IMS
Version 13

Exit Routines
(December 18, 2017 edition)

<||I

IMS
Version 13

Exit Routines
(December 18, 2017 edition)

<||I

Note
FBefore you use this information and the product it supports, read the information in ["Notices” on page 777/

December 18, 2017 edition.

This edition applies to IMS Version 13 (program number 5635-A04), IMS Database Value Unit Edition, V13.1
(program number 5655-DSM), IMS Transaction Manager Value Unit Edition, V13.1 (program number 5655-TM2),
and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1974, 2017.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information . . Vii
Prerequisite knowledge . . vii
IMS function names used in this mformatlon . . il
How new and changed information is identified . . vii
Accessibility features for IMS Version 13 . viil
How to send your comments . . viii
Part 1. IMS control region exit
routines1
Chapter 1. Guidelines for writing IMS
exit routines . . .3
Introduction to IMS exit routines .3
Exit routine naming conventions. .3
Changeable interfaces and control blocks .4
Refreshable exit routine types. . .4
IMS standard user exit parameter list . .5
Using the ISWITCH macro . 8
Routine binding restrictions . . .9
Writing IMS routines that access control blocks 10
Extended Terminal Option (ETO) exit routines. . 10
APPC/IMS exit routines . e . 10
Registers and save areas . 11
Cross-memory considerations .12
Exit routine performance recommendatrons .12
IMS callable services .13
Types of callable services . .13
Exit routines eligible for callable services .13
Using callable services. .15
Callable services. .15
IMS Callable Storage Serv1ces . .20
IMS Callable Control Block Services requests . .23
IMS Callable AOI Services . .o . 28
Callable services return and reason codes . 29
Return codes (CSPLRTRN) . 29
Callable service interface reason codes
(CSPLRESN) . . 30
Function-specific parameter hst reason codes
(CSPLRESN) . . . 30
Callable services request example . . 36
Control block usage . 38
Customization exit routines . .41
IMS.SDFSSMPL data set . .44
Chapter 2. Database Manager exit
routines . 47
Batch application exit routine (DFSISVIO) . 47
IMS Catalog Definition exit routine (DFS3CDX0) . . 48
CCTL exit routines . .o .51
Coordinator controller routme attrlbutes . 51
Suspend exit routine .51
Resume exit routine . 52
Control exit routine. . 52
Status exit routine . . 59

© Copyright IBM Corp. 1974, 2017

Data Capture exit routine. .o
Sample Data Capture exit routine .

Sample Extended Program Commumcatron Block
.79
. 82

(XPCB) .

Sample Extended Segment Data Block (XSDB)
Data conversion user exit routine (DFSDBUX1)
Data Entry Database Partition Selection exit routine
(DBFPSEQ0) .
Sample data entry database randomlzmg routlnes
(DBFHDC40 / DBFHDC20 DBFHDC44 /
DBFHDC24 DBFHDC2S) .

Sample DEDB randomizing routines

(DBFHDC40) . . .

Extended call interface (XCI) optron .

Data Entry Database Resource Name hash routme

(DBFLHSHO) .

Sample hashing routlne result format .
Data Entry Database Sequential Dependent Scan
utility exit routine (DBFUMSEL1)

Sample DEDB Sequential Dependent Scan utlhty

exit routine (DBFUMSEL1)

HALDB Partition Selection exit routine (DFSPSEOO)
Sample partition selection exit routine
(DFSPSEQ0) . o
Partition exit communication area mapping
(DFSPECA) . .

Partition definition area mappmg (DFSPDA)
HDAM and PHDAM randomizing routines
(DFSHDC40)

Sample HDAM and PHDAM generalrzed

randomizing routine (DFSHDC40)

Secondary Index Database Maintenance exit

routine

Sample Secondary Index Database Marntenance

exit routine . e
Segment edit/ compressron ex1t routines

Description of sample segment

compression/expansion modules.

Hardware data compression support
Sequential Buffering Initialization exit routine
(DFSSBUX0) . . .

Sample SB initialization routmes .

Chapter 3. Transaction Manager exit

routines.

2972/2980 Input edit routine (DFSZ9800)

4701 Transaction Input Edit routine (DFS36010) .

Build Security Environment user exit (BSEX) .

Conversational Abnormal Termination exit routine

(DFSCONEQ) .

Destination Creation exit routme (DFSINSXO)
DFSINSX0 when extended terminal optlon is
active . .

DFSINSXO0 when shared queues are actlve

. 61

.73

. 85

. 89

. 92
. 93

. 96
.99

.99

. 101
103

. 107

. 107

108

. 109

. 114

. 115

. 119
. 120

. 131
. 135

. 141
. 144

. 145
. 145
. 147
. 148

. 153
. 158

. 162
. 164

iii

DFSINSX0 when dynamic resource definition is
enabled .

Fast Path Input Edit/ Routlng ex1t routlne

(DBFHAGUO)

Front-End Switch exit routlne (DFSFEB]O)
Terminal input processing .

IBE input processing .

Front-end interface block

Input and output fields .

Routing information .

Message expansion

Timer facility .

FEIBRPQ1 indicator . .
Example of the front-end sw1tch ex1t routlne
(DFSFEBJ0) . .

Global Physical Terminal (Input) ed1t routlne

(DFSGPIXO) . .

Greeting Messages exit routlne (DFSGMSGO)

IMS Adapter for REXX exit routine (DFSREXXU)

Initialization exit routine (DFSINTXO0)

Input Message Field edit routine (DFSME000)
Calling the Input Message Field edit routine .
Defining edit routines
Performance considerations.

Input Message Segment edit routine (DFSME127)
Calling the Input Message Segment edit routine
Defining edit routines Lo
Performance considerations.

Logoff exit routine (DFSLGFX0) .

Logon exit routine (DFSLGNX0) .

Selecting a logon descriptor

LU 6.2 Edit exit routine (DFSLUEEQ)

Message Control/Error exit routine (DFSCMUXO)
Rerouting messages .
Message Control/Error Exit Interface Block
(MSNB)

Valid flags and default actlons

Message Switching (Input) edit routine

(DFSCNTEQ)

Using the sample message sw1tch1ng ed1t
routine (DFSCNTEQ) . .

Non-Discardable Messages user exit (NDMX)

OTMA Destination Resolution user exit

(DFSYPRXO0 and other OTMAYPRX type exits)

OTMA Input/Output Edit user exit (DFSYIOEQ

and other OTMAIOED type exits) .

OTMA User Data Formatting exit routine

(DFSYDRUO)

OTMA Resume TPIPE Securlty user ex1t

(OTMARTUX) .

Physical Terminal (Input) ed1t routlne (DFSPIXTO)
Sample Physical Terminal (Input) edit routine
(DFSPIXTO) .

Physical Terminal (Output) edlt routlne

(DFSCTTOO).

Sample Physical Termlnal (Output) edlt routlne
(DFSCTTOO). o

Queue Space Notification ex1t routlne

(DFSQSPCO0/DFSQSSPO0).

Security Reverification exit routine (DFSCTSEO)

Shared Printer exit routine (DFSSIMLO).

1V Exit Routines

. 165

. 168
. 172
. 175
. 176
. 176
. 179
. 181
. 182
. 183
. 183

. 183

. 187
. 191

193

. 195
. 200
. 202
. 203
. 203

204
207

. 207
. 208
. 208
. 211
. 214

. 215
220

. 223

. 226
. 231

. 232

. 233
. 234

. 243

. 247

. 251

. 258
261

. 265

. 265

. 269

. 269

275

. 278

Signoff exit routine (DFSSGFXO0) .
Signon exit routine (DFSSGNXO0) .

User descriptor selection

Providing queue (LTERM) data
Signon/off Security exit routine (DFSCSGNO)
Time-Controlled Operations (TCO) Communication
Name Table (CNT) exit routine (DFSTCNTO) .
Time-Controlled Operations (TCO) exit routine
(DFSTXITO) .
TM and MSC Message Routmg and Control User
exit routine (DFSMSCEQ)

Transaction Authorization exit routlne (DFSCTRNO)
Transaction Code (Input) edit routine (DFSCSMBO)
Sample transaction code (input) edit routine

(DFSCSMBO0)

Chapter 4. IMS system exit routines
Buffer Size Specification facility (DSPBUFES) .

Example of specifying buffers .

Command Authorization exit routine (DFSCCMDO)
DBRC Command Authorization exit routine
(DSPDCAXO0)

DBRC SCI registration ex1t routlne (DSPSCIXO)

Sample DBRC SCI registration exit routine
Dependent Region Preinitialization routines .
Dump Override Table (DFSFDOTO) .

Sample Dump Override Table (DFSFDOTO)
ESAF In-Doubt Notification exit routine
(DFSFIDNO) .

ESAF subsystem exit routines .

Exit routine interface control blocks

Control block mapping .

Abort Continue exit routine

Command exit routine

Commit Continue exit routine .

Commit Prepare exit routine

Commit Verify exit routine .

Create Thread exit routine .

Echo exit routine .

Identify exit routine .

Initialization exit routine

Normal Call exit routine.

Resolve Indoubt exit routine

Signoff exit routine

Signon exit routine

Subsystem Not Operatlonal ex1t routlne

Subsystem Termination exit routine .

Terminate Identify exit routine

Terminate Thread exit routine .

ESAF synchronous exit routines .

Log Service exit routine .

Message Service exit routine .

Subsystem Startup Service exit routine .

Subsystem Termination Service exit routine
IMS Command Language Modification facility
(DFSCKWDO0)

Sample IMS Command Language Modlflcatlon

facility. . .o
IMS Initialization and Termlnanon user ex1t .
Language Environment User exit routine
(DFSBXITA) .

. 279
. 283
. 288
. 289
. 291

. 294

. 296

. 300
313
317

. 320

321
. 321

. 322
323

. 327
. 330
. 332
. 333
. 335
. 337

. 338
. 340
. 342
. 343
. 344
. 345
. 347
. 348
. 350
. 351
. 353
. 354
. 357
. 359
. 361
. 364
. 365
. 367
. 371
. 373
. 374
. 376
. 377
. 379
. 381
. 383

. 384

. 387
. 387

. 389

Log Archive exit routine.39

Sample Log Archive exit routine 393
Log edit user exit (LOGEDIT)400
Log Filter exit routine (DFSFTEX0) 405
Logger user exit (LOGWRT)409
Partner Product exit routine (PPUE). 416
Restart exit routine . . Y)
RECON I/0 exit routine (DSPCEXTO) ... 421

Minimizing impact to system performance . . 431
Resource Access Security user exit (RASE). . . . 431
System Definition Preprocessor exit routine (input
phase) (DFSPRE6O) 437

Sample system definition preprocessor ex1t

routine 439
System Definition Preprocessor ex1t routme (name
check complete) (DFSPRE70)439
Type-1 Automated Operator exit routine
(DFSAOUE0Q) RV |

AO functions and how to 1mplement them .. 454

Setting up the exit registers. 460

User Exit Header Block (UEHB) 463
Type-2 Automated Operator exit routine
(DFSAOEQ00). 468

Types of messages passed to th1s routme ... 474
User Message table (DFSCMTUO) 478

Sample user message table and routine. . . . 480
XRF Hardware Reserve Notification exit routine 485

Part 2. Base Primitive
Environment-based exit routines . 487

Chapter 5. BPE user-supplied exit
routine interfaces and services. . . . 489

Calling subsequent exit routines in BPE 492
BPE user-supplied exit routine environment . . . 493
BPE user exit routine performance considerations 494
Abends in BPE user-supplied exit routines . . . 494
BPE user-supplied exit routine callable services . . 495
BPEUXCSV get storage service 500
BPEUXCSV free storage service 502
BPEUXCSV load module service 503
BPEUXCSV delete module service 505
BPEUXCSV create named storage service . . . 506
BPEUXCSV retrieve named storage service . . 507
BPEUXCSV destroy named storage service . . 508
BPE callable service example: Sharing data among
exit routines.509

Chapter 6. Base Primitive
Environment customization exit

routines. 515
BPE Initialization- Termmatlon user- supphed exit
routine515
BPE Statistics user—supphed ex1t routme 1V
BPE system statisticsarea519

Chapter 7. BPE-based DBRC user exit
routines. . . . « -+«533
DBRC Request exit routine.533

DBRC Security exit routine.b3
Sample DBRC Security Exit Routmeb538
RECON I/0 exit routinebh38
Sample RECON I/0 exit routlneb48
DBRC statistics.b549

Chapter 8. BPE-based CQS
user-supplied exit routines 553
CQS initialization-termination user-supplied exit

routine 554
CQS client connectlon user—supphed ex1t routme 555
CQS Queue overflow user-supplied exit routine 557
CQS structure statistics user-supplied exit routine 559
CQS structure event user-supplied exit routine . . 570
CQS statistics available through the BPE statistics

user-suppliedexit.577

Chapter 9. Common Service Layer exit

routines. . . . I Y 4°
CSL ODBM user exit routines 579
CSL ODBM Initialization and Termmatlon user
exit.57
CSL ODBM Input user ex1t routme58l
CSL ODBM Output user exit routine . . . 586
CSL ODBM Client Connect and Disconnect user
exit routine 589
CSL ODBM statistics avallable through BPE
statistics userexit59
CSL OM user exit routines593
CSL OM client connection user exit 593
CSL OM Initialization/termination user exit . . 595
CSL OM input user exit.D597
CSL OM output user exit 599
CSL OM Security user exit 604
CSL OM statistics available through BPE
statistics userexit606
CSL RM user exit routines 609
CSL RM client connection user exit 609
CSL RM initialization/termination user exit . . 611
CSL RM statistics available through BPE
statistics user exit613
BPE-based CSL SCI user exit routmes618
CSL SCI Client Connection user exit. 618
CSL SCI Initialization/termination user exit . . 620
CSL SCI statistics available through BPE
statistics user exit L. ... 622

Part 3. CQS client exit routines 627

Contents V

Chapter 10. Client CQS Event exit

routine . . 629
Chapter 11. CQS Client Structure
Event exit routine . 633
Chapter 12. CQS Client Structure
Inform exit routine . . 643
Part 4. CSL SCI IMSplex member
exit routines . . 645
Chapter 13. CSL SCI Input exit routine 647
Chapter 14. CSL SCI Notify Client exit
routine . . 651
Part 5. IMS Connect exit routines 655
Chapter 15. IMS Connect user
message exit routines . . 657
User message exit routines HWSSMPLO and
HWSSMPL1 . Coe e . 657
HWSSMPLO sample]CL . 659
HWSSMPL1 sample JCL. . 660
IMS TM Resource Adapter user message ex1t
routine (HWSJAVAOQ) . . 660
HWSJAVAO sample JCL . . . 661
SOAP Gateway exit routine (HWSSOAPl) . 661
WSDL-to-PL/1 segmentation APIs exit routine
(DFSPWSHK) . . 662
IBM WebSphere DataPower message ex1t routlne
(HWSDPWR1) 664
IMS Connect OM Command ex1t routlnes
(HWSCSLOO and HWSCSLO1) . . 665
IMS Connect Port Message Edit exit routine . . 666
IMS Connect communications with user message
exits . 669
INIT subroutrne . 670
READ subroutine . . 672
XMIT subroutine . . 676
TERM subroutine . . 677
EXER subroutine . . . 679
Macros that support IMS Connect user message
exits . 680
Chapter 16. IMS Connect
function-specific exit routines . . 683
IMS Connect User Initialization exit routine
(HWSUINIT) . 683

