
you are writing your exit routine to support single-segment and multisegment
messages. If you can identify which messages are single-segment messages and
which are multisegment messages, you can write the exit routine to handle each
type differently.

Subsections:
v “Single-segment messages”
v “Multisegment messages” on page 461

Single-segment messages

The following table shows how to set up registers on exit for single-segment
messages. If your exit routine only examines single-segment messages, or if you
can identify which messages are single-segment messages (and can use this logic),
you can use this information to write your exit routine.

Table 167. Exit functions for single-segment messages

Function
Register 0
on entry

UEHCPYBF
length field
on exit

Register 0 on
exit

Register 1 on
exit

Register
15 on exit

Ignore entire
message

0 12

Send copy of
message
segment to
alternate
destination

0 Address of
alternate
destination
name

Address of
message
(UEHCPYBF)

8

Send new
message to
alternate
destination

0 Size of message 16

12 Address of
alternate
destination
name

Address of
message
(UEHUBUFF)

8

Change system
message

0 Length + 20 8

460 Exit Routines

Table 167. Exit functions for single-segment messages (continued)

Function
Register 0
on entry

UEHCPYBF
length field
on exit

Register 0 on
exit

Register 1 on
exit

Register
15 on exit

Change
message
segment and
send to
alternate
destination

0 Length + 20 Address of
alternate
destination
name

Address of
message
(UEHCPYBF)

8

Delete system
message to
master terminal

0 0 8

Delete system
message to
master terminal
and send copy
to alternate
destination

0 Size of message 16

12 0 Address of
alternate
destination
name

Address of
message
(UEHUBUFF)

8

Multisegment messages

The following table shows how to set up the registers on exit for multisegment
messages. If your exit routine examines multisegment messages, or if you can
identify which messages are multisegment messages (and can use this logic), you
can use the information in this figure to write your exit routine. All values given
are in decimal format.

Table 168. Exit functions for multisegment messages

Function
Register 0
on entry

UEHCPYBF
length field
on exit

Register 0 on
exit

Register 1 on
exit

Register
15 on exit

Ignore entire
message

0 12

Send copy of
message to
alternate
destination for
each segment

0 Address of
alternate
destination
name

Address of
message
(UEHCPYBF)

0

4 Address of
alternate
destination
name

Address of
message
(UEHCPYBF)

0

8 Address of
alternate
destination
name

Address of
message
(UEHCPYBF)

8

Chapter 4. IMS system exit routines 461

Table 168. Exit functions for multisegment messages (continued)

Function
Register 0
on entry

UEHCPYBF
length field
on exit

Register 0 on
exit

Register 1 on
exit

Register
15 on exit

Send new
message to
alternate
destination for
each segment

0 Size of storage
to get for
largest message
segment

16

12 Address of
alternate
destination
name

Address of
message
segment
(UEHUBUFF)
with length field
set

0

4 Address of
alternate
destination
name

Address of
message
segment
(UEHUBUFF)
with length field
set

0

8 Address of
alternate
destination
name

Address of
message
segment
(UEHUBUFF)
with length field
set

8

Change each
segment of
system message

0 Length + 20 4

8 Length + 20 4

Change each
segment of a
message and
send to
alternate
destination

0 Length + 20 Address of
alternate
destination
name

Address of
message
(UEHCPYBF)

0

4 Length + 20 Address of
alternate
destination
name

Address of
message
(UEHCPYBF)

0

8 Length + 20 Address of
alternate
destination
name

Address of
message
(UEHCPYBF)

8

Delete each
segment of
system message
to master
terminal

0 0 4

8 0 12

462 Exit Routines

Table 168. Exit functions for multisegment messages (continued)

Function
Register 0
on entry

UEHCPYBF
length field
on exit

Register 0 on
exit

Register 1 on
exit

Register
15 on exit

Delete each
system segment
to master
terminal and
send copy to
alternate
destination

0 Size of storage
to get for
largest message
segment

16

12 0 Address of
alternate
destination
name

Address of
message
segment
(UEHUBUFF)

0

8 0 Address of
alternate
destination
name

Address of
message
segment
(UEHUBUFF)
with length field
set

8

Request the
edited
command
buffer

0 4

4 4

8 12

Related reference:
“AO functions and how to implement them” on page 454

User Exit Header Block (UEHB)
The UEHB contains three categories of data and flag fields.

The UEHB contains the following data and flag fields. The following table
indicates the field name, length in bytes, and description of the data fields, and it
indicates the field name, hexadecimal value, and meaning of the flag fields.

Data and flag fields in the UEHB can be grouped into one of three categories,
depending on how the exit routine can use them.

Modifiable
The exit routine can change these fields to communicate with IMS or to
use as a work field.

Read only
The exit routine can read but not modify these fields.

Reserved
The exit routine cannot use these fields. They are reserved for use by IMS.

Table 169. UEHB field descriptions

Field Length/Value Description

UEHSRCE 4 bytes Address of source CNT.
Usage = read only.
This field points to the source LTERM of the message
segment. For a system message, the source is the
master LTERM. For a command, the source is the
LTERM where the command was entered.

Chapter 4. IMS system exit routines 463

Table 169. UEHB field descriptions (continued)

Field Length/Value Description

UEHDEST 4 bytes Address of destination CNT.
Usage = read only.
This field points to the destination of message
segment. This is the destination of the 'presented'
message segment, not the alternate destination that
the exit routine can define.

UEHUBUFF 4 bytes. Address of user buffer.
Usage = read only.
The buffer pointed to by this field is acquired when
the exit routine returns a return code of 16 in register
15. The buffer can contain a copy of a message to be
inserted to an alternate destination. If the buffer
contains a copy of a message, the exit routine must
update the 2-byte length field. If there is no message
in the buffer, the length field is not necessary.

UEHCPYBF 4 bytes Address of exit routine copy buffer.
Usage = read only.
The buffer pointed to by this field contains a copy of
the system message segment, command, or command
response that IMS passes to the exit routine. This area
is the size of the message segment + 20 bytes (for
modification). The first two bytes are the length field.
For each entry to the exit routine, IMS reuses the
copy buffer if the buffer created for a prior call is
greater than or equal to the size that the current call
requires. Otherwise, IMS frees the prior buffer and
creates a new one.

UEHECMD 4 bytes Address of edited command buffer.
Usage = read only.
On last entry to the exit routine, this field contains
the address of the edited command buffer if the
UEH1ECMD flag in the UEHBFLG1 field was set
during the first entry to the exit routine for the
message.

UEHIPCB 4 bytes Address of input PCB.
Usage = reserved.

UEHIWRK1 4 bytes Internal work area.
Usage = reserved.

UEHIWRK2 4 bytes Internal work area.
Usage = reserved.

UEHIWRK3 4 bytes Internal work area.
Usage = reserved.

UEHBMODN 8 bytes MFS MOD name. Usage = modifiable. The MFS MOD
name sent with the message to the alternate
destination that the exit routine specifies.

UEHPOPCB 28 bytes Alternate PCB.
Usage = reserved.
Used for either AO transaction or any other
transaction or LTERM destination that the AO
specifies.

UEHSCPCB 28 bytes Secondary master PCB. Usage = reserved.

UEHCPYSZ 2 bytes Size of UEHCPYBF copy buffer.
Usage = reserved.

464 Exit Routines

Table 169. UEHB field descriptions (continued)

Field Length/Value Description

UEHNODE 8 bytes Nodename.
Usage = read only.

VTAM nodename or 0. If a command was entered,
this is the nodename of the VTAM terminal that
entered the command. If a system message is being
passed and the master terminal is a VTAM node, this
is the nodename of the VTAM master terminal node.

UEHHSQN 8 bytes User name.
Usage = read only.
User name of user signed on to node or the
Intersystem Communication (ISC) user associated
with the node that entered the command, if
UEH1CMD is set on in UEHBFLG1.

User name or 0.

UEHOCALL 2 bytes Usage = reserved.

UEHBFLG1 1 byte Flag byte 1 for AOI and exit routine as follows:

UEH1ECMD X'80' Indicates that the exit routine requests the edited
command buffer.

Usage = modifiable.
If the exit routine sets this flag on the first entry, the
UEHECMD field points to the edited command buffer
on the last entry. Also see UEH1CBNA flag.

UEH1SEG X'40' Indicates that a segment is presented to the exit
routine.

Usage = read only.
This flag is set when a segment is present in the
UEHCPYBF field for the exit routine's examination. It
is reset if entry code = 8 and prior call was PUT
MOVE (segment already presented to exit routine on
previous call with entry code = 0 or 4).

UEH1CPYP X'20' Indicates that the exit routine was called for a system
message destined for the master terminal.

Usage = read only.
This flag is set when an asynchronous system
message caused IMS to call the exit routine. A UEHB
is created and the message is present in the
UEHCPYBF field. The copy buffer contains the
message plus 20 bytes (which the exit routine can
modify).

UEH1CMD X'10' Indicates that the exit routine was called for a
command or command response (if the entry code is
non-0).

Usage = read only.
This flag is set when a command caused IMS to call
the exit routine. A UEHB (user exit header block) is
created and the command is present in the
UEHCPYBF field. This flag is set until command
processing is completed.

Chapter 4. IMS system exit routines 465

Table 169. UEHB field descriptions (continued)

Field Length/Value Description

UEH1NSTG X'08' Storage not available for the user buffer.
Usage = read only.
Set when a conditional request for storage for the
user buffer cannot be satisfied.

UEH1CBNA X'04' Edited command buffer not available

Usage = read only.
Set if the edited command buffer was not constructed
by the command processor due to errors.

UEH1PSTD X'02' PST dispatch.
Usage = reserved.
System message being issued as a result of
application program processing.

UEHBFLG2 1 byte Flag byte 2 for AOI.

UEH2BYP X'80' Exit routine does not want rest of message.
Usage = reserved.
Set when the exit routine returns a return code of 8 or
12 indicating no more message segments are to be
presented.

UEH2POTR X'40' Alternate destination found.
Usage = reserved.
Set after the alternate destination is successfully
found, when register 15 contains a 0 return code and
an 8-byte alternate destination name is in register 0.
The alternate destination can be a transaction or
LTERM.

UEH2ILOC X'10' INSERT LOCATE was last call.
Usage= reserved.
Indicates that the prior segment is to be presented to
the exit routine.

UEH2UENT X'08' Exit routine was entered at least once.
Usage = reserved.
Used to determine if entry code 0 is to be set.

UEH2LAST X'04' Set when entry code 8 is set on entry.
Usage = reserved.
Used to indicate that the exit routine was entered for
the last time.

UEH2NCUR X'02' Set when current call is not yet processed.
Usage = reserved.
Used when entered for a final call but the exit routine
had not yet been entered for the first time.

UEH2QNOP X'01' Set when call is not to be passed to the queue
manager (QMGR).

Usage = reserved.
Used to indicate that a PUT MOVE should not be
done if the exit routine is deleting a system message
to the primary master terminal.

UEHBFLG3 1 byte Flag byte 3 for AOI.

UEH3ILOC X'80' Current call is INSERT LOCATE. Usage = reserved.

UEH3PUTM X'40' Current call is PUT MOVE. Usage = reserved.

466 Exit Routines

Table 169. UEHB field descriptions (continued)

Field Length/Value Description

UEH3CANO X'20' Current call is CANCEL OUTPUT. Usage = reserved.

UEH3ENQ X'10' Current call is ENQUEUE. Usage = reserved.

UEH3TERM X'08' Current call is AOI TERMINATION. Usage =
reserved.

UEH3VSEG X'04' Segment exists for M/T.
Usage = reserved.

UEHBFLG4 1 byte Error flag byte.

UEH4ERRM X'80' AOI error message in progress.
Usage = reserved.

UEH4SMER X'40' Secondary master terminal error.
Usage = reserved.

UEH4FAIL X'20' Current call will be failed. Usage = reserved.

UEH4UEHB X'10' Previous UEHB exists.
Usage = reserved.

UEHBERRC 1 byte QAOI error code as follows:

UEHBERR1 C'1' Invalid alternate destination.
Usage = reserved.

UEHBERR2 C'2' Queue manager return code.
Usage = reserved.

UEHBERR3 C'3' Invalid exit routine return code.
Usage = reserved.

UEHBERR4 C'4' Multiple user buffer request.
Usage = reserved.

UEHBERR5 C'5' User buffer storage not available.
Usage = reserved.

UEHBERR6 C'6' Previous UEHB exists.
Usage = reserved.

UEHBERR7 C'7' Usage= reserved.

UEHBFLG5 1 byte Flag byte 5 for AOI.

UEH5LTRM X'80' Usage = reserved.
Dynamic LTERM marked in use.

UEHIRSVD 2 bytes Usage = reserved.

UEHURSVD 20 bytes Work area reserved for exit routine.
Usage = modifiable.
The exit routine can use this field to keep track of
message numbers, entry codes, and flags between
invocations of the exit routine for a particular
message. UEHURSVD can be used to tie segments of
a multisegment message together, since remaining
segments do not contain the message number.

Chapter 4. IMS system exit routines 467

Type-2 Automated Operator exit routine (DFSAOE00)
The Type 2 Automated Operator exit routine (DFSAOE00) is called continuously
for system messages destined for the master terminal and for type-1 commands
entered from terminals, APPC, OTMA, and those command responses. The exit
routine is also called for internal commands and commands from the ICMD call
but not for their responses.

The AO exit routine intercepts messages before IMS sends the system message,
executes the terminal command, or sends the terminal command response.
DFSAOE00 is also called for system messages destined to the secondary master if
it was specified during IMS initialization.

You can write two types of Automated Operator (AO) exit routines. The AO exit
routine described in this topic (DFSAOE00) is called a type-2 AO exit routine. It
can be used in the DB/DC, DCCTL, and DBCTL environments.

The other AO exit routine (DFSAOUE0) is called a type 1 and can be used in the
DB/DC and DCCTL environments.

If both DFSAOUE0 and DFSAOE00 are provided in a DB/DC or DCCTL
environment, DFSAOE00 is called first. DFSAOE00 determines which exit routine
will process the message or command.

This exit is called twice: once for the secondary master system message and then
for the primary master message.

Subsections:
v “About this routine”
v “Restrictions” on page 470
v “Communicating with IMS” on page 470

About this routine

IMS calls DFSAOE00:
v Before messages are logged to the secondary master terminal (if DFSAOE00

indicated this during the initialization call)
v For IMS system messages destined for the master terminal (the z/OS system

console in the DBCTL environment)
v For commands entered from a terminal and the responses to those commands
v For commands issued from an AO application using the DL/I ICMD call
v For commands generated internally by IMS

DFSAOE00 intercepts these communications before IMS sends the system message,
executes the command, or sends the command response.

With DFSAOE00, you can:
v Prevent system messages from being logged at the IMS secondary master

terminal only if indicated during IMS initialization call.
v Modify the text of IMS system messages. DFSAOE00 can also add up to 20 bytes

of additional text to the end of a message.

468 Exit Routines

Any synchronous system “messages” generated by IMS after a command has
been entered (such as DFS058 cccc COMMAND IN PROGRESS) are not really
messages; they are command responses and cannot be modified.

v Delete IMS system messages. In a DBCTL environment, no trace of the original
IMS message to the z/OS system console is kept if the message is deleted or
modified.

v Direct any message, command, or command response to an AO application.
v Start a BMP job (for example, an AO application). DFSAOE00 can issue SVC 34

to start a BMP. The /START command can override the APARM value on the
EXEC statement. The APARM parameter is a way of passing information to the
AO application. To retrieve the value specified on the APARM parameter, the
AO application can issue the DL/I INQY call.

The following table shows the attributes for the type-2 AO exit routine.

Table 170. Automated operator exit routine attributes (DFSAOE00)

Attribute Description

IMS environments DB/DC, DBCTL, DCCTL

Naming convention You must name this exit routine DFSAOE00.

Binding This exit routine must be reentrant. You must manually link edit the routine with
DFSCSI00 to include the routine.

Including the routine DFSAOE00 is a stand-alone, 31-bit reentrant module that you provide.

You specify DFSAOE00 by linking it with DFSCSI00 in the IMS.SDFSRESL
concatenation as a stand-alone module. DFSAOE00 can then be loaded and called. If
you link both DFSAOE00 and DFSAOUE0 (the other AO exit routine), both are loaded.
DFSAOE00 is called first and can either process the message, or command, or it can
return a code indicating DFSAOUE0 should do the processing instead.

IMS callable services DFSAOE00 can use callable services for storage and AOI functions. It is defined to IMS
as a standard exit and receives the callable services token in the standard exit
parameter list. This routine does not need to issue an initialization call (DFSCSII0).

Sample routine location IMS.ADFSSMPL

Using AOI callable services

DFSAOE00 can use IMS AOI callable services to communicate with an AO
application. Using AOI Services, DFSAOE00 can pass a message containing one or
more message segments to one or more AO applications. AOI callable services
functions include:
v INSERT, which inserts a message segment to a message buffer.
v ENQUEUE, which sends a message to one or more AO applications using AOI

token names. The message sent on the ENQUEUE request can be a
single-segment or multisegment message built with INSERT requests or a
single-segment message supplied on the ENQUEUE request. An AO application
issues a GMSG call, specifying an AOI token name, to retrieve a message sent
from DFSAOE00.

v CANCEL, which removes inserted segments when you decide not to send the
message to an AO application.

Activating this routine

DFSAOE00 is activated:

Chapter 4. IMS system exit routines 469

v During IMS initialization. The purpose of this first entry is so that DFSAOE00
can, if you want, do its own initialization.

v After IMS restart is complete. DFSAOE00 is activated for each system message,
command, and command response.

After IMS shutdown processing has begun, DFSAOE00 is disabled and no longer
receives control.

Restrictions

All messages queued to an AO application by DFSAOE00 remain in the IMS
subsystem in which they are queued. Only AO applications in the local subsystem
can issue a DL/I GMSG call to access the queued messages. Because these
messages are not written to a shared-queues structure, applications on other IMS
subsystems cannot access them.

You cannot use DFSAOE00 to modify or delete commands and command
responses. This includes commands from a terminal or an application program, or
internally generated commands.

Communicating with IMS

IMS communicates with DFSAOE00 through the entry registers and a parameter
list.

Content of registers on entry

The content of the registers that are passed from IMS to this exit routine each time
it is activated follows:

Register Content

1 Address of the “IMS standard user exit parameter list” on page 5

13 Address of the save area. Your exit routine must not change the first three
words of this save area. This save area is not chained to any other IMS save
area.

14 Return address to IMS.

15 Entry point of this exit routine.

Standard exit parameter list

This exit routine uses the Version 6 standard exit parameter list. The address of the
work area passed to this exit routine in SXPLAWRK will be the same each time
that this exit routine is called.

Function-specific parameter list

The following table shows the contents of the function-specific parameter list. The
address of this parameter list is in the standard exit parameter list field SXPLFSPL.

Table 171. Function-specific parameter list for DFSAOE00 (mapped by DFSAOE0)

Field Offset Length Description

AOE0VER 0 4 Address of word containing version number for
DFSAOE0.

470 Exit Routines

Table 171. Function-specific parameter list for DFSAOE00 (mapped by
DFSAOE0) (continued)

Field Offset Length Description

AOE0FUNC 4 4 Reason for entering DFSAOE00:

1 Initial entry. DFSAOE00 can do
initialization functions.

2 Message segment to process.

3 Command is aborted.

4 A message segment for the secondary
master terminal is passed to DFSAOE00.
DFSAOE00 can return to IMS with
AOE0RPLY=3 (AOE0CNCL) to prevent the
message from being enqueued to the
secondary master. AOE0RPLY=0
(AOE0IGNR) will allow the message to be
queued to secondary master. Any other
response value results in message DFS2180,
the response is ignored, and the message is
queued to the secondary master.

AOE0SEG 8 4 Address of message buffer or 0 if this is initial entry.
(The next table shows the message buffer.)

AOE0WRKA 12 4 Address of 256-byte work area used by DFSAOE00.
The area is static for the segments of a message, or
for a command and the related command responses.

AOE0FLG1 16 1 Entry codes:

X'80' First segment of multiple segments or first
and only segment when X'20' is also on.

X'40' Middle segment of multiple segments.

X'20' Last or only segment.

X'10' Command response will be sent for this
command. X'20' is also set when X'10' is set.

X'08' No segment presented. Last entry to exit.

AOE0FLG2 17 1 Segment or command type:

X'80' Command entered at terminal.

X'40' Command response segment.

X'20' Command (ICMD) issued by AO
application.

X'10' Command generated internally by IMS.

X'08' IMS system message segment.

AOE0FLG3 18 1
X'80' Command input entered at a terminal

exceeded 256 bytes.

AOE0USII 19 1 Indicator for contents of user ID field:

U user ID

L LTERM

P PSB name

O Other name

Chapter 4. IMS system exit routines 471

Table 171. Function-specific parameter list for DFSAOE00 (mapped by
DFSAOE0) (continued)

Field Offset Length Description

AOE0DMTK 20 4 Directed message token required to issue AOI
callable service requests.

AOE0IMSI 24 8 IMS subsystem identifier.

AOE0IMSL 32 4 IMS version and release.

AOE0SSTY 36 1
X'01' DB/DC system

X'02' DCCTL system

X'03' DBCTL system

AOE0ROLE 37 1
X'01' XRF active

X'02' XRF alternate IMS

X'03' RSR active IMS

X'04' RSR tracker

X'05' FDBR region

AOE0MVSL 38 1 z/OS version and release on which IMS was
generated.

AOE0ENVR 39 1 AO exit routine environment:

X'1' DFSAOUE0 is loaded. Commands and
messages can be passed to DFSAOUE0 to
process.

AOE0ORGC 40 4 Origin of the command:

0 Origin fields not set. Fields are set for
commands entered from a terminal, an
MCS console, LU 6.2 conversation, or
OTMA client in a DB/DC or DCCTL
system.

1 Origin other than that defined by a specific
code

2 VTAM terminal

3 LU 6.2 conversation

4 MCS/E-MCS console

5 OTMA client

6 System console

7 Master terminal

AOE0LINE 44 4 Terminal line number (AOE0ORGC=1).

AOE0NODE 44 8 VTAM node name (AOE0ORGC=2).

AOE0NWID 44 8 Network ID (AOE0ORGC=3).

AOE0CONS 44 4 The 4-byte MSC/E-MSC terminal ID
(AOE0ORGC=4).

AOE0TMEM 44 16 OTMA member name (AOE0ORGC=5).

AOE0PTRM 48 4 Physical terminal number (AOE0ORGC=1).

AOE0MCSU 48 8 User identification (AOE0ORGC=4).

472 Exit Routines

Table 171. Function-specific parameter list for DFSAOE00 (mapped by
DFSAOE0) (continued)

Field Offset Length Description

AOE0LTRM 52 8 Logical terminal name or blanks if LTERM does not
exist (AOE0ORGC=1,2).

AOE0LUNM 52 8 Logical unit name (AOE0ORGC=3).

AOE0USID 60 8 Signed-on user ID or blanks (AOE0ORGC=1,2).

AOE0LUUS 60 8 User ID (AOE0ORGC=3).

AOE0TPIP 60 8 Pipe (AOE0ORGC=5).

AOE0USER 68 8 VTAM user, subpool name, or blanks
(AOE0ORGC=2).

AOE0TUSR 68 8 OTMA RACF User ID (AOE0ORGC=5).

AOE0RPLY 76 4 Return code from DFSAOE00. This is the only field
in this parameter list that DFSAOE00 can modify.

0 DFSAOE00 is not interested in this message
or command segment. IMS will process the
message as if the exit routine did not exist.
Subsequent segments of the message or
command response are presented to
DFSAOE00.

1 DFSAOE00 is not interested in this message
or command segment. Call DFSAOUE0 for
processing. Do not call DFSAOE00 for
subsequent segments of this message.

2 Send no more segments for this message or
command to DFSAOE00.

3 Delete the IMS system message segment.

4 Delete the IMS system message segment
and all subsequent segments of this
message.

5 DFSAOE00 modified the IMS system
message segment.

6

Tells IMS to call the DFSAOE00 exit routine
for secondary master messages. If
secondary master logging is in effect,
DFSAOE00 gets called twice for each
segment: first for the secondary master
message, and second for the AOI exit
processing.

This return code can be returned only on
the initial entry to DFSAOE00
(AOE0FUNC=1). If it is returned for any
other function call, message DFS2180 is
issued, indicating the error, and the
response is treated as AOE0RPLY=0.

Message buffer

Chapter 4. IMS system exit routines 473

The message buffer contains an IMS message, command, or command response.
The following table shows the format of the message buffer. The function-specific
parameter list points to this buffer.

Table 172. Message buffer

Field Length Description

LL 2 Length of the message on first entry to exit routine. Length
includes the length of the LL and ZZ fields but excludes length of
the 20-byte work area. (If your exit routine deletes or changes a
message or uses the work area, it must update this field.)

ZZ 2 Zeros.

Message
text

Variable Text of the message, command, or command response.

System message: The first segment of the message text begins
with the DFSxxxx number, indicating which message caused IMS
to call the exit routine. The message number is followed by the
text of the system message. If it is a multisegment message, the
remaining segments contain additional text, but do not contain the
DFSxxxx message number.

Command: The message text is one segment long and begins with
the delimiter '/', followed by the command.

Command response: The command response is usually a DFSxxxx
message or one segment of a multisegment command.

CR 1 Carriage return character. This field is optional. If it is there, one
byte is included in the LL. Input commands do not include a
carriage control character.

Work area 20 Additional area DFSAOE00 can use to add text to the message.

Content of registers on exit

There is no requirement for exit registers. DFSAOE00 communicates using the
reply field in the function-specific parameter list. DFSAOE00 is passed this list
when it is entered. On exit, the registers contain the following:

Register Contents

14 Return Address

15 0

Related concepts:

IMS Automated Operator Interface (AOI) (Operations and Automation)
Related reference:
“Type-1 Automated Operator exit routine (DFSAOUE0)” on page 441
“Routine binding restrictions” on page 9
“IMS callable services” on page 13
“IMS standard user exit parameter list” on page 5

Types of messages passed to this routine
IMS passes specific types of messages and commands to DFSAOE00.

The following types of messages can be passed to DFSAOE00:

474 Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.oag/ims_automate_aoi.htm#ims_automate_aoi

v IMS system messages destined for the master terminal (the z/OS system console
in the DBCTL environment).

v IMS system messages being logged to the secondary master terminal.
v Commands entered from a terminal, with the following exceptions:

– /FORMAT

– /LOOPTEST

– /MSVERIFY

– /RELEASE

– /NRESTART (sent to the exit routine, however, in the DBCTL environment)
– /ERESTART (sent to the exit routine, however, in the DBCTL environment)
IMS passes the command after basic edit and optional editing routines have had
a chance to modify it. This modified input can contain carriage control
characters.

v IMS command responses to the terminal.
v Commands issued from an AO application using the ICMD call.
v Commands generated internally by IMS.

IMS does not pass all system messages, operator-entered commands, and
command responses to DFSAOE00. The following are types of messages IMS does
not pass to DFSAOE00:
v Command responses to an AO application
v Commands issued from an AO application using the CMD call (including the

responses to those commands)
v System messages for which the destination is not the master terminal (secondary

master messages are passed if indicated during INIT call)
v Command responses to IMS internally generated commands

Subsections:
v “Changes the command editor makes”
v “Commands with network-qualified LU names” on page 476

Changes the command editor makes

The command editor translates certain control characters in any command you
enter from a terminal or in any ICMD call. You need to accommodate this
translation when writing your exit routine.

The translation is shown in the following table.

Table 173. Translation of control characters in commands

From To

X'14' Restore X'5D' Right parenthesis

X'15' New line X'40' Blank

X'24' Bypass X'4D' Left parenthesis

X'40' Blank X'40' Blank

X'4B' Period X'4B' Period

X'4D' Left parenthesis X'4D' Left parenthesis

X'5D' Right parenthesis X'5D' Right parenthesis

Chapter 4. IMS system exit routines 475

Table 173. Translation of control characters in commands (continued)

From To

X'60' Dash X'60' Dash

X'6B' Comma X'6B' Comma

X'6D' Dash X'40' Blank

X'7E' Equal X'40' Blank

Commands with network-qualified LU names

If you use network-qualified LU names at your installation, the LU name for LU
6.2 application programs can be 17 bytes long. For IMS commands, the
network-qualified LU names must be enclosed in single quotation marks (for
example, 'NETID.LUNAME').

If an IMS command with the network-qualified LU name is passed to AO exit
routine DFSAOE00, IMS modifies the network-qualified LU name in the input
command before the command is passed to the AO exit routine. The single quotes
around the network-qualified LU name are replaced with blanks, and the period
separating the network-identifier and the LU name is replaced with a colon.

Example: A /DISPLAY command with a network-qualified LU name entered at the
terminal as:
/DISPLAY LUNAME ’NETWORK1.LUNAME1’ LUNAME2 INPUT

is passed to the AO exit routine or logged to the secondary master as:
/DISPLAY LUNAME NETWORK1:LUNAME1 LUNAME2 INPUT

Processing when a system message is generated

The following figure shows processing when a system message is generated.

Notes:

1. IMS generates a system message destined for the master terminal.

Copy of message sent
to any destination

2

IMS

3

4
5

6

O/S
console

Secondary
MTO

MTO

1

DFSAOUE0
or an AIOE

type exit
routine

System
message
generated

Figure 27. Processing when a system message is generated

476 Exit Routines

2. A copy of the message can be sent to the z/OS system console. This depends
on the specific message and is determined by IMS.

3. A copy of the message can be sent to the secondary master terminal if it exists
and if you have specified that this is to be done.

4. The copy of the message destined for the master terminal is passed to
DFSAOE00.

5. DFSAOE00 can send a copy of the message to an AO application. This is done
by enqueuing the message to an AOI token. DFSAOE00 can alter or delete any
segment of the message.

6. The message is sent (unless it has been deleted) to the master terminal.
If both DFSAOE00 and DFSAOUE0 had been loaded, this picture would be
conceptually the same. However, when DFSAOE00 got control it could either
process the message, or it could return a code indicating DFSAOUE0 should be
called to do the processing instead.

Commands entered at the terminal

The following figure shows processing when a command is entered at the terminal.

Notes:

1. When a command is entered from a terminal, IMS sends a copy of the
command to DFSAOE00 before executing the command.

2. DFSAOE00 can send a copy of the command to any AO application (using the
AOI token).

3. IMS executes the command and generates a command response.
4. IMS passes the command response to DFSAOE00. DFSAOE00 can send a copy

of the command response to any AO application (using the AOI token).

1

2

3

4

5

6

Command

Command
response

Copy of command
response sent to
any destination

Copy of command
sent to any destination

Command
entered

DFSAOUE0 or
an AIOE type
exit routine

DFSAOUE0 or
an AIOE type
exit routine

Figure 28. Processing when a command is entered at the terminal

Chapter 4. IMS system exit routines 477

5. The command response is sent to the terminal that originated the command.
If both AO exit routines (DFSAOE00 and DFSAOUE0) had been loaded, this
picture would be conceptually the same. However, when DFSAOE00 got
control, it could either process the command or return a code indicating
DFSAOUE0 should be called to do the processing instead.

Commands entered from an AO application

The following figure shows processing when a command is entered from an AO
application.

Notes:

1. When a command is entered from an AO application using an ICMD call, IMS
sends a copy of the command to DFSAOE00 before executing the command.

2. DFSAOE00 can send a copy of the command to any AO application (using the
AOI token).

3. IMS executes the command and generates a command response.
4. IMS sends the command response back to the AO application.

The type 1 AO exit routine (DFSAOUE0) cannot process commands entered
from an AO application.

User Message table (DFSCMTU0)
You can create your own messages and list them in the User Message table
(DFSCMTU0).

Although there are IMS system message tables containing messages that IMS
returns to edit and exit routines, these messages might not be appropriate for your
installation's needs. If this is the case, you can create your own messages and list
them in your own message table.
v “About this table” on page 479

Command

ICMD
call

IMS

AIOE type
exit routine

1

4

2

3A0 application

Copy of
command
sent to any

A0 application

Command
response

Figure 29. Processing when a command is entered from an AO application

478 Exit Routines

About this table

IMS assigns the prefix of the user text from the message table with DFSUxxx,
where xxx is the message number. You can then use this message table with the
following user edit and exit routines:
v Command Authorization exit routine (DFSCCMD0)
v Front-End Switch exit routine (DFSFEBJ0)
v Global Physical Terminal edit routine (DFSGPIX0)
v Logoff exit routine (DFSLGFX0)
v Message Switching Input edit routine (DFSCNTE0)
v Input Message Segment edit routine (DFSME127)
v Physical Terminal Input edit routine (DFSPIXT0)
v Queue Space Notification exit routine (DFSQSPC0)
v Signon/off Security exit routine (DFSCSGN0)
v Signon exit routine (DFSSGNX0)
v Signoff exit routine (DFSSGFX0)
v Transaction Authorization exit routine (DFSCTRN0)
v Transaction Code Input edit routine (DFSCSMB0)

The following table shows the attributes of the User Message table.

Table 174. User message table attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention
You must name the message table module DFSCMTU0, assemble it,
and place it in the operating system partitioned data set defined by
the USERLIB= operand of the IMSGEN macro.

Related Reading: For details about this, see the IMSGEN macro
statement description in IMS Version 13 System Definition.

Link editing No special steps are required to include this table.

Including the routine You need to specify OPTIONS=(...USERMSGS...) in the COMM
macro.

IMS callable services IMS callable services are not applicable for use with this table.

Sample routine
location

No sample available.

Restriction: This table cannot be used in a DBCTL environment.

Writing a routine to use this table

In order for a routine to use the messages you've placed in the message table,
you'll need to choose a key that represents a message number in the table. In the
case of the Queue Space Notification exit routine (DFSQSPC0) and the Signon exit
routine (DFSSGNX0), the negative value of the message key needs to be placed in
register 15 on return from the routine. For the other exit routines listed in the
previous topic, the positive value of the message key needs to be placed in register
1 on return from the routine along with a specific return code in register 15.

Chapter 4. IMS system exit routines 479

Exception: The Front-End Switch exit routine (DFSFEBJ0) is an exception to this.
Refer to the descriptions of each exit routine for more information.

Including the table during system definition

Before Stage 1 of IMS system definition, you need to specify
OPTIONS=(...USERMSGS,...) in the COMM macro.

Related Reading: For more information, see the COMM macro statement
description in IMS Version 13 System Definition.

Formatting the table

The format of your message table (DFSCMTU0) must be as follows:
v The table must start with the instruction BALR 15,14.
v Message numbers range from 1 to (and including) 999, in ascending sequence.
v The maximum size for the text of each message is 100 characters, If the message

text exceeds 78 characters, it will be truncated if it is sent to a 3270 terminal that
is formatted using IMS-supplied default formats.

v The message length must be an even value (otherwise, an erroneous character
might appear following the last character of the text).

v Exclude device control characters from the text of your messages. IMS always
adds NEW LINE (NL) control characters to the beginning and end of each
message. For messages processed by the Message Format Service (MFS), the
device control characters will be changed to X'00' for a 3270 display and to X'40'
for other devices.

v Each message entry must start on a half-word boundary. The entry format is:
label DC H’message number’

DC AL2 (entry length including number
and length fields)

DC C’message text of even length’

v An entry with message number X'7FFF' signals the end of the message table.

Sample user message table and routine
You can review the sample user message table and routine to understand how to
change the text of the messages issued by a revised version of the Queue Space
Notification exit routine.

This example shows how you would use user message tables to change the text of
the messages issued by a revised version of the Queue Space Notification exit
routine.

Subsections:
v “Sample table”
v “Sample routine” on page 481

Sample table

The following table sample contains the messages specified by an IMS user and
has been included in the IMS system.
DFSCMTU0 CSECT
* USER MESSAGE TABLE FOR USER QUEUE
* SPACE NOTIFICATION EXIT EXAMPLE.

480 Exit Routines

BALR 15,14
M013 DC H’513’ QMGR0

DC AL2(M014-M013)
DC C’RECORDS IN QBLKS DATASET EXCEED UPPER THRESHOLD ’

M014 DC H’514’ QMGR0
DC AL2(M015-M014)
DC C’RECORDS IN SMSGQ DATASET EXCEED UPPER THRESHOLD ’

M015 DC H’515’ QMGR0
DC AL2(M016-M015)
DC C’RECORDS IN LMSGQ DATASET EXCEED UPPER THRESHOLD ’

M016 DC H’516’ QMGR0
DC AL2(M017-M016)
DC C’RECORDS IN QBLKS DATASET BELOW LOWER THRESHOLD’

M017 DC H’517’ QMGR0
DC AL2(M018-M017)
DC C’RECORDS IN SMSGQ DATASET BELOW LOWER THRESHOLD’

M018 DC H’518’ QMGR0
DC AL2(M999-M018)
DC C’RECORDS IN LMSGQ DATASET BELOW LOWER THRESHOLD’

M999 DC X’7FFF’
END ,

Sample routine

In this sample routine, the IMS-supplied exit routine (DFSQSPC0) has been
replaced by a modified version of the routine that a user has written. The
user-modified DFSQSPC0 has the following characteristics:
1. Existing IMS message equates have been replaced by user equates.
2. The list of messages used by the routine code has been changed to refer to the

user messages.
3. Load Negative Register (LNR) instructions have been added to store the

negative of the user message key in register 15 before returning to the caller of
DFSQSPC0. This causes IMS to look in the User Message Table (DFSCMTU0)
rather than the system tables for the text of the message.

The following sample shows the modified Queue Space Notification exit routine,
DFSQSPC0:

* *
* M O D U L E P R O L O G *
* *

* *
* MODULE NAME: DFSQSPC0 *
* *
* DESCRIPTIVE NAME: SAMPLE USER QUEUE SPACE NOTIFICATION EXIT *
* *
* FUNCTION: *
* *
* INTERROGATES NUMBER OF RECORDS CURRENTLY IN USE FOR A *
* DATASET AND DETERMINES WHETHER OR NOT TO DISPLAY *
* THRESHOLD MESSAGES (SEE OUTPUT) *
* *
* NOTES: *
* *
* RESTRICTIONS: *
* *
* DFSQSPC0 MUST NOT IWAIT. THERE IS ONLY ONE PARAMETER AREA *
* (IN QPOOL), HENCE THE QUEUE MANAGER MUST NOT IWAIT BETWEEN *
* THE TIME IT SETS UP THE PARAMETER LIST AND THE TIME IT NO *
* LONGER NEEDS IT, FOLLOWING INVOCATION OF THE EXIT (DFSQSPC0) *
* *
* IN ORDER TO UPDATE THE "IN USE" COUNT WITHOUT FIRST ZEROING *

Chapter 4. IMS system exit routines 481

* THE HIGH ORDER BYTE THE HIGH ORDER BIT OF THE FLAG BYTE MUST *
* ALWAYS BE 0. *
* *
* DEPENDENCIES: NONE *
* *
* REGISTER CONVENTIONS: STANDARD IMS *
* *
* MODULE TYPE: *
* *
* IMS DC - QUEUE MANAGER EXIT (MAY BE REPLACED BY USER EXIT) *
* *
* ATTRIBUTES: REENTRANT *
* *
* ENTRY POINT: DFSQSPC0 *
* *
* PURPOSE: SEE FUNCTION *
* *
* LINKAGE: BALR R14,R15 FROM DFSQMGR0 WHENEVER AN LRECL (DRRN) *
* IS ASSIGNED OR FREED *
* NOTE: IN ORDER TO REDUCE THE NUMBER OF INSTRUCTIONS IN THE *
* EXIT ONLY THE WORK REGISTERS (4 AND 5) ARE SAVED AND RESTORED *
* *
* INPUT: *
* *
* R0 = DATASET INDICATOR *
* 00 IF QBLKS *
* 04 IF SMSGQ *
* 08 IF LMSGQ *
* *
* R2 = POINTER TO PARAMETER LIST... *
* 1ST WORD, 1ST BYTE *
* = FLAG CONTAINING BIT (X’40’) THAT INDICATES *
* WHETHER (ON) OR NOT (OFF) # OF RECORDS IN *
* USE EXCEEDED THE UPPER THRESHOLD BUT HAS *
* NOT YET DROPPED BELOW THE LOWER THRESHOLD *
* 1ST WORD, 2ND-4TH BYTE *
* = # OF RECORDS CURRENTLY IN USE *
* 2ND WORD = MAX # OF RECS ASSIGNABLE BEFORE SHUTDOWN *
* *
* R10 = SCD ADDRESS *
* *
* R14 = RETURN ADDRESS *
* *
* THE UPPER AND LOWER THRESHOLD VALUES ARE OBTAINED FROM SCD *
* FIELDS SCDQTU AND SCDQTL. THE QUEUE MANAGER INITIALIZATION *
* MTHE JCL USED TO BRING UP THE CONTROL REGION. *
* CORRESPONDING FIELDS IN RGPARMS. RGQTU AND RGQTL ARE *
* 1) IMS DEFAULTS (75% AND 60%), 2) USER DEFAULTS ESTABLISHED *
* BY SPECIFYING VALUES FOR QTU AND QTL IN THE DFSPBxxx MEMBER *
* OR 3) EXEC PARAMETER VALUES FOR QTU AND QTL ON *
* THE JCL USED TO BRING UP THE CONTROL REGION. *
* *
* OUTPUT: *
* *
* R0, R2, AND R10 ARE UNCHANGED *
* R15 = RETURN CODE *
* = 0 IF NO THRESHOLDS PASSED *
* = ONE OF THE FOLLOWING MESSAGE KEYS IF THRESHOLD PASSED: *
* *
DFS513 EQU 513 RECS IN QBLKS EXCEED UPPER THRESHOLD *
* IF QBLKS UPPER THRESHOLD EXCEEDED (BIT X’40’ IN *
* PARAMETER LIST FLAG BYTE WILL BE TURNED ON) *
* *
DFS514 EQU 514 RECS IN SMSGQ EXCEED UPPER THRESHOLD *
* IF SMSGQ UPPER THRESHOLD EXCEEDED (BIT X’40’ IN *
* PARAMETER LIST FLAG BYTE WILL BE TURNED ON) *
* *

482 Exit Routines

DFS515 EQU 515 RECS IN LMSGQ EXCEED UPPER THRESHOLD *
* IF LMSGQ UPPER THRESHOLD EXCEEDED (BIT X’40’ IN *
* PARAMETER LIST FLAG BYTE WILL BE TURNED ON) *
* *
DFS516 EQU 516 RECS IN QBLKS DATASET BELOW LWR THRESHOLD *
* IF QBLKS LOWER THRESHOLD PASSED (BIT X’40’ IN *
* PARAMETER LIST FLAG BYTE WILL BE TURNED OFF) *
* *
DFS517 EQU 517 RECS IN SMSGQ DATASET BELOW LWR THRESHOLD *
* IF SMSGQ LOWER THRESHOLD PASSED (BIT X’40’ IN FLAG *
* PARAMETER LIST FLAG BYTE WILL BE TURNED OFF) *
* *
DFS518 EQU 518 RECS IN LMSGQ DATASET BELOW LWR THRESHOLD *
* IF LMSGQ LOWER THRESHOLD PASSED (BIT X’40’ IN *
* PARAMETER LIST FLAG BYTE WILL BE TURNED OFF) *
* *
* NOTE: IF DFSQSPC0 IS REPLACED BY A USER EXIT THE USER *
* MESSAGE NUMBERS MUST BE RETURNED IN R15 AS THE *
* NEGATIVE OF THE POSITIVE MESSAGE NUMBER (LNR). *
* NORMAL EXIT: SEE OUTPUT *
* *
* ERROR EXIT: NONE *
* *
* EXTERNAL REFERENCES: NONE *
* *
* CHANGE ACTIVITY: SEE CHANGEID *
* *

EJECT

*
* PSEUDO CODE
*

* *
* *
* IF THE BIT IN THE PARAMETER FLAG INDICATING # OF RECORDS *
* EXCEEDED UPPER THRESHOLD IS ON *
* *
* THEN *
* IF # OF RECORDS CURRENTLY IN USE HAS DROPPED BELOW LOWER *
* THRESHOLD (60% OF MAXIMUM # OF ASSIGNABLE RECORDS BEFORE *
* SHUTDOWN) *
* *
* THEN *
* TURN OFF BIT IN PARAMETER FLAG INDICATING # OF RECORDS *
* EXCEEDED UPPER THRESHOLD. *
* SET R15 = KEY FOR MESSAGE INDICATING DATASET OK AGAIN. *
* *
* ELSE *
* NULL *
* *
* ELSE *
* IF # OF RECORDS CURRENTLY IN USE > UPPER THRESHOLD (75% OF *
* MAXIMUM # OF ASSIGNABLE BYTES BEFORE SHUTDOWN) *
* *
* THEN *
* SET BIT IN PARAMETER FLAG INDICATING # OF RECORDS *
* EXCEEDED UPPER THRESHOLD. *
* SET R15 = KEY FOR MESSAGE INDICATING UPPER THRESHOLD *
* EXCEEDED. *
* *
* ELSE *
* NULL *
* *
* RETURN TO CALLER. *
* *

Chapter 4. IMS system exit routines 483

EJECT

DFSQSPC0 CSECT
CHANGEID NAME=DFSQSPC0&SYSDATE,BASE=R12,LINKAGE=IMS, X

SAVE=(4,,5,,12,)
CHANGEID IDEND=YES

*
USING PARM,R2 ADDRESSABILITY TO PARM AREA.
USING SCD,R10 ADDRESSABILITY TO SCD.

*
TM PFLAG,PFEXCD EXCEEDED UPPER THRESHOLD?
BZ QSPC100 NO... CONTINUE.

*
L R5,PMAX CALCULATE LOWER THRESHOLD
M R4,SCDQTL (60% OF MAXIMUM NUMBER
D R4,=F’100’ OF RECORDS ASSIGNABLE).

*
L R4,PINUSE GET FLAG + IN USE COUNT.
LA R4,0(,R4) GET RID OF FLAG.
CR R5,R4 LOWER THRESHOLD : # CRNTLY IN USE
BNH RETURN BR IF LOWER THRESHLD <= CUR IN USE.

*
NI PFLAG,X’FF’-PFEXCD TURN OFF EXCEEDED FLAG.
LR R15,R0 SET UP
SRL R15,1 INDEX.
LH R15,MSGTBL1(R15) GET APPROPRIATE MESSAGE KEY.
LNR R15,R15 INDICATE USER MESSAGE KEY.
B RETURN1

*
L R5,PMAX CALCULATE UPPER THRESHOLD
M R4,SCDQTU (75% OF MAXIMUM NUMBER
D R4,=F’100’ OF RECORDS ASSIGNABLE).

*
L R4,PINUSE GET FLAG + IN USE COUNT.
LA R4,0(,R4) GET RID OF FLAG.
CR R5,R4 UPPER THRESHOLD : # CURNTLY IN USE
BNL RETURN BR IF UPPER THRESHLD >= CUR IN USE.

*
OI PFLAG,PFEXCD SHOW CURRENT IN USE EXCEEDED MAX.
LR R15,R0 SET UP
SRL R15,1 INDEX.
LH R15,MSGTBL2(R15) GET APPROPRIATE MESSAGE KEY.
LNR R15,R15 INDICATE USER MESSAGE KEY.
B RETURN1

*
RETURN EQU *

SR R15,R15 RC FOR NO THRESHOLDS PASSED.
*
RETURN1 EQU *

LEAVE RC=(15),RESTORE=(4,,5,,12,)
EJECT

**
* MESSAGES RETURNED WHEN THRESHOLDS PASSED
*

*
MSGTBL1 DS 0H

DC AL2(DFS516) RECS IN QBLKS BELOW LOWER THRESH
DC AL2(DFS517) RECS IN SMSGQ BELOW LOWER THRESH
DC AL2(DFS518) RECS IN LMSGQ BELOW LOWER THRESH

MSGTBL2 DS 0H
DC AL2(DFS513) RECS IN QBLKS EXCEED UPPER THRESH
DC AL2(DFS514) RECS IN SMSGQ EXCEED UPPER THRESH
DC AL2(DFS515) RECS IN LMSGQ EXCEED UPPER THRESH
EJECT
LTORG
EJECT

484 Exit Routines

REQUATE
PRINT NOGEN
ISCD
PRINT GEN
EJECT
DFSPARM
END

XRF Hardware Reserve Notification exit routine
Use the XRF Hardware Reserve Notification exit routine to receive notification of
z/OS reserves that should not be converted to global enqueues.

This topic contains Product-sensitive Programming Interface information.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 486

About this routine

This exit routine must be written as reentrant. No default is provided.

The exit name is set by IMS to DFS.XRFRESERVE. The XRF Hardware Reserve
Notification Exit uses the Dynamic Exit Facility. The Dynamic Exit Facility uses
DFS.XRFRESERVE for its EXITNAME parameter. You can provide any name for
the exit routine itself.

The following table shows the attributes of the XRF Hardware Reserve Notification
exit routine.

Table 175. XRF Hardware Reserve Notification exit routine attributes

Attribute Description

IMS environments XRF alternate

Naming convention The exit name is set to DFS.XRFRESERVE. You can provide any
name for the exit routine. Define the name of the exit routine to the
z/OS dynamic exit facility by using either the PROGxx parmlib
member EXIT statement or the SETPROG EXIT operator command.
See the "Dynamic Exits Facility" topic in z/OS MVS Installation Exits
manual.

Binding
You can bind the exit routine into:

v A data set that becomes part of the PLPA, MLPA, or FLPA
during initial program load.

v A data set that is part of the LNKLST concatenation.

v The nucleus initialization program IEANUC0x

v Any PDS or PDSE that is designated by the DSNAME option of:

– The SETPROG EXIT command

– The EXIT ADD statement of a PROGxx parmlib member

Including the routine No additional steps are needed to include this routine.

IMS callable services This exit routine cannot use IMS Callable Storage Services.

Sample routine
location

No sample exit routine is provided.

Chapter 4. IMS system exit routines 485

Attributes of the routine

The XRF Hardware Reserve Notification exit routine must be written as reentrant.
This exit routine receives control running in 31-bit addressing mode and it must
return control in that mode. The exit routine is called in TASK mode, key 7, with
no locks held, and in non-cross memory, non-AR mode.

Calling the routine

The exit routine is called whenever IMS reserves or releases one or more volumes
that contain log data during XRF takeover. The reserve call is made prior to the
actual reserve and the release call is made after the actual release.

Communicating with IMS

IMS communicates with this routine through the entry registers and a parameter
list.

Content of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following content:

Register Content

1 Address of the standard exit parameter list.

13 Address of the standard save area.

14 Return address to Dynamic Exit Service.

Exit parameter list

The parameter list contains the addresses of four parameters:

Parameter Definition

1 A fullword containing the version number of the parameter list.

2 A fullword containing a function code. Two functions are defined:

v FRBFNRSV EQU 1 ... function = reserve

v FRBFNREL EQU 2 ... function = release

3 A list of devices being reserved or released. The list format is a halfword
containing the number of devices in the list followed by that number of
halfword device addresses. These addresses are obtained from the
UCBCHAN field of the UCBs involved.

4 An eight character field containing the RSENAME.

Content of registers on exit

The Dynamic Exit Facility will restore IMS register content.
Related concepts:

z/OS: Dynamic Exits Facility
Related reference:
“Routine binding restrictions” on page 9

486 Exit Routines

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieae400/dynexit.htm

Part 2. Base Primitive Environment-based exit routines

Use these topics to design and write user-supplied modules for exit routines that
are supported by Base Primitive Environment (BPE) interfaces and services.

© Copyright IBM Corp. 1974, 2017 487

488 Exit Routines

Chapter 5. BPE user-supplied exit routine interfaces and
services

BPE gives you the ability to externally specify the user exit routine interfaces and
services to be called for a particular exit routine type using EXITDEF statements in
BPE user exit PROCLIB members.

This topic describes the Base Primitive Environment (BPE) user exit routine
interfaces and services in detail.

This topic contains Product-sensitive Programming Interface information.

Note: Throughout this topic the term “user exit routine” means “user-supplied exit
routine.”

General BPE user-supplied exit routine interface information

Some IMS components (for example, CQS, OM, RM, and SCI) use BPE services to
define and manage calls to user exit routines. BPE also has its own user exit
routines. BPE also provides a common user exit routine run time environment. The
run time environment includes the following:
v A standard BPE user exit parameter list
v Static work areas for the routines
v Dynamic work areas for the routines
v Callable services for the routines
v A recovery environment to protect against abends in the user exit routines

Recommendation: Write BPE user exit routines in assembler, not in a high level
language. BPE does not support exit routines that run under Language
Environment for z/OS. If you write an exit routine in a high level language, and
that routine runs in the Language Environment for z/OS, you might have abends
or performance problems. Language Environment for z/OS is designed for
applications that run in key 8, problem program state. BPE user exit routines run
in key 7 supervisor state.

Standard BPE user exit parameter list

All BPE-managed user exit routines receive a pointer to a Standard BPE user exit
parameter list in R1. The format of this parameter list is the same for all exit
routines, and is mapped by the BPEUXPL DSECT (in the BPEUXPL macro). The
following table provides the following information about the fields in the Standard
BPE user exit parameter list:
v The field name
v The offset
v The length
v The field usage
v A description of the field

© Copyright IBM Corp. 1974, 2017 489

Table 176. Standard BPE user exit parameter list

Field name Offset Length Field usage Description

BPEUXPL X'00' N/A N/A DSECT label for Standard BPE user exit
parameter list.

UXPL_VERSIONP X'00' X'04' Input Pointer to a word containing the Standard
BPE user exit parameter list version
number. The current version of the
parameter list is X'00000002'. (EQU symbol
UXPL_VER2.)

UXPL_CSTOKENP X'04' X'04' Input Pointer to the BPE callable services token.

UXPL_STATICWAP X'08' X'04' Input Pointer to a 256-byte static work area. Each
exit routine module is assigned its own
static work area. The contents of the static
work area are preserved from call to call.

UXPL_DYNAMICWAP X'0C' X'04' Input Pointer to a 512-byte dynamic work area.
This area is intended as working storage for
a user exit routine for the duration of that
exit routine's run. The contents of this area
are not preserved from call to call.

UXPL_EXITPLP X'10' X'04' Input Pointer to an exit-type-specific parameter
list. The exit-type-specific parameter list
contains fields that are unique to the type of
exit routine being called.

UXPL_CALLNEXTP X'14' X'04' Input Pointer to a byte of storage that the user
exit routine can use to indicate whether to
call other subsequent exit routines of the
same type for the current instance of the
exit routine call.

UXPL_COMPTYPEP X'18' X'04' Input Pointer to a 4-byte character string
containing the IMS component type for the
address space in which the exit routine is
being called. The string is left-justified and
padded with blanks as needed to make it a
4-byte string. Possible values are:

CQS Common Queue Server

DBRC Database Recovery Control

HWS IMS Connect

OM Operations Manager

REPO IMS Repository Server

RM Resource Manager

SCI Structured Call Interface

ODBM Open Database Manager
Important: This field is present only when
the word pointed to by UXPL_VERSIONP
is equal to the value of UXPL_VER2 or
greater.

490 Exit Routines

Table 176. Standard BPE user exit parameter list (continued)

Field name Offset Length Field usage Description

UXPL_COMPVERP X'1C' X'04' Input Pointer to a 3-byte field in storage
containing the internal version number of
the IMS component for the address space in
which the exit routine is being called. The
version number is of the form vvrrpp,
where:

vv Component version number.

rr Component release number.

pp Component point release number.
Important: This field is present only when
the word pointed to by UXPL_VERSIONP
is equal to the value of UXPL_VER2 or
greater.

UXPL_BPEVERP X'20' X'04' Input Pointer to a 3-byte field in storage
containing the BPE internal version number
for the address space in which the exit
routine is being called. The version number
is of the form vvrrpp, where:

vv BPE version number.

rr BPE release number.

pp BPE point release number.
Important: This field is present only when
the word pointed to by UXPL_VERSIONP
is equal to the value of UXPL_VER2 or
greater.

UXPL_SYSIDP X'24' X'04' Input Pointer to an 8-character system ID. The
system ID is a character ID string that may
be used by the IMS component using BPE
services (for example, the CQS ID that is
derived from the CQS SSN= startup
parameter). If the IMS component has not
provided a system ID to BPE, then the field
pointed to by this pointer will be all blanks.
If the system ID is shorter than eight
characters, it is padded on the right with
blanks to make it eight characters.
Important: This field is present only when
the word pointed to by UXPL_VERSIONP
is equal to the value of UXPL_VER2 or
greater.

Work areas provided by BPE

Each user exit routine is passed two work areas by BPE every time the exit routine
is called. The two work areas are:
v The static work area
v The dynamic work area

Static work area

Chapter 5. BPE user-supplied exit routine interfaces and services 491

The static work area is pointed to by field UXPL_STATICWAP in the Standard BPE
user exit parameter list. The static work area is 256 bytes in length. Each user exit
routine is assigned its own static work area that is not shared between exit routines
of the same type. The same work area is passed every time a particular user exit
routine is called, and the contents of the work area are preserved from call to call.
A user exit routine can use the static work area to save data between calls to the
exit routine. The static work area is cleared (set to zeros) the first time a user exit
routine is invoked.

When a user exit routine is refreshed with the REFRESH USEREXIT command, the
same static work area continues to be passed to the new copy of the module that
was being passed to the old copy. If a user exit routine is removed from an
EXITDEF list and a REFRESH USEREXIT command is issued, the static work area
for the module is deleted. If the exit module is then later added back to the
EXITDEF list and another REFRESH USEREXIT command is issued, the exit
routine gets a new (cleared) static work area.

Dynamic work area

The dynamic work area is pointed to by field UXPL_DYNAMICWAP in the
Standard BPE user exit parameter list. The dynamic work area is 512 bytes in
length. The dynamic work area is used as working storage by a user exit routine
for the current call only. The dynamic storage area's address might not be the
same, nor are its contents preserved from call to call. The dynamic work area is not
cleared when a user exit routine receives control; therefore, the work area might
contain residual data.
Related reference:

BPE USEREXIT commands (Commands)

BPE exit list members of the IMS PROCLIB data set (System Definition)
“BPE Initialization-Termination user-supplied exit routine” on page 515
“BPE Statistics user-supplied exit routine” on page 517

Calling subsequent exit routines in BPE
Each user exit routine type can have multiple exit routine modules associated with
it and can decide whether subsequent exit routines in the list that are to be called
on return to BPE.

Each user exit routine type can have multiple exit routine modules associated with
it. By default, BPE calls each module in the order that it was specified on the
EXITS parameter of the EXITDEF= statement. However, some exit types call the
specified modules in reverse order. If an exit type calls modules in reverse order,
that will be explicitly stated in the exit's individual documentation. The EXITDEF=
statement of the BPE user exit PROCLIB member defines the list of exit routines.

Each user exit routine can decide whether subsequent exit routines in the list that
are to be called on return to BPE. For example, a list of exit routines are called to
make a decision about processing for a particular resource. If exit routine ABC
cannot make the decision, it can return an indication that the next exit routine in
the list, routine DEF, is to be called so that it can try to make the decision. If exit
routine ABC is able to make the decision, it can return an indication that the next
exit routine in the list, routine DEF, need not be called because the decision has
already been reached.

492 Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_bpeuserexit.htm#ims_cr3bpeuserexit
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_bpe_exit_list_proclib.htm#ims_bpe_exit_list_proclib

Field UXPL_CALLNEXTP in the Standard BPE user exit parameter list is a pointer
to a byte in storage that the user exit routine can use to indicate whether to call the
next exit routine in the list. If the exit routine does not set this byte, the default is
to call the next exit routine in the list. If the exit routine sets this byte, it must set it
to one of the following values, defined by EQUs in the BPEUXPL macro:

UXPL_CALLNEXTYES
Call the next exit routine in the list.

UXPL_CALLNEXTNO
Do not call the next exit routine in the list.

BPE may ignore the value of the UXPL_CALLNEXTP byte for certain types of user
exit routines. In this case, all modules in the EXITDEF list for that exit type are
always called. Exit types that ignore the UXPL_CALLNEXTP setting will explicitly
state this information in their individual exit descriptions. If no information is
given, the default condition is that the exit type will use the UXPL_CALLNEXTP
setting.

Attention: Only UXPL_CALLNEXTYES and UXPL_CALLNEXTNO are defined
values for this byte. Results are unpredictable if a user exit routine sets this byte to
any value other than those listed here.

BPE user-supplied exit routine environment
BPE user-supplied exit routines are given control under certain environmental
conditions.

All user exit routines are given control in the following environment unless
otherwise stated:

Authorization
Supervisor state, PSW key 7

Dispatchable unit mode
TCB

Cross-memory mode
None (PASN=HASN=SASN)

AMODE
31

ASC mode
Primary

Interrupt Status
Enabled

Locks None

All user exit routines receive control with the following registers set:

Register
Contents

R1 Pointer to Standard BPE user exit parameter list.

R13 Pointer to the first of two pre-chained save areas. The user exit routine can
use the first save area to save the registers of its caller, and can use the
second save area for lower-level calls that it makes. The save areas are
chained together using standard z/OS save area linkage conventions.

Chapter 5. BPE user-supplied exit routine interfaces and services 493

R14 Return address.

R15 Entry point of exit routine.

Attention: Control must be returned to the return address passed to the user exit
routine in R14. R15 can be set to a return code if appropriate for the specific exit
routine type being called. Ensure that all other registers are restored to the values
they had when the exit routine was called.

The contents of the registers not listed here are unknown and unpredictable.

Ensure that your user exit routines do not modify any fields in any parameter list
that are not explicitly documented as output fields. The results of modifying
non-output fields are unpredictable.

Write your user exit routines so that they are reentrant. User exit routines in the
same EXITS= list are called serially within one occurrence of a call for that exit
routine type. However, it is possible for a user exit routine to be entered
simultaneously for different occurrences of a call, under different TCBs, for the
same exit routine type.

An exit routine receives the same static work area, but receives another dynamic
work area for each call when it is entered simultaneously. Be careful when
updating fields in the static work area. They might be in the process of being
changed by other instances of your exit routine module that are running in
parallel.

BPE user exit routine performance considerations
Code user-supplied exit routines in ways that minimize path length and processing
time as much as possible.

Some user exit routines might be called from mainline processing code. The
amount and type of processing that is done by those exit routines can directly
contribute to the total path length and time required to complete a unit of work.

Recommendations:

v Code your user exit routines in assembler language for the best performance. If
you write exit routines in other languages, you might have performance
problems. BPE does not support exit routines that run under Language
Environment for z/OS.

v Use a BPE callable service when possible rather than the operating system
equivalent, because the callable service is usually optimized to perform more
efficiently in a BPE sub-dispatching environment.

v Operating system WAITs, SVCs, and I/O can all contribute to poor performance
and should be used sparingly.

Abends in BPE user-supplied exit routines
BPE establishes a recovery environment before it calls user exit routines.

In most cases, BPE recovers from any abends that occur while a user exit routine is
in control, and calls the next exit routine in the list, if any is indicated. When a
user exit routine abends, BPE ignores any value that the abending exit routine may
have set in the byte pointed to by UXPL_CALLNEXTP. BPE resets this byte to
UXPL_CALLNEXTYES and then calls the next exit routine in the list.

494 Exit Routines

BPE keeps a count of the number of abends that have occurred in each user exit
routine module. The first time an abend occurs in a module, BPE issues a request
to create an SDUMP to capture diagnostic information about the abend. BPE also
creates a SYS1.LOGREC entry for the abend and issues the message, BPE0019E,
indicating which exit routine module had control when the abend occurred. For
subsequent abends in an exit routine module, BPE creates a SYS1.LOGREC entry
and issues the message, BPE0019E, but does not issue the request to create an
SDUMP.

When the number of abends indicated by the ABLIM parameter has been reached,
BPE stops calling the abending exit routine module. The ABLIM parameter is
specified as part of the EXITDEF= statement for that type of exit routine. The
default value for the ABLIM parameter is 1 (to stop calling the exit routine after
the first abend). You can change this value as required. The abend count for an exit
routine is reset to zero if the exit routine type is refreshed.
Related reference:

BPE exit list members of the IMS PROCLIB data set (System Definition)

BPE REFRESH USEREXIT command (Commands)

BPE user-supplied exit routine callable services
A set of callable services is provided that can be used by BPE-managed user exit
routines to request certain functions from BPE. Callable services are requested by
using the BPEUXCSV macro.

Recommendation: Choose the BPE service when there is a choice between using
an operating system service or an equivalent BPE callable service. All callable
services are Product-Sensitive Programming Interfaces (PSPIs).

Subsections:
v “BPEUXCSV macro description”
v “BPEUXCSV macro syntax” on page 497
v “Return from BPEUXCSV” on page 499

BPEUXCSV macro description

The purpose of the BPEUXCSV macro is to issue BPE callable service requests from
a user exit routine called from a BPE environment. You can use this macro only for
BPE-called exit routines (exit routines that are passed the address of a Standard
BPE user exit parameter list in R1). BPE provides callable services that include the
following functions:
v Get and free storage associated with the primary BPE TCB (usually job step).

Some user exit routines can run under a different TCB each time they are called.
Normally, storage obtained with GETMAIN is associated with the current TCB.
If an exit routine obtained storage when it was called under one TCB and tried
to free it when running under a different TCB, the storage free attempt may fail.
The get storage and free storage callable services allow exit routines to get an
area of storage when running under one TCB and to free it when running under
a different TCB.

v Load and delete modules and associate these modules with the primary BPE
TCB. Like the storage get and free services, the load and delete services handle
module management when loaded and deleted from different TCBs.

Chapter 5. BPE user-supplied exit routine interfaces and services 495

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_bpe_exit_list_proclib.htm#ims_bpe_exit_list_proclib
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_bperefreshuserexit.htm#ims_cr3refreshuserexit

v Get, retrieve, and free named storage areas. A named storage area is an area of
storage that is associated with a 16-byte name. The address of the storage area
can be retrieved given the name of the area. This allows different user exit
routines to communicate with one another by using a common name for a
shared named storage area.

When a callable service is invoked, the service may have to wait for the
completion of some event. Depending on the environment at the time your user
exit routine is called, such a wait can be either an OS WAIT (that is, the current
TCB is suspended until the event completes) or a BPE-internal wait. For
BPE-internal waits, BPE can run other ready work under the current TCB while
your user exit routine is waiting for the event to complete. When the event does
complete, BPE re-dispatches your exit routine's unit of work and completes the
callable service request.

The possibility of waiting introduces the following situations, which your exit
routine must be able to manage.
v Depending on the nature of the specific user exit routine (where and when it is

called), your exit routine might be entered again for another exit routine call
while the first instance of the exit routine is still waiting in a callable services
request. Note that multiple concurrent calls to user exit routines are, in general,
always possible. However, some user exit routines might normally be
TCB-serialized (that is, their callers always run under a single TCB); these
TCB-serialized routines might be entered multiple times when you use a callable
service.

v Again, depending on the specific user exit routine, your exit routine might have
control passed back from the BPE callable service request running under a
different TCB than when it was originally called. This is because BPE provides
the ability for a program that is using BPE services (such as CQS) to define a
pool of TCBs. In this situation any TCB in the pool can run any unit of work
that is assigned to the pool. So, your exit routine might be running under one
TCB in a pool, make a callable services request, wait, and then be dispatched
under a different TCB after the event completes.

BPEUXCSV environmental requirements

The requirements for the caller of BPEUXCSV are:

Authorization
Supervisor state, PSW key in which the user exit routine was originally
called.

Dispatchable unit mode
TCB mode.

Save area
R13 must be pointing to a standard 72-byte save area.

Cross-memory mode
None (PASN=HASN=SASN).

AMODE
31-bit.

ASC mode
Primary.

Interrupt Status
Enabled.

496 Exit Routines

Locks None.

BPEUXCSV restrictions and limitations

This topic contains Product-sensitive Programming Interface information.

BPEUXCSV can be invoked only from within a BPE-called user exit routine.
BPEUXCSV is a Product-Sensitive Programming Interface.

BPEUXCSV register information

This macro uses R0, R1, R14, and R15 as work registers. When BPEUXCSV returns
control to the caller, the contents of these registers will be changed. All other
registers remain unchanged.

BPEUXCSV performance implications

None.

Other macro requirements

None.

BPEUXCSV macro syntax

FUNC = CALL

The FUNC = CALL function is used to invoke a callable service from a user exit
routine. The following figure shows the syntax for the CALL function.

FUNC = DSECT

The FUNC = DSECT function is used to generate all of the following items:
v Return code symbols
v BPE callable service codes
v Parameter list DSECT for the BPEUXCSV CALL function

Syntax for BPEUXCSV macro DSECT function

►► BPEUXCSV FUNC=DSECT ►◄

Parameter descriptions

►► BPEUXCSV
label

FUNC=CALL
▼

,

PARMS=(symbol)
number
(r2-r12)

►

► SERVICECODE= symbol
(r2-r12)

SL= symbol
(r0-r12,r14,r15)

TOKEN= symbol
(r2-r12)

►◄

Figure 30. Syntax for BPEUXCSV macro CALL function

Chapter 5. BPE user-supplied exit routine interfaces and services 497

label
An optional assembler label for the macro statement.

FUNC=CALL | DSECT
An optional parameter that specifies the function of the BPEUXCSV macro.
The default is CALL.

CALL Invokes a BPE callable service from a user exit routine.

DSECT
Generates the return code symbols, BPE callable service codes, and the
parameter list DSECT for the BPEUXCSV CALL function.

PARMS=(list_of_parameters)
A required parameter that specifies a list of subparameters (separated by
commas) that are needed for the requested callable service. These
subparameters are positional, and are specific to the service requested.
Subparameters in this list may be in one of the following three forms.

symbol
If coded as a symbol, the value of the symbol (for example, the result
of doing an LA R0,symbol) is passed as the parameter.

number
If coded as a number, the number is passed as the parameter.

(register)
If coded as a register, the content of the register is passed as the
parameter. Valid registers are R2 through R12.

Examples:
v If a parameter is described as “A word in storage to receive a pointer to the

returned storage,” you could use one of the following coding examples.
BPEUXCSV PARMS=(MYWORD),...

. . .

MYWORD DS A Word to receive returned ptr

- or -

LA 2,MYWORD Get addr of word to receive ptr
BPEUXCSV PARMS=((2)),...

v If a parameter is described as “The number of bytes of storage to obtain,”
you could use one of the following coding examples.

BPEUXCSV PARMS=(NUMBYTES),...

. . .

NUMBYTES EQU 1024 Number of bytes to get

- or -

BPEUXCSV PARMS=(1024),...

- or -

LA 5,1024
BPEUXCSV PARMS=((5)),...

The specific parameters and parameter order for each service are described in
SERVICECODE=.

498 Exit Routines

SERVICECODE=symbol | (r2-r12)
A required parameter that specifies a code that identifies the particular callable
service that is being requested.

If SERVICECODE is specified as a symbol, the symbol must be an EQU
symbol that is equated to the function code of the requested callable service. If
SERVICECODE is specified as a register, the register must contain the service
code. For BPE-provided services, the appropriate EQU symbols are generated
when you invoke BPEUXCSV FUNC = DSECT, and are specified as one of the
following service codes.

BPEUXCSV_GETSTG
Get storage service.

BPEUXCSV_FREESTG
Free storage service.

BPEUXCSV_LOAD
Load module service.

BPEUXCSV_DELETE
Delete module service.

BPEUXCSV_NSCREATE
Create named storage service.

BPEUXCSV_NSRETRIEVE
Retrieve named storage service.

BPEUXCSV_NSDESTROY
Destroy named storage service.

SL=symbol | (r0-r12,r14,r15)
A required parameter that specifies an area in storage that is to be used as a
service parameter list. The BPEUXCSV macro uses this storage to build the
parameter list for the call to the callable service. The EQU symbol
BPEUXCSV_MAXSL is generated by this macro and is equated to the size of
the largest service parameter list required by BPE callable services. Ensure that
area of storage you specify on the SL parameter is at least BPEUXCSV_MAXSL
bytes in length when requesting any of the BPE callable services.

If SL is specified as a symbol, the symbol must be a label on the first byte of
the area to be used as the service parameter list. If the SL parameter is
specified as a register, the register must contain the address of the first byte of
the area.

TOKEN=symbol | (r2-r12)
A required parameter that specifies the callable services token address that was
passed to the user exit routine in the Standard BPE user exit parameter list
field UXPL_CSTOKENP. If the TOKEN parameter is specified as a symbol, the
symbol must be the label on a word of storage that contains the callable
services token address. If TOKEN is specified as a register, the register must
contain the callable services token address.

Return from BPEUXCSV

BPEUXCSV FUNC = CALL uses general purpose registers R0, R1, R14, and R15 as
work registers. On exit from the macro, R15 is set to the return code from the
BPEUXCSV macro. This return code indicates the status from the callable service
request router. The possible return code values in R15 are the same for all callable
service requests. R0 might be set to a return code for the specific callable service

Chapter 5. BPE user-supplied exit routine interfaces and services 499

that was requested, depending on the value that is in R15 (see R15 return codes in
the following table). The R0 return code is specific to each callable service. R1
might be set to a return value from the callable service, if applicable. See the
specific service descriptions for additional information. R2 through R12 are
unchanged on return from BPEUXCSV.

EQUs for the return codes in R15 are generated by BPEUXCSV FUNC = DSECT.
The following table describes the possible return code values in R15 for FUNC =
CALL, including the symbol, its value, and a description.

Table 177. FUNC=CALL return codes

Symbol Value Description

BPEUXCSV_RC_OK X'00' The callable service was successful.

BPEUXCSV_RC_SERV X'04' The specific callable service returned a
non-zero return code. The return code is in
the R0. Examine R0 to determine the specific
reason that the request failed. The only time
that the value in R0 is valid is when
R15=X'04'. Otherwise, the content of R0 is
unpredictable.

BPEUXCSV_RC_INVCODE X'08' The service code specified on SERVICECODE
is invalid.

BPEUXCSV_RC_BADTOKEN X'0C' The callable service token passed on TOKEN
is invalid.

BPEUXCSV_RC_INT X'F4' An internal BPE error occurred.

BPEUXCSV_RC_VERS X'FC' A callable services parameter list version error
was encountered. The version of the
parameter list generated by this macro is not
valid for your current release of BPE. This is
usually the result of assembling with a
version of BPEUXCSV at a different level than
the BPE runtime system.

BPEUXCSV get storage service
The BPEUXCSV get storage service is used to obtain virtual storage.

The BPEUXCSV get storage service is similar to the z/OS GETMAIN and
STORAGE services; however, the storage obtained by the get storage service is
always associated with the top-level BPE TCB (usually the job step TCB of the
address space). The storage remains allocated until it is explicitly freed or until the
job step TCB terminates. Therefore, you can rely on the fact that the storage stays
allocated even if it is obtained under a subtask TCB which later terminates.

Service Code: BPEUXCSV_GETSTG

PARMS format:

PARMS=(length,sp,opts) or PARMS=(length,sp,opts,key)

The following are descriptions of the parameters.

length
The length of the requested storage, in bytes.

500 Exit Routines

sp The subpool of the requested storage. This must be a valid private
subpool. It cannot be a common storage subpool (such as subpool 231
or 241).

opts
Options for the storage request. opts is a value that is the sum of
several EQU values. opts identifies the options you have requested for
the get storage service request. A BPEUXCSV FUNC = DSECT
statement must be included in your module to generate the EQUs
required for this function. To specify that none of the options apply,
code a zero (0) for opts.

BPEUXCSV_GETSTG_BELOW
Include this EQU if you want LOC = BELOW (below the line)
storage. If this EQU is omitted, the storage is LOC = ANY.

BPEUXCSV_GETSTG_CLEAR
Include this EQU if you want the storage to be cleared when it
is returned to you. If this EQU is omitted, the storage content
is unpredictable.

BPEUXCSV_GETSTG_PAGE
Include this EQU if you want the starting address of the
obtained storage to be aligned on a page boundary. If this EQU
is omitted, the storage is aligned on a double-word boundary.

key
The storage key of the restricted storage. key is an optional parameter.
If coded, it indicates the storage key to be assigned to the storage
returned from the get storage service. If key is omitted, the returned
storage will be key 7 storage.

The value passed for the key parameter must be sixteen times the
actual key value. For example, if you wanted to get key 2 storage, you
would specify a value of X'20' for the key parameter.

Note: The key parameter applies only to subpools where KEY= applies
on the z/OS GETMAIN macro (for example, subpool 229). It is ignored
for all other subpools. You cannot, for example, request subpool 0
storage in a key other than 7.

Output: Return code EQUs are generated by BPEUXCSV FUNC = DSECT. If R15 =
0, the address of the obtained storage area is returned in R1. Otherwise, the
content of R1 is unpredictable.

If R15 = 4 on return from this macro, R0 contains the reason code; the following
table lists these return codes, including the symbol, its value, and a description.

Table 178. Get storage service return codes

Symbol Value Description

BPEUXCSV_GETSTG_RCSP X'04' An invalid or unsupported subpool
was specified. Either the subpool is
not supported by z/OS, or it is a
common subpool.

BPEUXCSV_GETSTG_RCLV X'08' A zero or negative storage length
was specified.

A zero storage address was
specified.

Chapter 5. BPE user-supplied exit routine interfaces and services 501

Table 178. Get storage service return codes (continued)

Symbol Value Description

BPEUXCSV_GETSTG_RCSTG X'0C' The storage was unable to free the
requested storage.

BPEUXCSV_GETSTG_RCPARM X'F0' An invalid number of parameters
was passed to the callable services
request.

BPEUXCSV_GETSTG_RCINT X'F4' An internal BPE error occurred.

Examples:

v This next example shows how to get 64 bytes of storage from subpool 0. The
storage is LOC = BELOW, it is aligned on a page boundary, and it is not cleared.

BPEUXCSV SERVICECODE=BPEUXCSV_GETSTG, X
PARMS=(64,0,BPEUXCSV_GETSTG_BELOW+BPEUXCSV_GETSTG_PAGE),X
TOKEN=UXPL_CSTOKENP, X
SL=(1)

v The following example shows how to get key zero storage for a length of the
value in R2, from the subpool value in R3. The storage is LOC = ANY, it is not
cleared, and it is double-word aligned. R4 contains the callable services token
address that was passed to the user exit routine in the field UXPL_CSTOKENP.