Vi Exit Routines

IMS Connect User Initialization exit routine

(HWSUINIT) sample JCL . 684
IMS Connect DB Routing user exit routlne
(HWSROUTO) 685
IMS Connect DB security user ex1t routlne
(HWSAUTHO) . . . 687

Using the IMS Connect DB securlty user ex1t

routine . 689
IMS Connect sarnple OTMA User Data Formattlng
exit routine (HWSYDRUO)69

IMS Connect sample OTMA User Data

Formatting (HWSYDRUO) sample JCL . . 692
z/0S TCP/IP IMS Listener security exit
(IMSLSECX). . 692
IMS Connect Event Recorder ex1t routlne
(HWSTECLO) . 693

Modifying the HWSTECLO user ex1t . 696

Event types . e . 697

Event record formats . . 704

Control blocks and DSECTS for event recordlng 754

Terminating HWSTECLO . . 763
IMS Connect Password Change exit routlne
(HWSPWCHO) . . 763
Part 6. TSO SPOC user exit
routines . . 765
Chapter 17. EXITPGM user exit. . 767
Chapter 18. EXITCMD user exit. . 769
Chapter 19. Variables in the ISPF
shared pool . . 771
Chapter 20. REXX program example
using the EXITCMD exit routine . 773
Part 7. Appendixes . . 775
Notices 777
Programming interface 1nforrnat10n . . 779
Trademarks . . . 779
Terms and conditions for product documentatlon 780
IBM Online Privacy Statement. . 781
Bibliography. . 783
Index . . 785

About this information

These topics provide reference information for the exit routines that you can use to
customize IMS™ database, system, transaction management, IMSplex, Base
Primitive Environment (BPE), Common Queue Server (CQS), and IMS Connect
environments.

This information is available in [[BM® Knowledge Center|

Prerequisite knowledge

Before using this book, you should have knowledge of either IMS Database
Manager (DB) or IMS Transaction Manager (TM), including the access methods
used by IMS. You should also understand basic z/OS® and IMS concepts, your
installation's IMS system, and have general knowledge of the tasks involved in
project planning.

You can learn more about z/OS by visiting the “z/OS basic skills” topics in
[Knowledge Center|

You can gain an understanding of basic IMS concepts by reading An Introduction to
IMS, an IBM Press publication.

IBM offers a wide variety of classroom and self-study courses to help you learn
IMS. For a complete list of courses available, go to the [[BM Skills Gateway| and
search for IMS.

IMS function names used in this information

In this information, the term HALDB Online Reorganization refers to the
integrated HALDB Online Reorganization function that is part of IMS Version 13,
unless otherwise indicated.

How new and changed information is identified

New and changed information in most IMS library PDF publications is denoted by
a character (revision marker) in the left margin. The first edition (-00) of Release
Planning, as well as the Program Directory and Licensed Program Specifications, do not
include revision markers.

Revision markers follow these general conventions:

* Only technical changes are marked; style and grammatical changes are not
marked.

* If part of an element, such as a paragraph, syntax diagram, list item, task step,
or figure is changed, the entire element is marked with revision markers, even
though only part of the element might have changed.

* If a topic is changed by more than 50%, the entire topic is marked with revision
markers (so it might seem to be a new topic, even though it is not).

Revision markers do not necessarily indicate all the changes made to the
information because deleted text and graphics cannot be marked with revision
markers.

© Copyright IBM Corp. 1974, 2017 vii

http://www-01.ibm.com/support/knowledgecenter/SSEPH2/welcome
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
https://www-03.ibm.com/services/learning/content/ites.wss/zz-en?pageType=page&c=a0011023

Accessibility features for IMS Version 13

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products,
including IMS Version 13. These features support:

* Keyboard-only operation.
* Interfaces that are commonly used by screen readers and screen magnifiers.
* Customization of display attributes such as color, contrast, and font size.

Keyboard navigation

You can access IMS Version 13 ISPF panel functions by using a keyboard or
keyboard shortcut keys.

For information about navigating the IMS Version 13 ISPF panels using TSO/E or
ISPF, refer to the z/OS TSO/E Primer, the z/OS TSO/E User’s Guide, and the z/OS
ISPF User’s Guide Volume 1. These guides describe how to navigate each interface,
including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their
functions.

Related accessibility information
Online documentation for IMS Version 13 is available in IBM Knowledge Center.

IBM and accessibility

See the IBM Human Ability and Accessibility Center at[fwww.ibm.com/able| for more
information about the commitment that IBM has to accessibility.

How to send your comments

viii

Exit Routines

Your feedback is important in helping us provide the most accurate and highest
quality information. If you have any comments about this or any other IMS
information, you can take one of the following actions:

* Click the Contact Us tab at the bottom of any [[BM Knowledge Center| topic.

* Send an email to imspubs@us.ibm.com. Be sure to include the book title and the
publication number.

To help us respond quickly and accurately, please include as much information as
you can about the content you are commenting on, where we can find it, and what
your suggestions for improvement might be.

http://www.ibm.com/able
http://www.ibm.com/support/knowledgecenter/SSEPH2/welcome

Part 1. IMS control region exit routines

Use these topics to design and write user-supplied modules for exit routines that
are supported by IMS interfaces and callable services.

© Copyright IBM Corp. 1974, 2017

2 Exit Routines

Chapter 1. Guidelines for writing IMS exit routines

Use the guidelines in this information to write IMS exit routines, enable IMS exit
routines to perform functions with callable services, and reference all callable
service return and reason codes.

Introduction to IMS exit routines

Exit routines that customize IMS must adhere to specific guidelines. Use these
guidelines when writing an IMS exit routine, when using the callable services that
IMS provides for these exit routines, and when analyzing the callable service
return and reason codes.

What you can customize

Using IMS-supplied exit routines, you can customize IMS to:

+ Edit messages

* Check security

* Edit transaction code input, message switching input, and physical terminal
input and output

* Perform additional clean-up

* Initialize dependent regions

* Control the number of buffers the RECON data sets use

* Keep track of segments that have been updated

You can write or include additional routines to customize your IMS system.

Many sample exit routines with default settings are provided in the
IMS.SDFSSMPL and IMS.ADFSSMPL libraries.

Related Reading: For information on how to prevent your exit routines from
impacting z/OS system integrity, see z/OS MVS Programming: Authorized Assembler
Services Guide.

You can replace a default exit routine that does not meet your needs by writing
one of your own. If you use IMS macros in your exit routine, you must reassemble
the routine with the current release level macro library.

Exit routine naming conventions

Each routine name should adhere to naming conventions, including both standard
z/0OS conventions, and conventions that are specific to the routine.

Using standard z/OS conventions, each routine can have any name up to 8
characters in length. Be sure that this name is unique and that it does not conflict
with the existing members of the data set into which you place the routine.
Because most IMS-supplied routines begin with the prefix “DFS”, “DBEF”, “DSP”,
“DXR”, “BPE”,” CQS”, or “CSL”, do not choose a name that begins with these
letters, unless the specific routine requires it. Also, specify one entry point for the
routine.

© Copyright IBM Corp. 1974, 2017 3

4

Naming requirements or exceptions that are specific to an exit routine are noted in
the “Naming the Routine” topic of each exit routine section.

Changeable interfaces and control blocks

The interfaces that IMS supplies for use by the exit routines, including the
ISWITCH macro, might change in future releases of IMS. IMS control blocks might
also change. Therefore, if you write an exit routine that uses these services or
control blocks, you might need to change or reassemble the routine accordingly
when you migrate to a new release of IMS.

This topic contains Diagnosis, Modification, and Tuning information.

These control blocks include:

DMB Data management block

PST Partition specification table
SCD Systems content directory
VTCB VTAM® terminal control block

Refreshable exit routine types

Exit Routines

For certain types of exit routines, you can designate them as a refreshable exit
routine type, which also allows you to call multiple exit routines of that type at the
same exit point. These exit routines can be used with the REFRESH USEREXIT
command to obtain a new copy of an exit routine without bringing down and
restarting IMS.

You can define exit routines for the exit routine types in the EXITDEF parameter in
the USER_EXITS section of the DFSDFxxx member. The QRY USEREXIT command
is used to query information about the routines for the user exit types, and the
REFRESH USEREXIT command is used to dynamically refresh the exit routine
types. There are no name restrictions for an exit routine that is associated with a
refreshable exit routine type.

If an exit routine type is not designated as refreshable, you can call only one exit
routine of that type and typically the name of the exit routine is designated by
IMS.

If an exit routine type is defined as refreshable, multiple exit routines of the same
type can be called in sequence. However, any one of the exit routines in the
sequence can bypass the remaining subsequent exit routines and return control to
the IMS system by setting the SXPLCNXT exit parameter to SXPL_CALLNXTN.

IMS supports the following exit routine types:

* Build Security Environment User Exit (BSEX)

* IMS CQS Event user exit (ICQSEVNT)

* IMS CQS Structure Event user exit (ICQSSTEV)

* Initialization/Termination user exit (INITTERM)

* Log Edit User Exit (LOGEDIT)

* Logger User Exit (LOGWRT)

* Non-Discardable Messages User Exit (NDMX)

* OTMA Input/Output Edit user exit (OTMAIOED)

* OTMA Destination Resolution user exit (OTMAYPRX)

OTMA Resume TPIPE Security user exit (OTMARTUX)
* Partner Product user exit (PPUE)

* Resource Access Security user exit (RASE)

» Restart user exit (RESTART)

Related reference:

[[USER_EXITS section of the DFSDFxxx member (System Definition)|

[# [REFRESH USEREXIT command (Commands)|
[‘IMS standard user exit parameter list”|

IMS standard user exit parameter list

Many of the IMS user exit routines are called with a standard interface, which
allows the exit routines to access IMS control blocks with callable services.

This interface creates a clearly differentiated programming interface (CDPI)
between IMS and the exit routine. Part of the interface consists of a standard user
exit parameter list. The list contains information such as a pointer to a version
number and a pointer to a function-specific parameter list. All standard user exit
parameter lists that have the same version number will contain the same
parameters. If a new parameter is added, it is added to the end of the parameter
list and the version number is increased by one.

There are currently two active versions of the IMS standard user exit parameter
list: version 1 and the current version. The Version 6 standard exit parameter list is
the current version. In general, IMS exit routines that do not use the Version 1
standard exit parameter list use the Version 6 standard exit parameter list. Refer to
the information for each individual exit routine.

Version 1 standard exit parameter list

The version 1 parameter list contains only pointers to the version number and the
function-specific parameter list. The following table shows the content of the
Version 1 standard exit parameter list. When the user exit routine is called, IMS
passes it the address of this list in register 1.

Table 1. Version 1 standard exit parameter list (mapped by DFSSXPL)

Field Offset Length Description

SXPL X'00' N/A DSECT label for the IMS standard user exit
parameter list

SXPLVER X'00' X'04' Address of fullword containing version number
of standard exit parameter list

SXPLATOK X'04' X'04' Reserved

SXPLAWRK X'08' X'04' Reserved

SXPLFSPL X'ocC' X'04' Address of function-specific parameter list

SXPLINTX X'10' X'o4 Reserved

SXPLASCD X'14' X'04' Reserved

The following user exit routines use the Version 1 parameter list:
* [“Command Authorization exit routine (DFSCCMDO0)” on page 323|
* [“Fast Path Input Edit/Routing exit routine (DBFHAGUO0)” on page 168

Chapter 1. Guidelines for writing IMS exit routines 5

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsdfxxx_proclib_user_exits.htm#ims_dfsdfxxx_proclib_user_exits
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_refreshuserexit_ims.htm#ims_cr2refreshuserexit

6

Exit Routines

+ |“Greeting Messages exit routine (DFSGMSGO0)” on page 191|

+ [“Initialization exit routine (DFSINTX0)” on page 195|

+ [“Logoff exit routine (DFSLGFX0)” on page 208|

* [“Logon exit routine (DFSLGNX0)” on page 211

* [“Destination Creation exit routine (DFSINSX0)” on page 158|

* [“Signoff exit routine (DFSSGEX0)” on page 279

* |“Signon exit routine (DFSSGNX0)” on page 283]

Version 6 standard exit parameter list

This version is the current version of the parameter list. The Version 6 standard
exit parameter list contains additional fields beyond those in version 1 of the
parameter list. The following table shows the layout of the parameter list. When a
user exit routine is called, IMS passes the address of this parameter list to the exit
routine module in register 1.

Table 2. Version 6 standard exit parameter list (mapped by DFSSXPL)

Field Offset

Length

Description

SXPL X'00'

N/A

DSECT label for the IMS standard user exit
parameter list

SXPLVER X'00'

X'04'

Address of fullword containing version number
of standard exit parameter list

SXPLATOK X'04'

X'04'

0 or the address of a fullword containing the
callable services token for this instance of the
routine

SXPLAWRK X'08'

X'04'

Pointer to a 512-byte work area. This area is
intended as working storage for a user exit
routine. The storage is not initialized, and may
contain residual data. The contents of the storage
are not guaranteed to be preserved between user
exit calls. If a work area that is preserved
between calls is required, use the storage
pointed to by SXPLASWA.

SXPLFSPL X'0C'

X'04'

Address of the function-specific parameter list

SXPLINTX X'10'

X'04'

Address of the user data table loaded by
DFSINTXO at IMS initialization time. This field is
valid only in IMS environments where
DFSINTXO is called. It will be X'80000000' in any
other environment.

SXPLASCD X'14'

X'04'

Address of the IMS SCD

Table 2. Version 6 standard exit parameter list (mapped by DFSSXPL) (continued)

Field Offset

Length

Description

SXPLASWA X'18'

X'04'

Address of a 256-byte static work area. Each exit
routine is assigned its own static work area and
is available for the exit routine to store data that
is preserved from call to call. The static work
area is cleared before the first time the exit
routine is called.

Each exit routine is assigned a separate static
work area that is preserved between calls to that
exit routine. This work area is available for all
user exits that use this version of the standard
exit parameter list, regardless of whether the exit
is defined with the EXITDEF parameter in the
USER_EXITS section of the DFSDFxxx member
of the IMS.PROCLIB data set.

If your exit routine can be called concurrently
under different ITASKs, you must consider the
results of sharing a single static work area in the
design of your exit routine.

If an exit routine is replaced with the REFRESH
USEREXIT command, the same static work area
is passed to the new version of the exit routine.
If an exit routine is deleted with the command,
the static work area is also deleted. If a new exit
routine is added with the command, a new static
work area is allocated.