BPEUXCSV SERVICECODE=BPEUXCSV_GETSTG, X
PARMS=((2),(3),0, 0), X
TOKEN=(4), X
SL=WORKAREA

BPEUXCSV free storage service
The BPEUXCSV free storage service is used to release storage that was previously
obtained with the BPEUXCSV get storage service.

The free storage service is similar to the z/OS FREEMAIN service. It must be used
only to release storage obtained with the get storage service. It should not be used
to release storage that was obtained using any other method (such as GETMAIN).

Service Code: BPEUXCSV_FREESTG

PARMS format:

PARMS=(address,length,sp) or PARMS=(address,length,sp,key)

address
The address of the first byte of storage being released.

length
The number of bytes of the storage being released.

sp The subpool of the storage being released. This subpool must be the
same as the subpool that was specified when the storage was obtained.

key
The storage key of the storage being released. key is the optional
parameter. If coded, it indicates the storage key of the storage being
freed. If key is omitted, the storage must be key 7 storage.

The value passed for the key parameter must be sixteen times the
actual key value. For example, if you were freeing key 2 storage, you
would specify a value of X'20' for the key parameter.

502 Exit Routines

Note: The key parameter only applies to subpools where KEY= applies
on the z/OS FREEMAIN macro (for example, subpool 229). It is
ignored for all other subpools.

Output: Return code EQUs are generated by BPEUXCSV FUNC = DSECT. If R15 =
4 on return from this macro, R0 contains the reason code; the following table lists
the reason codes, including the symbol, its value, and a description.

Table 179. Free storage service return codes

Symbol Value Description

BPEUXCSV_FREESTG_RCSP X'04' An invalid or unsupported
subpool was specified. Either
the subpool is not supported
by z/OS, or it is a common
subpool.

BPEUXCSV_FREESTG_RCLV X'08' A zero or negative storage
length was specified.

BPEUXCSV_FREESTG_RCADDR X'0C' A zero storage address was
specified.

BPEUXCSV_FREESTG_RCSTG X'10' The service was unable to free
the requested storage.

BPEUXCSV_FREESTG_RCPARM X'F0' An invalid number of
parameters was passed to the
callable services request.

Example:

This example shows how to free STGLEN bytes starting at the byte at label
MYSTG in subpool 129. STGLEN is an EQU for the number of bytes to free, and
MYSTG is the label on the first byte of the area to free (not the label on a word
pointing to the area).

BPEUXCSV load module service
The BPEUXCSV Load Module Service is used to load a module from a library into
storage.

It is similar to the z/OS LOAD service; however, the module that is loaded is
always associated with the top level BPE-TCB (usually the job step TCB of the
address space). The module remains allocated until it is explicitly freed or until the
job step TCB terminates. Therefore, you can rely on the module remaining
allocated, even if it is obtained under a subtask TCB that later terminates.

Service Code: BPEUXCSV_LOAD

PARMS format: PARMS=(modname,dcb,opts)

modname
Identifies an eight-character field in storage containing the name of the module
to be loaded. If modname is coded as a symbol, the symbol must be the label on

BPEUXCSV SERVICECODE=BPEUXCSV_FREESTG, X
PARMS=(MYSTG,STGLEN,129), X
TOKEN=UXPL_CSTOKENP, X
SL=(1)

Chapter 5. BPE user-supplied exit routine interfaces and services 503

the first byte of the eight-character field. If modname is coded as a register, the
register must contain the address of the eight-character field.

dcb
The address of an opened DCB for a partitioned data set from which to load
the specified module. To use the TASKLIB, STEPLIB, or JOBLIB data sets, code
0 for this parameter.

opts
Options for the load request. opts is a value that is the sum of several EQU
values. opts identifies the options you have requested for the Load Module
Service request. A BPEUXCSV FUNC = DSECT statement must be included in
your module to generate the EQUs required for this function. To specify that
none of the options apply, code 0 for opts.

BPEUXCSV_LOAD_FIXED
Include this EQU if you want the module to be loaded into page-fixed
storage. If this EQU is omitted, the module is loaded into pageable
storage. This parameter applies only if you also specify
BPEUXCSV_LOAD_GLOBAL. Otherwise, BPEUXCSV_LOAD_FIXED is
ignored.

BPEUXCSV_LOAD_GLOBAL
Include this EQU if you want the module to be loaded into global
(common) storage. If this EQU is omitted, it is loaded into private
storage.

BPEUXCSV_LOAD_EOM
Include this EQU if you specified BPEUXCSV_LOAD_GLOBAL and
you want the module to be deleted only after the address space
terminates. If this EQU is omitted, the module is deleted when the
top-level BPE TCB terminates. BPEUXCSV_LOAD_EOM is ignored if
you did not code BPEUXCSV_LOAD_GLOBAL.

Output: If R15 = 0, the address of the loaded module is returned in R1. Otherwise,
the content of R1 is unpredictable.

Return code EQUs are generated by BPEUXCSV FUNC = DSECT. If R15 = 4 on
return from this macro, then R0 contains the reason code; the following table lists
the reason codes, including the symbol, its value, and a description.

Table 180. Load module service return codes

Symbol Value Description

BPEUXCSV_LOAD_RCNOTFND X'04' The specified module
could not be found.

BPEUXCSV_LOAD_RCBLDL X'08' BLDL for the module
failed due to an internal
error.

BPEUXCSV_LOAD_RCLOAD X'0C' LOAD for the module
failed. The module was
found in the library, but
LOAD returned a
non-zero code.

BPEUXCSV_LOAD_RCPARM X'F0' An invalid number of
parameters was passed
to callable services
request.

504 Exit Routines

Table 180. Load module service return codes (continued)

Symbol Value Description

BPEUXCSV_LOAD_RCINT X'F4' An internal BPE error
occurred.

Examples:

The following example shows how to load the module whose name is at the 8
bytes of storage, beginning at label MODNAME, from the default TASKLIB,
JOBLIB, or STEPLIB data sets.

This next example shows how to load the module, whose name is at the 8 bytes of
storage pointed to by R8, into global storage. The module is not deleted until the
address space terminates (or until it is explicitly deleted). R2 contains the callable
services token address that was passed to the user exit routine in the
UXPL_CSTOKENP field. The module is loaded from the data set described by DCB
MYDCB.

BPEUXCSV delete module service
The BPEUXCSV delete module service is used to delete a module that was
previously loaded with the BPEUXCSV load module service.

The BPEUXCSV delete module service is similar to the z/OS DELETE service. It
must be used only to delete modules obtained with the load module service. It
must not be used to delete modules that were loaded using any other method
(such as z/OS LOAD).

Service Code: BPEUXCSV_DELETE

PARMS format: PARMS=(modname)

modname
Identifies an eight character field in storage containing the name of the module
to be deleted. If modname is coded as a symbol, the symbol must be the label
on the first byte of the eight character field. If modname is coded as a register,
the register must contain the address of the eight character field.

BPEUXCSV SERVICECODE=BPEUXCSV_LOAD, X
PARMS=(MODNAME,0,0), X
TOKEN=UXPL_CSTOKENP, X
SL=(1)

. . .

MODNAME DC CL8’MODULE00’ Name of module to load

LA 8,MODNAME R8 = addr of name of module to load
BPEUXCSV SERVICECODE=BPEUXCSV_LOAD, X

PARMS=((8),MYDCB,BPEUXCSV_LOAD_GLOBAL+BPEUXCSV_LOAD_EOM)X
TOKEN=(2), X
SL=PRMLIST

. . .

MODNAME DC CL8’MODULE00’ Name of module to load
MYDCB DCB DSNAME=...

Chapter 5. BPE user-supplied exit routine interfaces and services 505

Output: Return code EQUs are generated by BPEUXCSV FUNC = DSECT. If R15 =
4 on return from this macro, then R0 the reason code; the following table lists these
reason codes, including the symbol, its value, and a description.

Table 181. Delete module service return codes

Symbol Value Description

BPEUXCSV_DELETE_RCDELETE X'04' The module that was
specified could not be deleted.

BPEUXCSV_DELETE_RCPARM X'F0' An invalid number of
parameters was passed to the
callable services request.

BPEUXCSV_DELETE_RCINT X'F4' An internal BPE error
occurred.

Example:

The following example shows how to delete the module whose eight character
name is in the storage pointed to by R5.

BPEUXCSV create named storage service
The BPEUXCSV create named storage service allows you to obtain an area of
storage that is associated with a 16-byte name.

In subsequent user exit routine calls (either for the same or different exit routine
types), you can retrieve the named storage area address by providing the same
name to the retrieve named storage service. Named storage services allow a set of
user exit routines to share information but only if they agree on the same name.
Typically, an initialization-type exit routine creates the named storage, and all
subsequent exit routines retrieve the named storage address.

The name of the storage must be unique within the BPE address space. The named
storage is obtained in subpool 0, LOC = ANY storage. The storage is cleared to
zeros when it is created.

Service Code: BPEUXCSV_NSCREATE

PARMS format: PARMS=(name,length)

name
Identifies a 16-byte field in storage containing the name to be associated with
the storage obtained. The field can contain any 16-byte value (all bytes are
significant). If name is coded as a symbol, the symbol must be the label on the
first byte of the 16-byte field. If name is coded as a register, the register must
contain the address of the 16-byte field.

length
The number of bytes of the named storage area to obtain.

LA 5,MODNAME R5=addr of name of module to delete
BPEUXCSV SERVICECODE=BPEUXCSV_DELETE, X

PARMS=((5)), X
TOKEN=UXPL_CSTOKENP, X
SL=(1)

. . .

MODNAME DC CL8’MODULE00’ Name of module to delete

506 Exit Routines

Output: If R15 = 0, the address of the named storage area obtained is returned in
R1. Otherwise, the content of R1 is unpredictable.

Return code EQUs are generated by BPEUXCSV FUNC = DSECT. If R15 = 4 on
return from this macro, R0 contains the reason code; the following table lists these
reason codes, including the symbol, its value, and a description.

Table 182. Create named storage service return codes

Symbol Value Description

BPEUXCSV_NSCREATE_RCDUP X'04' The requested storage area
name is already in use.

BPEUXCSV_NSCREATE_RCLV X'08' A zero or negative storage
length was requested.

BPEUXCSV_NSCREATE_RCNAME X'0C' A zero name address was
specified.

BPEUXCSV_NSCREATE_RCSTG X'10' The service was unable to
obtain the requested storage.

BPEUXCSV_NSCREATE_RCPARM X'F0' An invalid number of
parameters was passed to the
callable services request.

BPEUXCSV_NSCREATE_RCINT X'F4' An internal BPE error
occurred.

Example:

This example shows how to create a 1024-byte storage area that is associated with
the 16-byte name in storage. The first byte of the named storage area is at label
MYNAME.

BPEUXCSV retrieve named storage service
The BPEUXCSV retrieve named storage service allows you to retrieve the address
of a named area of storage that was previously created with the create named
storage service.

Service Code: BPEUXCSV_NSRETRIEVE

PARMS format: PARMS=(name)

name
Identifies a 16-byte field in storage containing the name of the named storage
area. The field can contain any 16-byte value (all bytes are significant). If name
is coded as a symbol, the symbol must be the label on the first byte of the
16-byte field. If name is coded as a register, the register must contain the
address of the 16-byte field.

BPEUXCSV SERVICECODE=BPEUXCSV_NSCREATE, X
PARMS=(MYNAME,1024), X
TOKEN=UXPL_CSTOKENP, X
SL=(1)

. . .

MYNAME DC CL16’SHARED_STOR_1024’ "Name" of named storage

Chapter 5. BPE user-supplied exit routine interfaces and services 507

Output: If R15 = 0, the address of the named storage area retrieved is returned in
R1. Otherwise, the content of R1 is unpredictable.

Return code EQUs are generated by BPEUXCSV FUNC = DSECT. If R15 = 4 on
return from this macro, R0 contains the reason code; the following table lists these
reason codes, including the symbol, its value, and a description.

Table 183. Retrieve named storage service return codes

Symbol Value Description

BPEUXCSV_NSRETRIEVE_RCNONE X'04' No named storage area is
associated with the specified
name.

BPEUXCSV_NSRETRIEVE_RCNAME X'08' A zero name address was
specified.

BPEUXCSV_NSRETRIEVE_RCPARM X'F0' An invalid number of
parameters was passed to
the callable services request.

BPEUXCSV_NSRETRIEVE_RCINT X'F4' An internal BPE error
occurred.

Example:

This example shows how to retrieve the address of the named storage area
associated with the 16-byte name in storage at the address contained in R6.

BPEUXCSV destroy named storage service
The BPEUXCSV destroy named storage service is used to delete a previously
created named storage area. No other user exit routine should access this storage
after you destroy it.

Service Code: BPEUXCSV_NSDESTROY

PARMS format: PARMS=(name)

name
Identifies a 16-byte field in storage containing the name of the named storage
area. The field can contain any 16-byte value (all bytes are significant). If name
is coded as a symbol, the symbol must be the label on the first byte of the
16-byte field. If name is coded as a register, the register must contain the
address of the 16-byte field.

Output: Return code EQUs are generated by BPEUXCSV FUNC = DSECT. If R15 =
4 on return from this macro, R0 contains the reason code; the following table lists
these reason codes, including the symbol, its value, and a description.

LA 6,MYNAME
BPEUXCSV SERVICECODE=BPEUXCSV_NSRETRIEVE, X

PARMS=((6)), X
TOKEN=UXPL_CSTOKENP, X
SL=(1)

. . .

MYNAME DC CL16’SHARED_STOR_1024’ "Name" of named storage

508 Exit Routines

Table 184. Destroy named storage service return codes

Symbol Value Description

BPEUXCSV_NSDESTROY_RCNONE X'04' No named storage area is
associated with the specified
name.

BPEUXCSV_NSDESTROY_RCNAME X'08' A zero name address was
specified.

BPEUXCSV_NSDESTROY_RCPARM X'F0' An invalid number of
parameters was passed to the
callable services request.

BPEUXCSV_NSDESTROY_RCINT X'F4' An internal BPE error
occurred.

Example:

The following example shows how to destroy the named storage area associated
with the 16-byte name in storage whose first byte is at label NSNAME.

BPE callable service example: Sharing data among exit routines
As an example of the use of callable services, consider the case where you have a
set of user exit routines of varying types that all need to share some common
information.

For this example, assume that the following three types of exit routines are being
used:
v An initialization exit routine that gets control when the address space is first

started. Assume that this exit routine runs before any mainline processing is
done (so you can be sure that the other two exit routines will not be called until
the initialization exit routine has returned).

v A processing exit routine that gets control whenever a particular event occurs in
the address space that needs user exit routine provided information.

v A termination exit routine that gets control when the address space is ending.

Important: These user exit routines are presented here for example purposes only.
These examples should not be assumed to be usable exit routines.

Subsections:
v “Sample initialization exit routine” on page 510
v “Sample processing exit routine” on page 511
v “Sample termination exit routine” on page 512

BPEUXCSV SERVICECODE=BPEUXCSV_NSDESTROY, X
PARMS=(NSNAME), X
TOKEN=UXPL_CSTOKENP, X
SL=(1)

. . .

NSNAME DC XL16’01C1C2C300000000F1F2F3F4006D2748’ Binary names OK

Chapter 5. BPE user-supplied exit routine interfaces and services 509

Sample initialization exit routine

The initialization exit routine uses the create named storage service to obtain a
16-byte area of storage with the name ZZZ_EXIT_AREA. The storage is mapped by
the following DSECT (which is assumed to be available in all of the modules).
ZZZ_EXIT_AREA DSECT ,
ZZZ_TABLE_NAME DS CL8 Name of table module
ZZZ_TABLE_ADDR DS A Address of table module

DS F Available
ZZZ_EXIT_AREA_L EQU *-ZZZ_EXIT_AREA

The initialization exit routine then uses the load module service to load a module
named ZZZUXTB0 (a table that is needed in this example to pass information to
the other user exit routines). The initialization exit routine stores the name of the
table module in the named storage area field ZZZ_TABLE_NAME, and the address
of the loaded table in field ZZZ_TABLE_ADDR. A routine using a table may not
be required for your application.

A sample initialization exit routine that performs these functions is shown in the
following example. The code shown in the following examples is mainline path
only. For simplicity, error paths and exception handling code are not shown.
INITEXIT CSECT ,
INITEXIT AMODE 31
INITEXIT RMODE ANY

STM 14,12,12(13) Save caller’s registers
LR 12,15 Move module entry pt to R12
USING INITEXIT,12 Address module base register
L 13,8(,13) Chain to 2nd provided save area
LR 11,1 Move exit parmlist to R11
USING BPEUXPL,11 Address std BPE user exit PL
L 10,UXPL_DYNAMICWAP Get 512-byte dynamic storage ptr
USING DYNSTG,10 Address module’s dynamic storage
BPEUXCSV SERVICECODE=BPEUXCSV_NSCREATE, Create named stg X

PARMS=(NSNAME,ZZZ_EXIT_AREA_L), for the exits X
TOKEN=UXPL_CSTOKENP, X
SL=UXCSVPL

LTR 15,15 Did NSCreate work?
BNZ ERROR1 No, go handle error

LR 9,1 Yes, named storage ptr to R9
USING ZZZ_EXIT_AREA,9 Address using "ZZZ" DSECT
MVC ZZZ_TABLE_NAME,TBLNAME Set name of table module
BPEUXCSV SERVICECODE=BPEUXCSV_LOAD, Load the table X

PARMS=(TBLNAME,0,0), module for the X
TOKEN=UXPL_CSTOKENP, exits X
SL=UXCSVPL

LTR 15,15 Did LOAD work?
BNZ ERROR2 No, go handle error
ST 1,ZZZ_TABLE_ADDR Yes, save table ptr in named stg

. . . Do any other init exit functions

XR 15,15 Set zero return code
L 13,4(,13) Back up to caller’s save area
L 14,12(,13) Restore caller’s R14
LM 0,12,20(13) Restore caller’s R0-R12
BR 14 Return to caller
DROP 9,10,11,12 Release USING registers

NSNAME DC CL16’ZZZ_EXIT_AREA ’ Const for named storage
TBLNAME DC CL8’ZZZUXTB0’ Const for table module name

LTORG ,

510 Exit Routines

DYNSTG DSECT , Dynamic storage DSECT
UXCSVPL DS XL(BPEUXCSV_MAXSL) Space for BPEUXCSV parmlist

. . . Other dynamic storage fields
BPEUXPL FUNC=DSECT Include user exit parmlist
BPEUXCSV FUNC=DSECT Include BPEUXCSV symbols
END

Sample processing exit routine

The processing exit routine obtains the address of the table module that was
loaded by the initialization exit routine. For optimum performance, the processing
exit routine uses the first word of the static work area that BPE passes to save the
address of the shared storage area.

On entry, the processing exit routine checks this word of storage. If this word is
non-zero, the processing routine uses this address as the shared storage area
pointer. If the first word is zero, the processing exit routine invokes the named
storage retrieve service to get the address of the shared storage. The processing exit
routine then saves the address in the static storage area. This technique minimizes
the number of BPE requests for callable services that this exit routine must make
(because it needs to do the retrieve only once; on subsequent calls, the address of
the shared storage area is available in the static work area).

A sample processing exit routine that performs these functions is shown in the
following example.
PROCEXIT CSECT ,
PROCEXIT AMODE 31
PROCEXIT RMODE ANY

STM 14,12,12(13) Save caller’s registers
LR 12,15 Move module entry pt to R12
USING PROCEXIT,12 Address module base register
L 13,8(,13) Chain to 2nd provided save area
LR 11,1 Move exit parmlist to R11
USING BPEUXPL,11 Address std BPE user exit PL
L 10,UXPL_DYNAMICWAP Get 512-byte dynamic storage ptr
USING DYNSTG,10 Address module’s dynamic storage
L 9,UXPL_STATICWAP Get 256-byte static storage ptr
ICM 8,15,0(9) Is shared stg ptr set?
BNZ GOTSHRD Yes, continue
BPEUXCSV SERVICECODE=BPEUXCSV_NSRETRIEVE, Get named stg addr X

PARMS=(NSNAME), X
TOKEN=UXPL_CSTOKENP, X
SL=UXCSVPL

LTR 15,15 Did NSRetrieve work?
BNZ ERROR1 No, go handle error
LR 8,1 Yes, set shrd stg ptr in R8
ST 8,0(,9) Save in static stg for next time

GOTSHRD DS 0H
USING ZZZ_EXIT_AREA,8 Address using "ZZZ" DSECT
L 7,ZZZ_TABLE_ADDR Get table address

. . . Do process exit functions
XR 15,15 Set zero return code
L 13,4(,13) Back up to caller’s save area
L 14,12(,13) Restore caller’s R14
LM 0,12,20(13) Restore caller’s R0-R12
BR 14 Return to caller

DROP 8,10,11,12 Release USING registers
NSNAME DC CL16’ZZZ_EXIT_AREA ’ Const for named storage

LTORG ,

Chapter 5. BPE user-supplied exit routine interfaces and services 511

DYNSTG DSECT , Dynamic storage DSECT
UXCSVPL DS XL(BPEUXCSV_MAXSL) Space for BPEUXCSV parmlist

. . . Other dynamic storage fields
BPEUXPL FUNC=DSECT Include user exit parmlist
BPEUXCSV FUNC=DSECT Include BPEUXCSV symbols
END

Sample termination exit routine

The termination exit routine locates the shared storage area, deletes the loaded
table module using the name that was saved in the shared storage area, and then
destroys the shared area.

A sample termination exit routine that performs these functions is shown in the
following example.
TERMEXIT CSECT ,
TERMEXIT AMODE 31
TERMEXIT RMODE ANY

STM 14,12,12(13) Save caller’s registers
LR 12,15 Move module entry pt to R12
USING TERMEXIT,12 Address module base register
L 13,8(,13) Chain to 2nd provided save area
LR 11,1 Move exit parmlist to R11
USING BPEUXPL,11 Address std BPE user exit PL
L 10,UXPL_DYNAMICWAP Get 512-byte dynamic storage ptr
USING DYNSTG,10 Address module’s dynamic storage
BPEUXCSV SERVICECODE=BPEUXCSV_NSRETRIEVE, Get named stg addr X

PARMS=(NSNAME), X
TOKEN=UXPL_CSTOKENP, X
SL=UXCSVPL

LTR 15,15 Did NSRetrieve work?
BNZ ERROR1 No, go handle error
LR 8,1 Yes, set shrd stg ptr in R8
USING ZZZ_EXIT_AREA,8 Address using "ZZZ" DSECT
BPEUXCSV SERVICECODE=BPEUXCSV_DELETE, Delete table X

PARMS=(ZZZ_TABLE_NAME), module X
TOKEN=UXPL_CSTOKENP, X
SL=UXCSVPL

LTR 15,15 Did DELETE work?
BNZ ERROR2 No, go handle error
BPEUXCSV SERVICECODE=BPEUXCSV_NSDESTROY, Destroy named stg X

PARMS=(NSNAME), X
TOKEN=UXPL_CSTOKENP, X
SL=UXCSVPL

DROP 8 R8 no longer is "ZZZ" area
LTR 15,15 Did NSDestroy work?
BNZ ERROR3 No, go handle error
. . . Do other term exit functions

XR 15,15 Set zero return code
L 13,4(,13) Back up to caller’s save area
L 14,12(,13) Restore caller’s R14
LM 0,12,20(13) Restore caller’s R0-R12
BR 14 Return to caller
DROP 10,11,12 Release USING registers

NSNAME DC CL16’ZZZ_EXIT_AREA ’ Const for named storage

LTORG ,
DYNSTG DSECT , Dynamic storage DSECT
UXCSVPL DS XL(BPEUXCSV_MAXSL) Space for BPEUXCSV parmlist

. . . Other dynamic storage fields

512 Exit Routines

BPEUXPL FUNC=DSECT Include user exit parmlist
BPEUXCSV FUNC=DSECT Include BPEUXCSV symbols
END

Chapter 5. BPE user-supplied exit routine interfaces and services 513

514 Exit Routines

Chapter 6. Base Primitive Environment customization exit
routines

BPE customization user exit routines enable you to customize and monitor address
spaces built on the Base Primitive Environment.

BPE-defined user exit routine types are available to all IMS component address
spaces that run with BPE. You write these exit routines. No sample exit routines
are provided. The BPE user exit routines are given control in the address space in
an authorized state.

Recommendation: Write BPE user exit routines in assembler, not in a high level
language. BPE does not support exit routines that run under Language
Environment for z/OS. If you write an exit routine in a high level language, and
that routine runs in the Language Environment for z/OS, you might have abends
or performance problems. Language Environment for z/OS is designed for
applications running in key 8, problem program state. BPE user exit routines
execute in key 7 supervisor state.

BPE Initialization-Termination user-supplied exit routine
The BPE Initialization-Termination user-supplied exit routine is called during BPE
initialization and normal BPE termination.

BPE user exit routines enable you to customize and monitor address spaces built
on the Base Primitive Environment. BPE-defined user exit routine types are
available to all IMS component address spaces that run with BPE. You write these
exit routines. No sample exit routines are provided. The BPE user exit routines are
given control in the address space in an authorized state.

Recommendation: Write BPE user exit routines in assembler, not in a high level
language. BPE does not support exit routines that run under Language
Environment for z/OS. If you write an exit routine in a high level language, and
that routine runs in the Language Environment for z/OS, you might have abends
or performance problems. Language Environment for z/OS is designed for
applications running in key 8, problem program state. BPE user exit routines
execute in key 7 supervisor state.

This topic contains Product-sensitive Programming Interface information.

Subsection:
v “About this routine”

About this routine

The Init-Term exit routine is not called during BPE abnormal termination. This exit
routine is optional.

The Init-Term exit routine is defined as TYPE = INITTERM, COMP=BPE in the
EXITDEF statement in the BPE user exit PROCLIB member pointed to by the
EXITMBR statement for the BPE exit routines. You can specify one or more user

© Copyright IBM Corp. 1974, 2017 515

exit routines of this type. When the init-term exit point is reached, the exit routines
are driven in the order they are specified by the EXITS= keyword.

Recommendation: Write the Init-Term exit routine so that it is reentrant. The
Init-Term exit routine is invoked AMODE 31.

Contents of registers on entry

Register
Contents

1 Address of Standard BPE user exit parameter list (mapped by the
BPEUXPL macro).

13 Address of two pre-chained save areas. The first save area can be used by
the exit routine to save registers on entry. The second save area can be
used by routines that are called from the user exit routine.

14 Return address.

15 Entry point of the exit routine.

Contents of registers on exit

Register
Contents

15 Return code

0 Always set this to zero.

All other registers must be restored.

BPE initialization and termination parameter list

On entry to the Init-Term exit routine, R1 points to a Standard BPE user exit
parameter list. Field UXPL_EXITPLP in this list contains the address of the
Init-Term user exit routine parameter lists (mapped by the BPEITXP macro). The
following table provides the following information about the BPE Init-Term user
exit routine parameters:
v The field name
v The offset
v The length
v The field usage
v A description of the field

Field name Offset Length Field usage Description

BPEITXP X'00' N/A N/A DSECT label for the BPE init-term exit
parameter list

BPEITXP_VERSION X'00' X'04' Input Parameter list version number (X'00000001')

BPEITXP_FUNC X'04' X'04' Input Function code

1 BPE Initialization
(BPEITXP_FUNC_INIT)

2 BPE Termination
(BPEITXP_FUNC_TERM)

Related reference:

516 Exit Routines

Chapter 5, “BPE user-supplied exit routine interfaces and services,” on page 489

BPE Statistics user-supplied exit routine
The BPE Statistics user-supplied exit routine is called at regular intervals during
the life of a BPE address space, and a final time at normal address shutdown, to
gather address-space related statistics.

Recommendation: Write BPE user exit routines in assembler, not in a high level
language. BPE does not support exit routines that run under Language
Environment for z/OS. If you write an exit routine in a high level language, and
that routine runs in the Language Environment for z/OS, you might have abends
or performance problems. Language Environment for z/OS is designed for
applications running in key 8, problem program state. BPE user exit routines
execute in key 7 supervisor state.

Subsection:
v “About this routine”

About this routine

This topic contains Diagnosis, Modification, and Tuning information.

The BPE Statistics user exit routine enables you, at regular intervals, to gather
statistics related to an IMS component that is running with a BPE address space.
The exit routine is also called a final time during normal shutdown of the address
space. The BPE Statistics user exit routine is optional.

The statistics exit routine is called on a time-driven basis. The interval between
successive statistics exit routine calls is specified on the STATINTV parameter in
the BPE configuration PROCLIB member. The exit routine is first called soon after
BPE initialization completes. Subsequent calls occur every STATINTV seconds after
the previous call returns.

The BPE statistics exit routine is also called one final time during normal address
space shutdown processing. When it is called for normal shutdown, the function
code passed in the BPESTXP parameter list will be BPESTXP_FUNC_FINALSTATS
(2), indicating that this is the final statistics exit routine call.

The BPE Statistics user exit routine is defined as TYPE = STATS, COMP=BPE in the
EXITDEF statement in the BPE user exit PROCLIB member. You can specify one or
more user exit routines of this type. When this exit routine is invoked, all routines
of this type are driven in the order specified by the EXITS= keyword.

Important: All statistics passed to the BPE Statistics user exit routine are
considered Diagnosis, Modification, or Tuning Information.

Recommendation: Write the BPE Statistics exit routine so that it is reentrant. It is
invoked AMODE 31.

Contents of registers on entry

Register
Contents

1 Address of Standard BPE user exit parameter list (mapped by the
BPEUXPL macro).

Chapter 6. Base Primitive Environment customization exit routines 517

13 Address of two pre-chained save areas. The first save area can be used by
the exit routine to save registers on entry. The second save area can be
used by routines that are called from the user exit routine.

14 Return address.

15 Entry point of the exit routine.

Contents of registers on exit

Register
Contents

15 Return code

0 Always set this to zero.

All other registers must be restored.

BPE statistics exit routine parameter list

On entry to the Statistics exit routine, R1 points to a Standard BPE user exit
parameter list. Field UXPL_EXITPLP in the Standard BPE user exit parameter list
contains the address of the BPE Statistics user exit routine parameter list (mapped
by the BPESTXP macro). The following table provides the following information
about the Statistics user exit routine parameters:
v The field name
v The offset
v The length
v The field usage
v A description of the field

Table 185. BPE statistics user-supplied exit routine parameter list
Field name Offset Length Field usage Description

BPESTXP X'00' N/A N/A DSECT label for the BPE statistics exit parameter list

BPESTXP_VERSION X'00' X'04' Input Parameter list version number (00000001)

BPESTXP_FUNC X'04' X'04' Input Function code

1 Statistics (BPESTXP_FUNC_STATS)

2 Final statistics
(BPESTXP_FUNC_FINALSTATS)

BPESTXP_BPESTATS_PTR X'08' X'04' Input Address of BPE system statistics area header. This
header points to detailed BPE system statistics. All of
the BPE statistics areas are mapped by macro
BPESSTA.

BPESTXP_COMPSTATS_PTR X'0C' X'04' Input Address of the IMS component statistics area, or
zero if none. An IMS component that runs with BPE
has the ability to define its own statistics area, to be
passed along with the BPE statistics area when the
BPE statistics exit is called. However, not all IMS
components provide their own statistics in that
manner. If a component does not provide statistics,
this field in the BPESTXP parameter list is zero.

Related reference:
Chapter 5, “BPE user-supplied exit routine interfaces and services,” on page 489
“CQS statistics available through the BPE statistics user-supplied exit” on page 577

“CSL ODBM statistics available through BPE statistics user exit” on page 590
“CSL OM statistics available through BPE statistics user exit” on page 606
“CSL SCI statistics available through BPE statistics user exit” on page 622
“CSL RM statistics available through BPE statistics user exit” on page 613

518 Exit Routines

“DBRC statistics” on page 549

BPE system statistics area
The BPE system statistics area contains statistics on system resources managed by
BPE.

The BPE system statistics area contains statistics on the following system resources
managed by BPE.
v TCBs
v Control block services
v AWE servers
v Storage services

The field BPESTXP_BPESTATS_PTR in the BPE statistics exit parameter list points
to this area. The following figure shows the structure of the BPE system statistics
area.

The BPE system statistics area begins with the BPESSTA header. The header
contains general information about the BPE address space and the IMS component
running in it. The offset table appears immediately after the header (BPESSTA +
SSTA_LENGTH). Each area for which statistics are reported is assigned a fixed slot
within this table. Each slot contains the offset to the particular area's statistics block
from the start of the offset table. Each area may have one or more blocks for the
statistics pertaining to the area.

Figure 31. BPE system statistics area structure

Chapter 6. Base Primitive Environment customization exit routines 519

All “pointers” among the BPE system statistics area blocks are really offsets, not
addresses. Having offsets allows statistics to be written to a log or other data set,
where the original block addresses are no longer meaningful. All offsets are
relative to the beginning of the DSECT in which the offset field resides.

The total length of the BPE statistics area is not fixed (static). The length depends
on the resource definitions and number of active resources in the system. Many of
the area blocks contain entries for each resource type.

Recommendation: Always use the lengths passed in the area fields to refer to the
length of a particular statistics area. Do not use lengths generated as EQUs
(assembler equates) at assembly time. Using the passed lengths ensures that your
exit routine code works correctly, even if the format of the statistics areas changes
in the future.

Unless otherwise indicated, the following statements are true:
v All statistics in the various BPE statistics area topics are cumulative since the

start of the address space.
v Count fields are 32-bit unsigned numbers.
v Time-related double-word fields are in STCK units (bit 12 = 1 microsecond).
v Statistics are gathered without serialization for performance reasons. As a result,

the statistics might not be completely consistent with each other. For example,
two related statistics might be updated at different times. View the statistics as
aggregate indications of the system performance, not as exact values.

The following table provides the following information about the fields in the BPE
system statistics area:
v The field name
v The offset
v The length
v The field usage
v A description of the field

Table 186. BPE system statistics area

Field name Offset Length Field usage Description

BPESSTA X'00' N/A N/A DSECT label for the BPE system statistics
area.

SSTA_ID X'00' X'08' Input Eye catcher (“BPESSTA ”).

SSTA_LENGTH X'08' X'04' Input BPESSTA header section length
(SSTA_END minus BPESSTA). The offset
table starts immediately after the
BPESSTA header (BPESSTA +
SSTA_LENGTH).

SSTA_VER X'0C' X'04' Input BPESSTA header version number within
a BPE release. The current version is
X'00000001' (SSTA_VER_1).

SSTA_BPEVER X'10' X'03' Input BPE version number.

520 Exit Routines

Table 186. BPE system statistics area (continued)

Field name Offset Length Field usage Description

SSTA_CONDSRB X'13' X'01' Input The value of the CONDSRB BPE
configuration PROCLIB member
parameter in effect for this address
space. This field is one of the following
values:

SSTA_CONDSRB_NEVER (1)
CONDSRB(NEVER)
SSTA_CONDSRB_COND (2)
CONDSRB(COND)
SSTA_CONDSRB_ALWAYS (3)
CONDSRB(ALWAYS)

SSTA_OFSTTBLLEN X'14' X'04' Input Length of offset table.

SSTA_UTYPE X'18' X'04' Input IMS component type.

SSTA_UVERSION X'1C' X'03' Input IMS component version number.

X'1F' X'01' Input Reserved.

SSTA_USYSNAME X'20' X'08' Input IMS component system name.

SSTA_JOBNAME X'28' X'08' Input Jobname of address space for which this
record was created.

SSTA_STARTSTCK X'30' X'08' Input STCK at BPE start (STCK when BPE job
step TCB was created).

SSTA_STCK X'38' X'08' Input STCK when this record was created.

STCK_LDTO X'40' X'08' Input Local time-date offset from field
CVTLDTO in the CVT (the amount to
add to a UTC STCK to get local time
STCK, in STCK units).

SSTA_CPUID X'48' X'08' Input CPU ID from STIDP instruct.

SSTA_UPRODNUM X'50' X'08' Input Product number (comp-ID) of IMS
component, in the form of nnnn-nnn.
This field is present only if the BPE
version (SSTA_BPEVER) is X'010400' or
greater.

SSTA_OSNAME X'58' X'08' Input Operating system name (from field
CVTSNAME in the ECVT). This field is
present only if the BPE version
(SSTA_BPEVER) is X'010400' or greater.

SSTA_OSPNAME X'60' X'10' Input Operating system product name (from
field ECVTPNAM in the ECVT). This
field is present only if the BPE version
(SSTA_BPEVER) is X'010400' or greater.

SSTA_OSPVER X'70' X'02' Input Operating system version, in EBCDIC
(from field ECVTPVER in the ECVT).
This field is present only if the BPE
version (SSTA_BPEVER) is X'010400' or
greater.

SSTA_OSPREL X'72' X'02' Input Operating system release, in EBCDIC
(from field ECVTPVER in the ECVT).
This field is present only if the BPE
version (SSTA_BPEVER) is X'010400' or
greater.

Chapter 6. Base Primitive Environment customization exit routines 521

|||||
|
|
|
|
|
|
|
|
|
|

Table 186. BPE system statistics area (continued)

Field name Offset Length Field usage Description

SSTA_OSPMOD X'74' X'02' Input Operating system modification level, in
EBCDIC (from field ECVTPREL in the
ECVT). This field is present only if the
BPE version (SSTA_BPEVER) is X'010400'
or greater.

SSTA_SYSCLONE X'76' X'02' Input SYSCLONE value (from field
ECVTCLON in the ECVT). This field is
present only if the BPE version
(SSTA_BPEVER) is X'010400' or greater.

SSTA_TOTALLEN X'78' X'04' Input Total length of all statistics areas. The
total length is the number of bytes from
the start of the BPESSTA to the last byte
of statistics data. You can use this field if
you are copying the statistics data to
another location (for example, to a data
set) to determine the length of the data
to copy. This field is present only if the
BPE version (SSTA_BPEVER) is X'010400'
or greater.

SSTA_#CPS X'7C' X'04' Input Number of online standard CPs. This
field is present only if the BPE version
(SSTA_BPEVER) is X'010900' or greater.

SSTA_#ZAAPS X'80' X'04' Input Number of online zAAPs. This field is
present only if the BPE version
(SSTA_BPEVER) is X'010900' or greater.

SSTA_#ZIIPS X'84' X'04' Input Number of online zIIPs. This field is
present only if the BPE version
(SSTA_BPEVER) is X'010900' or greater.

SSTA_FIELDFLAGS X'88' X'08' Input Field indicator flags. New fields added
to the BPE statistics area in the future
have a bit assigned to them in these
indicator flags to show that they are
present. Code that wants to look at the
new fields can test their assigned bits to
determine whether they are present in
the statistics area passed by BPE. This
field is present only if the BPE version
(SSTA_BPEVER) is X'010900' or greater.

The BPE statistics offset table is immediately after the BPE statistics header
(BPESSTA + SSTA_LENGTH). The offset table contains offsets to the various
statistics blocks in the area.

Attention: The values in the table are offsets from the start of the offset table, not
from BPESSTA. You must use the offset table to locate the different statistics
sections to allow for changes to the lengths of these sections.

The following example demonstrates how to locate the dispatcher statistics area,
assuming that R2 points to the BPESSTA header:

USING BPESSTA,R2 Address SSTA header
LR R3,R2 Copy SSTA header addr
AL R3,SSTA_LENGTH Add length to get ofst tble addr
USING SSTA_OFSTTBL,R3 Address offset table

522 Exit Routines

|||||
|
|

|||||
|
|

|||||
|
|

|||||
|
|
|
|
|
|
|
|
|

ICM R4,15,SSTA_OFST_DISP Any dispatcher section?
BZ NODSP No, can’t access it
ALR R4,R3 Add ofst tbl start to get addr
USING SSTADS,R4 Address dispatcher section
. . .

NODSP DS OH To here if no disp sect present

Check offset fields for values of zero before using them. A zero offset field means
that the particular statistics block is not present in the area.

The following table provides the following information about the fields in the BPE
statistics offset table:
v The field name
v The offset
v The length
v The field usage
v A description of the field

Table 187. BPE statistics offset table

Field name Offset Length Field usage Description

SSTA_OFSTTBL X'00' N/A N/A DSECT label for the BPE statistics
offset table.

SSTA_OFST_DISP X'00' X'04' Input Offset to dispatcher statistics.

SSTA_OFST_CBS X'04' X'04' Input Offset to control block services
statistics.

SSTA_OFST_AWE X'08' X'04' Input Offset to AWE statistics.

SSTA_OFST_STG X'0C' X'04' Input Offset to general storage statistics. This
field is present only if the BPE version
(SSTA_BPEVER) is X'010400' or greater.

The following table provides the following information about the fields in the BPE
dispatcher statistics area:
v The field name
v The offset
v The length
v The field usage
v A description of the field

Table 188. BPE dispatcher statistics area

Field name Offset Length
Field
usage Description

SSTADS X'00' N/A N/A DSECT label for BPE dispatcher statistics area.

SSTADS_ID X'00' X'04' Input Dispatcher section eye catcher (“DISP”).

SSTADS_LENGTH X'04' X'04' Input Length of dispatcher section (includes TCB statistics
table).

SSTADS_VERSION X'08' X'04' Input Dispatcher statistics version number. The current
version is X'00000001' (SSTADS_VER_1).

SSTADS_TBLOFST X'0C' X'04' Input Offset from SSTADS to the first TCB statistics table
entry.

SSTADS_NUMENT X'10' X'02' Input Number of TCB statistics table entries.

Chapter 6. Base Primitive Environment customization exit routines 523

Table 188. BPE dispatcher statistics area (continued)

Field name Offset Length
Field
usage Description

SSTADS_ENTLEN X'12' X'02' Input Length of each TCB statistics entry.

SSTADS_THD# X'14' X'04' Input Global number of thread starts.

SSTADS_DISP# X'18' X'04' Input Global number of dispatches.

X'1C' X'04' Input Reserved.

SSTADS_TREALTM X'20' X'08' Input Real time (wall clock time) that the BPE address
space has been running (in STCK units). This field is
present only if the BPE version (SSTA_BPEVER) is
X'010400' or greater.

SSTADS_TBPETM X'28' X'08' Input Total time that all BPE-managed TCBs have been
dispatched by the BPE dispatcher (in STCK units).
This time is cumulative and includes time for TCBs
that have terminated, as well as those that are still
active. This field is present only if the BPE version
(SSTA_BPEVER) is X'010400' or greater.

SSTADS_TCPUTM X'30' X'08' Input Total CPU time used by all BPE-managed TCBs (in
STCK units). This time is cumulative and includes
time for TCBs that have terminated, as well as those
that are still active. This field is present only if the
BPE version (SSTA_BPEVER) is X'010400' or greater.

SSTADS_TBPETMSRB X'38' X'08' Input Total time that all BPE-managed SRBs have been
dispatched by the BPE dispatcher (in STCK units).
This time is cumulative and includes time for SRBs
that have terminated, as well as those that are still
active. Note that this value might not have been
updated with CPU time from currently executing
SRBs. The value is approximate. This field is present
only if the BPE version (SSTA_BPEVER) is X'010900'
or greater.

SSTADS_TCPUTMSRB X'40' X'08' Input Total CPU time used on a standard CP by all
BPE-managed SRBs (in STCK units). This time is
cumulative and includes time for SRBs that have
terminated, as well as those that are still active. This
value might not be updated with CPU time from
currently executing SRBs. The value is approximate.
This field is present only if the BPE version
(SSTA_BPEVER) is X'010900' or greater.

SSTADS_TCPUTMSRBZ X'48' X'08' Input Total CPU time used on a specialty engine (zIIP or
zAAP) by all BPE-managed SRBs (in STCK units).
This time is cumulative and includes time for SRBs
that have terminated, as well as those that are still
active. This value might not be updated with CPU
time from currently executing SRBs. The value is
approximate. This field is present only if the BPE
version (SSTA_BPEVER) is X'010900' or greater.

SSTADS_ZCPUTCB X'50' X'08' Input Address space TCB CPU time in ASCB field
ASCBEJST at the time the BPE statistics exit is called.
The ASCBEJST field might not be updated with CPU
time from currently executing units of work. The
value is approximate. This field is present only if the
BPE version (SSTA_BPEVER) is X'010900' or greater.

524 Exit Routines

|||||
|
|
|
|
|
|
|
|

|||||
|
|
|
|
|
|
|

|||||
|
|
|
|
|
|
|

|||||
|
|
|
|
|

Table 188. BPE dispatcher statistics area (continued)

Field name Offset Length
Field
usage Description

SSTADS_ZCPUSRB X'58' X'08' Input Address space SRB CPU time in ASCB field
ASCBSRBT at the time the BPE statistics exit is
called. The ASCBSRBT field might not be updated
with CPU time from currently executing units of
work. The value is approximate. This field is present
only if the BPE version (SSTA_BPEVER) is X'010900'
or greater.

SSTADS_ZCPUENCLZ X'60' X'08' Input Address space enclave zIIP time in ASSB field
ASSB_ZIIP_ENCT at the time the BPE statistics exit is
called. ASSB_ZIIP_ENCT might not be updated with
CPU time from currently executing units of work.
The value is approximate. This field is present only if
the BPE version (SSTA_BPEVER) is X'010900' or
greater.

SSTADS_ZCPUNENCZ X'68' X'08' Input Address space zIIP time (not including enclave time)
in ASSB field ASSB_TIME_ON_ZIIP at the time the
BPE statistics exit is called. Note that
ASSB_TIME_ON_ZIIP might not have been updated
with CPU time from currently executing units of
work. The value is approximate. This field is present
only if the BPE version (SSTA_BPEVER) is X'010900'
or greater.

SSTADS_ZCPUCPZ X'70' X'08' Input Address space zIIP time on standard CP in ASSB
field ASSB_TIME_ZIIP_ON_CP at the time the BPE
statistics exit is called. The ASSB_TIME_ZIIP_ON_CP
field might not be updated with CPU time from
currently executing units of work. The value is
approximate. This field is present only if the BPE
version (SSTA_BPEVER) is X'010900' or greater.

The following table provides the following information about the BPE TCB
statistics table entry:
v The field name
v The offset
v The length
v The field usage
v A description of the field

BPE supports SRB-mode dispatchable units (DUs) in addition to TCB-mode DUs.
Both TCB and SRB DU types have entries in the BPE TCB statistics table.

Each active BPE-managed dispatchable unit (TCB or SRB) in the address space has
one table entry. In the case of DU types that support multiple DUs, each instance
of a DU has one entry.

Important: The BPE and the IMS component running on the BPE can define a DU
type with the same name. Use the SSTADS_F1_SYS flag to differentiate between
the DUs in this case.

Chapter 6. Base Primitive Environment customization exit routines 525

|||||
|
|
|
|
|
|

|||||
|
|
|
|
|
|

|||||
|
|
|
|
|
|
|

|||||
|
|
|
|
|
|

|
|

|
|
|

|
|
|

Table 189. BPE TCB statistics table entry

Field name Offset Length Field usage Description

SSTADS_TTE X'00' N/A N/A DSECT label for BPE TCB statistics table
entry.

SSTADS_TYPE X'00' X'04' Input Dispatchable unit (DU) type.

SSTADS_FLG1 X'04' X'01' Input DDB flag 1 (unlabeled bits are reserved by
IBM).

SSTADS_F1_POOL (X'08')
Dispatchable unit is a pool-type DU.

SSTADS_F1_SYS (X'10')
DU is BPE-defined.

SSTADS_F1_ISSRB (X'01')
DU is in SRB mode.

SSTADS_FLG2 X'05' X'01' Input DDB flag 2 (unlabeled bits are reserved by
IBM).

SSTADS_IDX X'06' X'01' Input DU index number.

SSTADS_INUM X'07' X'01' Input DU instance number.

SSTADS_BPE_TCBTKN X'08' X'08' Input TCB token (unique value identifying this
DU).

SSTADS_#THDCR X'10' X'04' Input Number of thread creates.

SSTADS_#THDDL X'14' X'04' Input Number of thread deletes.

SSTADS_#THDSTART X'18' X'04' Input Number of thread starts.

SSTADS_#THDDISP X'1C' X'04' Input Number of thread dispatches.

SSTADS_#SUSP X'20' X'04' Input Number of suspends.

SSTADS_#SUSPBKO X'24' X'04' Input Number of backed-out suspends.

SSTADS_REALTIME X'28' X'08' Input Wall-clock time the DU has been running
(in STCK units).

SSTADS_BPETIME X'30' X'08' Input Time the DU has been dispatched by BPE
dispatcher (in STCK units).

SSTADS_CPUTIME X'38' X'08' Input CPU time on a standard CP for this DU
(in STCK units).

SSTADS_CPUTIMEZ X'40' X'08' Input CPU time on a specialty engine (zIIP or
zAAP) for this DU (in STCK units). This
field is present only if the BPE version
(SSTA_BPEVER) is X'010900' or greater.

SSTADS_#TCBSW X'48' X'04' Input Cumulative count of number of
BPETCBSW (TCB/SRB switch) calls from
this DU. This field exists only if the BPE
version field (SSTA_BPEVER) is X'010900'
or greater.

526 Exit Routines

|||||

|||||
|

|
|

|
|

|
|

|||||

|||||

|||||
|

|||||
|

|||||
|

|||||
|

|||||
|
|
|

|||||
|
|
|
|

Table 189. BPE TCB statistics table entry (continued)

Field name Offset Length Field usage Description

SSTADS_QLENCT X'4C' X'04' Input Cumulative count of the number of
threads on the posted and ready queues
at thread dispatch. The value is the
number of threads remaining. It does not
include the thread being dispatched. This
value, divided by the number of
dispatches, equals the average queue
length behind the thread being
dispatched. This field is present only if
the BPE version (SSTA_BPEVER) is
X'010900' or greater.

SSTADS_QLENMAX X'50' X'04' Input Maximum number of threads on the
posted and ready queues at thread
dispatch since the last call to the BPE
statistics exit. This field is present only if
the BPE version (SSTA_BPEVER) is
X'010900' or greater.

X'54' X'04' Input Reserved for future use.

Note:

v Entries in this table can remain unused if a TCB terminates after the statistics module computes the number of
entries in the table, but before all of the statistics are captured.

v The entries in this table might not be in the same order every time the statistics area is generated. You must use
the 8-byte TCB token to associate entries if you are computing entries from two different statistics exit calls.

v The number of entries in the statistics table might change from one BPE statistics user exit routine call to the next.
TCBs are dynamic and might be created and destroyed as part of normal processing. The TCB statistics table
represents the TCBs currently active at the time the statistics exit routine was called.

The following table provides the following information about the fields in the BPE
control block services (CBS) statistics area:
v The field name
v The offset
v The length
v The field usage
v A description of the field

The control blocks services area contains a header with global statistics and
information, followed by a table with one entry for each CBS-defined block type in
the system.

Table 190. BPE control block services statistics area

Field name Offset Length Field usage Description

SSTACB X'00' N/A N/A DSECT label for BPE control block
services statistics area.

SSTACB_ID X'00' X'04' Input Control block services section eye
catcher (“CBS”).

SSTACB_LENGTH X'04' X'04' Input Length of CBS section (includes block
statistics table).

SSTACB_VERSION X'08' X'04' Input Control block services statistics version
number. The current version is
X'00000001' (SSTACB_VER_1).

Chapter 6. Base Primitive Environment customization exit routines 527

|||||
|
|
|
|
|
|
|
|
|
|

|||||
|
|
|
|
|

|||||

Table 190. BPE control block services statistics area (continued)

Field name Offset Length Field usage Description

SSTACB_TBLOFST X'0C' X'04' Input Offset from SSTACB to first control
block statistics table entry.

SSTACB_NUMENT X'10' X'02' Input Number of control block statistics table
entries.

SSTACB_ENTLEN X'12' X'02' Input Length of each control block statistics
table entry.

The following table provides the following information about the BPE control
block statistics table entry:
v The field name
v The offset
v The length
v The field usage
v A description of the field

Each control block type in the system has one table entry.

Important: The BPE and the IMS component running on the BPE can define a
block type with the same name. Use the SSTACB_F1_SYS flag to differentiate
between the blocks in this case.

Table 191. BPE control block statistics table entry

Field name Offset Length Field usage Description

SSTACB_BTE X'00' N/A N/A DSECT label for BPE control block
statistics table entry.

SSTACB_TYPE X'00' X'04' Input Block type.

SSTACB_FLG1 X'04' X'01' Input CBTE flag 1 (unlabeled bits are
reserved by IBM).

SSTACB_F1_COMP (X'20')
Blocks are compressible.

SSTACB_F1_SYS (X'10')
Block is a BPE block.

SSTACB_F1_FIXED (X'08')
Block storage is page fixed.

SSTACB_FLG2 X'05' X'01' Input CBTE flag 2 (unlabeled bits are
reserved by IBM).

SSTACB_F2_31ONLY (X'10')
Block is in 31-bit only storage.

SSTACB_F2_PAGE (X'02')
Get BPAGE on 4 KB page
boundary.

SSTACB_F2_ANY (X'01')
Block in LOC=ANY storage.

SSTACB_IDX X'06' X'01' Input Block index number.

SSTACB_SP X'07' X'01' Input Block storage subpool.

SSTACB_#GET X'08' X'04' Input Number of gets for this block type.

528 Exit Routines

Table 191. BPE control block statistics table entry (continued)

Field name Offset Length Field usage Description

SSTACB_CURBYTES X'0C' X'04' Input Current number bytes in pool.

SSTACB_MAXBYTES X'10' X'04' Input Maximum number bytes in pool.

SSTACB_#GETMAIN X'14' X'04' Input Number of GETMAINs for BPAGEs.

SSTACB_#FREEMAIN X'18' X'04' Input Number of FREEMAINs for BPAGEs.

SSTACB_CURBLKS X'1C' X'04' Input Current number blocks in pool.

The following table provides the following information about the BPE AWE
services statistics area:
v The field name
v The offset
v The length
v The field usage
v A description of the field

The AWE services area contains a header with global statistics and information,
followed by a table with one entry for each instance of an AWE server running in
the system.

Table 192. BPE AWE services statistics area

Field name Offset Length Field usage Description

SSTAAW X'00' N/A N/A DSECT label for BPE AWE services
statistics area.

SSTAAW_ID X'00' X'04' Input AWE services section eye catcher
(“AWE”).

SSTAAW_LENGTH X'04' X'04' Input Length of AWE section (includes AWE
server statistics table).

SSTAAW_VERSION X'08' X'04' Input AWE services statistics version
number. The current version is
X'00000001' (SSTAAW_VER_1).

SSTAAW_TBLOFST X'0C' X'04' Input Offset from SSTAAW to first AWE
statistics table entry.

SSTAAW_NUMENT X'10' X'02' Input Number of AWE server statistics table
entries.

SSTAAW_ENTLEN X'12' X'02' Input Length of each AWE server statistics
table entry.

The following table provides the following information about the BPE AWE
services statistics table entry:
v The field name
v The offset
v The length
v The field usage
v A description of the field

Each active AWE server running in the system has one table entry.

Chapter 6. Base Primitive Environment customization exit routines 529

Important: It is possible for BPE and the IMS component running on the BPE to
define an AWE server type with the same name. Use the SSTAAW_F1_SYS flag to
differentiate between the identically-named BPE and user-product AWE servers.

Table 193. BPE AWE services statistics table entry

Field name Offset Length Field usage Description

SSTAAW_ASTE X'00' N/A N/A DSECT label for AWE server statistics
table entry.

SSTAAW_TYPE X'00' X'04' Input AWE server type.

SSTAAW_SERVID X'04' X'04' Input Unique server ID number.

SSTAAW_FLG1 X'08' X'01' Input Flag 1 (AQSB_FLG1) (unlabeled bits
are reserved by IBM).

SSTAAW_F1_INIT X'80'
Server init is in progress.

SSTAAW_F1_TERM X'40'
All servers should terminate.

SSTAAW_F1_MULTI X'20'
Queue is multi-server.

SSTAAW_FLG2 X'09' X'01' Input Flag 2 (AQHE_FLG1) (unlabeled bits
are reserved by IBM).

SSTAAW_F2_GENERIC X'80'
Generic AWE server.

SSTAAW_F2_AUTO X'40'
Server is AUTOSTARTed.

SSTAAW_F2_SYSTCB X'20'
Server runs under system TCB.

SSTAAW_F2_SYS X'10'
System (BPE) server.

SSTAAW_F2_LOC24 X'08'
Thread blocks in 24-bit storage.

SSTAAW_F2_FORCEMAX X'04'
Force maximum threads on
AUTOSTART.

SSTAAW_TCBID X'0A' X'01' Input ID number of owning TCB.

SSTAAW_NUMTHDS X'0B' X'01' Input Number of server threads for this
queue header.

SSTAAW_QHDR X'0C' X'04' Input Address of AWE queue header.

X'10' X'04' Input Reserved.

SSTAAW_TQCOUNT X'14' X'04' Input Number times an extra server was
woken up off of the AQSB_THREADQ
(multi-server queue headers only).

SSTAAW_NUMAWE X'18' X'1C' Input Number of AWEs processed off of this
queue header.

SSTAAW_NUMEQS X'1C' X'04' Input Number of times one or more AWEs
were dequeued from this queue
header (NUMAWE/NUMDEQS is the
average number of AWEs on the
queue header).

530 Exit Routines

Table 193. BPE AWE services statistics table entry (continued)

Field name Offset Length Field usage Description

SSTAAW_PROCTIME X'20' X'08' Input Cumulative time spent in processing
routine for this queue header, in STCK
units.

SSTAAW_NOWORK X'28' X'04' Input Number of times an AWE server was
woken up and found no work
(multi-server queue headers only).

SSTAAW_READYWAIT X'2C' X'04' Input Number of times an AWE server had
to wait for access to the AWE ready
queue (multi-server queue headers
only).

The following table provides the following information about the BPE storage
services statistics area:
v The field name
v The offset
v The length
v The field usage
v A description of the field

Table 194. BPE storage services statistics area

Field name Offset Length Field usage Description

SSTASG X'00' N/A N/A DSECT label for BPE storage services
statistics area.

SSTASG_ID X'00' X'04' Input Storage services section eye catcher
(“STG”).

SSTASG_LENGTH X'04' X'04' Input Length of storage section.

SSTASG_VERSION X'08' X'04' Input Storage services statistics version
number. The current version is
X'00000001' (SSTASG_VER_1).

X'0C' X'0C' Input Reserved.

SSTASG_STGPVT24 X'18' X'04' Input Number of bytes of private storage
currently allocated in 24-bit storage by
the BPE GETMAIN service,
BPEGETM. Note that the values for
the stack, control block, and buffer
pool services are included in this
number.

SSTASG_STGPVT31 X'1C' X'04' Input Number of bytes of private storage
allocated in 31-bit storage by the BPE
GETMAIN service, BPEGETM. Note
that the values for the stack, control
block, and buffer pool services are
included in this number.

SSTASG_STKPVT24 X'20' X'04' Input Number of bytes of private storage
currently allocated in 24-bit storage by
the BPE stack manager service.

SSTASG_STKPVT31 X'24' X'04' Input Number of bytes of private storage
currently allocated in 31-bit storage by
the BPE stack manager service.

Chapter 6. Base Primitive Environment customization exit routines 531

Table 194. BPE storage services statistics area (continued)

Field name Offset Length Field usage Description

SSTASG_CBPVT24 X'28' X'04' Input Number of bytes of private storage
currently allocated in 24-bit storage by
the BPE control block service.

SSTASG_CBPVT31 X'2C' X'04' Input Number of bytes of private storage
currently allocated in 31-bit storage by
the BPE control block service.

SSTASG_BPPVT24 X'30' X'04' Input Number of bytes of private storage
currently allocated in 24-bit storage by
the BPE buffer pool service.

SSTASG_BPPVT31 X'34' X'04' Input Number of bytes of private storage
currently allocated in 31-bit storage by
the BPE buffer pool service.

532 Exit Routines

Chapter 7. BPE-based DBRC user exit routines

The BPE-based DBRC user exit routines enable you to run the existing DBRC user
exit routines in a BPE (Base Primitive Environment).
Related reference:
“DBRC Command Authorization exit routine (DSPDCAX0)” on page 327
“DBRC SCI registration exit routine (DSPSCIX0)” on page 330
“RECON I/O exit routine (DSPCEXT0)” on page 421

DBRC Request exit routine
The DBRC Request exit routine activates both before and after DBRC request
processing and allows a user-supplied program to interrogate DBRC request
information. Although doing so is not recommended, the exit routine can also be
used to bypass standard DBRC request processing.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 534

About this routine

The DBRC Request exit routine is an optional exit routine, and is a diagnosis,
modification, or tuning interface.

To call this exit, set the EXITDEF statement in the BPE user exit list PROCLIB
member to TYPE=REQUEST. When the EXITDEF statement is set to
TYPE=REQUEST, all user exits on the list are always called. Setting the value of
UXPL_CALLNEXTP to UXPL_CALLNEXTNO does not prevent user exits on the
list from being called. The START request function invokes all the listed exits in the
specified order. The END request function invokes all the listed exits in reverse
order. All of the defined user exits are always called regardless of the setting of
UXPL_CALLNEXTP, the exit function code, or the setting of BRQX_DONOTCALL.

In addition to providing an access point for user-supplied programs to interrogate
DBRC request information, the DBRC request user exit also includes an option to
bypass standard DBRC request processing.

Attention: The results of bypassing DBRC request processing are unpredictable.
Bypassing DBRC request processing is not recommended.

Table 195. DBRC request exit routine attributes

Attribute Description

IMS environments DB/DC, DBCTL, DCCTL

Naming convention Using standard z/OS conventions, you can give the routine any
name up to 8 characters in length. Be sure that the name is unique
and does not conflict with the existing members of the data set in
which this routine is stored. Because most IMS-supplied routines
begin with the prefixes BPE, CQS, CSL, DFS, DBF, DSP, DXR, IMS,
or HWS, choose a name that does not begin with these letters.

© Copyright IBM Corp. 1974, 2017 533

Table 195. DBRC request exit routine attributes (continued)

Attribute Description

Binding You must bind this routine into an authorized data set as a
reentrant (RENT) load module.

Including the routine No special steps are needed to include this routine.

IMS callable services This exit is not eligible to use IMS callable services. It is eligible to
use BPE user exit callable services.

Sample routine
location

No sample routine is provided.

Communicating with IMS

IMS uses the entry and exit registers to communicate with this type of
user-supplied exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of the BPE user exit parameter list (mapped by macro BPEUXPL)

13 Address of two pre-chained save areas. The first save area can be used by
the exit routine to save registers on entry. The second save area can be used
by routines that are called from the user exit routine.

14 Return point address of the exit routine.

15 Entry point address of the exit routine.

The following table describes the DBRC Request exit routine parameters.

Table 196. DBRC Request user exit parameter list

Field name Offset
Length in
bytes

Field
Usage Description

BRQX_ID X'00' X'08' Input Eye catcher “DSPBRQX”

BRQX_LEN X'08' X'04' Input Length of the DSPBRQX block

BRQX_PVER X'0C' X'04' Input Parameter list version number

BRQX_FUNC X'10' X'04' Input Function code:

1 Start request processing
(BRQX_FUNC_START)

2 End request processing
(BRQX_FUNC_END)

BRQX_BRLSBPTR X'14' X'04' Input Address of DFSBRLSB

BRQX_ASCD X'18' X'04' Input Address of SCD

534 Exit Routines

Table 196. DBRC Request user exit parameter list (continued)

Field name Offset
Length in
bytes

Field
Usage Description

BRQX_Flags X'1C' X'01' Output Miscellaneous flags:

X'80'

Do not call DBRC request
processing routine
(BRQX_DONOTCALL).

If BRQX_FUNC =
BRQX_FUNC_START (function
code 1) and
BRQX_DONOTCALL is set,
DBRC request processing is
bypassed. If there are multiple
DBRC request user exits defined,
the setting of
BRQX_DONOTCALL can be
altered by any exit on the list.

X'1D' X'0F' None Reserved

Contents of registers on exit

Register Contents

15 Register 15 contains the return code. Any return code other than 0 is ignored.

Related concepts:

DBRC API (System Programming APIs)
Related reference:

BPE exit list members of the IMS PROCLIB data set (System Definition)

DBRC Security exit routine
The DBRC Security exit routine can be used to verify that a user is authorized to
issue a particular command or DBRC application programming interface (API)
request.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 536

About this routine

The DBRC Security exit routine is an optional exit routine and is selected using the
INIT.RECON or CHANGE.RECON commands. The exit can be used with RACF or
another security product. The security product is invoked first, and return and
reason codes are passed to the routine. The return code then determines the
success or failure of the authorization. The exit overrides the outcome of the
security product. DBRC messages issued as a result of unsuccessfully invoking the
security product are suppressed.

This exit routine is required if the COMMAND AUTH setting in the RECON status
record is EXIT or BOTH, and an EXITDEF statement exists in the BPE user exit list

Chapter 7. BPE-based DBRC user exit routines 535

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.spr/ims_dbrc_api.htm#ims_dbrc_api
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_bpe_exit_list_proclib.htm#ims_bpe_exit_list_proclib

PROCLIB member for a TYPE=SECURITY. Without an EXITDEF statement, the
DBRC Command Authorization exit routine is called.

If an EXITDEF statement exists, when the exit is invoked, all user exits of a
TYPE=SECURITY are called in the order specified by the EXIT= keyword.

Table 197. Command authorization exit routine attributes

Attribute Description

IMS environments DB/DC, DBCTL, DCCTL

Naming convention Using standard z/OS conventions, you can give the routine any
name up to 8 characters in length. Be sure that the name is unique
and does not conflict with the existing members of the data set in
which this routine is stored. Because most IMS-supplied routines
begin with the prefixes BPE, CQS, CSL, DFS, DBF, DSP, DXR, IMS,
or HWS, choose a name that does not begin with these letters.

Binding You must bind this routine into an authorized data set as a
reentrant (RENT) load module.

Including the routine No special steps are needed to include this routine. The exit is only
included if DBRC command authorization (CMDAUTH) is set to
EXIT or BOTH.

IMS callable services This exit is not eligible to use IMS callable services. It is eligible to
use BPE user exit callable services.

Sample routine
location

DSPDCAX0 is provided in the IMS.SDFSSMPL data set, and you
can modify it to work in both BPE and non-BPE DBRC
environments.

Communicating with IMS

IMS uses the entry and exit registers to communicate with the routines.

Contents of registers on entry

Upon entry, the exit routine must save all registers using the provided save area.
The registers contain the following:

Register Contents

1 Address of the BPE user exit parameter list (mapped by macro BPEUXPL)

13 Address of two pre-chained save areas. The first save area can be used by
the exit routine to save registers on entry. The second save area can be used
by routines that are called from the user exit routine.

14 Return address

15 Entry point address of exit routine

On entry to the DBRC Security exit routine, register 1 points to a standard BPE
user exit parameter list. In that list, the field UXPL_EXITPLP contains the address
of the DBRC Security user exit routine parameter lists (mapped by the DBRC
command authorization (DCA) interface parameter block (DSPDCABK). The
parameters are described in the following table.

The following fields are used only for the non-BPE DBRC command authorization
exit routine (DSPCAX0) and are set to 0 for this routine:
v DCAExitAddr

536 Exit Routines

v DCAUserAreaPtr
v DCAUserAreaLen

Table 198. DBRC Security User Exit parameter list

Field name Offset
Length in
bytes

Field
Usage Description

DCABLKID X'00' X'08' Input Eye catcher “DSPCABK”

DCABLKLN X'08' X'04' Input Length of the block

DCARNPTR X'0C' X'04' Input Address of the resource name (RN)

DCARNLEN X'10' X'04' None Resource name length

DCARHPTR X'14' X'04' Input Address of RN high-level qualifier

DCARHLEN X'18' X'04' Input Length of RN high-level qualifier

DCARVPTR X'1C' X'04' Input Address of RN command verb

DCARVLEN X'20' X'04' Input Length of RN command verb

DCARMPTR X'24' X'04' Input Address of RN command modifier

DCARMLEN X'28' X'04' Input Length of RN command modifier

DCARQPTR X'2C' X'04' Input Address of RN command qualifier

DCARQLEN X'30' X'04' Input Length of RN command qualifier

DCAUserID X'34' X'08' Input User ID of command issuer

DCAExitAddr X'3C' X'04' None Address is 0 for BPE user exit

DCAFlags X'40' X'04' Input Miscellaneous flags:

X'80' Security product was called.

X'40' Security exit DSPDCAX0 was
called.

X'20' 1st call (REQUEST=LIST) done.

X'10' DBRC API Request

X'08' BPE user exit was called

DCASAFRetCode X'44' X'04' Input Security product (RACF or equivalent)
return code

DCARACFRetCode X'48' X'04' Input RACF return code

DCARACFRsnCode X'4C' X'04' Input RACF reason code

DCAExitRetCode X'50' X'04' Output Security exit return code

DCAUserAreaPtr X'54' X'04' Input Address is 0 for BPE user exit

DCAUserAreaLen X'58' X'04' Input Length is 0 for BPE user exit

DCARACRReq X'5C' X'08' Input RACROUTE request type

DCAVersion X'64' X'04' Input Parameter list version number (00000001)

X'68' X'20' None Reserved

Contents of registers on exit

Before returning to DBRC, the exit routine must restore all registers except for
register 15, which contains the following return code.

Chapter 7. BPE-based DBRC user exit routines 537

Register Contents

15 Return code:

0 User is authorized to use the DBRC command.

Non-zero

Reject the command because of an unauthorized user ID.

This return code is ignored unless the exit routine is one of the
following:

v The exit routine is the last routine defined in the exit list for the
security exit.

v The exit routine sets the byte pointed to by UXPL_CALLNEXTP
to the value UXPL_CALLNEXTNO.

All other registers must be restored.

Related reference:
“Routine binding restrictions” on page 9
“DBRC Command Authorization exit routine (DSPDCAX0)” on page 327

Sample DBRC Security Exit Routine
Use the sample DBRC Security exit routine (DSPDCAX0) to verify that a user is
authorized to issue a particular command or DBRC application programming
interface (API) request.

RECON I/O exit routine
A BPE-based DBRC gives control to the RECON I/O exit routine during I/O
operations to the RECON data set. This exit routine performs the function of
DSPCEXT0 for BPE-based DBRCs.

Subsections:
v “About this routine”
v “Communicating with IMS” on page 541

About this routine

The RECON I/O exit routine tracks changes to the RECON data set, which you
can log in a journal. You can code the RECON I/O exit routine so that it updates
the journal each time a record of the data set is updated, inserted, deleted, or read.
You can also record changes that are internal to the RECON access modules, such
as header record extension control item changes, or the addition and deletion of
multiple update control records within the data set.

You can use the journal, in turn, as a trace facility, to monitor the activity of
specific record types, or as a means of writing your own recovery utility for the
RECON data set.

To call the RECON I/O exit routine, the EXITDEF statement in the BPE user exit
list PROCLIB member must be set for a TYPE=RECONIO. If the EXITDEF
statement is not specified, the user exit DSPCEXT0 will be called. When the
EXITDEF statement is specified, all user exits of TYPE=RECONIO will be called in
the order specified by the EXITS=keyword.

538 Exit Routines

You can use the RECON I/O exit routine when RECON access is either serial or
parallel.

Recommendation: Do not use the BPE REFRESH USEREXIT for a DBRC address
space during periods of high activity. No DBRC request processing will occur
while the BPE user exit is being refreshed.

The following table shows the attributes of the RECON I/O exit routine.

Table 199. RECON I/O exit routine attributes

Attribute Description

IMS environments DB/DC, DBCTL, and DCCTL.

Naming convention Using standard z/OS conventions, you can give the routine any
name up to 8 characters in length. Be sure that the name is unique
and does not conflict with the existing members of the data set in
which this routine is stored. Because most IMS-supplied routines
begin with the prefixes BPE, CQS, CSL, DFS, DBF, DSP, DXR, IMS,
or HWS, choose a name that does not begin with these letters.

Binding You must write and bind this routine as reentrant (RENT).

Including the routine No special steps are needed to include this routine.

IMS callable services This exit is not eligible to use IMS callable services. It is eligible to
use BPE user exit callable services.

Sample routine
location

The IMS.ADFSSRC data set contains member name DSPCEXT1,
which you can modify to provide support for both BPE and
non-BPE based DBRC environments. DSPCEXT1 must be linked as
DSPCEXT0

You must write and bind the RECON I/O exit routine as reentrant. It is entered
from DBRC in 31-bit addressing mode and must return to DBRC in 31-bit
addressing mode. All parameters and data areas supplied to RECON I/O exit
routine by DBRC are located above the 16 MB line.

If the RECON I/O exit routine terminates abnormally, calls to the routine will
continue to be made up to the limit specified by the ABLIM parameter.

Calling the routine

Control is passed to the RECON I/O exit routine whenever a RECON record has
been successfully read, written, or modified on COPY 1 of the RECON data set,
not necessarily for every physical I/O operation. Changes to the header record
extension also cause the RECON I/O exit routine to be called.

When RECON access is parallel, the RECON data set can be accessed by multiple
DBRC instances concurrently. In this case, multiple instances of the RECON I/O
exit routine can be invoked concurrently.

With serial access, the user can rely on all updates written to the RECON data set.
If an error occurs, and the update is backed out by DBRC, the exit is called for all
the updates made during backout. If the exit is used to mirror updates, the exit can
immediately make the equivalent updates to a mirror data set.

With parallel access, the backout of data is not done by DBRC, which means that
the exit is not called for the backout updates. Updates made during a given series
should not be considered hardened in the RECON data set until a commit call is

Chapter 7. BPE-based DBRC user exit routines 539

|
|
|
|

made. If the exit is used to mirror updates, it must either be capable of backing out
the updates it mirrors, or it must collect all updates for a given series and only
mirror them if the exit is called with a commit call.

Whenever a record of data is inserted, updated, deleted, or read, this routine is
called after the call or change is made to the RECON data set. For each insert,
delete, and read call, the routine receives a copy of the inserted, deleted, or read
record, respectively. For each update call, the routine receives a copy of the record
as it appeared both before and after it was updated. For delete and update calls,
the copy of the record read must be incomplete if DBRC is unable to locate all
segments for that record. In this case, byte 2 of word 17 in the I/O exit parameter
list is set to X'40'.

The records passed to the exit routine are in the format of the release level of the
RECON data set, and rather than the release level of the DBRC that calls the exit.
In order for the DBRCs of multiple IMS systems at different release levels to
coexist, the RECON data set must be at the level of the highest level system. An
indication of the RECON data set release level exists in the parameter list that is
passed to the exit. When the RECON is upgraded to a new release, the exit routine
can use both the old release format and the new release format. During the
upgrade process, the release level in the parameter list shows the old release level.
A flag in the parameter list indicates that an upgrade is in progress.

The release level of the RECON can change from one Begin Series call to another.
Except during the upgrade process, the release level does not change between the
Begin Series call and the Terminate Series call.

Any modifications to storage that this routine makes must be made to storage that
is obtained by the routine, not to the data areas pointed to by DBRC or IMS or to
those contained within the routine itself.

Each series of I/O accesses that DBRC makes to the RECON data set is indicated
to the routine by a Begin Series call. When the series of I/O operations is complete,
the routine receives a Terminate Series call.

Performance recommendations

While this routine is running, the RECON data set is reserved so that no other jobs
can access RECON records. To minimize the affect that this routine's execution has
on your system's performance, you need to:
v Limit the I/O operations that the routine itself performs and simplify the

routine's functions to make efficient use of processing time.
v Be sure that any resources needed solely by the routine (that is, those not

needed by DBRC/IMS in general) are immediately available to z/OS when
DBRC is initialized and in control. You should therefore avoid operations that
can put the routine, and therefore DBRC, in a prolonged wait state (for example,
the ENQUEUE/DEQUEUE of resources that cannot be readily accessed by the
routine or write to operator messages that require waiting for a reply).

v Be aware that with parallel RECON access, the RECON data set is not reserved.
In addition, multiple instances of the RECON I/O exit routine can be invoked
concurrently.

DBRC enables the size of a record in the RECON data set to not be limited by the
defined RecordSize. DBRC divides its own records into segments, each of which
fits into a single Control Interval (CI) and is sent by VSAM as a complete record.

540 Exit Routines

Segmenting allows a logical RECON record to be as large as 16 777 215 bytes. The
RECON I/O exit routine will be presented with complete, unsegmented logical
records.

To minimize the performance impact that the routine's execution has on DBRC, the
routine spools its copy of RECON data records to a data set (specified by a DD
statement with the name DBRCDATA) for later offline processing outside the
DBRC environment. Any data sets that your routine references need to be accessed
by DD statements as well.

Communicating with IMS

IMS uses the entry and exit registers to communicate with the exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of the BPE user exit parameter list (mapped by macro BPEUXPL)

13 Address of two pre-chained save areas. The first save area can be used by
the exit routine to save registers on entry. The second save area can be used
by routines that are called from the user exit routine.

14 Return address

15 Entry point address of exit routine

Description of parameters

When control is given to the BPE-based DBRC RECON I/O exit routine, register 1
contains the address of the standard BPE user exit parameter list (BPEUXPL). In
this list, the field UXPL_EXITPLP contains he address of the RECON I/O user exit
parameter list, which is mapped by the DBRC RECON I/O interface parameter
block (DSPPRIOX).

This routine receives the parameter list from the calling RECON access module at
the first Begin Series call for a job. The parameter list points to the same data area
for all subsequent calls for that job.

The data area pointed to by the parameter list is 24 words (96 bytes) long and
starts on a fullword boundary. Fields 9 through 16 of the list are free to be used by
the exit routine and remain unchanged by DBRC after the first Begin Series call.
They initially contain all zeros.

The first byte of word 17 of the list indicates the release level of the RECON in
hexadecimal format. RECON release levels by IMS version are:

Version RECON release level in hexadecimal format

IMS Version 13 X'D1'

IMS Version 12 X'C1'

IMS Version 11 X'B1'

Chapter 7. BPE-based DBRC user exit routines 541

||

Byte 2 of Field 17 contains flags. Bytes 3 and 4 of Field 17, and Fields 22 through
24 are reserved for future use.

The following tables list the exit parameter list at various exit points in the routine.

Table 200. Begin Series parameter list

Field Name Offset Length Field
Usage

Description

RIOX_EYEC X'00' X'04' Input Eye catcher “CEXT”

RIOX_FUNC X'04' X'04' Input Function Code 1 - “Begin Series”

A binary 1, indicating a Begin Series
call to this routine as a result of a
RESERVE function having been
performed on the RECON data set.

RIOX_TOKEN X'08' X'08' Input
Request token.

v All calls to the exit for this series,
including the Terminate Series call,
will have this request token.

v For serial RECON access, the token
is the RESERVE sequence number
from the control record extension.
This number is incremented by one
in the control record extension each
time DBRC completes a successful
RESERVE of the RECON data set.

v For parallel RECON access, the
token is a store-clock (STCK) value
captured before the RECON I/O exit
is invoked.

RIOX_CHANGECNT X'10' X'04' Input
Changed record count.

v For serial RECON access, this is the
changed record count from the
control record extension. The
changed record count is a 32-bit
logical value that can eventually
wrap back to zero. This is the count
as of the last DEQUEUE function
that DBRC performs, or that value
plus one if the last DBRC abended.
A change to the RECON data set has
occurred if an ENQUEUE sequence
detects that the last DBRC abended.
For more information about the
changed record count, see the
"Terminate Series" exit call in this
topic.

v For parallel RECON access, the
count is always zero. The RECON
I/O exit routine interprets a zero
count to mean that parallel access is
in effect.

X'14' X'2C' None Reserved.

542 Exit Routines

Table 200. Begin Series parameter list (continued)

Field Name Offset Length Field
Usage

Description

RIOX_FLAGS X'40' X'04' Input
Byte 1 indicates the release level of the
RECON. For IMS Version 12, the value
is X'C1'.

Byte 2 contains the following flags:

v Bit 0 is ON when upgrade is in
progress.

v Bit 1 is OFF.

v Bit 2 is ON for parallel RECON
access.

Bytes 3 and 4 are reserved.

RIOX_INSTANCE_TOKEN X'44' X'10' Input v For serial RECON access, binary
zeroes.

v For parallel RECON access, the
DBRC instance token. This token is a
binary value that can be used to
distinguish the calls in a given series
in case two DBRC instances present
the same STCK value (request
token). The instance token is unique
across currently executing DBRC
instances.

RIOXVersion X'54' X'04' Input Parameter list version number
(00000001)

X'58' X'08' None Reserved.

Table 201. Insert record parameter list

Field Name Offset Length Field
Usage

Description

RIOX_EYEC X'00' X'04' Input Eye catcher “CEXT”

RIOX_FUNC X'04' X'04' Input Function Code 3 - “Insert”.

A binary 3, indicating an insert call to
this routine as a result of a record
having been inserted into the RECON
data set.

RIOX_TOKEN X'08' X'08' None Reserved

RIOX_RECORDLEN X'10' X'04' Input Length of the record that has been
inserted.

RIOX_RECORDADR X'14' X'04' Input Address of the record that has been
inserted.

X'18' X'28' None Reserved.

RIOX_FLAGS X'40' X'04' Input Byte 1 indicates the release level of the
RECON.

Byte 2 contains the following flags:

v Bit 0 is ON when upgrade is in
progress.

v Bit 1 is OFF.

v Bit 2 is ON for parallel RECON
access.

Bytes 3 and 4 are reserved.

RIOX_INSTANCE_TOKEN X'44' X'10' Input Unchanged from the Begin Series call.

Chapter 7. BPE-based DBRC user exit routines 543

Table 201. Insert record parameter list (continued)

Field Name Offset Length Field
Usage

Description

RIOXVersion X'54' X'04' Input Parameter list version number
(00000001)

X'58' X'08' None Reserved.

Table 202. Update record parameter list

Field Name Offset Length Field
Usage

Meaning or content

RIOX_EYEC X'00' X'04' Input Eye catcher “CEXT”

RIOX_FUNC X'04' X'04' Input A binary 4, indicating an update call to
this routine as a result of a record
having been updated on the RECON
data set.

RIOX_TOKEN X'08' X'08' Input Request token.

v For serial and parallel access, the
value is unchanged from the 'begin
series' call.

RIOX_OLDRECLEN X'10' X'04' Input Length of the record image before
update.

RIOX_OLDRECADR X'14' X'04' Input Address of a copy of the record as it
appeared before the update.

RIOX_NEWRECLEN X'18' X'04' Input Length of the replacement record.

RIOX_NEWRECADR X'1C' X'04' Input Address of the replacement record.

X'20' X'20' None Reserved.

RIOX_FLAGS X'40' X'04' Input
Byte 1 indicates the release level of the
RECON.

Byte 2 contains the following flags:

v Bit 0 is ON when upgrade is in
progress.

v Bit 1 is ON if the record, before
being changed, had a missing
segment.

v Bit 2 is ON for parallel RECON
access.

Bytes 3 and 4 are reserved.

RIOX_INSTANCE_TOKEN X'44' X'10' Input Unchanged from the Begin Series call.

RIOXVersion X'54' X'04' Input Parameter list version number
(00000001)

X'58' X'08' None Reserved.

Table 203. Delete record parameter list

Field Name Offset Length Field
Usage

Meaning or content

RIOX_EYEC X'00' X'04' Input Eye catcher “CEXT”

RIOX_FUNC X'04' X'04' Input Parameter list version number
(00000001).

544 Exit Routines

Table 203. Delete record parameter list (continued)

Field Name Offset Length Field
Usage

Meaning or content

RIOX_TOKEN X'08' X'08' None Function Code 5 - “Delete”.

A binary 5, indicating a delete call to
this routine as a result of a record
having been deleted from the RECON
data set.

RIOX_OLDRECLEN X'10' X'04' Input Length of the record that has been
deleted.

RIOX_OLDRECADR X'14' X'04' Input Address of the record that has been
deleted.

X'18' X'28' None Reserved.

RIOX_FLAGS X'40' X'04' Input Byte 1 indicates the release level of the
RECON.

Byte 2 contains the following flags:

v Bit 0 is ON when upgrade is in
progress.

v Bit 1 is OFF.

v Bit 2 is ON for parallel RECON
access.

Bytes 3 and 4 are reserved.

RIOX_INSTANCE_TOKEN X'44' X'10' Input Unchanged from the Begin Series call.

RIOXVersion X'54' X'04' Input Parameter list version number
(00000001)

X'58' X'08' None Reserved.

Table 204. Read record parameter list

Field Name Offset Length Field
Usage

Description

RIOX_EYEC X'00' X'04' Input Eye catcher “CEXT”

RIOX_FUNC X'04' X'04' Input Function Code 6 - “Read”.

A binary 6, indicating a read call to this
routine as a result of a record having
been read from the RECON data set.

RIOX_TOKEN X'08' X'08' None Reserved

RIOX_OLDRECLEN X'10' X'04' Input Length of the record that has been
read.

RIOX_OLDRECADR X'14' X'04' Input Address of the record that's been read.

X'18' X'28' None Reserved

RIOX_FLAGS X'40' X'04' Input Byte 1 indicates the release level of the
RECON.

Byte 2 contains the following flags:

v Bit 0 is ON when upgrade is in
progress.

v Bit 1 is OFF.

v Bit 2 is ON for parallel RECON
access.

Bytes 3 and 4 are reserved.

RIOX_INSTANCE_TOKEN X'44' X'10' Input Unchanged from the Begin Series call.

Chapter 7. BPE-based DBRC user exit routines 545

Table 204. Read record parameter list (continued)

Field Name Offset Length Field
Usage

Description

RIOXVersion X'54' X'04' Input Parameter list version number
(00000001)

X'58' X'08' None Reserved.

Table 205. Commit request parameter list

Field Name Offset Length Field
Usage

Description

RIOX_EYEC X'00' X'04' Input Eye catcher “CEXT”

RIOX_FUNC X'04' X'04' Input Function Code 7 - “Commit”.

A binary 7, indicating a commit call to
this routine. The call results from
previous updates (including inserts and
deletes) for this current series being
committed to the RECON data set. This
call is made only for parallel RECON
access.

RIOX_TOKEN X'08' X'08' None Reserved

X'10' X'30' None Reserved

RIOX_FLAGS X'40' X'04' Input Byte 1 indicates the release level of the
RECON.

Byte 2 contains flags that are defined as
follows:

v Bit 0 is ON when upgrade is in
progress

v Bit 1 is OFF

v Bit 2 is ON for parallel RECON
access.

Bytes 3 and 4 are reserved.

RIOX_INSTANCE_TOKEN X'44' X'10' Input Unchanged from the Begin Series call.

RIOXVersion X'54' X'04' Input Parameter list version number
(00000001)

X'58' X'08' None Reserved.

Table 206. Backout request parameter list

Field Name Offset Length Field
Usage

Description

RIOX_EYEC X'00' X'04' Input Eye catcher “CEXT”

RIOX_FUNC X'04' X'04' Input A binary 8, indicating a backout call to
this routine. The call results from
previous updates (including inserts and
deletes) for this current series being
backed out of the RECON data set.
This call is made only for parallel
RECON access.

RIOX_TOKEN X'08' X'08' Input Reserved

X'10' X'30' None Reserved

546 Exit Routines

Table 206. Backout request parameter list (continued)

Field Name Offset Length Field
Usage

Description

RIOX_FLAGS X'40' X'04' Input
Byte 1 indicates the release level of the
RECON.

Byte 2 contains the following flags:

v Bit 0 is ON when upgrade is in
progress.

v Bit 1 is OFF.

v Bit 2 is ON for parallel RECON
access.

Bytes 3 and 4 are reserved.

RIOX_INSTANCE_TOKEN X'44' X'10' Input Unchanged from the Begin Series call.

RIOXVersion X'54' X'04' Input Parameter list version number
(00000001)

X'58' X'08' None Reserved.

Table 207. Terminate Series parameter list

Field Name Offset Length Field
Usage

Description

RIOX_EYEC X'00' X'04' Input Eye catcher “CEXT”

RIOX_FUNC X'04' X'04' Input Function Code2 - “Terminate Series” A
binary 2, indicating a Terminate Series
call to this routine. This call occurs at
the end of processing a DBRC request.
For serial RECON access, the
DEQUEUE for the RECON has been
performed.

RIOX_TOKEN X'08' X'08' Input Request token. Unchanged from the
Begin Series call.

RIOX_CHANGECNT X'10' X'04' Input
Final changed record count.

v For serial RECON access, this is the
final changed record count as it now
appears on the control record
extension. The changed record count
is a 32-bit logical value that can
eventually wrap back to zero. Either
the count is the same as the Begin
Series call value, or it is that value
plus one if any change has been
made (other than to the record
extension itself) to the RECON data
set since the Begin Series call. By
monitoring the value of this counter
between its value here and the next
Begin Series exit call, you can detect
changes made to the RECON data
set by other occurrences of DBRC.

v For parallel RECON access, the
count is always zero. With parallel
access, you cannot detect when
changes have been made to the
RECON by other DBRC instances.

X'14' X'2C' None Reserved

Chapter 7. BPE-based DBRC user exit routines 547

Table 207. Terminate Series parameter list (continued)

Field Name Offset Length Field
Usage

Description

RIOX_FLAGS X'40' X'04' Input
Byte 1 indicates the release level of the
RECON.

Byte 2 contains the following flags:

v Bit 0 is ON when upgrade is in
progress.

v Bit 1 is OFF.

v Bit 2 is ON for parallel RECON
access.

Bytes 3 and 4 are reserved.

RIOX_INSTANCE_TOKEN X'44' X'10' Input v For serial RECON access, binary
zeroes.

v For parallel RECON access, the
DBRC instance token. This token is a
binary value that can be used to
distinguish the calls in a given series
in case two DBRC instances present
the same STCK value (request
token). The instance token is unique
across currently executing DBRC
instances.

RIOXVersion X'54' X'04' Input Parameter list version number
(00000001)

X'58' X'08' None Reserved.

Contents of registers on exit

Before returning to DBRC, the exit routine must restore all registers except register
15, which must contain one of the following return codes:

Return code Meaning

0 Always zero

Related concepts:

Initializing and maintaining the RECON data sets (System Administration)
Related reference:
“RECON I/O exit routine (DSPCEXT0)” on page 421
“Routine binding restrictions” on page 9

Sample RECON I/O exit routine
Use the sample RECON I/O exit routine to confirm that DBRC gives control to the
RECON I/O exit routine during I/O operations to the RECON.

To minimize the performance impact that the routine's execution has on DBRC, the
routine spools its copy of RECON data records to a data set (specified by a DD
statement with the name DBRCDATA) for later off-line processing outside the
DBRC/IMS environment. Any data sets that your routine references need to be
accessed by DD statements as well.

548 Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/dbrc_admin/ims_recon_int_maint.htm#ims_recon_int_maint

DBRC statistics
You can use the BPE Statistics user-supplied exit to gather both BPE and DBRC
statistics.

When the BPE Statistics user-supplied exit routine is run, field
BPESTXP_COMPSTATS_PTR in the BPE Statistics user-supplied exit parameter list,
BPESTXP, contains the pointer to the DBRC statistics header.

Subsections:
v “DBRC statistics header”
v “DBRC statistics record DSPBST1”
v “DBRC statistics record DSPBST2” on page 551

DBRC statistics header

The following table describes the contents of the DBRC Statistics header. The
statistics header is mapped by DSPBSTX.

Table 208. DBRC statistics header data

Field Name Offset Length
Field
usage Description

BSTX_ID X'00' X'08' Input Eye catcher "DSPBSTX".

BSTX_LEN X'08' X'04' Input Length of header.

BSTX_PVER X'0C' X'04' Input Header version number (X'00000001').

BSTX_CLIENT_CNT X'10' X'04' Input Number of active clients for which statistics are
available.

BSTX_ST1OFF X'14' X'04' Input Offset to statistics area for first client. The offset
points to the DSPBST1 area.

X'18' X'04' None Reserved.

DBRC statistics record DSPBST1

Record DSPBST1 contains statistics that are related to VSAM I/O, RESERVE
information, and other overall performance related information for a DBRC client.
The statistics are cumulative. Some of the data in record DSPBST1 might reflect
information for a request that is being processed when the BPE statistics exit
routine is called.

The following table describes the DBRC statistics record DSPBST1.

Table 209. DBRC statistics record DSPBST1

Field name Offset Length
Field
usage Description

BST1_ID X'00' X'08' Input Eye catcher “DSPBST1”.

BST1_LEN X'08' X'04' Input Length of valid data.

BST1_BST2OFF X'0C' X'04' Input Offset of request data for this client. The offset is from the
beginning of the DSPBST1 block.

BST1_NEXTCLIENT X'10' X'04' Input Offset to next client's DSPBST1 data. The offset is from the
beginning of the current DSPBST1 block.

BST1_PVER X'14' X'04' Input Parameter list version number (X'00000001').

X'18' X'08' None Reserved.

BST1_CLIENTID X'20' X'10' Input ID of DBRC client (IMS SYSID).

Chapter 7. BPE-based DBRC user exit routines 549

Table 209. DBRC statistics record DSPBST1 (continued)

Field name Offset Length
Field
usage Description

X'30' X'10' None Reserved.

BST1_LOCATE X'40' X'04' Input Number of DBRC requests to LOCATE a RECON record.

BST1_CHANGE X'44' X'04' Input Number of DBRC requests to CHANGE a RECON record.

BST1_WRITE X'48' X'04' Input Number of DBRC requests to WRITE a RECON record.

BST1_DELETE X'4C' X'04' Input Number of DBRC requests to DELETE a RECON record.

BST1_GET X'50' X'04' Input Number of VSAM GET requests made by DBRC.

BST1_PUT X'54' X'04' Input Number of VSAM PUT requests made by DBRC.

BST1_ERASE X'58' X'04' Input Number of VSAM ERASE requests made by DBRC.

X'5C' X'04' None Reserved.

BST1_RSVCNT X'60' X'04' Input Number of RESERVE requests.

X'64' X'04' None Reserved.

BST1_RSVWAIT X'68' X'08' Input Accumulated time waiting for a reserve.

BST1_RSVALLN X'70' X'04' Input Number of requests to RESERVE all RECON data sets.

X'74' X'04' None Reserved.

BST1_RSVALLW X'78' X'08' Input Accumulated time waiting for a reserve of ALL data sets.

BST1_RQSTCNT X'80' X'04' Input Number of original requests to DBRC.

X'84' X'04' None Reserved.

BST1_RQSTTIME X'88' X'08' Input Accumulated time spent processing DBRC requests.

BST1_RETRYCNT X'90' X'04' Input Number of times a request required being retried.

X'94' X'04' None Reserved.

BST1_RETRYTIM X'98' X'08' Input Accumulated amount of time spent on requests that required
retry. This does not include the time spent processing the
request the last time (when it no longer required a retry).

BST1_PREEMPTN X'A0' X'04' Input Number of group services requests that preempted the
processing of another DBRC request. In other words, they
were processed after a DBRC request was received, but
before returning to the request caller.

X'A4' X'04' None Reserved.

BST1_PREEMPTIME X'A8' X'08' Input Accumulated time spent processing preemptive requests.

BST1_DDLKCNT X'B0' X'04' Input Number of VSAM deadlocks encountered.

BST1_TIMEOUT X'B4' X'04' Input Number of VSAM timeouts encountered.

BST1_REOPEN X'B8' X'04' Input Number of VSAM errors that required closure and reopening
of the RECON data sets.

X'BC' X'04' None Reserved.

BST1_RETRYOP X'C0' X'04' Input Number of VSAM OPEN requests that were retried.

BST1_CMITERR X'C4' X'04' Input Number of z/OS Resource Recovery Services commit
failures.

BST1_BACKERR X'C8' X'04' Input Number of RRS backout failures.

X'CC' X'04' None Reserved.

BST1_BATCH_ENQ_CNT X'D0' X'04' Input Number of batch enqueues on DSPURI02 qname.

X'D4' X'04' None Reserved.

BST1_BATCH_ENQ_TIME X'D8' X'08' Input Accumulated time spent waiting for enqueue on DSPURI02
qname.

BST1_QUEUETIME X'E0' X'08' Input Average time request waits to be processed by DBRC.

BST1_MAXQUEUETIME X'E8' X'08' Input Maximum time a request waited to be processed by DBRC.

550 Exit Routines

Table 209. DBRC statistics record DSPBST1 (continued)

Field name Offset Length
Field
usage Description

BST1_MAX_REQUEST_CNT X'F0' X'04' Input For parallel request processing, the maximum number of
requests being processed in parallel. For serial processing, the
maximum number of requests waiting to be processed.

X'F4' X'0C' None Reserved.

DBRC statistics record DSPBST2

Record DSPBST2 contains statistics that are related to specific DBRC request types.
The statistics are cumulative. Some of the data in record DSPBST1 might reflect
information for a request that is being processed when the BPE statistics exit
routine is called.

The following table describes the DBRC statistics record DSPBST2.

Table 210. DBRC statistics record DSPBST2

Field name Offset Length
Field
usage Description

BST2_ID X'00' X'08' Input Eye-catcher “DSPBST2”.

BST2_LEN X'08' X'04' Input Length of valid data.

BST2_PVER X'0C' X'04' Input Parameter list version number (X'00000001').

BST2_rqstlist X'10' X'04' Input Offset to first entry of the request data information mapped
by DSPBST_RQ. Offset is from the beginning of the
DSPBST2 block.

BST2_rqstcount X'14' X'02' Input Number of request data information entries.

BST2_rqstLen X'16' X'02' Input Length of a request data information entry.

X'18' X'08' None Reserved.

The following table describes the DBRC request entry statistics record
BST2_REQUEST_DATA, which represents an entry in the DSPBST2 statistics
record. The address of the first entry is the address of the DSPBST2 record plus the
offset value in BST2_rqstlist. To obtain the address of subsequent entries, add
BST2_rqstLen to the address of the current entry.

Table 211. DBRC request entry statistics record BST2_REQUEST_DATA

Field name Offset Length
Field
usage Description

BST2_rqst_ID X'00' X'01' Input Request ID - this is the BRLBF2 value in the DFSBRLSB
control block used for the request.

X'01' X'03' None Reserved.

BST2_rqst_cnt X'04' X'04' Input Number of requests for this function.

BST2_rqst_retry X'08' X'04' Input Number of times that the function required a retry.

X'0C' X'04' None Reserved.

BST2_rqst_time X'10' X'08' Input Total time spent processing this function.

X'18' X'08' None Reserved.

BST2_rqst_loc X'20' X'04' Input Number of record LOCATE requests made processing this
function.

Chapter 7. BPE-based DBRC user exit routines 551

Table 211. DBRC request entry statistics record BST2_REQUEST_DATA (continued)

Field name Offset Length
Field
usage Description

BST2_rqst_chg X'24' X'04' Input Number of record CHANGE requests made processing this
function.

BST2_rqst_del X'28' X'04' Input Number of record DELETE requests made processing this
function.

BST2_rqst_wrt X'2C' X'04' Input Number of record WRITE requests made processing this
function.

Related reference:
“BPE Statistics user-supplied exit routine” on page 517

552 Exit Routines

Chapter 8. BPE-based CQS user-supplied exit routines

Use BPE-based CQS user exit routines to customize and monitor your CQS
environment.

Note: Throughout this topic the term “user exit routine” means “user-supplied
exit routine.”

This topic contains Product-sensitive Programming Interface information.

You write these exit routines, no samples are provided. The CQS user exit routines
receive control in the CQS address space in an authorized state. CQS uses Base
Primitive Environment (BPE) services to call and manage the CQS user exit
routines.

A list of the user exit routines and their functions follows:

CQS Initialization-Termination
Called during CQS initialization and CQS normal termination.

CQS Client Connection
Called when a client connects to or disconnects from a structure.

CQS Queue Overflow
Called during overflow processing to verify queue name eligibility for
overflow processing.

CQS Structure Statistics
Called at the end of CQS system checkpoint to allow structure-related
statistics gathering.

CQS Structure Event
Called during processing for structure processing-related event notification.

In addition, you can use the BPE Statistics User exit to gather CQS statistics.

General user-supplied exit routine interface information for CQS

CQS uses BPE services to call and manage its user exit routines. BPE allows you to
externally specify the user exit routine modules to be called for a particular exit
routine type using EXITDEF= statements in BPE user exit PROCLIB members. BPE
also provides a common user exit routine execution environment. This
environment includes:
v Standard BPE user exit parameter list
v Static work areas for the routines
v Dynamic work areas for the routines
v Callable services for the routines
v A recovery environment to protect against abends in the user exit routines

Recommendation: Write CQS user exit routines in assembler, not in a high level
language. CQS does not support exit routines running under Language
Environment for z/OS. If you write an exit routine in a high level language, and
that routine is executing in the Language Environment for z/OS, you might have

© Copyright IBM Corp. 1974, 2017 553

abends or performance problems. Language Environment for z/OS is designed for
applications running in key 8, problem program state. CQS user exit routines
execute in key 7 supervisor state.

Related reading

v For complete information about displaying and refreshing user exits, see IMS
Version 13 Commands, Volume 1: IMS Commands A-M.

Related reference:
Part 3, “CQS client exit routines,” on page 627

CQS initialization-termination user-supplied exit routine
The Initialization-Termination (Init-Term) exit routine is called during CQS
initialization and CQS normal termination. The Init-Term exit routine is not called
during CQS abnormal termination.

This exit routine is optional.

The CQS Init-Term user exit routine is driven for the following events:
v CQS initialization, after CQS has completed its initial processing, but before it

connects to any structures.
v CQS normal termination, during CQS address space termination, after CQS has

disconnected from all structures.

The Init-Term exit routine is defined as TYPE=INITTERM in the EXITDEF
statement in the BPE user exit PROCLIB member. You can specify one or more
user exit routines of this type. When this exit routine is invoked, the exit routines
are driven in the order they are specified by the EXITS= keyword.

Recommendation: Write the Init-Term exit routine so that it is reentrant. It is
invoked AMODE 31.

Contents of registers on entry

Register
Contents

1 Address of the“Standard BPE user exit parameter list” on page 489. The
exit routine-specific parameter list pointed to by the UXPL_EXITPLP field
is mapped by macro CQSINTMX.

13 Address of two pre-chained save areas. The first save area can be used by
the exit routine to save registers on entry. The second save area can be
used by routines that are called from the user exit routine.

14 Return address.

15 Entry point of the exit routine.

Contents of registers on exit

Register
Contents

15 Return code

0 Always set this to zero.

All other registers must be restored.

554 Exit Routines

CQS initialization and termination parameter lists

On entry to the Init-Term exit routine register 1 points to a Standard BPE user exit
parameter list. The field UXPL_EXITPLP in this list contains the address of the
Init-Term user exit routine parameter lists (mapped by the CQSINTMX macro). The
parameters are described in the following two tables.

Table 212. CQS init-term user-supplied exit routine parameter list: CQS initialization

Field name Offset Length Field Usage Description

ITXPVSN X'00' X'04' Input Parameter list version number
(X'00000001')

ITXFUNC X'04' X'04' Input Function code

1 CQS initialization (ITXFINIT)

ITXCQSID X'08' X'08' Input CQS identifier

ITXCQSVN X'10' X'04' Input CQS version number

Table 213. CQS init-term user-supplied exit routine parameter list: CQS termination

Field name Offset Length Field usage Description

ITXPVSN X'00' X'04' Input Parameter list version number
(X'00000001')

ITXFUNC X'04' X'04' Input Function code

2 CQS normal termination
(ITXFNTRM)

ITXCQSID X'08' X'08' Input CQS identifier

ITXCQSVN X'10' X'04' Input CQS version number

Related reference:
Chapter 5, “BPE user-supplied exit routine interfaces and services,” on page 489

CQS client connection user-supplied exit routine
This exit routine is called when a client connects to or disconnects from a structure.

This exit routine is optional.

The Client Connection exit routine is driven for the following events:
v Client connect; after a client successfully connects to one or more structures.
v Client disconnect; after a client disconnects normally or abnormally from one or

more structures.

The Client Connection exit routine is defined as TYPE=CLNTCONN in the
EXITDEF statement in the BPE user exit PROCLIB member. You can specify one or
more user exit routines of this type. When this exit routine is invoked, all user exit
routines of this type are driven in the order specified by the EXITS= keyword.

Recommendation: Write the Client Connection exit routine so that it is reentrant.
It is invoked AMODE 31.

Contents of registers on entry

Register
Contents

Chapter 8. BPE-based CQS user-supplied exit routines 555

1 Address of the “Standard BPE user exit parameter list” on page 489. The
UXPL_EXITPLP field contains the address of the CQS Client Connection
exit parameter list, which is mapped by macro CQSCLNCX.

13 Address of two pre-chained save areas. The first save area can be used by
the exit routine to save registers on entry. The second save area can be
used by routines that are called from the user exit routine.

14 Return address.

15 Entry point of the exit routine.

Contents of registers on exit

Register
Contents

15 Return code

0 Always set this to zero.

All other registers must be restored.

CQS client connection and disconnect parameter lists

On entry to the Client Connection exit routine, R1 points to a Standard BPE user
exit parameter list. The field UXPL_EXITPLP in this list contains the address of the
Client Connection user exit routine parameter list (mapped by the CQSCLNCX
macro). The parameters for client connection and client disconnect are described in
the following two tables.

Table 214. CQS client connection user-supplied exit routine parameter list: client connection

Field name Offset Length
Field
usage Description

CCXPVSN X'00' X'04' Input Parameter list version number (X'00000001').

CCXFUNC X'04' X'04' Input Function code

1 Client connect (CCXFCONN).

CCXCQSID X'08' X'08' Input CQS identifier.

CCXCQSVN X'10' X'04' Input CQS version number.

CCXCLNNM X'14' X'08' Input Client name.

CCXCSNUM X'1C' X'04' Input Number of structure name entries in the list.

CCXCSENL X'20' X'04' Input Length of each structure name list entry.

CCXCSLST X'24' X'04' Input Address of first structure name entry. Each entry contains the
16-byte name of a structure that the client connected to.

Table 215. CQS client connection user-supplied exit routine parameter list: client disconnect

Field name Offset Length
Field
usage Description

CCXPVSN X'00' X'04' Input Parameter list version number (X'00000001').

CCXFUNC X'04' X'04' Input Function code

2 Client disconnect (CCXFDISC).

CCXCQSID X'08' X'08' Input CQS identifier.

CCXCQSVN X'10' X'04' Input CQS version number.

556 Exit Routines

Table 215. CQS client connection user-supplied exit routine parameter list: client disconnect (continued)

Field name Offset Length
Field
usage Description

CCXCLNNM X'14' X'08' Input Client name.

CCXDFLG1 X'1C' X'01' Input Flag byte indicates whether the client disconnect is abnormal

X'80' Client disconnect is abnormal (CCXDABND).

N/A X'1D' X'03' Reserved.

CCXDSNUM X'20' X'04' Input Number of structure name entries in the list.

CCXDSENL X'24' X'04' Input Length of each structure name list entry.

CCXDSLST X'28' X'04' Input Address of first structure name entry. Each entry contains the
16-byte name of a structure that the client disconnected from.

Related reference:
Chapter 5, “BPE user-supplied exit routine interfaces and services,” on page 489

CQS Queue overflow user-supplied exit routine
The Queue Overflow exit routine is called during overflow queue selection
processing to approve or veto a queue name for overflow processing.

This exit routine is optional.

During overflow processing the Queue Overflow exit routine is called to verify
that a queue name selected by CQS is eligible for overflow processing. When CQS
determines that the structure has reached its overflow threshold, overflow
threshold processing begins. Then CQS determines which queues are using the
most storage in the structure. The queues using the most storage in the structure
become candidates for overflow and are moved to the overflow structure. Or, if no
overflow structure is defined, the queues using the most storage in the structure no
longer allow CQSPUT requests for the queue.

Restriction: The queue overflow user exit does not apply to the resource structure.

During queue selection processing the Queue Overflow exit routine is invoked
once per selected queue name to approve or veto the queue name for overflow
processing. If the exit routine approves the move or the exit routine is not
specified, all data objects for that queue (such as IMS messages for that
destination) are moved to the overflow structure. All additional processing for that
queue name is done in the overflow structure, if the overflow structure exists. If no
overflow structure exists, CQSPUT requests to the queue are rejected. If the move
is vetoed, the queue name is removed from the overflow candidate list, and
another queue name is selected.

The Queue Overflow exit routine is defined as TYPE=OVERFLOW in the EXITDEF
statement in the BPE user exit PROCLIB member. You can specify one or more
user exit routines of this type. When this exit routine is invoked, all such routines
are driven in the order specified by the EXITS= keyword.

Because multiple overflow exit routines might exist, the last exit routine called is
the one that determines whether the queue name is selected for overflow. If an exit
routine accepts a queue name as one that is valid for overflow processing or does
not recognize the name, the exit routine must set R15 to 0 and specify that the next
exit in the list should be called. This allows the next exit routine to have a chance

Chapter 8. BPE-based CQS user-supplied exit routines 557

to veto the name selection. If an exit routine determines that a queue name is
ineligible as a candidate for overflow processing, the exit routine must set R15 to 4
and specify that no more exit routines are to be called.

Within the Standard BPE user exit parameter list is the field UXPL_CALLNEXTP,
which is a pointer to a byte of storage which is set by the exit routine to indicate
whether the next exit routine in the list is to be called. When the byte of storage is
set to UXPL_CALLNEXTYES, the next exit is called (if one exists). When the byte
of storage is set to UXPL_CALLNEXTNO, no more exits are called for this queue
name.

If a Queue Overflow exit routine determines that a queue name is not a candidate
for overflow, the exit routine can set the byte pointed to by field
UXPL_CALLNEXTP to the value of UXPL_CALLNEXTNO (X'04') so that no other
exit routines are called for the queue name.

Recommendation: Write the Queue Overflow exit routine so that it is reentrant. It
is invoked AMODE 31.

Contents of registers on entry

Register
Contents

1 Address of the“Standard BPE user exit parameter list” on page 489. The
exit routine-specific parameter list pointed to by the UXPL_EXITPLP field
is mapped by macro CQSQOFLX.

13 Address of two pre-chained save areas. The first save area can be used by
the exit routine to save registers on entry. The second save area can be
used by routines that are called from the user exit routine.

14 Return address.

15 Entry point of the exit routine.

Contents of registers on exit

Register
Contents

15 Return code

0 Allow queue to be moved to overflow structure.

4 Do not move queue to overflow structure; select another candidate.

Attention: This return code is ignored unless the exit routine is
the last overflow user exit called for the queue name.

An exit routine is considered the last one called when either of the
following are true:
1. The exit routine is the last routine defined in the exit list for the

overflow queue.
2. The exit routine sets the byte pointed to by

UXPL_CALLNEXTP to the value UXPL_CALLNEXTNO.

All other registers must be restored.

558 Exit Routines

CQS queue overflow parameter list

On entry to the Queue Overflow exit routine, R1 points to a Standard BPE user
exit parameter list. The field UXPL_EXITPLP in this list contains the address of the
CQS Queue Overflow user exit routine parameter list (mapped by the CQSQOFLX
macro). The parameters are described in detail in the following table.

Table 216. CQS queue overflow user-supplied exit routine parameter list

Field name Offset Length
Field
usage Description

QOXPVSN X'00' X'04' Input Parameter list version number (X'00000001').

QOXFUNC X'04' X'04' Input Function code

1 Queue name selection (QOXFQOFL).

QOXQOFL1 X'08' X'01' Input Flag byte indicating whether this is the first overflow exit call
for this overflow threshold process. The exit routine is called
once per selected queue name for each occurrence of overflow
threshold processing. This bit will be on for the first queue
name for an occurrence of overflow threshold processing.

X'80' This is the initial entry for this overflow threshold
process (QOXQ11ST)

N/A X'09' X'03' None Reserved.

QOXCQSID X'0C' X'08' Input CQS identifier.

QOXCQSVN X'14' X'04' Input CQS version number.

QOXSTRNM X'18' X'10' Input Structure name.

QOXQNAME X'28' X'10' Input Queue name selected for overflow processing.

QOXDOBJN X'38' X'04' Input Number of data objects on the selected queue name.

Related reference:
Chapter 5, “BPE user-supplied exit routine interfaces and services,” on page 489

CQS structure statistics user-supplied exit routine
The CQS Structure Statistics user exit routine enables you to gather statistics
related to the structure.

This exit routine is optional.

The exit routine is driven at the end of a successful system checkpoint. All
statistical data that CQS gathers, including rebuild statistics and checkpoint
statistics, are passed to the Structure Statistics user exit at the end of each
successful system checkpoint. All statistical data is logged in the Structure Statistics
log record. You can also obtain this same statistical data with the CQSQUERY
FUNC=STRSTAT request.

Recommendation: Some statistics about resource structures are passed in the
structure statistics. CQS system checkpoint does not apply to resource structures.
Use the STATINV parameter in the BPE configuration PROCLIB member to define
the time interval so that BPE regularly drives CQS's statistics user exit. See IMS
Version 13 System Definition for more information about the BPE configuration
PROCLIB member.

Chapter 8. BPE-based CQS user-supplied exit routines 559

The CQS Structure Statistics user exit routine is defined as TYPE = STRSTAT in the
EXITDEF statement in the BPE user exit PROCLIB member. You can specify one or
more user exit routines of this type. When this exit routine is invoked, all routines
of this type are driven in the order specified by the EXITS= keyword.

Recommendation: Write the CQS Structure Statistics exit routine so that it is
reentrant. It is invoked AMODE 31.

Subsections:
v “CQS structure statistics user-supplied exit routine parameter list”
v “CQS structure process statistics record” on page 561
v “CQS request statistics record” on page 562
v “Data object statistics record for CQS” on page 562
v “Queue name statistics record for CQS” on page 564
v “z/OS request statistics record for CQS” on page 565
v “Structure rebuild statistics record for CQS” on page 566
v “Structure checkpoint statistics record for CQS” on page 569
v “Structure checkpoint statistics gathered by CQS” on page 569

Contents of registers on entry

Register
Contents

1 Address of the standard “Standard BPE user exit parameter list” on page
489. The UXPL_EXITPLP field in this list contains the address of the CQS
Structure Statistics exit parameter list, which is mapped by macro
CQSSTATX.

13 Address of two pre-chained save areas. The first save area can be used by
the exit routine to save registers on entry. The second save area can be
used by routines that are called from the user exit routine.

14 Return address.

15 Entry point of the exit routine.

Contents of registers on exit

Register
Contents

15 Return code

0 Always set this to zero.

All other registers must be restored.

CQS structure statistics user-supplied exit routine parameter list

On entry to the Structure Statistics exit routine, R1 points to a Standard BPE user
exit parameter list. The field UXPL_EXITPLP in this list contains the address of the
CQS Structure Statistics user exit routine parameter list (mapped by the
CQSSTATX macro). The parameters are described in the following table.

560 Exit Routines

Table 217. CQS structure statistics user-supplied exit routine parameter list

Field name Offset Length
Field
usage Description

SAXPVSN X'00' X'04' Input Parameter list version number (X'00000001').

SAXFUNC X'04' X'04' Input Function code

1 System checkpoint (SAXFCSYS).

SAXCQSID X'08' X'08' Input CQS identifier.

SAXCQSVN X'10' X'04' Input CQS version number.

SAXSTRNM X'14' X'10' Input Structure name.

SAXSSTT1 X'24' X'04' Input Address of structure process statistics record for activity
performed by CQS processes on this structure for all clients
since restart or the last successful structure checkpoint
(mapped by the CQSSSTT1 macro). See the following section
for a description of the process statistics record.

SAXSSTT2 X'28' X'04' Input Address of CQS request statistics record for activity
performed for CQS requests for this structure for all clients
since restart or the last successful structure checkpoint
(mapped by the CQSSSTT2 macro).

SAXSSTT3 X'2C' X'04' Input Address of data object statistics record for activity performed
on data objects in this structure for all clients since restart or
the last successful structure checkpoint (mapped by the
CQSSSTT3 macro). See Table 220 on page 563 for a
description of the object statistics record.

SAXSSTT4 X'30' X'04' Input Address of queue name statistics record for activity
performed on queue names in this structure for all clients
since restart or the last successful structure checkpoint
(mapped by the CQSSSTT4 macro). See Table 221 on page 565
for a description of the queue name statistics record.

SAXSSTT5 X'34' X'04' Input Address of z/OS request statistics record for activity
performed by CQS processes on this structure for all clients
since restart or the last successful structure checkpoint
(mapped by the CQSSSTT5 macro). See Table 222 on page 565
for a description of the z/OS request statistics record.

SAXSSTT6 X'38' X'04' Input Address of rebuild statistics record containing data from the
last rebuild in which this CQS acted as master (mapped by
the CQSSSTT6 macro). See Table 223 on page 566 for a
description of the rebuild statistics record.

SAXSSTT7 X'3C' X'04' Input Address of structure checkpoint statistics record containing
data from the last three structure checkpoints in which this
CQS acted as master (mapped by the CQSSSTT7 macro). See
Table 224 on page 569 for a description of the structure
checkpoint statistics record.

CQS structure process statistics record

The following table describes the CQS Structure Statistics user exit routine
structure process statistics record.

Table 218. CQS structure process statistics record

Field name Offset Length
Field
usage Description

SS1ID X'00' X'08' Input Eye catcher CQSSSTT1

Chapter 8. BPE-based CQS user-supplied exit routines 561

Table 218. CQS structure process statistics record (continued)

Field name Offset Length
Field
usage Description

SS1LN X'08' X'04' Input Length of valid data

SS1PVSN X'0C' X'04' Input Parameter list version number (X'00000002')

SS1YCHKP X'10' X'04' Input Number of times CQS successfully performed system
checkpoint processing for the structure

SS1TCHKP X'14' X'04' Input Number of times CQS successfully performed structure
checkpoint processing for the structure

SS1RBLD X'18' X'04' Input Number of times CQS successfully performed rebuild
processing for the structure

SS1OFLWT X'1C' X'04' Input Number of times CQS performed overflow threshold
processing for the structure

SS1DUPLX X'20' X'04' Input Number of times CQS successfully established a duplexing
rebuild

CQS request statistics record

The following table describes the Structure Statistics user exit routine CQS request
statistics record.

Table 219. CQS request statistics record

Field name Offset Length
Field
usage Description

SS2ID X'00' X'08' Input Eye catcher CQSSSTT2

SS2LN X'08' X'04' Input Length of valid data

SS2PVSN X'0C' X'04' Input Parameter list version number (X'00000002')

SS2BRWSE X'10' X'04' Input Number of CQSBRWSE requests for this structure

SS2CHKPT X'14' X'04' Input Number of CQSCHKPT requests for this structure

SS2CONN X'18' X'04' Input Number of CQSCONN requests for this structure

SS2DEL X'1C' X'04' Input Number of CQSDEL requests for this structure

SS2DISC X'20' X'04' Input Number of CQSDISC requests for this structure

SS2INFRM X'24' X'04' Input Number of CQSINFRM requests for this structure

SS2MOVE X'28' X'04' Input Number of CQSMOVE requests for this structure

SS2PUT X'2C' X'04' Input Number of CQSPUT requests for this structure

SS2QUERY X'30' X'04' Input Number of CQSQUERY requests for this structure

SS2READ X'34' X'04' Input Number of CQSREAD requests for this structure

SS2RECVR X'38' X'04' Input Number of CQSRECVR requests for this structure

SS2RSYNC X'3C' X'04' Input Number of CQSRSYNC requests for this structure

SS2UNLCK X'40' X'04' Input Number of CQSUNLCK requests for this structure

SS2UPD X'44' X'04' Input Number of CQSUPD requests for this structure

Data object statistics record for CQS

The following table describes the Structure Statistics user exit routine data object
statistics record.

562 Exit Routines

Table 220. Data object statistics record

Field name Offset Length
Field
usage Description

SS3ID X'00' X'08' Input Eye catcher CQSSSTT3.

SS3LN X'08' X'04' Input Length of valid data.

SS3PVSN X'0C' X'04' Input Parameter list version number (X'00000003').

SS3PTOBJ X'10' X'04' Input Number of data objects added to the structure with COMMIT
= NO. This count does not include data objects added with
COMMIT = YES or RECOVERABLE = NO.

SS3PTCMT X'14' X'04' Input Number of data objects added to the structure with COMMIT
= YES. This count indicates the number of recoverable UOWs
added to the structure. This count plus the number of data
objects that are added with COMMIT = NO is the total
number of recoverable data objects added to the structure.

SS3PTNRO X'18' X'04' Input Number of data objects added to the structure with
RECOVERABLE = NO. This count indicates the number of
nonrecoverable UOWs added to the structure. This count plus
the number of data objects that are added with COMMIT =
YES is the total number of UOWs that were added to the
structure.

SS3RDOBJ X'1C' X'04' Input Number of data objects read from the structure.

SS3MVOBJ X'20' X'04' Input Number of data objects moved from one queue to another on
the structure.

SS3ULOBJ X'24' X'04' Input Number of data objects unlocked on the structure.

SS3CROBJ X'28' X'04' Input Number of data objects created.

SS3UPOBJ X'2C' X'04' Input Number of data objects updated.

SS3ENTAL X'30' X'04' Input Number of data entries allocated on the primary structure.
Compare the data entry in use field to the data entry
allocated field to determine how close the structure is to
becoming full.

SS3ENTIN X'34' X'04' Input Number of data entries in use on the primary structure.
Compare the data entry in use field to the data entry
allocated field to determine how close the structure is to
becoming full.

SS3ENTHI X'38' X'04' Input High water mark for number of data entries on the primary
structure. Compare the data entry in use field to the data
entry allocated field to determine how close the structure is
to becoming full.

SS3ENTTM X'3C' X'08' Input Time stamp representing the time the data entry high water
mark was reached for the primary structure (in STCK
format).

SS3ELMAL X'44' X'04' Input Number of data elements allocated on the primary structure.
Compare the data entry in use field to the data entry
allocated field to determine how close the structure is to
becoming full.

SS3ELMIN X'48' X'04' Input Number of data elements in use on the primary structure.
Compare the data entry in use field to the data entry
allocated field to determine how close the structure is to
becoming full.

Chapter 8. BPE-based CQS user-supplied exit routines 563

|||||

|||||
|
|
|

|||||
|
|
|

|||||
|
|
|

|||||
|
|

|||||
|
|
|

|||||
|
|
|

Table 220. Data object statistics record (continued)

Field name Offset Length
Field
usage Description

SS3ELMHI X'4C' X'04' Input High water mark for number of data elements on the
primary structure. Compare the data element high water
mark field to the data element allocated field to determine
the closest the structure came to becoming full.

SS3ELMTM X'50' X'08' Input Time stamp representing the time the data element high
water mark was reached for the primary structure (in STCK
format).

Reserved X'58' X'14' Input

SS3OENAL X'6C' X'04' Input Number of data entries allocated on the overflow structure.
Compare the data entry in use field to the data entry
allocated field to determine how close the structure is to
becoming full. This field is present only if SS3PVSN is 3 or
greater.

SS3OENIN X'70' X'04' Input Number of data entries in use on the overflow structure.
Compare the data entry in use field to the data entry
allocated field to determine how close the structure is to
becoming full. This field is present only if SS3PVSN is 3 or
greater.

SS3OENHI X'74' X'04' Input High water mark for number of data entries on the overflow
structure. Compare the data entry in use field to the data
entry allocated field to determine how close the structure is
to becoming full. This field is present only if SS3PVSN is 3 or
greater.

SS3OENTM X'78' X'08' Input Time stamp representing the time the data entry high water
mark was reached for the overflow structure (in STCK
format). This field is present only if SS3PVSN is 3 or greater.

SS3OELAL X'80' X'04' Input Number of data elements allocated on the overflow structure.
Compare the data entry in use field to the data entry
allocated field to determine how close the structure is to
becoming full.

SS3OELIN X'84' X'04' Input Number of data elements in use on the overflow structure.
Compare the data entry in use field to the data entry
allocated field to determine how close the structure is to
becoming full. This field is present only if SS3PVSN is 3 or
greater.

SS3OELHI X'88' X'04' Input High water mark for number of data elements on the
overflow structure. Compare the data element high water
mark field to the data element allocated field to determine
the closest the structure came to becoming full. This field is
present only if SS3PVSN is 3 or greater.

SS3OELTM X'8C' X'08' Input Time stamp representing the time the data element high
water mark was reached for the overflow structure (in STCK
format). This field is present only if SS3PVSN is 3 or greater.

Reserved X'94' X'14' Input

Queue name statistics record for CQS

The following table describes the Structure Statistics user exit routine queue name
statistics record.

564 Exit Routines

|||||
|
|
|

|||||
|
|

|||||

|||||
|
|
|
|

|||||
|
|
|
|

|||||
|
|
|
|

|||||
|
|

|||||
|
|
|

|||||
|
|
|
|

|||||
|
|
|
|

|||||
|
|

|||||

Restriction: The queue name statistics record does not apply to resource structures.

Table 221. Queue name statistics record

Field name Offset Length
Field
usage Description

SS4ID X'00' X'08' Input Eye catcher CQSSSTT4

SS4LN X'08' X'04' Input Length of valid data

SS4PVSN X'0C' X'04' Input Parameter list version number (X'00000001')

SS4INFQN X'10' X'04' Input Number of queue names for which an inform was performed

SS4UNFQN X'14' X'04' Input Number of queue names for which an uninform was
performed

SS4NFYQN X'18' X'04' Input Number of queue name notifications (when a queue goes
from empty to non-empty)

z/OS request statistics record for CQS

The following table describes the Structure Statistics user exit routine z/OS request
statistics record.

Table 222. z/OS request statistics record

Field name Offset Length
Field
usage Description

SS5ID X'00' X'08' Input Eye catcher CQSSSTT5.

SS5LN X'08' X'04' Input Length of valid data.

SS5PVSN X'0C' X'04' Input Parameter list version number (X'00000002').

SS5IXGWR X'10' X'04' Input Number of IXGWRITE requests for the structure. This
represents the number of log records written during
processing on the structure.

SS5IXGBR X'14' X'04' Input Number of IXGBRWSE requests for the structure.

SS5IXLDQ X'18' X'04' Input Number of IXLLIST DEQ_EVENTQ requests for the structure.

SS5IXLWR X'1C' X'04' Input Number of IXLLIST WRITE requests for the structure.

SS5IXLRD X'20' X'04' Input Number of IXLLIST READ requests for the structure.

SS5IXLMV X'24' X'04' Input Number of IXLLIST MOVE requests for the structure.

SS5IXLDL X'28' X'04' Input Number of IXLLIST DELETE requests for the structure.

SS5IXLMG X'2C' X'04' Input Number of IXLMG requests for the structure.

SS5IXLUS X'30' X'04' Input Number of IXLUSYNC requests for the structure.

SS5IXEWR X'34' X'04' Input Number of IXLLSTE WRITE requests for the structure.

SS5IXERD X'38' X'04' Input Number of IXLLSTE READ requests for the structure.

SS5IXMRL X'3C' X'04' Input Number of IXLLSTM READ_LIST requests for the structure.

SS5IXEDL X'40' X'04' Input Number of IXLLSTE DELETE requests for the structure.

SS5IXMDL X'44' X'04' Input Number of IXLLSTM DELETE_ENTRYLIST requests for the
structure.

Chapter 8. BPE-based CQS user-supplied exit routines 565

Structure rebuild statistics record for CQS

Structure rebuild statistics are gathered only by the CQS that is the master of the
structure rebuild process. A CQS has access only to the data it gathers. Each CQS
keeps structure rebuild statistics for the last rebuild for which it was the master.

The following table describes the Structure Statistics user exit routine structure
rebuild statistics record.

Table 223. Structure rebuild statistics record

Field name Offset Length
Field
usage Description

SS6ID X'00' X'08' Input Eye catcher CQSSSTT6.

SS6LN X'08' X'04' Input Length of valid data.

SS6PVSN X'0C' X'04' Input Parameter list version number (X'00000003').

SS6ELMIO X'10' X'04' Input Data elements in use on old structure.

SS6ELMAO X'14' X'04' Input Data elements allocated on old structure.

SS6ENTIO X'18' X'04' Input Data entries in use on old structure (data object count).

SS6ENTAO X'1C' X'04' Input Data entries allocated on old structure.

SS6MCIO X'20' X'04' Input Event monitoring controls (EMCs) in use on old structure
(active informs).

SS6EMCAO X'24' X'04' Input EMCs in use on old structure (active informs).

SS6SIZEO X'28' X'04' Input Old structure size in 4 KB blocks.

SS6CFTO X'2C' X'04' Input Old CF total space in 4 KB blocks.

SS6CFFO X'30' X'04' Input Old CF free space in 4 KB blocks.

SS6CFNMO X'34' X'08' Input Old CF name in which structure was allocated before rebuild.

X'3C' X'04' Unused.

SS6ELMIN X'40' X'04' Input Data elements in use on new structure.

SS6ELMAN X'44' X'04' Input Data elements allocated on new structure.

SS6ENTIN X'48' X'04' Input Data entries in use on new structure (data object count).

SS6ENTAN X'4C' X'04' Input Data entries allocated on new structure.

SS6EMCIN X'50' X'04' Input EMCs in use on new structure (active informs).

SS6EMCAN X'54' X'04' Input EMCs in use on new structure (active informs).

SS6SIZEN X'58' X'04' Input New structure size in 4 KB blocks.

SS6CFTN X'5C' X'04' Input New CF total space in 4 KB blocks.

SS6CFFN X'60' X'04' Input New CF free space in 4 KB blocks.

SS6CFNMN X'64' X'08' Input New CF name in which structure is allocated after rebuild.

X'6C' X'04' Unused.

SS6RBTIM X'70' X'08' Input Rebuild time stamp (STCK).

SS6POPCT X'78' X'04' Input Repopulation from SRDS count (RCVRY) or objects copied
count (COPY).

SS6MVQCT X'7C' X'04' Input Entries moved to moveq during phase 2 count.

SS6PUTCT X'80' X'04' Input Entries written during phase 3 count.

SS6MOVCT X'84' X'04' Input Entries moved during phase 3 count.

SS6OBJCT X'88' X'04' Input Data objects affected by recovery count (recoverable and
nonrecoverable).

566 Exit Routines

Table 223. Structure rebuild statistics record (continued)

Field name Offset Length
Field
usage Description

SS6UOWCT X'8C' X'04' Input UOWs affected by recovery count (recoverable and
nonrecoverable).

SS6FLAG1 X'90' X'01' Input Flag byte.

X'40' Duplexing is established.

X'80' These statistics are for the last rebuild performed for
the structure.

SS6FLAG2 X'91' X'01' Input Rebuild flag.

Indicates the last rebuild or duplexing rebuild event received
that updated these rebuild statistics:

1 Structure rebuild statistics.

2 Duplexing started statistics.

3 Duplexing ended statistics and z/OS switched to
simplex structure (either old or new structure).

X'92' X'02' Unused.

The remaining fields of this table apply to rebuild failures. The CQS0242E message identifies the rebuild failure
reason.

The following fields apply to rebuild failures that occurred while rebuild was processing a CQS log record. Use this
information to locate the log record in the CQS log to give to an IBM service representative.

SS6LGTYP X'94' X'01' Input Log record type of log record being processed when rebuild
failure occurred.

SS6LGSUB X'95' X'01' Input Log record subtype of log record being processed when
rebuild failure occurred.

SS6STYPE X'96' X'01' Input Structure type of log record being processed when rebuild
failure occurred.

X'97' X'01' Unused.

SS6LGTIM X'98' X'08' Input Log record time stamp of log record being processed when
rebuild failure occurred.

SS6CQSID X'A0' X'08' Input CQS ID associated with log record being processed when
rebuild failure occurred.

SS6CLNTN X'A8' X'08' Input Client name associated with log record being processed when
rebuild failure occurred.

SS6SRCQ X'B0' X'10' Input Source client or private queue name associated with log
record being processed when rebuild failure occurred.

SS6DSTQ X'C0' X'10' Input Destination queue name associated with log record being
processed when rebuild failure occurred.

SS6UOW X'D0' X'20' Input UOW associated with log record being processed when
rebuild failure occurred.

SS6UNIQ1 X'F0' X'04' Input Information unique to log record or rebuild data object entry
when rebuild failure occurred.

SS6UNIQ2 X'F4' X'04' Input Information unique to log record or rebuild data object entry
when rebuild failure occurred.

SS6UNIQ3 X'F8' X'04' Input Information unique to log record or rebuild data object entry
when rebuild failure occurred.

Chapter 8. BPE-based CQS user-supplied exit routines 567

Table 223. Structure rebuild statistics record (continued)

Field name Offset Length
Field
usage Description

The following fields apply to rebuild failures that occurred while rebuild was processing an IXL request to access the
structure.

SS6IXLMC X'FC' X'01' Input IXL macro that failed and caused rebuild to fail. See
CQSTRACE macro for IXL macro type.

SS6IXLRQ X'FD' X'01' Input IXL request that failed and caused the rebuild to fail.

X'FE' X'02' Unused.

SS6IXLRC X'100' X'04' Input IXL return code returned by IXL request that caused rebuild
to fail.

SS6IXLRN X'104' X'04' Input IXL reason code returned by IXL request that caused rebuild
to fail.

SS6SRVRC X'108' X'04' Input This field applies to rebuild failures that occurred while
rebuild was processing a service (for example, CQSTBL,
BPELAGET, BPECBGET). It provides the return code of the
service that failed.

X'10C' X'04' Unused.

SS6VRSNO X'110' X'08' Input Old structure version (rebuild) or primary structure version
(duplexing rebuild).

SS6VRSNN X'118' X'08' Input New structure version (rebuild) or secondary structure
version (duplexing rebuild).

SS6CFLVO X'120' X'04' Input Old structure CF level (rebuild) or primary structure CF level
(duplexing rebuild). For a primary structure CF level, this can
be a composite CF level, which is at least as high as a CF
level as that which has been previously reported back to any
CQS as the primary structure CF level.

SS6CFLVN X'124' X'04' Input New structure CF level (rebuild) or secondary structure CF
level (duplexing rebuild). For a secondary structure CF level,
this can be a composite CF level, which is at least as high as
a CF level as that which has been previously reported back to
any CQS as the primary structure CF level.

SS6CFNMS X'128' X'04' Input CF name in which simplex structure is located (z/OS
switched to simplex structure).

SS6VALFL X'12C' X'02' Input Validity flags (EEPLSSCVALIDITYFLAGS).

X'12E' X'02' Input Not used

SS6DUPST X'130' X'08' Input Last duplexing rebuild start time (STCK). The last duplexing
rebuild for this structure was initiated at this time.

SS6DUPET X'138' X'08' Input Last duplexing rebuild end time (STCK). The last duplexing
rebuild stopped for this structure occurred at this time.

SS6UNAVT X'140' X'08' Input Last structure temporarily unavailable time (STCK). The
structure becomes temporarily unavailable because a
system-managed rebuild has been initiated, a duplexing
rebuild has been initiated, or a duplexing rebuild has
stopped.

SS6AVT X'148' X'08' Input Last structure available time (STCK). The structure last
became available at this time, after initiation of a
system-managed rebuild, initiation of a duplexing rebuild, or
stopping of a duplexing rebuild.

X'150' X'38' Input Unused

568 Exit Routines

Structure checkpoint statistics record for CQS

Structure checkpoint statistics are gathered only by the CQS that is the master of
the structure checkpoint process. A CQS has access only to the data it gathers. Each
CQS keeps structure checkpoint statistics for the last three checkpoints for which it
was the master. Structure checkpoint data is not reset at the end of a structure
checkpoint.

The following table describes the Structure Statistics user exit routine structure
checkpoint statistics record.

Table 224. Structure checkpoint statistics record

Field name Offset Length
Field
usage Description

SS7ID X'00' X'08' Input Eye catcher CQSSSTT7.

SS7LN X'08' X'04' Input Length of valid data.

SS7PVSN X'0C' X'04' Input Parameter list version number.

SS7FLAG1 X'10' X'01' Input Flag byte.

X'80' These statistics are from last attempted structure
checkpoint taken for the structure.

X'40' Structure Checkpoint is in progress.

X'11' X'03' Unused.

SS7ENCNT X'14' X'04' Input Number of structure checkpoint statistics entries in record.

SS7ENLEN X'18' X'04' Input Length of structure checkpoint statistics entry

SS7CUR X'1C' X'04' Input Offset to current structure checkpoint statistics entry.

SS7STATS X'20' X'04' Input Start of structure checkpoint statistics entries. See the next
table for a description of the structure checkpoint statistics
entry.

Structure checkpoint statistics gathered by CQS

Structure checkpoint statistics are gathered only by the CQS that is the master of
the structure checkpoint process. A CQS has access only to the data it gathers. Each
CQS keeps structure checkpoint statistics for the last three checkpoints for which it
was the master. Structure checkpoint data is not reset at the end of a structure
checkpoint.

The following table describes the Structure Statistics user exit routine structure
checkpoint statistics entry.

Table 225. Structure checkpoint statistics entry

Field name Offset Length
Field
usage Description

SS7RETCD X'00' X'04' Input Return code for this structure checkpoint

SS7QSCB X'04' X'08' Input Structure quiesce start time in STCK format

SS7QSCE X'0C' X'08' Input Structure quiesce complete time in STCK format

SS7DSPB X'14' X'08' Input Start data space/data set capture time in STCK format

SS7DSPE X'1C' X'08' Input End data space capture time in STCK format

SS7RSMB X'24' X'08' Input Structure resume start time in STCK format

Chapter 8. BPE-based CQS user-supplied exit routines 569

Table 225. Structure checkpoint statistics entry (continued)

Field name Offset Length
Field
usage Description

SS7DSE X'2C' X'08' Input End data set capture time in STCK format

SS7CHKE X'34' X'08' Input Time when all system checkpoints completed in STCK format

SS7PELA X'3C' X'04' Input Number of allocated elements on primary structure

SS7PELU X'40' X'04' Input Number of elements in use on primary structure

SS7OELA X'44' X'04' Input Number of allocated elements on overflow structure

SS7OELU X'48' X'04' Input Number of elements in use on overflow structure

SS7PLEA X'4C' X'04' Input Number of allocated list entries on primary structure

SS7PLEU X'50' X'04' Input Number of list entries in use on primary structure

SS7OLEA X'54' X'04' Input Number of allocated list entries on overflow structure

SS7OLEU X'58' X'04' Input Number of list entries in use on overflow structure

SS7WRTS X'5C' X'04' Input Number of SRDS writes required

Related reference:
Chapter 5, “BPE user-supplied exit routine interfaces and services,” on page 489

CQS structure event user-supplied exit routine
The CQS Structure Event user exit routine is called during CQS processing to
notify you of an event related to structure processing.

For certain events, CQS structure event user-supplied exit routine also allows you
to gather statistics related to the structure. This exit routine is optional.

The Structure Event user exit routine applies to both resource and queue
structures, but not all events are applicable to resource structures. The CQS
Structure Event exit routine is driven for the following events:
v Structure Connection

– When structure connect occurs, after CQS connects to a structure, but before
rebuild or restart is performed for the structure.

– At structure disconnect; after CQS disconnects from a structure.
v Checkpoint

– When a system checkpoint begin, end, or failure occurs.
– When a structure checkpoint begin, end, or failure occurs.

Restriction: The Checkpoint event does not apply to resource structures.
v Structure Rebuild

– When a structure copy (rebuild) begin, end, or failure occurs.
– When a structure recovery (rebuild) begin, end, or failure occurs.

Important: The structure failure event for a resource structure means that the
structure has failed and a new structure could not be reallocated. No structure
recovery is done, because resource structures do not support structure recovery.

v Structure Overflow
– When one or more queues moved to the overflow structure.

570 Exit Routines

– When one or more queues moved from the overflow structure back to the
primary structure. This event also indicates when the structure is no longer in
overflow mode.

Restriction: The Structure Overflow event does not apply to resource
structures.

v Structure Status Change
– When the structure is available again after a loss.
– When the structure fails.
– When CQS loses its connection to the structure.
– When a resource structure fails and is able to allocate a new resource

structure.
– When the log stream becomes available, making the structure available.

v Structure Repopulation
– When the structure fails and CQS is able to allocate a new resource structure.
The Structure Repopulation event does not apply to queue structures. The client
can repopulate the new resource structure with the resource data.

The exit routine is defined as TYPE=STREVENT in the EXITDEF statement in the
BPE user exit PROCLIB member. You can specify one or more exit routines of this
type. When this exit routine is invoked, all routines of this type are driven in the
order specified by the EXITS= keyword.

Recommendation: Write the CQS Structure Event exit routine so that it is
reentrant. It is invoked AMODE 31.

Subsections:
v “Routine parameter lists” on page 572
v “CQS structure event exit routine parameter list” on page 572
v “CQS structure event exit routine checkpoint parameter list” on page 573
v “CQS structure event exit routine rebuild parameter list” on page 574
v “CQS structure event exit routine overflow parameter list” on page 575
v “CQS structure event exit routine status change parameter list” on page 576

Contents of registers on entry

Register
Contents

1 Address of the “Standard BPE user exit parameter list” on page 489. The
UXPL_EXITPLP field in this parameter list contains the address of the CQS
Structure Event exit parameter list, which is mapped by macro CQSSTREX.

13 Address of two pre-chained save areas. The first save area can be used by
the exit routine to save registers on entry. The second save area can be
used by routines that are called from the user exit routine.

14 Return address.

15 Entry point of the exit routine.

Contents of registers on exit

Register
Contents

Chapter 8. BPE-based CQS user-supplied exit routines 571

15 Return code

0 Always set this to zero.

All other registers must be restored.

Routine parameter lists

On entry to the Structure Event exit routine, register 1 points to a Standard BPE
user exit parameter list. Field UXPL_EXITPLP in this list contains the address of
the CQS Structure Event user exit routine parameter list (mapped by the
CQSSTREX macro).

CQS structure event exit routine parameter list

The following table describes the Structure Event user exit routine connect
parameter list.

Table 226. CQS structure event user-supplied exit routine parameter list: connect

Field name Offset Length
Field
usage Description

STXPVSN X'00' X'04' Input Parameter list version number (X'00000001').

STXEVENT X'04' X'04' Input Function code

1 Connect event (STXCONDS).

STXSCODE X'08' X'04' Input Event subcode

1 Structure connect (STXCONN).

2 Structure disconnect (STXDISC).

STXCQSID X'0C' X'08' Input CQS identifier.

STXCQSVN X'14' X'04' Input CQS version number.

STXSTRNM X'18' X'10' Input Structure name.

STXSTRVN X'28' X'08' Input Structure version number (mapped by the CQSSTREX
macro).

STXDSTT1 X'34' X'04' Input Address of structure process statistics record for activity
performed by CQS processes on this structure for all clients
since restart or the last successful structure checkpoint
(mapped by the CQSSSTT1 macro). For structure disconnect
only.

STXDSTT2 X'38' X'04' Input Address of CQS request statistics record for activity
performed for CQS processes on this structure for all clients
since restart or the last successful structure checkpoint
(mapped by the CQSSSTT2 macro). For structure disconnect
only.

STXDSTT3 X'3C' X'04' Input Address of data object statistics record for activity performed
on data objects in this structure for all clients since restart or
the last successful structure checkpoint (mapped by the
CQSSSTT3 macro). For structure disconnect only.

STXDSTT4 X'40' X'04' Input Address of queue name statistics record for activity
performed on queue names in this structure for all clients
since restart or the last successful structure checkpoint
(mapped by the CQSSSTT4 macro). For structure disconnect
only.

572 Exit Routines

Table 226. CQS structure event user-supplied exit routine parameter list: connect (continued)

Field name Offset Length
Field
usage Description

STXDSTT5 X'44' X'04' Input Address of z/OS request statistics record for activity
performed by CQS processes on this structure for all clients
since restart or the last successful structure checkpoint
(mapped by the CQSSSTT5 macro). For structure disconnect
only.

STXDSTT6 X'48' X'04' Input Address of rebuild statistics record containing data from the
last rebuild in which this CQS acted as master (mapped by
the CQSSSTT6 macro). For structure disconnect only.

STXDSTT7 X'4C' X'04' Input Address of structure checkpoint statistics record containing
data from the last three structure checkpoints in which this
CQS acted as master (mapped by the CQSSSTT7 macro).For
structure disconnect only.

CQS structure event exit routine checkpoint parameter list

The following table describes the Structure Event user exit routine checkpoint
parameter list.

Table 227. CQS structure event user-supplied exit routine parameter list: checkpoint

Field name Offset Length
Field
usage Description

STXPVSN X'00' X'04' Input Parameter list version number (X'00000001').

STXEVENT X'04' X'04' Input Structure event code

2 Checkpoint event (STXCHKPT).

STXSCODE X'08' X'04' Input Structure event subcode

1 Structure checkpoint begin (STXCSTRB).

2 Structure checkpoint end (STXCSTRE).

3 Structure checkpoint failure (STXCSTRF).

4 System checkpoint begin (STXCSYSB).

5 System checkpoint end (STXCSYSE).

6 System checkpoint failure (STXCSYSF).

STXCQSID X'0C' X'08' Input CQS identifier.

STXCQSVN X'14' X'04' Input CQS version number.

STXSTRNM X'18' X'10' Input Structure Name.

STXCMCQS X'28' X'08' Input CQS identifier of the master CQS performing the checkpoint
process. For system checkpoint, this is the same as the CQS
identifier.

STXCFLG1 X'30' X'01' Input Flag byte

X'80' This CQS is the master of the process. The CQS
identifier and master CQS identifier are the same
(STXC1MST).

N/A X'31' X'03' Input Reserved.

Chapter 8. BPE-based CQS user-supplied exit routines 573

Table 227. CQS structure event user-supplied exit routine parameter list: checkpoint (continued)

Field name Offset Length
Field
usage Description

STXCSTT1 X'34' X'04' Input Address of structure process statistics record for activity
performed by CQS processes on this structure for all clients
since restart or the last successful structure checkpoint
(mapped by the CQSSSTT1 macro). For system checkpoint
end and structure checkpoint end only.

STXCSTT2 X'38' X'04' Input Address of CQS request statistics record for activity
performed for CQS requests on this structure for all clients
since restart or the last successful structure checkpoint
(mapped by the CQSSSTT2 macro). For system checkpoint
end and structure checkpoint end only.

STXCSTT3 X'3C' X'04' Input Address of data object statistics record for activity performed
on data objects in this structure for all clients since restart or
the last successful structure checkpoint (mapped by the
CQSSSTT3 macro). For system checkpoint end and structure
checkpoint end only.

STXCSTT4 X'40' X'04' Input Address of queue name statistics record for activity
performed on queue names in this structure for all clients
since restart or the last successful structure checkpoint
(mapped by the CQSSSTT4 macro). For system checkpoint
end and structure checkpoint end only.

STXCSTT5 X'44' X'04' Input Address of z/OS request statistics record for activity
performed by CQS processes on this structure for all clients
since restart or the last successful structure checkpoint
(mapped by the CQSSSTT5 macro). For system checkpoint
end and structure checkpoint end only.

STXCSTT6 X'48' X'04' Input Address of rebuild statistics record containing data from the
last rebuild in which this CQS acted as master (mapped by
the CQSSSTT6 macro). For system checkpoint end and
structure checkpoint end only.

STXCSTT7 X'4C' X'04' Input Address of structure checkpoint statistics record containing
data from the last three structure checkpoints in which this
CQS acted as master (mapped by the CQSSSTT7 macro). For
system checkpoint end and structure checkpoint end only.

CQS structure event exit routine rebuild parameter list

The following table describes the Structure Event user exit routine rebuild
parameter list.

Table 228. CQS structure event user-supplied exit routine parameter list: rebuild

Field name Offset Length
Field
usage Description

STXPVSN X'00' X'04' Input Parameter list version number (X'00000001').

STXEVENT X'04' X'04' Input Structure event code

3 Structure rebuild event (STXRBLD).

574 Exit Routines

Table 228. CQS structure event user-supplied exit routine parameter list: rebuild (continued)

Field name Offset Length
Field
usage Description

STXSCODE X'08' X'04' Input Structure eventSubcode

1 Structure rebuild begin (STXRBLB).

2 Structure rebuild (copy) end (STXCPYE).

3 Structure rebuild (copy) failure (STXCPYF).

4 Structure rebuild failure (STXRBLF).

5 Structure rebuild (recovery) end (STXRCOVE).

6 Structure rebuild (recovery) failure (STXRCOVF).

STXCQSID X'0C' X'08' Input CQS identifier.

STXCQSVN X'14' X'04' Input CQS version number.

STXSTRNM X'18' X'10' Input Structure Name.

STXRMCQS X'28' X'08' Input CQS identifier of the master CQS performing the rebuild
process.

STXRFLG1 X'30' X'01' Input Flag byte

X'80' This CQS is the master of the process. The CQS
identifier and master CQS identifier are the same
(STXR1MST).

N/A X'31' X'03' Input Reserved.

CQS structure event exit routine overflow parameter list

The following table describes the Structure Event user exit routine overflow
parameter list.

Table 229. CQS structure event user-supplied exit routine parameter list: overflow

Field name Offset Length
Field
usage Description

STXPVSN X'00' X'04' Input Parameter list version number (X'00000001').

STXEVENT X'04' X'04' Input Structure event code

4 Structure overflow event (STXOVFLW).

STXSCODE X'08' X'04' Input Structure event subcode.

1 Move queues to overflow. One or more queues were
selected as candidates to be moved to the overflow
structure and were approved by the Queue
Overflow user exit routine (STXTOOFL).

2 Move queues from overflow. One or more queues
moved from the overflow structure back to the
primary structure, because the queues were drained
on the overflow structure. New work for these
queues is placed on the primary structure
(STXFROFL).

STXCQSID X'0C' X'08' Input CQS identifier.

STXCQSVN X'14' X'04' Input CQS version number.

STXSTRNM X'18' X'10' Input Structure Name.

Chapter 8. BPE-based CQS user-supplied exit routines 575

Table 229. CQS structure event user-supplied exit routine parameter list: overflow (continued)

Field name Offset Length
Field
usage Description

STXOMCQS X'28' X'08' Input CQS identifier of the master CQS performing the overflow
process.

STXOFLG1 X'30' X'01' Input Flag byte

X'80' This CQS is the master of the process. The CQS
identifier and master CQS identifier are the same
(STX01MST).

X'40' The structure is no longer in overflow mode. This
applies only to subcode 2 (STX01END).

N/A X'31' X'03' Input Reserved.

STXOLSTN X'34' X'04' Input Number of Queue Names entries in the list.

STXOLSTE X'38' X'04' Input Length of each Queue Name list entry.

STXOLSTA X'3C' X'04' Input Address of Queue Name list. Each Queue Name list entry
contains the 16-byte name of a queue that is being moved to
or from the overflow structure.

CQS structure event exit routine status change parameter list

The following table describes the Structure Event user exit routine status change
parameter list.

Table 230. CQS structure event user-supplied exit routine parameter list: status change

Field name Offset Length
Field
usage Description

STXPVSN X'00' X'04' Input Parameter list version number (X'00000003').

STXEVENT X'04' X'04' Input Structure event code

5 Structure status change event (STXSCHNG).

STXSCODE X'08' X'04' Input Structure event subcode

1 Structure available again after a loss (STXAVAIL).

2 The structure failed (STXFAIL).

3 CQS lost its connection to the structure
(STXLCONN).

4 The log stream is becoming available, making the
structure available (STXAVLOG).

Important: This subcode applies only to queue
structures.

5 The log stream is becoming available, making the
structure available (STXFLOG).

Important: This subcode applies only to queue
structures.

6 The structure failed. It needs to be repopulated
because this structure does not support structure
recovery (STXREPOP).

Important: This subcode applies only to resource
structures.

576 Exit Routines

Table 230. CQS structure event user-supplied exit routine parameter list: status change (continued)

Field name Offset Length
Field
usage Description

STXCQSID X'0C' X'08' Input CQS identifier.

STXCQSVN X'14' X'04' Input CQS version number.

STXSTRNM X'18' X'10' Input Structure Name.

STXSTYPE X'28' X'01' Input Input structure type (X'01' queue structure, X'02' resource
structures).

STXRSTVN X'40' X'08' Input Input structure version.

Related reference:
“CQS structure statistics user-supplied exit routine” on page 559
Chapter 5, “BPE user-supplied exit routine interfaces and services,” on page 489

CQS statistics available through the BPE statistics user-supplied exit
You can use the BPE Statistics user exit to gather both BPE and CQS statistics.

When the BPE Statistics user exit is driven, field BPESTXP_COMPSTATS_PTR in
the BPE Statistics user-supplied exit parameter list, BPESTXP, contains the pointer
to the CQS statistics header.

CQS statistics header

The following table describes the contents of the CQS Statistics header. The
statistics header is mapped by CQSSSTTX.

Table 231. CQS statistics header data

Offset Length Field usage Description

X'00' X'08' Input Eye catcher "CQSSTTX"

X'08' X'04' Input Length of header

X'0C' X'04' Input Header version number (X'00000001')

X'10' X'04' Input Number of structures for which statistics are available

X'14' X'04' Input Number of statistics areas available for each structure

X'18' X'04' Input Length of all statistics areas for each structure

X'1C' X'04' Input Offset to statistics area for first structure (offset from CQSSSTTX)

X'20' X'04' Input CQSSSTAT offset within the statistics area for each structure

X'24' X'04' Input CQSSSTTI offset within the statistics area for each structure

X'28' X'04' Input CQSSSTT2 offset within the statistics area for each structure

X'2C' X'04' Input CQSSSTT3 offset within the statistics area for each structure

X'30' X'04' Input CQSSSTT4 offset within the statistics area for each structure

X'34' X'04' Input CQSSSTT5 offset within the statistics area for each structure

X'38' X'04' Input CQSSSTT6 offset within the statistics area for each structure

X'3C' X'04' Input CQSSSTT7 offset within the statistics area for each structure

X'40' X'04' Input Reserved

X'44' X'04' Input Reserved

X'48' X'04' Input Reserved

Chapter 8. BPE-based CQS user-supplied exit routines 577

Table 231. CQS statistics header data (continued)

Offset Length Field usage Description

X'4C' X'04' Input Reserved

Related reference:
Chapter 5, “BPE user-supplied exit routine interfaces and services,” on page 489

578 Exit Routines

Chapter 9. Common Service Layer exit routines

Common Service Layer exit routines customize and monitor the ODBM, OM, RM,
and SCI environments.

CSL ODBM user exit routines
You can write CSL Open Database Manager (ODBM) user exits to customize and
monitor the ODBM environment. No sample exits are provided.

ODBM uses BPE services to call and manage its user exits. BPE enables you to
externally specify the user exit modules to be called for a particular user exit type
by using EXITDEF= statements in the BPE user exit list PROCLIB members. BPE
also provides a common user exit runtime environment for all user exits. This
environment includes a standard user exit parameter list, callable services, static
and dynamic work areas for the exits, and a recovery environment for user exit
abends.
Related reference:
Chapter 5, “BPE user-supplied exit routine interfaces and services,” on page 489

CSL ODBM Initialization and Termination user exit
Because the CSL ODBM Initialization and Termination user exit routine can be
called during both Open Database Manager (ODBM) address space initialization
and termination and IMSplex initialization and normal termination, you can use
this exit routine, for example, to determine when these events occurred.

This exit is optional.

The CSL ODBM Initialization and Termination user exit is driven for the following
events:
v ODBM initialization, after ODBM has completed initialization
v IMSplex initialization, after each IMSplex has initialized
v ODBM normal termination, when ODBM is terminating
v IMSplex normal termination, when an IMSplex is terminating

The CSL ODBM Initialization and Termination user exit is defined as
TYPE=INITTERM in the EXITDEF statement in the BPE user exit list PROCLIB
member. You can specify one or more user exits of this type. When this exit is
invoked, all user exits of this type are run in the order specified by the EXITS=
keyword. Refer to the ODBM User Exit List PROCLIB Member in IMS Version 13
System Definition for more information on how to define user exit module names.

The CSL ODBM Initialization and Termination user exit is invoked in 31-bit
addressing mode (AMODE 31) and should be reentrant.