Due to the design of the quiesce function of the
REFRESH USEREXIT command, the same static
work area might be accessed by both the old
and new versions of an exit routine at the same
time. This must be handled by your exit routine
in the same way as multiple concurrent
executions under different ITASKs.

SXPLIMSR X'1C'

X'04'

Address of the version of IMS that is calling the
exit. The 4-byte version data is stored in the
following format:

0000vvmm

vv IMS version (SSCDIMSR)

mm IMS mod (SSCDIMSM)

SXPLIMID X20'

X'04'

Address of the IMS ID

SXPLRSEN X24'

X'04'

Address of the 8 character Recoverability Service
Name (RSENAME). This name is set using the
RSENAME startup parameter in the DFSHSBxx
member. If the control region is not XRF capable
or DBCTL warm standby capable, this field is
blank.

Chapter 1. Guidelines for writing IMS exit routines 7

8

Table 2. Version 6 standard exit parameter list (mapped by DFSSXPL) (continued)
Field Offset Length Description

SXPLCNXT X'28 X'04 Address of a flag byte in storage. The flag
indicates if the next exit routine in the definition
list will be called after this exit routine releases
control.

When an exit type is defined as refreshable,
multiple exit routines of the same type can be
called in sequence. By setting this flag to
SXPL_CALLNXTN, an exit routine in the
sequence can return control to the IMS system
without calling any subsequently defined exit
routine.
SXPL_CALLNXTN

The next exit routine will not be called.
SXPL_CALLNXTY

The next exit routine will be called.

SXPLFLGA X2C’ X'04’ Address of a full word in storage that contains

flags for the user exit.

SXPL_F1ENHSRV
The exit is called with the enhanced
callable services, including the ability to
call multiple exit routines of the same
user exit type.

SXPL_F1SWARFR
If this flag is set, the exit routine was
refreshed and both copies of the exit
use the same work area. Since the old
copy is not deleted until all users are
done with it, the static work area can be
accessed by both copies. Your exit
should take this into consideration if
the two copies use different layouts for
the area. When the old exit is deleted,
this flag will no longer be set.

If an exit routine is written to use a parameter that was added in a later version,
and the exit routine can execute in an environment in which earlier versions of the
parameter list could be received, the exit routine should check the version of the
parameter list it receives to ensure that the data is available to the exit routine.
Related reference:

[“Initialization exit routine (DESINTX0)” on page 195|

Using the ISWITCH macro

Exit Routines

The ISWITCH macro changes execution from the dependent region TCB to the
control or DL/I address space. ISWITCH also exits cross-memory mode. If you
executing an ISWITCH macro call, follow the guidelines in this information.

ISWITCH must have addressability to the SCD and, for the following figure, to the
PST. The address of the SCD is obtained from the PSTSCDAD field in the PST.

For Fast Path exit routines, specify TO=CTL.

The following figure is an ISWITCH example:

ISWITCH example
ISWITCH TO=DLI,ECB=PSTDECB

SLR R1,R1 Get a zero

ST R1,PSTDECB Clean ECB after target memory post
LTR R15,R15 Successful?

BNZ ERR1 No

When a Fast Path exit routine issues an ISWITCH to the control region, it must
issue a second ISWITCH call specifying TO=DEP to return to the dependent region
before returning to the caller of the exit routine. This is done only in an exit
routine that is entered from a Fast Path module.

The following is an example of the second ISWITCH call needed for Fast Path:
ISWITCH TO=DEP,ECB=PSTDECB

SLR R1,R1 Get a zero

ST R1,PSTDECB Clean ECB after target memory post
LTR R15,R15 Successful?

BNZ ERR1 No

Exit routines should not use ISWITCH TO=RET, because unpredictable results
might occur. ISWITCH TO=RET could be used in previous IMS releases.) Ensure
that all instances of ISWITCH TO=RET are changed to ISWITCH TO=DEP.

Routine binding restrictions

If you bind DL/I exit routines, you must keep in mind the recommendations and
restrictions in this information.

Most modules receive control and must return control in AMODE=31, and must be
able to execute in cross-memory and TASK modes.

Recommendations:
« RMODE=ANY is recommended.

* All TM exit routines can be entered simultaneously by multiple dispatchable
tasks. Therefore, it is highly recommended that all TM exit routines are coded as
reentrant (RENT).

All routines receive control and must return control in 31-bit addressing mode
(AMODE 31) and must be able to execute in RMODE ANY and AMODE 31.

If you bind an exit routine as reentrant (RENT), it must be truly reentrant (for
example, it cannot depend on any information from a previous iteration and it
cannot store into itself).

If you bind an exit routine as reusable (REUSE), it must be truly reusable (it cannot
depend on any information in itself from a previous iteration), but it can depend
on information that it saves in the specific block passed to it. If you bind a routine
that is serially reusable, it must be used for a single database only.

If you bind an exit routine as neither RENT nor REUSE, it can store into itself and
depend on the information saved in the block that is passed to it.

If you bind an exit routine as reentrant, it is loaded in key 0 storage to

automatically protect the exit routine from being accidentally or intentionally
modified.

Chapter 1. Guidelines for writing IMS exit routines 9

10

Specific requirements and exceptions are noted in each topic. Refer to the topic on
“Binding the Routine” included in each exit routine section.

Writing IMS routines that access control blocks

Control blocks for databases, programs, transactions, and routing codes are not in
contiguous storage. This is true whether dynamic resource definition is enabled or
not. If you have exit routines that depend on these resources being in contiguous
storage, you will have to change them.

These requirements apply specifically to:
* DMB directory entries (DDIR)

* PSB directory entries (PDIR)

* Routing code table entries (RCTE)

* Scheduler message blocks (SMB)

If your routine accesses IMS control blocks, you can find DSECTs for these blocks
in the following macros:

Macro DSECT
ISCD System content directory (SCD)

DFSDDIR
DMB Directory entry (DDIR)

DFSPDIR
PSB Directory entry (PDIR)

DFSDMB
Data management block (DMB)

DFSPSB
Program specification block (PSB)

DBFESCD
Extended system content directory (ESCD)

DBFRCTE
Routing code table entry (RCTE)

IAPS Scheduler message block (SMB)

Extended Terminal Option (ETO) exit routines

Unless otherwise stated, all non-LU 6.2 exit routines are available to terminals that
are defined both statically at system definition and dynamically by using the
Extended Terminal Option (ETO) feature.

Some exit routines are loaded at initialization if ETO=Y. (If this is the case, it is
noted in each in the topic on Binding or including the routine.) Although these exit
routines are loaded only if the ETO feature is used, they are available for use by
static and dynamic ACF/VTAM terminals.

Related Reading: For more information about ETO, see IMS Version 13
Communications and Connections.

APPC/IMS exit routines

Exit Routines

Some exit routines support LU 6.2 devices and are affected by APPC/IMS.

The LU 6.2 Edit exit routine (DFSLUEEDO) is available only to LU 6.2 devices. The
following exit routines also support LU 6.2 devices:

* Message Control Error exit routine (DFSCMUXO0)

* Conversational Abnormal Termination exit routine (DFSCONEOQ)

* Transaction Authorization exit routine (DFSCTRNO)

* Fast Path Routine for Input Edit/Routing exit routine (DBFHAGUO)

* Command Authorization exit routine (DFSCCMDO)

* TM and MSC Message Routing and Control User exit routine (DFSMSCEQ)

No other exit routines support LU 6.2 devices or are affected by APPC/IMS.

Registers and save areas

IMS exit routines need to save registers in the save area pointed to by Register 13.
This save area is provided at entry. In general, the save area passed to the exit is in
31-bit storage. You should save and restore registers in 31-bit mode.

There are two types of save areas that exit routines use to save registers:

* A prechained save area passed to the exit routine by IMS or the calling
application

* A single save area used by exit routines that use the Version 5 standard user exit
parameter list

Using the prechained save area

IMS or the application that calls the exit routine passes a prechained save area to
the exit. The routine must step forward to the next save area in the save area set
before processing any data.

The save area address given to the exit routine has a prechained forward save area
pointer at offset 8 and a prechained backward pointer at offset 4. The exit routine
can use the forward save area pointed to by offset 8 but must not alter the first
three words of the save area.

Before returning control to IMS, the routine must step back to the original save
area and restore IMS registers.

Using the single save area

When an exit routine uses the version 5 standard user exit parameter list, it does
not receive a prechained save area. Instead, the routine points to a single save area
in register 13. The exit routine must use this save area to save registers from IMS
or the calling application.

If the exit routine calls other applications or routines, including IMS callable
services, the routine must provide an additional save area. The 512-byte dynamic
work area passed to exit routines that use the Version 6 standard exit parameter
list can be used as one or more save areas.

Before returning control to IMS, the exit routine must restore the registers to IMS
or the calling application.

Related reference:

['IMS standard user exit parameter list” on page 5|

Chapter 1. Guidelines for writing IMS exit routines 11

Cross-memory considerations

Restrictions exist which should be considered when writing an IMS exit routine
that will perform while in cross-memory mode.

Do not issue any SVC (except ABEND) or 1/O request.

If the routine runs in the DL/I address space and you need to perform a function
that cannot be done in cross-memory mode, issue an ISWITCH TO=DLI to exit
cross-memory. Because of the overhead in performing a task switch from the
dependent address space to the IMS control program, use ISWITCH infrequently.
ISWITCH TO=DLI is not valid for TM exit routines.

If you are not using the DL/I address space option, execution after the ISWITCH
continues in the control address space. With LSO=S, execution continues in the
DL/I address space. TO=DLI on ISWITCH performs the correct switching in all
environments.

With LSO=S, DL/I exits cannot address data in the control address space.

Most terminal-related control blocks are not addressable from the DL /I address
space.

Sometimes your exit might need to test to determine whether it is running in
cross-memory mode before making a particular function call. In IMS, when an exit
is called in cross-memory mode, the primary address space will always be different
from the secondary address space. You can use the instructions EPAR and ESAR to
obtain the primary and secondary address space ASIDs and compare them. If they
are equal, the exit is not in cross-memory mode. If they are unequal, the exit is in
cross-memory mode.

The following sample shows an example of checking for running in cross-memory
mode. The code issues a branch-enter WTO macro call when it is in cross-memory
mode; it issues a normal SVC WTO when not in cross-memory mode.

EPAR RO Get primariy ASID

ESAR R1 Get secondary ASID

CLR RO,R1 Primary = Secondary?

BNE BEWTO No, in XM mode, use BE WTO
WTO 'message' Yes, use SVC WTO

B ENDWTO

BEWTO DS OH
WTO 'message',LINKAGE=BRANCH
ENDWTO DS OH

Exit routine performance recommendations

Efficiency of exit routines is a prime concern for IMS performance. The amount
and type of processing that is done by exit routines can directly contribute to the
total path length and time required to complete a unit of work.

Most routines are called from the IMS control region and get control in key 7
supervisor state. Some routines might be called from mainline processing code
running under the IMS Control Region task. Other units of work that must wait to
run under a task currently in use by an exit routine can also be affected. An abend
in an exit routine that gets control in the IMS control region can cause the IMS
control region to abend.

Recommendations:

12 Exit Routines

* Code user-written routines in ways that minimize path length and processing
time as much as possible.

* Use services such as OS WAITs, SVCs, and I/0O sparingly. When an IMS callable
service exists, use it rather than the z/OS equivalent. The IMS callable service is
optimized to perform more efficiently in an IMS subdispatching environment.

* Write IMS exit routines in assembly language rather than high-level languages.
IMS does not support exit routines running under Language Environment® for
z/0S.

IMS callable services

IMS provides IMS callable services for exit routines to provide the user of the exit
routine with clearly defined interfaces.

Types of callable services

IMS callable services may consist of services for storage, control blocks, and the
automated operator interface (AOI).

Storage services support the following functions:
* Get storage

* Free storage

¢ Load module

* Delete module

Control block services support the following functions:
* Find control block
* Scan control block

AOI services support the following functions:
* Insert message
* Enqueue message

* Cancel message

Exit routines eligible for callable services

An exit routine may use one or more of the three types of callable services: storage,
control block, and AOL DFSAOEQO is the only exit routine that is eligible to use
AOI callable services.

The following table shows the exit routines that are eligible for callable services
and the types of callable service that they can use. See the topic for each exit
routine for more information on how it uses callable services.

Table 3. Exit routines and associated callable services.

. Callable services
Exit name or user

exit type Storage Control block AOI
BSEX X

DBFHAGUO X X

DFSAQOEQ0 X X
DFSAOUEOQ X X

Chapter 1. Guidelines for writing IMS exit routines 13

Table 3. Exit routines and associated callable services (continued).

. Callable services
Exit name or user

exit type Storage Control block AOI

DFSCCMDO X X

DFSCMLR1

DFSCMPX0

DFSCNTEO

DFSCONEOQ

DFSCSGNO

DFSCSMBO0

DFSCTRNO

DFSCTSEO

DFSCTTOO0

XIX|XIX|IX[X]| X[XXX

DFSFEB]J0

DFSGMSGO0

DFSGPIX0

DEFSINSX0

DFSINTXO0

DESI7770

DFSLGFX0

DFSLGNX0

DFSMEQ000

DFSME127

DFSMSCEO

DFSO7770

DEFSPIXTO

DFSQSPCO

DFSSGFX0

DFSSGNX0

DFSSIMLO

DESS7770

DFSYPRXO0

DFSYIOEOQ

DFSYDRUO

DFSYRTUX

DFS29800

XAIXIXPXRP X XY XY XXX X| XX XX XX X[X)X XX

DFS36010

LOGWRT

NDMX

N PRI R XRY XX XRYXY XXX XX XXX XXX XX XXX XX XXX X[X[X[X

PPUE

14 Exit Routines

Using callable services

You will need to initialize callable services for your IMS exit routine each time that
your exit routine gets control.

To use a callable service, do the following:
1. Link your exit routine to the callable service interface module (DFSCSI00).

2. Initialize callable services for your exit routine (CALL DFSCSIIO) each time
your exit routine gets control.

3. Initialize the callable services parameter list.
4. Initialize the function-specific parameter list.
5. Invoke the callable service (CALL DFSCSIFO).

Repeat steps 3 through 5 as many times as necessary while your exit routine has
control.

Not all exit routines perform all five of the preceding steps. See the section called
“Using IMS callable services ” in the description of the specific exit routine you are
coding to see which steps apply.

Callable services

To use IMS callable services, an exit routine must invoke one of two IMS callable
services entry points in AMODE 31. The exit routine will receive a control block
and a callable services parameter list.

The callable services interface module DFSCSI00 contains two entry points that
your exit routine can invoke: DFSCSII0 and DFSCSIFO.

Entry point DFSCSIIO initializes callable services. To begin initialization, issue
CALL DFSCSIIO with the appropriate registers initialized. DFSCSIIO returns a
callable services token and a parameter list address. The callable services token
must be passed to IMS when you invoke one of the callable services. The
parameter list address directs reentrant programs to a storage area in which to
build parameter lists needed to invoke callable services.