Contents of registers on entry

On entry, the CSL ODBM Initialization and Termination user exit routine must
save all registers using the provided save area. The registers contain the following:

© Copyright IBM Corp. 1974, 2017 579

Register Contents

1 Address of BPE user exit parameter list (mapped by macro BPEUXPL).

13 Address of 2 pre-chained save areas. The first save area may be used by the
exit to save registers on entry. The second save area is for use by routines
called from the user exit.

14 Return address.

15 Entry point of exit routine.

Parameter list

On entry to the CSL ODBM Initialization and Termination user exit routine,
register 1 points to a standard BPE user exit parameter list. Field UXPL_EXITPLP
in this list contains the addresses of the ODBM Initialization and Termination user
exit parameter list (mapped by macro CSLDITX). Field UXPL_COMPTYPEP in this
list points to the character string “ODBM” indicating an ODBM type address
space.

The following table lists the user exit parameter list for ODBM Initialization and
Termination user exit parameter list: ODBM initialization.

Table 232. Initialization and Termination user exit routine parameter list: ODBM initialization

Offset Length
Field
Usage Description

X'00' X'04' Input Parameter list version number (X'00000001').

X'04' X'04' Input Function code:

1 ODBM Initialization

The following table lists the user exit parameter list for ODBM Initialization and
Termination user exit parameter list: ODBM termination.

Table 233. Initialization and Termination user exit parameter list: ODBM termination

Offset Length Field usage Description

X'00' X'04' Input Parameter list version number (X'00000001').

X'04' X'04' Input Function code:

2 ODBM Normal Termination

The following table lists the user exit parameter list for the CSL ODBM
Initialization and Termination user exit parameter list: IMSplex initialization.

Table 234. Initialization and Termination user exit parameter list: IMSplex initialization

Offset Length Field usage Description

X'00' X'04' Input Parameter list version number (X'00000001').

X'04' X'04' Input Function code:

3 IMSplex Initialization

X'08' X'08' Input IMSplex name

The following table lists the user exit parameter list for ODBM Initialization and
Termination user exit parameter list: IMSplex termination.

580 Exit Routines

Table 235. Initialization and Termination user exit parameter list: IMSplex termination

Offset Length Field usage Description

X'00' X'04' Input Parameter list version number (X'00000001').

X'04' X'04' Input Function code:

4 IMSplex Termination

X'08' X'08' Input IMSplex name

Contents of registers on exit

Register Contents

15 Return code Meaning

0 Always zero

All other registers must be restored.

CSL ODBM Input user exit routine
The CSL ODBM Input user exit routine is called by ODBM CSLDMI API requests.
You can use this exit routine, for example, to alter segment search arguments
(SSAs), an I/O area, an application interface block (AIB), the PSB name, or the
alias name.

The CSL ODBM Input user exit routine is optional.

The CSL ODBM Input user exit routine is driven for the following events:
v All CSLDMI FUNC=ODBMCI requests
v FUNC=ODBMCLIENT APSB requests
v FUNC=ODBMCLIENT APSB preprocessing request

The CSL ODBM Input user exit routine is defined as TYPE=INPUT in the
EXITDEF statement in the BPE user exit list PROCLIB member. The user can
specify one or more user exits of this type. When this exit is invoked, all user exits
of this type are driven in the order specified by the EXITS keyword.

The CSL ODBM Input user exit routine is invoked in 31-bit addressing mode
(AMODE 31) and should be reentrant.

The CSL ODBM Input user exit can capture the user client ID from any transaction
that uses the CSLDMI FUNC=ODBMCI request. The client ID is passed to the exit
as a parameter of the ODBM APSB thread token. This information can be
associated with the transaction details from the relevant IMS type X'08' log record
to create a charge-back profile, an audit trail, or to drive other business processes.

Contents of registers on entry

On entry to the CSL ODBM Input user exit routine, register 1 points to a standard
BPE user exit parameter list. The registers contain the following:

Register Contents

1 Address of BPE User Exit Parameter List (mapped by macro BPEUXPL).

Chapter 9. Common Service Layer exit routines 581

|
|
|
|

|

Register Contents

13 Address of 2 pre-chained save areas. The first save area can be used by the
exit to save registers on entry. The second save area is for use by routines
called from the user exit.

14 Return address.

15 Entry point of exit routine.

Parameter list

Field UXPL_EXITPLP in this list contains the address of the CSL ODBM Input user
exit routine parameter list (mapped by macro CSLDINX). Field
UXPPL_COMPTYPEP in this list points to the character string “ODBM” indicating
an ODBM-type address space.

Note: When the function code is 2, all parameter list fields are zero except the
following:
v Client ID fields (if available)
v z/OS Resource Recovery Services parent UR token (if available)
v ODBM APSB call thread token
v User-defined request token (if available)
v PSB name
v Alias name

When the function code is 3, all parameter list fields are zero except the following:
v Client ID fields (if available)
v z/OS Resource Recovery Services parent UR token (if available)
v User-defined request token (if available)
v PSB name
v Alias name

Table 236. ODBM Input user exit parameter list

Offset Length Field usage Description

X'00' X'04' Input Parameter list version number
(X'00000002').

X'04' X'04' Input Function code:

1 ODBM CSLDMI FUNC =
ODBMCI request

2 ODBM CSLDMIC FUNC =
ODBMCLIENT APSB request

3 ODBM CSLDMIC FUNC =
ODBMCLIENT APSB
preprocessing request

X'08' X'04' Input Length of AIB

X'0C' X'04' Input Address of copy of AIB

582 Exit Routines

|

|

|

|

|

|

|

|

|
|

|
|
|

Table 236. ODBM Input user exit parameter list (continued)

Offset Length Field usage Description

X'10' X'04' Output AIB change indicator:

X'00'=AIB not modified

X'01'=AIB modified. Use modified
AIB.

X'14' X'04' Input Length of the client ID
(CLIENTIDLEN)

X'18' X'04 Input Address of the client ID
(CLIENTID)

X'1C' X'04' Input Function code specified on
DLIFUNC parameter

X'20' X'04' Input Length of IO area or 0

X'24' X'04' Input Address of copy of IO area or 0

X'28' X'04' Output IO area change indicator:

X'00'=IO area not modified

X'01'=IO area modified. Used
modified IO area.
Note: If the user exit modifies the
IO area, then you must set the AIB
field AIBOALEN to the length of
the IO area to be used on the
actual IMS DLI call. You must also
indicate to ODBM that the AIB has
been modified. On return to
ODBM from the exit, if the length
specified in field AIBOALEN is
greater than the length specified on
the IOAREALEN parameter for the
CSLDMI call, ODBM will reject the
CSLDMI call.

X'2C' X'04' Input Length of SSA1 or 0

X'30' X'04' Input Address of copy of SSA1 or 0

X'34' X'04' Output SSA1 change indicator:

X'00'=SSA1 not modified

X'01'=SSA1 modified. Use modified
SSA1.

X'38' X'04' Input Length of SSA2 or 0

X'3C' X'04' Input Address of copy of SSA2 or 0

X'40' X'04' Output SSA2 change indicator:

X'00'=SSA2 not modified

X'01'=SSA2 modified. Use modified
SSA2.

X'44' X'04' Input Length of SSA3 or 0

X'48' X'04' Input Address of copy of SSA3 or 0

Chapter 9. Common Service Layer exit routines 583

Table 236. ODBM Input user exit parameter list (continued)

Offset Length Field usage Description

X'4C' X'04' Output SSA3 Change indicator:

X'00'=SSA3 not modified

X'01'=SSA3 modified. Use modified
SSA3.

X'50' X'04' Input Length of SSA4 or 0

X'54' X'04' Input Address of copy of SSA4 or 0

X'58' X'04' Output SSA4 change indicator:

X'00'=SSA4 not modified

X'01'=SSA4 modified. Use modified
SSA4.

X'5C' X'04' Input Length of SSA5 or 0

X'60' X'04' Input Address of copy of SSA5 or 0

X'64' X'04' Output SSA5 change indicator:

X'00'=SSA5 not modified

X'01'=SSA5 modified. Use modified
SSA5.

X'68' X'04' Input Length of SSA6 or 0

X'6C' X'04' Input Address of copy of SSA6 or 0

X'70' X'04' Output SSA6 change indicator:

X'00'=SSA6 not modified

X'01'=SSA6 modified. Use modified
SSA6.

X'74' X'04' Input Length of SSA7 or 0

X'78' X'04' Input Address of copy of SSA7 or 0

X'7C' X'04' Output SSA7 change indicator:

X'00'=SSA7 not modified

X'01'=SSA7 modified. Use modified
SSA7.

X'80' X'04' Input Length of SSA8 or 0

X'84' X'04' Input Address of copy of SSA8 or 0

X'88' X'04' Output SSA8 change indicator:

X'00'=SSA8 not modified

X'01'=SSA8 modified. Use SSA8.

X'8C' X'04' Input Length of SSA9 or 0

X'90' X'04' Input Address of copy of SSA9 or 0

X'94' X'04' Output SSA9 change indicator:

X'00'=SSA9 not modified

X'01'=SSA9 modified. Use SSA9.

584 Exit Routines

Table 236. ODBM Input user exit parameter list (continued)

Offset Length Field usage Description

X'98' X'04' Input Length of SSA10 or 0

X'9C' X'04' Input Address of copy of SSA10 or 0

X'A0' X'04' Output SSA10 change indicator:

X'00'=SSA10 not modified

X'01'=SSA10 modified. Use SSA10.

X'A4' X'04' Input Length of SSA11 or 0

X'A8' X'04' Input Address of copy of SSA11 or 0

X'AC' X'04' Output SSA11 change indicator:

X'00'=not modified

X'01'=SSA11 modified. Use SSA11.

X'B0' X'04' Input Length of SSA12 or 0

X'B4' X'04' Input Address of copy of SSA12 or 0

X'B8' X'04' Output SSA12 change indicator:

X'00'=not modified

X'01'=SSA12 modified. Use SSA12.

X'BC' X'04' Input Length of SSA13 or 0

X'C0' X'04' Input Address of copy of SSA13 or 0

X'C4' X'04' Output SSA13 change indicator:

X'00'=not modified

X'01'=SSA13 modified. Use SSA13.

X'C8' X'04' Input Length of SSA14 or 0

X'CC' X'04' Input Address of copy of SSA14 or 0

X'D0' X'04' Output SSA14 change indicator:

X'00'=not modified

X'01'=SSA14 modified. Use SSA14.

X'D4' X'04' Input Length of SSA15 or 0

X'D8' X'04' Input Address of copy of SSA15 or 0

X'DC' X'04' Output SSA15 change indicator:

X'00'=not modified

X'01'=SSA15 modified. Use SSA15.

X'E0' X'10' Input RRS parent UR token or 0
(URTOKEN)

X'F0' X'10' Input Context Services private context
token or 0 (CTXTOKEN)

X'100' X'10' Input ODBM APSB call thread token or 0
(APSBTOKEN)

X'110' X'10' Input User-defined request token or 0
(RQSTTKN1)

Chapter 9. Common Service Layer exit routines 585

Table 236. ODBM Input user exit parameter list (continued)

Offset Length Field usage Description

X'120' X'08' Input PSB name (Maximum of 8
characters padded with blanks to
the right if fewer than 8 characters)

X'128' X'04' Output PSB name change indicator

X'00' = PSB name not modified

X'01' = PSB name modified

X'12C' X'04' Input Alias name (Maximum of 4
characters padded with blanks to
the right if fewer than 4 characters)

X'130' X'04' Output Alias name change indicator

X'00' = Alias name not modified

X'01' = Alias name modified

Contents of registers on exit

The following table shows the return code values that your user-supplied exit
routine can set in register 15 before returning control to IMS, and the meaning of
each value.

Table 237. Return code values that your user-supplied exit routine can set in register 15

Register Contents

15 Return code: Meaning:

0 Continue processing

4 The user exit has indicated
that the PSB schedule request
is to be rejected.

CSL ODBM Output user exit routine
The CSL ODBM Output user exit routine is called to view output, such as ODBA
call output, going from ODBM to the ODBM client in response to a CSLDMI
FUNC=ODBMCI request. The exit also has the ability to modify the output before
it is returned to the originator.

The CSL ODBM Output user exit routine is optional

The CSL ODBM Output user exit routine is driven for the following events:
v All CSLDMI FUNC=ODBMCI requests

The CSL ODBM Output user exit routine is defined as TYPE=OUTPUT in the
EXITDEF statement in the BPE user exit list PROCLIB member. The user may
specify one or more user exits of this type. When this exit is invoked, all user exits
of this type are driven in the order specified by the EXITS= keyword. Refer to the
ODBM User Exit List PROCLIB Member for more information on how to define
user exit module names.

The exit is invoked in 31-bit addressing mode (AMODE 31) and should be
reentrant.

586 Exit Routines

||||
|
|

||||

|

|

||||
|
|

||||

|

|

||

||

|||

||

||
|
|
|

Contents of registers on entry

On entry, the CSL ODBM Output user exit routine must save all registers using the
provided save area. The registers contain the following:

Register Contents

1 Address of the “Standard BPE user exit parameter list” on page 489. The
UXPL_EXITPLP field in this parameter list contains the address of the ODBM
Output user exit parameter list, which is mapped by macro CSLDOUX.

13 Address of 2 pre-chained save areas. The first save area may be used by the
exit to save registers on entry. The second save area is for use by routines
called from the user exit.

14 Return address.

15 Entry point of exit routine.

Parameter list

Table 238. ODBM Output user exit parameter list

Offset Length
Field
usage Description

X'00' X'04' Input Parameter list version number (X'00000001').

X'04' X'04' Input Function code:
X'1' ODBM CSLDMI FUNC=ODBMCI request

X'08' X'04' Input Length of AIB

X'0C' X'04' Input Address copy of AIB

X'10' X'04' Output AIB change indicator:

X'00 The AIB was not modified.

X'01 The AIB was modified. Use the modified AIB.

X'14' X'04' Input Length of PCB or 0

X'18' X'04' Input Address of copy of PCB (read only) or 0

X'1C' X'04' Input Function code specified on DLIFUNC parameter

X'20' X'04' Input Length of I/Oarea or 0

X'24' X'04' Input Address of copy of I/O area or 0

X'28' X'04' Output IO area change indicator:

X'00' The I/O area was not modified.

X'01' The I/O area was modified. Use the modified I/O
area.

Note: If the user exit modifies the I/O area and the ODBM
client that issued CSLDMI is sensitive to the AIB field
AIBOAUSE, the user exit must set field AIBOAUSE as
appropriate and indicate to ODBM that the AIB has been
modified.

X'2C' X'04' Input Length of SSA1 or 0

X'30' X'04' Input Address of copy of SSA1 or 0

X'34' X'04' Input Length of SSA2 or 0

X'38' X'04' Input Address of copy of SSA2 or 0

X'3C' X'04' Input Length of SSA3 or 0

Chapter 9. Common Service Layer exit routines 587

Table 238. ODBM Output user exit parameter list (continued)

Offset Length
Field
usage Description

X'40' X'04' Input Address of copy of SSA3 or 0

X'44' X'04' Input Length of SSA4 or 0

X'48' X'04' Input Address of copy of SSA4 or 0

X'4C' X'04' Input Length of SSA5 or 0

X'50' X'04' Input Address of copy of SSA5 or 0

X'54' X'04' Input Length of SSA6 or 0

X'58' X'04' Input Address of copy of SSA6 or 0

X'5C' X'04' Input Length of SSA7 or 0

X'60' X'04' Input Address of copy of SSA7 or 0

X'64' X'04' Input Length of SSA8 or 0

X'68' X'04' Input Address of copy of SSA8 or 0

X'6C' X'04' Input Length of SSA9 or 0

X'70' X'04' Input Address of copy of SSA9 or 0

X'74' X'04' Input Length of SSA10 or 0

X'78' X'04' Input Address of copy of SSA10 or 0

X'7C' X'04' Input Length of SSA11 or 0

X'80' X'04' Input Address of copy of SSA11 or 0

X'84' X'04' Input Length of SSA12 or 0

X'88' X'04' Input Address of copy of SSA12 or 0

X'8C' X'04' Input Length of SSA13 or 0

X'90' X'04' Input Address of copy of SSA13 or 0

X'94' X'04' Input Length of SSA14 or 0

X'98' X'04' Input Address of copy of SSA14 or 0

X'9C' X'04' Input Length of SSA15 or 0

X'A0' X'04' Input Address of copy of SSA15 or 0

X'A4' X'10' Input z/OS Resource Recovery Services parent UR token or 0
(URTOKEN)

X'B4' X'10' Input Context Services private context token or 0 (CTXTOKEN)

X'C4' X'10' Input ODBM APSB call thread token or 0 (APSBTOKEN)

X'D4' X'10' Input User defined request token or 0 (RQSTTKN1)

X'E4' X'04' Input Length of client ID (CLIENTIDLEN)

X'E8' X'04' Input Address of client ID (CLIENTID)

Contents of registers on exit

Register Contents

15 Return code: Meaning:

0 Always zero

All other registers must be restored.

588 Exit Routines

CSL ODBM Client Connect and Disconnect user exit routine
This exit is called when a client registers to or de-registers from ODBM.

The CSL ODBM Client Connect and Disconnect user exit routine is optional.

The CSL ODBM Client Connect and Disconnect user exit routine is called for the
following events:
v A client issues the CSLDMREG request to indicate that the client is ready to

communicate with ODBM.
v A client issues the CSLDMDRG request to indicate that the client is no longer

communicating with ODBM.

The CSL ODBM Client Connect and Disconnect user exit routine is defined as
TYPE=CLNTCONN in the EXITDEF statement in the BPE user exit list PROCLIB
member. You may specify one or more user exits of this type. When this exit is
invoked, all user exits of this type are driven in the order specified by the EXITS=
keyword.

The CSL ODBM Client Connect and Disconnect user exit routine is invoked in
31-bit addressing mode (AMODE 31) and should be reentrant.

Contents of registers on entry

On entry, the CSL ODBM Client Connect and Disconnect user exit routine must
save all registers using the provided SAVEAREA. The registers contain the
following:

Register Contents

1 Address of Standard BPE user exit parameter list (mapped by the BPEUXPL
macro).

13 Address of 2 pre-chained saveareas. The first savearea may be used by exit to
save registers on entry. The second savearea is for use by routines called
from the user exit.

14 Return address.

15 Entry point of exit routine.

Parameter list

On entry to the CSL ODBM Client Connect and Disconnect user exit routine,
register 1 points to a standard BPE user exit parameter list. Field UXPL_EXITPLP
in this list contains the address of the ODBM Client Connect and Disconnect user
exit parameter list (mapped by macro CSLDCLX). Field UXPL_COMPTYPEP in
this list points to the character string "ODBM" indicating an ODBM type address
space.

The following tables lists the user exit parameter list for the ODBM Client
Connection and ODBM Client Disconnection. Included are the offset value and
length, both in hexadecimal, how the field is used, and a brief description of the
field.

Table 239. ODBM client connection user exit parameter list: Client Connect

Offset Length Field usage Description

X'00' X'04' Input Parameter list version number (X'00000001').

Chapter 9. Common Service Layer exit routines 589

Table 239. ODBM client connection user exit parameter list: Client Connect (continued)

Offset Length Field usage Description

X'04' X'04' Input Function code:

X'1' ODBM registration.

X'08' X'08' Input Client (IMSplex member) name.

X'10' X'02' Input IMSplex member type (mapped by CSLSTPIX).

X'12' X'02' None Reserved.

X'14' X'08' Input IMSplex member subtype.

X'1C' X'04' None Reserved.

Table 240. ODBM client connection user exit parameter list: Client Disconnect

Offset Length Field usage Description

X'00' X'04' Input Parameter list version number (X'00000001').

X'04' X'04' Input Function code:

X'2' ODBM deregistration.

X'08' X'08' Input Client (IMSplex member) name.

X'10' X'02' Input IMSplex member type (mapped by CSLSTPIX).

X'12' X'01' Input Flag byte indicates whether the client disconnect is normal or
abnormal:

X'80' Client disconnect is abnormal.

X'13' X'01' None Reserved.

X'14' X'08' Input IMSplex member subtype.

X'1C' X'04' None Reserved.

Contents of registers on exit

Register Contents

15 Return code Meaning

0 Always zero

All other registers must be restored.

CSL ODBM statistics available through BPE statistics user
exit

The BPE Statistics user exit can be used to gather both BPE and ODBM statistics.

This topic describes ODBM statistics that are:
v available to the BPE Statistics user exit when driven from an ODBM address

space
v returned on a CSLZQRY FUNC=STATS request directed to the ODBM address space

When the user exit is driven, field BPESTXP_COMPSTATS_PTR in the BPE
Statistics user exit parameter list, BPESTXP, contains the pointer to the ODBM
statistics header. When the CSLZQRY FUNC=STATS request is made, the OUTPUT=

590 Exit Routines

buffer points to the output area mapped by CSLZQRYO. The output area field
ZQYO_STXOFF contains the offset to the ODBM statistics header. The header is
mapped by CSLDSTX.

Subsections:
v “CSL ODBM statistics header”
v “CSL ODBM statistics record CSLDST1”
v “CSL ODBM statistics record CSLDST2” on page 592

CSL ODBM statistics header

The following table lists the CSL ODBM statistics header. Included are the offset
value and length (both in hexadecimal), how the field is used, and a brief
description of the field. The header is mapped by CSLDSTX.

Table 241. ODBM statistics header

Field name Offset Length Field usage Description

DSTX_ID X'00' X'08' Input Eye catcher “CSLDSTX”.

DSTX_LEN X'08' X'04' Input Length of header.

DSTX_PVER X'0C' X'04' Input Header version number (0000001).

DSTX_PLEXCNT X'10' X'04' Input Number of IMSplexes for which statistics are
available.

DSTX_STATCNT X'14' X'04' Input Number of statistics areas available for each
IMSplex.

DSTX_STATLEN X'18' X'04' Input Length of all statistics areas for each IMSplex.

DSTX_STATOFF X'1C' X'04' Input Offset to the statistics area for the first IMSplex
(offset from CSLDSTX).

DSTX_DST1OFF X'20' X'04' Input CSLDST1 offset within the statistics area for each
IMSplex.

DSTX_DST2OFF X'24' X'04' Input CSLDST2 offset within the statistics area for each
IMSplex.

X'28' X'04' None Reserved.

X'2C' X'04' None Reserved.

CSL ODBM statistics record CSLDST1

CSLDST1 contains statistics that are related to specific requests processed by
ODBM. The following table lists the ODBM statistics record CSLDST1. Included
are the offset value and length (both in hexadecimal), how the field is used, and a
brief description of the field.

Table 242. ODBM statistics record CSLDST1

Field name Offset Length Field usage Description

DST1_ID X'00' X'08' Input Eye catcher “CSLDST1”.

DST1_LEN X'08' X'04' Input Control block length.

DST1_PVER X'0C' X'04' Input Version number (0000001).

DST1_STATS X'10' X'04' Input Start of statistics.

DST1_DMREG X'10' X'04' Input CSLDMREG requests.

DST1_DMDRG X'14' X'04' Input CSLDMDRG requests.

Chapter 9. Common Service Layer exit routines 591

Table 242. ODBM statistics record CSLDST1 (continued)

Field name Offset Length Field usage Description

X'18' X'04' None Reserved.

X'1C' X'04' None Reserved.

DST1_DMDRGIN X'20' X'04' Input Internal Dereg (normal).

DST1_DMDRGIA X'24' X'04' Input Internal Dereg (abnormal).

DST1_DMI X'28' X'04' Input CSLDMI ODBMCI requests.

DST1_DMICCLNT X'2C' X'04' Input CSLDMIC ODBMCLIENT requests.

DST1_DMISUSI X'30' X'04' Input CSLDMI READYSYNCPT requests.

DST1_DMICMIT X'34' X'04' Input CSLDMI COMMIT requests.

DST1_DMIBACK X'38' X'04' Input CSLDMI BACKOUT requests.

X'3C' X'04' None Reserved for CSLDMI.

X'40' X'04' None Reserved.

X'44' X'04' None Reserved.

X'48' X'04' None Reserved.

X'4C' X'04' None Reserved.

X'50' X'04' None Reserved.

X'54' X'04' None Reserved.

X'58' X'04' None Reserved.

DST1_ZQRY X'5C' X'04' Input CSLZQRY requests.

DST1_ZSHUT X'60' X'04' Input CSLZSHUT requests.

X'64' X'04' None Reserved.

X'68' X'04' None Reserved.

X'6C' X'04' None Reserved.

X'74' X'04' None Reserved.

X'78' X'04' None Reserved.

X'7C' X'04' None Reserved.

CSL ODBM statistics record CSLDST2

CSLDST2 contains statistics that are related to specific requests processed by
ODBM. The following table lists the ODBM statistics record CSLDST2. Included
are the offset value and length (both in hexadecimal), how the field is used, and a
brief description of the field.

Table 243. ODBM statistics record CSLDST2

Field name Offset Length Field usage Description

DST2_ID X'00' X'08' Input Eye catcher “CSLDST2”

DST2_LEN X'08' X'04' Input Length of valid data.

DST2_PVER X'0C' X'04' Input Version number (0000001).

DST2_STATS X'10' X'04' Input Start of statistics.

DST2_PLEXNAME X'10' X'08' Input IMSplex name.

DST2_CLIENTS X'18' X'04' Input Number of registered clients.

X'1C' X'04' None Reserved.

592 Exit Routines

Table 243. ODBM statistics record CSLDST2 (continued)

Field name Offset Length Field usage Description

X'20' X'04' None Reserved.

X'24' X'04' None Reserved.

X'28' X'04' None Reserved.

X'2C' X'04' None Reserved.

CSL OM user exit routines
You can write OM user exits to customize and monitor the OM environment. No
sample exits are provided.

OM uses BPE services to call and manage its user exits. BPE enables you to
externally specify the user exit modules to be called for a particular user exit type
by using EXITDEF= statements in the BPE user exit list PROCLIB members. BPE
also provides a common user exit runtime environment for all user exits. This
environment includes a standard user exit parameter list, callable services, static
and dynamic work areas for the exits, and a recovery environment for user exit
abends.
Related reference:
Chapter 5, “BPE user-supplied exit routine interfaces and services,” on page 489

CSL OM client connection user exit
This exit is called when a client registers or deregisters commands with OM. This
exit is optional.

This exit is called for the following event:
v A client issues the CSLOMRDY request to indicate that the client is ready to

accept commands for processing.

This exit is defined as TYPE=CLNTCONN in the EXITDEF statement in the BPE
user exit list PROCLIB member. You can specify one or more user exits of this
type. When this exit is invoked, all user exits of this type are driven in the order
specified by the EXITS= keyword. For more information on how to define user exit
module names, see the OM BPE user exit list PROCLIB member topic in IMS
Version 13 System Definition.

The exit is invoked in 31-bit addressing mode (AMODE 31) and should be
reentrant.

Contents of registers on entry

Register Contents

1 Address of the “Standard BPE user exit parameter list” on page 489. The
UXPL_EXITPLP field in this parameter list contains the address of the OM
Client Connection user exit parameter list, which is mapped by macro
CSLOCLX.

13 Address of the first of 2 prechained 72-byte save areas. These save areas are
chained according to standard z/OS save area linkage convention. The first
save area can be used by the exit to save registers on entry. The second save
area is for use by routines called from the user exit.

Chapter 9. Common Service Layer exit routines 593

Register Contents

14 Return address.

15 Entry point of exit routine.

OM client connection user exit parameter list: Client Connect

The following table lists the user exit parameter list for OM Client Connection.
Included are the field name, the offset value and length, both in hexadecimal, how
the field is used, and a brief description of the field.

Table 244. OM client connection user exit parameter list: Client Connect

Field name Offset Length Field usage Description

OCLX_PVER X'00' X'04' Input Parameter list version number (X'00000001').

OCLX_FUNC X'04' X'04' Input Function code::

3 Client ready to process commands.

OCLX_MBRNAME X'08' X'08' Input Client (IMSplex member) name.

OCLX_MBRTYPE X'10' X'02' Input IMSplex member type (mapped by CSLSTPIX).

X'12' X'02' None Reserved.

OCLX_MBRSTYPE X'14' X'08' Input IMSplex member subtype.

X'1C' X'04' None Reserved.

OM client connection user exit parameter list: Client Disconnect

The following table lists the user exit parameter list for OM Client Disconnect.
Included are the offset value and length, both in hexadecimal, how the field is
used, and a brief description of the field.

Table 245. OM client connection user exit parameter list: Client Disconnect

Offset Length Field usage Description

X'00' X'04' Input Parameter list version number (X'00000001').

X'04' X'04' Input Function code:

2 Client no longer processing commands.

X'08' X'08' Input Client (IMSplex member) name.

X'10' X'02' Input IMSplex member type (mapped by CSLSTPIX).

X'12' X'01' Input Flag byte indicates whether the client disconnect is normal or
abnormal.

X'80' Client disconnect is abnormal.

X'13' X'01' None Reserved.

X'14' X'08' Input IMSplex member subtype.

X'1C' X'04' None Reserved.

594 Exit Routines

Contents of registers on exit

Register Contents

15 Return code:

0 The return code must be zero.

All other registers must be restored.

CSL OM Initialization/termination user exit
This exit enables you to initialize or terminate work areas or control blocks specific
to a user-written SPOC application. This exit is not called during OM address
space abnormal termination or IMSplex abnormal termination. This exit is optional.

This exit is called for the following events:
v After OM has completed initialization
v After each IMSplex has initialized
v When OM is normally terminating
v When an IMSplex is normally terminating

This exit is defined as TYPE=INITTERM in the EXITDEF statement in the BPE user
exit list PROCLIB member. You can specify one or more user exits of this type.
When this exit is invoked, all user exits of this type are driven in the order
specified by the EXITS= keyword. For more information on how to define user exit
module names, see the OM BPE user exit list PROCLIB member topic in IMS
Version 13 System Definition.

Subsections:
v “OM init/term user exit parameter list: OM Initialization” on page 596
v “OM init/term user exit parameter list: OM Termination” on page 596
v “OM init/term user exit parameter list: IMSplex Initialization” on page 596
v “OM init/term user exit parameter list: IMSplex Termination” on page 596

Contents of registers on entry

Register Contents

1 Address of the “Standard BPE user exit parameter list” on page 489. The
UXPL_EXITPLP field in this parameter list contains the address of the OM
Initialization/termination exit routine parameter list, which is mapped by
macro CSLOITX.

13 Address of the first of 2 pre-chained 72-byte save areas. These save areas are
chained according to standard z/OS save area linkage convention. The first
save area can be used by the exit to save registers on entry. The second save
area is for use by routines called from the user exit.

14 Return address.

15 Entry point of exit routine.

This exit is invoked in amode 31 and should be coded as reentrant.

Chapter 9. Common Service Layer exit routines 595

OM init/term user exit parameter list: OM Initialization

The following table lists the user exit parameter list for OM Initialization. Included
are the field name, the offset value and length (both in hexadecimal), how the field
is used, and a brief description of the field.

Table 246. OM init/term user exit parameter list: OM Initialization

Field name Offset Length Field usage Description

OITX_PVER X'00' X'04' Input Parameter list version number (X'00000001').

OITX_FINIT X'04' X'04' Input Function code:

1 OM initialization.

OM init/term user exit parameter list: OM Termination

The following table lists the user exit parameter list for OM Termination. Included
are the field name, the offset value and length (both in hexadecimal), how the field
is used, and a brief description of the field.

Table 247. OM init/term user exit parameter list: OM Termination

Field name Offset Length Field usage Description

OITX_PVER X'00' X'04' Input Parameter list version number (X'00000001').

OITX_FTERM X'04' X'04' Input Function code:

1 OM normal termination.

OM init/term user exit parameter list: IMSplex Initialization

The following table lists the user exit parameter list for IMSplex initialization.
Included are the offset value and length (both in hexadecimal), how the field is
used, and a brief description of the field.

Table 248. OM init/term user exit parameter list: IMSplex Initialization

Field name Offset Length Field usage Description

OITX_PVER X'00' X'04' Input Parameter list version number (X'00000001').

OITX_FPLXINIT X'04' X'04' Input Function code:

3 IMSplex normal termination.

OITX_IPLEXNM X'08' X'08' Input IMSplex name.

OM init/term user exit parameter list: IMSplex Termination

The following table lists the user exit parameter list for IMSplex termination.
Included are the field name, the offset value and length, both in hexadecimal, how
the field is used, and a brief description of the field.

Table 249. OM init/term user exit parameter list: IMSplex Termination

Field name Offset Length Field usage Description

OITX_PVER X'00' X'04' Input Parameter list version number (X'00000001').

OITX_FPLXTERM X'04' X'04' Input Function code:

4 IMSplex normal termination.

596 Exit Routines

Table 249. OM init/term user exit parameter list: IMSplex Termination (continued)

Field name Offset Length Field usage Description

OITX_TPLEXNM X'08' X'08' Input IMSplex name.

Contents of registers on exit

Register Contents

15 Return code:

0 The return code must be zero.

All other registers must be restored.

CSL OM input user exit
This exit is called to allow a user to view and manipulate command input from an
OM automation client. This exit is optional.

This exit is called for the following event:
v OM receives a command. This exit is called before OM processes the command,

which allows the command to be modified or rejected.

This exit is defined as TYPE=INPUT in the EXITDEF statement in the BPE user
exit list PROCLIB member. You can specify one or more user exits of this type.
When this exit is invoked, all user exits of this type are driven in the order
specified by the EXITS= keyword. For more information on how to define user exit
module names, see the OM BPE user exit list PROCLIB Member topic in IMS
Version 13 System Definition.

Subsection
v “OM input user exit parameter list: Command Input”

Contents of registers on entry

Register Contents

1 Address of the “Standard BPE user exit parameter list” on page 489. The
UXPL_EXITPLP field in this list contains the address of the OM Input user
exit routine parameter list, which is mapped by macro CSLOINX.

13 Address of the first of 2 pre-chained 72-byte save areas. These save areas are
chained according to standard z/OS save area linkage convention. The first
save area can be used by the exit to save registers on entry. The second save
area is for use by routines called from the user exit.

14 Return address.

15 Entry point of exit routine.

This exit is invoked amode 31 and should be coded as reentrant.

OM input user exit parameter list: Command Input

The following table lists the user exit parameter list for command input. Included
are the field name, the offset value and length (both in hexadecimal), how the field
is used, and a brief description of the field.

Chapter 9. Common Service Layer exit routines 597

Table 250. OM input user exit parameter list: Command Input

Field name Offset Length Field usage Description

OINX_PVER X'00' X'04' Input Parameter list version number (X'00000001').

OINX_FUNC X'04' X'04' Input Function code

1 Command input.

OINX_MBRNAME X'08' X'08' Input Client (IMSplex member) where command
originated.

OINX_MBRTYPE X'10' X'02' Input IMSplex member type where command
originated.

OINX_CMDMOD X'12' X'01' Output Command input modified field. This field
indicates that the exit modified the command
input string and that the updated command
input should be processed.

4 Command input was modified by the
exit. This is the only valid value. All
other values are ignored.

X'13' X'01' None Reserved.

OINX_MBRSTYPE X'14' X'08' Input IMSplex member subtype where command
originated.

OINX_USERID X'1C' X'08' Input user ID of application where the command
originated.

OINX_INPUTLEN X'24' X'04' Input Length of the command input string. This length
does not include 80 bytes for command
expansion.

OINX_INPUTPTR X'28' X'04' Input Address of the command input string. The
command input string is followed by 80 blanks
that can be used by the exit to expand the
command input.

OINX_INMODLEN X'2C' X'04' Output New length of command input string after being
modified by the exit. The exit must set this field
if it modifies the command input string. If the
exit indicates that the command input string was
modified and this field does not contain a value,
the command will be rejected.

OINX_ROUTLLEN X'30' X'04' Input Length of the ROUTE list. If this field is zero,
there is no ROUTE list; the default option of
routing to all clients was selected.

OINX_ROUTLPTR X'34' X'04' Input Address of the ROUTE list. The ROUTE list
cannot be modified by this exit. The ROUTE list
is a list of client names separated by commas.
The ROUTE list can contain a single asterisk as a
client name, which routes to all clients.

X'38' X'10' None Reserved.

598 Exit Routines

Contents of registers on exit

Register Contents

15 Return code:

0 Continue command processing.

4 Reject the command. This return code is ignored unless one of the
following conditions is met:

v This exit routine is the last routine defined in the exit list for the
CSL OM Input exit.

v This exit routine sets the byte addressed in the
UXPL_CALLNEXTP field of the “Standard BPE user exit
parameter list” on page 489 to the value UXPL_CALLNEXTNO.

All other registers must be restored.

CSL OM output user exit
This exit is called to allow a user to view and manipulate output from OM. This
exit is optional.

This exit is called for the following events:
v A command has been processed and is ready to be delivered to the originator of

the command. The exit can modify the command response text before the
response is delivered.

v When an unsolicited message is received from a client (for example, an IMS
control region) using the CSLOMOUT API.

This exit is defined as TYPE=OUTPUT in the EXITDEF statement in the BPE user
exit list PROCLIB member. You can specify one or more user exits of this type.
When this exit is invoked, all user exits of this type are driven in the order
specified by the EXITS= keyword. For more information on how to define user exit
module names, see the OM BPE user exit list PROCLIB member topic in IMS
Version 13 System Definition.

This exit is invoked amode 31 and should be reentrant.

Subsections:
v “OM output user exit parameter list: Command Response” on page 600
v “OM output user exit parameter list: Undeliverable Output” on page 601
v “OM output user exit parameter list: Unsolicited Output” on page 602

Contents of registers on entry

Register Contents

1 Address of the “Standard BPE user exit parameter list” on page 489. The
UXPL_EXITPLP field in this parameter list contains the address of the OM
Output user exit routine parameter list, which is mapped by macro
CSLOOUX.

13 Address of the first of 2 pre-chained 72-byte save areas. These save areas are
chained according to standard z/OS save area linkage convention. The first
save area can be used by the exit to save registers on entry. The second save
area is for use by routines called from the user exit.

Chapter 9. Common Service Layer exit routines 599

Register Contents

14 Return address.

15 Entry point of exit routine.

OM output user exit parameter list: Command Response

The following table lists the user exit parameter list for command response.
Included are the field name, the offset value and length (both in hexadecimal),
how the field is used, and a brief description of the field.

Table 251. OM output user exit parameter list: command response

Field name Offset Length Field usage Description

OOUX_PVER X'00' X'04' Input Parameter list version number (X'00000001').

OOUX_FUNC X'04' X'04' Input Function code

2 Command response.

OOUX_MBRNAME X'08' X'08' Input Client (IMSplex member) name that sent the
command to OM.

OOUX_MBRTYPE X'10' X'02' Input IMSplex member type that sent the command to
OM.

OOUX_OUTMOD X'12' X'01' Output Output modified indicator. This field indicates
that the command output has been modified.
The field should be set to 4 to have OM process
the modified command response; otherwise, set
the field to 0.

v 1 Output was not modified.

v 4 Output modified by the exit.

X'13' X'01' None Reserved.

OOUX_MBRSTYPE X'14' X'08' Input IMSplex member subtype that sent the command
to OM.

OOUX_INPUTLEN X'1C' X'04' Input Length of the command input, if available.

OOUX_INPUTPTR X'20' X'04' Input Address of the command input, if available.

OOUX_OUTPTLEN X'24' X'04' Input Length of the command response.

OOUX_OUTPTPTR X'28' X'04' Input Address of the command response. Command
response output is in XML format wrapped with
the tags <imsout>...</imsout>.

OOUX_OUTMDLEN X'2C' X'04' Output Modified command output length. The exit must
set this field if it modifies the command
response output. This field must not be greater
than the input command response length passed
to this exit. If the exit does not set this field
appropriately and does modify the command
response output, the modified command
response output will not be delivered to the
client. Instead, the original command response
output will be sent to the client.

OOUX_RQTKN1 X'30' X'10' Input Request token 1.

OOUX_RQTKN2 X'40' X'10' Input Request token 2.

OOUX_RETCODE X'50' X'04' Input Return code being sent to the client.

OOUX_RSNCODE X'54' X'04' Input Reason code being sent to the client

600 Exit Routines

Table 251. OM output user exit parameter list: command response (continued)

Field name Offset Length Field usage Description

X'58' X'10' None Reserved.

OM output user exit parameter list: Undeliverable Output

The following table lists the user exit parameter list for undeliverable output.
Included are the field name, the offset value and length (both in hexadecimal),
how the field is used, and a brief description of the field.

Table 252. OM output user exit parameter list--undeliverable output

Field name Offset Length Field usage Description

OOUX_PVER X'00' X'04' Input Parameter list version number (X'00000001').

OOUX_FUNC X'04' X'04' Input Function code

3 Undeliverable command response.

OOUX_MBRNAME X'08' X'08' Input Client (IMSplex member) name sending the
command response.

OOUX_MBRTYPE X'10' X'02' Input IMSplex member type that sending the
command response.

OOUX_OUTMOD X'12' X'01' Output Output modified field. This field indicates that
the exit modified the command response string
and that the updated command response should
be processed.

v 0 Output was not modified.

v 4 Output modified by the exit.

Undeliverable output does not get passed to any
client.

X'13' X'01' None Reserved.

OOUX_MBRSTYPE X'14' X'08' Input IMSplex member subtype sending the command
response.

OOUX_INPUTLEN X'1c' X'04' Input Length of the command input (if available)

OOUX_INPUTPTR X'20' X'04' Input Address of the command input (if available)

OOUX_OUTPTLEN X'24' X'04' Input Length of the command response or 0 if
command response not available.

OOUX_OUTPTPTR X'28' X'04' Input Address of the command response if available. If
the client failed to process the command, the
client has returned only return/reason codes and
no command response. In this case, the
command response length field and this field
will be zero.

OOUX_OUTMDLEN X'2c' X'04' Output Modified command output length. The exit must
set this field if it modifies the command
response output. This field must not be greater
than the input command response length passed
to this exit. If the exit does not set this field
appropriately and does modify the command
response output, the modified command
response output will not be delivered to the
client. Instead, the original command response
output will be sent to the client.

Chapter 9. Common Service Layer exit routines 601

Table 252. OM output user exit parameter list--undeliverable output (continued)

Field name Offset Length Field usage Description

OOUX_RQTKN1 X'30' X'10' Input Request token 1.

OOUX_RQTKN2 X'40' X'10' Input Request token 2.

OOUX_RETCODE X'50' X'04' Input Return code from client.

OOUX_RSNCODE X'54' X'04' Input Reason code from client.

X'58' X'10' None Reserved.

Contents of registers on exit for command response and
undeliverable output

Register Contents

15 Return code:

0 The return code must be zero.

All other registers must be restored.

OM output user exit parameter list: Unsolicited Output

The following table lists the user exit parameter list for unsolicited output.
Included are the field name, the offset value and length (both in hexadecimal),
how the field is used, and a brief description of the field.

Table 253. OM output user exit parameter list: unsolicited output

Field name Offset Length Field usage Description

OOUX_PVER X'00' X'04' Input Parameter list version number (X'00000001').

OOUX_FUNC X'04' X'04' Input Function code

4 Unsolicited output message.

OOUX_MBRNAME X'08' X'08' Input Client (IMSplex member) name sending the
message.

OOUX_MBRTYPE X'10' X'02' Input IMSplex member type sending the message.

OOUX_OUTMOD X'12' X'01' Output Output modified field. This field indicates that
the exit modified the output message string and
that the updated output should be passed to the
client.

v 0 Output was not modified.

v 4 Output modified by the exit.

Unsolicited output does not get passed to any
client.

X'13' X'01' None Reserved.

OOUX_MBRSTYPE X'14' X'08' Input IMSplex member subtype sending the message.

X'1C' X'04' None Reserved.

X'20' X'04' None Reserved.

OOUX_OUTPUTLEN X'24' X'04' Input Length of the message.

OOUX_OUTPUTPTR X'28' X'04' Input Address of the message.

602 Exit Routines

Table 253. OM output user exit parameter list: unsolicited output (continued)

Field name Offset Length Field usage Description

OOUX_OUTMDLEN X'2C' X'04' Output Modified command output length. The exit must
set this field if it modifies the command
response output. This field must not be greater
than the input command response length passed
to this exit. If the exit does not set this field
appropriately and does modify the command
response output, the modified command
response output will not be delivered to the
client. Instead, the original command response
output will be sent to the client.

OOUX_RQTKN1 X'30' X'10' Input Request token 1.

OOUX_RQTKN2 X'40' X'10' Input Request token 2.

X'50' X'18' None Reserved.

Contents of registers on exit for unsolicited output

Register Contents

15 Return code Meaning

00 For function code X'00000004' (unsolicited output message),
log the message if the exit modified it, and send the message
to all clients that have subscribed.

04 For function code X'00000004' (unsolicited output message), do
not log the message, and do not send the message to any
clients. This return code is ignored unless:

v The OM Output user exit routine is the last routine that is
defined in the exit list for the output exit.

v The OM Output user exit routine sets the byte that is
pointed to by UXPL_CALLNEXTP to the value
UXPL_CALLNEXTNO.

08 For function code X'00000004' (unsolicited output message),
send the message to all clients that subscribed to receive
messages, but do not log the message. This return code is
ignored unless:

v The OM Output user exit routine is the last routine that is
defined in the exit list for the output exit.

v The OM Output user exit routine sets the byte that is
pointed to by UXPL_CALLNEXTP to the value
UXPL_CALLNEXTNO.

12 For function code X'00000004' (unsolicited output message),
log the message if the exit modified it, but do not send the
message to any clients. This return code is ignored unless:

v The OM Output user exit routine is the last routine that is
defined in the exit list for the output exit.

v The OM Output user exit routine sets the byte that is
pointed to by UXPL_CALLNEXTP to the value
UXPL_CALLNEXTNO.

All other registers must be restored.

Chapter 9. Common Service Layer exit routines 603

CSL OM Security user exit
Use the OM Security user exit to perform security checking during command
processing. This exit is given control after the OM Input exit. This exit is optional.

This exit is invoked when the CMDSEC= parameter on the OM procedure is
specified as A or E:

A Both this exit and RACF (or equivalent) are used for OM command
security

E Only this exit is called for OM command security

This exit is defined as TYPE=SECURITY in the EXITDEF statement in the BPE user
exit list PROCLIB member. You can specify one or more user exits of this type.
When this exit is invoked, all user exits of this type are driven in the order
specified by the EXITS= keyword. For more information on how to define user exit
module names, see the OM BPE user exit list PROCLIB member topic in IMS
Version 13 System Definition.

This exit is invoked amode 31 and should be reentrant.

Contents of registers on entry

Register Contents

1 Address of the “Standard BPE user exit parameter list” on page 489. The
UXPL_EXITPLP field in this parameter list contains the address of the OM
Security user exit routine parameter list, which is mapped by macro
CSLOSCX.

13 Address of the first of 2 prechained 72-byte save areas. These save areas are
chained according to standard z/OS save area linkage convention. The first
save area can be used by the exit to save registers on entry. The second save
area is for use by routines called from the user exit.

14 Return address.

15 Entry point of exit routine.

OM security user exit parameter list

The following table lists the user exit parameter list for the security user exit.
Included are the field name, the offset value and length, both in hexadecimal, how
the field is used, and a brief description of the field.

Table 254. OM security user exit parameter list

Field name Offset Length Field usage Description

OSCX_PVER X'00' X'04' Input Parameter list version number (X'00000002').

OSCX_FUNC X'04' X'04' Input Function code

1 Perform user command security checking.

OSCX_MBRNAME X'08' X'08' Input Client (IMSplex member) name that sent the
command to OM.

OSCX_MBRTYPE X'10' X'02' Input IMSplex member type that sent the command to
OM.

X'12' X'02' None Reserved.

604 Exit Routines

Table 254. OM security user exit parameter list (continued)

Field name Offset Length Field usage Description

OSCX_MBRSTYPE X'14' X'08' Input IMSplex member subtype that sent the command
to OM.

OSCX_USERID X'1C' X'08' Input User ID of application where the command
originated.

OSCX_VERB X'24' X'10' Input Command verb in short form.

OSCX_KEYWORD X'34' X'10' Input Primary keyword (resource type).

OSCX_INPUTLEN X'44' X'04' Input Length of the command input string.

OSCX_INPUTPTR X'48' X'04' Input Address of the command input string.

OSCX_SECCODE X'4C' X'04' Input Decoded security code. Only valid when the
CMDSEC= parameter on the OM procedure is
specified as A.
v X'00000000': RACF security permits command.
v X'00000004': RACF security was not requested.
v X'00000008': RACF security requested, but

RACF is not available.
v X'0000000C': Resource name or class name not

defined to RACF.
v X'00000010': Command not protected by

RACF.
v X'00000014': User ID is not authorized for the

command.

OSCX_SAFCODE X'50' X'04' Input Security Authorization Facility (SAF) return
code. This is only valid when CMDSEC=A is
specified.

OSCX_RETCODE X'54' X'04' Input RACF return code. This is only valid when
CMDSEC=A is specified.

OSCX_RSNCODE X'58' X'04' Input RACF reason code. This is only valid when
CMDSEC=A is specified.

OSCX_USERDATA X'5C' X'20' Output User data. This data is encapsulated by the
<userdata>tags in the <cmdsecerr> section of the
XML output, if this exit has rejected the
command. This user data can contain
alphanumeric characters (A-Z, 0-9), or printable
characters (not case sensitive), with the exception
of the characters &, <, and >. OM will convert
any invalid data placed in this field to periods (.)
before sending the XML output to the client.

OSCX_ROUTLEN X'7C' X'04' Input The length of the ROUTE list. If this value is
zero (0), no route list exists. The command was
routed to all command processing clients that
were Ready or Registered.

OSCX_ROUTLPTR X'80' X'04' Input The address of the ROUTE list. You cannot use
this exit to modify the ROUTE list.

X'84' X'08' None Reserved.

Chapter 9. Common Service Layer exit routines 605

|

|

Contents of registers on exit

Register Contents

15 Return code:

0 Accept the command for processing

4 Reject the command due to an unauthorized user ID. This return
code is ignored unless the exit routine meets one of the following
criteria:

v The exit routine is the last routine defined in the exit list for the
security exit.

v The exit routine sets the byte addressed by the
UXPL_CALLNEXTP field of the “Standard BPE user exit
parameter list” on page 489 to the value UXPL_CALLNEXTNO.

All other registers must be restored.

CSL OM statistics available through BPE statistics user exit
The BPE Statistics user exit can be used to gather both BPE and OM statistics.

This topic describes OM statistics that are:
v available to the BPE Statistics user exit when driven from an OM address space
v returned on a CSLZQRY FUNC=STATS request directed to the OM address space

When the user exit is driven, field BPESTXP_COMPSTATS_PTR in the BPE
Statistics user exit parameter list, BPESTXP, contains the pointer to the OM
statistics header. When the CSLZQRY FUNC=STATS request is made, the OUTPUT=
buffer points to the output area mapped by CSLZQRYO. The output area field
ZQYO_STXOFF contains the offset to the OM statistics header. The header is
mapped by CSLOSTX.

Subsections:
v “CSL OM statistics header”
v “CSL OM statistics record CSLOST1” on page 607
v “CSL OM statistics record CSLOST2” on page 608

CSL OM statistics header

The following table lists the OM statistics header. Included are the offset value and
length (both in hexadecimal), how the field is used, and a brief description of the
field.

Table 255. OM statistics header

Field name Offset Length Field usage Description

OSTX_ID X'00' X'08' Input Eye catcher “CSLOSTX”.

OSTX_LEN X'08' X'04' Input Length of header.

OSTX_PVER X'0C' X'04' Input Header version number (X'0000001').

OSTX_PLEXCNT X'10' X'04' Input Number of IMSplexes for which statistics are
available.

OSTX_STATCNT X'14' X'04' Input Number of statistics areas available for each
IMSplex.

606 Exit Routines

Table 255. OM statistics header (continued)

Field name Offset Length Field usage Description

OSTX_STATLEN X'18' X'04' Input Length of all statistics areas for each IMSplex.

OSTX_STATOFF X'1C' X'04' Input Offset to statistics area for first IMSplex. This is
the offset from the beginning of CSLOSTX. The
offset points to the CSLOST1 area for the first
IMSplex.

OSTX_OST1OFF X'20' X'04' Input Offset to the OM request statistics record for
activity performed by OM requests (mapped by
macro CSLOST1). The offset is from the start of
the statistics area for this IMSplex. Refer to the
next table for a description of the OM Request
statistics record.

OSTX_OST2OFF X'24' X'04' Input Offset to OM IMSplex statistics record for
activity performed by OM for an IMSplex
(mapped by macro CSLOST2). The offset is from
the start of the statistics area for this IMSplex.
Refer to Table 257 on page 608 for a description
of the OM IMSplex statistics record.

X'28' X'04' None Reserved.

X'2C' X'04' None Reserved.

CSL OM statistics record CSLOST1

CSLOST1 contains statistics related to specific requests and commands that are
processed by OM. The following table lists the OM statistics record CSLOST1.
Included are the field names, the offset value and length (both in hexadecimal),
how the field is used, and a brief description of the field.

Table 256. OM statistics record CSLOST1

Field name Offset Length Field usage Description

OST1_ID X'00' X'08' Input Eye catcher “CSLOST1”.

OST1_LEN X'08' X'04' Input Length of valid data.

OST1_PVER X'0C' X'04' Input Statistics version number (X'00000001').

OST1_OMREG X'10' X'04' Input Number of CSLOMREG requests.

OST1_OMRDY X'14' X'04' Input Number of CSLOMRDY requests.

X'18' X'04' None Reserved.

OST1_OMDRG X'1C' X'04' Input Number of CSLOMDRG requests.

OST1_OMDRGIN X'20' X'04' Input Number of internal deregister (normal term)
requests.

OST1_OMDRGIA X'24' X'04' Input Number of internal deregister (abnormal term)
requests.

OST1_OMICMD X'28' X'04' Input Number of CSLOMI command requests.

OST1_OMIQRY X'2C' X'04' Input Number of CSLOMI query requests.

X'30' X'04' None Reserved.

X'34' X'04' None Reserved.

X'38' X'04' None Reserved.

X'3C' X'04' None Reserved.

Chapter 9. Common Service Layer exit routines 607

Table 256. OM statistics record CSLOST1 (continued)

Field name Offset Length Field usage Description

OST1_OMCMD X'40' X'04' Input Number of CSLOMCMD requests.

OST1_OMQRYCLN X'44' X'04' Input Number of CSLOMQRY client requests.

OST1_OMQRYSYN X'48' X'04' Input Number of CSLOMQRY syntax requests.

X'4C' X'04' None Reserved.

X'50' X'04' None Reserved.

X'54' X'04' None Reserved.

X'58' X'04' None Reserved.

OST1_OMRSP X'5C' X'04' Input Number of CSLOMRSP requests.

OST1_OMOUT X'60' X'04' Input Number of CSLOMOUT requests.

X'64' X'04' None Reserved.

X'68' X'04' None Reserved.

X'6C' X'04' None Reserved.

X'70' X'04' None Reserved.

X'74' X'04' None Reserved.

OST1_ZQRY X'78' X'04' Input Number of CSLZQRY requests.

OST1_ZSHUT X'7C' X'04' Input Number of CSLZSHUT requests.

X'80' X'04' None Reserved.

X'84' X'04' None Reserved.

X'88' X'04' None Reserved.

OST1_QRYIPLX X'8C' X'04' Input Number of QRY IMSPLEX commands.

X'90' X'04' None Reserved.

X'94' X'04' None Reserved.

X'98' X'04' None Reserved.

X'9C' X'04' None Reserved.

X'A0' X'04' None Reserved.

X'A4' X'04' None Reserved.

X'A8' X'04' None Reserved.

X'AC' X'04' None Reserved.

CSL OM statistics record CSLOST2

CSLOST2 contains statistics that are related to an IMSplex, but not to a specific
request or command. The following table lists the OM statistics record CSLOST2.
Included are the field name, the offset value and length, both in hexadecimal, how
the field is used, and a brief description of the field.

Table 257. OM statistics record CSLOST2

Field name Offset Length Field usage Description

OST2_ID X'00' X'08' Input Eye catcher “CSLOST2”.

OST2_LEN X'08' X'04' Input Length of valid data.

OST2_PVER X'0C' X'04' Input Parameter list version number (X'00000001').

OST2_PLEXNAME X'10' X'08' Input IMSplex name.

608 Exit Routines

Table 257. OM statistics record CSLOST2 (continued)

Field name Offset Length Field usage Description

OST2_CLIENTS X'18' X'04' Input Number of active clients in the IMSplex.

OST2_CMDTOUT X'1C' X'04' Input Number of times a command was timed out.

OST2_UNDELIV X'20' X'04' Input Number of times a command response output
could not be returned to the client.

X'24' X'04' None Reserved.

X'28' X'04' None Reserved.

X'2C' X'04' None Reserved.

X'30' X'04' None Reserved.

X'34' X'04' None Reserved.

X'38' X'04' None Reserved.

X'3C' X'04' None Reserved.

X'40' X'04' None Reserved.

X'44' X'04' None Reserved.

X'48' X'04' None Reserved.

X'50' X'04' None Reserved.

X'54' X'04' None Reserved.

X'58' X'04' None Reserved.

Related reference:
“BPE Statistics user-supplied exit routine” on page 517

CSL RM user exit routines
You can write RM user exits to customize and monitor the RM environment. No
sample exits are provided.

RM uses BPE services to call and manage its user exits. BPE enables you to
externally specify the user exit modules to be called for a particular user exit type
by using EXITDEF= statements in the BPE user exit list PROCLIB members. BPE
also provides a common user exit runtime environment for all user exits. This
environment includes a standard user exit parameter list, callable services, static
and dynamic work areas for the exits, and a recovery environment for user exit
abends.
Related reference:
Chapter 5, “BPE user-supplied exit routine interfaces and services,” on page 489

CSL RM client connection user exit
This exit is called when a client connects (registers) to RM or disconnects
(deregisters) from RM. This exit is optional.

This exit is called for the following events:
v After a client has successfully connected to RM.
v After a client has successfully disconnected normally or abnormally from RM.

Subsections:
v “RM client connection user exit parameter list: Client Connect” on page 610

Chapter 9. Common Service Layer exit routines 609

v “RM client connection user exit parameter list: Client Disconnect”

Contents of registers on entry

Register Contents

1 Address of BPE user exit parameter list (mapped by macro BPEUXPL).

13 Address of the first of 2 prechained 72-byte save areas. These save areas are
chained according to standard z/OS save area linkage convention. The first
save area can be used by the exit to save registers on entry. The second save
area is for use by routines called from the user exit.

14 Return address.

15 Entry point of exit routine.

On entry to the Client Connection exit, register 1 points to a standard BPE user
exit parameter list. Field UXPL_EXITPLP in this list contains the address of the RM
Client Connection user exit parameter list, which is mapped by macro CSLRCLX.
Field UXPL_COMPTYPEP in this list points to the character string “RM” indicating
an RM address space.

This exit is defined as TYPE=CLNTCONN in the EXITDEF statement in the BPE
user exit list PROCLIB member. You can specify one or more user exits of this
type. When this exit is invoked, all user exits of this type are called in the order
specified by the EXITS= keyword. For more information on how to define user exit
module names, see the RM BPE user exit List PROCLIB member information in
IMS Version 13 System Definition.

This exit is invoked amode 31 and should be reentrant.

RM client connection user exit parameter list: Client Connect

The following table lists the user exit parameter list for client connect. Included are
the field name, the offset value and length (both in hexadecimal), how the field is
used, and a brief description of the field.

Table 258. RM client connection user exit parameter list: Client Connect

Field name Offset Length Field usage Description

RCLX_PVER X'00' X'04' Input Parameter list version number (X'00000001').

RCLX_FUNC X'04' X'04' Input Function code

1 Client Connect.

RCLX_MBRNAME X'08' X'08' Input Client (IMSplex member) name.

RCLX_MBRTYPE X'10' X'02' Input IMSplex member type (mapped by CSLSTPIX).

X'12' X'02' None Reserved.

RCLX_MBRSTYPE X'14' X'08' Input IMSplex member subtype

X'1C' X'04' None Reserved.

RM client connection user exit parameter list: Client Disconnect

The following table lists the user exit parameter list for client disconnect. Included
are the field name, the offset value and length, both in hexadecimal, how the field
is used, and a brief description of the field.

610 Exit Routines

Table 259. RM client connection user exit parameter list: Client Disconnect

Field name Offset Length Field usage Description

RCLX_PVER X'00' X'04' Input Parameter list version number (X'00000001').

RCLX_FUNC X'04' X'04' Input Function code

2 Client Disconnect.

RCLX_MBRNAME X'08' X'08' Input Client (IMSplex member) name.

RCLX_MBRTYPE X'10' X'02' Input IMSplex member type (mapped by CSLSTPIX).

RCLX_FLAG1 X'12' X'01' Input Flag byte indicates whether the client disconnect
is normal or abnormal.

X'80' Client disconnect is abnormal.

X'13' X'01' None Reserved.

RCLX_MBRSTYPE X'14' X'08' Input IMSplex member subtype

X'1C' X'08' None Reserved.

Contents of registers on exit

Register Contents

15 Return code Meaning

0 Always zero

All other registers must be restored.

CSL RM initialization/termination user exit
The CSL RM initialization/termination user exit is called when an IMSplex or RM
has initialized, completed initialization, or terminated normally.

This exit is not called during RM address space abnormal termination or IMSplex
abnormal termination. This exit is optional.

This exit is defined as TYPE=INITTERM in the EXITDEF statement in the BPE user
exit list PROCLIB member. You can specify one or more user exits of this type.
When this exit is invoked, all user exits of this type are called in the order
specified by the EXITS= keyword. For more information on how to define user exit
module names, see the RM BPE user exit List PROCLIB member information in
IMS Version 13 System Definition.

This exit is invoked amode 31 and should be reentrant.

Subsections:
v “RM init/term user exit parameter list: RM Initialization” on page 612
v “RM init/term user exit parameter list: RM Termination” on page 612
v “RM init/term user exit parameter list: IMSplex Initialization” on page 612
v “RM init/term user exit parameter list: IMSplex Termination” on page 613

Chapter 9. Common Service Layer exit routines 611

Contents of registers on entry

Register Contents

1 Address of the “Standard BPE user exit parameter list” on page 489. The
UXPL_EXITPLP field in this parameter list contains the address of the RM
Initialization/Termination user exit parameter list, which is mapped by
macro CSLRITX.

13 Address of the first of 2 pre-chained 72-byte save areas. These save areas are
chained according to standard z/OS save area linkage convention. The first
save area can be used by the exit to save registers on entry. The second save
area is for use by routines called from the user exit.

14 Return address.

15 Entry point of exit routine.

RM init/term user exit parameter list: RM Initialization

The following table lists the user exit parameter list for RM initialization. Included
are the field name, the offset value and length (both in hexadecimal), how the field
is used, and a brief description of the field.

Table 260. RM init/term user exit parameter list: RM Initialization

Field name Offset Length
Field
usage Description

RITX_PVER X'00' X'04' Input Parameter list version number (X'00000001').

RITX_FUNC X'04' X'04' Input Function code:

1 RM initialization

RM init/term user exit parameter list: RM Termination

The following table lists the user exit parameter list for RM termination. Included
are the field name, offset value and length (both in hexadecimal), how the field is
used, and a brief description of the field.

Table 261. RM init/term user exit parameter list: RM Termination

Field name Offset Length Field usage Description

RITX_PVER X'00' X'04' Input Parameter list version number (X'00000001').

RITX_FTERM X'04' X'04' Input Function code

2 RM normal termination

RM init/term user exit parameter list: IMSplex Initialization

The following table lists the user exit parameter list for IMSplex initialization.
Included are the field name, the offset value and length (both in hexadecimal),
how the field is used, and a brief description of the field.

Table 262. RM init/term user exit parameter list: IMSplex Initialization

Field name Offset Length Field usage Description

RITX_PVER X'00' X'04' Input Parameter list version number (X'00000001').

612 Exit Routines

Table 262. RM init/term user exit parameter list: IMSplex Initialization (continued)

Field name Offset Length Field usage Description

RITX_FPLXINIT X'04' X'04' Input Function code

3 IMSplex normal initialization

RITX_IPLEXNM X'08' X'08' Input IMSplex name.

RITX_ISTRNM X'10' X'10' Input Resource structure name.

RM init/term user exit parameter list: IMSplex Termination

The following table lists the user exit parameter list for IMSplex termination.
Included are the field name, the offset value and length, both in hexadecimal, how
the field is used, and a brief description of the field.

Table 263. RM init/term user exit parameter list: IMSplex Termination

Field name Offset Length Field usage Description

RITX_PVER X'00' X'04' Input Parameter list version number (X'00000001').

RITX_FUNC X'04' X'04' Input Function code

4 IMSplex normal termination

RITX_TPLEXNM X'08' X'08' Input IMSplex name.

RITX_TSTRNM X'10' X'10' Input Resource structure name.

Contents of registers on exit

Register Contents

15 Return code:

0 The return code for this exit routine must be zero.

All other registers must be restored.

CSL RM statistics available through BPE statistics user exit
The BPE Statistics user exit can be used to gather both BPE and RM statistics.

The following describes the RM statistics that are available to the BPE Statistics
user exit and are returned on a CSLZQRY FUNC=STATS request directed to the
RM address space. When the user exit is called, field BPESTXP_COMPSTATS_PTR
in the BPE Statistics user exit parameter list, BPESTXP, contains the pointer to the
RM statistics header. When the CSLZQRY FUNC=STATS request is called, the
OUTPUT= buffer points to the output area mapped by CSLZQRYO. The output
area field ZQYO_STXOFF contains the offset to the RM statistics header. The
header is mapped by CSLRSTX.

Subsections:
v “CSL RM statistics header” on page 614
v “CSL RM statistics record CSLRST1” on page 614
v “CSL RM statistics record CSLRST2” on page 615
v “CSL RM statistics record CSLRST3” on page 616

Chapter 9. Common Service Layer exit routines 613

CSL RM statistics header

The following table lists the RM statistics header. Included are the offset value and
length (both in hexadecimal), how the field is used, and a brief description of the
field.

Table 264. RM statistics header

Field name Offset Length Field usage Description

RSTX_ID X'00' X'08' Input Eye catcher “CSLRSTX”.

RSTX_LEN X'08' X'04' Input Length of header.

RSTX_PVER X'0C' X'04' Input Header version number (X'0000001').

RSTX_PLEXCNT X'10' X'04' Input Number of IMSplexes for which statistics are
available.

RSTX_STATCNT X'14' X'04' Input Number of statistics areas available for each
IMSplex.

RSTX_STATLEN X'18' X'04' Input Length of all statistics areas for each IMSplex.

RSTX_STATOFF X'1C' X'04' Input Offset to statistics area for first IMSplex. This is
the offset from the beginning of CSLRSTX. The
offset points to the CSLRST1 area.

RSTX_RST1OFF X'20' X'04' Input Offset to the RM request statistics record for
activity performed by RM requests (mapped by
macro CSLRST1). The offset is from the start of
the statistics area for this IMSplex. Refer to the
next table for a description of the RM request
statistics record.

RSTX_RST2OFF X'24' X'04' Input Offset to RM IMSplex statistics record for
activity performed by RM for an IMSplex
(mapped by macro CSLRST2). The offset is
from the start of the statistics area for this
IMSplex. Refer to Table 266 on page 615 for a
description of the RM IMSplex statistics record.

RSTX_RST3CNT X'28' X'04' Input Number of CSLRST3 RM statistics areas (0 if
none).

RSTX_RST3OFF X'2C' X'04' Input Offset from the start of the CSLRSTX area to
the first CSLRST3 RM statistics area (0 if none).
CSLRST3 areas are contiguous in storage. From
the first one, add the value in field RST3_LEN
to get to the next one. See “CSL RM statistics
record CSLRST3” on page 616.

X'30' X'10' None Reserved.

CSL RM statistics record CSLRST1

CSLRST1 contains statistics that are related to specific requests processed by RM.
The following table lists the RM statistics record CSLRST1. Included are the offset
value and length (both in hexadecimal), how the field is used, and a brief
description of the field.

Table 265. RM statistics record CSLRST1

Field name Offset Length Field usage Description

RST1_ID X'00' X'08' Input Eye catcher “CSLRST1”.

RST1_LEN X'08' X'04' Input Length of valid data.

614 Exit Routines

Table 265. RM statistics record CSLRST1 (continued)

Field name Offset Length Field usage Description

RST1_PVER X'0C' X'04' Input Parameter list version number (X'00000001').

RST1_RMUPD X'10' X'04' Input Number of CSLRMUPD FUNC=UPDATE
requests.

RST1_RMQRY X'14' X'04' Input Number of CSLRMQRY FUNC=QUERY
requests.

RST1_RMDEL X'18' X'04' Input Number of CSLRMDEL FUNC=DELETE
requests.

X'1C' X'04' None Not used.

RST1_RMREG X'20' X'04' Input Number of CSLRMREG FUNC=REGISTER
requests.

RST1_RMDRG X'24' X'04' Input Number of CSLRMDRG FUNC=DEREGISTER
requests.

RST1_RMDRGIN X'28' X'04' Input Number of internal deregister requests for
client normal termination.

RST1_RMDRGIA X'2C' X'04' Input Number of internal deregister requests for
client abnormal termination.

X'30' X'10' Input Not used.

RST1_RMPRCI X'40' X'04' Input Number of CSLRMPRI FUNC=INITIATE
initiate IMSplex-wide process requests.

RST1_RMPRCT X'44' X'04' Input Number of CSLRMPRT FUNC=TERMINATE
terminate IMSplex-wide process requests.

RST1_RMPRCS X'48' X'04' Input Number of CSLRMPRS FUNC=PROCESS
IMSplex-wide step requests.

RST1_RMPRCR X'4C' X'04' Input Number of CSLRMPRR FUNC=RESPOND
IMSplex-wide step response requests.

RST1_ZQRY X'50' X'04' Input Number of CSLZQRY requests.

X'54' X'04' None Not used

RST1_ZSHUT X'58' X'04' Number of CSLZSHUT requests

RST1_QRYSTR X'5C' X'04' Number of QRY STRUC commands

X'60' X'20' None Not used

CSL RM statistics record CSLRST2

CSLRST2 contains statistics that are related to an IMSplex, but not to specific
requests. The following table lists the RM statistics record CSLRST2. Included are
the offset value and length (both in hexadecimal), how the field is used, and a brief
description of the field.

Table 266. RM statistics record CSLRST2

Field name Offset Length Field usage Description

RST2_ID X'00' X'08' Input Eye catcher “CSLRST2”

RST2_LEN X'08' X'04' Input Length of valid data

RST2_PVER X'0C' X'04' Input Parameter list version number (X'00000001')

RST2_PLEXNAME X'10' X'08' Input IMSplex name

blank X'18' X'08' None Not used

Chapter 9. Common Service Layer exit routines 615

Table 266. RM statistics record CSLRST2 (continued)

Field name Offset Length Field usage Description

RST2_STRNAME X'20' X'10' Input Resource structure name

RST2_STRVER X'30' X'08' Input Resource structure version

RST2_CQSID X'38' X'08' Input CQS ID

RST2_CLIENTS X'40' X'04' Input Number of registered clients

RST2_CREATES X'44' X'04' Input Number of resource creates

RST2_UPDATES X'48' X'04' Input Number of resource updates

RST2_DELETES X'4C' X'04' Input Number of resource deletes

blank X'50' X'40' None Not used

CSL RM statistics record CSLRST3

CSLRST3 contains statistics that are related to an IMSRSC repository. There is one
CSLRST3 per active repository to which RM is connected. Locate the first CSLRST3
area by adding the value in field RSTX_RST3OFF to the address of the start of the
CSLRSTX area. Locate the next CSLRST3 area by adding the value in field
RST3_LEN to the address of the first CSLRST3 area. The number of CSLRST3 areas
is in field RSTX_RST3CNT. The CSLRST3 statistics are per repository, not per
IMSplex, and are separate from the IMSplex statistics described by fields
RSTX_STATCNT and RSTX_STATLEN.

RM can dynamically connect to and disconnect from repositories. Therefore, the
number of CSLRST3 areas passed to the BPE Statistics user-supplied exit routine
might vary from one call to the next.

All statistics fields in CSLRST3 are cumulative since the time RM connected to the
repository. Unless otherwise noted, all time value fields are in microseconds.

The following table lists the RM statistics record CSLRST3. Included are the offset
value and length of each field, how the field is used, and a brief description of the
field.

Table 267. RM statistics record CSLRST3

Field name Offset Length Field usage Description

RST3_ID X'00' X'08' Input Eye catcher “CSLRST3”

RST3_LEN X'08' X'04' Input Length of CSLRST3 data

RST3_PVER X'0C' X'04' Input CSLRST3 version number (X'00000001')

RST3_REPONAME X'10' X'2C' Input Repository name

RST3_REPOTYPE X'3C' X'01' Input Repository type X'80' = IMSRSC repository

X'3D' X'13' None Reserved

RST3_RPUPD X'50' X'08' Input Count of CSLRPUPD requests

RST3_RPQRY X'58' X'08' Input Count of CSLRPQRY requests

RST3_RPDEL X'60' X'08' Input Count of CSLRPDEL requests

X'68' X'40' None Reserved

RST3_LOCKMBR X'A8' X'08' Input Member lock elapsed time

RST3_LOCKMBRN X'B0' X'08' Input Number of member lock requests

616 Exit Routines

Table 267. RM statistics record CSLRST3 (continued)

Field name Offset Length Field usage Description

RST3_LOCKNMLS X'B8' X'08' Input Name list lock elapsed time

RST3_LOCKNMLSN X'C0' X'08' Input Number of name list lock requests

RST3_LOCKGEN X'C8' X'08' Input Generic lock elapsed time

RST3_LOCKGENN X'D0' X'08' Input Number of generic lock requests

RST3_LOCKLIST X'D8' X'08' Input List lock elapsed time

RST3_LOCKLISTN X'E0' X'08' Input Number of list lock requests

RST3_GETMBR X'E8' X'08' Input STARTMBR REQ=GET elapsed time

RST3_GETMBRN X'F0' X'08' Input Number of get member requests

RST3_TGETMBR X'F8' X'08' Input Total elapsed get member time (STARTMBR to
ENDMBR or CANCELMBR)

RST3_PUTMBR X'100' X'08' Input STARTMBR REQ=PUT elapsed time

RST3_PUTMBRNN X'108' X'08' Input Number of put member requests

RST3_TPUTMBR X'110' X'08' Input Total elapsed put member time (STARTMBR to
ENDMBR or CANCELMBR)

RST3_GETDATA X'118' X'08' Input Get data elapsed time

RST3_GETDATAN X'120' X'08' Input Number of get data requests

RST3_PUTDATA X'128' X'08' Input Put data elapsed time

RST3_PUTDATAN X'130' X'08' Input Number of put data requests

RST3_STALIST X'138' X'08' Input Start list elapsed time

RST3_STALISTN X'140' X'08' Input Number of start list requests

RST3_GETLIST X'148' X'08' Input Get list elapsed time

RST3_GETLISTN X'150' X'08' Input Number of get list requests

RST3_STAUOW X'158' X'08' Input Start UOW elapsed time

RST3_STAUOWN X'160' X'08' Input Number of start UOW requests

RST3_CMTUOW X'168' X'08' Input Commit UOW elapsed time

RST3_CMTUOWN X'170' X'08' Input Number of commit UOW requests

RST3_ABTUOW X'178' X'08' Input Abort UOW elapsed time

RST3_ABTUOWN X'180' X'08' Input Number of abort UOW requests

RST3_EDIT X'188' X'08' Input Edit member elapsed time

RST3_EDITN X'190' X'08' Input Number of edit member requests

RST3_TEDIT X'198' X'08' Input Total elapsed EDIT time

RST3_END X'1A0' X'08' Input End session elapsed time

RST3_ENDN X'1A8' X'08' Input Number of end session requests

RST3_CANCEL X'1B0' X'08' Input Cancel session elapsed time

RST3_CANCELN X'1B8' X'08' Input Number of cancel session requests

RST3_SAVE X'1C0' X'08' Input Save session elapsed time

RST3_SAVEN X'1C8' X'08' Input Number of save session requests

RST3_VIEW X'1D0' X'08' Input View member elapsed time

RST3_VIEWN X'1D8' X'08' Input Number of view member requests

RST3_BROWSE X'1E0' X'08' Input Browse member elapsed time

Chapter 9. Common Service Layer exit routines 617

Table 267. RM statistics record CSLRST3 (continued)

Field name Offset Length Field usage Description

RST3_BROWSEN X'1E8' X'08' Input Number of browse member requests

X'1F0' X'80' None Reserved

Related reference:
“BPE Statistics user-supplied exit routine” on page 517

BPE-based CSL SCI user exit routines
SCI user exits allow you to customize and monitor the SCI environment. They are
written and supplied by the user. No sample exits are provided.

SCI uses BPE services to call and manage its user exits. BPE enables you to
externally specify the user exit modules to be called for a particular user exit type
by using EXITDEF= statements in the BPE user exit list PROCLIB members. BPE
also provides a common user exit runtime environment for all user exits. This
environment includes a standard user exit parameter list, callable services, static
and dynamic work areas for the exits, and a recovery environment for user exit
abends.
Related reference:
Chapter 5, “BPE user-supplied exit routine interfaces and services,” on page 489
Part 4, “CSL SCI IMSplex member exit routines,” on page 645

CSL SCI Client Connection user exit
This exit is called when a client connects (registers) or disconnects (deregisters)
from SCI. It is also called when a client issues the CSLSCRDY (ready) and the
CSLSCQSC (quiesce) requests. This exit is optional.

This exit is called for the following events:
v After a client has successfully connected to SCI.
v After a client has successfully completed the Ready request to SCI.
v After a client has successfully completed the Quiesce request to SCI.
v After a client has successfully disconnected normally or abnormally from SCI.