Entry point DESCSIFO invokes one of the callable services. To invoke a callable
service, issue CALL DFSCSIFQO with the appropriate information specified. You
must tell IMS which service to invoke. You do this by initializing two parameter
lists. The first list, the callable services parameter list, contains information needed
by callable services to route the request to the appropriate service. The second list,
the function-specific parameter list, defines which service is to be used and
provides information required by that service.

When your exit routine receives control back from callable services, register 15
contains a return code indicating whether the call was successful. The callable
services parameter list contains a return code and a reason code if the call did not
complete successfully. The function-specific parameter list can contain data from a
specific callable service.

Exit routine assembler macros
You can use assembler macros to generate parameter list DSECTs for your exit
routine.

To generate parameter list DSECTs, you can use the following assembler macros in
your exit routine.

Chapter 1. Guidelines for writing IMS exit routines 15

Macro Description

DFSCSIPL
Generates the DFSCSPL, DFSCSTRG, DFSCCBLK, and DFSAOI parameter
list DSECTs for an exit routine.

DFSCSPL
Generates the callable services parameter list DSECT (CSPARMS).

DFSCSTRG
Generates the storage services function-specific parameter list DSECT
(CSSTRG).

DFSCCBLK
Generates the control block services function-specific parameter list DSECT
(CSBLK).

DFSAOI
Generates the AOI services function-specific parameter list DSECT
(DFSAOI).

Links with your exit routine and DFSCSI00

To use callable services, your exit routine must be linked with the callable service
interface module, DFSCSI00. For some exit routines, this module is linked
automatically by IMS. For others, you need to manually link this module to your
exit routine.

Automatic linking

The following exit routines are automatically linked to DFSCSI00 by IMS.

Exit routines linked to DFSCSI00 Exit routines linked to DFSCSI00
DBFHAGUO DFSI17770
DFSCNTEOQ DFSME000
DFSCONEOQ DFSME127
DFSCSGNO DFSQSPCO0
DFSCTRNO DFSSIMLO
DFSFEBJ0 DFSS7770
DFS29800

Manual linking

To use callable services, you must manually link these exit routines to DFSCSI00.

Exit routines or user exit types to be Exit routines or user exit types to be
manually linked to DFSCSI00 manually linked to DFSCSI00
DFSAOEQ0 DFSINTXO0

DFSAOUEQ DFSLGFEX0

BSEX DFSLGNXO0

DFSCCMDO DFSMSCEOQ

DFSCSMBO NDMX

DFSCTSEO PPUE

16 Exit Routines

Exit routines or user exit types to be Exit routines or user exit types to be

manually linked to DFSCSI00 manually linked to DFSCSI00
DFSGMSGO DFSSGFX0

DFSGPIX0 DFSSGNXO0

DFSINSX0 LOGWRT

Typically, you must manually link DFSCSIQ0 if your exit routine is a stand-alone
module (not linked as part of another IMS load module). When you perform this
binding, include an ENTRY bind control statement that specifies the entry point of
your exit routine. The statement ensures that your exit routine, and not DFSCSI00,
receives control when IMS calls it.

Initialization of IMS callable services (DFSCSIIO)

Some exit routines must initialize IMS callable services before using them. To
initialize IMS callable services, you can issue a call to entry point DFSCSIIO.
DFSCSIIO returns a callable services token and a parameter list address.

Exit routines that do not receive the IMS standard user exit parameter list
(DFSSXLP) in register 1 on entry, or that do receive DFSSXPL but with a zero value
for field SXPLATOK, must initialize IMS callable services.

Exit routines that receive DFSSXLP in register 1 with a non-zero value for field
SXPLATOK do not need to initialize callable services. These routines should use
the callable services token referenced in SXPLATOK for all calls to IMS callable
services. A routine that receives a token can use the work area pointed to in
SXPLAWRK to get the callable services parameter list.

The callable services token is used to request a specific callable service through a
subsequent call to entry point DFSCSIFO.

The parameter list that is returned in register 1, contains the callable services
token. You need to extract the token and save it, so it does not get overlaid. Then
the parameter list can be formatted for your callable service request. The parameter
list is large enough to contain the parameter lists that accompany your request.

Communicating with IMS

IMS uses the entry registers, parameter list, and exit registers to communicate with
your exit routine. The contents of register 0 are not preserved on entry and exit.

The following two tables list the content of registers on entry and return to and
from DFSCSIIO.

Content of registers on entry to DFSCSII0

Register Content

1 ECB Address.

On entry, IMS gives the address of an ECB to each exit routine that can issue
callable service requests. The ECB address must be passed on the DFSCSIIO
initialization call. See the section for each exit routine to determine where to
find the ECB address for that exit routine.

13 Address of save area for use by DFSCSIIO.

14 Caller's return address.

Chapter 1. Guidelines for writing IMS exit routines 17

18

Exit Routines

Register Content

15 DFSCSIIO entry point address.

Content of registers on return from DFSCSII0

Register Content

1 Address of parameter list

Offset Description

0 Callable services token, which is four bytes long.
15 Return code
Return code
Meaning
0 Request was successful.
4 Callable services are unavailable.
8 Callable services are unavailable. Initialization failed due to

insufficient storage.

12 Callable services are unavailable. Initialization failed due to errors in
IMS control blocks.

Callable services parameter list

CSPARMS is the callable services parameter list required for all callable service
requests. Callable services use parameters in the list to route control from the
module requesting the service to the service routine that processes the request. The
list is also used to pass return and reason codes from the service to the exit
routine.

Initialize the parameter list with the callable services token and the code of the
callable service you want to use (storage services, control block services, or AOI
services). All other fields should be cleared. If the exit routine issues multiple calls,
you can save the callable services token in a register and restore it to CSPLTOKIN
on subsequent calls.

Initialize the following fields:

Field Offset Length Description

CSPLTOKN 0 4 IMS callable services token

CSPLSERV 4 4 IMS callable service code. The values are as follows:
1 Storage services
2 Control block services
3 AOQI services

Function-specific parameter list initialization

After specifying which service you want to use in the callable services parameter
list, indicate which function of the service you want to use by initializing the
appropriate function-specific parameter list.

Related reference:

[“IMS Callable Storage Services” on page 20|

[“IMS Callable Control Block Services requests” on page 23|
[“IMS Callable AOI Services” on page 28|

IMS callable service (DFSCSIF0) activation

IMS uses the entry registers, parameter lists, and exit registers to communicate
with your exit routine.

Communicating with IMS

To activate a callable service, issue CALL DFSCSIFO (callable services parameter
list, function-specific parameter Tist).

The following tables list the content of registers on entry and exit to and from
DFSCSIFO.

Table 4. Content of registers on entry to DFSCSIFO

Register Content

1 Address of two-word parameter list built by CALL macro.
Offset Description
0 Callable services parameter list address

4 Function-specific parameter list address
13 Address of save area for use by DFSCSIFO
15 DFSCSIFOQ entry point address

Register Content

15 Return code

Return code
Meaning

0 Request successful

4 Request unsuccessful

If the request is unsuccessful, refer to the return (CSPLRTRN) and reason code
(CSPLRESN) fields in the callable services parameter list described in the following
table.

Table 5. Content of registers on return from DFSCSIFO

Field Description

CSPLRTRN Return code set with error codes defined in DFESCSPL. For a list of these
codes, refer to[“Return codes (CSPLRTRN)” on page 29|

CSPLRESN Reason code set with error codes defined in DFSCSPL. For a complete

description of the reason codes, see one of the following sections:

Reason code

Reference

4 See [“Callable service interface reason codes (CSPLRESN)” onf
|Eage 30.|

8 See [“Function-specific parameter list reason codes|

[(CSPLRESN)” on page 30

Chapter 1. Guidelines for writing IMS exit routines 19

20

IMS Callable Storage Services

Exit Routines

CSSTRG is the function-specific parameter list used for IMS Callable Storage
Service requests. It is defined by the DFSCSTRG macro.

The function-specific parameter list contains the information that storage services
need to perform the function you requested (get or free storage, load or delete a
module). The function-specific parameter list is also used to return data to the exit
routine.

You must initialize the function-specific parameter list for storage services before
calling DFSCSIFO to activate storage services. All fields that are not used as input
to DFSCSIFO should be cleared.

GET storage function
You can obtain user storage for any IMS exit routine that uses IMS callable services
by initializing the GET storage function in CSSTRG.

The storage can be obtained in private storage or CSA with either doubleword or
page boundary alignment. The storage can be requested above (31-bit) or below
(24-bit) the 16 MB line.

To request the GET storage function, initialize the following fields in the
function-specific parameter list (CSSTRG):

Field Offset Length Description

CSSTFUNC 0 4 IMS storage service function code value:
1 = GET storage

CSGTLEN 4 4 Length of storage to obtain

CSGTSsP 8 4 Storage subpool identifier values:

* 0 = private storage
* X'FFF' = CSA storage

CSGTLOC C 4 Storage location identifier values:
* 0 = 31-bit storage
* 1 = 24-bit storage

CSGTBNDY 10 4 Storage boundary identifier values:
* 0 = doubleword boundary
* 1 = page boundary

The following field (in CSSTRG) is returned from the GET storage function:

Field Offset Length Description

CSGTADDR 14 4 Storage address

FREE storage function
You can release user storage previously obtained by the GET storage service by
using the FREE storage function.

The requestor specifies the address of the storage service. The storage subpool
(private or CSA) specified on the FREE request must be the same value specified
on the GET request.

To request the FREE storage function, initialize the following fields in the
function-specific parameter list (CSSTRG):

Field Offset Length Description

CSSTFUNC 0 4 IMS storage service function code value:
* 2 = FREE storage

CSFRSTAD 4 4 Addpress of storage to release

CSFRLEN 8 4 Length of storage to release

CSFRSP C 4 Storage subpool identifier values:

e 0 = private storage
* X'FFF' = CSA storage

No data is
returned from the
FREE storage
service.

LOAD module function
You can load a module for any IMS exit routine that uses IMS callable services by
initializing the LOAD module function in CSSTRG.

The module can be loaded in private storage or CSA. The module can be loaded
above (31-bit) or below (24-bit) the 16 MB line. The name of the module must be
specified. If the module was loaded previously but you want a new copy of the
module, you can request a load of a new copy.

The LOAD module function can be requested by callers running in cross memory
mode. In this case, the LOAD module function determines if the primary address
space is either CTL or DLI/SAS, and ensures that the call executes in the proper
address space in non-cross memory mode. The LOAD module function restores the
cross memory environment before returning control to the caller.

There might be a noticeable performance impact for cross memory callers issuing
the LOAD module function, because this call requires that the environment be
switched from cross memory mode to non-cross memory mode and then restored.
Use of the LOAD module function should be kept to a minimum for mainline path
exit routines.

To use the LOAD module function, initialize the following fields in the
function-specific parameter list (CSSTRG):

Field Offset Length Description

CSSTFUNC 0 4 IMS storage service function code value:
* 5 =LOAD module

CSLDNAME 4 8 Name of module to load

CSLDSP C 4 Storage subpool identifier values:

* 0 = private storage
* X'FFF' = CSA storage
CSLDLOC 10 4 Module storage location identifier values:
* 0 = 31-bit storage
* 1 = 24-bit storage

Chapter 1. Guidelines for writing IMS exit routines 21

22

Exit Routines

Field Offset Length Description
CSLDUSE 14 4 Module reuse identifier values:

* 0 = use existing copy of module if found

* 1 =load a new copy of module

The following fields are returned from the LOAD module function:

Field Offset Length Description
CSLDMEP 18 4 Module entry point
CSLDMLEN 1C 4 Module length bit 0 is set to one when the module

was previously loaded

DELETE module function

You can use the DELETE module storage service to delete a module previously
obtained by the LOAD storage service.

The requester specifies either the module name or module address. If more than
one copy of the module was loaded, the address should be used instead of the
name to ensure that the correct copy is deleted. The module storage subpool
(private or CSA) specified on the DELETE request must be the same value
specified on the LOAD request.

The DELETE module function can be requested by callers running in cross
memory mode. In this case, the DELETE module function determines if the
primary address space is either CTL or DLI/SAS, and ensures that the call executes
in the proper address space in non-cross memory mode. The DELETE module
function restores the cross memory environment before returning control to the
caller.

There might be a noticeable performance impact for cross memory callers issuing
the DELETE module function, because this call requires that the environment be
switched from cross memory mode to non-cross memory mode and then restored.
Use of the DELETE module function should be kept to a minimum for mainline
path exit routines.

To request the DELETE module function, initialize the following fields in the
function-specific parameter list (CSSTRG):

Field Offset Length Description
CSSTFUNC 0 4 IMS storage service function code value:
6 = DELETE module
CSDLNAME 4 8 Name of module to delete. Either module name or

module address must be specified to delete a
module. The unused field should be cleared. If the
module name is not specified, this field should be
cleared and CSDLEP must be specified.

Field Offset Length Description

CSDLEP C 4 Address of module to delete. If more than one
copy of the module was loaded, delete the
module by specifying the module entry point.
This ensures that the correct copy of the module is
deleted. If both name and address are specified,
the module is deleted using the address. If the
address is not given, the name must be specified
and all copies will be deleted.

CSDLSP 10 4 Storage subpool identifier values:
0 = private storage
X'FFF' = CSA storage

No data is returned from the DELETE module function.

IMS Callable Control Block Services requests

CSCBLK is the function-specific parameter list used for IMS Callable Control Block
Service requests. It is defined by the DFSCCBLK macro.

The function-specific parameter list contains the information control block services
need to perform the function you requested (find or scan a control block). The
function-specific parameter list is also used to return data to the exit routine.

Restriction: Global terminal or user resource information is not available to user
exit DFSLGNXO0. Callable services will only return local information for
DFSLGNXO.

If an IMSplex is sharing terminal or user information in Resource Manager (RM),
callable services automatically and transparently return global resource information
to the exit routine. However, if a routine scans resources that are only local to the
current IMS, it can specify the local option (by setting CSFDFLG1). For resources
that do not have global information such as transactions, the local option results in
the same information as the default.

You must initialize the function-specific parameter list for control block services
before calling DFSCSIFO to activate control block services. All fields that are not
used as input to DFSCSIFQ should be cleared.

FIND control block function
You can find a specific instance of a control block within any IMS exit routine that

uses IMS callable services by initializing the FIND control block function in the
DFSCCBLK macro.

The search type identifies the type of control block to locate. A search type can
include more than one type of control block. A list of the search types is in the
description of the CSFDTYPE field in the following table. The control block name
or identifier is used to find a specific instance of the control block.

Initialize the function-specific parameter list before calling DFSCSIFO to activate

control block services. All fields that are not used as input to DFSCSIF0 should be
cleared.

Chapter 1. Guidelines for writing IMS exit routines 23

24

Exit Routines

Initializing the function-specific parameter list for FIND

In all instances, you need to initialize the following three fields:

Field Offset Length Description
CSCBFUNC 0 1 IMS control block services function code value:
* 1 = FIND control block
CSFDTYPE 4 4 Control block search type values:
1 = FIND CCB

2 = FIND CNT, or LNB

3 = FIND RCNT

4 = FIND CNT, LNB, or RCNT
5 = FIND SPQB

6 = FIND VICB

7 = FIND CNT descriptor

8 = FIND LOGON descriptor
9 = FIND USER descriptor

10 = FIND transaction

CSFDFLG1 16 1 Input Flag Byte

CSFDLOC1 EQU X'80'
Indicates that the FIND request is to
return local information only.

Depending on the type of block you want to find, you must initialize the following
fields:

Block type to find Field to initialize

CCB Specify one of the first two fields, and clear the unused field.
The LTERM name field must always be specified.

CSFDEID = EBCDIC CCB identifier
CSFDBID = Binary CCB identifier
CSFDNAME = associated LTERM name

CNT or LNB Use the LTERM name to locate a specific CNT or LNB.
CSFDNAME = LTERM name

RCNT Use the LTERM name to locate a specific RCNT.
CSFDNAME = LTERM name

CNT, LNB, or RCNT Use the LTERM name to locate a specific CNT, LNB, or RCNT.
CSFDNAME = LTERM name

SPQB Use the USER name to locate a specific SPQB.
CSFDNAME = USER name

VTCB Either the node name alone or the node and user name are used
to locate a specific VTCB. If the user name is not used on the
request, clear the unused field.

CSFDNODE = Node name

CSFDUSER = User name
CNT, LOGON, or USER Specify the name of the descriptor you want to locate.
Descriptor CSFDNAME = CNT, LOGON, or USER descriptor name
Transaction Specify the transaction code you want to find.

CSFDNAME = Transaction name

Output returned from FIND Control Block Services

Depending on the type of search specified, one of the following is returned in the
CSFDBLKA field in the function-specific parameter list:

Search type Output from service
FIND CCB CCB address

FIND CNT or LNB CNT or LNB address
FIND RCNT RCNT address

FIND CNT, LNB, or RCNT CNT, LNB, or RCNT address
FIND SPQB SPQB address

FIND VTCB CLB address

FIND CNT descriptor USRD address

FIND LOGON descriptor CLB address

FIND USER descriptor USRD address

FIND Transaction SMB address

FIND transaction also returns the PDIR address in
field CSFCBLK?2.

SCAN control block function

You can use the SCAN control block function to scan control blocks of a certain

type.

The first time the SCAN function is activated, the current control block address
should be 0. SCAN returns the first control block that meets the search criteria. The
SCAN function an be subsequently activated to locate additional control blocks.
Subsequent searches start where the previous scan left off.

On subsequent SCAN requests, the current block address is passed back to the
service. The search starts with the current control block to locate the next control

block meeting the criteria. The blocks are not retrieved in alphabetic sequence.

Subsections:

* [“Qualifying the scan”

* |“Initializing the function-specific parameter list for SCAN” on page 26|

* [“Output returned from SCAN Control Block Services” on page 27|

Qualifying the scan

To further qualify the scan, a generic name or a name containing wild cards can be

specified for CNT, LNB, RCNT, SPQB, and VTCB control block types.

* A generic name consists of one or more characters of the name followed by an
asterisk. Generic names must be padded with blanks.
For example, assume valid names are DFSAAAAA, DFSZ72777, and
DFSABBBB. Multiple scan requests using the generic name 'DFSA*' can be used
to obtain the control block addresses for DFSAAAAA and DFSABBBB. In this
case, DFSZZ777 would not be returned to the requester.

Chapter 1. Guidelines for writing IMS exit routines 25

26

Exit Routines

* A wild card character is represented by the '%' character. One or more wild
cards can replace characters within the name when that position in the name can
be any character.

For example, assume valid names are DFSAABBB, DFSZZBBB, and DFSABCDE.
Multiple scan requests using the name DFS%%BBB containing wild card

characters in positions 4 and 5 would return control block addresses for
DFSAABBB and DFSZZBBB. DFSABCDE would not be returned to the requester.

You must initialize the function-specific parameter list before calling DFSCSIFO to
activate control block services. All fields that are not used as input to DFSCSIFQ
should be cleared.

Initializing the function-specific parameter list for SCAN

To request a SCAN and search type, you always need to initialize the first two
fields as follows:

Field Offset Length Description
CSCBFUNC 0 4 IMS control block service function code value:
* 2 = SCAN control block
CSSCTYPE 4 4 Control block search type indicator values:
1 = SCAN CCB

2 = SCAN CNT or LNB

3 = SCAN RCNT

4 = SCAN CNT, LNB, or RCNT
5 = SCAN SPQB

6 = SCAN VTCB

7 = not used

8 = SCAN LOGON descriptor
9 = SCAN USER descriptor

10 = not used

CSSCFLG1 20 1 CSSCLOC1 EQU X'80'

Indicates that the SCAN request is to
return local information only

Depending on the type of search you want, you might also need to initialize one
or more of the following fields in the function-specific parameter list.

To scan Initialize

CCB Specify whether you want to scan for the first CCB or to start the
scan at the current CCB.

CSSCCBLK = Current CCB address or zero

CNT or LNB Specify whether you want to scan for the first CNT or LNB or to
start the scan at the current CNT or LNB. Use the LTERM name to
narrow the scope of the scan. If the LTERM name is not used, clear

the field.
CSSCCBLK = Current CNT or LNB address or zero
CSSCNAME = LTERM name

To scan

Initialize

RCNT

Specify whether you want to scan for the first RCNT or to start the
scan at the current RCNT. Use the LTERM name to narrow the
output of the scan. If the LTERM name is not used, clear the field.

CSSCCBLK = Current RCNT address or zero
CSSCNAME = LTERM name

CNT, LNB, or RCNT

Specify whether you want to scan for the first CNT, LNB, or RCNT,
or to start the scan at the current CNT, LNB, or RCNT. Use the
LTERM name to narrow the output of the scan. If the LTERM name
is not used, clear the field.

CSSCCBLK = Current CNT, LNB, or RCNT address,

or zero
CSSCNAME = LTERM name

SPQB

Specify whether you want to scan for the first SPQB or to start the
scan at the current SPQB. Specify the USER name to narrow the
output of the scan. If the USER name is not specified, clear the field.

CSSCCBLK = Current SPQB address or zero
CSSCNAME = USER name

VTCB

Specify whether you want to scan for the first VICB or to start the
scan at the current CLB. Specify either the NODE name alone, or
the NODE and USER name to narrow the output of the scan. If the
name fields are not specified, clear the fields.

CSSCCBLK = Current CLB address or zero
CSSCNODE = NODE name
CSSCUSER = USER name

LOGON Descriptor

Specify whether you want to scan for the first LOGON descriptor or
to start the scan at the current LOGON descriptor.

CSSCCBLK = Current LOGON descriptor address
or zero

USER Descriptor

Specify whether you want to scan for the first USER descriptor or to
start the scan at the current USRD.

CSSCCBLK = Current USRD address or zero

Output returned from SCAN Control Block Services

Depending on the type of scan specified, one of the following is returned in the
CSSCNBLK field in the function-specific parameter list:

Search type

Output from service

SCAN CCB Next CCB address

SCAN CNT or LNB Next CNT or LNB address

SCAN RCNT Next RCNT address

SCAN CNT, LNB, or RCNT Next CNT, LNB, or RCNT address
SCAN SPQB Next SPQB address

SCAN VTCB Next CLB address

SCAN LOGON descriptor CLB address of next LGND

SCAN USER descriptor

Next USRD address

Chapter 1. Guidelines for writing IMS exit routines 27

IMS Callable AOI Services

DFSCAOI is the function-specific parameter list used for IMS Callable AOI Service
requests. The DFSCAOI macro defines these requests.

The function-specific parameter list contains the information that AOI services
needs to perform the function you requested (insert, enqueue, or cancel a
message). The function-specific parameter list is also used to return data to your
exit routine.

You must initialize this function-specific parameter list before calling DFSCSIFO to
activate AOI callable services. All fields that are not used as input to DFSCSIFO
should be cleared.

INSERT function

The INSERT function inserts the first, or a subsequent, message segment into a
message buffer. The message segments are not available to the AO application until
an enqueue is issued specifying an AOI token.

To request the INSERT function, initialize the following fields in the
function-specific parameter list:

Field Offset Length Description

CAQOIFUNC 0 4 IMS AOI service function code value:
1 = INSERT message segment

CAOIDMTK 4 4 Directed message token

CAINMSEG 8 4 Address of message segment

ENQUEUE function

The ENQUEUE function inserts the last or only message segment into the message
buffer, enqueues this message segment to the AOI token the requester has
specified, and then makes the entire message available to the AO application.

If ENQUEUE is requested with a message segment address of 0, all previously
inserted message segments are made available to the AO application.

To request the ENQUEUE function, initialize the following fields in the
function-specific parameter list (DFSCAOI):

Field Offset Length Description
CAQOIFUNC 0 4 IMS AOQI service function code value:
2 = ENQUEUE segment to AOI token
CAOIDMTK 4 4 Directed message token
CAENMSEG 8 4 Address of message buffer
CAENTCNT 12 4 Number of AOI token names in the token list

addressed by the next word in this parameter list

28 Exit Routines

Field Offset Length Description

CAENTLST 16 4 Address of a token list. Each 12-byte entry in the
list contains the following;:

Offset Description

+0 The 8-byte alphanumeric AOI token name
to which the message is to be enqueued
+8 The 4-byte code from the ENQUEUE

function indicating whether the message
was successfully enqueued to the AOI
token. Possible codes are:

Code Meaning

0 Enqueue to AOI token was
successful.

1 Enqueue was unsuccessful. AOI
token name was blanks.

2 Enqueue was unsuccessful. AOI
token name contained invalid
characters.

3 Enqueue was unsuccessful.
Enqueue could not get AOIP
storage.

4 Enqueue was unsuccessful. An

internal latch error occurred.

CANCEL function

The CANCEL function cancels messages that have been inserted into the message
buffer but not yet enqueued to the AOI token. Canceled messages are not made
available to the application program.

To request the CANCEL function, initialize the following fields:

Field Offset Length Description

CAOIFUNC 0 4 IMS AOQI service function code value:
3 = CANCEL message segments

CAOIDMTK 4 4 Directed message token

Callable services return and reason codes

IMS callable services provides return and reason codes that describe why a callable
service request did not complete successfully.

Callable services return and reason codes provide reasons for why function-specific
parameter list, interface, and service processing errors occurred. These codes are in
hexadecimal format.

Return codes (CSPLRTRN)

Return codes in field CSPLRTPN indicate why the request did not complete
successfully.

Chapter 1. Guidelines for writing IMS exit routines 29

30

Return codes are in field CSPLRTPN in the callable services parameter list.
Following are the return codes indicating why the request did not complete
successfully:

Return code Meaning

X'04' A callable service interface error occurred. The service request was not
processed.
X'08' Function-specific parameter list error. While processing the callable service

request, an error occurred in the function-specific parameter list.

X'20' Service processing error. An error occurred while processing the callable
service request. The error could be a user error or an internal system error.

Callable service interface reason codes (CSPLRESN)

When the return code in the field CSPLRTRN is X'04', callable service interface
reason codes in the field CSPLRESN explain why a callable service interface error
occurred.

Following are the callable service interface reason codes:

Reason code Meaning

X'04' Callable services token is 0. The field CSPLTOKN in the callable services
parameter list DFSCSPL is 0.

X'08' Callable services token is invalid. The field CSPLTOKN in the callable
services parameter list DFSCSPL does not contain a valid callable services
token.

xX'ocC' Service code is not specified. The field CSPLSERV in the callable services
parameter list DFSCSPL is 0.

X'10' Service code is invalid. The field CSPLSERYV in the callable services

parameter list DFSCSPL does not contain a valid callable service code. The
service code is too large.

X'14' Service is not supported. The field CSPLSERV in the callable services
parameter list DFSCSPL contains a value for a callable service code that is
not supported in the current environment or is a reserved function.

X'30' Function code is not specified. The function code field in the function-specific
parameter list is 0.

X'34' Function code is invalid. The function code field in the function-specific
parameter list contains a function code that is too large.

X'38' Function is not supported. The function code field in the function-specific
parameter list contains a value for a callable service function code that is not
supported in the current environment or is a reserved function.

Function-specific parameter list reason codes (CSPLRESN)

Exit Routines

When the return code in the field CSPLRTRN is 8 or 20, an error occurred in the
function-specific parameter list. The function-specific parameter list reason codes
are stored in the field CSPLRESN and are described by service and by function.

GET storage service reason codes

When an error occurs in the GET storage service function-specific parameter list,
the return code in the field CSPLRTRN is 8 or 20. The reason codes are stored in
the field CSPLRESN and are described by service and by function.

Following are the reason codes for GET function parameter errors:

When CSPLRTRN = 8

Reason code Meaning

X'4' Invalid subpool parameter. The field CSGTSP in the function-specific
parameter list DFSCSTRG contains an invalid subpool value.

X'8' Invalid location parameter. The field CSGTLOC in the function-specific
parameter list DFSCSTRG contains an invalid storage location value.

Xc Invalid boundary parameter. The next CSGTBNDY in the function-specific
parameter list DFSCSTRG contains an invalid storage boundary value.

X'10' Length parameter not specified. The field CSGTLEN in the function-specific
parameter list DFSCSTRG is 0.

When CSPLRTRN = 20

If you receive any reason code not listed in the following table, contact IBM
Software Support.

Reason code Meaning
X'06 00 00 04' Storage could not be allocated.
X'06 00 00 08' Parameter list error.

FREE storage service reason codes

When an error occurs in the FREE storage service function-specific parameter list,
the return code in the field CSPLRTRN is 8 or 20. The reason codes are stored in
the field CSPLRESN and are described by service and by function.

Following are the reason codes for FREE function parameter errors:

When CSPLRTRN = 8

Reason code Meaning

X'4' Invalid subpool parameter. The field CSFRSP in the function-specific
parameter list DESCSTRG contains an invalid subpool value.
X'8' Address parameter not specified. The field CSFRSTAD in the

function-specific parameter list DESCSTRG is 0.

Xc Length parameter not specified. The field CSFRLEN in the function-specific
parameter list DFSCSTRG is 0.

When CSPLRTRN = 20

If you receive any reason code not listed in the following table, contact IBM
Software Support.

Reason code Meaning

X'07 00 00 04' Storage was not released. A value in the second byte of the reason code
is provided by the associated z/OS Service. For example, the 04 in the
second byte of reason code 07 04 00 04 is returned from z/OS
FREEMAIN. Additional information can be found in the IMODULE
FREESTOR Return Codes section of IMS Version 13 Messages and Codes,
Volume 4: IMS Component Codes.