This exit is defined as TYPE=CLNTCONN in the EXITDEF statement in the BPE
user exit list PROCLIB member. You can specify one or more user exits of this
type. When this exit is invoked, all user exits of this type are driven in the order
specified by the EXITS= keyword. For more information on how to define user exit
module names, see the SCI BPE user exit list PROCLIB member information in
IMS Version 13 System Definition.

This exit is invoked amode 31 and should be reentrant.

Contents of registers on entry

Register Contents

1 Address of BPE user exit parameter list (mapped by macro BPEUXPL).

13 Address of the first of 2 prechained 72-byte save areas. These save areas are
chained according to standard z/OS save area linkage convention. The first
save area can be used by the exit to save registers on entry. The second save
area is for use by routines called from the user exit.

618 Exit Routines

Register Contents

14 Return address.

15 Entry point of exit routine.

On entry to the Client Connection exit, register 1 points to a standard BPE user
exit parameter list. Field UXPL_EXITPLP in this list contains the address of the SCI
Client Connection user exit parameter list, which is mapped by macro CSLSCLX.
Field UXPL_COMPTYPEP in this list points to the character string “SCI”,
indicating an SCI address space.

The following sections describe the following user exit parameter lists for SCI:
v client connection
v client disconnect
v client ready
v client quiesce

Subsection:
v “SCI client connection user exit parameter list”

SCI client connection user exit parameter list

The following table lists the user exit parameter list for SCI client connection.
Included are the field name, the offset value and length, both in hexadecimal, how
the field is used, and a brief description of the field.

Table 268. SCI client connection user exit parameter list

Field name Offset Length Field usage Description

SCLX_PVER X'00' X'04' Input Parameter list version number (X'00000001').

SCLX_FUNC X'04' X'04' Input Function code:

1 Client connect.

2 Client disconnect.

3 Client ready.

4 Client quiesce.

SCLX_MBRNAME X'08' X'08' Input Client (IMSplex member) name.

SCLX_MBRTYPE X'10' X'02' Input IMSplex member type (mapped by CSLSTPIX).

SCLX_FLAG1 X'12' X'01' Input Flag byte:

X'80' Client disconnect is abnormal.

X'40' Client is authorized.

X'13' X'01' None Reserved.

SCLX_MBRSTYPE X'14' X'08' Input IMSplex member subtype.

SCLX_MBRVSN X'1C' X'04' Input Member version number.

SCLX_JOBNAME X'20' X'08' Input Member jobname.

SCLX_USERID X'28' X'08' Input Member user ID.

SCLX_OSNAME X'30' X'08' Input Name of the member's operating system.

SCLX_SCITOKEN X'38' X'16' Input Member SCI token.

X'48' X'04' None Reserved.

Chapter 9. Common Service Layer exit routines 619

Table 268. SCI client connection user exit parameter list (continued)

Field name Offset Length Field usage Description

X'4C' X'04' None Reserved.

Contents of registers on exit

Register Contents

15 Return code Meaning

0 Always zero

All other registers must be restored.

CSL SCI Initialization/termination user exit
This exit is called during SCI address space initialization, IMSplex initialization,
SCI address space normal termination, or IMSplex normal termination. This exit is
not called during SCI address space abnormal termination or IMSplex abnormal
termination. This exit is optional.

This exit is called for the following events:
v After SCI has completed initialization
v After each IMSplex has initialized
v When SCI is terminating normally
v When an IMSplex is terminating normally

This exit is defined as TYPE=INITTERM in the EXITDEF statement in the BPE user
exit list PROCLIB member. You can specify one or more user exits of this type.
When this exit is invoked, all user exits of this type are driven in the order
specified by the EXITS= keyword. For more information on how to define user exit
module names, see the SCI BPE user exit list PROCLIB member information in
IMS Version 13 System Definition.

This exit is invoked amode 31 and should be reentrant.

Subsections:
v “SCI init/term user exit parameter list: SCI Initialization” on page 621
v “SCI init/term user exit parameter list: SCI Termination” on page 621
v “SCI init/term user exit parameter list: IMSplex Initialization” on page 621
v “SCI init/term user exit parameter list: IMSplex Termination” on page 621

Contents of registers on entry

Register Contents

1 Address of BPE user exit parameter list (mapped by macro BPEUXPL).

13 Address of the first of 2 prechained 72-byte save areas. These save areas are
chained according to standard z/OS save area linkage convention. The first
save area can be used by the exit to save registers on entry. The second save
area is for use by routines called from the user exit.

14 Return address.

15 Entry point of exit routine.

620 Exit Routines

On entry to the Initialization/Termination exit, register 1 points to a standard BPE
user exit parameter list. Field UXPL_EXITPLP in this list contains the address of
the SCI Initialization/Termination user exit parameter list, which is mapped by
macro CSLSITX. Field UXPL_COMPTYPEP in this list points to the character string
“SCI” indicating an SCI address space.

SCI init/term user exit parameter list: SCI Initialization

The following table lists the user exit parameter list for SCI initialization. Included
are the field name, the offset value and length (both in hexadecimal), how the field
is used, and a brief description of the field.

Table 269. SCI init/term user exit parameter list: SCI Initialization

Field name Offset Length Field usage Description

SITX_PVER X'00' X'04' Input Parameter list version number (X'00000001').

SITX_FUNC X'04' X'04' Input Function code

1 SCI initialization.

SCI init/term user exit parameter list: SCI Termination

The following table lists the user exit parameter list for SCI termination. Included
are the field name, the offset value and length (both in hexadecimal), how the field
is used, and a brief description of the field.

Table 270. SCI init/term user exit parameter list: SCI Termination

Field name Offset Length Field usage Description

SITX_PVER X'00' X'04' Input Parameter list version number (X'00000001').

SITX_FUNC X'04' X'04' Input Function code

2 SCI normal termination.

SCI init/term user exit parameter list: IMSplex Initialization

The following table lists the user exit parameter list for IMSplex initialization.
Included are the field name, the offset value and length (both in hexadecimal),
how the field is used, and a brief description of the field.

Table 271. SCI init/term user exit parameter list: IMSplex Initialization

Field name Offset Length Field usage Description

SITX_PVER X'00' X'04' Input Parameter list version number (X'00000001').

SITX_FUNC X'04' X'04' Input Function code

3 IMSplex normal initialization.

SITX_IPLEXNM X'08' X'08' Input IMSplex name.

SCI init/term user exit parameter list: IMSplex Termination

The following table lists the user exit parameter list for IMSplex termination.
Included are the field name, the offset value and length, both in hexadecimal, how
the field is used, and a brief description of the field.

Chapter 9. Common Service Layer exit routines 621

Table 272. SCI init/term user exit parameter list: IMSplex Termination

Field name Offset Length Field usage Description

SITX_PVER X'00' X'04' Input Parameter list version number (X'00000001').

SITX_FUNC X'04' X'04' Input Function code

4 IMSplex normal termination.

SITX_IPLEXNM X'08' X'08' Input IMSplex name.

Contents of registers on exit

Register Contents

15 Return code Meaning

0 Always zero

All other registers must be restored.

CSL SCI statistics available through BPE statistics user exit
The BPE Statistics user exit can be used to gather both BPE and SCI statistics.

The following describes SCI statistics that are available to the BPE Statistics User
Exit and are returned on a CSLZQRY FUNC=STATS request directed to SCI. When
the user exit is driven, field BPESTXP_COMPSTATS_PTR in the BPE Statistics user
exit parameter list, BPESTXP, contains the pointer to the SCI statistics header.
When the CSLZQRY FUNC=STATS request is driven, the OUTPUT= buffer points
to the output area mapped by CSLZQRYO. The output area field ZQYO_STXOFF
contains the offset to the SCI statistics header. The header is mapped by CSLSSTX.

Subsections:
v “SCI statistics header CSLSSTX”
v “SCI statistics record CSLSST1” on page 623
v “SCI statistics record CSLSST2” on page 624
v “SCI member statistics record CSLSST3” on page 624

SCI statistics header CSLSSTX

The following table lists the SCI Statistics Header CSLSSTX. Included are the field
name, the offset value and length (both in hexadecimal), how the field is used, and
a brief description of the field.

Table 273. SCI statistics header CSLSSTX

Field name Offset Length Field usage Description

SSTX_ID X'00' X'08' Input Eye catcher “CSLSSTX”.

SSTX_LEN X'08' X'04' Input Length of header.

SSTX_PVER X'0C' X'04' Input Header version number (X'0000001').

SSTX_PLEXCNT X'10' X'04' Input Number of IMSplexes for which statistics are
available.

SSTX_STATOFF X'14' X'04' Input Offset to statistics area for first IMSplex. This is
the offset from the beginning of CSLSSTX. The
offset points to the CSLSST1 area.

622 Exit Routines

Table 273. SCI statistics header CSLSSTX (continued)

Field name Offset Length Field usage Description

SSTX_SST1OFF X'18' X'04' Input Offset to the SCI request statistics record for
activity performed by SCI requests (mapped by
macro CSLSST1). The offset is from the start of
the statistics area for this IMSplex. Refer to the
next table for a description of the SCI Request
statistics record.

SSTX_SST2OFF X'1C' X'04' Input Offset to SCI IMSplex statistics record for
activity performed by SCI for an IMSplex
(mapped by macro CSLSST2). The offset is from
the start of the statistics area for this IMSplex.
Refer to Table 275 on page 624 for a description
of the SCI IMSplex statistics record.

SSTX_SST3OFF X'20' X'04' Input Offset to first SCI member statistics record for
SCI activity performed by each member in an
IMSplex (mapped by the CSLSST3 macro). The
offset is from the start of the statistics area for
each IMSplex. Refer to Table 276 on page 625.

X'24' X'04' Input Reserved.

X'28' X'04' None Reserved.

X'2C' X'04' None Reserved.

SCI statistics record CSLSST1

CSLSST1 contains statistics that are related to requests that are processed by SCI.
The following table lists the SCI Statistics Record CSLSST1. Included are the field
name, the offset value and length (both in hexadecimal), how the field is used, and
a brief description of the field.

Table 274. SCI statistics record CSLSST1

Field name Offset Length Field usage Description

SST1_ID X'00' X'08' Input Eye catcher “CSLSST1”.

SST1_LEN X'08' X'04' Input Length of CSLSTT1 data.

SST1_PVER X'0C' X'04' Input Statistics Version Number (X'00000001').

SST1_SCREG X'10' X'04' Input Number of local registrations.

SST1_RREG X'14' X'04' Input Number of remote registrations.

SST1_NREG X'18' X'04' Input Number of notify remote registrations.

SST1_SCRDY X'1C' X'04' Input Number of local readys.

SST1_RRDY X'20' X'04' Input Number of remote readys.

SST1_NRDY X'24' X'04' Input Number of notify remote readys.

SST1_SCQSC X'28' X'04' Input Number of local quiesces.

SST1_RQSC X'2C' X'04' Input Number of remote quiesces.

SST1_SCDRG X'30' X'04' Input Number of normal local deregistrations.

SST1_SCDRGA X'34' X'04' Input Number of abnormal local deregistrations.

SST1_RDRG X'38' X'04' Input Number of normal remote deregistrations.

SST1_RDRA X'3C' X'04' Input Number of abnormal remote deregistrations.

SST1_NABN X'14' X'04' Input Number of notify abends.

Chapter 9. Common Service Layer exit routines 623

Table 274. SCI statistics record CSLSST1 (continued)

Field name Offset Length Field usage Description

SST1_SCMI X'40' X'04' Input Number of member initializations.

X'44' X'04' Input Reserved.

X'48' X'04' Input Reserved.

X'4C' X'04' Input Reserved.

X'50' X'04' Input Reserved.

X'54' X'04' Input Reserved.

X'58' X'04' Input Reserved.

X'5C' X'04' Input Reserved.

X'60' X'04' Input Reserved.

X'64' X'04' Input Reserved.

SCI statistics record CSLSST2

CSLSST2 contains statistics that are related to an IMSplex, but not to a specific
request. The following table lists the SCI Statistics Record CSLSST2. Included are
the offset value and length (both in hexadecimal), how the field is used, and a brief
description of the field.

Table 275. SCI statistics record CSLSST2

Field name Offset Length Field usage Description

SST2_ID X'00' X'08' Input Eye catcher “CSLSST2”.

SST2_LEN X'08' X'04' Input Length of CSLSST2 data.

SST2_PVER X'0C' X'04' Input Statistics Version Number (X'00000001').

SST2_PLEXNAME X'10' X'08' Input IMSplex name.

SST2_SST3CNT X'18' X'04' Input Number of CSLSST3 records to follow.

SST2_MSGOGOOD X'1C' X'04' Input Number of successful IXCMSGO calls.

SST2_MSGOBFSH X'20' X'04' Input Number of IXCMSGO calls with buffer shortage.

SST2_MSGORSSH X'24' X'04' Input Number of IXCMSGO calls with other resource
shortage.

X'28' X'04' Input Reserved.

X'2C' X'04' Input Reserved.

X'30' X'04' Input Reserved.

X'34' X'04' Input Reserved.

X'38' X'04' Input Reserved.

X'3C' X'04' Input Reserved.

X'40' X'04' Input Reserved.

X'44' X'04' Input Reserved.

SCI member statistics record CSLSST3

CSLSST3 contains statistics that are related to specific members of an IMSplex.
There is one CSLSST3 entry for each registered IMSplex member when statistics

624 Exit Routines

are taken. The following table lists the SCI Statistics Record CSLSST3. Included are
the offset value and length (both in hexadecimal), how the field is used, and a brief
description of the field.

Table 276. SCI member statistics record CSLSST3

Field name Offset Length Field usage Description

SST3_ID X'00' X'08' Input Eye catcher “CSLSST3”.

SST3_LEN X'08' X'04' Input Length of CSLSST3 data.

SST3_PVER X'0C' X'04' Input Statistics Version Number (X'00000001').

SST3_PLEXNAME X'10' X'08' Input IMSplex name.

SST3_MBRNAME X'18' X'04' Input Member name.

SST3_MBRTYPE X'20' X'04' Input Member type.

SST3_RQSNTBYL X'24' X'04' Input Number of requests sent by this member to
members on this system (local).

SST3_RQSNTBYR X'28' X'04' Input Number of requests sent by this member to
members on remote systems.

SST3_RQSNTTO X'2C' X'04' Input Number of requests sent to this member by
members on this system (local).

SST3_RQRCVBY X'30' X'04' Input Number of requests received by this member
from all sources.

SST3_MGSNTBYL X'34' X'04' Input Number of messages sent by this member to
members on this system (local).

SST3_MGSNTBYR X'38' X'04' Input Number of messages sent by this member to
members on remote systems.

SST3_MBSNTBYM X'3C' X'04' Input Number of messages sent by this member to
multiple members.

SST3_MGSNTTO X'40' X'04' Input Number of messages sent to this member by
members on this system (local).

SST3_MGRCVBY X'44' X'04' Input Number of messages received by this member
from all sources.

SST3_RQSTMOUT X'48' X'04' Input Number of requests sent to this member that
timed out.

SST3_RQSLOST X'4C' X'04' Input Number of requests sent to this member that
were lost due to an abend or lose system.

X'50' X'04' Input Reserved.

X'54' X'04' Input Reserved.

X'58' X'04' Input Reserved.

X'5C' X'04' Input Reserved.

X'60' X'04' Input Reserved.

X'64' X'04' Input Reserved.

X'68' X'04' Input Reserved.

X'6C' X'04' Input Reserved.

Related reference:
“BPE Statistics user-supplied exit routine” on page 517

Chapter 9. Common Service Layer exit routines 625

626 Exit Routines

Part 3. CQS client exit routines

CQS client exit routines allow a CQS client to monitor the CQS environment.

This topic contains Product-sensitive Programming Interface information.

CQS routines are written and supplied by a client (such as IMS). Each client must
write its own exit routines tailored to the needs of that client product, to be
supplied as part of the product. No sample CQS client exit routines are provided.
The exit routines are given control in the client's address space in one of these two
ways:
v For authorized clients (those running in supervisor state, key 0-7), the exits

receive control in service request block (SRB) mode.
v For non-authorized clients (those running in problem state or non-key 0-7), the

exits receive control as an interrupt request block (IRB) under the client task
control block (TCB) that owns the cross memory resources for the address space
(the TCB pointed to by ASCBXTCB).

Because each call to a client exit routine runs under its own SRB, the order in
which the exits are driven is not guaranteed. It is possible for client exit routines to
be driven out of order (different from the order from which CQS scheduled them).
Your exit routines must be able to tolerate events that are received out of order. All
client exit routine parameter lists contain an 8-byte time stamp in STCK format
that is the time when CQS scheduled the SRB for the exit routine. This time stamp
can be used to help determine the original order of events.
Related reference:
Chapter 8, “BPE-based CQS user-supplied exit routines,” on page 553

© Copyright IBM Corp. 1974, 2017 627

628 Exit Routines

Chapter 10. Client CQS Event exit routine

The CQS Event exit routine is driven when an event occurs in CQS that is related
to CQS itself and might require some action to be taken by the client.

The client loads the exit routine and passes the exit routine address on the
CQSREG request. This exit routine is driven in the client address space, either as
an SRB (for authorized clients), or as an IRB (for non-authorized clients). The CQS
Event exit routine is required.

The following CQS events drive the CQS Event exit routine:
v CQS initialization - client can reconnect to CQS
v CQS termination - abnormal termination

Subsections:
v “CQS restart entry parameter list” on page 630
v “CQS abnormal termination parameter list” on page 630
v “Client processing after CQS abnormal termination or restart” on page 631

Contents of registers on entry

Register
Contents

0 Length in bytes of the parameter list pointed to by R1.

1 Address of CQS Event Exit Parameter List (mapped by macro CQSCEVX).

13 Address of a standard 18-word save area, immediately followed by an
18-word work area that is available for the exit routine's use. The save area
and the work area are not chained together. The save area or work area
storage is not cleared on entry to the CQS Event exit routine.

14 Return address.

15 Entry point of exit routine.

Restriction: All addresses passed to the CQS Event Exit routine are valid only
until the exit routine returns to its caller. These addresses should never be stored
and used after the CQS Event exit routine has returned. Doing so can cause
unpredictable results, because the storage pointed to by the addresses might have
changed, or it might have been freed.

Contents of registers on exit

The CQS Event exit routine must preserve the contents of register 13; it does not
need to preserve any other register's contents. Therefore, it is free to use the save
area pointed to by register 13 for any calls to other services as needed (it can also
use the 18-word area following the save area for additional save area or work area
storage).

Register
Contents

13 The same value it had on entry to the CQS Event exit routine.

© Copyright IBM Corp. 1974, 2017 629

15 Return code

0 Always set this to zero.

CQS restart entry parameter list

The following table describes the CQS restart entry parameters for the Client CQS
Event exit routine.

Table 277. Client CQS Event exit routine parameter list: CQS restart entry

Field name Offset Length Description

CEVX_PVSN X'00' X'04' Parameter list version number (X'00000001').

CEVX_EVENT X'04' X'04' CQS event code

X'1' CQS Initialization Event
(CEVX_INIT).

CEVX_SCODE X'08' X'04' CQS event subcode

X'1' Client can re-register and reconnect
to CQS (CEVX_RESTART).

CEVX_DATA X'0C' X'04' Event exit routine client data that was passed
to CQS on the CQSREG request.

CEVX_CQSID X'10' X'08' CQS identifier.

CEVX_CQSVER X'18' X'04' CQS version number.

CEVX_TSTMP X'1C' X'08' Time stamp representing the time the exit
routine was scheduled (in STCK format).

CQS abnormal termination parameter list

The following table describes the CQS abnormal termination parameters for the
Client CQS Event exit routine.

Table 278. Client CQS Event exit routine parameter list: CQS abnormal termination

Offset Length Description

X'00' X'04' Parameter list version number (X'00000001').

X'04' X'04' CQS event code

2 CQS Termination Event.

X'08' X'04' CQS Event subcode

1 CQS abnormal termination entry. The CQS address
space is terminating abnormally.

X'0C' X'04' Event exit routine client data that was passed to CQS on the
CQSREG request.

X'10' X'08' CQS identifier.

X'18' X'04' CQS version number.

X'1C' X'08' Time stamp representing the time the exit routine was
scheduled (in STCK format).

X'24' X'04' Abnormal Termination reason code. (CQS abend code)

630 Exit Routines

Client processing after CQS abnormal termination or restart

If a client is registered with CQS and CQS terminates abnormally, the client's CQS
Event exit routine is called with a CQS abnormal termination event. The client can
choose to wait for CQS to be restarted, at which time the client's CQS Event exit
routine is scheduled for a CQS restart event. When the CQS restart event is
received, the client must perform the following steps before it can resume making
CQS requests:
1. The client must reregister with CQS using the CQSREG macro. This step is

necessary to reestablish the cross-memory connections between the client and
CQS. Failure to reregister can result in an S0D6 abend when the next CQS
request is issued.

2. The client must reconnect, using the CQSCONN macro, to any structures it was
using prior to the CQS failure.

3. The client must resync indoubt UOWs with CQS, using the CQSRSYNC macro.
4. The client must register interest in queues, using the CQSINFRM request. If

CQS terminated abnormally, it lost all previous client registration information.

Chapter 10. Client CQS Event exit routine 631

632 Exit Routines

Chapter 11. CQS Client Structure Event exit routine

The Client Structure Event exit routine is driven when an event occurs concerning
a CQS-managed structure that might require some action to be taken by the client.

The client loads the exit routine and passes the address of the exit routine on the
CQSCONN request. This exit routine is driven in the client address space, either as
an SRB (for authorized clients), or as an IRB (for non-authorized clients). This exit
routine is required, and applies both to resource and queue structures.

The following structure events drive the Client Structure Event exit routine:
v Resync UOW processing

– When CQS Resync processing completes for an individual UOW, which had
been deferred.

– When CQS Resync processing occurs for the list of client UOWs that were not
passed during the CQS Resync request.

– Important: Resync UOW Processing only applies to queue structures.
v Checkpoint event

– When structure checkpoint begin, end, or failure occurs.
– Important: The Checkpoint event only applies to queue structures.

v Structure rebuild event
– When structure copy (rebuild) begin, end, or failure occurs.
– When structure recovery (rebuild) begin, end, or failure occurs.
– When structure recovery lost UOWs occurs.

v Structure overflow event
– When one or more queues move to the overflow structure.
– When one or more queues move from the overflow structure. This event also

indicates when the structure is no longer in overflow mode.
– Important: The Structure Overflow event only applies to queue structures.

v Structure status change event
– When the structure is available again after a loss.
– When the structure fails. For resource structures only, failure means that CQS

cannot allocate a new resource structure.
– When CQS is able to repopulate (allocate) a new resource structure.
– When CQS loses its connection to the structure.
– When the log stream becomes available, making the structure available.

Subsections:
v “Deferred resync complete parameter list for CQS Client Structure Event” on

page 634
v “CQS resync parameter list” on page 635
v “CQS resync UOW entry” on page 636
v “Checkpoint parameter list for CQS Client Structure Event” on page 637
v “Structure rebuild parameter list for CQS Client Structure Event” on page 638
v “Structure rebuild lost UOWs parameter list for CQS Client Structure Event” on

page 638

© Copyright IBM Corp. 1974, 2017 633

v “Rebuild lost UOW entry for CQS Client Structure Event” on page 639
v “Structure overflow parameter list for CQS Client Structure Event” on page 640
v “Structure status change parameter list for CQS Client Structure Event” on page

640

Contents of registers on entry

Register
Contents

0 Length in bytes of the parameter list pointed to by R1.

1 Address of Client Structure Event exit routine parameter list (mapped by
macro CQSSEVX).

13 Address of a standard 18-word save area, immediately followed by an
18-word work area that is available for use by the exit routine. The save
area and the work area are not chained together. The save area or work
area storage is not cleared on entry to the Client Structure Event exit
routine.

14 Return address.

15 Entry point of exit routine.

Restriction: All addresses that are passed to the Client Structure Event exit
routine are valid only until the exit routine returns to its caller. These addresses
should never be stored and used after the CQS Client Structure Event exit routine
has returned. Doing so can cause unpredictable results, because the storage
pointed to by the addresses might have changed, or it might have been freed.

Contents of registers on exit

The Client Structure Event exit routine must preserve the contents of R13; it does
not need to preserve any other register contents. Therefore, it is free to use the save
area pointed to by R13 for any calls to other services as needed. The exit routine
can also use the 18-word area following the save area for additional save area or
work area storage.

Register
Contents

13 The same value it had on entry to the Client Structure Event exit routine.

15 Return code

X'00' Always set this to zero.

Deferred resync complete parameter list for CQS Client Structure
Event

The following table describes the deferred resync complete parameters for the
Client Structure Event exit routine.

Table 279. Client Structure Event exit routine parameter list: deferred resync complete

Offset Length Description

X'00' X'04' Parameter list version number (X'00000001').

X'04' X'04' Structure event code

1 Resync UOW event.

634 Exit Routines

Table 279. Client Structure Event exit routine parameter list: deferred resync
complete (continued)

Offset Length Description

X'08' X'04' Structure event subcode

1 Deferred resync complete.

X'0C' X'04' Structure Event exit routine client data that was passed to CQS
on the CQSCONN request.

X'10' X'08' CQS identifier.

X'18' X'04' CQS version number.

X'1C' X'10' Structure Name.

X'2C' X'08' Time stamp representing the time the exit routine was
scheduled (in STCK format).

X'34' X'20' Unit of work (UOW) identifier.

X'54' X'10' Queue name.

X'64' X'10' Deferred resync token. This is the Put token that is used for Put
Forget processing.

X'74' X'02' CQS UOW state

X'0010' Put Insync

Client status is Put Complete. CQS status is Put
Complete. CQS knows about the UOW and all data
objects for the UOW are out on the coupling facility. A
PUT token is returned for the UOW. The client should
use the PUT token to issue the CQSPUT FUNC=FORGET
request.

X'00F2' Unknown

Client status is Put Complete. CQS has no knowledge
of the UOW.

If the client believes the UOW is in Put Complete
status, the client must determine whether to reissue the
CQSPUT requests.

X'76' X'02' Reserved.

CQS resync parameter list

The following table describes the CQS initiated resync parameters for the Client
Structure Event exit routine.

Table 280. Client Structure Event Routine exit parameter list: CQS initiated resync

Offset Length Description

X'00' X'04' Parameter list version number (X'00000001').

X'04' X'04' Structure event code

1 Resync UOW event.

X'08' X'04' Structure event subcode

2 CQS Initiated resync processing.

X'0C' X'04' Structure Event exit routine client data that was passed to CQS
on the CQSCONN request.

X'10' X'08' CQS identifier.

Chapter 11. CQS Client Structure Event exit routine 635

Table 280. Client Structure Event Routine exit parameter list: CQS initiated
resync (continued)

Offset Length Description

X'18' X'04' CQS version number.

X'1C' X'10' Structure name.

X'2C' X'08' Time stamp representing the time the exit routine was
scheduled (in STCK format).

X'34' X'04' Number of unit of work (UOW) list entries.

X'38' X'04' Length of each UOW list entry.

X'3C' X'04' Offset into parameter list of start of UOW list. The parameter
list is one contiguous piece of storage, including the UOW list.

CQS resync UOW entry

The following table describes the CQS resync UOW entry parameters for the Client
Structure Event exit routine.

Table 281. CQS resync UOW entry parameters

Offset Length Description

X'00' X'20' Unit of work (UOW) identifier.

X'20' X'10' Queue name.

X'30' X'10' Resync token.

v If the CQS UOW status is locked, this field contains a lock
token. This lock token is to be used on subsequent requests,
such as CQSREAD and CQSUNLCK to process the locked
data object.

v If the CQS UOW status is COLD QUEUE, this field contains a
cold queue token. This cold queue token is to be used along
with the UOW on a CQSRECVR request to recover the data
object on the cold queue.

636 Exit Routines

Table 281. CQS resync UOW entry parameters (continued)

Offset Length Description

X'40' X'02' CQS UOW status

X'00F1' Locked. This data object is locked. A lock token is
passed back to the client in the Resync token field. This
token field is required on subsequent requests to
process the locked data object.

X'00F3' Cold Queue: CQS-Client Cold Start. This data object is
on the cold queue because of either a CQS cold start or
client cold start. A cold queue token is passed back to
the client in the Resync token field. This token field is
required on a subsequent CQSRECVR request to
process the data object on the cold queue.

X'00F4' Cold Queue: Unknown. This data object is on the cold
queue. CQS warm started after a structure rebuild
from the log took place and the object was found
locked by CQS. A cold queue token is passed back to
the client in the Resync token field. This token field is
required on a subsequent CQSRECVR request to
process the data object on the cold queue.

This status is returned only for structures defined with
BATCHDEL=YES coded (or defaulted to) on their
STRUCTURE definition in the CQSSLxxx PROCLIB
member.

X'42' X'02' Reserved.

Checkpoint parameter list for CQS Client Structure Event

The following table describes the checkpoint parameters for the Client Structure
Event exit routine.

Table 282. Client Structure Event exit routine parameter list: checkpoint

Offset Length Description

X'00' X'04' Parameter list version number (X'00000001').

X'04' X'04' Structure event code

2 Checkpoint event.

X'08' X'04' Structure event subcode

1 Structure checkpoint begin.

2 Structure checkpoint end.

3 Structure checkpoint failure.

X'0C' X'04' Structure Event exit routine client data that was passed to CQS
on the CQSCONN request.

X'10' X'08' CQS identifier.

X'18' X'04' CQS version number.

X'1C' X'10' Structure name.

X'2C' X'08' Time stamp representing the time the exit routine was
scheduled (in STCK format).

X'34' X'08' CQS identifier of the master CQS performing the checkpoint
process.

Chapter 11. CQS Client Structure Event exit routine 637

|
|
|
|

Table 282. Client Structure Event exit routine parameter list: checkpoint (continued)

Offset Length Description

X'3C' X'01' Flag byte.

X'80' This CQS is the master of the process. The CQS
identifier and master CQS identifier are the same.

X'3D' X'03' Reserved.

Structure rebuild parameter list for CQS Client Structure Event

The following table describes the structure rebuild parameters for the Client
Structure Event exit routine.

Table 283. Client Structure Event exit routine parameter list: structure rebuild

Offset Length Description

X'00' X'04' Parameter list version number (X'00000001').

X'04' X'04' Structure event code

3 Structure rebuild event.

X'08' X'04' Structure event subcode

1 Structure rebuild begin.

2 Structure rebuild (copy) end.

3 Structure rebuild (copy) failure.

4 Structure rebuild failure.

5 Structure rebuild (recovery) end.

6 Structure rebuild (recovery) failure.

X'0C' X'04' Structure Event exit routine client data that was passed to CQS
on the CQSCONN request.

X'10' X'08' CQS identifier.

X'18' X'04' CQS version number.

X'1C' X'10' Structure name.

X'2C' X'08' Time stamp representing the time the exit routine was
scheduled (in STCK format).

X'34' X'08' CQS identifier of the master CQS performing the rebuild
process.

X'3C' X'01' Flag byte.

X'80' This CQS is the master of the process. The CQS
identifier and master CQS identifier are the same.

X'3D' X'03' Reserved.

Structure rebuild lost UOWs parameter list for CQS Client
Structure Event

The following table describes the structure rebuild lost UOW parameters for the
Client Structure Event exit routine. These UOWs are nonrecoverable and were lost
by the last structure recovery. Some of the UOWs in the list might belong to other
clients if the structure recovery occurred while CQS was down.

638 Exit Routines

Table 284. Client Structure Event exit routine parameter list: structure rebuild lost UOWs

Offset Length Description

X'00' X'04' Parameter list version number (X'00000001').

X'04' X'04' Structure event code

3 Structure rebuild event.

X'08' X'04' Structure event subcode

7 Structure recovery lost UOWs.

Important: This subcode applies only to queue
structures.

X'0C' X'04' Structure Event exit routine client data that was passed to CQS
on the CQSCONN request.

X'10' X'08' CQS identifier.

X'18' X'04' CQS version number.

X'1C' X'10' Structure name.

X'2C' X'08' Time stamp representing the time the exit routine was
scheduled (in STCK format).

X'34' X'08' CQS identifier of the master CQS performing the rebuild
process.

X'3C' X'01' Flag byte.

X'80' This CQS is the master of the process. The CQS
identifier and master CQS identifier are the same.

X'3D' X'03' Reserved.

X'40' X'04' Number of Lost UOW list entries.

X'44' X'04' Length of each Lost UOW list entry.

X'48' X'04' Offset into parameter list of start of Lost UOW list. The
parameter list is one contiguous piece of storage, including the
Lost UOW list.

Rebuild lost UOW entry for CQS Client Structure Event

The following table describes the CQS rebuild lost UOW entry parameters for the
Client Structure Event exit routine.

Table 285. CQS rebuild lost UOW entry parameters

Offset Length Description

X'00' X'20' Unit of work (UOW) identifier.

X'20' X'10' Client queue name.

X'30' X'01' Lost UOW status.

X'80' Lost UOW was on client queue.

X'40' Lost UOW was locked.

X'20' Lost UOW was on COLDQ.

X'10' Lost UOW was on CQS private queue.

X'31' X'03' Reserved.

Chapter 11. CQS Client Structure Event exit routine 639

Structure overflow parameter list for CQS Client Structure Event

The following table describes the structure overflow parameters for the Client
Structure Event exit routine.

Table 286. Client Structure Event exit routine parameter list: structure overflow

Offset Length Description

X'00' X'04' Parameter list version number (X'00000001').

X'04' X'04' Structure event code

4 Structure overflow event.

X'08' X'04' Structure event subcode

1 Move queues to overflow. One or more queues was
selected as candidates to be moved to the overflow
structure and was approved by the Queue Overflow
user exit routine.

2 Move queues from overflow. One or more queues
moved from the overflow structure back to the primary
structure, because the queues were drained on the
overflow structure. New work for these queues is
placed on the primary structure.

X'0C' X'04' Structure Event exit routine client data that was passed to CQS
on the CQSCONN request.

X'10' X'08' CQS identifier.

X'18' X'04' CQS version number.

X'1C' X'10' Structure name.

X'2C' X'08' Time stamp representing the time the exit routine was
scheduled (in STCK format).

X'34' X'08' CQS identifier of the master CQS performing the overflow
process.

X'3C' X'01' Flag byte.

X'80' This CQS is the master of the process. The CQS
identifier and master CQS identifier are the same.

X'40' The structure is no longer in overflow mode. This
value applies only to subcode 2.

X'3D' X'03' Reserved.

X'40' X'04' Number of queue name entries in the list.

X'44' X'04' Length of each queue name list entry.

X'48' X'04' Offset into parameter list of start of queue name list. Each
queue name list entry contains the 16-byte queue name of a
queue that is being moved to the overflow structure. The
parameter list is one contiguous piece of storage, including the
queue name list.

Structure status change parameter list for CQS Client Structure
Event

The following table describes the structure status change parameters for the Client
Structure Event exit routine.

640 Exit Routines

Table 287. Client Structure Event exit routine parameter list: structure status change

Offset Length Description

X'00' X'04' Parameter list version number (00000002).

X'04' X'04' Structure event code.

5 Structure status change event.

X'08' X'04' Structure event subcode

1 Structure available again after a loss.

2 The structure failed.

3 CQS lost its connection to the structure (STXLCONN).

4 The log stream is becoming available, making the
structure available (STXAVLOG).

Important: This subcode applies only to queue
structures.

5 The log stream is becoming unavailable, making the
structure unavailable (STXFLOG).

Important: This subcode applies only to queue
structures.

6 Structure repopulation required due to structure
failure.

X'0C' X'04' Structure Event exit routine client data that was passed to CQS
on the CQSCONN request.

X'10' X'08' CQS identifier.

X'18' X'04' CQS version number.

X'1C' X'10' Structure Name.

X'2C' X'08' Time stamp representing the time the exit routine was
scheduled (in STCK format).

X'34' X'01' Structure type

1 Queue structure

2 Resource structure

X'38' X'18' Not used.

X'50' X'08' Structure version of new structure that requires repopulation,
because old structure failed.

Chapter 11. CQS Client Structure Event exit routine 641

642 Exit Routines

Chapter 12. CQS Client Structure Inform exit routine

The CQS Client Structure Inform exit routine is scheduled when work is placed on
a queue for which the client has registered interest with a CQSINFRM request and
when a CQSINFRM request is issued specifying that the exit routine be driven if
there is work on the queue.

The exit routine is also scheduled whenever a queue goes from an empty to
non-empty state (when the first data object for a queue is written to the structure).
If additional data objects are added to the queue, the inform exit routine, which
has already been run once, is not notified again while there are still data objects on
the queue.

The client loads the exit routine and passes the address of the exit routine on the
CQSCONN request. This exit routine is driven in the client address space, either as
an SRB (for authorized clients), or as an IRB (for non-authorized clients).

Restriction: This exit routine does not apply to resource structures.

Important: This exit routine is optional; however, if it is not supplied, the client is
not notified when work is placed on the queues.

Contents of registers on entry

Register
Contents

0 Length in bytes of the parameter list pointed to by register 1.

1 Address of CQS Structure Inform Exit Parameter List (mapped by macro
CQSINFX).

13 Address of a standard 18-word save area, immediately followed by an
18-word work area available for use by the exit routine. The save area and
the work area are not chained together. The save area or work area storage
is not cleared on entry to the Structure Inform Exit routine.

14 Return address.

15 Entry point of exit routine.

Restriction: All addresses that are passed to the CQS Structure Inform exit routine
are valid only until the exit routine returns to its caller. These addresses should
never be stored and used after the CQS Structure Inform exit routine has returned.
Doing so can cause unpredictable results, because the storage pointed to by the
addresses might have changed, or it might have been freed.

Contents of registers on exit

The CQS Structure Inform exit routine must preserve the contents of register 13
and it does not need to preserve any other register's contents. Therefore, it is free
to use the save area pointed to by register 13 for any calls to other services as
needed. It might also use the 18-word area following the save area for additional
save area or work area storage.

© Copyright IBM Corp. 1974, 2017 643

Register
Contents

13 Same value as it had on entry to the CQS Structure Inform exit routine.

15 Return code

0 Always set this to zero.

Structure inform parameter list for CQS Client Structure Inform

The following table describes the parameters for the Client Structure Inform exit
routine.

Table 288. Client Structure Inform exit routine parameter list

Offset Length Description

X'00' X'04' Parameter list version number (X'00000002').

X'04' X'04' Structure Inform exit routine client data that was passed to
CQS on the CQSCONN request.

X'08' X'08' CQS identifier.

X'10' X'04' CQS version number.

X'14' X'10' Structure name.

X'24' X'08' Time stamp representing the time the exit routine was
scheduled (in STCK format).

X'2C' X'04' Number of queue name entries in the list.

X'30' X'04' Length of each queue name list entry.

X'34' X'04' Offset into parameter list of start of queue name list. Each
queue name entry in the list contains the 16-byte queue name
for which a message has been queued. The parameter list is
one contiguous piece of storage, including the queue name
list.

X'38' X'08' Time stamp of the time that the CQS list transition exit was
driven in STCK format. This field only exists when the
parameter list version number (at offset X'00') is X'00000002' or
higher.

644 Exit Routines

Part 4. CSL SCI IMSplex member exit routines

This topic describes the exits that SCI can drive in the address space of a registered
IMSplex member.

These exit routines allow an IMSplex member to:
v Monitor what address spaces are active members of the IMSplex.
v Receive messages and requests from other members of the same IMSplex.

SCI member exits are written and supplied by an IMSplex member (such as the
IMS control region). Each member must write its own exit routines tailored to the
needs of that member product, to be supplied as part of the product. No sample
SCI exit routines are provided. The exit routines are given control in the member's
address space in one of two ways:
v For authorized members (those running in supervisor state, key 0-7), the exits

receive control in SRB mode.
v For non-authorized members (those running in problem state or non-key 0-7),

the exits receive control as an IRB under the member TCB associated with the
SCI registration.

Because each call to a member exit routine runs under its own SRB, the order in
which the exits are driven is not guaranteed. It is possible for member exit routines
to be driven out of order (different from the order in which SCI scheduled them).
Your exit routines must be able to tolerate events that are received out of order. All
member exit routine parameter lists contain an 8-byte time stamp in STCK format,
which is the time when SCI scheduled the SRB for the exit routine. This time
stamp can be used to help determine the original order of events.
Related reference:
“BPE-based CSL SCI user exit routines” on page 618

© Copyright IBM Corp. 1974, 2017 645

646 Exit Routines

Chapter 13. CSL SCI Input exit routine

The SCI Input exit routine is called whenever there is a message or a request for
the IMSplex member.

The IMSplex member loads the exit routine and passes the exit routine address on
the CSLSCREG request. The exit is driven in the member's address space, either as
an SRB (for authorized members) or as an IRB (for non-authorized members).

Subsections:
v “CSL SCI input exit parameter list” on page 648

Contents of registers on entry

Register
Contents

0 Length in bytes of the parameter list pointed to by R1.

1 Address of SCI Input exit parameter list (mapped by macro CSLSINXP).

13 Address of 2 pre-chained save areas. The first save area can be used by the
exit to save registers on entry. The second save area is for use by routines
called from the exit.

14 Return address.

15 Entry point of exit routine.

Restriction: All addresses passed to the SCI Input Exit routine are valid only
until the exit routine returns to its caller (with the exception of the member
parameter list address). These addresses should never be stored and used after the
SCI Input Exit routine has returned. Doing so can cause unpredictable results,
because the storage pointed to by the addresses can change or be reassigned by
IMS after the exit returns. The member parameter list address is the exception to
this restriction. It is available until the storage is released by issuing the CSLSCBFR
FUNC=RELEASE request (for messages), or the CSLSCRQR FUNC=RETURN
request (for requests).

Contents of registers on exit

The SCI Input exit routine must preserve the contents of R13; it does not need to
preserve any other register's contents. Therefore, it can use the save areas pointed
to by R13 for any calls to other services as needed.

Register
Contents

13 The same value it had on entry to the SCI Input exit routine.

15 Return code

0 The message or request was successfully received.

4 The message or request was not received because the destination
member did not understand the function. If the input data is for a
request, SCI sends a response with return code=SRC_PARM
(parameter error) and reason code=SRSN_FUNCTION (invalid

© Copyright IBM Corp. 1974, 2017 647

function). SCI releases storage for any parameters that SCI
allocated. If the input data is for a message, SCI releases the
storage that contains the message.

8 The message or request was not received because of an internal
error. If the input data is for a request, SCI sends a response with
return code=SRC_SYSTEM (system error) and reason
code=SRSN_INTERNAL (internal error). SCI releases the storage
for any parameters that SCI allocated. If the input data is for a
message, SCI releases the storage that contains the message.

CSL SCI input exit parameter list

The following table describes the entry parameters for the parameter list header of
the Client SCI Input exit routine. The field name is provided, with its offset and
length in hexadecimal, and a brief description of the field.

Table 289. Client SCI input exit routine parameter list: parameter list header

Field name Offset Length Description

INXP_PVER X'00' X'04' Parameter list version number (X'00000001').

INXP_PLEN X'04' X'04' Total length of parameter list.

INXP_SCIVSN X'08' X'04' Version of SCI on the system from which this message or
request originated.

INXP_EXITPARM X'0C' X'08' Input exit routine member data that was passed to SCI
on the CSLSCREG request with the INPUTPARM
parameter. If no data was passed on the CSLSCREG
request, this field contains zeros.

INXP_PLEXNAME X'14' X'08' IMSplex name.

INXP_TIMESTMP X'1C' X'08' Time stamp representing the time the exit routine was
scheduled (in STCK format).

INXP_DATAOFF X'24' X'04' Offset of Message Data Section from the start of the
parameter list header.

INXP_SRCOFF X'28' X'04' Offset of Source Member Data Section from the start of
the parameter list header

The following table describes the entry parameters for the message data of the
Client SCI Input exit routine. The field name is provided, with its offset and length
in hexadecimal, and a brief description of the field.

Table 290. Client SCI input exit routine parameter list: message data

Field name Offset Length Description

INXP_FUNC X'00' X'04' Function code.

INXP_SFUNC X'04' X'04' Subfunction code.

648 Exit Routines

Table 290. Client SCI input exit routine parameter list: message data (continued)

Field name Offset Length Description

INXP_DATAFL1 X'08' X'01' Data Flag.

X'80' INXP_RQST

This bit indicates that the input data is a
request. When the receiver of the request has
completed processing the request, it must be
returned using the CSLSCRQR request. If the
bit is not set, the input data is a message. When
the receiver of the message has completed
processing the message, it should return the
storage to SCI using the CSLSCBFR request.

X'40' INXP_FTYPSND

When this bit is on, the function code in
INXP_FUNC is defined by the sender. When
this bit is off, the function code is defined by
the destination.

X'09' X'03' Reserved.

INXP_MBRPLCNT X'0C' X'04' The number of parameters (pairs of lengths and
addresses) passed in the member parameter list.

INXP_MBRPLPTR X'10' X'04' The address of the member parameter list.

X'14' X'04' Reserved.

INXP_RQSTTKN X'18' X'08' Request token. This field is valid only if bit INXP_RQST
is set (indicating that this is a request). The request token
is used to return the request to the sender when issuing
the CSLSCRQR request. If INXP_RQST is not set
(indicating this is a message), this field is unused.

X'20' X'04' Reserved.

X'24' X'04' Reserved.

The following table describes the entry parameters for the input source data of the
Client SCI Input exit routine. The field name is provided, with its offset and length
in hexadecimal, and a brief description of the field.

Table 291. Client SCI input exit routine parameter list: input source data

Field name Offset Length Description

INXP_SCITKN X'00' X'10' The SCITOKEN of the IMSplex member that is the
source of this data.

INXP_MBRNAME X'10' X'08' The name of the IMSplex member that is the source of
this data.

INXP_MBRVSN X'18' X'04' The version of the IMSplex member that is the source of
this data. If the source IMSplex member did not pass a
MBRVSN on the CSLSCREG request, this field is set to
zeros.

INXP_TYPE X'1C' X'02' The IMSplex member type of the IMSplex member that
is the source of this data.

X'1E' X'02' Reserved.

Chapter 13. CSL SCI Input exit routine 649

Table 291. Client SCI input exit routine parameter list: input source data (continued)

Field name Offset Length Description

INXP_SUBTYPE X'20' X'08' The subtype of the IMSplex member that is the source of
this data. If the source IMSplex member did not pass a
SUBTYPE on the CSLSCREG request, this field is set to
zeros.

INXP_JOBNAME X'28' X'08' The jobname of the IMSplex member that is the source
of this data.

INXP_USERID X'30' X'08' The user ID of the IMSplex member that is the source of
this data.

INXP_SRCFL1 X'38' X'01' Source Flag

X'80' This bit indicates that the member that sent this
data is authorized.

X'39' X'03' Reserved.

X'3C' X'04' Reserved.

X'40' X'04' Reserved.

X'44' X'04' Reserved.

650 Exit Routines

Chapter 14. CSL SCI Notify Client exit routine

The SCI Notify exit routine is driven whenever there is a change in the SCI status
of an IMSplex member. This allows a member to keep track of the status of other
members in the IMSplex.

The IMSplex member loads the exit routine and passes the exit routine address on
the CSLSCREG request. The exit is driven in the member's address space, either as
an SRB (for authorized members) or as an IRB (for non-authorized members).

The exit is driven whenever an IMSplex member:
v Completes a successful CSLSCREG FUNC=REGISTER
v Completes a successful CSLSCRDY FUNC=READY
v Completes a successful CSLSCQSC FUNC=QUIESCE
v Completes a successful CSLSCDRG FUNC=DEREGISTER
v Terminates without issuing a CSLSCDRG FUNC=DEREGISTER request.
v Is not reachable because the local SCI is not active.

Note that some fields are not available in the Notify exit parameter list when the
exit is driven for CSLSCDRG-related events (normal and abnormal termination)
and when an IMSplex member is not reachable.

If the local SCI is the IMSplex member for which the Notify exit is being driven,
the NXFP_LOCALSCI (X'40') bit in the NXFP_FLAG1 is set. When an SCI
terminates, processing on the z/OS image for the IMSplex that was managed by
the inactive SCI is limited until the SCI restarts:
v No messages or requests can be sent or received by any local IMSplex member.
v The SCI Notify exit cannot be driven for local IMSplex members for the

following events:
– CSLSCREG FUNC=REGISTER
– CSLSCRDY FUNC=READY
– CSLSCQSC FUNC=QUIESCE
– CSLSCDRG FUNC=DEREGISTER (non-authorized member)
– Termination without CSLSCDRG FUNC=DEREGISTER (non-authorized

member)
The Notify exit continues to be driven for normal and abnormal deregistrations
for authorized members.

v No new members can join the IMSplex on the z/OS image.
v No SCI requests can be processed by local IMSplex members (for example,

CSLSCQRY and CSLSCDRG requests).

When SCI restarts on the z/OS image, SCI re-registers each IMSplex member that
is still active. The SCITOKEN for each IMSplex member is still valid. The Notify
exit routine for each local member is driven for the following events:
v Registration for the local SCI
v Registration and Ready (if appropriate) for the local IMSplex members
v Ready for the local SCI
v Registration and Ready (if appropriate) for IMSplex members that are not local

© Copyright IBM Corp. 1974, 2017 651

Events for members that are not local can be scheduled before the Ready for the
local SCI; however, events for local members are all scheduled before the SCI
Ready event is scheduled. Local IMSplex members should not use SCI services
until they have received the Ready event for the local SCI.

Note: Since these events are sent using an SRB or an IRB, they might not be
received by the member in their logical order. This is especially true with
non-authorized members because the exit is called using an IRB. If the next event
occurs before the exit has been called by the IRB, the new IRB will interrupt the
previous IRB, and the notification for the newer event will be received first. For
example, the abnormal deregistration event could be received before the
NOT-REACHABLE event. Since the abnormal deregistration event should occur
later than the NOT-REACHABLE event, your program should be able to handle a
NOT-REACHABLE event for a member that has already been abnormally
deregistered.

In rare cases, authorized members might receive two deregistration notifications
for an authorized member. This is because SCI has a secondary path for authorized
member deregistration that might be used when XCF notifications are delayed for
some reason. If the delayed XCF notifications occur after the secondary path is
used, a second notification might be sent.

Subsection:
v “CSL SCI notify exit parameter list” on page 653

Contents of registers on entry

Register
Contents

0 Length in bytes of the parameter list pointed to by R1.

1 Address of SCI Notify exit parameter list (mapped by macro CSLSNFXP).

13 Address of 2 prechained save areas. The first save area can be used by the
exit to save registers on entry. The second save area is for use by routines
called from the exit.

14 Return address.

15 Entry point of exit routine.

Restriction: All addresses passed to the SCI Notify exit routine are valid only
until the exit routine returns to its caller. These addresses should never be stored
and used after the SCI Notify exit routine has returned. Doing so can cause
unpredictable results, because the storage pointed to by the addresses can be
changed or reassigned by IMS after the exit returns.

Contents of registers on exit

The SCI Notify exit routine must preserve the contents of register 13; it does not
need to preserve any other register's contents. Therefore, it is free to use the save
areas pointed to by register 13 for any calls to other services as needed.

Register
Contents

13 The same value it had on entry to the SCI Notify exit routine.

15 Return code

652 Exit Routines

|
|
|
|
|

0 Always set this to zero.

CSL SCI notify exit parameter list

The following table describes the parameter list header of the SCI Notify Client
exit routine. The field name is provided, with its offset and length in hexadecimal,
and a brief description of the field.

Table 292. SCI notify client exit routine parameter list header

Field name Offset Length Description

NFXP_PVER X'00' X'04' Parameter list version number (X'00000001').

NFXP_PLEN X'04' X'04' Total length of parameter list.

NFXP_EXITPARM X'08' X'08' Notify exit routine member data that was passed to SCI
on the CSLSCREG request with the NOTIFYPARM
parameter. If no data was passed on the CSLSCREG
request, this field contains zeros.

NFXP_PLEXNAME X'10' X'08' IMSplex name.

NFXP_SCIVSN X'18' X'04' SCI Version

NFXP_TIMESTMP X'1C' X'08' Time stamp representing the time the exit routine was
scheduled (in STCK format).

NFXP_SUBJOFF X'24' X'04' Offset of Subject Data Section.

X'28' X'04' Reserved.

The following table describes the subject data of the SCI Notify Client exit routine.
The field name is provided, with its offset and length in hexadecimal, and a brief
description of the field.

Table 293. SCI notify client exit routine parameter list - subject data

Field name Offset Length Description

NFXP_SCITKN X'00' X'10' The SCITOKEN of the member that is the subject of this
event.

NFXP_EVENT X'10' X'02' The event that initiated this notification.

1 CSLSCREG FUNC=REGISTER

2 CSLSCRDY FUNC=READY

3 CSLSCQSC FUNC=QUIESCE

4 CSLSCDRG FUNC=DEREGISTER

5 Termination without CSLSCDRG
FUNC=DEREGISTER

6 The member cannot be reached because the
local SCI is not active.

NFXP_FLAG1 X'12' X'01' The event that initiated this notification.

X'80' This bit indicates that the subject of this event is
authorized.

X'40' This bit indicates that the subject of this event is
the local SCI.

X'13' X'01' Reserved.

NFXP_MBRNAME X'20' X'08' The Name of the IMSplex member that is the subject of
this event.

Chapter 14. CSL SCI Notify Client exit routine 653

Table 293. SCI notify client exit routine parameter list - subject data (continued)

Field name Offset Length Description

NFXP_MBRVSN X'28' X'04' The Version of the IMSplex member that is the subject of
this event. If the subject IMSplex member did not pass a
MBRVSN on the CSLSCREG request, this field is set to
zeros.

This data is not filled in for:
v NFXP_EVENT= 4 (normal termination)
v NXFP_EVENT= 5 (abnormal termination)
v NXFP_EVENT=6 (not reachable)

NFXP_TYPE X'14' X'02' The IMSplex member Type of the IMSplex member that
is the subject of this event.

X'16' X'02' Reserved.

NFXP_SUBTYPE X'18' X'08' The Subtype of the IMSplex member that is the subject
of this event. If the subject IMSplex member did not pass
a SUBTYPE on the CSLSCREG request, this field is set to
zeros.

NFXP_JOBNAME X'18' X'08' The Jobname of the IMSplex member that is the subject
of this event.

This data is not filled in for:
v NFXP_EVENT= 4 (normal termination)
v NXFP_EVENT= 5 (abnormal termination)
v NXFP_EVENT=6 (not reachable)

654 Exit Routines

Part 5. IMS Connect exit routines

Code and modify IMS Connect exit routines to manage the messages to and from
the various types of IMS Connect TCP/IP clients or provide general functionality,
such as security and routing.

© Copyright IBM Corp. 1974, 2017 655

656 Exit Routines

Chapter 15. IMS Connect user message exit routines

For most types of IMS Connect clients, IMS Connect requires the use of a user
message exit routine to manage the messages that are received from and sent to
the client.

The user message exit routines can perform a number of tasks related to the
management of messages, including:
v Translating input messages into the protocol or format required by IMS and the

IMS Open Transaction Manager component
v Rerouting messages
v Checking security for input messages
v Returning user-defined messages in response to certain user-defined criteria

For security checking, the IMS Connect user message exit routines allow you to
call IMSLSECX, the security message exit routine, issue the RACF function in these
user message exit routines, or use the IMS Connect user RACF function.

This topic contains Product-Sensitive Programming Interface and Associated
Guidance Information.

Note: Do not issue any MVS calls in the user message exit that result in an MVS
WAIT because the MVS WAIT will halt all work on the port. If you modify the user
message exit routine and add code that results in an MVS WAIT, all work on the
TCP/IP PORT will halt until the WAIT has been posted. The user message exit
routines cannot be modified to free any storage passed to the exit routine, and IMS
Connect will not free any storage obtained by the user message exit routine when
the exit routine returns to IMS Connect. All storage obtained by IMS Connect must
be released by IMS Connect and cannot be freed by the user message exit routine
without causing failures.

User message exit routines HWSSMPL0 and HWSSMPL1
The user message exit routines HWSSMPL0 and HWSSMPL1 support IMS Connect
client applications that are provided by your installation or another third party.
The HWSSMPL0 and HWSSMPL1 exit routines manage the translation of message
headers on input and output messages, and provide you with a point of control to
modify, route, and check security for messages from and to the client.

The HWSSMPL0 and HWSSMPL1 exit routines and the related macros are shipped
with IMS both as source code and as load modules. If you do not need to modify
the exit routines, you can use the load modules. If you use the source code, you
must assemble and bind the source code after you modify it for your needs.

If you need customized exit routines to support your user-provided IMS Connect
clients, you can modify the source of either HWSSMPL0 or HWSSMPL1. You can
also create new exit routines by modifying the source and renaming the modified
exit routine. You can customize exit routines for specific clients without having to
combine the logic for numerous clients in a single exit routine. Each different exit
routine is identified by a unique name in the IRM_ID field of input messages.

© Copyright IBM Corp. 1974, 2017 657

The HWSSMPL0 and HWSSMPL1 user message exit routines provide the following
functions:
v Perform data translation of ASCII to EBCDIC for input messages.
v Perform data translation of EBCDIC to ASCII for output messages.
v Support for Unicode transaction codes and application data. IMS Connect only

translates the transaction code. Unicode application data is passed to the IMS
host application without being translated.

v Build the IMS Connect message structure (BPE and OTMA headers).
v If IMSLSECX (the security message exit) is bound with either of these message

exits, then the security message exit is called.
v Optionally, return a user-defined message with reason and return codes back to

a client application as a reply to an input message without terminating the
persistent socket connection. After sending the message, IMS Connect will
terminate or keep a socket connection open depending on the return code set in
the EXPREA_RETCODE parameter pointed to by register 1 at the READ
subroutine exit.

Important: IMS Connect does not support this function for Local Option
connections. Additionally, the message length must be from a minimum of 1 to
the maximum of 128 characters. If the specified message length is greater than
128, the message will be truncated to 128.

v By default, set the commit mode processing to 1 (send then commit) on input
messages.

v By default, set the synchronization processing to NONE (SYNC LEVEL =
NONE) on input messages, so that client is not required to return an
acknowledgment.

v Set RACF options or passwords.
v If no Client ID is passed to the exit, the message exit generates the Client ID.
v Analyze the following option specifications in the headers of messages:

– COMMIT MODE to override default.
– SYNC LEVEL to override default.
– LTERM to override logical terminal names
– MFS MOD name.
– ACK/NAK/DEALLOCATE.
– RACF options.

v Optionally, issue a DFS2082 message for both RESPONSE and NONRESPONSE
mode CM0 transactions when the IMS application does not reply to the IOPCB
or complete a message switch to another transaction.

By default, the COMMIT mode is set to 1, and the SYNC LEVEL is set to NONE.
These values can be overridden by supplying the COMMIT mode, the sync level,
or both in the IRM_FLG2 and IRM_FLG3 fields of the message prefix received
from the client. Alternatively, you can change the exit to set a different default
values for COMMIT mode and SYNC level.

If the input from the client is in ASCII, the IMS Connect HWSSMPL0 and
HWSSMPL1 exits translate ASCII to EBCDIC and build the required message
structure containing the OTMA headers for messages received from the client. This
exit performs the translation from EBCDIC to ASCII and removes the OTMA
headers for messages being transmitted to the client. You can also modify the
translation function of the exit routines to suit the needs of your client application.

658 Exit Routines

These user exits call the user-provided security exit if one is defined to this exit
and passes a parameter list in register 1.
Related concepts:

Ping support for IMS Connect (Communications and Connections)

User-defined messages (Communications and Connections)
Related tasks:

Changing RACF passwords by using client messages (Communications and
Connections)
Related reference:

HWSSMPL0 and HWSSMPL1 security actions (Communications and
Connections)

IRM structures for IMS Connect client messages (Communications and
Connections)

Input message from client and passed to message exit (Communications and
Connections)

Input message returned from message exit (Communications and Connections)

Output message passed to message exit (Communications and Connections)

Output message from message exit to client (Communications and

Connections)

HWSSMPL0 sample JCL
The following sample JCL is for the HWSSMPL0 user message exit.
//HWSSMPL JOB (ACTINF01),’PGMRNAME’,
// CLASS=A,MSGCLASS=Z,MSGLEVEL=(1,1),REGION=4M
//SMPL01 EXEC PGM=ASMA90,REGION=32M,
// PARM=’DECK,NOOBJECT,SIZE(MAX,ABOVE)’
//SYSLIB DD DSN=IMS.SDFSMAC,DISP=SHR
// DD DSN=SYS1.MODGEN,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
//SYSPUNCH DD UNIT=SYSVIO,DISP=(,PASS),SPACE=(TRK,(1,1,1)),
// DSN=&&TEXT(HWSSMPL0)
//SYSPRINT DD SYSOUT=*,
// DCB=(BLKSIZE=605),
// SPACE=(605,(100,50),RLSE,,ROUND)
//SYSUT1 DD UNIT=SYSDA,DISP=(,DELETE),
// DCB=BLKSIZE=13024,
// SPACE=(CYL,(16,15))
//SYSIN DD DSN=IMS.SDFSSMPL(HWSSMPL0),DISP=SHR
//SMPL02 EXEC PGM=IEWL,COND=(0,NE),
// PARM=’SIZE=(180K,28K),RENT,REFR,NCAL,LET,XREF,LIST,TEST’
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSN=IMS.SDFSRESL,DISP=SHR
//SYSUT1 DD UNIT=SYSVIO,DISP=(,DELETE),SPACE=(CYL,(10,1),RLSE)
//TEXT DD UNIT=SYSVIO,DISP=(OLD,DELETE),DSN=&&TEXT
//SYSLIN DD *
INCLUDE TEXT(HWSSMPL0)
ENTRY HWSSMPL0
MODE RMODE(24),AMODE(31)
NAME HWSSMPL0(R)
//

Chapter 15. IMS Connect user message exit routines 659

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_ping.htm#ims_ct_ping
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_user_defd_msgs.htm#ims_ct_user_defd_msgs
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_passwordchange.htm#ims_ct_passwordchange
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_passwordchange.htm#ims_ct_passwordchange
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_sec_smpl_exits.htm#ims_ct_sec_smpl_exits
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_sec_smpl_exits.htm#ims_ct_sec_smpl_exits
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_tcpcomm.htm#ims_ct_tcpcomm
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_tcpcomm.htm#ims_ct_tcpcomm
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_exit_inputmsg_client.htm#ims_ct_exit_inputmsg_client
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_exit_inputmsg_client.htm#ims_ct_exit_inputmsg_client
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_exit_ctoutputims_ct_exit_inputmsg_exit.htm#ims_ct_exit_ctoutputims_ct_exit_inputmsg_exit
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_exit_outputmsg_client.htm#ims_ct_exit_outputmsg_client
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_exit_outputmsg_exit.htm#ims_ct_exit_outputmsg_exit
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_exit_outputmsg_exit.htm#ims_ct_exit_outputmsg_exit

HWSSMPL1 sample JCL
The following sample JCL is for the HWSSMPL1 user message exit routine.
//HWSSMPL JOB (ACTINF01),’PGMRNAME’,
// CLASS=A,MSGCLASS=Z,MSGLEVEL=(1,1),REGION=4M
//SMPL01 EXEC PGM=ASMA90,REGION=32M,
// PARM=’DECK,NOOBJECT,SIZE(MAX,ABOVE)’
//SYSLIB DD DSN=IMS.SDFSMAC,DISP=SHR
// DD DSN=SYS1.MODGEN,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
//SYSPUNCH DD UNIT=SYSVIO,DISP=(,PASS),SPACE=(TRK,(1,1,1)),
// DSN=&&TEXT(HWSSMPL1)
//SYSPRINT DD SYSOUT=*,
// DCB=(BLKSIZE=605),
// SPACE=(605,(100,50),RLSE,,ROUND)
//SYSUT1 DD UNIT=SYSDA,DISP=(,DELETE),
// DCB=BLKSIZE=13024,
// SPACE=(CYL,(16,15))
//SYSIN DD DSN=IMS.SDFSSMPL(HWSSMPL1),DISP=SHR
//SMPL02 EXEC PGM=IEWL,
// PARM=’SIZE=(180K,28K),RENT,REFR,NCAL,LET,XREF,LIST,TEST’
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSN=IMS.SDFSRESL,DISP=SHR
//SYSUT1 DD UNIT=SYSVIO,DISP=(,DELETE),SPACE=(CYL,(10,1),RLSE)
//TEXT DD UNIT=SYSVIO,DISP=(OLD,DELETE),DSN=&&TEXT
//SYSLIN DD *
INCLUDE TEXT(HWSSMPL1)
ENTRY HWSSMPL1
MODE RMODE(24),AMODE(31)
NAME HWSSMPL1(R)
//

IMS TM Resource Adapter user message exit routine (HWSJAVA0)
Use the IMS TM Resource Adapter user message exit routine (HWSJAVA0) to edit
messages and perform custom security checking in support of the IMS Connect
client, IMS TM Resource Adapter.

The HWSJAVA0 exit routine and its related macros are provided as both load
modules and source code. Use the load module if you do not want to alter the
way HWSJAVA0 operates. Edit the source code if you want to use a modified
version of the exit in your installation. After modifying the source code, you must
assemble and link edit it to replace the pre-assembled load module in your system.

The HWSJAVA0 exit routine is bound into the IMS.SDFSRESL data set. This exit
does not perform a translation or build to the OTMA headers. Both the translation
and insertion or deletion of the OTMA header is done by IMS TM Resource
Adapter.

By default, the HWSJAVA0 exit routine sets the COMMIT mode to 1, and the
SYNC level to NONE. However, IMS TM Resource Adapter can override these
settings.

The HWSJAVA0 exit routine can return user-defined messages and return and
reason codes when user-defined criteria are met. The HWSJAVA0 exit routine can
also request that IMS Connect keep the socket connection open after returning a
user-defined message depending on the return code set in the EXPREA_RETCODE
parameter pointed to by register 1 at the READ subroutine exit.

660 Exit Routines

Important: IMS Connect does not support user-defined messages for Local Option
connections. Additionally, the message length must be from a minimum of 1 to the
maximum of 128 characters. If the specified message length is greater than 128, the
message will be truncated to 128.

This user exit also calls the user-provided security exit (IMSLSECX) if one is
defined to this exit and passes a parameter list in register 1.
Related concepts:

Ping support for IMS Connect (Communications and Connections)

User-defined messages (Communications and Connections)
Related tasks:

Changing RACF passwords by using client messages (Communications and
Connections)
Related reference:
“z/OS TCP/IP IMS Listener security exit (IMSLSECX)” on page 692

Message structures (Communications and Connections)

HWSJAVA0 sample JCL
The following sample JCL is for the HWSJAVA0 user message exit routine.
//HWSJAVA JOB (ACTINF01),’PGMRNAME’,
// CLASS=A,MSGCLASS=Z,MSGLEVEL=(1,1),REGION=4M
//JAVA01 EXEC PGM=ASMA90,REGION=32M,
// PARM=’DECK,NOOBJECT,SIZE(MAX,ABOVE)’
//SYSLIB DD DSN=IMS.SDFSMAC,DISP=SHR
// DD DSN=SYS1.MODGEN,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
//SYSPUNCH DD UNIT=SYSVIO,DISP=(,PASS),SPACE=(TRK,(1,1,1)),
// DSN=&&TEXT(HWSJAVA0)
//SYSPRINT DD SYSOUT=*,
// DCB=(BLKSIZE=605),
// SPACE=(605,(100,50),RLSE,,ROUND)
//SYSUT1 DD UNIT=SYSDA,DISP=(,DELETE),
// DCB=BLKSIZE=13024,
// SPACE=(CYL,(16,15))
//SYSIN DD DSN=IMS.SDFSSMPL(HWSJAVA0),DISP=SHR
//JAVA02 EXEC PGM=IEWL,
// PARM=’SIZE=(880K,64K),RENT,REFR,NCAL,LET,XREF,LIST,TEST’
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSN=IMS.SDFSRESL,DISP=SHR
//SYSUT1 DD UNIT=SYSVIO,DISP=(,DELETE),SPACE=(CYL,(10,1),RLSE)
//TEXT DD UNIT=SYSVIO,DISP=(OLD,DELETE),DSN=&&TEXT
//SYSLIN DD *
INCLUDE TEXT(HWSJAVA0)
ENTRY HWSJAVA0
NAME HWSJAVA0(R)
//

SOAP Gateway exit routine (HWSSOAP1)
The IMS Connect SOAP Gateway exit routine (HWSSOAP1) is required by IMS
Connect if you use the IMS Enterprise Suite SOAP Gateway.

The HWSSOAP1 exit routine is shipped with IMS Connect and link-edited into the
IMS.SDFSRESL data set. The source code for HWSSOAP1 is not shipped and
cannot be modified or replaced.

Chapter 15. IMS Connect user message exit routines 661

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_ping.htm#ims_ct_ping
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_user_defd_msgs.htm#ims_ct_user_defd_msgs
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_passwordchange.htm#ims_ct_passwordchange
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_passwordchange.htm#ims_ct_passwordchange
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_exit_msgstructures.htm#ims_ct_exit_msgstructures

The functionality of the HWSSOAP1 exit routine is similar to the HWSSMPL1
sample exit routine, except that HWSSOAP1 provides additional functionality to
support the XML message conversion function that IMS Connect provides for the
SOAP Gateway client. The IMS Connect HWSSOAP1 exit routine builds the
required message structure containing the required internal headers for messages
received from the client. HWSSOAP1 exit removes the internal headers for
messages being transmitted to the client.
Related concepts:

Ping support for IMS Connect (Communications and Connections)

WSDL-to-PL/I segmentation APIs exit routine (DFSPWSHK)
The IMS WSDL-to-PL/I segmentation API exit routine (DFSPWSHK) gets control
during execution of DFSPWSIO APIs DFSXGETS, DFSXSETS, DFSQGETS, and
DFSQSETS.

The DFSPWSIO APIs are used and referenced by the PL/I application templates
that are generated by IBM Developer for System z® for the WSDL-to-PL/I
top-down development scenario in IMS Enterprise Suite SOAP Gateway. You can
use the DFSPWSHK exit routine to inspect, modify, or replace the buffer that
contains the current SOAP header, body, or fault data structure before it is sent
(DFSXSETS, DFSQSETS) or received (DFSXGETS, DFSQGETS). The programming
pattern that is employed by this exit routine is that of an event handler where
specific events are received from DFSPWSIO APIs (see the dfs_in_event_type
parameter).

Because the DFSPWSIO APIs are invoked in both IMS Connect (DFSXSETS,
DFSXGETS) and IMS message processing dependent regions (DFSQGETS,
DFSQSETS), the DFSPWSHK exit routine must reside in a load library that is in
STEPLIB of both dependent region types.

About this routine

The following table shows the attributes of the IMS WSDL-to-PL/I segmentation
API exit routine.

Table 294. IMS WSDL-to-PL/I segmentation API exit routine attributes

Attribute Description

IMS environments DB/DC, DBCTL, DCCTL.

Naming convention The user exit routine must be named DFSPWSHK.

Binding This exit routine must be linked as serially reusable
(REUS=SERIAL).

IMS callable services This exit routine is not eligible to use IMS callable services.

Sample routine
location

IMS.SDFSSRC distribution library.

This exit routine must be written as a FETCHABLE, EXTERNAL PL/I procedure
and must not be linked with a module that contains a MAIN procedure.

662 Exit Routines

|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|

||

||

||

||

||
|

||

|
|
|

|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_ping.htm#ims_ct_ping

Parameters

The following table describes the parameters to this exit routine.

Table 295. DFSPWSHK exit routine parameter list

Name Declaration Description

dfs_in_version char(36) byaddr
inonly

A read-only-string-by-reference that contains the version of the DFSPWSIO
segmentation APIs that invoked this event handler. The version is
represented as a 36-character GUID.

dfs_in_event_type fixed bin(31)
byvalue inonly

A read-only-integer-by-value that indicates the current event type for
which this event handler is being invoked. Use the dfs_in_struct* and
dfs_out_struct* parameters to inspect, modify, or replace the data structure
buffer that is associated with the current event. The following event types
are supported:

v dfs_event_type=1 (DFSXSETS): This event type is reported immediately
before a data structure buffer that was supplied on a call to the
DFSXSETS API is segmented and copied into the IMS Connect output
buffer as part of an IMS request message.

v dfs_event_type=2 (DFSQGETS): This event type is reported immediately
after a data structure buffer has been recovered from one or more
segments of an IMS request message but before the data structure buffer
is returned to the caller of the DFSQETS API.

v dfs_event_type=3 (DFSQSETS): This event type is reported immediately
before a data structure buffer that was supplied on a call to the
DFSQSETS API is segmented and inserted into the IMS Message Queue
as part of an IMS response message.

v dfs_event_type=4 (DFSXGETS): This event type is reported immediately
after a data structure buffer has been recovered from segments of an
IMS response message but before the data structure buffer is returned to
the caller of the DFSXGETS API.

dfs_in_namespace wchar(1024)
varying byaddr

A read-only-string-by-reference that contains the target namespace of the
service that is associated with the current event.

dfs_in_service_name wchar(512)
varying byaddr
inonly

A read-only-string-by-reference that contains the name of the service that is
associated with the current event.

dfs_in_port_name wchar(512)
varying byaddr
inonly

A read-only-string-by-reference that contains the name of the port that is
associated with the current event.

dfs_in_operation_name wchar(512)
varying byaddr
inonly

A read-only-string-by-reference that contains the name of the operation
that is associated with the current event.

dfs_in_struct_type fixed bin(31)
byvalue inonly

A read-only-integer-by-value that indicates the type of the input structure
that is associated with the current event. The following structure types are
supported:

v dfs_in_struct_type=1: ASOAP Header structure.

v dfs_in_struct_type=2: A SOAP Body structure.

v dfs_in_struct_type=3: A SOAP Fault structure.

dfs_in_struct_name wchar(100)
varying byaddr
inonly

A read-only-string-by-reference that contains the name of the structure that
is associated with the current event.

dfs_in_struct_ptr pointer byvalue
inonly

A read-only-pointer-by-value to a buffer which contains the structure that
is associated with the current event.

Chapter 15. IMS Connect user message exit routines 663

|

|

||

|||

||
|
|
|
|

||
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

||
|
|
|

||
|
|

|
|

||
|
|

|
|

||
|
|

|
|

||
|
|
|
|

|

|

|

||
|
|

|
|

||
|
|
|

Table 295. DFSPWSHK exit routine parameter list (continued)

Name Declaration Description

dfs_in_struct_size fixed bin(31)
byvalue inonly

A read-only-integer-by-value that provides the length in bytes of the
structure that resides in the buffer pointed to by the dfs_in_struct_ptr
parameter.

dfs_in_struct_state fixed bin(31)
byvalue inonly

A read-only-integer-by-value that indicates the state of the input structure
buffer (see parameters dfs_in_struct*) that is associated with the current
event. States other than the default are the result of previous calls to this
event handler. The following states are supported:

v dfs_in_struct_state=0 (default): The contents of the buffer have not been
modified, nor has the buffer been replaced with a newly-allocated one.

v dfs_in_struct_state=1: The contents of the buffer have been modified,
but the buffer has not been replaced with a newly-allocated one.

v dfs_in_struct_state=2: The contents of the buffer have not been modified,
but the buffer has been replaced with a newly-allocated one.

v dfs_in_struct_state=3: The contents of the buffer have been modified,
and the buffer has been replaced with a newly-allocated one.

dfs_out_struct_ptr pointer byaddr A pointer-by-reference in which to write the address of a buffer that
contains the modified or unmodified structure that is associated with the
current event. The address can be that of the original buffer that is pointed
to by the dfs_in_struct_ptr parameter. Or it can be that of a
newly-allocated replacement buffer. The lifetime of the replacement buffer
is managed by DFSPWSIO.

Default value := dfs_in_struct_ptr
Restriction: If Language Environment callable services are used to allocate
a new buffer, then this module must be compiled with PL/I option
CHECK(NOSTORAGE).

dfs_out_struct_state fixed bin(31)
byaddr

An integer-by-reference in which to specify the state of the structure buffer
that is pointed to by the dfs_out_struct_ptr parameter. This state represents
an update to the state that is provided in the dfs_in_struct_state parameter.
The following states are supported:

v dfs_out_struct_state=0: The contents of the buffer have not been
modified, nor has the buffer been replaced with a newly-allocated one.

v dfs_out_struct_state=1: The contents of the buffer have been modified,
but the buffer has not been replaced with a newly-allocated one.

v dfs_out_struct_state=2: The contents of the buffer have not been
modified, but the buffer has been replaced with a newly-allocated one.

v dfs_out_struct_state=3: The contents of the buffer have been modified,
and the buffer has been replaced with a newly-allocated one.

Default value := dfs_in_struct_state

Related concepts:

WSDL-to-PL/I segmentation APIs for adding business logic in generated PL/I
templates (Application Programming)
Related reference:

Include file DFSPWSH (Application Programming APIs)

IBM WebSphere DataPower message exit routine (HWSDPWR1)
The IBM WebSphere® DataPower® message exit routine provides IMS Connect
support for DataPower SOA Appliances.

664 Exit Routines

|

|||

||
|
|
|
|

||
|
|
|
|
|

|
|

|
|

|
|

|
|

|||
|
|
|
|
|

|
|
|
|

||
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|

|
|

|

|

|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_pli_topdown_dfspwsio.htm#ims_pli_topdown_dfspwsio
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_pli_topdown_dfspwsio.htm#ims_pli_topdown_dfspwsio
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apr/ims_dfspwsio_apis_dfspwsh.htm#includefiledfspwsh

The HWSDPWR1 exit routine is shipped with IMS Connect and link-edited into
the IMS.SDFSRESL data set. The source code for HWSDPWR1 is not shipped and
cannot be modified or replaced.

This exit routine performs the same basic functions as the HWSSMPL1 exit routine,
but with modifications to support the DataPower message format. The
HWSDPWR1 exit adds the required internal message headers to incoming
messages (received from a DataPower client) and removes them from outgoing
messages (sent to a DataPower client).