Chapter 1. Guidelines for writing IMS exit routines 31

32

Exit Routines

Reason code Meaning

X'07 00 00 08' Parameter list error.

X'07 00 00 OC' Unable to locate storage descriptor block. Storage address might be
invalid or storage subpool specification might be incorrect.

LOAD storage service reason codes

When an error occurs in the LOAD storage service function-specific parameter list,
the return code in the field CSPLRTRN is 8 or 20. The reason codes are stored in
the field CSPLRESN and are described by service and by function.

Following are the reason codes for LOAD function parameter errors:

When CSPLRTRN = 8

Reason code Meaning

X'4' Invalid subpool parameter. The field CSLDSP in the function-specific
parameter list DFSCSTRG contains an invalid subpool value.

X'8' Invalid location parameter. The field CSLDLOC in the function-specific
parameter list DFSCSTRG contains an invalid module location value.

X'C Invalid use parameter. The field CSLDUSE in the function-specific parameter
list DFSCSTRG contains an invalid module reuse value.

X'10' Name parameter not specified. The field CSLDNAME in the function-specific
parameter list DFSCSTRG does not contain a module name.

X'14' The caller is running in cross memory mode, and the primary address space
is not CTL or DLIL

When CSPLRTRN = 20

If you receive any reason code not listed in the following table, contact IBM
Software Support.

Reason code Meaning

X'02 00 00 04 Module was not found.

X'02 00 00 08' DFSMODUO allocation error.

X'02 00 00 OC' BLDL/FETCH allocation error.

X'02 00 00 10’ FETCH/BLDL I/O error occurred loading the requested module.

X'02 00 00 24' DCB was not open for BLDL.

X'02 00 00 28' Caller was authorized, but module was found in unauthorized library.

DELETE storage service reason codes

When an error occurs in the DELETE storage service function-specific parameter
list, the return code in the field CSPLRTRN is X'8' or X'20'. The reason codes are
stored in the field CSPLRESN and are described by service and by function.

Following are the reason codes for DELETE function parameter errors:

When CSPLRTRN = 8

Reason code Meaning

X4 Invalid subpool parameter. The field CSDLSP in the function-specific
parameter list DESCSTRG contains an invalid subpool value.
X'8' Name and address was not specified. The field CSDLNAME in the

function-specific parameter list DEFSCSTRG does not contain a module name,
and CSDLEP does not contain a module address.

Xc The caller is running in cross memory mode, and the primary address space
is not CTL or DLIL

When CSPLRTRN = 20

If you receive any reason code not listed in the following table, contact IBM
Software Support.

Reason code Meaning
X'04 00 00 04' Module was not found.
X'04 00 00 OC' Module storage was not released.

FIND control block service reason codes
When an error occurs in the FIND control block service function-specific parameter
list, the return code in the field CSPLRTRN is 8 or 20.

Following are the reason codes for FIND function parameter errors:

When CSPLRTRN = 8

Reason code Meaning

X'4' FIND type was not specified. The field CSFDTYPE in the function-specific
parameter list DFSCCBLK is 0.
X8 FIND type was invalid. The field CSFDTYPE in the function-specific

parameter list DFSCCBLK does not contain a valid control block search type
value. The search type value is too large.

X'C CCBID was not specified. The field CSFDEIB in the function-specific
parameter list DFSCSTRG does not contain an EBCDIC CCB identifier, and
CSFDBID does not contain a binary CCB identifier.

X'10' Control block name was not specified. The field CSFDNAME in the
function-specific parameter list DFSCCBLK does not contain a name.

When CSPLRTRN = 20

Following are the reason codes you might get when searching CCB, CNT, LNB,
RCNT, SPQB, CNT, descriptor and USER descriptor control block types:

Reason code Meaning

X4 Block was not found.
X'40 00 00 00" CBTS latch held, cannot process request.

Following are the reason codes you might get when searching VICB and LOGON
descriptor control block types:

Chapter 1. Guidelines for writing IMS exit routines 33

34

Exit Routines

Reason code Meaning

X'4' Cannot find CLB with VTAM CID or node/descriptor name.

X'8' NO VTCBs/LGNDs are in system.

X'40 00 00 00" CBTS latch held, cannot process request.

The following are the reason codes that can be encountered when searching for a
transaction control block type.

Reason code Meaning

X'8' Transaction was not found.

X'40 00 00 00" CBTS latch held, cannot process request.

SCAN control block service reason codes
When an error occurs in the SCAN control block service function-specific
parameter list, the return code in the field CSPLRTRN is 8 or 20.

Following are the reason codes for SCAN function parameter errors:

When CSPLRTRN = 8

Reason code Meaning

SCAN type was not specified. The field CSSTYPE in the function-specific
X4 parameter list DFSCCBLK is 0.

SCAN type was invalid. The field CSSCTYPE in the function-specific
parameter list DFSCCBLK does not contain a valid control block search type
X'8' value. The search type value is too large or is a reserved function.

When CSPLRTRN = 20

Following are the reason codes you might get when searching CCB, CNT, LNB,
RCNT, SPQB, and USER descriptor control block types:

Reason code Meaning

X4 End of queue was found.

X'8 No block is in system.

X'14' Bad INUSE call. Verify that the CSSCCBLK and CSSCNAME fields are
properly initialized.

X'18' Bad NOUSE call. Verify that the CSSCCBLK and CSSCNAME fields are

properly initialized.

X'40 00 00 00" CBTS latch held, cannot process request.

Following are the reason codes you might get when searching VTCB and LOGON
descriptor control block types:

Reason code Meaning

X'4' Cannot find VTCB matching arguments.

X'8' No VTAM nodes were in system.

X'40 00 00 00" CBTS latch held, cannot process request.

INSERT AOI service reason codes
When an error occurs in the INSERT AOI service function-specific parameter list,
the return code in the field CSPLRTRN is 8 or 20.

Following are the reason codes for INSERT function parameter errors:

When CSPLRTRN = 8

Reason code Meaning

X4 Directed message token was 0.

X'8' Directed message token was invalid.

Xc Message segment address was 0.

X'10' Message segment length (LL field) was 0.

When CSPLRTRN = 20

Reason code Meaning

X4 IMS could not get the storage required to process the call.

ENQUEUE AOI service reason codes
When an error occurs in the ENQUEUE AOI service function-specific parameter
list, the return code in the field CSPLRTRN is 8.

Following are the reason codes for ENQUEUE function parameter errors:

When CSPLRTRN = 8

Reason code Meaning

X4 Directed message token was 0.

X'8' Directed message token was invalid.

X'10' Message segment address was specified, but segment length (LL field) was 0.
X14' AOQI token count field was 0.

X'18' AOI list token address was 0.

X'1cC' One or more tokens was processed successfully.

X'20' No tokens were processed successfully.

CANCEL AOI Service reason codes
When an error occurs in the CANCEL AOI Service function-specific parameter list,
the return code in the field CSPLRTRN is 8.

Following are the reason codes for CANCEL function parameter errors:

When CSPLRTRN = 8

Reason code Meaning

X4 Directed message token was 0.
X'8' Directed message token was invalid.
xXc No message exists to cancel.

Chapter 1. Guidelines for writing IMS exit routines 35

Callable services request example

An exit routine could use IMS callable services using DFSCSIIO.

The following example depicts how an exit routine could use IMS callable services.
In the example, the storage returned from DFSCSIIO is divided into three areas.
These areas are for the parameter lists used for the call to DFESCSIFQ. The first area
is used for the z/OS CALL parameter list, the second for the IMS callable service
parameter list, and the third for the function specific parameter list. The labels,
CSICLLEN and CSPLPLEN, used in the examples are defined as EQU statements
in the macro DFSCSIPL. These labels represent the length of the z/OS parameter
list built by the CALL macro and the length of the IMS callable services parameter
list.

EE R R R R R R R R R R R R R R S R R L R T R R R R L T L R R R

THIS SUBROUTINE INVOKES IMS callable services TO

GET WORKING STORAGE. THE CALLER PASSES THE REQUIRED
STORAGE LENGTH. THE SUBROUTINE THEN OBTAINS PRIVATE,
31-BIT STORAGE ON A DOUBLEWORD BOUNDARY.

INPUT REGISTERS:

R8 = REQUESTED STORAGE LENGTH
R9 = ECB ADDRESS
R10 = LINKAGE REGISTER

CALLED BY BAL 10,GETSTOR

OUTPUT REGISTERS:

R1 = STORAGE ADDRESS
R9 = ECB ADDRESS

R10 = LINKAGE REGISTER
R15 = RETURN CODE

] - CALL COMPLETED SUCCESSFULLY

NON-ZERO - STORAGE REQUEST FAILED
RETURN CODE FROM IMS CALLABLE STORAGE
SERVICES - GET STORAGE FUNCTION

REGISTER USAGE:

WORK REGISTER

WORK REGISTER

IMS CALLABLE SERVICE TOKEN

IMS callable services PARAMETER LIST
IMS STORAGE SERVICES PARAMETER LIST
z/0S CALL PARAMETER LIST *
REQUESTED STORAGE LENGTH
ECB ADDRESS

WORK REGISTER

WORK REGISTER

paed
(<]
n n

L I I I R R R N B T I I T T T T N

-
=
[T T TR TR

R14
R15

L R I G T . N R I .

* %k F X X

khkkhkhkhkhkhkhkhkhkhkhhkhkhhhhhhhhhhdhhdhdhdhhdhdhdhhdhhhhhhhhhhhhhhhhhkhkhhhhhhkhhhkhkkkkhhdkx
GETSTOR DS OH

SPACE
khkkhkkkhkhkhkhkkkhkhhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhhhhhhhhhhhhhhhhhhhhhhhkhhhhkhhhkkhhhkkhhkkhkhkhkxkx
* INVOKE CALLABLE SERVICES INITIALIZATION ENTRY POINT *
* DFSCSIIO, TO OBTAIN THE CALLABLE SERVICE TOKEN AND *
* PARAMETER LIST STORAGE. *
dhkkhkhkhkhkhkhkhkhkhkhhkhkhhhhhhhhhhdhhhdhdhhdhdhdhhdhhhhhhhhhhhhhhhhhkhhhhhhhkhhhkkhkkhkxkx

LR 1,9 ECB ADDRESS

CALL DFSCSIIO INVOKE INIT ENTRY POINT

LTR 15,15 CALL SUCCESSFUL?

36 Exit Routines

BNZ GSTREXIT NO, ERROR RETURN
SPACE
khkkhkkhkhkhkhkhkkhhhkhhhhkhhhhkhhhdhhhdhdhhdhhhhhhhhhhhhhhhhhkhhhhkhhhhhhhkhhkkhhkkhhkhkdkx
* R1 CONTAINS A PARAMETER LIST ADDRESS. *
* OFFSET © IN THE LIST CONTAINS THE 4-BYTE CALLABLE *
* SERVICE TOKEN. EXTRACT THE TOKEN FROM THE PARAMETER *
* LIST FOR USE ON THE GET STORAGE REQUEST. *
khkkhkkhkhkhkhkhkkkhhkhkhkhkhkhkhkhkhkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhkhhhhhhhkhkhhhkhhkhkxk
LR 5,1 COPY STORAGE ADDRESS
L 2,0(,5) CALLABLE SERVICE TOKEN
SPACE
dhkkhkhkkhkhkhkhkhkhhhkhhhhhhhhhhhdhdhddhhdhhhhdhhhhhhhhhhhhhhhhhhhhhhhhdhhhhhhkkhkxkx
R5 CONTAINS THE ADDRESS TO USE FOR THE PARAMETER *
LIST FOR THE z/0S CALL MACRO. USING THE EQU LABELS
IN MACRO DFSCSIPL, CARVE THE STORAGE RETURNED BY *
DFSCSIIO INTO SEPARATE PARAMETER LISTS TO BE USED *
ON THE CALL TO DFSCSIFO. *
AR R A AR R A R R A A A A A A A A A A A A A A A KI AR A h Ak hhhhhhhhhhhhhhhdhdhhdhdhdhdhdhdhdhdhdhdhdkdx*x
LA 3,CSICLLEN(,5) CALLABLE SERVICE PARM LIST ADDR
LA 4,CSPLPLEN(,3) STORAGE SERVICES PARM LIST ADDR
SPACE
khkkhkhkkhkhkhkhkhkkhhhhkhhhkhkhkhkhkhhhhhhhdhhdhhhhdhhhhhhhhhhhhhhhhhkhhhkhhhhhhhkhkhhhhhhkdk
PARAMETER LIST RETURNED FROM DFSCSIIO HAS BEEN CARVED INTO =
THREE PARTS:

* Ok kX X

EE

| Z/0S CALL AREA | IMS CALL SVC AREA | STG SVC AREA |

__ *

* ok kX ok ¥
e
o
]
w
=
=

*
B R R R R R R R e T TR e T R e TS e e T st L L L

SPACE

B R o e e T T T T e e T e e T S e s Tt L L

INITIALIZE CALLABLE SERVICE PARAMETER LIST.

ENTIRE LIST IS CLEARED SO ALL RESERVED AND NON-INPUT
FIELDS (SUCH AS THE RETURN AND REASON CODES)

ARE SET TO ZERO. THE CALLABLE SERVICE CODE IS
INITIALIZED TO REQUEST STORAGE SERVICES

AND THE CALLABLE SERVICE TOKEN IS SAVED IN THE LIST.
kkkhkkhkhkkhkhkkhkhkhhkhhkkhhkhkhhhhhhhkhhhkhhhkhhhhkhkhkhhhkhkhkhkhkhkhkhkkhkhkkkhhkkhkkkkx
USING CSPARMS,3 CALLABLE SERVICES PARM LIST DSECT

XC CSPARMS (CSPLPLEN) ,CSPARMS CLEAR CALLABLE SERVICES LIST
LA 0,CSPLSTRG STORAGE SERVICE CODE

ST 0,CSPLSERV INSERT SERVICE CODE IN LIST

ST 2,CSPLTOKN INSERT CALLABLE SERVICE TOKEN

SPACE

KAKKK KK A KKK AR KR AR KRR KRR AR KRR KRKRKRKRRRKAAR A A AR A A I h A hhhhhhhhhhhhhhhhhhhhrrhrirrxx

INITIALIZE STORAGE SERVICE PARAMETER LIST

LR
* Ok X X * ok 3k

ENTIRE LIST IS CLEARED SO ALL RESERVED AND NON-INPUT
FIELDS (SUCH AS THE RETURN AND REASON CODES)

ARE SET TO ZERO. THE STORAGE SERVICES

FUNCTION CODE IS INITIALIZED TO REQUEST THE GET STORAGE
FUNCTION. PARAMETERS ARE INITIALIZED TO OBTAIN 31-BIT,
PRIVATE STORAGE IN SUBPOOL O ON A DOUBLEWORD BOUNDARY.