IMS Connect OM Command exit routines (HWSCSLO0 and
HWSCSLO1)

The IMS Connect OM Command exit routines (HWSCSLO0 and HWSCSLO1) are
required by IMS Connect clients that submit IMS commands from a TCP/IP
network to the Operations Manager (OM) component of the IMS Common Service
Layer (CSL). IBM Management Console for IMS and Db2 for z/OS, for example, is
an OM command client that requires the HWSCSLO1 exit routine.

HWSCSLO0 and HWSCSLO1 are delivered as object code only (OCO) with IMS
Connect. The exit routines are formatted OCO to allow IMS Connect and the user
message exit routines to synchronize without requiring simultaneous upgrades of
other products when message exit functions change.

If your installation uses an IMS Connect client to communicate with OM, you must
include the HWSCSLO0 or the HWSCSLO1 exit routine name in the EXIT=
parameter of the TCPIP statement.

The HWSCSLO0 exit routine provides the following functions:
v Performs data translation of ASCII to EBCDIC for input messages.
v Performs data translation of EBCDIC to ASCII for output messages.
v Builds the IMS Connect message structure (BPE and OM headers required

byIMS Connect) for input messages.
v Removes the IMS Connect internal OM headers for output messages.
v Defaults to COMMIT MODE=1.
v Defaults to SYNCH LEVEL=NONE.
v Analyzes the following message header options:

– COMMIT MODE override of the default
– SYNC LEVEL override of the default
– If no client ID is passed to the exit, then the message exit generates the client

ID

The HWSCSLO1 exit routine provides the following functions:
v Performs no translation for output messages.
v Builds the IMS Connect message structure (BPE and OM headers required by

IMS Connect) for input messages.
v Removes the IMS Connect internal OM headers for output messages.
v Defaults to COMMIT MODE=1.
v Defaults to SYNCH LEVEL=NONE.
v Analyzes the following message header options:

– COMMIT MODE override of the default

Chapter 15. IMS Connect user message exit routines 665

|
|
|

|
|
|
|
|

|

|

|
|
|
|
|

|
|
|
|

|
|
|

|

|

|

|
|

|

|

|

|

|

|

|
|

|

|

|
|

|

|

|

|

|

– SYNC LEVEL override of the default
– If no client ID is passed to the exit, then the message exit generates the client

ID.

HWSCSLO0 and HWSCSLO1 exit routines are shipped with IMS Connect and
bound into the IMS.SDFSRESL data set. You must use one or both of the exit
routines to support IMS Connect clients that issue OM commands. The source code
for HWSCLSO0 and HWSCSLO1 are not shipped and cannot be modified or
replaced.

The COMMIT mode is set to 1, and the SYNC level is set to NONE. These values
can be overridden by supplying either the COMMIT mode, the sync level, or both
in the IRM_F2 and IRM_F3 fields in the user section of the IRM prefix of the
message received from the IMS Connect client.

The HWSCSLO0 and HWSCSLO1 exit routines translate ASCII to EBCDIC and
build the required message structure containing the required internal headers for
messages received from the client. The HWSCSLO0 exit routine performs the
translation from EBCDIC to ASCII and removes the internal headers for messages
being transmitted to the client. The HWSCSLO1 exit routine does not perform any
translation on the output data, but it does remove the internal headers for
messages being transmitted to the client.

If you do not use an IMS Connect client that issues OM commands, you do not
need to specify the HWSCSLO0 or HWSCSLO1 exit routine name in the TCPIP
statement EXIT= parameter.
Related reference:

Input message from client and passed to message exit (Communications and
Connections)

Output message from message exit to client (Communications and
Connections)

Format of user portion of IRM for HWSSMPL0, HWSSMPL1, and user-written
message exit routines (Communications and Connections)

IMS Connect Port Message Edit exit routine
The IMS Connect Port Message Edit exit routine receives control between IMS
Connect and the z/OS TCP/IP stack to modify the format of input and output
messages when the message format required by the client application program is
inconsistent with the format required by IMS Connect.

You might use the Port Message Edit exit routine if you have application programs
that access IMS Connect from platforms that prevent the application programs
from conforming to the standard message formats supported by IMS Connect.

The Port Message Edit exit routine is assigned to an individual, unique port. After
a port is defined as using the Port Message Edit exit routine, all messages received
and sent to the client on that port are passed to the exit routine.

On input, the Port Message Edit exit routine receives control after IMS Connect has
received the complete message from TCP/IP, but before IMS Connect starts
processing the message.

666 Exit Routines

|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|

|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_exit_inputmsg_client.htm#ims_ct_exit_inputmsg_client
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_exit_inputmsg_client.htm#ims_ct_exit_inputmsg_client
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_exit_outputmsg_exit.htm#ims_ct_exit_outputmsg_exit
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_exit_outputmsg_exit.htm#ims_ct_exit_outputmsg_exit
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_smplexit_irm.htm#ims_ct_smplexit_irm
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_smplexit_irm.htm#ims_ct_smplexit_irm

On output, the Port Message Edit exit routine receives control after IMS Connect
has formatted the output message but before the message is sent to TCP/IP.

Attention: Do not issue any z/OS calls in the user message exit that result in an
MVS WAIT. If the exit routine triggers an MVS WAIT, all work on the TCP/IP port
stops until the WAIT is posted.

You specify a Port Message Edit exit routine as a 1- to 8-character name on the
EDIT parameter of the PORT keyword in the TCP/IP configuration statement in
the HWSCFGxx PROCLIB member.

The Port Message Edit exit routine runs as a type-2 BPE exit and can be managed
by the BPE commands, such as DISPLAY USEREXIT and REFRESH USEREXIT. As
a type-2 BPE exit routine, the Port Message Edit exit routine is defined to BPE
dynamically and you do not need to define it during BPE configuration.

Entry to and exit from this exit routine are recorded as trace events for the IMS
Connect Event Recorder exit routine (HWSTECL0).

IMS provides the source code for a sample Port Message Edit exit routine,
HWSPIOX0.

The Port Message Edit exit routine is not supported for the following clients:
v IMS Universal database driver clients that use DRDA ports that are defined on

the IMS Connect ODACCESS configuration statement.
v User-written DRDA source servers that use DRDA ports that are defined on the

IMS Connect ODACCESS configuration statement.
v SSL clients that use a SSL port defined on the IMS Connect TCPIP configuration

statement.
v Local option clients

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. On
entry to the IMS Connect Port Message Edit exit routine, R1 points to a Standard
BPE user exit parameter list. The field UXPL_EXITPLP in this list contains the
address of the IMS Connect Port Message Edit exit routine parameter list (mapped
by the HWSEXPIO macro). The registers contain the following contents:

Register Contents

1 Address of BPE User Exit Parameter list (mapped by macro BPEUXPL)

13 Pointer to first of two pre-chained save areas

14 Return address

15 Entry point address

Parameter list

The following table describes the IMS Connect Port Message Edit exit routine
parameters:

Chapter 15. IMS Connect user message exit routines 667

Table 296. IMS Connect Port Message Edit exit routine parameter list

Field Offset Length Contents

PIOPRM_FUNCTION X'00' 4 Call type:

'INIT' INITIALIZATION
'READ' INPUT FROM CLIENT
'XMIT' OUTPUT TO CLIENT
'TERM' TERMINATION

PIOPRM_FUNC_LVL X'04' 1 Exit function level

PIOPRM_FUNC_BASE X'01' Base function

PROPRM_FLAG1 X'05' 1 Flag byte

PIOPRM_FLG1UPD X'80' Message was updated

PIOPRM_FLG1IPV6 X'40' IPV6 enabled, map with CLNT_IPV6

PIOPRM_RESV1 X'06' 2 Reserved

PIOPRM_PORT X'08' 8 IMS Connect port number

PIOPRM_XIB X'10' 4 Address of exit interface block

PIOPRM_RETCODE X'14' 4 Return code

PIOPRM_RSNCODE X18' 4 Reason code

PIOPRM_END_COMM X'1C' 0

The following table describes the IMS Connect Port Message Edit exit routine
initialization parameters:

Table 297. IMS Connect Port Message Edit exit routine initialization parameter list

Field Offset Length Contents

PIOPRM_BUFSIZE X'1C 4 Buffer size required for updated message

The following table describes the IMS Connect Port Message Edit exit routine
READ and XMIT parameters:

Table 298. IMS Connect Port Message Edit exit routine READ and XMIT parameter list

Field Offset Length Contents

PIOPRM_ORG_BUF X'1C' 4 Address of original message buffer

PIOPRM_ORG_SIZE X'20' 4 Size of original message

PIOPRM_NEW_BUF X'24' 4 Address of updated message buffer

PIOPRM_NEW_SIZE X'28' 4 Size of updated message

PIOPRM_CLIENTID X'2C' 0 Client ID structure

PIOPRM_CLNT_IPV4 X'2C' 8 IPV4 mapping

PIOPRM_CLNT_4FMLY X2E'' 2 Client family type

PIOPRM_CLNT_4PORT X30'' 2 Client port

PIOPRM_CLNT_4IPA X'2C' 4 Client IP address

PIOPRM_CLNT_IPV6 X'2C' 28 IPV6 mapping

PIOPRM_CLNT_6LEN X'2C' 1 Client socket length

PIOPRM_CLNT_6FMLY X'2D' 1 Client family type

PIOPRM_CLNT_6PORT X'2E' 2 Client port

668 Exit Routines

Table 298. IMS Connect Port Message Edit exit routine READ and XMIT parameter
list (continued)

Field Offset Length Contents

PIOPRM_CLNT_6FLOW X'30' 4 Client flow information

PIOPRM_CLNT_6IPA X'34' 16 Client IP address

PIOPRM_CLNT_6SCOP X'44' 4 Client scope ID

Contents of registers on exit

The exit must restore all registers on returning to the caller.

IMS Connect communications with user message exits
When the IMS Connect starts, it loads user message exits one at a time and calls
each user message exit INIT subroutine.

Example: USREXIT1, USREXIT2, and USREXIT3 are defined in the HWSCFG
parameter of the IMS Connect startup JCL as follows:
TCPIP=(HOSTNAME=...,EXIT=(USREXIT1,USREXIT2,USREXIT3),...)

IMS Connect loads USREXIT1 first and calls the USREXIT1 INIT subroutine. After
successfully loading USREXIT1, IMS Connect loads USREXIT2 and calls the
USREXIT2 INIT subroutine, and then repeats this process for USREXIT3. Any
unsuccessful loading or INIT failure prevents IMS Connect from connecting with
TCP/IP.

Important: If you define a user exit name in the IMS Connect configuration
member, but that user exit cannot be loaded during IMS Connect startup, the job
abends with Abend 806, RC=4.

In order to provide full user exit support in the IMS Connect environment, every
user exit routine must include the subroutines INIT, READ, XMIT, TERM, and
EXER. IMS Connect only supports assembler language exits.

When a user exit takes control, it saves the contents of the registers and restores
them when returning to the caller. IMS Connect provides a 1 KB buffer in the
parameter list to be used for this purpose.

Register contents on subroutine entry

The following table provides a brief description of the contents of the register on a
subroutine entry.

Table 299. Register contents on subroutine entry

Register Contents

1 Pointer to a parameter list that is defined in the HWSEXPRM macro.

14 Return address of IMS Connect.

15 Entry point address to the user exit routine. The entry point name and
load module name for a user exit routine must be the same as the name
used for the user exit routine in HWSCFG.

Chapter 15. IMS Connect user message exit routines 669

Register contents on subroutine exit

The following table provides a brief description of the contents of the register on a
subroutine exit.

Table 300. Register contents on subroutine exit

Register Contents

1 Pointer to a parameter list that is defined in the HWSEXPRM macro.

INIT subroutine
After a user exit has been successfully loaded, the INIT subroutine for that user
exit is called and a parameter list is passed to that user exit.

Contents of parameter list pointed to by register 1 at INIT
subroutine entry

The following table lists the contents of the parameter list that is passed to the user
exit at entry.

Table 301. Contents of parameter list pointed to by register 1 at INIT subroutine entry

Field Length Meaning

EXPRM_FUNCTION 4 bytes Character string of value INIT.
Specifies that the function to be
performed is: Initialize user
exit.

EXPRM_TOKEN 4 bytes Address of a 1 KB buffer for user
exit use. The user exit can use
this storage for a save area and
for local variables.

EXPRM_XIB 4 bytes Address of XIB (exit interface
block).

The user exit finishes all its initialization processes here. It returns two MSGID
identifiers for the messages that it is to handle, as well as the increase to the
output buffer size for its READ, XMIT, and EXER subroutines. The user exit
returns the increase in buffer size, but not the actual buffer size. The only reason to
return anything other than 0 is to allow the exit to add data to the data portion of
the message. The storage required for the BPE headers and OTMA headers is
computed by IMS Connect. Typically, one of the MSGIDs is used by ASCII clients
and the other by EBCDIC clients. IMS Connect computes the actual size of the
output buffer, and it allocates the buffer size before it passes control to the user
exit for READ, XMIT and EXER. The two identifiers can take any value, in
EBCDIC or ASCII, other than the reserved MSGIDs (see "Important," which
follows), provided that the values are both unique among user exits called by a
given IMS Connect. Blanks and binary 0 are significant. The IMS Connect saves
these identifiers to identify the owner of the incoming request messages. Any
conflict in the identifiers must be resolved before a TCP/IP connection can be
made.

Important: The following MSGIDs are reserved.

HWSJAV
Supports IMS TM resource adapter clients

670 Exit Routines

HWSCSL
Supports the IMSplex connection that uses the HWSCSLO0 user message
exit

HWSCS1
Supports the IMSplex connection that uses the HWSCSLO1 user message
exit

HWSOA1
Supports SOAP Gateway clients that use the HWSSOAP1 user exit

HWSDP1
Supports IBM® WebSphere® DataPower® SOA Appliance clients that use
the HWSDPWR1 user exit

SAMPLE
Supports non-IMS TM resource adapter clients that use the HWSSMPL0
user exit

SAMPL1
Supports non-IMS TM resource adapter clients that use the HWSSMPL1
user exit

If duplicate MSGID identifiers exist, one of the user exits that uses the conflicting
identifier must either be dropped or be rewritten with a unique identifier. A system
administrator should coordinate the assignment of MSGIDs.

If the INIT subroutine fails to complete the initialization function successfully, the
IMS Connect does not connect with TCP/IP. A system programmer can start the
connection after the problem has been fixed by issuing the OPENPORT command.
When all user exits have been loaded and initialized, the IMS Connect is ready to
receive messages from TCP/IP application programs. The IMS Connect uses the
TCP/IP Socket API to receive stream data across the net. The completion of a
message is determined by its MSGLength value returned by TCP/IP to IMS Connect.
The IMS Connect receives data up to the value specified in MSGLength and uses
MSGID to determine which user exit receives control for processing the request
message.

Contents of parameter list pointed to by register 1 at INIT
subroutine exit

The following table lists the contents of the parameter list that is pointed to by
Register 1 and then passed to the user exit during exit.

Table 302. Contents of parameter list pointed to by register 1 at INIT subroutine exit

Field Length Meaning

Reserved 68 bytes Reserved space.

EXPINI_RETCODE 4 bytes Binary. Specifies the return code,
which can be one of the
following:

v 0=INIT function was
successful.

v 4=INIT function was not
successful.

EXPINI_RSNCODE 4 bytes Binary. Specifies the reason code.

Chapter 15. IMS Connect user message exit routines 671

|
|
|

Table 302. Contents of parameter list pointed to by register 1 at INIT subroutine
exit (continued)

Field Length Meaning

EXPINI_STRING1 8 bytes Character string. Specifies the
first MSGID that clients can use
to identify this user exit. This
MSGID could be used for
EBCDIC clients.

EXPINI_STRING2 8 bytes Character string. Specifies the
second MSGID that clients can
use to identify this user exit. This
MSGID could be used for ASCII
clients.

EXPINI_BUFINC 4 bytes Binary. Specifies the increase size
to the output buffer needed to
allow the exit to denote that data
will be moved from the exit input
buffer to the output buffer to add
data to the message if required.

Field EXPINI_BUFINC is an
increased size for input and
output messages above what is
needed for the BPE and OTMA
headers. If, for example, you
want to have the exit add data to
the message either on input or
output, then there will be increase
in buffer size.

READ subroutine
After a complete request message that originated at a TCP/IP client has been
received, control is passed to the READ subroutine in the user exit whose MSGID
matches the MSGID of that request message and a parameter list is passed to that
user exit.

Subsections:
v “Contents of parameter list pointed to by register 1 at READ subroutine entry”
v “Contents of parameter list pointed to by register 1 at READ subroutine exit” on

page 674

Contents of parameter list pointed to by register 1 at READ
subroutine entry

The following table lists the contents of the parameter lists which are pointed to by
Register 1 during the READ subroutine entry.

Table 303. Contents of parameter list pointed to by register 1 at READ subroutine entry

Field Length Meaning

EXPRM_FUNCTION 4 bytes Character string of value READ.
Specifies that the function to be
performed is: Read client data
and convert it to OTMA format.

672 Exit Routines

Table 303. Contents of parameter list pointed to by register 1 at READ subroutine
entry (continued)

Field Length Meaning

EXPRM_TOKEN 4 bytes Address of a 1 KB buffer for user
exit use. The user exit can use
this storage for a save area and
local variables.

EXPRM_XIB 4 bytes Address of XIB (exit interface
block).

EXPREA_INBUF 4 bytes Address of the input buffer.

EXPREA_IBUFSIZE 4 bytes Binary. Specifies the size of the
input buffer.

EXPREA_OUTBUF 4 bytes Address of the output buffer.

EXPREA_OBUFSIZE 4 bytes Binary. Specifies the size of the
output buffer.

EXPREA_FLAG1 1 byte Data string flag:

v X'80' - Input data contains a
MSGID matching
EXPINI_STRING1.

v X'40' - Input data contains a
MSGID matching
EXPINI_STRING2.

EXPREA_FLAG2 1 byte Data flag:

v X'01' - Data moved by exit
from INBUF to OUTBUF.

v X'02' - If this EXPREA_IPV6 bit
is turned on, IPV6 is enabled.
Map EXPREA_SOCKET6 to
AF-INET6 socket address
structure.

v X'04' - EXPREA_FL2SOCD
indicates that Socket Descriptor
is present in
EXPREA_SOCDESC.

v X'40' - First message indicator.

Reserved 2 bytes Reserved space.

EXPREA_RACFID 8 bytes Character string. Specifies the
default user ID for RACF.

The following 28 bytes have two definitions: one definition is for a 4 byte IPV4 address
(EXPREA_NAMEID) and another definition is for a 16 byte IPV6 address
(EXPREA_SOCKET6).

For a 4 byte IPV4 address:

EXPREA_NAMEID 0 bytes Pointer referenced to the next 16
bytes.

EXPREA_FAMILY 2 bytes Binary. Specifies the client family
type.

EXPREA_PORT 2 bytes Binary. Specifies the client port
number.

EXPREA_ADDRESS 4 bytes Client's IP address.

EXPREA_RESERVE 8 bytes Reserved space.

Chapter 15. IMS Connect user message exit routines 673

|

Table 303. Contents of parameter list pointed to by register 1 at READ subroutine
entry (continued)

Field Length Meaning

12 bytes Reserved.

For a 16 byte IPV6 address:

EXPREA_SOCKET6 0 bytes Map to the AF_INET6 socket
address structure (if the
EXPREA_IPV6 bit of
EXPREA_FLAG2 is turned on).

EXPREA_6LEN 1 byte Address of socket length.

EXPREA_6FAMILY 1 byte Address of family.

EXPREA_6PORT 2 bytes Port number used by the
application.

EXPREA_6FLOW 4 bytes Flow information.

EXPREA_6ADDR 16 bytes INET address (NETID).

EXPREA_6SCOPE 4 bytes Scope ID.

EXPREA_IBUFSIZE and EXPREA_OBUFSIZE are the sizes of the input buffer and output
buffer, respectively. These sizes are not related to the actual length of the input
data and output data. The input buffer contains an exact copy of the data that was
received from the client. The user exit might need to perform an ASCII-to-EBCDIC
conversion on the data so that the data can be properly interpreted by the IMS
application. The user exit can use EXPREA_FLAG1 to determine where the data
originated and whether additional processing is required by the exit.

IMS Connect also supplies the default RACF user ID and the client's TCP/IP
connection information to the user exit. At this point, the user exit might edit or
filter its client's input data, then translate that data to OTMA message segments
and place them in the output buffer. The user exit also must specify the length of
the output data in EXPREA_DATALEN.

Contents of parameter list pointed to by register 1 at READ
subroutine exit

The following table lists the contents of the parameter list that are pointed to by
Register 1 during the subroutine exit.

Table 304. Contents of parameter list pointed to by register 1 at READ subroutine exit

Field Length Meaning

Reserved 68 bytes Reserved space.

674 Exit Routines

Table 304. Contents of parameter list pointed to by register 1 at READ subroutine
exit (continued)

Field Length Meaning

EXPREA_RETCODE 4 bytes Binary. Specifies the return code,
which can be one of the following
values:

v 0=READ function was
successful. Process the data.

v 4=READ function was not
successful. Send the data in
EXPREA_OUTBUF back to client
and disconnect the socket.

v 8=READ function was not
successful. Just clean up.

v 20=READ function was
successful. Keep socket
connected.

EXPREA_RSNCODE 4 bytes Binary. Specifies the reason code.

EXPREA_DATALEN 4 bytes Binary. Specifies the size of data
in the EXPREA_OUTBUF to be
returned to IMS Connect. This
field is only meaningful when
EXPREA_RETCODE = 0 or 4.

EXPREA_UFLAG1 1 byte User flag:

v X'80' - Client requests IMS
MOD name be returned

Reserved 3 bytes Reserved space.

EXPREA_CLID 8 bytes Character string. It specifies the
client ID name passed by the
client or generated by the exit for
non-IMS TM Resource Adapter
clients only.

EXPREA_SVT 4 bytes Address of SVT.

EXPREA_LSTNPORT 2 bytes Binary. Specifies the listening port
number.

The output buffer contains data when the return code is 0 or 4. When the return
code is 4, the data in the output buffer is sent back to the user exit's client, and
then the connection is closed and cleaned up. When the return code is 0, IMS
Connect prepares to present the data to a data store. EXPREA_UFLAG1 is also saved
by IMS Connect. This flag is set by the user exit during READ subroutine
processing and is used for recording user selected characteristics of the request
message. This flag is passed back to the user exit in the input parameter list
pointed to by Register 1 on the next subroutine call, which is either an XMIT or an
EXER subroutine call. You define the value of EXPREA_UFLAG1 in the user exit code.
IMS Connect uses this value to provide a communication vehicle between the
READ and XMIT or EXER subroutines on a per request/response message basis.
The XMIT and EXER subroutines can thus format the message in a better manner.

If IMS Connect detects an error in the output data that would prevent it from
properly presenting the data to the data store (for example, the output data is not
formatted properly to conform to the IMS OTMA protocol), the EXER subroutine is
called where the error can be dealt with appropriately. IMS Connect then waits

Chapter 15. IMS Connect user message exit routines 675

until it receives the response message from IMS OTMA. After receiving a response,
it calls the XMIT subroutine of the appropriate user exit (based on the MSGID in
the response) and passes it an exact copy of the response data that it received from
IMS OTMA.

XMIT subroutine
After a complete response message has been received from the data store, control
is passed to the XMIT subroutine in the user exit whose MSGID matches the
MSGID of the response message (which in turn matches the MSGID of the original
request message) and a parameter list is passed to that user exit.

Subsections:
v “Contents of parameter list pointed to by register 1 at XMIT subroutine entry”
v “Contents of parameter list pointed to by register 1 at XMIT subroutine exit” on

page 677

Contents of parameter list pointed to by register 1 at XMIT
subroutine entry

The following table lists the contents of the parameter list that are pointed to by
Register 1 during the XMIT subroutine entry and passed to the user exit.

Table 305. Contents of parameter list pointed to by register 1 at XMIT subroutine entry

Field Length Meaning

EXPRM_FUNCTION 4 bytes Character string of value XMIT.
Specifies that the function to be
performed is: Read OTMA data and
convert it to client format.

EXPRM_TOKEN 4 bytes Address of a 1 KB buffer for user
exit use. The user exit can use
this storage for a save area and
local variables.

EXPRM_XIB 4 bytes Address of XIB (exit interface
block).

EXPXMT_INBUF 4 bytes Address of the input buffer.

EXPXMT_IBUFSIZE 4 bytes Binary. Specifies the size of the
input buffer.

EXPXMT_OUTBUF 4 bytes Address of the output buffer.

EXPXMT_OBUFSIZE 4 bytes Binary. Specifies the size of the
output buffer.

EXPXMT_FLAG1 1 byte Data string flag:

v X'80' - Input data contains a
MSGID matching
EXPINI_STRING1.

v X'40' - Input data contains a
MSGID matching
EXPINI_STRING2.

v X'20' - EXPXMT_F1_SYNC indicates
a synchronous callout message.

v X'02' - EXPXMT_F1_CLID indicates
EXPXMT_CLID contains the
Client_id name.

676 Exit Routines

|
|
|

Table 305. Contents of parameter list pointed to by register 1 at XMIT subroutine
entry (continued)

Field Length Meaning

EXPXMT_UFLAG1 1 byte User flag. X'xx' - User-defined
value. The value was set in
READ subroutine.

Reserved 2 bytes Reserved space.

EXPRM_CLID 8 bytes Character. Client_id name
assigned to sessions.

EXPXMT_IBUFSIZE and EXPXMT_OBUFSIZE are the sizes of the input buffer and output
buffer, respectively. These sizes are not related to the actual length of the input
data and output data. The input buffer contains an exact copy of the OTMA
message segments that were received from the data store. The user exit might need
to perform an EBCDIC-to-ASCII conversion on the data so that the data can be
properly interpreted by the client application. The user exit translates OTMA
message segments to its client's data format, places the data in the output buffer,
and specifies the length of the output data in EXPXMT_DATALEN. The user exit might
also edit or filter the output data at this point.

Contents of parameter list pointed to by register 1 at XMIT
subroutine exit

The following table lists the contents of the parameter list that are pointed to by
Register 1 during the XMIT subroutine exit.

Table 306. Contents of parameter list pointed to by register 1 at XMIT subroutine exit

Field Length Meaning

Reserved 68 bytes Reserved space.

EXPXMT_RETCODE 4 bytes Binary. Specifies the return code,
which can be one of the following
values:

v 0=XMIT function was
successful. Process the data.

v 8=XMIT function was not
successful. Just clean up.

EXPXMP_RSNCODE 4 bytes Binary. Specifies the reason code.

EXPXMT_DATALEN 4 bytes Binary. Specifies the size of data
in the EXPXMT_OUTBUF to be
returned to IMS Connect. This
field is only meaningful when
EXPXMT_RETCODE = 0.

When the return code is 0, the data in the output buffer is sent back to the
originator of the client request message. If the return code is not 0, the connection
is dropped. If the user exit sets a non-zero return code value, the connection closes
without sending a response back to the originator of the client request message.

TERM subroutine
When IMS Connect is shutting down, control is passed, in turn, to the TERM
subroutine in each user exit that is currently active, and a parameter list is passed
to that user exit.

Chapter 15. IMS Connect user message exit routines 677

|||
|

Subsections:
v “Contents of parameter list pointed to by register 1 at TERM subroutine entry”
v “Contents of parameter list pointed to by register 1 at TERM subroutine exit”

Contents of parameter list pointed to by register 1 at TERM
subroutine entry

The following table lists the contents of the parameter list that are pointed to by
Register 1 during TERM Subroutine entry and passed to the user exit.

Table 307. Contents of parameter list pointed to by register 1 at TERM subroutine entry

Field Length Meaning

EXPRM_FUNCTION 4 bytes Character string of value TERM.
Specifies that the function to be
performed is: Clean up in
preparation for IMS Connect
shutdown.

EXPRM_TOKEN 4 bytes Address of a 1 KB buffer for user
exit use. The user exit can use
this storage for a save area and
local variables.

EXPRM_XIB 4 bytes Address of XIB (exit interface
block).

The user exit finishes all its termination processes here.

IMS Connect shutdown proceeds independently of the return code value. The
return code merely indicates the completeness of the user exit cleanup.

Contents of parameter list pointed to by register 1 at TERM
subroutine exit

The following table lists the contents of the parameter list that are pointed to by
Register 1 during the TERM subroutine exit.

Table 308. Contents of parameter list pointed to by register 1 at TERM subroutine exit

Field Length Meaning

Reserved 68 bytes Reserved space.

EXPTRM_RETCODE 4 bytes Binary. Specifies the return code,
which can be one of the following
values:

v 0=TERM function was
successful.

v 4=TERM function was not
successful.

EXPTRM_RSNCODE 4 bytes Binary. Specifies the reason code.
The reason codes are set by the
exits (HWSSMPL0, HWSSMPL1,
and HWSJAVA0).

678 Exit Routines

EXER subroutine
When IMS Connect detects an error in the output buffer after execution of the
previous READ subroutine completes, control is passed to the EXER subroutine in
the same user exit where the READ subroutine executed and a parameter list is
passed to that user exit.

Subsections:
v “Contents of parameter list pointed to by register 1 at EXER subroutine entry”
v “Contents of parameter list pointed to by register 1 at EXER subroutine exit” on

page 680

Contents of parameter list pointed to by register 1 at EXER
subroutine entry

The following table lists the contents of the parameter list that are pointed to by
Register 1 during EXER subroutine entry and passed to the user exit.

Table 309. Contents of parameter list pointed to by register 1 at EXER subroutine entry

Field Length Meaning

EXPRM_FUNCTION 4 bytes Character string of value EXER. Specifies that the
function to be performed is: Process error found
in output buffer after previous READ subroutine
processing completed.

EXPRM_TOKEN 4 bytes Address of a 1 KB buffer for user exit use. The user
exit can use this storage for a save area and local
variables.

EXPRM_XIB 4 bytes Address of XIB (exit interface block).

EXPXER_OUTBUF 4 bytes Address of the output buffer.

EXPXER_OBUFSIZE 4 bytes Binary. Specifies the size of the output buffer.

EXPXER_FLAG1 1 byte Data string flag, which can be one of the following
values:

v X'80' - Input data contains a MSGID matching
EXPINI_STRING1.

v X'40' - Input data contains a MSGID matching
EXPINI_STRING2.

EXPXER_UFLAG1 1 byte User flag. X'xx' - User-defined value. The value was
set in READ subroutine.

Reserved 2 bytes Reserved space.

EXPXER_CODE 4 bytes Binary. Specifies the failure code.

v 4=Error in the output buffer from the previous
READ function.

EXPXER_REASON 4 bytes Binary. Specifies the failure reason, which can be
one of the following:

v 20=Segment length error

v 24=Missing first in chain flag

v 28=Missing last in chain flag

v 32=Sequence number error

The user exit could have experienced difficulties in forming OTMA message
segment format and should notify its client of this situation (for example, through

Chapter 15. IMS Connect user message exit routines 679

an error message). The user exit can use EXPXER_FLAG1 to determine where the
request message from the client originated and whether to compose an ASCII or
EBCDIC data stream for sending back to the originating client.

Contents of parameter list pointed to by register 1 at EXER
subroutine exit

The following table lists the contents of the parameter list that are pointed to by
Register 1 during the EXER subroutine exit.

Table 310. Contents of parameter list pointed to by register 1 at EXER subroutine exit

Field Length Meaning

Reserved 68 bytes Reserved space.

EXPXER_RETCODE 4 bytes Binary. Specifies the return code,
which can be one of the following
values:

v 4=Send the data in
EXPXER_OUTBUF back to client.

v 8=Just clean up.

EXPXER_RSNCODE 4 bytes Binary. Specifies the reason code.

EXPXER_DATALEN 4 bytes Binary. Specifies the size of data
in the EXPXER_OUTBUF to be
returned to clients. This field is
only meaningful when
EXPER_RETCODE=4.

When the return code is 4, IMS Connect sends the data in the output buffer back
to the client. If the user exit sets the return code value to 8, the connection closes
without a response.

Macros that support IMS Connect user message exits
IMS provides macros that support the IMS Connect exit routines.

Macros used for IMS Connect Exit Routines

The macros include:

HWSAUTPM
Maps the parameter list for the IMS Connect DB Security user exit routine
(HWSAUTH0). A copy of this macro is in SDFSMAC.

HWSEXPIO
Maps the parameter list for the IMS Connect Port Message Edit exit
routine (HWSPIOX0). A copy of this macro is in SDFSMAC.

HWSEXPRM
Maps the parameter list that is passed to the user exit routine on each
subroutine call. A copy of this macro is in SDFSMAC. To see the structure,
assemble the macro.

HWSOMPFX
Maps the OTMA message prefix format to the output buffer that the user
exit routine returns on each READ subroutine call and the input buffer that
is passed to the user exit on each XMIT subroutine call. A copy of this
macro is in SDFSMAC. To see the structure, assemble the macro.

680 Exit Routines

HWSIMSCB
Maps the IMS request message (IRM) header and BPE header formats used
by the HWSSMPL0 and HWSSMPL1 user message exit routines. A copy of
this macro is in SDFSMAC. To see the structure, assemble the macro.

HWSIMSEA
Maps the storage area used by the HWSSMPL0 and HWSSMPL1 user
message exit routines. A copy of this macro is in SDFSMAC. To see the
structure, assemble the macro.

HWSROUPM
Maps the parameter list that is passed to the IMS Connect DB Routing user
exit routine (HWSROUT0) on each subroutine call. A copy of this macro is
in SDFSMAC. To see the structure, assemble the macro.

HWSXIB
Maps the exit interface block used by IMS Connect user message exit
routines and the HWSUINIT exit routine. Contains the addresses of the
data store list (HWSXIBDS) and the HWSXIB1 control block used by the
IMS Connect DB Routing user exit routine. A copy of this macro is in
SDFSMAC. To see the structure, assemble the macro.

HWSXIB1
Maps the exit interface block used by the HWSROUT0 user exit routine.
HWSXIB1 contains the address of the ODBM list and optional user data.
The HWSXIB1 exit interface block is pointed to by HWSXIB. A copy of this
macro is in SDFSMAC. To see the structure, assemble the macro.

HWSXIBDS
Maps the entry in the exit interface block data store list used by the IMS
Connect user message exit routines and the HWSUINIT exit routine. The
list contains the data store name, the data store availability and status
information, and a user field. A copy of this macro is in SDFSMAC. To see
the structure, assemble the macro.

HWSXIBOD
Maps the ODBM list that contains the name and status of each ODBM
instance known to IMS Connect, as well as a user field and the names and
statuses of the IMS aliases associated with each ODBM instances. The
address of HWSXIBOD is stored in the HWSXIB1 exit interface block. A
copy of this macro is in SDFSMAC. To see the structure, assemble the
macro or refer to the macro prologue.

Chapter 15. IMS Connect user message exit routines 681

682 Exit Routines

Chapter 16. IMS Connect function-specific exit routines

IMS provides several exit routines with IMS Connect for additional flexibility.

IMS Connect User Initialization exit routine (HWSUINIT)
The IMS Connect User Initialization exit routine (HWSUINIT) can perform
customized tasks during IMS Connect startup, IMS Connect shutdown, or both.

For example, you can modify the HWSUINIT exit routine to display a specific
message when IMS Connect starts up or shuts down.

The HWSUINIT routine contains two user control blocks that enable further
customization: XIB and XIBDS. The XIB control block can be used to store any data
that you want. The XIBDS control block keeps track of the status of the IMS
Connect data stores. All of the IMS Connect user message exits can access both the
XIB and XIBDS user control blocks.

For example, you can modify HWSUINIT to load a specific table when IMS
Connect starts up, then store the table address into the XIB control block area.
After the IMS Connect user message exits get control, they access that table and
perform their customized processing. When IMS Connect shuts down, you can
modify HWSUINIT to unload the updated table.

The HWSUINIT user initialization exit routine that comes with IMS Connect does
not do any processing. HWSUINIT is provided as a load module for ease of use.
Source code is also provided for modification, but you must assemble and link edit
the source to use a modified version. Modify HWSUINIT only if you want to use
it.

How IMS Connect communicates with HWSUINIT

HWSUINIT contains two subroutines: INIT and TERM. When IMS Connect starts,
HWSUINIT loads and gives control to the INIT subroutine. When IMS Connect
shuts down, HWSUINIT gives control to the TERM subroutine.

HWSUINIT contains two of its own user control blocks: XIB and XIBDS. The
HWSXIB and HWSXIBDS DSECTs map the XIB and XIBDS user control blocks.
The message exit routines in the INIT, READ, XMIT, TERM, and EXER subroutines
can also use the XIB and XIBDS user control blocks. The XIB user control block
contains a fixed length header section and a variable length user area.

Restriction: You cannot modify the fixed header section. You can only modify the
user area.

You specify the size of the XIB control block user area, in full words, with the
xibarea parameter (in the HWS statement of the IMS Connect configuration file).
The default value is 20; the maximum value is 500. If you do not specify a value
for the xibarea parameter, or you specify a value outside of the 20 to 500 range,
IMS Connect uses the default value of 20.

The XIBDS user control block represents an entry in a list of data stores that are
defined in the configuration file. The second word in the fixed header area of the

© Copyright IBM Corp. 1974, 2017 683

XIB user control block points to the data store list. The XIBDS user control block is
16 bytes long. Each data store list entry contains the data store name, the data store
status (active or inactive), a flag byte, and a 4 byte field that you can use to store
any kind of data. The last entry is indicated by a value of X'80' (hexadecimal) in
the flag byte. The number of entries in the list is equal to the number of data stores
defined in the IMS Connect configuration file.

Because the XIBDS user control block keeps track of all IMS Connect data store
statuses, you can enable any user message exit to take action based on the status of
one or more of the IMS Connect data stores. For example, before a user message
exit passes a client message to an IMS Connect data store for processing, you could
have the user message exit query the XIBDS control block area for the target data
store's status. If the target data store is not active, you could enable the user
message exit to switch to an active data store by modifying the data store name in
the message header.

When the HWSUINIT routine takes control, it saves the contents of the registers
and restores them when returning to the caller. IMS Connect provides a 1 KB
buffer in the parameter list to be used for this purpose.

Register contents on HWSUINIT entry

The following table lists the contents of each register on the HWSUINIT entry.

Table 311. Register contents on HWSUINIT entry

Register Contents

1 Pointer to a parameter list:

v +0 — XIB address

v +4 — Function to perform (INIT or TERM)

v +8 — 1 KB buffer for exit to use

14 Return address of IMS Connect.

15 Entry point address to HWSUINIT.

Register contents on HWSUINIT exit

The following table lists the contents of each register on the HWSUINIT exit.

Table 312. Register contents on HWSUINIT exit

Register Contents

0–14 Restored.

15 0 — completed successfully. 1 to 7 — warning, but IMS Connect
initialization continues. 8 or higher — force IMS Connect termination.

Related reference:
“Macros that support IMS Connect user message exits” on page 680

IMS Connect User Initialization exit routine (HWSUINIT)
sample JCL

You can use JCL to modify HWSUNIT that will perform processing, such as
customized initialization tasks during IMS Connect startup, customized
termination tasks during IMS Connect shutdown, or both.

684 Exit Routines

For an example of an HWSUINIT user initialization exit that performs processing,
see the following JCL.
//HWSINIT JOB (ACTINF01),’PGMRNAME’,
// CLASS=A,MSGCLASS=Z,MSGLEVEL=(1,1),REGION=4M
//UINIT1 EXEC PGM=ASMA90,REGION=32M,
// PARM=’DECK,NOOBJECT,SIZE(MAX,ABOVE),SYSPARM(HWSUINIT)’
//SYSLIB DD DSN=IMS.SDFSMAC,DISP=SHR
// DD DSN=SYS1.MODGEN,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR

//SYSPUNCH DD UNIT=SYSVIO,DISP=(,PASS),SPACE=(TRK,(1,1,1)),
// DSN=&&TEXT(HWSUINIT)
//SYSPRINT DD SYSOUT=*,
// DCB=(BLKSIZE=605),
// SPACE=(605,(100,50),RLSE,,ROUND)
//SYSUT1 DD UNIT=SYSDA,DISP=(,DELETE),
// DCB=BLKSIZE=13024,
// SPACE=(CYL,(16,15))
//SYSIN DD DSN=IMS.SDFSSMPL(xxxxxx),DISP=SHR
//UINIT2 EXEC PGM=IEWL,
// PARM=’SIZE=(880K,64K),RENT,REFR,NCAL,LET,XREF,LIST,TEST’
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSN=IMS.SDFSRESL,DISP=SHR
//SYSUT1 DD UNIT=SYSVIO,DISP=(,DELETE),SPACE=(CYL,(10,1),RLSE)
//TEXT DD UNIT=SYSVIO,DISP=(OLD,DELETE),DSN=&&TEXT
//SYSLIN DD *
INCLUDE TEXT(HWSUINIT)
ENTRY HWSUINIT
NAME HWSUINIT(R)
//

IMS Connect DB Routing user exit routine (HWSROUT0)
Use the IMS Connect DB Routing user exit routine (HWSROUT0) to control the
routing of messages from IMS DB clients, such as the IMS Universal drivers, to
specific instances of IMS or the Open Database Manager (ODBM).

The HWSROUT0 user exit routine can override the IMS alias name specified by the
IMS Connect client. If the HWSROUT0 user exit routine overrides the IMS alias
name, IMS Connect uses the IMS alias name specified by the exit routine.

The HWSROUT0 user exit routine can also select a specific instance of the CSL
Open Database Manager (ODBM) to which to route an incoming message.

After the HWSROUT0 user exit routine returns the message and control to IMS
Connect, IMS Connect routes the message based on the alias name or the ODBM
instance name specified in the message.

If the HWSROUT0 user exit routine selects an ODBM, IMS Connect uses that
ODBM and will not perform the round robin routing method.

If the HWSROUT0 user exit routine does not select an ODBM, the IMS alias name
determines how IMS Connect selects the ODBM instance to deliver the message to.
If an alias name is specified, IMS Connect routes the message to the ODBM
instance that supports the alias name. If multiple ODBM instances support the
alias name, IMS Connect uses a round-robin algorithm to distribute incoming
messages among the ODBM instances. If the IMS alias name is blank, IMS Connect
uses a round-robin algorithm to distribute the messages among all active ODBM
instances.

Chapter 16. IMS Connect function-specific exit routines 685

IMS Connect validates the alias name and the ODBM instance after the exit routine
returns control to IMS Connect.

The HWSROUT0 user exit routine runs as a BPE type-1 exit routine and must
conform to the BPE type-1 interface. The HWSROUT0 user exit routine can be
managed with the BPE DISPLAY USEREXIT and REFRESH USEREXIT commands.
The HWSROUT0 user exit routine is also passed the standard BPE user exit
parameter list that is mapped by the BPEUXPL macro. The exit-type-specific
parameter list (UXPL_EXITPLP) points to the HWSROUT0 exit parameter list
(HWSROUPM).

Note: Do not issue any MVS calls in the user message exit that result in an MVS
WAIT because the MVS WAIT will halt all work on the port. If you modify the exit
routine and add code that results in an MVS WAIT, all work on the TCP/IP PORT
will halt until the WAIT has been posted. The exit routine cannot be modified to
free any storage passed to the exit routine, and IMS Connect will not free any
storage obtained by the exit routine when the exit routine returns to IMS Connect.
All storage obtained by IMS Connect must be released by IMS Connect and cannot
be freed by the user message exit routine without causing failures.

To use the HWSROUT0 user exit routine, perform the following basic steps:
1. Create a new or modify an existing BPE exit list PROCLIB member with any

name, for example HWSEXIT0.
2. In the BPE exit list PROCLIB member, define HWSROUT0 as an exit in the

following EXITDEF statement:
EXITDEF(TYPE=ODBMROUT,EXITS=(HWSROUT0),ABLIM=8,COMP=HWS)

All of the parameters must be coded as shown except for ABLIM, which sets
the number of times the exit can abend before it is disabled.

3. Set the BPE exit list PROCLIB member in the BPE configuration parameter
PROCLIB member by adding an EXITMBR statement. For example, if the BPE
exit list PROCLIB member is HWSEXIT0, then add the following statement to
the BPE configuration member:
EXITMBR=(HWSEXIT0,HWS) /* IMS CONNECT EXITS */

Contents of register on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of the “Standard BPE user exit parameter list” on page 489, mapped
by macro BPEUXPL

13 Save area address

14 Return address

15 Entry point address

On entry to the IMS Connect DB routing user exit, register 1 points to a standard
BPE user exit parameter list. Field UXPL_EXITPLP in this list contains the address
of the IMS Connect DB routing user exit parameter list, which is mapped by macro
HWSROUPM. Field UXPL_COMPTYPEP in this list points to the character string
"HWS" indicating an IMS Connect address space.

686 Exit Routines

Parameter list

Table 313. HWSROUT0 user exit routine parameter list

Field name Offset Length Description

ROUPM_PVer X'00' X'04' Version number of the parameter list:

1 Base version for IMS Version 11.

2 Current version for IMS Version 11. Introduced with APAR
PM22144.

17 Base and current version for IMS Version 12 and later.

ROUPM_Function X'04' X'04' Function type:

INIT Initialization

ROUT Routing

TERM Termination

ROUPM_Aclstruct X'08' X'04' Address of the client ID structure

ROUPM_Flag1 X'0C' X'01' Flag byte:

X'80'
EBCDIC encoding

X'40'
IPv6 client IP address

X'20'
Client request for ODBM z/OS Resource Recovery Services

X'0D' X'07' Reserved

ROUPM_AUsrdataL X'14' X'04' Address of the user data length

ROUPM_AUsrdata X'18' X'04' Address of the DRDA user data

ROUPM_AInAlias X1C' X'04' Address of the 4-character IMS alias name

ROUPM_AInPsbnm X'20' X'04' Address of the 8-character PSB name

ROUPM_Xib X'24' X'04' XIB address

ROUPM_AOutlias X'28' X'04' Address of the 4-character IMS alias set by the exit (output)

ROUPM_AOutOdbm X'2C' X'04' Address of the 8-character ODBM name set by the exit (output)

ROUPM_ARetcode X'30' X'04' Address of the fullword return code set by the exit (output)

ROUPM_ARsncode X'34' X'04' Address of the fullword reason code set by the exit (output)

Contents of register on exit

The exit must restore all registers on returning to the caller.
Related reference:
“Macros that support IMS Connect user message exits” on page 680

IMS Connect DB security user exit routine (HWSAUTH0)
You can use the IMS Connect DB security user exit routine to authenticate the
input user ID and password specified by IMS Connect clients that access IMS DB,
such as any of the IMS Universal drivers or a client application program that
connects to IMS Connect through a user-written DRDA source server.

Chapter 16. IMS Connect function-specific exit routines 687

IMS Connect always calls the HWSAUTH0 user exit routine before invoking any
installed security facility, such as RACF, if one is enabled.

The HWSAUTH0 user exit routine can override the input user ID with a different
user ID. The HWSAUTH0 user exit routine can provide a RACF group ID to be
authenticated further by IMS Connect.

The HWSAUTH0 user exit routine is refreshable.

The HWSAUTH0 user exit routine runs as a BPE type-1 exit routine and must
conform to the BPE type-1 interface. The HWSAUTH0 user exit routine can be
managed with the BPE DISPLAY USEREXIT and REFRESH USEREXIT commands.
The HWSAUTH0 user exit routine is passed the standard parameter list for BPE
user exit routines, which is mapped by the BPEUXPL macro. The exit-type-specific
parameter list (UXPL_EXITPLP) points to the HWSAUTH0 exit parameter list
(HWSAUTPM).

Note: Do not issue any MVS calls in the user message exit that result in an MVS
WAIT because the MVS WAIT will halt all work on the port. If you modify the exit
routine and add code that results in an MVS WAIT, all work on the TCP/IP PORT
will halt until the WAIT has been posted. The exit routine cannot be modified to
free any storage passed to the exit routine, and IMS Connect will not free any
storage obtained by the exit routine when the exit routine returns to IMS Connect.
All storage obtained by IMS Connect must be released by IMS Connect and cannot
be freed by the user message exit routine without causing failures.

To use the HWSAUTH0 user exit routine, perform the following basic steps:
1. Create a new or modify an existing BPE exit list PROCLIB member with any

name, for example HWSEXIT0.
2. In the BPE exit list PROCLIB member, define HWSAUTH0 as an exit in the

following EXITDEF statement:
EXITDEF(TYPE=ODBMAUTH,EXITS=(HWSAUTH0),ABLIM=8,COMP=HWS)

All of the parameters must be coded as shown except for ABLIM, which sets
the number of times the exit can abend before it is disabled.

3. Set the BPE exit list PROCLIB member in the BPE configuration parameter
PROCLIB member by adding an EXITMBR statement. For example, if the BPE
exit list PROCLIB member is HWSEXIT0, then add the following statement to
the BPE configuration member:
EXITMBR=(HWSEXIT0,HWS) /* IMS CONNECT EXITS */

HWSAUTH0 security exit is shipped with IMS Connect and link-edited into the
IMS.SDFSRESL data set.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of the “Standard BPE user exit parameter list” on page 489. The
UXPL_EXITPLP field in this parameter list contains the adress of the IMS
Connect DB security user exit parameter list, which is maped by macro
HWSAUTPM.

13 Save area address

688 Exit Routines

Register Contents

14 Return address

15 Entry point address

Parameter list

Table 314. HWSAUTH0 user exit routine parameter list

Field name Offset Length Description

AUTPM_PVer X'00' X'04' Version number of the parameter list:

1 Base version for IMS Version 11.

2 Current version for IMS Version 11. Introduced with APAR
PM22144.

17 Base and current version for IMS Version 12 and later.

AUTPM_Aclstruct X'04' X'04' Address of the client's ID structure

AUTPM_Flag1 X'08' X'01' Flag byte:

X'80'
EBCDIC encoding

X'40'
IPv6 client IP address

X'09' X'07' Reserved

AUTPM_AusrDataL X'10' X'04' Address of user data length

AUTPM_AusrData X'14' X'04' Address of DRDA user data

AUTPM_AIUserid X'18' X'04' Address of user ID

AUTPM_APssword X1C' X'04' Address of password

AUTPM_ARetcode X'20' X'04' Address of fullword return code set by the exit (output)

AUTPM_ARsncode X'24' X'04' Address of the fullword reason code set by the exit (output)
Reason code 0 - if return code is 0
Reason code ¬0 - if return code is 4

AUTPM_AOUserid X'28' X'04' Address of 8-character user ID set by the exit (output)

AUTPM_AOGrpid X'2C' X'04' Address of 8-character group ID set by the exit (output)

Contents of registers on exit

The exit must restore all registers on returning to the caller.

Using the IMS Connect DB security user exit routine
The IMS Connect DB security user exit routine (HWSAUTH0) user exit routine
runs as a BPE Type-1 exit and must conform to that interface. HWSAUTH0 can be
managed with the BPE DISPLAY USEREXIT and REFRESH USEREXIT commands.

The exit is passed the Standard BPE User Exit Parameter List (mapped by the
BPEUXPL macro). The exit-type-specific parameter list (UXPL_EXITPLP) points to
the HWSAUTH0 exit parameter list (HWSAUTPM). If you want to use this exit
you must perform the following steps:
1. Create or modify a BPE exit list PROCLIB member with any name, for example

HWSEXIT0. In the BPE exit list PROCLIB member, define HWSAUTH0 in the
following EXITDEF statement:

Chapter 16. IMS Connect function-specific exit routines 689

EXITDEF(TYPE=ODBMAUTH,EXITS=(HWSAUTH0),ABLIM=8,COMP=HWS) All parameters
must be coded as shown except for ABLIM, which sets the number of times the
exit can abend before it is disabled.

2. Set the BPE exit list PROCLIB member in the BPE configuration parameter
PROCLIB member by adding an EXITMBR statement. For example, if the BPE
exit list PROCLIB member is HWSEXIT0, then add the following statement to
the BPE configuration member:
EXITMBR=(HWSEXIT0,HWS) /* IMS CONNECT EXITS */

IMS Connect sample OTMA User Data Formatting exit routine
(HWSYDRU0)

An OTMA User Data Formatting exit routine (DFSYDRU0) is required to support
asynchronous output that is generated by an IMS application that does an insert
(ISRT) to an alternate PCB (program communication block).

IMS Connect provides a sample OTMA User Data Formatting exit routine named
HWSYDRU0. You can either modify the HWSYDRU0 exit routine to work with
your installation, or provide your own OTMA User Data Formatting exit routine.
Regardless of which you use, the OTMA Destination Resolution exit routine runs
in the IMS control region and not in the IMS Connect address space.

How IMS Connect communicates with the DRU exit

OTMA allows transaction pipe names (TPIPEs) to be the same as an IMS LTERM
name. In IMS Connect, the LTERM name is analogous to the unique CLIENTID
name. To clarify whether a destination is for IMS Connect (through OTMA), IMS
provides OTMA exit routines that can specify where IMS should look to resolve
the destination names. In this case, the IMS needs to look at the IMS Connect
CLIENTIDs. The DRU exit cannot change the actual destination name. Determining
the destination for an OTMA (IMS Connect client) message requires two phases.
1. The OTMA Destination Resolution user exit (OTMAYPRX) is called to

determine the initial destination for the output.
The user exit can determine whether the message should be directed to OTMA
(IMS Connect clients) or to IMS TM for processing. The user exit cannot
determine the final destination.

2. The DRU exit routine (for example, the IMS Connect supplied exit
HWSYDRU0) is called to determine the final destination for the output.
Each OTMA client can specify a separate DRU exit routine. In other words,
each OTMA client can specify a single DRU exit for each copy of IMS Connect
that is connected to a given data store (IMS). This means that one IMS Connect
can have the same or a different DRU exit for each of the data store definitions
in the IMS Connect configuration file.

How to use the HWSYDRU0 exit

HWSYDRU0, the IMS Connect supplied OTMA DRU exit, provides only a sample
of what the DRU exit can do. You can use this exit only under one of the following
conditions:
v The IMS Connect CLIENTIDs are named CLIENT01 through CLIENT09 and

they all belong to the same member name.
v The non-IMS Connect CLIENTIDs are as follows:

– TPIPE001 through TPIPE099 all belong to member MEMBER0

690 Exit Routines

|
|

|
|
|

– TPIPE100 through TPIPE199 all belong to member MEMBER1
– TPIPE200 through TPIPE299 all belong to member MEMBER2
– TPIPE300 through TPIPE399 all belong to member MEMBER3
– TPIPE400 through TPIPE499 all belong to member MEMBER4
– TPIPE500 through TPIPE599 all belong to member MEMBER5
– TPIPE600 through TPIPE699 all belong to member MEMBER6
– TPIPE700 through TPIPE799 all belong to member MEMBER7
– TPIPE800 through TPIPE899 all belong to member MEMBER8
– TPIPE900 through TPIPE999 all belong to member MEMBER9

The HWSYDRU0 exit is only an example, and when you use it, the following
sequence of events will occur:
1. The OTMA Destination Resolution user exit (OTMAYPRX) sets up

addressability to the parameters that are passed to the HWSYDRU0 exit.
2. The output member name in the output parameter list is set to blanks.
3. HWSYDRU0 determines the action to take based on whether the name in the

input destination parameter (that is, the destination where the message is to be
sent) is an IMS LTERM or an IMS Connect destination. After HWSYDRU0
makes this determination, it takes a course of action, and sets the contents of
register 15 on exit.

4. If an IMS application was initiated by a non-IMS Connect client, then
HWSYDRU0 must build the OTMA user data.

5. If HWSYDRU0 places the character string, ICONNECT, into the OTMA user
data header field, OMUSR_PORTID, (whether built by HWSYDRU0 or passed
to HWSYDRU0) then IMS Connect will determine the correct PORTID to be
used for the selected output client ID.

The following table describes the register settings and the action taken for the
specific return code.

Table 315. Register settings and HWSYDRU actions

Register settings HWSYDRU actions

Register 15 = X'00' v The input destination name is an IMS Connect client name
and the member name for the destination is the same as the
member name for the origin.

v No changes made to the output parameters.

Register 15 = X'04' v LTERM exists in IMS (LEGACY), is not an IMS Connect
client.

v No changes made to the output parameters.

Register 15 = X'08' v The input destination name is an IMS Connect client name,
and the member name for the destination is a different
name from the member name for the origin.

v The output member name in the output parameters is set to
the new member name.

Register 15 = X'0C' The input destination name is not an LTERM for IMS, and
IMS Connect does not know the client name.

Chapter 16. IMS Connect function-specific exit routines 691

|
|

IMS Connect sample OTMA User Data Formatting
(HWSYDRU0) sample JCL

You can use JCL to modify the HWSYDRU0 exit to work with your installation.

To review how JCL can be modified, refer to the following HWSYDRU0 sample
OTMA DRU exit.
//HWSYDRU JOB (ACTINF01),’PGMRNAME’,
// CLASS=A,MSGCLASS=Z,MSGLEVEL=(1,1),REGION=4M
//YDRU01 EXEC PGM=ASMA90,REGION=32M,
// PARM=’DECK,NOOBJECT,SIZE(MAX,ABOVE),SYSPARM(HWSYDRU0)’
//SYSLIB DD DSN=IMS.SDFSMAC,DISP=SHR
// DD DSN=SYS1.MODGEN,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR

//SYSPUNCH DD UNIT=SYSVIO,DISP=(,PASS),SPACE=(TRK,(1,1,1)),
// DSN=&&TEXT(HWSYDRU0)
//SYSPRINT DD SYSOUT=*,
// DCB=(BLKSIZE=605),
// SPACE=(605,(100,50),RLSE,,ROUND)
//SYSUT1 DD UNIT=SYSDA,DISP=(,DELETE),
// DCB=BLKSIZE=13024,
// SPACE=(CYL,(16,15))
//SYSIN DD DSN=IMS.SDFSSMPL(xxxxxx),DISP=SHR
//YDRU02 EXEC PGM=IEWL,
// PARM=’SIZE=(880K,64K),RENT,REFR,NCAL,LET,XREF,LIST,TEST’
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSN=IMS.SDFSRESL,DISP=SHR
//SYSUT1 DD UNIT=SYSVIO,DISP=(,DELETE),SPACE=(CYL,(10,1),RLSE)
//TEXT DD UNIT=SYSVIO,DISP=(OLD,DELETE),DSN=&&TEXT
//SYSLIN DD *
INCLUDE TEXT(HWSYDRU0)
ENTRY HWSYDRU0
NAME HWSYDRU0(R)
//

z/OS TCP/IP IMS Listener security exit (IMSLSECX)
If any IMS Connect user message exit performs security checking, you must
provide a security exit routine or use the z/OS TCP/IP IMS Listener security exit
routine (IMSLSECX).

IMS does not provide a sample security exit due to the many options available for
security and the fact that most installations have their own specific security
method.

The call to RACF or other security product is performed by IMS Connect if RACF
parameters are provided in the OTMA header when the user message exit routine
returns the message to IMS Connect.

By default, IMSLSECX is the name of the security exit routine called by the
following IMS Connect user message exit routines:
v HWSSMPL0
v HWSSMPL1
v HWSSOAP1
v HWSCSLO0

You can also define the name of the security exit called by HWSJAVA0 in the
HWSJAVA0 message exit routine.

692 Exit Routines

If you use HWSSMPL0 or HWSSMPL1, you can change the name of the security
exit that is called by changing EXTRN IMSLSECX to a name of your choice. If you
change the name of the security exit, you must define the security exit in the
HWSSMPL0 or HWSSMPL1 user message exit.

Parameter list for user security exit

Following is the list and order of parameters being passed to the security exit,
IMSLSECX. The order of the parameters is fixed for the exits supplied by IMS
Connect: HWSSMPL0 and HWSSMPL1. The parameters are mapped in the
HWSIMSEA macro at IMSEA_SecParml.
v Address of fullword client's IP address
v Address of halfword client's port
v Address of 8-char string IMS transaction
v Address of halfword data type (data type setting: 0=ASCII, 1=EBCDIC)
v Address of fullword length of user data
v Address of user-supplied data
v Address of fullword set by security exit
v Address of fullword set by security exit
v Address of RACF user ID

If blanks are returned (in the field pointed to) from the security exit, then the
RACF fields in the OTMA security header are not set.
The address points to a field containing blanks.

v Address of RACF group ID
The address points to a field containing blanks.

Related reference:
“IMS TM Resource Adapter user message exit routine (HWSJAVA0)” on page 660

IMS Connect Event Recorder exit routine (HWSTECL0)
IMS Connect can be customized to facilitate event recording by passing event data
to the load module, HWSTECL0. HWSTECL0 stores all trace and event
notifications through a recording routine and can be used by any event recording
function.

For performance or basic data analysis, you can record events such as:
v TCP/IP read/write
v RACF calls
v OTMA sends and receives
v User exit calls
v Session errors
v Two-phase commit events
v Connection and message events for IMS-to-IMS TCP/IP communication
v Connection and message events for ISC TCP/IP communication

IMS Connect provides a sample HWSTECL0 user exit for you to customize.

Subsections:
v “HWSTECL0 initialization” on page 694
v “Invoking the HWSTECL0 for user exit event recording” on page 695

Chapter 16. IMS Connect function-specific exit routines 693

|

v “Error message format” on page 696

HWSTECL0 initialization

When IMS Connect initializes, IMS Connect automatically loads the HWSTECL0
module and calls the module for event recording initialization. If event and trace
recording is detected and is active, module HWSTECL0 sets the Event Interface
Control Block (EICB) fields, which is used to control event recording, to the
appropriate values needed for event and trace recording.

The address of the EICB is pointed to by HWSTECL0 register 1 on entry. Note,
event initialization only occurs if the caller is executing under the JOBSTEP TCB,
the caller is in primary TCB mode, and the call occurs before any task that records
events is created.

The following table describes the registers at entry to HWSTECL0.

Table 316. Registers at entry to HWSTECL0

Register Number Contents and meaning

R1 Address of the Event Interface Control Block (EICB) that is to be
completed by HWSTECL0 when trace or event recording is active.

R13 Address of save area that is a set of pre-chained save areas.
HWSTECL0 must preserve the integrity of the save area set.

R14 Caller's return address.

R15 Entry point of module HWSTECL0.

The EICB area is allocated by IMS Connect and passed to HWSTECL0 at the
initialization request. The DSECT name is HWSECIB. If trace or event recording is
active, HWSTECL0 completes the EICB and returns it to the caller. The contents of
the control block that are returned from HWSTECL0 are shown in the following
table.

Table 317. Contents of Event Interface Control Block (EICB) pointed to by HWSTECL0

Element Length Usage and meaning

EYECATCHER 4 Value of EICB identifying this block in
working storage. Set by caller.

FLAGS 1 Interface control flags:

1. Event recording is enabled.

EVENT_TOKEN 4 Address of the token used by the event
recording routine. The token must be
passed to the event recording routine when
an event-recording request is made.

EVENT_ADDRESS 4 Entry address of event recording routine.

4 Reserved space.

4 Reserved space.

MESSAGE_LEN 2 Length of the message returned from
HWSTECL0 module.

MESSAGE_AREA 120 An area that can be used by HWSTECL0 to
return an informational or error message to
IMS Connect.

694 Exit Routines

If trace or event recording is not active, HWSTECL0 does not complete the EICB
and instead returns with a return and reason code indicating that trace or event
recording, or both is not active. The following table describes the registers at return
from HWSTECL0. Note: Module HWSTECL0 always returns a return code of 0.
The EICB flags must be inspected to determine if event or trace recording is active.

Table 318. Registers at return from HWSTECL0

Register number Contents and meaning

R0 Reason code associated with any non-zero return codes passed.

R15 Return code

v 0 = Initialization was successful. Check the EICB to see if trace or
event recording is active.

v 8 = Initialization was not successful. See reason code for additional
information.

Invoking the HWSTECL0 for user exit event recording

When IMS Connect records an event, IMS Connect calls the event recording
routine address, EVENT_ADDRESS, indicated in the EICB. For each event that is
recorded, the event recording routine passes the Event Record Parameter List
(ERPL), which is used to define the event type and event data. The ERPL defines
which event data to capture. The ERPL records an IMS Connect event and
associated data to an event-recording log.

When event recording has been initialized, the EICB contains the entry address for
event recording and calls the event recording routine. The routine points to the
ERPL address and records the event. To record an event, the caller requesting event
recording must be in primary TCB mode and the caller must return the event
recording token which is provided in the EICB by HWSTECL0.

The following table describes the registers at event recording entry.

Table 319. Registers at event recording entry

Register number Contents and meaning

R1 Address of the Event recording parameter list (ERPL).

R13 Address of one save area. The event recording routine must preserve
the integrity of the save area.

R14 Caller's return address.

R15 Entry point of even recording taken from EICB after initialization of
the even recording interface.

The following table shows the registers at return from EICB, the event recording
interface.

Table 320. Registers at return from event recording

Register number Contents and meaning

R0 Reason code associated with any non-zero return codes passed.

R1 When R1 is not equal to zero, it contains the address of a message
providing additional information about initialization of trace and event
recording.

Chapter 16. IMS Connect function-specific exit routines 695

Table 320. Registers at return from event recording (continued)

Register number Contents and meaning

R15 Return code

v 0 = Event recording was successful.

v 4 = Event recording is not active -- event was not recorded.

v 16 = Event recording was not successful. See reason code for
additional information. An error message is present if R1 is not zero.

Error message format

If an error message is returned by the event-recording routine, the format of the
error message is described in the following table. Note, the use of error messages
is optional and currently is not supported.

Table 321. Error message format

Value Contents and meaning

2 byte message length The true length of the error message not including the message
length field.

Error message An error message returned by the recording exit.

Related reference:
“Event Interface Control Block (EICB)” on page 755
“Event recording parameter list (ERPL)” on page 754

Modifying the HWSTECL0 user exit
Although IMS Connect provides a sample HWSTECL0 user exit, you must modify
the HWSTECL0 user exit, using standard user-exit development guidelines, if you
want to receive event data from IMS Connect.

The source code for the HWSTECL0 user exit is located in the ADFSSMPL source
library.

After you have customized the sample HWSTECL0 user exit, you must install it
into your IMS Connect resource library (SDFSRESL). To install HWSTECL0 into the
resource library, you must compile and bind the user exit before you execute IMS
Connect to create the load module, HWSTECL0. IMS Connect will load your
HWSTECL0 module from the resource library and call it during initialization and
termination.

The following steps describe how to customize, modify, and re-install the
HWSTECL0 exit.
1. Insert your changes to the source code provided in the ADFSSMPL source

library.
2. Assemble the exit. The exit and its associated macro files are members of the

partitioned data set into which you receive the ADFSSMPL data set.
3. Bind the output from the assembled job to create a load module named

HWSTECL0.
4. Bind HWSTECL0 into the IMS Connect resource library, SDFSRESL. IMS

Connect loads the module from the resource library during initialization.
Related reference:
“DSECTs for event recording” on page 761

696 Exit Routines

Event types
The IMS Connect Event Recorder exit routine stores and categorizes event
notifications using key values, event numbers, and event keys.

An event can be a single event or a multiple event.

Each event is assigned a numeric value called an event number. Each event also
has an associated key value, such as EVNT or SVTOKEN.

An event with an event number of 255 includes a 2-byte extended event number
that follows the event number field. For these events, the extended event number
identifies the event.

Event keys
The event key value is an identifier of the type of the event.

The key value EVNT indicates a single event. The key value SVTOKEN indicates a
multiple event process.

The following table describes the key values and the length of the event key.

Table 322. Keys associated with events

Key value Length Usage and meaning

EVNT 8 This is a constant value (EVNT) used to indicate
the event is not associated with a multi-event
process. The constant is left-justified and padded
right with blanks.

SVT token value 8 SVT Token. A token representing the SVT control
block for the remote client name associated with
the transaction or multi-event process. The token
is the STCK time of when the SVT was created.

Session token value 8 Session token. A token representing a sequence of
related events. The token is the STCK time of the
first event in the sequence

Command token
value

8 Command token. The token is the STCK time of
when the command was entered to the
Operations Manager (OM).

Single process event types
A single process event is an event that is not related to any other events.

The following table identifies the events that are categorized as a single event type.
The following table lists the possible single events that may be recorded.

Table 323. Single process events

Event number
Extended
event number Event key Event description

1 EVNT Connect region initialization. This event
record is generated as a result of the call
made to module HWSTECL0 for event
recording initialization. This is the first
event recorded for an IMS Connect
execution.

Chapter 16. IMS Connect function-specific exit routines 697

|
|
|

Table 323. Single process events (continued)

Event number
Extended
event number Event key Event description

2 EVNT Connect region has completed termination.
This event is the last event recorded for an
IMS Connect execution. This event causes
the event recording process to terminate.

3 EVNT A support task (TCB) has been created. If
the task records events, this event must be
the first event recorded by the task. It
should be recorded as soon as possible after
the task begins processing.

4 EVNT A support task (TCB) is terminating. If the
task records events, this event must be the
last event recorded by the task. It should be
recorded as close as possible to the task
returning to MVS.

5 EVNT Begin INIT API.

6 EVNT End INIT API

7 EVNT Begin Bind socket.

8 EVNT End Bind socket.

9 EVNT Listen on socket.

10 EVNT Begin Accept socket.

Note Events 12 and 13 are defined in the section
on multi-event types.

14 EVNT Begin init of message exits. This event
serves to initialize the task for message exit
processing.

16 EVNT IMS data store becomes available. The
event is recorded during the following
processes. It represents a successful client
bid process.

1. During IMS Connect initialization - once
for each available data store.

2. After IMS Connect initialization - any
time a data store joins the z/OS
cross-system coupling facility group and
client bid is completed.

17 EVNT IMS data store becomes unavailable. This
event represents a data store that has
become unavailable for transactions. It
could be due to a stop data store command
or the data store member leaving the XCF
group. The event is recorded for either
occurrence.

18 EVNT An IMS TMEMBER joins the XCF group.

19 EVNT An IMS TMEMBER leaves the XCF group.

20 EVNT Begin SCI registration.

21 EVNT End SCI registration.

22 EVNT Begin SCI De-registration.

23 EVNT End SCI De-registration.

698 Exit Routines

Table 323. Single process events (continued)

Event number
Extended
event number Event key Event description

24 EVNT Recorded trace DCB has been opened. This
event recorded after the recorder trace DCB
has been successfully opened.

25 EVNT Recorded trace DCB pre-close. This event is
recorded when the recorder trace DCB is
about to be closed. This event is recorded
while the recorder trace DCB is still open.

26 EVNT User message exit return from INIT. This
event is recorded just after the user
message exit returns.

27 EVNT User message exit return from TERM. This
event is recorded just after the user
message exit returns.

28 EVNT Begin Secure Environment Open. This is
issued at the start of SSL environment
creation.

29 EVNT End Secure Environment Open. This is
issued at the end of SSL environment
creation.

32 EVNT Begin Secure Environment Close. This is
issued at the start of SSL close.

33 EVNT End Secure Environment Close. This is
issued at the end of SSL initialization.

34 EVNT Begin Local Port Setup. This event is
recorded when a local port is present.

35 EVNT End Local Port Setup. This event is
recorded when a local port is present.

36 EVNT Begin z/OS Resource Recovery Services
Connect. This event is recorded when RRS
connect processing is started.

37 EVNT End RRS Connect. This event is recorded
when RRS connect processing is completed.

38 EVNT List In-doubt Context. This event records
the receipt of an in-doubt context during
RRS connect processing.

39 EVNT Begin RRS Disconnect. This event is
recorded when RRS disconnect processing
is started.

40 EVNT End RRS Disconnect. This event is recorded
when RRS disconnect processing is
completed.

41 EVNT ODBM registration begin

42 EVNT ODBM registration end

43 EVNT ODBM de-registration begin

44 EVNT ODBM de-registration end

Chapter 16. IMS Connect function-specific exit routines 699

Table 323. Single process events (continued)

Event number
Extended
event number Event key Event description

45 EVNT This event is recorded when the Exit
Interface Block Data Store (XIBDS)
identifies OTMA resources that are in a
severe, warning, or normal condition.

46 EVNT IMS Connect Port Message Edit exit routine
initialization

47 EVNT IMS Connect Port Message Edit exit routine
termination

48 EVNT Begin IMS Connect ODBM Routing exit
routine initialization

49 EVNT End IMS Connect ODBM Routing exit
routine initialization

50 EVNT Begin IMS Connect ODBM Routing exit
routine termination

51 EVNT End IMS Connect ODBM Routing exit
routine termination

52 EVNT XML Adapter INIT call begin. This event is
recorded just prior to calling the XML
Adapter INIT function.

53 EVNT XML Adapter INIT call end. This event is
recorded just after the XML Adapter INIT
function returns.

54 EVNT XML Adapter TERM call begin. This event
is recorded just prior to calling the XML
Adapter TERM function.

55 EVNT XML Adapter TERM call end. This event is
recorded just after the XML Adapter TERM
function returns

56 EVNT OM registration

57 EVNT OM deregistration

113 EVNT Connected to remote IMS Connect socket.

114 EVNT Disconnected from remote IMS Connect
socket.

115 EVNT Communications thread started for a
remote IMS Connect connection.

124 EVNT Connection to remote IMS Connect timed
out.

255 256 EVNT Socket connected on RMTCICS.

255 257 EVNT Socket disconnected from RMTCICS.

255 258 EVNT IMS Connect refreshed a cached RACF user
ID after receiving a type 71 Event
Notification Facility (ENF) notification.

255 259 EVNT IMS Connect sent a health status report to
Work Load Manager (WLM).

255 2050 EVNT Communication thread started for a
RMTCICS connection.

700 Exit Routines

||||

||||

||||
|
|

||||
|

||||
|

Multiple process event types
A multiple event is a series of events that are closely related to each other within a
process such as a transaction.

The following table identifies the events that are categorized as a multiple event
type. The following table lists the possible multiple events that can be recorded.

Table 324. Multi-process events

Event number
Extended
event number Event key Event description

12 SVT Token Begin close socket.

13 SVT Token End close socket.

60 SVT Token Prepare for socket read. This is the
start-of-frame event for a multi-event
process. It is the first event associated with
an SVT Token.

61 SVT Token User message exit entered for READ, XMIT,
or EXER. This event is recorded just prior
to calling the user message exit.

62 SVT Token User message exit return for READ, XMIT,
or EXER. This event is recorded just after
the user message exit returns.

63 SVT Token Begin SAF security request.

64 SVT Token End SAF security request.

65 SVT Token Message sent to OTMA. This entry is made
after the message has been sent to OTMA.

66 SVT Token Message received from OTMA. This entry is
made when a message has been received
from OTMA. It is recorded after all parts of
the message have been assembled.

67 SVT Token or
command
token

Message sent to SCI. TYPE=CMDINPUT or
TYP2RESP.

68 SVT Token or
command
token

Message received from SCI.
TYPE=CMDRESP or TYP2INPT.

69 SVT Token OTMA timeout. This event signals that a
timeout occurred for an OTMA request.

70 SVT Token De-allocate request. This event is generated
when IMS Connect honors a request from
the remote client to disconnect the session.

71 SVT Token Session error. This event is called when an
unrecoverable error has been encountered
and the session is being aborted. Fro this
error condition, this should probably be the
last event before the trigger event is
recorded.

72 SVT Token Trigger event. This is the end-of-frame
event recorded by IMS Connect when a
multi-event process has completed.

73 SVT Token Read socket.

74 SVT Token Write socket.

Chapter 16. IMS Connect function-specific exit routines 701

Table 324. Multi-process events (continued)

Event number
Extended
event number Event key Event description

75 SVT Token Local client connect. This event is issued at
receipt of the client connect call (logon).

76 SVT Token Local message send. This event is issued
when IMS Connect receives a local client
message. The send orientation is to the local
client.

77 SVT Token Local message receive. This event is issued
when IMS Connect sends a local client
message. The receive orientation is to the
local client.

78 SVT Token Local message send-then-receive. This event
is issued when IMS Connect receives a local
client message. The local client waits until
the output message is ready and IMS
Connect sends the message back to the
local client. The send and receive
orientation is to the local client.

79 SVT Token Local disconnect. This event is issued when
IMS Connect disconnects from a local client
(logoff).

80 SVT Token Begin create context. This event records the
request to RRS to create a context for a
transaction requesting two-phase commit
support.

81 SVT Token End create context. This event records the
end of creation of context for a transaction
requesting two-phase commit support.

82 SVT Token Begin RRS prepare. This event records
sending the prepare-to-commit request to
RRS.

83 SVT Token End RRS prepare. This event records
receiving the response to the
prepare-to-commit request.

84 SVT Token Begin RRS commit/abort. This event
records sending the commit/abort request
to RRS.

85 SVT Token End RRS commit/abort. This event records
receiving a response to the commit/abort
request.

86 SVT Token Begin secure environment select. This is
issued at the end of SSL select.

87 SVT Token End secure environment select. This is
issued at the end of SSL select.

88 SVT Token Entire message received from the OTMA
asynchronous tpipe hold queue in response
to a RESUME TPIPE call. This event is
recorded at the end of message assembly.

89 SVT Token IMS Connect Port Message Edit exit routine
entered. This event is recorded just prior to
calling the exit.

702 Exit Routines

Table 324. Multi-process events (continued)

Event number
Extended
event number Event key Event description

90 SVT Token IMS Connect Port Message Edit exit routine
entered. This event is recorded just after the
exit returns.

91 SVT Token DRDA distributed data management
(DDM) command.

92 SVT Token DRDA DDM reply.

93 SVT Token APSB begin.

94 SVT Token APSB end.

95 SVT Token DPSB begin.

96 SVT Token DPSB end.

97 SVT Token Enter routing exit.

98 SVT Token Return from routing exit routine.

99 SVT Token Enter security exit.

100 SVT Token Return from security exit routine.

101 SVT Token RRS PUR begin.

102 SVT Token RRS PUR end.

103 SVT Token RRS SWID begin.

104 SVT Token RRS SWID end.

105 SVT Token Message sent to ODBM.

106 SVT Token Message received from ODBM.

107 SVT Token RRS Delegate Commit Agent UR begins.
This event is recorded just prior to calling
RRS.

108 SVT Token RRS Delegate Commit Agent UR ends. This
event is recorded just after returning from
RRS.

109 SVT Token XML Adapter RXML or XXML call begin.
This event is recorded just prior to calling
the XML Adapter RXML or XXML function.

110 SVT Token XML Adapter RXML or XXML call end.
This event is recorded just after the XML
Adapter RXML or XXML function returns.

111 SVT Token XML converter call begin. This event is
recorded just prior to calling the XML
converter.

112 SVT Token XML converter call end. This event is
recorded just after the XML converter
returns.

116 Session token Message received from OTMA for OTMA
remote ALTPCB function. TYPE=REQUEST
or ACK/NAK.

117 Session token Message sent to remote IMS Connect over
TCP/IP for OTMA remote ALTPCB
function. TYPE=REQUEST or ACK/NAK.

Chapter 16. IMS Connect function-specific exit routines 703

Table 324. Multi-process events (continued)

Event number
Extended
event number Event key Event description

118 Session token Message received from remote IMS Connect
over TCP/IP for OTMA remote ALTPCB
function. TYPE=REQUEST or ACK/NAK.

119 Session token Message sent to OTMA for OTMA remote
ALTPCB function. TYPE=REQUEST or
ACK/NAK.

120 Session token MSC message received from MSC.
TYPE=REQUEST, REQRESP, RESTART,
RSTRESP, RSTBWRSP, PST/SBI, PST/BIS,
or SHUTDDIR.

121 Session token MSC message sent to remote IMS Connect.
TYPE=REQUEST, REQRESP, RESTART,
RSTRESP, RSTBWRSP, PST/SBI, PST/BIS,
SHUTDDIR, or ERRORRSP.

122 Session token MSC message received from remote IMS
Connect. TYPE=REQUEST, REQRESP,
RESTART, RSTRESP, RSTBWRSP, PST/SBI,
PST/BIS, SHUTDDIR, or ERRORRSP.

123 Session token MSC message sent to MSC.
TYPE=REQUEST, REQRESP, RESTART,
RSTRESP, RSTBWRSP, PST/SBI, PST/BIS,
SHUTDDIR, or ERRORRSP.

125 Session token Start of a session

126 Session token Trigger for the end of a session

255 2051 Session token ISC message received from IMS.

255 2052 Session token ISC message sent to IMS.

255 2053 Session token ISC message received on RMTCICS socket
connection.

255 2054 Session token ISC message sent on RMTCICS socket
connection.

255 2055 Session token ISC message received on CICSPORT socket
connection.

255 2056 Session token ISC message sent on CICSPORT socket
connection.

Event record formats
The IMS Connect Event Recorder exit routine stores and categorizes the event and
format for all event records using the ERPL (Event Record Parameter List).

The following tables list the format for all event records. Each table identifies each
possible event in the ERPL that can be recorded to the HWSTECL0 module and
provides the format for each event.

The following table identifies the parameter list content associated with the IMS
Connect region initialization event.

704 Exit Routines

||||

||||

||||
|

||||
|

||||
|

||||
|

Table 325. Connect region initialization event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 1 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 4 2

VAR_DATA Start of variable data area. 0

VAR_APAR APAR sequence number for the control
block.

2

VAR_VVRR IMS Connect Version and Release data. 2

The following table identifies the parameter list contents associated with the
Connect region termination.

Table 326. Connect region termination event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 2 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 6 2

VAR_DATA Start of variable data area. 0

VAR_APAR APAR sequence number for the control
block.

2

VAR_COMPCODE Completion code associated with region
termination.

4

The following table identifies the parameter list contents associated with the
Support Task Created event.

Table 327. Support task created event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 3 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 6 2

VAR_DATA Start of variable data area. 0

VAR_APAR APAR sequence number for the control
block.

2

Chapter 16. IMS Connect function-specific exit routines 705

Table 327. Support task created event (continued)

Parameter list item Content Length in bytes

VAR_FLAG Flag field indicating TCB type:

v x'80' port task

v x'40' local port task

v x'20' recorder task

v x'10' dynamically added

v x'08' DRDA port

v Reserved

1

VAR_PORT Port number if port task. 2

VAR_EDITXT Port edit exit if dynamically added. 8

VAR_KEEPAV Port keep alive if dynamically added. 4

VAR_PORTTO DRDA port timeout if dynamically added. 4

The following table identifies the parameter list contents associated with the
Support Task Terminating event.

Table 328. Support task terminating event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 4 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 6 2

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for the control
block.

2

VAR_FLAG Flag field indicating TCB type:

1. port

2. local

3. recorder

2

VAR_PORT Port number if port task. 2

The following table identifies the parameter list contents associated with the event,
Begin Initialize API.

Table 329. Begin initialize API event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 5 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 0 2

706 Exit Routines

The following table identifies the parameter list contents associated with the event,
End Initialize API.

Table 330. End initialize API event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 6 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 10 2

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for the control
block.

2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

The following table identifies the parameter list contents associated with the Begin
Bind Socket event. If this is a secure socket (SSL), the TCPIB (TCP/IP Information
Block) contains a flag indicating the operation is executing against an SSL port.

Table 331. Begin bind socket event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 7 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB 4

The following table identifies the parameter list contents associated with the End
Bind Socket event. If this is a secure socket (SSL), the TCPIB (TCP/IP Information
Block) contains a flag indicating the operation is executing against an SSL port.

Table 332. End bind socket event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 8 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 10 2

EVENT_DATA_ADDR Address of the TCPIB. 4

VAR_DATA Start of the variable data. 0

Chapter 16. IMS Connect function-specific exit routines 707

Table 332. End bind socket event (continued)

Parameter list item Content Length in bytes

VAR_APAR APAR sequence number for the control
block.

2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

The following table identifies the parameter list contents associated with the Listen
on Socket event. If this is a secure socket, the TCPIB contains a flag indicating the
operations is executing against an SSL port.

Table 333. Listen on socket event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 9 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB 4

The following table identifies the parameter list contents associated with the Begin
Accept Socket event. If this is a secure socket, the TCPIB contains a flag indicating
the operation is executing against an SSL port.

Table 334. Begin accept socket event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 10 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

The following table identifies the parameter list contents associated with the End
Accept Socket event. If this is a secure socket, the TCPIB contains a flag indicating
the operation is executing against an SSL port.

Table 335. End accept socket event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 11 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

708 Exit Routines

Table 335. End accept socket event (continued)

Parameter list item Content Length in bytes

VAR_DATA_LL 10 2

EVENT_DATA_ADDR Address of the TCPIB. 4

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control
block.

2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

The following table identifies the parameter list contents associated with the Begin
Close Socket event. If this is a secure socket (SSL), the TCPIB (TCP/IP Information
Block) contains a flag indicating that the operations is executing against an SSL
port.

Table 336. Begin close socket event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 12 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

The following table identifies the parameter list contents associated with the End
Close Socket event. If this is a secure socket, the TCPIB contains a flag indicating
the operations is executing against an SSL port.

Table 337. End close socket event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 13 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 10 2

EVENT_DATA_ADDR Address of the TCPIB. 4

VAR_APAR APAR sequence number for the control
block.

2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

The following table identifies the parameter list content associated with the Begin
Initialization of Message Exits event.

Chapter 16. IMS Connect function-specific exit routines 709

Table 338. Begin initialization of message exits

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 14 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 0 2

The following table identifies the parameter list contents associated with the Data
Store Available event.

Table 339. Data Store available event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 16 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the DSIB. 4

The following table identifies the parameter list contents associated with the Data
Store Unavailable event.

Table 340. Data Store unavailable event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 17 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the DSIB. 4

The following table identifies the parameter list contents associated with the
TMEMBER Joins z/OS cross-system coupling facility Group event.

Table 341. TMEMBER joins XCF group event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 18 2

Reserved 2

EVENT_KEY EVNT 8

710 Exit Routines

Table 341. TMEMBER joins XCF group event (continued)

Parameter list item Content Length in bytes

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the DSIB. 4

The following table identifies the parameter list contents associated with the
TMEMBER Leaves XCF Group event.

Table 342. TMEMBER leaves XCF group event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 19 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the DSIB. 4

The following table identifies the parameter list contents associated with the Begin
SCI Registration event.

Table 343. Begin SCI registration event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 20 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the DSIB. 4

The following table identifies the parameter list contents associated with the End
SCI Registration event.

Table 344. End SCI registration event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 21 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 10 2

EVENT_DATA_ADDR Address of the DSIB. 4

Chapter 16. IMS Connect function-specific exit routines 711

Table 344. End SCI registration event (continued)

Parameter list item Content Length in bytes

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control block. 2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

The following table identifies the parameter list contents associated with the Begin
SCI De-registration event.

Table 345. Begin SCI de-registration event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 22 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the DSIB. 4

The following table identifies the parameter list contents associated with the End
SCI De-registration event.

Table 346. End SCI de-registration event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 23 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 10 2

EVENT_DATA_ADDR Address of the DSIB. 4

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control
block.

2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

The following table identifies the parameter list contents associated with the
Recorder Trace DCB Opened event.

Table 347. Recorder trace DCB opened event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 24 2

712 Exit Routines

Table 347. Recorder trace DCB opened event (continued)

Parameter list item Content Length in bytes

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the recorder trace DCB. 4

The following table identifies the parameter list contents associated with the
Recorder Trace DCB Pre-close event.

Table 348. Recorder trace DCB pre-close event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 25 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 0 2

The following table identifies the parameter list contents associated with the
Message Exit INIT Call event.

Table 349. Message exit INIT call event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 26 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 18 2

EVENT_DATA_ADDR Address of the exit parameter list. 4

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control
block.

2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

VAR_EXIT_NAME Name of the user message exit. 8

The following table identifies the parameter list contents associated with the
Message Exit TERM Call event.

Table 350. Message exit TERM call event

Parameter list item Content Length in bytes

TOKEN Token address 4

Chapter 16. IMS Connect function-specific exit routines 713

Table 350. Message exit TERM call event (continued)

Parameter list item Content Length in bytes

EVENT_NUMBER 27 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 18 2

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control
block.

2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

VAR_EXIT_NAME Name of the user message exit. 8

The following table identifies the parameter list contents associated with the Begin
Secure Environment Open event.

Table 351. Begin secure environment open event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 28 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

The following table identifies the parameter list contents associated with the End
Secure Environment Open event.

Table 352. End secure environment open event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 29 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 10 2

EVENT_DATA_ADDR Address of the TCPIB.

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control
block.

2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

714 Exit Routines

The following table identifies the parameter list contents associated with the Begin
Secure Environment Close event.

Table 353. Begin secure environment close event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 32 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

The following table identifies the parameter list contents associated with the End
Secure Environment Close event.

Table 354. End secure environment close event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 33 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for the control
block.

2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

The following table identifies the parameter list contents associated with the Begin
Local Port Setup event.

Table 355. Begin local port setup event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 34 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

Chapter 16. IMS Connect function-specific exit routines 715

The following table identifies the parameter list contents associated with the End
Local Port Setup event.

Table 356. End local port setup event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 35 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 14 2

EVENT_DATA_ADDR Address of the TCPIB. 4

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for the control
block.

2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

The following table identifies the parameter list contents associated with the Begin
z/OS Resource Recovery Services Connect event.

Table 357. Begin RRS connect event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 36 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 0 2

The following table identifies the parameter list contents associated with the End
RRS Connect event.

Table 358. End RRS connect event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 37 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 6 2

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for the control
block.

2

VAR_RC Return code. 4

716 Exit Routines

The following table identifies the parameter list contents associated with the List
In-doubt Context event.

Table 359. List in-doubt context event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 38 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 162 2

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for the control
block.

2

VAR_RC Return code. 4

VAR_URTOKEN The UR_INTEREST_TOKEN returned by
RRS.

16

VAR_XID The XID associated with this transaction 140

The following table identifies the parameter list contents associated with the Begin
RRS Disconnect event.

Table 360. Begin RRS disconnect event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 39 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 0 2

The following table identifies the parameter list contents associated with the End
RRS Disconnect event.

Table 361. End RRS disconnect event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 40 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 6 2

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for the control
block.

2

VAR_RC Return code. 4

Chapter 16. IMS Connect function-specific exit routines 717

The following table identifies the parameter list contents associated with the
ODBM registration begin event.

Table 362. ODBM registration begin event 41

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 41 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the DSIB 4

The following table identifies the parameter list contents associated with the
ODBM registration end event.

Table 363. ODBM registration end event 42

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 42 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

EVENT_DATA_ADDR Address of DSIB 4

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number for control block 2

VAR_RETCODE Return code. 4

VAR_RSNCODE Reason code 4

The following table identifies the parameter list contents associated with the
ODBM de-registration begin event.

Table 364. ODBM de-registration begin event 43

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 43 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the DSIB 4

The following table identifies the parameter list contents associated with the
ODBM de-registration end event.

718 Exit Routines

Table 365. ODBM de-registration end event 44

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 44 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 10 2

EVENT_DATA_ADDR Address of the DSIB 4

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number for control block 2

VAR_RETCODE Return code 4

VAR_RSNCODE Reason code 4

The following table identifies the parameter list contents associated with the Exit
Interface Block Data Store (XIBDS) status update event.

Table 366. XIBDS status update event 45

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 45 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the XIBDS 4

The following table identifies the parameter list contents associated with the Port
Edit exit INIT event.

Table 367. Port Edit exit INIT event 46

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 46 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 18 2

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number 2

VAR_RC Return code from exit 4

VAR_RSN Reason code form exit 4

VAR_EXITN Name of User Exit 8

Chapter 16. IMS Connect function-specific exit routines 719

The following table identifies the parameter list contents associated with the Port
Edit exit TERM event.

Table 368. Port Edit exit TERM event 47

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 47 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 18 2

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number 2

VAR_RC Return code from exit 4

VAR_RSN Reason code form exit 4

VAR_EXITN Name of User Exit 8

The following table identifies the parameter list contents associated with the begin
IMS Connect ODBM routing exit routine initialization event.

Table 369. IMS Connect ODBM Routing exit routine initialization begin event 48

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 48 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 10 2

EVENT_DATA_ADDR Address of the TCPIB 4

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number for control block 2

VAR_EXITNAME Exit routine name 8

The following table identifies the parameter list contents associated with the end
IMS Connect ODBM routing exit routine initialization event.

Table 370. IMS Connect ODBM Routing exit routine initialization end event 49

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 49 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 18 2

EVENT_DATA_ADDR Address of the TCPIB 4

720 Exit Routines

Table 370. IMS Connect ODBM Routing exit routine initialization end event 49 (continued)

Parameter list item Content Length in bytes

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for control block 2

VAR_RETCODE Return code 4

VAR_RSNCODE Reason code 4

VAR_EXITNAME Exit routine name 8

The following table identifies the parameter list contents associated with the begin
IMS Connect ODBM routing exit routine termination event.

Table 371. IMS Connect ODBM Routing exit routine termination end event 50

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 50 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 10 2

EVENT_DATA_ADDR Address of the TCPIB 4

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number for control block 2

VAR_EXITNAME Exit routine name 8

The following table identifies the parameter list contents associated with the end
IMS Connect ODBM routing exit routine termination event.

Table 372. IMS Connect ODBM Routing exit routine termination end event 51

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 51 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 18 2

EVENT_DATA_ADDR Address of the DSIB 4

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for control block 2

VAR_RETCODE Return code 4

VAR_RSNCODE Reason code 4

VAR_EXITNAME Exit routine name 8

The following table identifies the parameter list content associated with the XML
Adapter INIT call begin event.

Chapter 16. IMS Connect function-specific exit routines 721

Table 373. XML Adapter INIT call begin event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 52 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 10 2

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number for control block 2

VAR_ADAPTER_NAME Adapter name 8

The following table identifies the parameter list content associated with the XML
Adapter INIT call end event.

Table 374. XML Adapter INIT call end event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 53 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 18 2

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number for control block 2

VAR_RC Return code 4

VAR_RSN Reason code 4

VAR_ADAPTER_NAME Adapter name 8

The following table identifies the parameter list content associated with the XML
Adapter TERM call begin event.

Table 375. XML Adapter TERM call begin event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 54 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 10 2

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number for control block 2

VAR_ADAPTER_NAME Adapter name 8

The following table identifies the parameter list content associated with the XML
Adapter TERM call end event.

722 Exit Routines

Table 376. XML Adapter TERM call end event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 55 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 18 2

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number for control block 2

VAR_RC Return code 4

VAR_RSN Reason code 4

VAR_ADAPTER_NAME Adapter name 8

The following table identifies the parameter list content associated with the OM
registration event.

Table 377. OM registration event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 56 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 20 2

EVENT_DATA_ADDR Address of the DSIB 4

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number for control block 2

Reserved 2

VAR_RC Return code 4

VAR_RSN Reason code 4

VAR_OM_NAME Name of the OM 8

The following table identifies the parameter list content associated with the OM
deregistration event.

Table 378. OM deregistration event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 57 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 12 2

EVENT_DATA_ADDR Address of the DSIB 4

Chapter 16. IMS Connect function-specific exit routines 723

Table 378. OM deregistration event (continued)

Parameter list item Content Length in bytes

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number for control block 2

Reserved 2

VAR_RC Return code 4

VAR_RSN Reason code 4

The following table identifies the parameter list contents associated with the
Prepare Socket Read event.

Table 379. Prepare socket read event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 60 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

The following table identifies the parameter list contents associated with the
Message Exit Called for READ, XMIT, or EXER event.

Table 380. Message exit called for READ, XMIT, or EXER event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 61 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 2 2

VAR_DATA_LL 18 2

EVENT_DATA_ADDR Address of the parameter list at entry (R1). 4

EVENT_DATA_ADDR2 If READ or EXER, address of the IRM (IMS
request message) header. If XMIT, address
of the OTMA header.

4

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for the control
block.

2

VAR_EXIT_NAME Exit name. 8

VAR_TRACKINGID_ADDRS Address of the tracking ID on output. 4

VAR_TRACKINGID_LEN Length of the tracking ID on output. 4

The following table identifies the parameter list contents associated with the
Message Exit Return for READ, XMIT, or EXER event.

724 Exit Routines

|

|||

|||

Table 381. Message exit return for READ, XMIT, or EXER event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 62 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 2 2

VAR_DATA_LL 26 2

EVENT_DATA_ADDR Address of the parameter list at entry (R1). 4

EVENT_DATA_ADDR2 If XMIT or EXER, address of the remote
client message. If READ, address of the
OTMA header.

4

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for the control
block.

2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

VAR_EXIT_NAME Exit name. 8

VAR_TRACKINGID_ADDRS Address of the tracking ID on output. 4

VAR_TRACKINGID_LEN Length of the tracking ID on output. 4

The following table identifies the parameter list contents associated with the Begin
SAF Request event.

Table 382. Begin SAF request event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 63 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the SAFIB. 4

The following table identifies the parameter list contents associated with the End
SAF Request event.

Table 383. End SAF request event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 64 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

Chapter 16. IMS Connect function-specific exit routines 725

|

|||

|||

Table 383. End SAF request event (continued)

Parameter list item Content Length in bytes

EVENT_DATA_ADDR Address of the SAFIB. 4

The following table identifies the parameter list contents associated with the
Message Sent to OTMA event.

Table 384. Message sent to OTMA event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 65 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the DSIB. 4

The following table identifies the parameter list contents associated with the
Message Received from OTMA event.

Table 385. Message received from OTMA event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 66 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the DSIB. 4

The following table identifies the parameter list contents associated with a Message
Sent to SCI event.

Table 386. Message sent to SCI event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 67 2

Reserved 2

EVENT_KEY
SVT token

Client-initiated command input

Command token
SPOC/OM-initiated type-2
command reply

8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 10 2

726 Exit Routines

Table 386. Message sent to SCI event (continued)

Parameter list item Content Length in bytes

EVENT_DATA_ADDR Address of the DSIB. 4

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number 2

VAR_MSGTYPE CMDINPT or TYP2RESP 8

The following table identifies the parameter list contents associated with a Message
Received from SCI event.

Table 387. Message received from SCI event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 68 2

Reserved 2

EVENT_KEY
SVT token

Client-initiated command reply

Command token
SPOC/OM-initiated type-2
command input

8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 10 2

EVENT_DATA_ADDR Address of the DSIB. 4

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number 2

VAR_MSGTYPE CMDRESP or TYP2INPT 8

The following table identifies the parameter list contents associated with an OTMA
timeout event.

Table 388. OTMA timeout event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 69 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 6 2

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control block. 2

VAR_TO_VALUE Timeout value. 4

The following table identifies the parameter list contents associated with a
De-allocate Session event.

Chapter 16. IMS Connect function-specific exit routines 727

Table 389. De-allocate session event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 70 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 6 2

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control
block.

2

VAR_DEALC_RSN Reason for session de-allocation. Note: Can
be a flag or constant type of reason.

4

The following table identifies the parameter list contents associated with a Session
Error event.

Table 390. Session error event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 71 2

Reserved 2

EVENT_KEY SVT Token or EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 154 2

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control block. 2

VAR_FLAG Flag fields indicating record content.

1. Message is present in the record.

2. Out-of-frame error.

2

VAR_MESSAGE If a message is generated for the error, it is
contained in this field.

134

VAR_SESS_RSN Reason for the session de-allocation. Note:
The session reason is a character expression
of the error type.

8

VAR_SESS_TOKEN The SVTTOKEN associated with the message
when the session error occurs out-of-frame
and the SVTTOKEN for the message cannot
be located by IMS Connect. Note: This field
is valid only when the key of the event is
EVNT. If the key is an SVTTOKEN value,
this field is zero. In some cases, where
asynchronous output is created by a non-IMS
Connect source, the field may contain values
that do not resemble a normal IMS Connect
SVTTOKEN.

8

728 Exit Routines

The following table identifies the parameter list contents associated with a Trigger
event.

Table 391. Trigger event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 72 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 10 2

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control
block.

2

VAR_TRIG_TYPE Constant identifying triggers type. Values
can be TRAN or TPIPE or anything else that
is needed.

8

The following table identifies the parameter list contents associated with a Read
Socket event.

Table 392. Read socket event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 73 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

The following table identifies the parameter list contents associated with the Write
Socket event.

Table 393. Write socket event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 74 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

The following table identifies the parameter list contents associated with the Local
Client Connect event.

Chapter 16. IMS Connect function-specific exit routines 729

Table 394. Local client connect event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 75 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

The following table identifies the parameter list contents associated with the Local
Message Send event. This event is completed following the event recording of the
SRB scheduling and may not precisely mark the actual completion of the
operation.

Table 395. Local message send event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 76 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

The following table identifies the parameter list contents associated with the Local
Message Receive event. This event is completed following the event recording of
the SRB scheduling and may not precisely mark the actual completion of the
operation.

Table 396. Local message receive

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 77 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

The following table identifies the parameter list contents associated with the Local
Message Send/Receive event. This event is completed following the copy of the
SRB scheduling and may not precisely mark the actual completion of the
operation.

730 Exit Routines

Table 397. Local message send/receive event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 78 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

The following table identifies the parameter list contents associated with the Local
Client Disconnect event.

Table 398. Local client disconnect event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 79 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

The following table identifies the parameter list contents associated with the Begin
Create Context event.

Table 399. Begin create context event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 80 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 0 2

The following table identifies the parameter list contents associated with the End
Create Context event.

Table 400. End create context event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 81 2

Reserved 2

EVENT_KEY SVT Token 8

Chapter 16. IMS Connect function-specific exit routines 731

Table 400. End create context event (continued)

Parameter list item Content Length in bytes

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 162 2

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for the control
block.

2

VAR_RC RRS return code. 4

VAR_URTOKEN UR Interest token returned from RRS. 16

VAR_XID The remote client XID associated with the
transaction.

140

The following table identifies the parameter list contents associated with the Begin
RRS Prepare event.

Table 401. Begin RRS prepare event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 82 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 18 2

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control
block.

2

VAR_URTOKEN URTOKEN associated with the request. 16

The following table identifies the parameter list contents associated with the End
RRS Prepare event.

Table 402. End RRS prepare event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 83 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 24 2

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control
block.

2

VAR_RC Return code. 4

732 Exit Routines

Table 402. End RRS prepare event (continued)

Parameter list item Content Length in bytes

VAR_FLAG Result flags:

1. At least 1 participant replied abort.

Note: The results flag is set if any
participant has requested the context be
aborted.

2

VAR_URTOKEN URTOKEN associated with the request. 16

The following table identifies the parameter list contents associated with the Begin
RRS Commit/Abort event.

Table 403. Begin RRS commit/abort event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 84 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 20 2

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control block. 2

VAR_FLAG Result flags:

1. request to abort

2. request to commit

Note: The results flag is set if any participant
has requested the context be aborted.

2

VAR_URTOKEN URTOKEN associated with the request. 16

The following table identifies the parameter list contents associated with the End
RRS Commit/Abort event.

Table 404. End RRS commit/abort event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 85 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 24 2

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control
block.

2

Chapter 16. IMS Connect function-specific exit routines 733

Table 404. End RRS commit/abort event (continued)

Parameter list item Content Length in bytes

VAR_FLAG Result flags:

1. request to abort

2. request to commit

3. could not find the URTOKEN

Note: The results flag is set if any
participant has requested the context be
aborted.

2

VAR_RC Return code. 4

VAR_URTOKEN URTOKEN associated with the request. 16

The following table identifies the parameter list contents associated with the Begin
Secure Environment Select event.

Table 405. Begin secure environment select event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 86 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 4 2

EVENT_DATA_ADDR Address of the TCPIB 4

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control
block.

2

VAR_FLAG Result flags:

1. Select for Read.

2. Select for Write

2

The following table identifies the parameter list contents associated with the End
Secure Environment Select event.

Table 406. End secure environment select event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 87 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 12 2

EVENT_DATA_ADDR Address of the TCPIB. 4

VAR_DATA Start of the variable data. 0

734 Exit Routines

Table 406. End secure environment select event (continued)

Parameter list item Content Length in bytes

VAR_APAR APAR sequence number for the control
block.

2

VAR_FLAG Result flags:

1. Select for Read.

2. Select for Writer.

2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

The following table identifies the parameter list contents associated with the
Message Received from OTMA event by the Resume Tpipe call.

Table 407. Message received from OTMA event by the Resume Tpipe call

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 88 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 2 2

VAR_DATA_LL 8 2

EVENT_DATA_ADDR1 Address of the parameter list at entry 4

EVENT_DATA_ADDR2 Address of the SVT TOKEN of INPUT SVI 4

VAR_DATA Start of variable data 0

VAT_EXIT_NAME Exit name 8

The following table identifies the parameter list contents just before the IMS
Connect Port Message Edit exit routine call.

Table 408. Port Edit exit begin event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 89 2

Reserved 2

EVENT_KEY SVT TOKEN 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 14 2

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number 2

VAR_PARML HWSEXPIO parameter list address 4

VAR_EXITN Exit name 8

The following table identifies the parameter list contents associated with the return
from the IMS Connect Port Message Edit exit routine call.

Chapter 16. IMS Connect function-specific exit routines 735

Table 409. Port Edit exit return event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 90 2

Reserved 2

EVENT_KEY SVT TOKEN 8

DATA_ADDR_COUNT 2 2

VAR_DATA_LL 8 2

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number 2

VAR_PARML HWSEXPIO parameter list address 4

VAR_RC Return code 4

VAR_RSN Reason code 4

VAR_EXITN Name of User Exit 8

The following table identifies the parameter list contents associated with the DRDA
distributed data management (DDM) command event.

Table 410. DRDA DDM command event 91

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 91 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 4 2

EVENT_DATA_ADDR Address of the DRDA command 4

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number for control block 2

VAR_CODEPOINT DRDA DDM command codepoint 2

The following table identifies the parameter list contents associated with the DRDA
DDM command reply event.

Table 411. DRDA DDM command reply event 92

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 92 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 4 2

EVENT_DATA_ADDR Address of the DRDA DDM reply 4

VAR_DATA Start of variable data 0

736 Exit Routines

Table 411. DRDA DDM command reply event 92 (continued)

Parameter list item Content Length in bytes

VAR_APAR APAR sequence number for control block 2

VAR_CODEPOINT DRDA DDM reply codepoint 2

The following table identifies the parameter list contents associated with the APSB
Begin event.

Table 412. APSB Begin event 93

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 93 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 30 2

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number for control block 2

VAR_PSBNAME PSB name 8

VAR_ALIAS IMS alias name 4

VAR_STCKE Store clock 16

The following table identifies the parameter list contents associated with the APSB
end event.

Table 413. APSB end event 94

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 94 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 28 2

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number for control block 2

VAR_PSBNAME PSB name 8

VAR_CODEPOINT Codepoint 2

VAR_STCKE Store clock 16

The following table identifies the parameter list contents associated with the DPSB
begin event.

Chapter 16. IMS Connect function-specific exit routines 737

Table 414. DPSB begin event 95

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 95 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 26 2

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number for control block 2

VAR_PSBNAME PSB name 8

VAR_STCKE Store clock 16

The following table identifies the parameter list contents associated with the DPSB
end event.

Table 415. DPSB end event 96

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 96 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 28 2

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number for control block 2

VAR_PSBNAME PSB name 8

VAR_CODEPOINT Codepoint 2

VAR_STCKE Store clock 16

The following table identifies the parameter list contents associated with the enter
routing exit event.

Table 416. Enter routing exit event 97

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 97 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 14 2

EVENT_DATA_ADDR Address of the parameter list at entry (R1) 4

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number for control block 2

VAR_ALIAS Pre-selected IMS alias name 4

738 Exit Routines

Table 416. Enter routing exit event 97 (continued)

Parameter list item Content Length in bytes

VAR_CLID Client ID 8

The following table identifies the parameter list contents associated with the return
from routing exit event.

Table 417. Return from routing exit event 98

Parameter list item Content
Length in
bytes

TOKEN Token address 4

EVENT_NUMBER 98 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 34 2

EVENT_DATA_ADDR Address of the parameter list at entry (R1) 4

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number for control block 2

VAR_RETCODE Return code from the exit 4

VAR_RSNCODE Reason code from the exit 4

VAR_ALIAS IMS alias name returned from the exit 4

VAR_ODBMNAME ODBM name returned from the exit 8

VAR_SERVRTN Service return code 4

VAR_SERVRSN Service reason code 8

The following table identifies the parameter list contents associated with the enter
security exit event.

Table 418. Enter security exit event 99

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 99 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR1 Address of the parameter list at entry (R1) 4

The following table identifies the parameter list contents associated with the return
from security exit event.

Table 419. Return from security exit event 100

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 100 4

Chapter 16. IMS Connect function-specific exit routines 739

Table 419. Return from security exit event 100 (continued)

Parameter list item Content Length in bytes

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 22 2

EVENT_DATA_ADDR Address of the parameter list at entry (R1) 4

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number for the control
block

2

VAR_RETCODE Return code from the exit 4

VAR_RSNCODE Reason code from the exit 4

VAR_SERVRTN Service return code 4

VAR_SERVRSN Service reason code 8

The following table identifies the parameter list contents associated with the RRS
parent UR begin event.

Table 420. RRS parent UR begin event 101

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 101 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 142 2

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number for control block 2

VAR_XID The XID for creating the parent UR 140

The following table identifies the parameter list contents associated with the RRS
parent UR end event.

Table 421. RRS parent UR end event 102

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 102 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 162 2

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number for control block 2

VAR_RETCODE Return code 4

VAR_PURTOKEN Parent UR token returned 16

740 Exit Routines

Table 421. RRS parent UR end event 102 (continued)

Parameter list item Content Length in bytes

VAR_XID The XID associated with the parent UR 140

The following table identifies the parameter list contents associated with the RRS
SWID begin event.

Table 422. RRS SWID begin event 103

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 103 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 158 2

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number for control block 2

VAR_PURTOKEN Parent UR token returned 16

VAR_XID The XID associated with the parent UR 140

The following table identifies the parameter list contents associated with the RRS
SWID end event.

Table 423. RRS SWID end event 104

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 104 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 162 2

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number for control block 2

VAR_RETCODE Return code 4

VAR_PURTOKEN Parent UR token 16

VAR_XID The XID associated with the parent UR 140

The following table identifies the parameter list contents associated with the
message sent to ODBM event.

Table 424. Message sent to ODBM event 105

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 105 2

Chapter 16. IMS Connect function-specific exit routines 741

Table 424. Message sent to ODBM event 105 (continued)

Parameter list item Content Length in bytes

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the DSIB 4

The following table identifies the parameter list contents associated with the
message received from ODBM event.

Table 425. Message received from ODBM event 106

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 106 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the DSIB 4

The following table identifies the parameter list contents associated with the begin
RRS delegate commit event.

Table 426. RRS delegate commit begin event 107

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 107 2

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 158 2

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for control block 2

VAR_PURTOKEN Parent UR token 16

VAR_XID The XID associated with the parent UR 140

The following table identifies the parameter list contents associated with the end
RRS delegate commit event.

Table 427. RRS delegate commit end event 108

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 108 2

742 Exit Routines

Table 427. RRS delegate commit end event 108 (continued)

Parameter list item Content Length in bytes

Reserved 2

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 162 2

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for control block 2

VAR_RETCODE Return code 4

VAR_PURTOKEN Parent UR token 16

VAR_XID The XID associated with the parent UR. 140

The following table identifies the parameter list content associated with the XML
Adapter RXML and XXML call begin event.

Table 428. XML Adapter RXML and XXML call begin event 109

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 109 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 22 2

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for control block 2

VAR_ADAPTER_NAME Adapter name 8

VAR_ADAPTER_FUNC Adapter function (RXML or XXML) 4

VAR_CONV_NAME Converter name 8

The following table identifies the parameter list content associated with the XML
Adapter RXML and XXML call end event.

Table 429. XML Adapter RXML and XXML call end event 110

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 110 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 30 2

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for control block 2

VAR_RC Return code 4

VAR_RSN Reason code 4

VAR_ADAPTER_NAME Adapter name 8

VAR_ADAPTER_FUNC Adapter function (RXML or XXML) 4

Chapter 16. IMS Connect function-specific exit routines 743

Table 429. XML Adapter RXML and XXML call end event 110 (continued)

Parameter list item Content Length in bytes

VAR_CONV_NAME Converter name 8

The following table identifies the parameter list content associated with the XML
converter call begin event.

Table 430. XML converter call begin event 111

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 111 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 10 2

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for control block 2

VAR_CONV_NAME Converter name 8

The following table identifies the parameter list content associated with the XML
converter call end event.

Table 431. XML converter call end event 112

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 112 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 18 2

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for control block 2

VAR_RC Return code 4

VAR_RSN Reason code 4

VAR_CONV_NAME Converter name 8

The following table identifies the parameter list contents associated with the
Connected to remote IMS Connect event.

Table 432. Connected to remote IMS Connect event 113

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 113 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

744 Exit Routines

Table 432. Connected to remote IMS Connect event 113 (continued)

Parameter list item Content Length in bytes

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB 4

The following table identifies the parameter list contents associated with the
Disconnected from remote IMS Connect event.

Table 433. Disconnected from remote IMS Connect event 114

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 114 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 26 2

EVENT_DATA_ADDR Address of the TCPIB 4

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for control block. 2

VAR_TMEMBER TMEMBER name if the connection is for
OTMA, otherwise this field contains blanks.

8

VAR_LCLPLKID MSC LCLPLKID name if the connection is
for MSC, otherwise this field contains
blanks.

8

VAR_LINK LINK name if the connection is for MSC,
otherwise this field contains blanks.

8

The following table identifies the parameter list contents associated with the
Communications thread started for a remote IMS Connect connection event.

Table 434. Communications thread started for a remote IMS Connect connection event 115

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 115 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 10 2

EVENT_DATA_ADDR Address of the TCPIB 4

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for control block 2

VAR_RMTICON RMTIMSCON name 8

The following table identifies the parameter list contents associated with the
Message received from OTMA for OTMA remote ALTPCB function event.

Chapter 16. IMS Connect function-specific exit routines 745

|||

Table 435. Message received from OTMA for OTMA remote ALTPCB function event 116

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 116 2

Reserved 2

EVENT_KEY Session token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 10 2

EVENT_DATA_ADDR Address of the DSIB 4

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number 2

VAR_MSGTYPE REQUEST or ACK/NACK 8

The following table identifies the parameter list contents associated with the
Message sent to remote IMS Connect over TCP/IP for OTMA remote ALTPCB
function event.

Table 436. Message sent to remote IMS Connect over TCP/IP for OTMA remote ALTPCB
function event 117

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 117 2

Reserved 2

EVENT_KEY Session token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 26 2

EVENT_DATA_ADDR Address of the TCPIB 4

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number 2

VAR_MSGTYPE REQUEST or ACK/NACK 8

VAR_TMEMBER TMEMBER name 8

VAR_TPIPE TPIPE name 8

The following table identifies the parameter list contents associated with the
Message received from remote IMS Connect over TCP/IP for OTMA remote
ALTPCB function event.

Table 437. Message received from remote IMS Connect over TCP/IP for OTMA remote
ALTPCB function event 118

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 118 2

Reserved 2

EVENT_KEY Session token 8

DATA_ADDR_COUNT 1 2

746 Exit Routines

Table 437. Message received from remote IMS Connect over TCP/IP for OTMA remote
ALTPCB function event 118 (continued)

Parameter list item Content Length in bytes

VAR_DATA_LL 26 2

EVENT_DATA_ADDR Address of the TCPIB 4

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number 2

VAR_MSGTYPE REQUEST or ACK/NACK 8

VAR_TMEMBER TMEMBER name 8

VAR_TPIPE TPIPE name 8

The following table identifies the parameter list contents associated with the
Message sent to OTMA for an OTMA remote ALTPCB function event.

Table 438. Message sent to OTMA for OTMA remote ALTPCB function event 119

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 119 2

Reserved 2

EVENT_KEY Session token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 10 2

EVENT_DATA_ADDR Address of the DSIB 4

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number 2

VAR_MSGTYPE REQUEST or ACK/NACK 8

The following table identifies the parameter list contents associated with the MSC
message received from MSC event.

Table 439. MSC message received from MSC event 120

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 120 2

Reserved 2

EVENT_KEY Session token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 10 2

EVENT_DATA_ADDR Address of the DSIB 4

VAR_APAR APAR sequence number 2

VAR_MSGTYPE REQUEST, REQRESP, RESTART, RSTRESP,
RSTBWRSP, PST/SBI, PST/BIS, or
SHUTDDIR

8

Chapter 16. IMS Connect function-specific exit routines 747

The following table identifies the parameter list contents associated with the MSC
message sent to remote IMS Connect event.

Table 440. MSC message sent to remote IMS Connect event 121

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 121 2

Reserved 2

EVENT_KEY Session token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 26 2

EVENT_DATA_ADDR Address of the TCPIB 4

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number 2

VAR_MSGTYPE REQUEST, REQRESP, RESTART, RSTRESP,
RSTBWRSP, PST/SBI, PST/BIS,
SHUTDDIR, or ERRORRSP

8

VAR_LCLPLKID MSC LCLPLKID name 8

VAR_LINK LINK name 8

The following table identifies the parameter list contents associated with the MSC
message received from remote IMS Connect event.

Table 441. MSC message received from remote IMS Connect event 122

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 122 2

Reserved 2

EVENT_KEY Session token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 26 2

EVENT_DATA_ADDR Address of the TCPIB 4

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number 2

VAR_MSGTYPE REQUEST, REQRESP, RESTART, RSTRESP,
RSTBWRSP, PST/SBI, PST/BIS,
SHUTDDIR, or ERRORRSP

8

VAR_LCLPLKID MSC LCLPLKID name 8

VAR_PARTNER MSC partner ID name 8

The following table identifies the parameter list contents associated with the MSC
message sent to MSC event.

Table 442. MSC message sent to MSC event 123

Parameter list item Content Length in bytes

TOKEN Token address 4

748 Exit Routines

Table 442. MSC message sent to MSC event 123 (continued)

Parameter list item Content Length in bytes

EVENT_NUMBER 123 2

Reserved 2

EVENT_KEY Session token or EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 10 2

EVENT_DATA_ADDR Address of the DSIB 4

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number 2

VAR_MSGTYPE REQUEST, REQRESP, RESTART, RSTRESP,
RSTBWRSP, PST/SBI, PST/BIS,
SHUTDDIR, ERRORSP, or ICONTERM

8

The following table identifies the parameter list contents associated with the
Connection to remote IMS Connect timed out event.

Table 443. Connection to remote IMS Connect timed out event 124

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 124 2

Reserved 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB 4

The following table identifies the parameter list contents associated with the start
of session event.

Table 444. Start of session event 125

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 125 2

Reserved 2

EVENT_KEY Session token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 10 2

VAR_DATA Start of variable data 0

VAR_APAR APAR sequence number 2

VAR_TOKEN SVT token value 8

The following table identifies the parameter list contents associated with the end of
session trigger event.

Chapter 16. IMS Connect function-specific exit routines 749

|

|
|
|

|||

|||

|||

|||

Table 445. End of session trigger event 126

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 126 2

Reserved 2

EVENT_KEY Session token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 0 2

The following table identifies the parameter list contents associated with the
establishment of a socket connection with a remote CICS subsystem.

Table 446. Socket connected on RMTCICS event 256

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 255 2

EXTD_EVENT_NUMBER 256 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB 4

The following table identifies the parameter list contents associated with the
disconnection of a socket from a remote CICS subsystem.

Table 447. Socket disconnected on RMTCICS event 257

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 255 2

EXTD_EVENT_NUMBER 257 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB 4

The following table identifies the parameter list contents associated with IMS
Connect refreshing a RACF user ID.

Table 448. IMS Connect refreshed a RACF user ID event 258

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 255 2

EXTD_EVENT_NUMBER 258 2

EVENT_KEY EVNT 8

750 Exit Routines

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

Table 448. IMS Connect refreshed a RACF user ID event 258 (continued)

Parameter list item Content Length in bytes

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 14 2

VAR_DATA Start of variable data area 0

VAR_APAR APAR sequence number
for the control block

2

VAR_UIDRFRSHD Refreshed RACF user ID 8

VAR_RACF_RSN Reason from the RACF
security server for
refreshing the ID. This
value is passed to IMS
Connect in the IRR_ENF2Q
field of the RACF
parameter list for ENF
event 71.

4

The following table identifies the parameter list contents associated with IMS
Connect sending a health status report to Work Load Manager (WLM).

Table 449. IMS Connect sent a health status report to WLM event 259

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 255 2

EXTD_EVENT_NUMBER 259 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 6 2

VAR_DATA Start of variable data area 0

VAR_APAR APAR sequence number
for the control block

2

VAR_HLTHVAL Health status sent 4

The following table identifies the parameter list contents associated with the start
of a communication thread for a connection with a remote CICS subsystem.

Table 450. Communication thread started for an RMTCICS connection event 2050

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 255 2

EXTD_EVENT_NUMBER 2050 2

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB 4

Chapter 16. IMS Connect function-specific exit routines 751

|

|||

|||

|||

|||

||
|
|

|||

||
|
|
|
|
|
|
|

|

|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

||
|
|

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||
|

The following table identifies the parameter list contents associated with receiving
an ISC message from IMS.

Table 451. ISC message received from IMS event 2051

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 255 2

EXTD_EVENT_NUMBER 2051 2

EVENT_KEY Session token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 20 2

EVENT_DATA_ADDR Address of the DSIB 4

VAR_DATA Start of variable data area 0

VAR_APAR APAR sequence number
for the control block

2

VAR_ISFLTYPE IS field type 2

VAR_MSGTYPE Message type 8

VAR_ASTOKEN Associated event token if
available when
MSGTYPE=CAPEXREQ,
CAPEXRSP, BISREQ, or
BISRSP

8

The following table identifies the parameter list contents associated with the
sending of an ISC message to IMS.

Table 452. ISC message sent to IMS event 2052

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 255 2

EXTD_EVENT_NUMBER 2052 2

EVENT_KEY Session token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 20 2

EVENT_DATA_ADDR Address of the DSIB 4

VAR_DATA Start of variable data area 0

VAR_APAR APAR sequence number
for the control block

2

VAR_ISFLTYPE IS field type 2

VAR_MSGTYPE Message type 8

VAR_ASTOKEN Associated event token if
available when
MSGTYPE=CAPEXREQ,
CAPEXRSP, BISREQ, or
BISRSP

8

752 Exit Routines

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

||
|
|

|||

|||

||
|
|
|
|

|

|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

||
|
|

|||

|||

||
|
|
|
|

|

|

The following table identifies the parameter list contents associated with receiving
an ISC message from CICS on an RMTCICS socket connection.

Table 453. ISC message received on RMTCICS socket connection event 2053

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 255 2

EXTD_EVENT_NUMBER 2053 2

EVENT_KEY Session token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 12 2

EVENT_DATA_ADDR Address of the TCPIB 4

VAR_DATA Start of variable data area 0

VAR_APAR APAR sequence number
for the control block

2

VAR_ISFLTYPE IS field type 2

VAR_MSGTYPE Message type 8

The following table identifies the parameter list contents associated with sending
an ISC message to CICS on an RMTCICS socket connection.

Table 454. ISC message sent on RMTCICS socket connection event 2054

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 255 2

EXTD_EVENT_NUMBER 2054 2

EVENT_KEY Session token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 28 2

EVENT_DATA_ADDR Address of the TCPIB 4

VAR_DATA Start of variable data area 0

VAR_APAR APAR sequence number
for the control block

2

VAR_ISFLTYPE IS field type 2

VAR_MSGTYPE Message type 8

VAR_ISCNODE ISC node 8

VAR_ISCUSER ISC user 8

The following table identifies the parameter list contents associated with receiving
an ISC message from CICS on a CICSPORT socket connection.

Table 455. ISC message received on CICSPORT socket connection event 2055

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 255 2

Chapter 16. IMS Connect function-specific exit routines 753

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

||
|
|

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

||
|
|

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

Table 455. ISC message received on CICSPORT socket connection event 2055 (continued)

Parameter list item Content Length in bytes

EXTD_EVENT_NUMBER 2055 2

EVENT_KEY Session token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 12 2

EVENT_DATA_ADDR Address of the TCPIB 4

VAR_DATA Start of variable data area 0

VAR_APAR APAR sequence number
for the control block

2

VAR_ISFLTYPE IS field type 2

VAR_MSGTYPE Message type 8

The following table identifies the parameter list contents associated with sending
an ISC message to CICS on a CICSPORT socket connection.

Table 456. ISC message sent on CICSPORT socket connection event 2056

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 255 2

EXTD_EVENT_NUMBER 2056 2

EVENT_KEY Session token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 28 2

EVENT_DATA_ADDR Address of the TCPIB 4

VAR_DATA Start of variable data area 0

VAR_APAR APAR sequence number
for the control block

2

VAR_ISFLTYPE IS field type 2

VAR_MSGTYPE Message type 8

VAR_ISCNODE ISC node 8

VAR_ISCUSER ISC user 8

Control blocks and DSECTS for event recording
Each table in this section lists the DSECTS and describes the parameter list
contents of control blocks that are used to record an IMS Connect event and
associated data.

Event recording parameter list (ERPL)
The ERPL is used to record an IMS Connect event and associated data to an
event-recording log.

The parameter list contains mandatory and optional fields. The content and usage
of the list arguments is dependent on the event being recorded. The DSECT name
is HWSERPL. The contents of the ERPL which are pointed to by HWSTECL0 are
shown in the following table.

754 Exit Routines

|

|||

|||

|||

|||

|||

|||

|||

||
|
|

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

||
|
|

|||

|||

|||

|||
|

Table 457. Event recording parameter list (ERPL) pointed to by HWSTECL0

Element Length Usage and meaning

TOKEN 4 Address of the token for event recording. This is
the token returned in the EICB when event
recording was initialized. Required.

EVENT_NUMBER 2 A number that identifies the type of a recorded
event. Required.

EXTENDED_EVENT_
NUMBER

2 An additional event number that is included in
events that have an event number of 255. For
events that include an extended event number,
the extended event number identifies the type
of event.

EVENT_KEY 8 The event key that is associated with the event
being recorded. Required.

DATA_ADDR_COUNT 2 Count of the number of EVENT_DATA_ADDR
entries in the parameter list. A count of 0
indicates that no entries are present. Required,
but can be 0.

VAR_DATA_LL 2 Length of the variable data element. The
variable data length does not include this length
field. A length of 0 indicates that no variable
data is present. Required, but can be 0.

EVENT_DATA_ADDR 4 The address of a data element that begins with
a two-byte length field. The parameter list can
contain any number of element addresses. The
number of element addresses is contained in
DATA_ADDR_COUNT. Optional.

VAR_DATA VAR A variable length field containing event
dependent data. The length of the data element
is defined by VAR_DATA_LL. Only one variable
data element can be present in the parameter
list. Optional.

Event Interface Control Block (EICB)
The EICB links IMS Connect and the trace and event recording module,
HWSTECL0.

The block is formatted by IMS Connect and passed to HWSTECL0 with the
initialization request. The DSECT name is HWSEICB.

The contents of the EICB are shown in the following table.

Table 458. EICB parameter list contents

Element Length Usage and meaning

EYECATCHER 4 Value of EICB identifying this block in working
storage. Set by caller.

FLAGS 1 Interface control flags:

1. Event recording is enabled.

EVENT_TOKEN 4 Address of the token used by the event recording
routine. The token must be passed to the event
recording routine when an event-recording request is
made.

Chapter 16. IMS Connect function-specific exit routines 755

|
|
||
|
|
|
|

Table 458. EICB parameter list contents (continued)

Element Length Usage and meaning

EVENT_ADDRESS 4 Entry address of event recording routine.

4 Reserved space.

4 Reserved space.

MESSAGE_LEN 2 Length of the message returned from HWSTELC0
module.

MESSAGE_AREA 120 An area that can be used by HWSTECL0 to return an
informational or error message to IMS Connect.

TCP/IP information block (TCPIB)
The TCPIB information block is used to pass information about TCP/IP events to
the event recording routine.

The block contains a length field that allows the recording routine to capture the
block information regardless of the content or length. When the block is recorded,
the entire block is moved to the event record based on the length field. The DSECT
is HWSTCPIB.

The contents of the TCPIB are shown in the following table.

Table 459. TCP/IP information block (TCPIB) contents

Element
Offset
(Hex.) Length Usage and meaning

LENGTH 0 2 Length of the TCPIP block, including the
length of the field.

BLOCK_ID 2 1 Block ID = X'01' identifying the block as a
TCPIB.

3 1 Reserved.

VERSION 4 2 The version and release of IMS Connect in the
VVRR format.

APAR_COUNT 6 2 A sequential count field starting at one and
incrementing by one for any APAR changing
the format or content of the control block. The
number resets to one at each new release. For
IMS Version 11, the APAR count is 2. For IMS
Version 12, the APAR count is 1.

PORT_NUMBER 8 2 The port number associated with the TCP/IP
event being recorded.

SOCKET_NUM A 2 The socket number associated with the
request. This field is redefined to
LOCAL_PC_NUM. A 2-byte reserved field
follows this field to account for the 4-byte
length of LOCAL_PC_NUM.

C 2 Unmapped bytes.

LOCAL_PC_NUM A 4 For the local option only, the PC number used
by the local connection.

756 Exit Routines

Table 459. TCP/IP information block (TCPIB) contents (continued)

Element
Offset
(Hex.) Length Usage and meaning

SOCKET_FLAG E 1 A flag byte identifying information about the
socket:

X'80'
Listen socket

X'40'
Session socket

PORT_FLAG F 1 A flag byte identifying information about the
port.

X'80'
SSL port

X'40'
Local port

X'20'
DRDA port

X'10'
Send port

X'08'
CICS port

LENGTH_ISSUED 10 4 The length values associated with the read or
write command.

LENGTH_EXECUTED 14 4 The length value actually executed by the
read or write command.

LOCAL_SND_LEN 10 4 Overlays LENGTH_ISSUED. For the local
interface, the lengths for a local send
operation.

LOCAL_RCV_LEN 14 4 Overlays LENGTH_EXECUTED. For the local
interface, the lengths for a local receive
operation.

EVENT_DATA 18 4 Data or flag bits or both associated with the
event. This data can be unique for each event
recording the TCPIB.

RETURN_CODE 1C 4 Return code associated with the request.

TCPIP
REASON_CODE

20 4 Reason code received from TCP/IP.

24 4 Unmapped bytes.

LOCAL
REASON_CODE

20 8 Reason code received from local interface.

The name of this field
varies depending on
the value of the
PTFLAG field:

v SENDCLNT

v RECVCLNT

28 8 The contents of this field differ depending on
the value of the PTFLAG field.

If the value of the PTFLAG field is X'10' (data
store), then this field is named SENDCLNT
and contains the ID of the send client socket.

For all other PTFLAG values, if this field is
present, it is named RECVCLNT and contains
the ID of the receive client socket.

Chapter 16. IMS Connect function-specific exit routines 757

|
|

Table 459. TCP/IP information block (TCPIB) contents (continued)

Element
Offset
(Hex.) Length Usage and meaning

RMTCONN 30 8 The name of the remote connection as defined
on the RMTCICS statement.

Data store information block (DSIB)
The DSIB is used to pass information about data store-related events to the event
recording routine.

The DSIB is also used with the SYSPLEX interface. The block contains a length
field that allows the recording routine to capture the block information regardless
of the content or length. When the block is recorded, the entire block is moved to
the event record. The DSECT name is HWSDSIB.

The contents of the DSIB are shown in the following table.

Table 460. Data store information block (DSIB) contents

Element
Offset
(Dec.) Length Usage and meaning

LENGTH 0 2 Length of the DSIB block, including the length of
the field.

BLOCK_ID 2 1 Block ID = X'02' identifying the block as a DSIB.

DS_FLAG 3 1 A flag byte providing information about the
DSTOR_NAME field. The value of this field
determines the type of conditional parameters
that are stored in the fields starting at offset 40.
See the descriptions of conditional parameters
that are listed towards the end of this table. The
DS_FLAG element can have the following values:

X'80' Name is data store

X'40' Name is SCI

X'20' Name is MEMBER

X'10' Name is TMEMBER

X'08' Name is ODBM

X'04' Name is MSC

X'02' Name is ISC

VERSION 4 2 The version and release of IMS Connect in the
VVRR format.

APAR_COUNT 6 2 A sequential count field starting at one and
incrementing by one for any APAR changing the
format or content of the control block. The
number resets to one at each new release.

DSTOR_NAME 8 16 Name associated with the data store. For the
SYSPLEX (SCI) interface, this is the SYSPLEX
name. The field can also be the name of a
MEMBER or TMEMBER.

DATA_LEN 24 4 Length associated with a send or receive
operation.

758 Exit Routines

||||
|

||

Table 460. Data store information block (DSIB) contents (continued)

Element
Offset
(Dec.) Length Usage and meaning

DATA_ADDR 28 4 Data address if any associated with the event.
Currently, only OTMA sends and receives
operations.

RETURN_CD 32 4 The return code associated with the operation.

REASON_CD 36 4 The reason code associated with the operation.

COND_PARMS 40 64 Conditional parameters. The contents of this field
depend on the values of the DS_FLAG and
CFLAG1 fields.

CFLAG1 104 1 Common FLAG1. The value of this field
determines the type of conditional parameters
that are stored in the fields starting at offset 40.
See the descriptions of conditional parameters
that are listed towards the end of this table. The
CFLAG1 element can have the following values:

X'80' The data store was dynamically added.

CFLAG2 105 1 Common FLAG2.

106 2 Reserved.

DSID 108 8 ID that identifies the data store resource that can
be defined by the ID parameter of the
DATASTORE statement in the HWSCFGxx
member of the IMS PROCLIB data set, or by the
NAME() parameter in the CREATE IMSCON
TYPE(DATASTORE) command.

116 12 Reserved.

Conditional parameters when DS_FLAG is X'08' (ODBM)

DSIB_DLIFUNC 40 4 DLI function code if any

DSIB_PSBNAME 44 8 PSBname if available

DSIB_APSBTKN 52 16 APSB token

Conditional parameters when DS_FLAG is X'80' (Data store)

TPIPE_NAME 40 8 TPIPE name that is associated with a data
transfer.

CUR_SVTTOKEN 48 8 SVT Token associated with the request if a token
value exists.

Conditional parameters when DS_FLAG is X'04' (MSC)

LINK 40 8 MSC link name that is associated with a data
transfer.

Conditional parameters when DS_FLAG is X'02' (ISC)

NODENAME 40 8 ISC link name that is associated with a data
transfer.

ISCUSER 48 8 ISC user name that is associated with a data
transfer.

Conditional parameters when CFLAG1 is X'80' (Data store dynamically added)

MEMBER 40 16 IMS Connect XCF member name.

SMEMBER 56 4 OTMA super member name.

APPL 60 8 RACF application name.

Chapter 16. IMS Connect function-specific exit routines 759

||||
|
|

||||
|
|
|
|
|

||

||||

||||

||||
|
|
|
|
|

||||

|

||||

||||

||||

|

||||
|

||||
|

|

||||

||||

||||

Table 460. Data store information block (DSIB) contents (continued)

Element
Offset
(Dec.) Length Usage and meaning

GROUP 68 8 XCF group name.

Security Information Block (SAFIB)
The SAFIB is used to pass information about security-related events to the
event-recording routine.

The block contains a length field that allows the recording routine to capture block
information regardless of the content or length. When the block is recorded, the
entire block is moved to the event record. The DSECT name is HWSSAFIB.

The contents of SAFIB are shown in the following table.

Table 461. Security Information Block (SAFIB) contents

Element Length Usage and meaning

LENGTH 2 Length of the SAFIB block, including the length of the
field.

BLOCK_ID 1 Block ID = X'03' identifying the block as a SAFIB.

VERSION 2 The version and release of IMS Connect in the VVRR
format.

APAR_COUNT 2 A sequential count field starting at one and
incrementing by one for any APAR changing the format
or content of the control block. The number resets to
one at each new release.

REQUEST_TYPE 1 Flag indicating the type of request:

1. Type is VERIFY.

2. Type is FASTAUTH.

3. Type is DELETE.

4. Type is LIST.

USERID 8 USERID or PASSTICKET associated with the request.

CLASS_NAME 8 Name of the SAF class associated with the request.

RETURN_CODE 4 Return code received.

REASON_CODE 4 Reason code received from the SAF interface.

Variable Data Block (VDB)
The VDB is used to present variable data to the event-recording interface.

The block is contained within the event parameter list. The block does not contain
a length field. The length of this block is specified in the even parameter lists. This
allows the block information to be captured regardless of the content or length.
When the block is recorded, the entire block is moved to the event record.

The DSECT name for events 1 to 245 is HWSVDBxx, where xx is the event number.
The DSECT name for events 255 and higher is HWSVxxxx, where xxxx is the
four-digit event number.

The contents of the VDB are shown in the following table.

760 Exit Routines

||||

|
|
|

Table 462. Variable Data Block (VDB) contents

Element Length Usage and meaning

VAR_DATA variable A set of fields defined as variable data for each event
that contains variable data. Each event can have
individually defined variable data.

DSECTs for event recording
Macros are shipped with IMS Connect to help customize with event recording.

The following table lists all the macros:

Table 463. Event recording macros shipped with IMS Connect

Macro Function

HWSDSIB DATA STORE INFORMATION BLOCK

HWSEICB EVENT INITIALIZATION BLOCK

HWSERPL EVENT RECORDING PARAMETER LIST

HWSSAFIB SAF INTERFACE BLOCK

HWSTCPIB TCPIP EVENT INFORMATION BLOCK

HWSV0258 EVENT 258 VARIABLE DATA BLOCK

HWSV0259 EVENT 259 VARIABLE DATA BLOCK

HWSV2051 EVENT 2051 VARIABLE DATA BLOCK

HWSV2052 EVENT 2052 VARIABLE DATA BLOCK

HWSV2053 EVENT 2053 VARIABLE DATA BLOCK

HWSV2054 EVENT 2054 VARIABLE DATA BLOCK

HWSV2055 EVENT 2055 VARIABLE DATA BLOCK

HWSV2056 EVENT 2056 VARIABLE DATA BLOCK

HWSVDB01 EVENT 01 VARIABLE DATA BLOCK

HWSVDB02 EVENT 02 VARIABLE DATA BLOCK

HWSVDB03 EVENT 03 VARIABLE DATA BLOCK

HWSVDB04 EVENT 04 VARIABLE DATA BLOCK

HWSVDB06 EVENT 06 VARIABLE DATA BLOCK

HWSVDB08 EVENT 08 VARIABLE DATA BLOCK

HWSVDB11 EVENT 11 VARIABLE DATA BLOCK

HWSVDB13 EVENT 13 VARIABLE DATA BLOCK

HWSVDB21 EVENT 21 VARIABLE DATA BLOCK

HWSVDB23 EVENT 23 VARIABLE DATA BLOCK

HWSVDB26 EVENT 26 VARIABLE DATA BLOCK

HWSVDB27 EVENT 27 VARIABLE DATA BLOCK

HWSVDB29 EVENT 29 VARIABLE DATA BLOCK

HWSVDB33 EVENT 33 VARIABLE DATA BLOCK

HWSVDB35 EVENT 35 VARIABLE DATA BLOCK

HWSVDB37 EVENT 37 VARIABLE DATA BLOCK

HWSVDB38 EVENT 38 VARIABLE DATA BLOCK

HWSVDB40 EVENT 40 VARIABLE DATA BLOCK

Chapter 16. IMS Connect function-specific exit routines 761

||

||

||

||

||

||

||

||

Table 463. Event recording macros shipped with IMS Connect (continued)

Macro Function

HWSVDB42 EVENT 42 VARIABLE DATA BLOCK

HWSVDB44 EVENT 44 VARIABLE DATA BLOCK

HWSVDB46 EVENT 46 VARIABLE DATA BLOCK

HWSVDB47 EVENT 47 VARIABLE DATA BLOCK

HWSVDB48 EVENT 48 VARIABLE DATA BLOCK

HWSVDB49 EVENT 49 VARIABLE DATA BLOCK

HWSVDB50 EVENT 50 VARIABLE DATA BLOCK

HWSVDB51 EVENT 51 VARIABLE DATA BLOCK

HWSVDB61 EVENT 61 VARIABLE DATA BLOCK

HWSVDB62 EVENT 62 VARIABLE DATA BLOCK

HWSVDB69 EVENT 69 VARIABLE DATA BLOCK

HWSVDB70 EVENT 70 VARIABLE DATA BLOCK

HWSVDB71 EVENT 71 VARIABLE DATA BLOCK

HWSVDB72 EVENT 72 VARIABLE DATA BLOCK

HWSVDB81 EVENT 81 VARIABLE DATA BLOCK

HWSVDB82 EVENT 82 VARIABLE DATA BLOCK

HWSVDB83 EVENT 83 VARIABLE DATA BLOCK

HWSVDB84 EVENT 84 VARIABLE DATA BLOCK

HWSVDB85 EVENT 85 VARIABLE DATA BLOCK

HWSVDB86 EVENT 86 VARIABLE DATA BLOCK

HWSVDB87 EVENT 87 VARIABLE DATA BLOCK

HWSVDB89 EVENT 89 VARIABLE DATA BLOCK

HWSVDB90 EVENT 90 VARIABLE DATA BLOCK

HWSVDB91 EVENT 91 VARIABLE DATA BLOCK

HWSVDB92 EVENT 92 VARIABLE DATA BLOCK

HWSVDB93 EVENT 93 VARIABLE DATA BLOCK

HWSVDB94 EVENT 94 VARIABLE DATA BLOCK

HWSVDB95 EVENT 95 VARIABLE DATA BLOCK

HWSVDB96 EVENT 96 VARIABLE DATA BLOCK

HWSVDB97 EVENT 97 VARIABLE DATA BLOCK

HWSVDB98 EVENT 98 VARIABLE DATA BLOCK

HWSVDBA0 EVENT 100 VARIABLE DATA BLOCK

HWSVDBA1 EVENT 101 VARIABLE DATA BLOCK

HWSVDBA2 EVENT 102 VARIABLE DATA BLOCK

HWSVDBA3 EVENT 103 VARIABLE DATA BLOCK

HWSVDBA4 EVENT 104 VARIABLE DATA BLOCK

HWSVDBA7 EVENT 107 VARIABLE DATA BLOCK

HWSVDBA8 EVENT 108 VARIABLE DATA BLOCK

HWSVDBB0 EVENT 110 VARIABLE DATA BLOCK

HWSVDBB1 EVENT 111 VARIABLE DATA BLOCK

762 Exit Routines

Table 463. Event recording macros shipped with IMS Connect (continued)

Macro Function

HWSVDBB2 EVENT 112 VARIABLE DATA BLOCK

HWSVDBB4 EVENT 114 VARIABLE DATA BLOCK

HWSVDBB5 EVENT 115 VARIABLE DATA BLOCK

HWSVDBB7 EVENT 117 VARIABLE DATA BLOCK

HWSVDBB8 EVENT 118 VARIABLE DATA BLOCK

HWSVDBC1 EVENT 121 VARIABLE DATA BLOCK

HWSVDBC2 EVENT 122 VARIABLE DATA BLOCK

HWSVDBC4 EVENT 124 VARIABLE DATA BLOCK

Terminating HWSTECL0
To end event recording, IMS Connect calls the event recording routine address in
the EICB.

The routine is passed to the ERPL, which defines the event and event data. The
event number which is passed to the event recording routine corresponds to the
Connect Region Termination event.

When the termination processing for event recording has completed, HWSTECL0
must return to the caller otherwise IMS will hang.

Note: The termination call to HWSTECL0 is made even if the event recording flag
in the EICB is not on. If the EICB contains a token and event recording address,
the termination call is made so that event recording can terminate the event
recording environment.

The event recording termination call can only occur when the caller is executing
under the JOBSTEP TCB, the caller is in primary TCB mode, and all tasks as
potential event records have terminated.
Related reference:
“Event record formats” on page 704

IMS Connect Password Change exit routine (HWSPWCH0)
The IMS Connect Password Change exit routine (HWSPWCH0) is an
object-code-only (OCO) module that processes password change requests that are
passed to it from the HWSSMPL0, HWSSMPL1, or HWSJAVA0 exit routines.

This topic contains Product-sensitive Programming Interface information.

The HWSPWCH0 exit routine validates the format of the password change request
before issuing a RACF call to change the password. If an error is detected,
HWSPWCH0 sets the error code, message text, message length, SAF return code,
RACF return code, and RACF reason code in appropriate fields defined in
HWSIMSEA.

The object code for HWSPWCH0 resides in ADFSLOAD member of the
Distribution (DLIB) data set.

Chapter 16. IMS Connect function-specific exit routines 763

To enable the HWSPWCH0 exit routine, include the HWSPWCH0 object code and
specify the statement INCLUDE TEXT(HWSPWCH0) in the bind JCL of either
HWSSMPL0, HWSSMPL1, or HWSJAVA0.

The following JCL binds the object code to enable client password change.
//HWSSMPL JOB (ACTINF01),’PGMRNAME’,
// CLASS=A,MSGCLASS=Z,MSGLEVEL=(1,1),RECION=4M
//SMPL01 EXEC PGM=ASMA90,REGION=32M,
// PARM=’DECK,NOOBJECT,SIZE(MAX,ABOVE)’
//SYSLIB DD DSN=SYS1.SDFSMAC,DISP=SHR
// DD DSN=SYS1.MODGEN,DISP=SHR
// DD DSN=IMSHWS.SDFSMAC,DISP=SHR
// DD DSN=SYS1.MACLIB,DISP=SHR
//SYSPUNCH DD UNIT=SYSVIO,DISP=(,PASS),SPACE=(TRK,(1,1,1)),
// DSN=&&TEXT(HWSSMPL0)
//SYSPRINT DD SYSOUT=*,
// DCB=(BLKSIZE=605),
// SPACE=(605,(100,50),RLSE,,ROUND)
//SYSUT1 DD UNIT=SYSDA,DISP=(,DELETE),
// DCB=BLKSIZE=13024,
// SPACE=(CYL,(16,15))
//SYSIN DD DSN=IMSBLD.IMSCON22.APAR.MAINT.SHWSSRC(HWSSMPL0),DISP=SHR
//* Put your HWSSMPL0 source code here
//SMPL02 EXEC PGM=IEWL,
// PARM=’SIZE=(180K,28K),RENT,REFR,NCAL,LET,XREF,LIST,TEST’
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSN=IMSBLD.USERTEMP.HWSRESL,DISP=SHR
//SYSUT1 DD UNIT=SYSVIO,DISP=(,DELETE),SPACE=(CYL,(10,1),RLSE)
//TEXT DD UNIT=SYSVIO,DISP=(OLD,DELETE),DSN=&&TEXT
//SYSLIN DD *
//* Put HWSPWCH0 object code here
INCLUDE TEXT(HWSSMPL0)
INCLUDE TEXT(HWSPWCH0)
ENTRY HWSSMPL0
MODE RMODE(24),AMODE(31)
NAME HWSSMPL0(R)
//

764 Exit Routines

Part 6. TSO SPOC user exit routines

TSO SPOC user exit routines run in ISPF and pass information through the ISPF
environment.

The exit routines can use the ISPF commands VGET and VPUT to view and alter
variables used by the TSO SPOC.

© Copyright IBM Corp. 1974, 2017 765

766 Exit Routines

Chapter 17. EXITPGM user exit

Before TSO SPOC starts, you must specify the EXITPGM user exit. The EXITPGM
command can send a single exit or a list of user exits.

Program exits are called with a z/OS batch program parameter list. All command
exits are called before program exits.

On entry to the routine, register 1 points to the parameter list, which is a standard
parameter list. Register 1 points to a fullword, which points to the half-word
length followed by the parameter string. The contents of the registry are controlled
by ISPF.

The following example shows an example of using the EXITPGM exit routine:
DFSSPOC EXITPGM(UEP1, UEP2)

The values specified in the parameter list are the names of the input user exits.
Each exit can view or change variables in the ISPF shared pool.

Contents of registers

Register
Contents

1 Points to the address of the parameter data (from the PAR keyword) field
(halfword length) followed by the data

2-12 Not used

13 72-byte save area

14 Return address

15 Entry address / Return code on exit

Note: The names of the exit routines are standard 1- to 8-character module names.
REXX program names can also be specified. A REXX program name can be
prefixed by a percent sign (%).

© Copyright IBM Corp. 1974, 2017 767

768 Exit Routines

Chapter 18. EXITCMD user exit

Before TSO SPOC starts, you must specify the EXITCMD user exit. The command
can send a single exit or a list of user exits.

Command exits are called before user exits.

On entry to the routine, register 1 points to the parameter list. The parameters list
is a Command Processor Parameter List (CPPL). Register 1 is defined by macro
IKJCPPL. The contents of the registry are controlled by ISPF.

Contents of registers

Register
Contents

1 Points to a CPPL, which is a list of four addresses that point to the
following parameters:
v Command buffer
v UPT
v PSCB
v ECT

2-12 Not used

13 72-byte save area

14 Not applicable

15 Return code on exit

© Copyright IBM Corp. 1974, 2017 769

770 Exit Routines

Chapter 19. Variables in the ISPF shared pool

The TSO SPOC exit routines can use the ISPF commands VGET and VPUT to view
and alter variables in the ISPF shared pool.

The following table provides details about the variables in the ISPF shared pool
that can be changed by using the TSO SPOC exit routines:

Table 464. Variables in the ISPF shared pool

Variable name Usage Pool Description

EXITTYPE input shared
A read-only variable that indicates the
function type for this call to the exit.

1 indicates a command pre-submit exit.

PLEX input shared
A 1- to 5-character name of the IMSplex.

ROUTE input shared
A 1- to 8-character name of the IMSplex
member that the command will be sent. A
list of names separated by commas can also
be used. The list can be as long as 1024
characters.

CMDTEXT input and
output

shared
The command string that is routed to OM
in the IMSplex. The maximum length is
32760.

RTC output shared
Return code set by the user exit.

v RTC = 0 - No changes to the command
parameters

v RTC = 4 - User Exit modified one or more
command parameters

v RTC = 8 - Reject the command
parameters

Note: The input user exit must set the RTC
= 4 if any of the command parameters are
changed and must set the message text to
describe what was changed.

RSN output shared
Reason code set by the user exit.

MSGTEXT output shared A text message passed by the user exit to
notify the SPOC user of any changes,
including the message id, when the RTC = 4
or 8. The maximum length is 256 characters.

Related concepts:

z/OS: Using variables

© Copyright IBM Corp. 1974, 2017 771

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.f54u200/usevar.htm

772 Exit Routines

Chapter 20. REXX program example using the EXITCMD exit
routine

The following example shows how to retrieve and update variables in the ISPF
shared pool by using the EXITCMD exit routine.

In the following REXX program, the EXITCMD exit routine checks the routing
information and rejects a command sent to IMS1 (production IMS).
"VGET (EXITTYPE) SHARED" If exittype = 1 then
Do
"VGET (ROUTE) SHARED"
If pos("IMS1", route)> 0 Then RTC = 8
MSGTEXT = "REJECTED - IMS1 IS RESTRICTED FOR PRODUCTION USE"
"VPUT (RTC, MSGTEXT) SHARED
End

The original command parameters and changes made by the user exit with a
return code 4 or 8 are logged in an ISPF log file.

After the REXX program is executed, the following example shows an ISPF log file
in which the QUERY TRAN command was rejected:
NAME EXITTYPE PLEX ROUTE CMDTXT RTC RSN MSGTXT
-------- ---------- ----- ----- ---------- ---- ---- -------------
ORIGINAL 1 PLEX1 IMS1 QRY TRAN 0 0
USEREXIT1 1 PLEX1 IMS2 QRY TRAN 4 0 CHANGED ROUTE
USEREXIT2 1 PLEX2 IMS2 QRY TRAN 8 0 REJECTED

Related concepts:

z/OS: Using variables

© Copyright IBM Corp. 1974, 2017 773

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.f54u200/usevar.htm

774 Exit Routines

Part 7. Appendixes

© Copyright IBM Corp. 1974, 2017 775

776 Exit Routines

Notices

This information was developed for products and services offered in the US. This
material might be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 1974, 2017 777

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data and client examples cited are presented for illustrative
purposes only. Actual performance results may vary depending on specific
configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample

778 Exit Routines

programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:
© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Programming interface information
This information documents Product-sensitive Programming Interface and
Associated Guidance Information, General-use Programming Interface and
Associated Guidance Information, and Diagnosis, Modification or Tuning
information provided by IMS.

Product-sensitive Programming Interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of this software product. Use of such interfaces creates dependencies on the
detailed design or implementation of the IBM software product. Product-sensitive
Programming Interfaces should be used only for these specialized purposes.
Because of their dependencies on detailed design and implementation, it is to be
expected that programs written to such interfaces may need to be changed in order
to run with new product releases or versions, or as a result of service.
Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a section or topic,
or by a Product-sensitive programming interface label. IBM requires that the
preceding statement, and any statement in this information that refers to the
preceding statement, be included in any whole or partial copy made of the
information described by such a statement.

General-use programming interfaces allow the customer to write programs that
obtain the services of IMS. General-use Programming Interface and Associated
Guidance Information is identified where it occurs, either by an introductory
statement to a section or topic or by a General-use programming interface label.

Diagnosis, Modification or Tuning information is provided to help you diagnose,
modify, or tune IMS. Do not use this Diagnosis, Modification or Tuning
information as a programming interface.

Diagnosis, Modification or Tuning Information is identified where it occurs, either
by an introductory statement to a section or topic, or by the following marking:
Diagnosis, Modification or Tuning Information.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Notices 779

http://www.ibm.com/legal/copytrade.shtml

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

780 Exit Routines

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, See IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Notices 781

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

782 Exit Routines

Bibliography

This bibliography lists all of the publications in the IMS Version 13 library,
supplemental publications, publication collections, and accessibility titles cited in
the IMS Version 13 library.