LR I T T I N
E o S I R T R R

KA IIAAIAAI A A A Ak hkhhhkhhhkhhhhhhhhhhhhhhhhhhhrhhhhhrs kkhkhkhkhkhhhhhhhhhkhhkkx

USING CSSTRG,4 STORAGE SERVICES PARM LIST DSECT
XC CSSTRG(CSGTPLEN) ,CSSTRG CLEAR STORAGE SERVICES LIST
LA 0,CSSTGET GET STORAGE FUNCTION CODE

ST 0,CSSTFUNC INIT FUNCTION CODE PARAMETER
SPACE

ST 8,CSGTLEN INIT STORAGE LENGTH PARAMETER
SPACE

LA 0,CSGTPRI PRIVATE STORAGE INDICATOR

ST 0,CSGTSP INIT STORAGE SUBPOOL INDICATOR

Chapter 1. Guidelines for writing IMS exit routines

37

SPACE

LA 0,CSGT31B 31-BIT STORAGE INDICATOR

ST 0,CSGTLOC INIT STORAGE LOCATION PARAMETER

SPACE

LA 0,CSGTDBLW DOUBLE WORD BOUNDARY INDICATOR

ST 0,CSGTBNDY INIT STORAGE BOUNDARY PARAMETER

SPACE
khkkhkkhkhkhkhkhkhkhhhkhkkhhkhkhkhkhkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhkhhhhhhkhhhkhkhhkdkx
* THE CALLABLE SERVICES PARAMETER LIST HAS BEEN INITIALIZED *
* TO INVOKE IMS STORAGE SERVICES. THE STORAGE SERVICES *
* PARAMETER LIST HAS BEEN INITIALIZED TO OBTAIN USER STORAGE. =+
* ISSUE THE IMS CALLABLE SERVICE REQUEST TO OBTAIN STORAGE. *
khkkkkhkhkkkhkkkhhhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhhhhhhhhhhhhhhhhhhhhhhhkhhhhkhhhkkhhhkkhhkkhkhkhkxkx

CALL DFSCSIFO,((3),(4)),MF=(E,(5))

LTR 15,15 STORAGE REQUEST SUCCESSFUL?

BNZ GSTREXIT NO, RETURN TO CALLER

SPACE

L 1,CSGTADDR STORAGE ADDRESS

SPACE
khkkkkhkhkkhkhkkkhhhkhkhkhkhkhkhkhkhkhkhkhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkkhhkkhkhkhkikx
* RETURN TO CALLER *
khkkhkhkhkhkhkhkhkhkhkhhkhhhhhkhhhkhkhhhhhdhdhhdhdhdhhdhhhhhhhhhhhhhhhhhkhhhhkhhhkhhhhhhhkhhrdkx
GSTREXIT DS OH

BR 10 RETURN TO CALLER

LTORG

DFSCSIPL

Control block usage

38

Exit Routines

Review this directory of the control blocks, their associated fields that are intended
for access by exit routines, and restrictions of their use.

If only certain fields within a control block are intended for your use, they are
listed next to the control block name in the following table. If a field does not
appear next to the control block name, it is not intended for your use. Unless
otherwise specified, the only information that is part of the interface for exit
routines is the control block name and any specific fields associated with that
control block. For a field that is part of the interface, the only information that is
part of the interface for exit routines is the named field.

The following control blocks and their associated fields and flags, shown in the
following table, are intended for use as, or as part of, a product-sensitive interface.
Flags are enclosed in parenthesis next to their associated fields.

Table 6. Control blocks and associated fields and flags

Control block name Fields and flags intended for use

CCB CCBNUMB

CIB CIBMNAME, CIBDTYP (CIBDNDS)

CLB CLBNAME, CLBCURR, CLBCNTQB

CNT, LNB CNTDEQCT, CNTENQCT, CNTNAME, CNTDQCT, CNTCTBPT,
CNTCNTPT

CTB CTBCTT, CTBTERM, CTBFLAG1 (CTB1SIGN, CTB1PRES),

CTBFLAG2 (CTB2LOCK, CTB2TEST, CTB2EXCL), CTBFLAG3
(CTB3SEG1), CTBACTL (CTBAEOM, CTBAINC), CTBFEAT,
CTBINCT, CTBOUTCT, CTBCNT, CTBCIBPT, CTBPRSTN,
CTBCNTPT, CTBFLAG6 (CTB6SDON, CTB6TRNI), CTBUSID,
CTBOUSID

Table 6. Control blocks and associated fields and flags (continued)

Control block name

Fields and flags intended for use

CIT

CTTDEVIC (CTTD3286, CTTDTYP1, CTTDLU4), CTTSEND,
CTTEDIT, CTTIEDIT, CTTOPT2 (CTT2DIT), CTTOPT5 (CTT5DYN)

CVB

CVBCCMD

DFSPDA

PDAPDE, PDANUM, PDADORG, PDALSTRL, PDAUSR1,
PDAUSR2, PDAUSR3, PDAUSR4, PDAUSR5, PDAPLEN

DFSPDAE

PDAPN, PDASTRG, PDAPID, PDARAP, PDABLKR, PDASTRGL,
PDAFLAG!1 (PDAF101), PDAELEN

DFSPECA

PECDBN, PECRC, PECFDB, PECFDB2, PECKEY, PECCPID,
PECKEYL, PECACT, PECFLAGI1 (PECINEWP), PECFLAG?2,
PECUSER

FEIB

FEIBOFLG (FEIBRPQ1, FEIBERP, FEIBTMED), FEIBMSGN,
FEIBLTRM, FEIBMSG, FEIBUNID, FEIBNDST, FEIBERPN, FEIBLDST,
FEIBULNG FEIBUSER, FEIBIMID

MFSFLDE

FLDFLAG (FLDOPT, FLDEXIT, FLDATTR, FLDEATR), FLDELTH,
FLDVECT, FLDLTH, FLDADDR (OPT3LTH, OPT3ID, OPT3DATA)

MFSSEGE

SEGFLAG, SEGOPT (SEGEXIT, SEGECHO), SEGVECT, SEGLTH,
SEGFLDRC (SEGDL)

MSNB

MSNFLG1 (MSN1DEQ), MSNFLG3 (MSN3DQND, MSN3DQLM)

PDIR

PDIRSYM, PDIRCODE (PDIRLOCK, PDIRNOSC, PDIRSCHD,
PDIRDBST, PDIRBALG), PDIROPTC (PDIRRETN, PDIRGPSB,
PDIRDOPT, PDIRPARL, PDIRBAD), PDIRFLG3 (PDIRIFPR,
PDIRIFPM, PDIRIFPU)

RCNT

CNTDEQCT, CNTENQCT, CNTNAME, CNTDQCT

SCD

SSCDIMID, SCDQTU, SCDQTL, SCDSSTYP (SCDSSDBC,
SCDSSDCC), SSCDIMSR, SSCDIMSL

SMB

SMBDEQCT, SMBENQCT, SMBTRNCD, SMBSTATS (SMBSRESP,
SMBSMULT, SMBSNOQU, SMBNOSC, SMBLOCK, SMBSQERR),
SMBFLAGI1 (SMB1CONYV, SMB1UPP, SMBCPIC, SMBINORE,
SMBIINIT), SMBFLAG2 (SMB2DRRT, SMBFPPTX, SMBFPXCL,
SMB2SMS, SMB2RMT), SMBFLAG3 (SMBBAD, SMB3WFI),
SMBFLAGS (SMBINQN, SMB5TLS), SMBPRIOR, SMBCLASS,
SMBSPAL, SMBLMTCT, SMBCOUNT, SMBSIDR, SMBSIDL,
SMBMXRGN, SMBPARLM, SMBAOIFL (SMBTCMDA, SMBNOSCH),
SMBPDIRN, SMBRCTEN

SPQB, USRD

SPQBHSON

The following table provides a list, by exit, of the control blocks that are intended
for use as, or as part of, a product-sensitive interface:

Table 7. Exit routines and associated control blocks

Exit name or type Associated control blocks

DBFHAGUO SCD
DBFHDC40 none
DBFHDC44 none
DBFUMSE1 none
DBFLHSHO none
DFSAOEO00 none

Chapter 1. Guidelines for writing IMS exit routines 39

Table 7. Exit routines and associated control blocks (continued)

Exit name or type Associated control blocks

DFSAOUEO CLB, CTB, SCD

BSEX none

DFSCCMDO0 CLB, CTB, CTT, CVB, SCD
DFSCKWDO0 none

DFSCMPX0 none

DFSCMTUO none

DFSCMUXO0 MSNB

DFSCNTEOQ CLB, CNT, CTB

DFSCONEOQ CCB, CTB, PDIR, SCD, SPQB, SMB
DFSCSGNO CTB, SCD

DFSCSMB0 CLB, CTB

DFSCTRNO CLB, CNT, CTB, PDIR, SCD, SMB
DFSCTSEO CNT, CTB, PDIR, SCD, SMB
DFSCTTO0 CLB, CNT, CTB, SCD
DFSFDOTO none

DEFSFEB]J0 FEIB, PDIR, SMB

LOGWRT none

DFSFTEXO0 none

DFSGMSGO0 none

DFSGPIX0 PDIR, SMB

DFSHDC40 DMBDACS

DFSINSX0 CLB, SCD

DFSINTXO0 CLB, SCD

DFSI7770 CLB, CNT, CTB, SCD
DFSLGFX0 CLB, SCD

DFSLGNX0 CLB, SCD

DFSLUEEQ none

DFSME000 MFSFLDE

DFSME127 MFSSEGE, CLB

DFSMSCEOQ SCD

NDMX none

DFSO7770 CLB, CTB, CTT, SCD
DFSPIXTO CTB, PDIR, SMB

PPUE none

DFSPRE60 none

DFSPRE70 none

DFSPSEQ0 DFSPECA, DFSPDA, DFSPDAE
DFSQSPCO0 PDIR, SCD, SMB
DFSSBUX0 none

DFSSGFX0 CLB, SCD

40 Exit Routines

Table 7. Exit routines and associated control blocks (continued)

Exit name or type Associated control blocks

DFSSGNX0 CIB, CLB, CTB, CTT, SCD
DFSSIMLO CLB, CNT, CTB, CTT, SCD
DFSS7770 CLB, CNT, CTB, CTT, SCD
DESTXITO none

DFSYORUO none

OTMAIOED none

OTMAYPRX none

DFS29800 CLB, CNT, CTB, PDIR, SCD, SMB
DFS36010 CLB, CTB, SCD

DSPCEXTO0 none

Customization exit routines

IMS provides sample exit routines and programs for most exit points.

The location of the sample exit routines and programs are listed in the following
table.

Table 8. Exit routines and their location

Exit routine or user

exit type Location Description

BSEX No sample Build Security Environment exit
routine

DBFHAGUO IMS.SDFSSRC IMS Fast Path Sample User
Input Exit

DBFHDCA40 / IMS.SDFSSRC IMS/FP Randomizing Exit

DBFHDC44

DBFLHSHO IMS.SDESSRC Data Entry Database Resource
Name hash routine

DBFUMSE1 Sample provided in Knowledge] DEDB Sequential Dependent

Center| Scan utility exit routine

DFSAQOEO00 IMS.SDFSSMPL Automated Operator exit routine
sample

DFSAOUEOQ IMS.SDFSSMPL AOI User exit routine sample
program

DFSBXITA IMS.SDFSSMPL CEEBXITA Assembler user exit
routine for IMS

DFSCCMDO IMS.SDFSSMPL Command Authorization user
exit routine sample

DFSCKWDO IMS.SDFSSRC Command Keyword Table

DFSCMPX0 IMS.SDFSSMPL User-data Compression program

DFSCMTUO0 No sample User Message Table

DFSCMUXO0 IMS.SDFSSRC Message Control/Error exit

routine

Chapter 1. Guidelines for writing IMS exit routines 41

42

Exit Routines

Table 8. Exit routines and their location (continued)

Exit routine or user

exit type Location Description

DFSCNTEO IMS.SDFSSMPL Sample CNT Destination edit
routine

DFSCONEOQ IMS.SDFSSMPL Conversational user exit routine

DFSCSGNO IMS.SDFSSMPL COMM / SIGN exit routine
sample

DFSCSMBO0 IMS.SDFSSMPL Transaction Code (Input) edit
routine

DFSCTRNO IMS.SDFSSMPL COMM Transaction
Authorization exit routine
sample

DFSCQEXO0 IMS.SDFSSMPL IMS CQS structure event user
exit (ICQSSTEV)

DFSCSTXO0 IMS.SDFSSMPL IMS CQS event user exit
(ICQSEVNT)

DFSCTSEO No sample Security Reverification exit
routine

DFSCTTOO0 IMS.SDFSSMPL Sample PTERM (Output) edit
routine

DFSFDOTO IMS.SDFSSMPL IMS Dump Override table

DFSFEBJO0 IMS.SDFSSMPL Front End Switch user exit
routine

DFSFIDNO No sample ESAF In-Doubt Notification exit
routine

DFSFTFX0 IMS.SDESSRC Log Filter exit routine

DFSGMSGO IMS.SDFSSMPL Greeting Messages user exit
routine

DFSGPIX0 No sample Global Physical Terminal (Input)
edit routine

DFSHDC40 IMS.SDFSSRC HDAM and PHDAM
randomizing routine

DEFSINSX0 IMS.SDFSSMPL Output Destination Creation
user exit routine

DFSINTX0 IMS.SDFSSMPL IMS Initialization user exit
routine

DFSITRX0 IMS.SDFSSMPL IMS Initialization and
Termination user exit
(INITTERM)

DFSKMPX0 IMS.SDFSSMPL User Data Compression program

DFSLGFX0 IMS.SDFSSMPL IMS Logoff user exit routine

DFSLGNXO0 IMS.SDFSSMPL User Logon exit routine

DFSLUEEO IMS.SDFSSRC LU 6.2 Edit exit routine

DFSMEQ000 IMS.SDFSSRC Input Message Field edit routine

DFSME127 IMS.SDFSSRC Input Message Segment edit

routine

Table 8. Exit routines and their location (continued)

Exit routine or user

exit type Location Description

DFSMSCEQO IMS.SDFSSMPL TM and MSC Message Routing
and Control user exit routine

DFSPIXTO IMS.SDFSSMPL Physical Termination Input Edit
routine sample

DFSPPUEOQ No sample Partner Product exit routine

DFSPRE60 IMS.SDFSSMPL System Definition Preprocessor
exit routine (input phase)

DFSPRE70 IMS.SDFSSMPL System Definition Preprocessor
exit routine (name check
complete)

DFSPSEQ0 IMS.SDFSSMPL Sample Partition Selection exit
routine

DFSQSPCO IMS.SDFSSRC Queue Space Notification exit
routine

DFSREXXU IMS.SDFSSMPL REXXTDLI Sample user exit
routine

DFSSBUXO0 No sample Sequential Buffering
Initialization exit routine

DFSSGFX0 IMS.SDFSSMPL Sign-off user exit routine

DFSSGNX0 IMS.SDFSSMPL Sign-on user exit routine
example

DFSSIMLO IMS.SDFSSMPL Shared Printer exit routine

DFSTXITO IMS.SDFSSRC Time-Controlled Operations exit
routine

DFSUTL IMS.SDFSSMPL Sample MVS™ IEFUTL Timeout
exit routine

DFSYDRUO IMS.SDFSSMPL OTMA User Data Formatting
exit

DFS29800 No sample 2972/2980 Input Edit Routine

DFS36010 IMS.SDFSSMPL COMM DEV MOD (3600),
Sample 3601 Input edit routine

DSPBUFFS IMS.SDFSSRC Buffer Size Specification facility

DSPCEXTO0 IMS.SDFSSMPL (sample is RECON 1/0 exit routine

named DSPCEXT1)

DSPDCAXO0 IMS.SDFSSMPL Sample DBRC SCI Registration
exit routine

DSPSCIX0 IMS.SDFSSMPL Sample DBRC SCI Registration
exit routine

LOGWRT No sample Logger exit routine

NDMX IMS.SDFSSMPL Non-Discardable Messages
(NDMX) user exit

OTMAIOED IMS.SDFSSMPL OTMA Input/Output Edit user
exit

OTMARTUX IMS.SDFSSMPL OTMA Resume TPIPE Security

exit routine

Chapter 1. Guidelines for writing IMS exit routines 43

Table 8. Exit routines and their location (continued)

Exit routine or user

exit type Location Description

OTMAYPRX IMS.SDFSSMPL OTMA Destination Resolution
exit routine

RASE IMS.SDFSSMPL Resource Access Security exit

routine sample

IMS.SDFSSMPL data set

44

Exit Routines

The IMS.SDFSSMPL data set contains source code modules that you can customize
for various purposes.