Title Acronym Order number
IMS Version 13 Application Programming APG SC19-3646
IMS Version 13 Application Programming APIs APR SC19-3647
IMS Version 13 Commands, Volume 1: IMS
Commands A-M

CR1 SC19-3648

IMS Version 13 Commands, Volume 2: IMS
Commands N-V

CR2 SC19-3649

IMS Version 13 Commands, Volume 3: IMS
Component and z/OS Commands

CR3 SC19-3650

IMS Version 13 Communications and Connections CCG SC19-3651
IMS Version 13 Database Administration DAG SC19-3652
IMS Version 13 Database Utilities DUR SC19-3653
IMS Version 13 Diagnosis DGR GC19-3654
IMS Version 13 Exit Routines ERR SC19-3655
IMS Version 13 Installation INS GC19-3656
IMS Version 13 Licensed Program Specifications LPS GC19-3663
IMS Version 13 Messages and Codes, Volume 1: DFS
Messages

MC1 GC19-4240

IMS Version 13 Messages and Codes, Volume 2:
Non-DFS Messages

MC2 GC19-4241

IMS Version 13 Messages and Codes, Volume 3: IMS
Abend Codes

MC3 GC19-4242

IMS Version 13 Messages and Codes, Volume 4: IMS
Component Codes

MC4 GC19-4243

IMS Version 13 Operations and Automation OAG SC19-3657
IMS Version 13 Release Planning RPG GC19-3658
IMS Version 13 System Administration SAG SC19-3659
IMS Version 13 System Definition SDG GC19-3660
IMS Version 13 System Programming APIs SPR SC19-3661
IMS Version 13 System Utilities SUR SC19-3662

Supplementary publications

Title Order number
Program Directory for Information Management System Transaction
and Database Servers V13.0

GI10-8914

Program Directory for Information Management System Transaction
and Database Servers V13.0 Database Value Unit Edition V13R1

GI10-8966

Program Directory for Information Management System Transaction
and Database Servers V13.0 Transaction Manager Value Unit Edition
V13R1

GI10-9001

IRLM Messages and Codes GC19-2666

© Copyright IBM Corp. 1974, 2017 783

Publication collections

Title Format Order number
IMS Version 13 Product Kit CD SK5T-8864

Accessibility titles cited in the IMS Version 13 library

Title Order number
z/OS TSO/E Primer SA22-7787
z/OS TSO/E User's Guide SA22-7794
z/OS ISPF User's Guide Volume 1 SC34-4822

784 Exit Routines

Index

Numerics
2972/2980 Input edit routine (DFS29800)

attributes 145
binding 145
data format on entry 145
description 145
example 145
IMS callable services 145
IMS environments 145
including the routine 145
interfaces 145
link editing 145
naming convention 145
registers

contents on entry 145
contents on exit 145

required functions 145
sample routine location 145
system definition requirements 145
using callable services 145

4701 Transaction Input edit routine
(DFS36010) 147

4701 Transaction Input edit routine
(DFS36010)

binding 147
IMS callable services 147
including the routine 147

attributes 147
IMS environments 147
including the routine 147
interfaces 147
link editing 147
naming convention 147
registers

contents on entry 147
contents on exit 147

sample routine location 147
using callable services 147

A
abnormal termination or restart, client

processing after 627, 631
Abort Continue exit routine 345
accessibility

features viii
keyboard shortcuts viii

accessing control blocks 10
accessing real storage

register save conventions 11
address spaces

customizing 515, 517
monitoring 515, 517

affinity routing 300
AIB Interface

DL/I calls
Data Capture exit routine 61

AO (automated operator) application
command editor 441

AO (automated operator) exit routine
activating 441
commands and responses passed to

exit routine
asynchronous messages 441
editing IMS 441

commands and responses passed to
the exit

entering 441
IMS-generated 441

data fields
on entry 441
on exit 441

edited command buffer 441
exit routine interface

entry codes 441
exit codes 441
exit codes validation 441

Extended Terminal Option (ETO)
considerations 441

messages not passed to exit
routine 441

messages passed to exit routine
format 441

network-qualified LU name 441
registers

contents on entry 441
contents on exit 441

restrictions
queue unavailable 441
use with secondary master

terminal 441
sample exit routine 441
system messages passed to exit

routine 441
type 1 (DFSAOUE0)

callable services 441
described 441
functions 441
naming 441
specifying 441

type 2 (DFSAOE00)
activating 468
attributes 468
callable services 468
command editor 474
communicating with an AO

application 468
communicating with IMS 468
described 468
function-specific parameter

list 468
functions 468
message buffer 468
naming 468
network-qualified LU name 474
registers on entry 468
registers on exit 468
restrictions 468
sample exit routine 468
specifying 468

AO (automated operator) exit routine
(continued)

type 2 (DFSAOE00) (continued)
standard exit parameter list 468
types of messages received 474

UEHB
contents 441, 463
flags 441, 463

AOI (automated operator interface)
See AO (automated operator) 468
See AO exit routine or AO

application 441
AOI (automated operator interface)

callable services 28
associated printing 283
authorization

Resource Access Security exit
routine 431

authorization checking
/SIGN ON 291
commands 323
resource 313
transaction 313

AWE server type 517, 530
AWE services statistics area 517, 529

B
Base Primitive Environment (BPE)

common user exit routine execution
environment 553

customizing address spaces 515, 517
gathering statistics 517
monitoring address spaces 515, 517
RM exit routines 609
system statistics area 517, 519

batch application exit routine 47
Batch Application exit routine (DFSISVI0)

Batch Application exit routine
(DFSISVI0)

including the routine 47
link editing 47
sample routine location 47

IMS callable services 47
IMS environments 47
naming convention 47
registers 47

contents on entry 47
BPE (Base Primitive Environment)

common user exit routine execution
environment 553

customizing address spaces 515, 517
gathering statistics 517
monitoring address spaces 515, 517
system statistics area 517, 519

BPE statistics area
BPE AWE statistics area 517, 529
BPE CBS statistics area 517, 527
BPE dispatcher statistics area 517,

523

© Copyright IBM Corp. 1974, 2017 785

BPE statistics area (continued)
BPE storage services statistics

area 517, 531
BPE system statistics 517, 520
BPE TCB statistics table 517, 525
recommendations 517, 520
statistics offset table 517, 522

BPE Statistics exit routine 517
BPE Statistics user exit 577
BPE user-supplied exit routines

abends in 489, 494
BPEUXCSV macro 495
callable services 495
dynamic work areas 489
environment 489, 493
execution environment 489
exit routines, calling subsequent 489,

492
general information 489
initalization-termination 515
initialization sample 510
interface information 489
interfaces and services 489
Language Environment, and 515, 517
performance considerations 489, 494
processing sample 511
recommendations 489, 494, 515, 517
reentrant 489, 494
registers 489, 493
sharing data 509
standard parameter list 489
static work areas 489
statistics exit routine 517
termination sample 512
work areas 489

BPEUXCSV macro 495
environmental requirements 495
examples 495
other macro requirements 495
performance implications 495
register information 495
restrictions and limitations 495
return from 495
syntax 495

BSEX
Build Security Environment user exit

(BSEX) 148
BST2_REQUEST_DATA 549
Buffer Size Specification facility

example 323
Buffer Size Specification Facility 321
Build Security Environment Exit

Parameter List 148
Build Security Environment exit routine

(DFSBSEX0)
including the routine 148

Build Security Environment user exit
(BSEX)

attributes 148
binding 148
IMS callable services 148
IMS environments 148
including the routine 148
link editing 148
naming convention 148
registers

contents on entry 148

Build Security Environment user exit
(BSEX) (continued)

registers (continued)
contents on exit 148

sample routine location 148
using callable services 148

C
callable services

AOI (automated operator
interface) 28

associated exits 13
BPE user-supplied exit routines 495
BPEUXCSV macro 495
CANCEL function 29
control block services 23
DELETE module function 22
described 13
ENQUEUE AOI service reason

codes 35
ENQUEUE function 28
example 509
example of a request 36
FIND control block function 23
FIND control block service reason

codes 33
FREE storage function 20
FREE storage service reason codes 31
function-specific parameter list 18
functions of 495
GET storage function 20
GET storage service reason codes 31
how they work 15
how to use 15
initializing 17
initializing callable services parameter

list 18
INSERT AOI service reason codes 35
INSERT function 28
invoking 19
linking exit routines 16
LOAD module function 21
LOADE storage service reason

codes 32
requesting 20
return and reason codes 29, 35
SCAN control block function 25
SCAN control block service reason

codes 34
sharing data 509
storage services 20
types 13

callable services parameter list
overview 18

CANCEL function 29
catalog

batch processing 48
defining 48

catalog exit routine 48
CBS (control block services) statistics

area 517, 527
CCTLattributes

exit routines 51
CEEBXITA 389
changed-data propagation 61

client
exit routines (CQS) 627

Event 627, 629
Structure Event 627, 633
Structure Inform 643

Client Connect/Disconnect
user exit routines 589

Client Connection user-supplied exit
routine, CQS 555

Client Structure Event exit 627, 633
Client Structure Event exit

parameters 627, 634
Client Structure Inform exit 643

parameters 643
Command Authorization exit routine

(DFSCCMD0) 323
attributes 323
binding 323
Command Authorization exit routine

(DFSCCMD0)
AO applications 323
IMS callable services 323
LU 6.2 application program 323
sample routine location 323

description 323
environments supported 323
ETO terminals 323
IMS environments 323
IMS Open Transaction Manager

Access 323
including the routine 323
link editing 323
naming convention 323
non-shared queues environment 323
registers 323

contents on entry 323
contents on exit 323

sample routine location 323
shared queues environment 323
static terminals 323
with callable services 323
with MCS/E-MCS consoles 323

command editor 441, 474
Command exit routine 346
command keyword table

contents 384
error messages 384
listing 384
modification 384

Command language modification facility
(DFSCKWD0) 384

commands and responses
not passed to exit routine 441
passed to exit routine 441

Commit Continue exit routine 347
Commit Prepare exit routine 348
Commit Verify exit routine 350
control block callable services 23
control block mapping

EEVT 344
EEVTP 343

control blocks
access by exit routines 38
EEVT 342
EEVTP 342
mapping control blocks. 342
restrictions 38

786 Exit Routines

Control exit routine 52
Conversational Abnormal Termination

exit routine (DFSCONE0)
attributes 153
binding 153
description 153
IMS callable services 153
IMS environments 153
including the routine 153
interface 153
link editing 153
naming convention 153
registers

contents on entry 153
contents on exit 153

sample location 153
sample routine location 153
using callable services 153

CQS (Common Queue Server)
client exit routines

Event 627, 629
Structure Event 627, 633
Structure Inform 643

exit routines 553
CQS Event exit

abnormal termination 627, 631
parameters 627, 630
parameters, abnormal

termination 627, 630
CQS statistics

using BPE Statistics user exit 577
CQS user-supplied exit routine

writing in assembler 553
CQS user-supplied exit routines 553

Client Connection
general 555
parameters 555
register contents 555

general information 553
Initialization-Termination (Init-Term)

general 554
parameters 554
register contents 554

Queue Overflow
general 557
parameters 557
register contents 557

Structure Event
checkpoint parameters 570
connection parameters 570
general 570
overflow parameters 570
rebuild parameters 570
register contents 570
routine parameters 570
status change parameters 570

Structure Statistics
CQS request statistics record 559
data object statistics record 559
general 559
parameters 559
queue name statistics record 559
register contents 559
structure checkpoint statistics

entry 559
structure checkpoint statistics

record 559

CQS user-supplied exit routines
(continued)

Structure Statistics (continued)
structure process statistics

record 559
structure rebuild statistics

record 559
z/OS request statistics record 559

create named storage service
example 495, 507
output 495, 507
parameters 495, 506

Create Thread exit routine 351
cross-memory

considerations 12
mode 12

CSCBLK parameter list 23
CSLDST1 590
CSLDST2 590
CSLDSTX 590
CSLRST1 613
CSPARMS parameter list 18
CSPLRESN field 30
CSPLRTRN field 30

DELETE storage service reason
codes 32

CSSTRG parameter list 20

D
Data Capture exit routine 61

AIB Interface 61
attributes 61
calling order with data capture

figure 61
control blocks 61
data security/integrity 61
description 61
registers

contents on entry 61
return and reason codes 61
sample COBOL routine 73
sample PL/I routine 73
supported languages 61
synchronous data capture 61

data compression 129, 135
data compressiontips

Hardware data compression
support 140

Data Conversion exit routine 83
data entry database (DEDB) 89
Data Entry Database Partition Selection

exit routine
attributes 85
calling 85
description 85
IMS environments 85
including the routine 85
naming convention 85
registers

contents on entry 85
contents on exit 85

sample routine location 85
using callable services 85

Data Entry Database Randomizing
routine 89

Data Entry Database Randomizing
Routine 89

Data Entry Database Resource Name
Hash Routine (DBFLHSH0)

binding 96
IMS callable services 96
IMS environments 96
including the routine 96
naming convention 96
sample routine location 96

Data Entry Database Sequential
Dependent Scan Utility exit routine
(DBFUMSE1)

attributes 99
IMS environments 99
including the routine 99
link editing 99
naming convention 99
sample routine location 99
using callable services 99

data formatting, exit routine 121
data propagation 61, 82
data store information block (DSIB)

contents 758
data validation, exit routine 121
database segment, load/insert 123
DB2, propagating DL/I updates to 61
DBB (database buffer pool) size,

specification 132
DBFHAGU0. 168
DBFHDC20 89
DBFHDC24 89
DBFHDC2S 89
DBFHDC40 89
DBFHDC44 89
DBFLHSH0. 96
DBFUMSE1. 99
DBRC Command Authorization exit

routine (DSPDCAX0)
binding 327
IMS callable services 327
IMS environments 327
including the routine 327
naming convention 327
sample routine location 327

DBRC SCI registration exit routine
(DSPSCIX0)

sample 332
DBRC SCI Registration exit routine

(DSPSCIX0)
binding 330
IMS callable services 330
IMS environments 330
including the routine 330
naming convention 330
sample routine location 330

DBRC statistics record
BST2_REQUEST_DATA 549
DSPBST1 549
DSPBST2 549

DEDB (data entry database)
Sequential Dependent Scan exit

routine 278
DEDB Partition Selection exit routine

attributes 85
calling 85
description 85

Index 787

DEDB Partition Selection exit routine
(continued)

IMS environments 85
including the routine 85
naming convention 85
registers

contents on entry 85
contents on exit 85

sample routine location 85
using callable services 85

DEDB Randomizing routine 89
DEDB Randomizing routine

(DBFHDC40/DBFHDC44)
sample routine 92

DBFHDC40 92
XCI registers 93

contents on entry for a
randomizing call 93

contents on entry for a termination
call 93, 94

contents on entry for an
initialization call 93, 94

contents on exit from a
randomizing call 93

contents on exit from a termination
call 93, 95

contents on exit from an
initialization call 93, 95

DEDB Resource Name Hash routine
(DBFLHSH0)

assembling 96
binding 96
default routine 96
description 96
EPST 96
EPST fields 96
EPST input to the routine 96
EPSTDMAA 96
EPSTRSHS 99
naming 96
parameters 96
registers, contents on entry 96
sample result format 99

DEDB segment edit/compression 121
DEDB Sequential Dependent Scan Utility

exit routine (DBFUMSE1)
attributes 99
binding 99
calling 99
description 99
randomizing module 99
registers 99

contents on entry 99
contents on exit 99

sample routine 101
DELETE module function 22
delete module service

example 495, 506
output 495, 506
parameters 495, 505

Dependent Region Preinitialization
routines 333

activating 333
description 333
interfaces 333
registers

contents on entry 333

Dependent Region Preinitialization
routines (continued)

registers (continued)
contents on exit 333

Dependent Region Preinitialization
Routines

binding 333
IMS callable services 333
IMS environments 333
including the routine 333
naming convention 333
sample routine location 333

descriptors, ETO
logon 214
user 158, 163, 288

Destination Creation exit routine
(DFSINSX0)

attributes 158
binding 158
creating transactions

dynamically 158, 165
description 158
dynamic resource definition 158, 165
environments supported 158, 165
IMS callable services 158
IMS environments 158
including the routine 158
naming convention 158
queuing messages in shared

queues 164
registers 158

contents on entry 158
contents on exit 158

Resource Manager requirements 158,
165

sample routine location 158
supplying data 158, 162
system default transactions 158, 165
user descriptors 158, 163
using callable services 158

Destination Resolution exit, sample
OTMA 690

destroy named storage service
example 495, 509
output 495, 508
parameters 495, 508

DFS.XRFRESERVE
XRF hardware reserve notification exit

routine 485
DFS29800

2972/2980 Input edit routine
(DFS29800) 145

DFSAOE00
AO (automated operator) exit

routine 468
DFSAOUE0

Type 1 Automated Operator exit
routine (DFSAOUE0) 441

DFSBXITA 389
DFSCAOI

macro 28
parameter list 28

DFSCCBLK macro 23
DFSCCMD0

Command Authorization exit routine
(DFSCCMD0) 323

DFSCKWD0
IMS command language modification

facility (DFSCKWD0) 384
DFSCMLR0/DFSCMLR1

Link Receive exit routine 300
DFSCMPR0

Program Routing exit routine 300
DFSCMPX0

Segment edit/compression exit
routine 121

DFSCMTR0
Terminal Routing exit routine 300

DFSCMTU0
User Message Table 478

DFSCMUX0
default actions 231
Message Control/Error exit routine

(DFSCMUX0) 220
valid flags 231

DFSCNTE0
Message Switching (Input) edit

routine (DFSCNTE0) 232
DFSCONE0

Conversational Abnormal Termination
exit routine (DFSCONE0) 153

DFSCSGN0
Sign On/Off Security exit routine

(DFSCSGN0) 291
DFSCSI00 module 16
DFSCSIF0 entry point 19
DFSCSII0 entry point 17
DFSCSMB0

Transaction Code Input edit routine
(DFSCSMB0) 317

DFSCSTRG macro 20
DFSCTRN0

Transaction Authorization exit routine
(DFSCTRN0) 313

DFSCTSE0
Security Reverification exit routine

(DFSCTSE0) 275
DFSCTTO0

Physical Terminal Output edit routine
(DFSCTTO0) 265

DFSDLOC0, randomizing module,
loading 109

DFSFDOT0
Dump Override Table 335

DFSFEBJ0
Front-End Switch exit routine

(DFSFEBJ0) 172
DFSFIDNO

ESAF In-Doubt Notification exit
routine 338

DFSFLGX0
Logger user exit (LOGWRT) 409

DFSFTFX0
Log Filter exit routine

(DFSFTFX0) 405
DFSGPIX0

Global Physical Terminal Input edit
routine (DFSGPIX0) 187

DFSHDC40
HDAM and PHDAM randomizing

routines 109

788 Exit Routines

DFSHDC40 (continued)
sample HDAM and PHDAM

Generalized randomizing
routine 114

DFSINSX0
Destination Creation exit routine

(DFSINSX0) 158
DFSINTX0

Initialization exit routine
(DFSINTX0) 195

DFSISVI0 47
DFSLGFX0

Logoff exit routine (DFSLGFX0) 208
DFSLGNX0

Logon exit routine (DFSLGNX0) 211
DFSLUEE0

LU 6.2 Edit exit routine
(DFSLUEE0) 215

DFSME000
Input Message Field edit routine

(DFSME000) 200
DFSME127

Input Message Segment edit routine
(DFSME127) 204

DFSMSCE0
and the DFSMSCEP macro 300
attributes of the exit routine 300
coexistence with earlier MSC exit

routines 300
defining entry points 300
in a multiple systems coupling

environment 300
in a shared queues environment 300
in a shared queues MSC

environment 300
in a single IMS system 300
sample IMS configurations 300
System Definition changes 300
user parameter list 300

DFSMSCEO 300
DFSNDMX0

Non-Discardable Messages exit
routine (DFSNDMX0) 234

DFSNPRT0
Input Message Routing exit

routine 300
DFSPIXT0

Physical Terminal Input edit routine
(DFSPIXT0) 261

DFSPPUE0
Partner Product exit routine

(DFSPPUE0) 416
DFSPRE60

System Definition Preprocessor exit
routine (input phase) 437

DFSPRE70
System Definition Preprocessor exit

routine (name check complete) 439
DFSPWSHK

WSDL-to-PL/I segmentation APIs exit
routine 662

DFSQSPC0
Queue Space Notification exit routine

(DFSQSPC0) 269
DFSRAS00

Resource Access Security exit
routine 431

DFSREXXU
IMS Adapter for REXX exit

routine 193
DFSRST00

Restart exit routine (DFSRST00) 419
DFSSBU1 (sample SB Initialization exit

routine) 144
DFSSBU2 (sample SB Initialization exit

routine) 144
DFSSBU3 (sample SB Initialization exit

routine) 144
DFSSBU4 (sample SB Initialization exit

routine) 144
DFSSBU9 (sample SB Initialization exit

routine) 144
DFSSBUX0

Sequential Buffering Initialization exit
routine (DFSSBUX0) 141

DFSSGFX0
Signoff exit routine (DFSSGFX0) 279

DFSSGNX0
Sign-On exit routine

(DFSSGNX0) 283
DFSSIML0

Shared Printer exit routine
(DFSSIML0) 278

DFSTCNT0
Time-Controlled Operations (TCO)

Communication Name Table (CNT)
exit routine (DFSTCNT0) 294

DFSTXIT0
Time-Controlled Operations (TCO)

exit routine (DFSTXIT0) 296
DFSUSER user descriptor 158, 163, 288
DFSYDRU0 251
DFSYIOE0 247
dispatcher statistics area 517, 523
DL/I

accessing control blocks 10
address space 8
binding 9
exit routine, writing 9

DL/I segment edit/compression 121
DSBUFFS

Buffer Size Specification Facility
example 323

DSIB (data store information block)
contents 758

DSPBST1 549
DSPBST2 549
DSPBUFFS

Buffer Size Specification Facility 321
DSPCEXT0 421
Dump Override Table (DFSFDOT0) 335

binding 335
coding 335
description 335
errors 337
example table 337
IMS callable services 335
IMS environments 335
including the routine 335
messages 337
naming convention 335
purpose and use 335
sample routine location 335

duplicating DL/I updates 61

dynamic work areas 489

E
Echo exit routine 353
edit routines 200, 204

Field edit routine 200
definition 202, 208
interface 200
use 200

LU 6.2 Edit exit routine 215
Sample Input edit routine 147
Segment edit routine

interface 207
performance 203
use 200, 204

edit/compression 121
editing LU 6.2 messages 215
EEVT (external entry vector table) 342
EEVT mapping 344
EEVTP (external entry vector table

prefix) 342
EEVTP mapping 343
ENQUEUE function 28
entry points

DFSCSIF0 19
DFSCSII0 17

EPL (exit parameter list) 340, 376
EPST (extended program specification

table) 96
EPSTDMAA (DEDB Resource Name

Hash routine) 96
EPSTRSHS (DEDB Resource Name Hash

routine) 99
ERPL (event recording parameter list)

contents 754
error handling 220
ESAF In-Doubt Notification exit

routine 338
ESMT (external subsystem module

table) 340
for loading exit routines 340

ETO 195
keyword setting 195
LTERM processing 158, 162

Event Interface Control Block
(EICB) 693

contents 693, 755
event record format

begin accept socket 704
begin bind socket 704
begin close socket 704
begin create context 704
begin initialization of message

exits 704
begin initialize API 704
begin local port setup 704
begin RRS commit/abort 704
begin RRS Connect 704
begin RRS disconnect 704
begin RRS prepare 704
begin SAF request 704
begin SCI de-registration 704
begin SCI registration 704
begin secure environment close 704
begin secure environment open 704
begin secure environment select 704

Index 789

event record format (continued)
Connect region initialization 704
Connect region termination 704
data store available 704
data store unavailable 704
deallocate session 704
end accept socket 704
end bind socket 704
end close socket 704
end create context 704
end initialize API 704
end local port setup 704
end RRS commit/abort 704
end RRS Connect 704
end RRS disconnect 704
end RRS prepare 704
end SAF request 704
end SCI de-registration 704
end SCI registration 704
end secure environment close 704
end secure environment open 704
end secure environment select 704
Exit Interface Block Data Store (704
list in-doubt context 704
listen on socket 704
local client connect 704
local client disconnect 704
local message receive 704
local message send 704
local message send/receive 704
message exit called for READ, XMIT,

or EXER 704
message exit INIT call 704
message exit return for READ, XMIT,

or EXER 704
message exit TERM call 704
message received from OTMA 704
message received from SCI 704
message sent to OTMA 704
message sent to SCI 704
OTMA messages received 704
OTMA time-out 704
prepare socket read 704
read socket 704
recorder trace DCB opened 704
recorder trace DCB pre-close 704
session error 704
support task created 704
support task terminating 704
TMEMBER joins XCF group 704
TMEMBER leaves XCF group 704
trigger 704
write socket 704

event record formats 704
Event record parameter list (ERPL) 693
event recording

DSECTs 761
event recording parameter list (ERPL)

contents 754
event recording routine 693

EVENT_ADDRESS 693
event type

keys 697
multiple 697
single 697

EVENT_ADDRESS 693
EXER subroutine 679

exit parameter list (EPL) 340, 376
exit routine

input/output edit 247
DFSYIOE0 247
Input/Output Edit exit

routine 247
Open Transaction Manager Access

OTMAYPRX 243
prerouting input messages 243
samples, location of 41

exit routine interface control blocks 342
exit routines

Buffer Size Specification Facility 321
client 627
control block usage 38
control blocks 4
data communication

Signoff exit routine
(DFSSGFX0) 279

database support
Control exit routine 52
Data Capture exit routine 61
Data Conversion exit routine 83
DEDB Partition Selection exit

routine 85
DEDB Randomizing routine 89
DEDB Resource Name Hash

routine (DBFLHSH0) 96
DEDB Sequential Dependent Scan

Utility exit routine
(DBFUMSE1) 99

HALDB Partition Selection exit
routine 103

HDAM and PHDAM Randomizing
routines (DFSHDC40) 109

Secondary Index Database
Maintenance exit routine 115

Segment edit/compression exit
routine (DFSCMPX0) 121

Sequential Buffering Initialization
exit routine (DFSSBUX0) 141

destination resolution 251
DFSYDRU0 251
Event 627, 629
EXITCMD

example 773
overview 769

EXITPGM
overview 767

Extended Terminal Option (ETO) 10
Fast Path

DEDB Sequential Dependent Scan
exit routine 278

Fast Path Input Edit/Routing exit
routine (DBFHAGU0) 168

IMS Connect
failures from MVS calls 657
HWSUINIT sample JCL 685
HWSYDRU0 sample JCL 692

initialization and termination
exit 387

LU 6.2
LU 6.2 Edit exit routine 215

naming conventions 3
Open Database Manager

ODBM statistics 590

exit routines (continued)
OTMA Resume TPIPE Security user

exit (OTMARTUX) 258
OTMA User Data Formatting exit

routine 251
performance 12
RECON I/O

system performance impact 431
Remote Site Recovery

Log Filter exit routine
(DFSFTFX0) 405

requesting edited command
buffer 459

Resource Manager
client connection 609
initialization/termination 609, 611
RM statistics 613

Resume 52
samples

DBRC SCI registration exit routine
(DSPSCIX0) 332

HALDB Partition Selection exit
routine (DFSPSE00) 107

security
Command Authorization exit

routine (DFSCCMD0) 323
Resource Access Security user exit

(RASE) 431
Security Reverification exit routine

(DFSCTSE0) 275
Sign On/Off Security exit routine

(DFSCSGN0) 291
Transaction Authorization exit

routine (DFSCTRN0) 313
sending message to alternate

destination 455
Signon

DFSUSER descriptor use 289
Status 59
Structured Call Interface

input 647
support for LU 6.2 devices 11
Suspend 51
system support

Automated Operator exit routine
(DFSAOUE0) 441

Dependent Region Preinitialization
routines 333

Dump Override Table
(DFSFDOT0) 335

IMS command language
modification facility
(DFSCKWD0) 384

Log Archive exit routine
(IMSEXIT) 390

Logger user exit (LOGWRT) 409
Partner Product exit routine

(DFSPPUE0) 416
RECON I/O exit routine

(DSPCEXT0) 421
Restart exit routine

(DFSRST00) 419
System Definition Preprocessor exit

routine (input phase)
(DFSPRE60) 437

790 Exit Routines

exit routines (continued)
system support (continued)

System Definition Preprocessor exit
routine (name check complete)
(DFSPRE70) 439

Time-Controlled Operations (TCO)
exit routine (DFSTXIT0) 296

User Message Table
(DFSCMTU0) 478

XRF hardware reserve notification
exit routine 485

transaction manager
2972/2980 Input edit routine

(DFS29800) 145
4701 Transaction Input edit routine

(DFS36010) 147
Build Security Environment exit

routine (DFSBSEX0) 148
Conversation Abnormal

Termination exit routine
(DFSCONE0) 153

Destination Creation exit routine
(DFSINSX0) 158

Global Physical Terminal Input
edit routine (DFSGPIX0) 187

Greeting Messages exit routine
(DFSGMSG0) 191

Initialization exit routine
(DFSINTX0) 195

Input Message Field edit routine
(DFSME000) 200

Input Message Segment edit
routine (DFSME127) 204

Logoff exit routine
(DFSLGFX0) 208

Logon exit routine
(DFSLGNX0) 211

Message Control/Error exit routine
(DFSCMUX0) 220

Message Switching Input edit
routine (DFSCNTE0) 232

Non-Discardable Messages exit
routine (DFSNDMX0) 234

Physical Terminal Input edit
routine (DFSPIXT0) 261

Physical Terminal Output edit
routine (DFSCTTO0) 265

Queue Space Notification exit
routine (DFSQSPC0) 269

Shared Printer exit routine
(DFSSIML0) 278

Sign-On exit routine 283
Time-Controlled Operations (TCO)

Communication Name Table
(CNT) exit routine
(DFSTCNT0) 294

Transaction Code Input edit
routine (DFSCSMB0) 317

TSO Single Point of Control
input 765

TSO SPOC
altering ISPF shared pool 771

user-supplied, CQS 553
exit routines, writing 10
exit routinesattributes

coordinator controller CCTL 51

exit routineschanged, to alternate
destination

system messages 457
exit routineschanging

system messages 456
exit routinesdeleted, to alternate

destination
system messages 458

exit routinesdeleting
system messages 458

exit routinesignoring
system messages 454

exit routinesIMS Connect Password
Change

IMS Connect 763
exit routinesoverview 3
exit routinessending to alternate

destination
system messages 455

exit routinessetting up
exit registers 460

EXIT=
Data Capture exit routine 61

EXITDEF statement
static work areas, and 489

expansion routine 126
extended call interface (XCI) option 93
extended program communication

block 79
Extended Program Communication

Block 61
extended segment data block 82
Extended Segment Data Block 61
Extended Terminal Option 195
external entry vector table (EEVT) 342
external entry vector table prefix

(EEVTP) 342
external subsystem attach facility

ESAF In-Doubt Notification exit
routine 338

ESMT
for loading exit routines 340

External Subsystem exit routines 340
external subsystem routines 371

Abort Continue exit routine 345
Command exit routine 346
Commit Continue exit routine 347
Commit Prepare exit routine 348
Commit Verify exit routine 350
Create Thread exit routine 351
Echo exit routine 353
EEVT mapping 344
EEVTP 342
EPL 340, 376
ESMT

for loading exit routines 340
exit routine interface control

blocks 342
exit routines 340
Identify exit routine 354
Initialization exit routine 357
Log Service exit routine 377
Message Service exit routine 379
Normal Call exit routine 359
Resolve In-Doubt exit routine 361
Signoff exit routine 364
Signon exit routine 365

external subsystem routines (continued)
Startup Service exit routine 381
Subsystem Not Operational exit

routine 367
Subsystem Termination exit

routine 371
system services 376
Terminate Identify exit routine 373
Terminate Thread exit routine 374
Termination Service exit routine 383

F
Fast Path 89

DEDB
Sequential Dependent Scan exit

routine (DFSSIML0) 278
DL/I exit routines 9
exit routines

DEDB Partition Selection exit
routine 85

Fast Path Input Edit/Routing exit routine
(DBFHAGU0)

attributes 168
binding 168
description 168
example 168
IMS callable services 168
IMS environments 168
including 168
including the routine 168
link editing 168
naming convention 168
registers

contents on entry 168
contents on exit 168

sample routine location 168
using with shared EMH queues 168

Fast Path. 96, 99, 168
Field edit routine 200

definition 202, 208
interface 200
use 200

filtering log data 405
FIND control block function 23
format of standard BPE user exit

parameter list 489
FREE storage function 20
free storage service

example 495, 503
output 495, 503
parameters 495, 502

Front-End Switch exit routine
(DFSFEBJ0) 172

Basic Edit 181
binding 173
description 172
example 184
FEIB

description 176
fields 177

FEIB DSECT 176
IBE input processing 176
IMS callable services 173
IMS environments 173
including the routine 173
input and output fields 179

Index 791

Front-End Switch exit routine
(DFSFEBJ0) (continued)

message expansion 182
message flow 175
MFS edit 181
naming convention 173
registers

contents on entry 173
contents on exit 174

restrictions 173
routing 181, 184
sample routine location 173
timer facility 183
Timer Facility 183

full-function database segment
edit/compression 121

function-specific parameter list
AO exit routine (DFSAOE00) 468
described 18

G
general user data area 195
GET storage function 20
get storage service

examples 495, 502
output 495, 501
parameters 495, 500

Global Physical Terminal (Input) edit
routine (DFSGPIX0)

binding 187
IMS callable services 187
IMS environments 187
including the routine 187
naming convention 187
sample routine location 187

Global Physical Terminal Input edit
routine (DFSGPIX0)

attributes 187
description 187
IMS environments 187
including the routine 187
link editing 187
naming convention 187
operation 187
registers

contents on entry 187
contents on exit 187

sample routine location 187
using callable services 187

Greeting Messages exit routine
(DFSGMSG0) 191

attributes 191
binding 191
IMS callable services 191
IMS environments 191
including the routine 191
link editing 191
naming convention 191
registers 191

contents on entry 191
contents on exit 191

sample routine location 191
using callable services 191

H
HALDB Partition Selection exit routine

(DFSPSE00) 103
binding 103
description 103
IMS callable services 103
IMS environments 103
including the routine 103
naming convention 103
Partition definition area mapping

(DFSPDA) 108
Partition exit communication area

mapping (DFSPECA) 107
sample 107
sample routine location 103

Hardware Data Compression (HDC)
Support

building HDC dictionary 136
DD name descriptions 137
HDCD utility

building HDC dictionary 136
compression statistics

program 136
data integrity validation

option 136
object file, HDC dictionary 136
return codes 140

how HDC works 136
Segment length 136

how to implement 136
introduction 135
sample JCL procedure 137
using HDCD utility 136

Hardware Data Compression Dictionary
(HDCD) utility (DFSZLDU0)

building HDC dictionary 136
compression statistics program 136
data integrity validation option 136
object file, HDC dictionary 136
return codes 140

hash routine. 96
HDAM and PHDAM Randomizing

routines (DFSHDC40)
binding 109

HDAM and PHDAM Randomizing
Routines (DFSHDC40)

attributes 109
calling 109
description 109
IMS callable services 109
IMS environments 109
IMS.SDFSRESL 109
including the routine 109
loading 109
naming convention 109
parameters 109
registers

contents on entry 109
contents on exit 109

sample generalized routine 114
sample routine location 109
sample routines 109

HWSAUTH0
usage 689
user exit routine 688, 689

HWSCSLO0 665
HWSCSLO1 665

HWSDSIB DSECT (event recording
parameter list)

format 758
HWSERPL DESCT (event recording

parameter list)
format 754

HWSEXPRM macro 680
HWSIMSCB macro 680
HWSIMSEA macro 680
HWSJAVA0 660

JCL sample 661
HWSOMPFX macro 680
HWSPIOX0 sample IMS Connect Port

Message Edit exit routine 666
HWSROUPM macro 680
HWSROUT0

user exit routine 685
HWSSMPL0

JCL sample 659
HWSSMPL0 user message exit

routine 657
HWSSMPL1

JCL sample 660
HWSSMPL1 user message exit

routine 657
HWSSOAP1 IMS Connect exit

routine 661
HWSTCPIB DSECT (TCP/IP information

block)
format 756

HWSTECL0 693
data store information block (DSIB)

contents 758
DSECTs 761
DSIB (data store information block)

contents 758
ERPL (event recording parameter list)

contents 754
error message format 693
Event Interface Control Block 693
event keys 697
event record formats 704
Event record parameter list 693
event recording parameter list (ERPL)

contents 754
event types

multiple process 701
single process 697

HWSDSIB DSECT (event recording
parameter list)

format 758
HWSERPL DSECT (event recording

parameter list)
format 754

HWSTCPIB DSECT (TCP/IP
information block)

format 756
initializing 693
installing 696
invoking 693
keys 697
modifying 696
multiple process events 701
registers at entry 693
registers at return 693
single process events 697

792 Exit Routines

HWSTECL0 (continued)
TCP/IP information block (TCPIB)

contents 756
TCPIB (TCP/IP information block)

contents 756
terminating 763

HWSUINIT 680, 683
control blocks 683
register contents 683
subroutines 683

HWSXIB macro 680
HWSXIB1 macro 680
HWSXIBDS macro 680
HWSXIBOD macro 680
HWSYDRU0 690

exit for asynchronous output 690
using 690

I
Identify exit routine 354
IMS Adapter for REXX exit routine

binding 193
IMS callable services 193
IMS environments 193
including the routine 193
naming convention 193
sample routine location 193

IMS catalog
batch processing 48
defining 48

IMS catalog exit routine 48
IMS Command Language Modification

Facility (DFSCKWD0)
binding 384
command keyword table,

modifying 384
error messages 384
IMS callable services 384
IMS environments 384
including the routine 384
KEYWD macro 384
naming convention 384
routine location 384
SYN macro 384

IMS Connect
communication with user message

exits 669
data store information block (DSIB)

contents 758
DataPower message exit routine 665
DSIB (data store information block)

contents 758
ERPL (event recording parameter list)

contents 754
event keys 697
event recording parameter list (ERPL)

contents 754
event types

multiple process 701
single process 697

HWSCSLO0 665
HWSCSLO1 665
HWSDPWR1 user message exit

routine 665

IMS Connect (continued)
HWSDSIB DSECT (data store

information block)
format 758

HWSERPL DSECT (event recording
parameter list)

format 754
HWSJAVA0 660

JCL sample 661
HWSSMPL0

JCL sample 659
HWSSMPL0 user message exit

routines 657
HWSSMPL1

JCL sample 660
HWSSMPL1 user message exit

routines 657
HWSSOAP1 661
HWSTCPIB DSECT (TCP/IP

information block)
format 756

macros 680
multiple process events 701
Port Message Edit exit routine 666
security for 692
single process events 697
TCP/IP information block (TCPIB)

contents 756
TCPIB (TCP/IP information block)

contents 756
user message exit routines

failures from MVS calls 657
HWSDPWR1 665
HWSJAVA0 660
HWSSMPL0 657
HWSSMPL1 657

IMS Connect Event Recorder exit routine
(HWSTECL0)

data store information block (DSIB)
contents 758

DSIB (data store information block)
contents 758

ERPL (event recording parameter list)
contents 754

event keys 697
event recording parameter list (ERPL)

contents 754
event types

multiple process 701
single process 697

HWSDSIB DSECT (data store
information block)

format 758
HWSERPL DSECT (event recording

parameter list)
format 754

HWSTCPIB DSECT (TCP/IP
information block)

format 756
keys 697
multiple process events 701
single process events 697
TCP/IP information block (TCPIB)

contents 756
TCPIB (TCP/IP information block)

contents 756

IMS Connect sample OTMA User Data
Formatting exit routine

sample JCL 692
IMS Connect User Initialization

(HWSUINIT) exit routine
sample JCL 685

IMS ConnectIMS Connect Password
Change

exit routines 763
IMS Data Capture exit/function 61
IMS Data Conversion exit/function 83
IMS DataPropagator 61
IMS log 409, 485
IMS Standard User Exit Parameter

List 148, 431
IMS system services 376
IMS TM resource adapter

HWSJAVA0 660
IMS Connect user message exit

routine 660
IMSEXIT 390
IMSplex

creating transactions
dynamically 158, 165

IMS Connect
HWSCSLO0 665
HWSCSLO1 665

IMS Connect exit routines 665
INIT subroutine 670
Init-Term exit routine

contents of registers 515
parameter list 515
recommendations 515

Initialization and Termination
user exit routine 579

initialization and termination exit 387
Initialization exit routine 357
Initialization exit routine (DFSINTX0)

attributes 195
description 195
ETO= keyword setting 195
IMS callable services 195
registers 195

contents on entry 195
contents on exit 195

sample routine location 195
Initialization-Termination (Init-Term)

user-supplied exit routine
CQS 554

INPUT
user exit routine 581

input edit/routing sample
Fast Path 168

Input Message Field edit routine
(DFSME000)

attributes 200
binding 200
calling 202
defining edit routines 203
description 200
example 200
IMS callable services 200
IMS environments 200
including the routine 200
interfaces 200
link editing 200
naming convention 200

Index 793

Input Message Field edit routine
(DFSME000) (continued)

parameter list format 200
performance considerations 203
registers

contents on entry 200
contents on exit 200

sample routine location 200
using callable services 200

Input Message Segment edit routine
(DFSME127)

attributes 204
binding 204
calling 207
defining edit routines 207
description 204
example 204
IMS callable services 204
IMS environments 204
including the routine 204
interfaces 204
naming convention 204
parameter list format 204
performance considerations 208
registers

contents on entry 204
contents on exit 204

sample routine location 204
Segment edit routine 204
using callable services 204

INSERT function 28
interface information 489
intermediate/back-end (IBE) links 173
interrupt request block 627
IRB 627
isolated log sender 405
ISWITCH macro

changing for migration 4
description 8
exiting cross-memory mode 12

K
key compression 129
keyboard shortcuts viii
KEYWD macro statement

modifying command keyword
table 384

L
Language Environment user exit

routine 389
binding 389
IMS callable services 389
IMS environments 389
including the routine 389
naming convention 389
registers 389

contents on entry 389
sample routine location 389

legal notices
notices 777
trademarks 777, 779

LOAD module function 21

load module service
examples 495, 505
output 495, 504

loading TM exit routines 195
log (data) recovery 409

emergency restart (online) 411
Log Recovery utility 409

Log Archive exit routine (IMSEXIT)
Binding 390
description 390
IMS callable services 390
IMS environments 390
including the routine 390
naming convention 390
parameters 390
record types 393
sample routine 393
sample routine location 390
termination 390
written log 393

Log edit exit routine 400
Log edit user exit (LOGEDIT)

binding 400
IMS callable services 400
IMS environments 400
including the routine 400
naming convention 400
registers 400

contents on entry 400
sample routine location 400

Log Filter exit routine (DFSFTFX0) 405
attributes 405
binding 405
communicating with IMS 405
IMS callable services 405
IMS environments 405
IMS-supplied Log Filter exit

routine 405
including the routine 405
initialization and termination

calls 405
naming convention 405
recovery environment 405
sample routine location 405

Log Service exit routine 377
log volumes 485
LOGEDIT 400
Logger user exit (LOGWRT) 409

attributes 409
binding 409
description 409
IMS callable services 409
IMS environments 409
including the routine 409
initialization call 409
naming convention 409
OLDS/SLDS write call 409
parameter list 409
registers 409

contents on entry 409
contents on exit 409

sample routine location 409
termination call 409
using callable services 409

Logoff exit routine (DFSLGFX0) 208
attributes 208
binding 208

Logoff exit routine (DFSLGFX0)
(continued)

description 208
IMS callable services 208
IMS environments 208
including the routine 208
naming convention 208
registers 208

contents on entry 208
contents on exit 208

sample routine location 208
using callable services 208
XRF considerations 208

Logon exit routine (DFSLGNX0) 211
attributes 211
binding 211
description 211
IMS callable services 211
IMS environments 211
including the routine 211
logon descriptors 214
LOGOND= keyword 214
naming convention 211
registers 211

contents on entry 211
contents on exit 211

sample routine location 211
using callable services 211

LOGOND= keyword 214
LSO= 12
LTERM support for APPC 215
LTERM, remote

ETO, and 158, 164
LU 6.2 Edit exit routine (DFSLUEE0)

attributes 215
binding 215
changing a message 215
changing local LU name 215
description 215
IMS callable services 215
including the routine 215
LTERM support for APPC 215
MOD name support for APPC 215
naming convention 215
parameter list format 215
registers 215

contents on entry 215
contents on exit 215

sample routine location 215
using callable services 215

LU 6.2 user data area 195

M
macros

DFSCAOI 28
DFSCCBLK 23
DFSCSTRG 20
HWSEXPRM 680
HWSIMSCB 680
HWSIMSEA 680
HWSOMPFX 680
HWSROUPM 680
HWSXIB 680
HWSXIB1 680
HWSXIBDS 680
HWSXIBOD 680

794 Exit Routines

mapping control blocks. 342
message

CQS0242E 559
Message Control/Error exit routine

default actions 231
valid flags 231

Message Control/Error exit routine
(DFSCMUX0) 220

attributes 221
binding 222
calling the routine 222
default actions 231
description 221
exit flags 231
IMS callable services 222
IMS environments 221
interface block (MSNB) 226

contents on entry 226
contents on exit 228

interface block (MSNB),
description 226

naming convention 222
registers 223

contents on entry 223
contents on exit 223

rerouting messages 223
sample routine location 222
using callable services 221
X'6701' log record 230

message routing routines
non-discardable messages 234

Message Service exit routine 379
Message Switching (Input) edit routine

(DFSCNTE0)
attributes 232
binding 232
description 232
example 234
IMS callable services 232
IMS environments 232
including the routine 232
naming convention 232
registers

contents on entry 232
contents on exit 232

sample routine location 232
using callable services 232

MOD name support for APPC 215
module service load 495, 503

parameters 495, 503
MSC (Multiple Systems Coupling)

ETO, and 158, 164
LTERM, remote 158, 164
Message Control/Error exit

routine 220
TM and MSC exit routine 300

MSC message routing control user
exit 300

MSC Routing exit routine 300
description 300

MSNB interface block 220
multiple event 697

types 697
multisegment messagessetting up

exit registers 460

N
network-qualified LU name 441, 474
non-discardable messages 234
Non-Discardable Messages exit routine

(DFSNDMX0) 234
alternate destinations 234
attributes 234
binding 234
description 234
IMS callable services 234
IMS environments 234
including the routine 234
naming convention 234
processing options 234
registers 234

contents on entry 234
contents on exit 234

restrictions 234
sample routine location 234
using callable services 234

non-shared queues environment 323
Normal Call exit routine 359
NULLVAL operand, use 115

O
ODBM (Open Database Manager)

user exit routines 579
OLDS (online log data set) 409
open database

user exit routines
Client Connect/Disconnect 589
HWSAUTH0 688, 689
Initialization and Termination 579
INPUT 581
OUTPUT 586

Open Database Manager (ODBM)
CSLDST1 590
CSLDST2 590
CSLDSTX 590
exit routines

ODBM statistics 590
statistics record 590
user exit routines 579

Operations Manager
user exit routines

client connection 593
input 597
security 604

Operations Manager (OM)
statistics header 606
user exit routines 593

BPE Statistics 606
output 599

OTMA
sample DRU exit for IMS

Connect 690
OTMA Destination Resolution user exit

(OTMAYPRX)
attributes 243
IMS callable services 243
IMS environments 243
including the routine 243
link editing 243
naming convention 243
prerouting input messages 243

OTMA Destination Resolution user exit
(OTMAYPRX) (continued)

registers at entry 243
registers at exit 243
sample routine location 243
using callable services 243

OTMA Input/Output Edit exit routine
(DFSYIOE0) 247

attributes 247
binding 247
IMS callable services 247
IMS environments 247
including the routine 247
naming convention 247
registers at entry 247
registers at exit 247
sample routine location 247
using callable services 247

OTMA Resume TPIPE Security user exit
(OTMARTUX)

attributes 258
IMS environments 258
link editing 258
naming convention 258
sample routine location 258
using callable services 258

OTMA User Data Formatting exit routine
(DFSYDRU0) 251

attributes 251
binding 251
IMS callable services 251
IMS environments 251
including the routine 251
naming convention 251
registers at entry 253
registers at exit 257
sample routine location 251
using callable services 251

OTMAYPRX 243
OUTPUT

user exit routine 586

P
parameter list

Field edit routine 200
Segment edit routine 204, 207

parameter list format
in DFSPRE60 437
in DFSPRE70 439

parameter lists
abnormal termination 627, 630
BPE Statistics user exit 517
Client Connection user exit 555
Client Disconnect user exit 555
create named storage service 495,

506
CSCBLK 23
CSSTRG 20
delete module service 495, 505
destroy names storage service 495,

508
DFSCAOI 28
free storage service 495, 502
generating in your exit routine 15
get storage services 495, 500

Index 795

parameter lists (continued)
initialization and termination user exit

routine 515
Initialization user exit 554
load module service 495, 503
Queue Overflow user exit 557
restart entry 627, 630
retrieve named storage service 495,

507
standard BPE user exit 489
Structure Event exit routine

checkpoint 627, 637
Deferred Resync Complete 627,

634
resync, CQS 627, 635
structure overflow 627, 640
structure rebuild 627, 638
structure rebuild lost UOWs 627,

638
structure status change 627, 640

Structure Event user exit 570
checkpoint 570
connect 570
overflow 570
rebuild 570
status change 570

Structure Inform exit routine 643
Structure Statistics user exit 517, 559
Termination user exit 554

Partner Product exit routine (DFSPPUE0)
binding 416
description 416
IMS callable services 416
IMS environments 416
including the routine 416
naming convention 416
registers

content on entry 416
contents on exit 416

sample routine location 416
password verification

bypass 191
PDSE resource restrictions 376
performance

exit routines 12
Physical Terminal (Input) edit routine

(DFSPIXT0)
binding 261
description 261
example 265
IMS callable services 261
IMS environments 261
including the routine 261
interface 261
naming convention 261
operation 261
registers

contents on entry 261
contents on exit 261

sample routine location 261
Physical Terminal (Output) edit routine

(DFSCTTO0)
binding 265
description 265
example 269
IMS callable services 265
IMS environments 265

Physical Terminal (Output) edit routine
(DFSCTTO0) (continued)

including the routine 265
naming convention 265
registers

contents on entry 265
contents on exit (if cancel

request) 265
contents on exit (if no cancel

request) 265
sample routine location 265

Port Message Edit exit routine 666
prechained save area 11
propagating data 61

Q
Queue Overflow user-supplied exit

routine
CQS 557

Queue Space Notification exit routine
(DFSQSPC0/DFSQSSP0) 269

attributes 269
binding 269
call types 269
description 269
IMS environments 269
including the routine 269
naming convention 269
parameters 269
Queue Space Notification exit routine

(DFSQSPC0/DFSQSSP0)
IMS callable services 269

registers
contents on entry 269
contents on exit 269

sample routine location 269
special considerations 269
threshold values 269
using callable services 269

R
randomizing modules 89
READ subroutine 672
reason codes

callable service 29
rebuild lost UOW entry, CQS 627, 639
RECON data sets

tracking changes 538
RECON I/O exit routine

system performance impact 431
RECON I/O exit routine

(DSPCEXT0) 421
attributes 421
binding 421
description 421
IMS callable services 421
IMS environments 421
including the routine 421
naming convention 421
parameters 421
performance considerations 421
registers

contents on entry 421
contents on exit 421

RECON I/O exit routine (DSPCEXT0)
(continued)

sample routine location 421
using callable services 421

reentrant code restrictions 376
REFRESH USEREXIT command

static work area, and 489
Refreshable exit routine types 4
register

contents
Client Connection user exit 555
Client Structure Event exit 627,

634
Client Structure Inform exit 643
CQS Event exit 627, 629
Initialization-Termination user

exit 554
Queue Overflow user exit 557
Structure Event user exit 570
Structure Statistics user exit 559

register contents
subroutine entry 669
subroutine exit 669

registers
prechained save area 11
saving 11
single save area 11

Remote Site Recovery 405
RENT code restrictions 376
rerouting messages 220
resetting significant status 208, 279
Resolve In-Doubt exit routine 361
Resource Access Security user exit

(RASE)
attributes 431
binding 431
callable services, with 431
description 431
environments supported 431
IMS callable services 431
IMS environments 431
including the routine 431
link editing 431
naming convention 431
registers 431

contents on entry 431
sample routine location 431

Resource Manager
exit routines

initialization/termination 609, 611
Resource Manager (RM)

CSLRST1 613
DFSINSX0 158, 165
exit routines

client connection 609
RM statistics 613

statistics record 613
resource restrictions 376
Restart exit routine

attributes 419
description 419
parameter list 419
registers

contents on entry 419
contents on exit 419

using callable services 419
Resume exit routine 52

796 Exit Routines

resync UOW entry, CQS 627, 636
retrieve named storage service

example 495, 508
output 495, 508
parameters 495, 507

return codes
callable service 29

REXX, IMS adapter
entry parameters 193
environment 193
exec name, choosing 193
installation 193
user exit routine (DFSREXXU) 193

routines
client 627
user-supplied, CQS 553

routines, location of 41
routing messages

when applications abend 234

S
Sample

initialization exit routine 510
processing exit routine 511
termination exit routine 512

sample AO exit 441
samples

IMS Command Language
Modification facility
(DFSCKWD0) 387

samples, code 41, 44
samples, location of 41
save area

for registers 11
prechained 11
single, registers 11

SCAN control block function 25
SDFSSMPL

data set contents 41, 44
Secondary Index Database Maintenance

exit routine 115
attributes 115
binding 115
Calling 115
CSECTs 115
description 115
IMS callable services 115
IMS environments 115
including the routine 115
indexing, suppression 115
loading 115
naming convention 115
parameters 115
registers

contents on entry 115
contents on exit 115

residing 115
sample routine 119
sample routine location 115
use 115
using callable services 115

security
commands 535
DBRC application programming

interface (API) request 535

security exit
IMSLSECX 692

Security Information Block (SAFIB)
contents 760

Security Reverification exit routine
(DFSCTSE0)

attributes 275
binding 275
description 275
IMS callable services 275
IMS environments 275
including the routine 275
naming convention 275
registers

contents on entry 275
contents on exit 275

sample routine location 275
using callable services 275

security support 692
Segment edit routine 204

interface 207
use 203, 204

Segment edit/compression exit routine
(DFSCMPX0) 121

activating 124
attributes

DEDB 123
full-function database 122

binding 122
compression routine 125
description 121
entry codes 128, 130
entry parameters, DL/I 128
how it works 123
IMS callable services 122
IMS environments 122
including the routine 122
loading 123
naming convention 122
parameters 130

CSECTs used for parameter
passing 130

registers 128
contents on entry 128
contents on exit 129

sample routine location 122
Segment edit/compression exit

routine (DFSCMPX0)
attributes 122

segment types, applicable 123
tabled data information 127

Segment Edit/Compression exit routine
(DFSCMPX0)

initialization routine 133
messages and codes 133
sample routine 132

DFSCMPX0 132
DFSKMPX0 132

Sequential Buffering Initialization exit
routine (DFSSBUX0) 144

attributes 141
binding 141
calling 141
description 141
IMS callable services 141
IMS environment 141
including the routine 141

Sequential Buffering Initialization exit
routine (DFSSBUX0) (continued)

loading 141
naming convention 141
parameters 141
performance considerations 141
registers

contents on entry 141
contents on exit 141

sample routine location 141
sample routines

DFSSBU1 144
DFSSBU2 144
DFSSBU3 144
DFSSBU4 144
DFSSBU9 144

using callable services 141
Shared Printer exit routine (DFSSIML0)

attributes 278
description 278
example 278
IMS callable services 278
IMS environments 278
including the routine 278
naming convention 278
registers

contents on entry 279
contents on exit 279

sample routine location 278
using callable services 278

shared queues environment 323
SHUTDWN parameter

MSGQUEUE macro 269
Sign Exit 291
Sign On/Off Security exit routine

(DFSCSGN0) 291
attributes 291
binding 291
description 291
IMS callable services 291
IMS environments 291
including the routine 291
naming convention 291
registers

contents on entry 291
contents on exit 291

sample routine location 291
using callable services 291

Sign-On exit routine (DFSSGNX0)
associated printing 283
binding 283
description 283
IMS callable services 283
IMS environments 283
including the routine 283
loading 284
naming 284
naming convention 283
registers 283

contents on entry 283
contents on exit 283

restrictions 158
sample routine location 283
supplying data 289
user descriptors 288
USERD= keyword 288
XRF considerations 158, 283

Index 797

Signoff exit routine 364
Signoff exit routine (DFSSGFX0) 279

attributes 279
binding 279
description 279
IMS callable services 279
IMS environments 279
including the routine 279
naming convention 279
registers 279

contents on entry 279
contents on exit 279

restrictions 279
sample routine location 279
using callable services 279
with generic resources 279
XRF considerations 279

Signon exit routine 365
Signon exit routine (DFSSGNX0)

DFSUSER descriptor use 289
single event 697

types 697
single save area, registers 11
single-segmentsetting up

exit registers 460
SLDS (system log data set) 409
SOAP Gateway

HWSSOAP1 exit routine 661
IMS Connect exit routine

HWSSOAP1 661
sparse index, building 115
specifying buffer sizes 321
SPQBPARM parameter list 288
standard BPE user exit parameter

list 489
standard user exit interface

parameter lists
description 5
version 1 5
version 5 5, 11

user data areas 195
Startup Service exit routine 381
static work areas 489
statistic records

CQS request 559
data object 559
queue name 559
request 559
structure checkpoint 559
structure checkpoint entry 559
structure process 559
structure rebuild 559
z/OS request 559

statistics
DBRC 549

Statistics exit routine
contents of registers 517
parameters 517

statistics offset table 517, 522
status codes

TCO exit routine 296
Status exit routine

overview 59
storage services 20

create named storage service 495,
506

storage services (continued)
destroy named storage service 495,

508
free storage service 495, 502
get storage service 495, 500
retrieve named storage service 495,

507
storage services statistics area 517, 531
Structure Event user-supplied exit

routine 570
Structure Statistics user-supplied exit

routine 559
Structured Call Interface

user exits
BPE statistics 622
client connection 618

Structured Call Interface (SCI)
exit routines 618

input 647
user exits

initialization/termination 620
notify client 651

subroutines
EXER 679
INIT 670
READ 672
register contents 669
TERM 678
XMIT 676

subsequent BPE exit routines,
calling 489, 492

Subsystem Not Operational exit
routine 367

Subsystem Termination exit routine 371
suppress indexing 115
Suspend exit routine

overview 51
SYN macro statement

modifying command keyword
table 384

synchronous data capture
IMS DataPropagator 61

System Definition Preprocessor exit
routine (Input Phase) (DFSPRE60)

attributes 437
binding 437
description 437
IMS callable services 437
IMS environments 437
including the routine 437
naming convention 437
parameters 437
registers

contents on entry 437
contents on exit 437

sample routine 439
sample routine location 437
using callable services 437

System Definition Preprocessor exit
routine (Name Check Complete)
(DFSPRE70)

binding 439
IMS callable services 439
IMS environments 439
including the routine 439
naming convention 439
sample routine location 439

System Definition Preprocessor exit
routine (termination) (DFSPRE70)

attributes 439
description 439
IMS environments 439
including the routine 439
link editing 439
naming convention 439
parameters 439
registers

contents on entry 439
contents on exit 439

sample routine location 439
using callable services 439

system statistics area
addresses 517, 520
BPE AWE statistics area 517, 529
BPE CBS statistics area 517, 527
BPE dispatcher statistics area 517,

523
BPE storage services statistics

area 517, 531
BPE TCB statistics table 517, 525
length of 517, 520
offsets 517, 520
pointers 517, 520
recommendations 517, 520
statistics offset table 517, 522
structure of 517, 519

T
TCB statistics table 517, 525
TCO exit routine (DFSTXIT0)

attributes 296
description 296
DL/I calls 296
IMS environments 296
including the routine 296
link editing 296
loading 296
message formats 296
naming convention 296
PCB (program communication

block) 296
registers, contents on entry 296
sample routine location 296
status codes 296
using callable services 296

TCP/IP
security exit 692

TCP/IP information block (TCPIB)
contents 756

TCPIB (TCP/IP information block)
contents 756

TERM subroutine 678
Terminate Identify exit routine 373
Terminate Thread exit routine 374
Termination Service exit routine 383
Time-Controlled Operations (TCO)

Communication Name Table (CNT) exit
routine (DFSTCNT0)

binding 294
description 294
IMS callable services 294
IMS environments 294
naming convention 294

798 Exit Routines

Time-Controlled Operations (TCO)
Communication Name Table (CNT) exit
routine (DFSTCNT0) (continued)

registers
contents on entry 294
contents on exit 294

sample routine location 294
Time-Controlled Operations (TCO) exit

routine 296
Time-Controlled Operations (TCO) exit

routine (DFSTXIT0)
binding 296
IMS callable services 296
IMS environments 296
including the routine 296
naming convention 296

TM and MSC Message Routing and
Control User exit routine (DFSMSCE0)

binding 300
IMS callable services 300
IMS environments 300
including the routine 300
naming convention 300
sample routine location 300

TM message routing control user
exit 300

trademarks 777, 779
TRANSACT macros (DFSPRE60) 439
Transaction Authorization exit routine

(DFSCTRN0)
attributes 313
binding 313
description 313
IMS callable services 313
IMS environments 313
including the routine 313
link editing 313
naming convention 313
registers

contents on entry 313
contents on exit 313

sample routine location 313
using callable services 313

Transaction Code (Input) edit routine
(DFSCSMB0)

attributes 317
binding 317
description 317
example 320
IMS callable services 317
IMS environments 317
including the routine 317
naming convention 317
registers

contents on entry 317
contents on exit 317

sample routine location 317
using callable services 317

Transaction Code Input edit routine
(DFSCSMB0)

interfaces 317
transactions

creating default 158, 165
creating duplicate 158, 165

TSO Single Point of Control (TSO SPOC)
exit routines

input 765

type 1 (DFSAOUE0)
See AO exit routine or AO

application 441
Type 1 Automated Operator exit routine

(DFSAOUE0)
binding 441
IMS callable services 441
IMS environments 441
including the routine 441
naming convention 441
sample routine location 441

Type 2 Automated Operator exit routine
(DFSAOE00)

binding 468
IMS callable services 468
IMS environments 468
including the routine 468
naming convention 468
sample routine location 468

U
UEHB (User Exit Header Block)

contents 441, 463
description 441, 463
flags 441, 463

UHASH=, with DEDB Resource Name
Hash routine 96

updating DB2 data 82
user data area

creating 195
uses for 195

user exit header block 441, 463
user exit routine 41
user exit routine abends 489, 494
user exit routines

Client Connect/Disconnect 589
DBRC request exit routine 533
DBRC Security Exit Routine 535
DBRC Security Exit Routine

sample 538
HWSAUTH0 688, 689
HWSROUT0 685
Initialization and Termination 579
initialization and termination

exit 387
INPUT 581
Open Database Manager (ODBM)

introduction 579
Operations Manager

BPE Statistics 606
client connection 593
input 597
introduction 593
output 599
security 604

OUTPUT 586
RECON I/O exit routine 538
RECON I/O exit routine sample 548

user exits
CSL (Common Service Layer)

CSL OM Initialization/
termination 595

Structured Call Interface
BPE statistics 622
client connection 618
initialization/termination 620

user exits (continued)
Structured Call Interface (continued)

notify client 651
user exits (CQS) 553
user initialization exit 683
user message exits

communication with IMS
Connect 669

user message table (DFSCMTU0)
example

routine 480
User Message Table (DFSCMTU0)

coding 478
description 478
example

table 480
formatting 478
IMS callable services 478
naming 478
naming convention 478
purpose and use 478
rules for defining 478

user-supplied exit routines 570
abends in 489, 494
BPE Statistics 517
BPEUXCSV macro 495
call subsequent exit routines 489, 492
callable services 495
dynamic work areas 489
environment 489, 493
execution environment 489
general information 489
initialization sample 510
initialization-termination 515
interfaces and services 489
performance considerations 489, 494
processing sample 511
recommendations 489, 494, 515, 517
reentrant 489, 494
registers 489, 493
standard parameter list 489
static work areas 489
termination sample 512
work areas 489

USERD= keyword 288
UXPL_EXITPLP

Client Connections exit 555
Init-Term exit 554
Queue Overflow exit 557
Structure Statistics exit 559

V
Variable Data Block (VDB)

contents 760
vector table format

DFSPRE60 437
DFSPRE70 439

virtual storage
free 495, 502
get 495, 500

virtual storage, freeing 495, 502
virtual storage, getting 495, 500

Index 799

W
WADS (write ahead data set) 411
work areas for BPE user exit routines

dynamic work area 489
static work area 489

writing exit routines 10
WSDL-to-PL/I segmentation APIs exit

routine
DFSPWSIO APIs 662
SOAP Gateway 662

X
XCI option 93
XMIT subroutine 676
XPCB 79
XPCB (Extended Program

Communication Block) 61
assembler example 79
COBOL example 79
PL/I example 79

XRF hardware reserve notification exit
routine 485

attributes 485
description 485
IMS callable services 485
IMS environments 485
including the routine 485
initialization call 485
link-editing 485
naming convention 485
parameter list 485
registers 485

contents on entry 485
sample routine location 485
using callable services 485

XSDB 82
XSDB (Extended Program

Communication Block)
assembler example 82
COBOL example 82
PL/I example 82

XSDB (Extended Segment Data
Block) 61

800 Exit Routines

IBM®

Product Number: 5635-A04
5655-DSM
5655-TM2

Printed in USA

SC19-3655-04

Sp
in
e
in
fo
rm
at
io
n:

IM
S

Ve
rs

io
n

13
Ex

it
Ro

ut
in

es
I
B

M

	Contents
	About this information
	Prerequisite knowledge
	IMS function names used in this information
	How new and changed information is identified
	Accessibility features for IMS Version 13
	How to send your comments

	Part 1. IMS control region exit routines
	Chapter 1. Guidelines for writing IMS exit routines
	Introduction to IMS exit routines
	Exit routine naming conventions
	Changeable interfaces and control blocks
	Refreshable exit routine types
	IMS standard user exit parameter list
	Using the ISWITCH macro
	Routine binding restrictions
	Writing IMS routines that access control blocks
	Extended Terminal Option (ETO) exit routines
	APPC/IMS exit routines
	Registers and save areas
	Cross-memory considerations
	Exit routine performance recommendations

	IMS callable services
	Types of callable services
	Exit routines eligible for callable services
	Using callable services
	Callable services
	Exit routine assembler macros
	Links with your exit routine and DFSCSI00
	Initialization of IMS callable services (DFSCSII0)
	Callable services parameter list
	Function-specific parameter list initialization
	IMS callable service (DFSCSIF0) activation

	IMS Callable Storage Services
	GET storage function
	FREE storage function
	LOAD module function
	DELETE module function

	IMS Callable Control Block Services requests
	FIND control block function
	SCAN control block function

	IMS Callable AOI Services
	INSERT function
	ENQUEUE function
	CANCEL function

	Callable services return and reason codes
	Return codes (CSPLRTRN)
	Callable service interface reason codes (CSPLRESN)
	Function-specific parameter list reason codes (CSPLRESN)
	GET storage service reason codes
	FREE storage service reason codes
	LOAD storage service reason codes
	DELETE storage service reason codes
	FIND control block service reason codes
	SCAN control block service reason codes
	INSERT AOI service reason codes
	ENQUEUE AOI service reason codes
	CANCEL AOI Service reason codes

	Callable services request example
	Control block usage
	Customization exit routines
	IMS.SDFSSMPL data set

	Chapter 2. Database Manager exit routines
	Batch application exit routine (DFSISVI0)
	IMS Catalog Definition exit routine (DFS3CDX0)
	CCTL exit routines
	Coordinator controller routine attributes
	Suspend exit routine
	Resume exit routine
	Control exit routine
	Status exit routine

	Data Capture exit routine
	Sample Data Capture exit routine
	Sample Extended Program Communication Block (XPCB)
	Sample Extended Segment Data Block (XSDB)

	Data conversion user exit routine (DFSDBUX1)
	Data Entry Database Partition Selection exit routine (DBFPSE00)
	Sample data entry database randomizing routines (DBFHDC40 / DBFHDC20 DBFHDC44 / DBFHDC24 DBFHDC2S)
	Sample DEDB randomizing routines (DBFHDC40)
	Extended call interface (XCI) option

	Data Entry Database Resource Name hash routine (DBFLHSH0)
	Sample hashing routine result format

	Data Entry Database Sequential Dependent Scan utility exit routine (DBFUMSE1)
	Sample DEDB Sequential Dependent Scan utility exit routine (DBFUMSE1)

	HALDB Partition Selection exit routine (DFSPSE00)
	Sample partition selection exit routine (DFSPSE00)
	Partition exit communication area mapping (DFSPECA)
	Partition definition area mapping (DFSPDA)

	HDAM and PHDAM randomizing routines (DFSHDC40)
	Sample HDAM and PHDAM generalized randomizing routine (DFSHDC40)

	Secondary Index Database Maintenance exit routine
	Sample Secondary Index Database Maintenance exit routine

	Segment edit/compression exit routines
	Description of sample segment compression/expansion modules
	Hardware data compression support
	Implementing HDC support
	Sample JCL procedure
	Tips for hardware data compression
	Return codes from the HDCD utility

	Sequential Buffering Initialization exit routine (DFSSBUX0)
	Sample SB initialization routines

	Chapter 3. Transaction Manager exit routines
	2972/2980 Input edit routine (DFS29800)
	4701 Transaction Input Edit routine (DFS36010)
	Build Security Environment user exit (BSEX)
	Conversational Abnormal Termination exit routine (DFSCONE0)
	Destination Creation exit routine (DFSINSX0)
	DFSINSX0 when extended terminal option is active
	DFSINSX0 when shared queues are active
	DFSINSX0 when dynamic resource definition is enabled

	Fast Path Input Edit/Routing exit routine (DBFHAGU0)
	Front-End Switch exit routine (DFSFEBJ0)
	Terminal input processing
	IBE input processing
	Front-end interface block
	Description of the FEIB fields

	Input and output fields
	Routing information
	Message expansion
	Timer facility
	FEIBRPQ1 indicator
	Example of the front-end switch exit routine (DFSFEBJ0)

	Global Physical Terminal (Input) edit routine (DFSGPIX0)
	Greeting Messages exit routine (DFSGMSG0)
	IMS Adapter for REXX exit routine (DFSREXXU)
	Initialization exit routine (DFSINTX0)
	Input Message Field edit routine (DFSME000)
	Calling the Input Message Field edit routine
	Defining edit routines
	Performance considerations

	Input Message Segment edit routine (DFSME127)
	Calling the Input Message Segment edit routine
	Defining edit routines
	Performance considerations

	Logoff exit routine (DFSLGFX0)
	Logon exit routine (DFSLGNX0)
	Selecting a logon descriptor

	LU 6.2 Edit exit routine (DFSLUEE0)
	Message Control/Error exit routine (DFSCMUX0)
	Rerouting messages
	Message Control/Error Exit Interface Block (MSNB)
	Valid flags and default actions

	Message Switching (Input) edit routine (DFSCNTE0)
	Using the sample message switching edit routine (DFSCNTE0)

	Non-Discardable Messages user exit (NDMX)
	OTMA Destination Resolution user exit (DFSYPRX0 and other OTMAYPRX type exits)
	OTMA Input/Output Edit user exit (DFSYIOE0 and other OTMAIOED type exits)
	OTMA User Data Formatting exit routine (DFSYDRU0)
	OTMA Resume TPIPE Security user exit (OTMARTUX)
	Physical Terminal (Input) edit routine (DFSPIXT0)
	Sample Physical Terminal (Input) edit routine (DFSPIXT0)

	Physical Terminal (Output) edit routine (DFSCTTO0)
	Sample Physical Terminal (Output) edit routine (DFSCTTO0)

	Queue Space Notification exit routine (DFSQSPC0/DFSQSSP0)
	Security Reverification exit routine (DFSCTSE0)
	Shared Printer exit routine (DFSSIML0)
	Signoff exit routine (DFSSGFX0)
	Signon exit routine (DFSSGNX0)
	User descriptor selection
	Providing queue (LTERM) data
	Cases

	Signon/off Security exit routine (DFSCSGN0)
	Time-Controlled Operations (TCO) Communication Name Table (CNT) exit routine (DFSTCNT0)
	Time-Controlled Operations (TCO) exit routine (DFSTXIT0)
	TM and MSC Message Routing and Control User exit routine (DFSMSCE0)
	Transaction Authorization exit routine (DFSCTRN0)
	Transaction Code (Input) edit routine (DFSCSMB0)
	Sample transaction code (input) edit routine (DFSCSMB0)

	Chapter 4. IMS system exit routines
	Buffer Size Specification facility (DSPBUFFS)
	Example of specifying buffers

	Command Authorization exit routine (DFSCCMD0)
	DBRC Command Authorization exit routine (DSPDCAX0)
	DBRC SCI registration exit routine (DSPSCIX0)
	Sample DBRC SCI registration exit routine

	Dependent Region Preinitialization routines
	Dump Override Table (DFSFDOT0)
	Sample Dump Override Table (DFSFDOT0)

	ESAF In-Doubt Notification exit routine (DFSFIDN0)
	ESAF subsystem exit routines
	Exit routine interface control blocks
	Control block mapping
	Abort Continue exit routine
	Command exit routine
	Commit Continue exit routine
	Commit Prepare exit routine
	Commit Verify exit routine
	Create Thread exit routine
	Echo exit routine
	Identify exit routine
	Initialization exit routine
	Normal Call exit routine
	Resolve Indoubt exit routine
	Signoff exit routine
	Signon exit routine
	Subsystem Not Operational exit routine
	Subsystem Termination exit routine
	Terminate Identify exit routine
	Terminate Thread exit routine

	ESAF synchronous exit routines
	Log Service exit routine
	Message Service exit routine
	Subsystem Startup Service exit routine
	Subsystem Termination Service exit routine

	IMS Command Language Modification facility (DFSCKWD0)
	Sample IMS Command Language Modification facility

	IMS Initialization and Termination user exit
	Language Environment User exit routine (DFSBXITA)
	Log Archive exit routine
	Sample Log Archive exit routine

	Log edit user exit (LOGEDIT)
	Log Filter exit routine (DFSFTFX0)
	Logger user exit (LOGWRT)
	Partner Product exit routine (PPUE)
	Restart exit routine
	RECON I/O exit routine (DSPCEXT0)
	Minimizing impact to system performance

	Resource Access Security user exit (RASE)
	System Definition Preprocessor exit routine (input phase) (DFSPRE60)
	Sample system definition preprocessor exit routine

	System Definition Preprocessor exit routine (name check complete) (DFSPRE70)
	Type-1 Automated Operator exit routine (DFSAOUE0)
	AO functions and how to implement them
	Ignore selected segments or an entire message
	Send copy of message to alternate destination
	Send new message to alternate destination
	Change system message text
	Change message text and send to alternate destination
	Delete system message to MTO
	Delete system message to MTO and send copy to alternate destination
	Request the edited command buffer

	Setting up the exit registers
	User Exit Header Block (UEHB)

	Type-2 Automated Operator exit routine (DFSAOE00)
	Types of messages passed to this routine

	User Message table (DFSCMTU0)
	Sample user message table and routine

	XRF Hardware Reserve Notification exit routine

	Part 2. Base Primitive Environment-based exit routines
	Chapter 5. BPE user-supplied exit routine interfaces and services
	Calling subsequent exit routines in BPE
	BPE user-supplied exit routine environment
	BPE user exit routine performance considerations
	Abends in BPE user-supplied exit routines
	BPE user-supplied exit routine callable services
	BPEUXCSV get storage service
	BPEUXCSV free storage service
	BPEUXCSV load module service
	BPEUXCSV delete module service
	BPEUXCSV create named storage service
	BPEUXCSV retrieve named storage service
	BPEUXCSV destroy named storage service

	BPE callable service example: Sharing data among exit routines

	Chapter 6. Base Primitive Environment customization exit routines
	BPE Initialization-Termination user-supplied exit routine
	BPE Statistics user-supplied exit routine
	BPE system statistics area

	Chapter 7. BPE-based DBRC user exit routines
	DBRC Request exit routine
	DBRC Security exit routine
	Sample DBRC Security Exit Routine

	RECON I/O exit routine
	Sample RECON I/O exit routine

	DBRC statistics

	Chapter 8. BPE-based CQS user-supplied exit routines
	CQS initialization-termination user-supplied exit routine
	CQS client connection user-supplied exit routine
	CQS Queue overflow user-supplied exit routine
	CQS structure statistics user-supplied exit routine
	CQS structure event user-supplied exit routine
	CQS statistics available through the BPE statistics user-supplied exit

	Chapter 9. Common Service Layer exit routines
	CSL ODBM user exit routines
	CSL ODBM Initialization and Termination user exit
	CSL ODBM Input user exit routine
	CSL ODBM Output user exit routine
	CSL ODBM Client Connect and Disconnect user exit routine
	CSL ODBM statistics available through BPE statistics user exit

	CSL OM user exit routines
	CSL OM client connection user exit
	CSL OM Initialization/termination user exit
	CSL OM input user exit
	CSL OM output user exit
	CSL OM Security user exit
	CSL OM statistics available through BPE statistics user exit

	CSL RM user exit routines
	CSL RM client connection user exit
	CSL RM initialization/termination user exit
	CSL RM statistics available through BPE statistics user exit

	BPE-based CSL SCI user exit routines
	CSL SCI Client Connection user exit
	CSL SCI Initialization/termination user exit
	CSL SCI statistics available through BPE statistics user exit

	Part 3. CQS client exit routines
	Chapter 10. Client CQS Event exit routine
	Chapter 11. CQS Client Structure Event exit routine
	Chapter 12. CQS Client Structure Inform exit routine
	Part 4. CSL SCI IMSplex member exit routines
	Chapter 13. CSL SCI Input exit routine
	Chapter 14. CSL SCI Notify Client exit routine
	Part 5. IMS Connect exit routines
	Chapter 15. IMS Connect user message exit routines
	User message exit routines HWSSMPL0 and HWSSMPL1
	HWSSMPL0 sample JCL
	HWSSMPL1 sample JCL

	IMS TM Resource Adapter user message exit routine (HWSJAVA0)
	HWSJAVA0 sample JCL

	SOAP Gateway exit routine (HWSSOAP1)
	WSDL-to-PL/I segmentation APIs exit routine (DFSPWSHK)
	IBM WebSphere DataPower message exit routine (HWSDPWR1)
	IMS Connect OM Command exit routines (HWSCSLO0 and HWSCSLO1)
	IMS Connect Port Message Edit exit routine
	IMS Connect communications with user message exits
	INIT subroutine
	READ subroutine
	XMIT subroutine
	TERM subroutine
	EXER subroutine

	Macros that support IMS Connect user message exits

	Chapter 16. IMS Connect function-specific exit routines
	IMS Connect User Initialization exit routine (HWSUINIT)
	IMS Connect User Initialization exit routine (HWSUINIT) sample JCL

	IMS Connect DB Routing user exit routine (HWSROUT0)
	IMS Connect DB security user exit routine (HWSAUTH0)
	Using the IMS Connect DB security user exit routine

	IMS Connect sample OTMA User Data Formatting exit routine (HWSYDRU0)
	IMS Connect sample OTMA User Data Formatting (HWSYDRU0) sample JCL

	z/OS TCP/IP IMS Listener security exit (IMSLSECX)
	IMS Connect Event Recorder exit routine (HWSTECL0)
	Modifying the HWSTECL0 user exit
	Event types
	Event keys
	Single process event types
	Multiple process event types

	Event record formats
	Control blocks and DSECTS for event recording
	Event recording parameter list (ERPL)
	Event Interface Control Block (EICB)
	TCP/IP information block (TCPIB)
	Data store information block (DSIB)
	Security Information Block (SAFIB)
	Variable Data Block (VDB)
	DSECTs for event recording

	Terminating HWSTECL0

	IMS Connect Password Change exit routine (HWSPWCH0)

	Part 6. TSO SPOC user exit routines
	Chapter 17. EXITPGM user exit
	Chapter 18. EXITCMD user exit
	Chapter 19. Variables in the ISPF shared pool
	Chapter 20. REXX program example using the EXITCMD exit routine
	Part 7. Appendixes
	Notices
	Programming interface information
	Trademarks
	Terms and conditions for product documentation
	IBM Online Privacy Statement

	Bibliography
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