Table 9. IMS.SDFSSMPL data set exit routines and descriptions

Exit routines Description

DBFMLBX0 Fast Path MADS 1/0 Timing user hash routine
DFSAOE00 Automated Operator exit routine sample

DFSAOUEOQ AOI User exit routine sample program

DFSBXITA CEEBXITA Assembler user exit routine for IMS
DFSCCMDO0 Command Authorization user exit routine sample
DFSCMPX0 User-data Compression program

DFSCNTEOQ Sample CNT Destination edit routine

DFSCONEO0 Conversational user exit routine

DFSCSGNO COMM / SIGN exit routine sample

DFSCSMBO0 Transaction Code (Input) edit routine

DFSCQEXO0 IMS CQS structure event user exit (ICQSSTEV)
DFSCSTX0 IMS CQS event user exit (ICQSEVNT)

DFSCTRNO COMM Transaction Authorization exit routine sample
DFSCTTOO0 Sample PTERM (Output) edit routine

DFSFDOTO IMS Dump Override table

DFSFEB]J0 Front End Switch user exit routine

DFSGMSGO Greeting Messages user exit routine

DFSIDEFO IMS Installation Defaults Block

DEFSINSX0 Output Destination Creation user exit routine

DFSINTXO0 IMS Initialization user exit routine

DFSITRX0 IMS Initialization and Termination user exit (INITTERM)
DFSKMPX0 User Data Compression program

DFSLGFX0 IMS Logoff user exit routine

DFSLGNX0 User Logon exit routine

DFSMSCEO TM and MSC Message Routing and Control user exit routine
DFSNDMXO0 Non-Discardable Messages (NDMX) user exit

DFSPIXTO Physical Termination Input Edit routine sample
DFSPRE60 System Definition Preprocessor exit routine (input phase)
DFSPRE70 System Definition Preprocessor exit routine (name check complete)

Table 9. IMS.SDFSSMPL data set exit routines and descriptions (continued)

Exit routines

Description

DFSPSEQ0 Sample Partition Selection exit routine

DFSRAS00 Resource Access Security exit routine sample

DFSREXXU REXXTDLI Sample user exit routine

DFSSGFX0 Sign-off user exit routine

DFSSGNX0 Sign-on user exit routine example

DFSSIMLO Shared Printer exit routine

DFSUTL Sample MVS IEFUTL Timeout exit routine

DFSYCWAT Sample program that suspends the currently executing task
DESYDRUO OTMA User Data Formatting exit

DFSYIOEO OTMA Input/Output Edit user exit

DFESYPRX0 OTMA Destination Resolution exit routine

DFS36010 COMM DEV MOD (3600), Sample 3601 Input edit routine
DSPAPSMP Example Program Using the DBRC API

DSPCEXT1 Sample DBRC I/O exit routine

DSPDCAXO0 Sample DBRC Command Authorization user exit routine
DSPSCIX0 Sample DBRC SCI Registration exit routine

Chapter 1. Guidelines for writing IMS exit routines

45

46 Exit Routines

Chapter 2. Database Manager exit routines

Use the database manager exit routines to initialize products that run with IMS,
control operations related to subsystems, and enhance the maintenance and control
of segments.

Batch application exit routine (DFSISVIO)

The batch application exit routine (DFSISVIO) routine is called immediately before
linking to the batch application program. The exit routine has no predefined
purpose. You can use it to allow the initialization of products that run with IMS.
The exit is called prior to calling the application program.

Subsections:
* |[“About this routine”)

* [“Communicating with IMS”|

About this routine

The Batch Application exit routine is applicable to IMS DB and IMS TM batch
environments, and batch types DBB, DLI, and ULU. The exit routine is called if it
is available in IMS.SDFSRESL.

You can link-edit the exit routine as needed, and will process in TASK mode. The
exit routine's addressing mode can be either 24 or 31. It is given control in its
defined AMODE and can return control to IMS in either 24- or 31-bit addressing
mode.

Table 10. Batch application exit routine attributes

Attribute Description
IMS environments DB Batch, TM Batch.

Naming convention = Must be named DFSISVIO.

Link editing After you compile your routine, include it into IMS.SDFSRESL or
into any operating system-partitioned data set to which access is
provided by using a JOBLIB or STEPLIB JCL statement.

Including the routine No special steps required.

IMS callable services This exit routine is not eligible to use IMS callable services.

Sample routine No sample exit routine is provided.
location

Calling this routine
This exit routine is called using standard linkage conventions.
Communicating with IMS

IMS communicates with this routine through the entry registers, a parameter list,
and the exit registers.

Content of Registers on Entry

© Copyright IBM Corp. 1974, 2017 47

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Content

1 Address of the exit parameter list.

13 Address of a single, standard save area.
14 Return address to IMS.

15 Entry point of this exit routine.

Parameter list

The following parameter list is provided to the exit routine:
00 Address of the application PCB list.
04 Address of PXPARMS

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for
register 15, which contains the return code. A return code of 12 indicates that the
exit does not want IMS processing to continue.

Return code Meaning

00 Continue normal IMS processing.

04 Undefined. Treated like a return code of 00.
08 Undefined. Treated like a return code of 00.
12 Terminate IMS processing with U0099 abend.

Related reference:

[‘Routine binding restrictions” on page 9|

IMS Catalog Definition exit routine (DFS3CDXO0)

48

Exit Routines

Use the IMS Catalog Definition exit routine (DFS3CDXO0) to provide the settings
and attributes of the IMS catalog to batch application programs. Using this exit
routine is an alternative to referencing the DFSDFxxx member of the IMS.PROCLIB
data set in the JCL of batch application programs.

This exit routine is available in batch processing environments only.

About this routine

Table 11. Catalog Definition exit routine attributes

Attribute Description

IMS environments IMS batch

Naming convention Must be named DFS3CDX0

Table 11. Catalog Definition exit routine attributes (continued)

Attribute Description

Binding * You must bind this exit routine module into IMS.SDFSRESL or a
concatenated library.

¢ You must code this exit routine module as reentrant.

* IMS batch processing attempts to load this exit routine, then
attempts to load a DFSDFxxx member of the IMS.PROCLIB data
set if this exit routine is not found.

 If you enable the IMS catalog with this exit routine (function code
1), you must ensure that the catalog resource members
(DFSCP000, DFSCD000, DFSCX000) have been added to the PSB
and DBD libraries with the appropriate PSB generation or DBD
generation utility.

The following example JCL shows how to bind the exit routine
module into IMS.SDFSRESL.

//LINKIT JOB 1,MSGLEVEL=1
//LINK EXEC PGM=IEWL,PARM=RENT
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK, (20,20))
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSN=IMS.SDFSRESL.,DISP=SHR
//0BJIN DD DSN=IMS.USERLIB.,DISP=SHR
//SYSLIN DD =*

INCLUDE OBJIN(DFS3CDX0)

MODE AMODE(31),RMODE (ANY)

NAME DFS3CDX0(R)
/*

Including the routine No special steps required.

IMS callable services This exit routine is not eligible to use IMS callable services.

Sample routine IMS.SDFSSMPL.
location Note: You must customize the sample exit routine before you can
compile it.

Communicating with IMS

IMS communicates with this routine through the entry registers, a parameter list,
and the exit registers. The exit routine must save all registers with the provided
save area on entry. The exit routine must restore all registers before returning
control to IMS.

Table 12. Contents of registers on entry

Register Content

1 Address of the Version 6 standard exit parameter list.

13 Address of the exit save area. The exit routine must not change the first three
words of the save area. This save area is not chained to any other save area.

14 Return address.

15 Entry point of this exit routine.

Register 1 contains the address of the Version 6 standard exit parameter list. The
standard exit parameter list contains the field SXPLFESPL which is the address of
the function-specific parameter list for the Catalog Definition exit. Some fields in
the parameter list are directly equivalent to parameters in the DATABASE and
CATALOG sections of the DESDFxxx member of the IMS.PROCLIB data set.

Chapter 2. Database Manager exit routines 49

For a description of the fields in the Version 6 standard exit parameter list, see

[standard user exit parameter list (Exit Routines)}

The function-specific parameter list is mapped by macro DES3DXP and contains
the following fields:

Table 13. Catalog Definition exit routine function-specific parameter list

Field Offset Length Description Equivalent DFSDFxxx parameter
DXPL_PVER X'00' 4 Version number of the
function-specific parameter list:
1 Version 1
DXPL_FUNC X'04' 4 Function code: CATALOG=YES (required)
1 Catalog enabled
DXPL_LEN X'08' 4 Parameter list length
DXPL_RGNTYPE x'oc' 4 Region type:
1 Batch region
DXPL_URCATL X'10' 4 Unregistered catalog name list UNREGCATLG (optional)
X'14' 4 Reserved
DXPL_RETNUM X'18' 2 Number of catalog record copies to RETENTION VERSIONS (optional)
retain
DXPL_RETPD X'1A' 2 Record retention period in days RETENTION DAYS (optional)
DXPL_ALIAS X'1C 4 Alias name prefix ALIAS (required)
X'20' 8 Reserved None
DXPL_DATC X'28' 8 Data class DATACLAS (optional)
DXPL_MGTC X'30' 8 Management class MGMTCLAS (optional)
DXPL_STGC X'38' 8 Storage class STORCLAS (optional)
DXPL_1PCT X'40' 2 Primary data set space allocation SPACEALLOC PRIMARY
percentage (optional)
DXPL_2PCT X'42' 2 Secondary data set space allocation SPACEALLOC SECONDARY
percentage (optional)
X'44' 4 Reserved
X'48' 4 Reserved
X'4C' 4 Reserved
X'50' 4 Reserved
X'54' 4 Reserved
X'58' 2 SMS volume count SMSVOLCT (optional)
DXPL_VOL X'B5A 6 Non-SMS primary or secondary IXVOLSER (required when the

index volume

catalog data sets are not managed
by SMS)

50 Exit Routines

Related reference:

[# [DFESDFxxx member of the IMS PROCLIB data set (System Definition)|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_exitparmlist.htm#ims_exitparmlist
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_exitparmlist.htm#ims_exitparmlist
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib

CCTL exit routines

The database resource adapter (DRA) can pass control to four coordinator
controller (CCTL) exit routines, each of which may contain code provided entirely
or in part by the CCTL.

If the CCTL passes an address (in the INIT request) of zero for a particular routine,
the DRA uses a default exit routine.

Coordinator controller routine attributes

Coordinator controller (CCTL) routines have certain attributes and requirements.

All CCTL exit routines called by the database resource adapter (DRA) have control
passed to them in 31-bit addressing mode and must return to the DRA in the same
mode. Since much of the DRA has RMODE=31, registers 13 and 14 can point to
locations above the 16 MB line. When the DRA calls the Control exit routine, the
PAPL that it passes can also be above the line.

On entry to a CCTL exit routine, the PAPLTTOK and PAPLUSER fields are the
same as they were when DFSPRRCO first received the PAPL. (For more
information on these fields, see IMS Version 13 System Programming APIs.) The
CCTL uses the PAPLUSER field to pass information to the exit routines (for
example, the address of the control blocks).

If you want the DRA to use the default exit routines supplied with IMS DB, pass a
value of binary 0 as the address of the exit routine in the INIT request. For more
information, see the topic “INIT request” in IMS Version 13 System Programming
APIs.

To use the default Suspend exit routine and Resume exit routine, each DRA request
must have the field PAPLTECB set with the address of a CCTL ECB to be used if
the thread is waited or posted.

Suspend exit routine

The Suspend exit routine receives control whenever the database resource adapter
(DRA) router routine needs to suspend a DRA request and allows the CCTL to use
its own processing technique to suspend its thread.

The Suspend exit routine can start executing before or after the Resume exit
routine starts executing, but the Suspend exit routine cannot finish executing
before the Resume exit routine starts executing. When you design the Suspend and
Resume exit routines, ensure that the Suspend exit routine can determine whether
the Resume exit has started or completed execution. If the Suspend exit routine
determines that the Resume exit routine has not started executing, the Suspend exit
routine must not return to the caller. If the Suspend exit routine determines that
the Resume exit routine has started or completed execution, the Suspend exit
routine should return to the Suspend exit caller and consider the suspend request
complete.

The Suspend exit routine executes in the CCTL's environment. The contents of the
registers on entry are:

Register
Contents
1 Address of the PAPL

Chapter 2. Database Manager exit routines 51

52

14 Return address

15 Entry point address

This routine can use a PAPL 16-word save area (PAPLSREG) to save the DRA's
registers The DRA does not expect any output from this routine.

Resume exit routine

The Resume exit routine allows the CCTL to use its own processing technique to
resume a database resource adapter (DRA) request suspended by the Suspend exit
routine.

The Resume exit routine can start executing before or after the Suspend exit
routine starts executing. When you design the Suspend and Resume exit routines,
ensure that the Suspend exit routine can determine whether the Resume exit has
started or completed execution. If the Suspend exit routine determines that the
Resume exit routine has not started executing, the Suspend exit routine must not
return to the caller. If the Suspend exit routine determines that the Resume exit
routine has started or completed execution, the Suspend exit routine should return
to the Suspend exit caller and consider the suspend request complete.

This routine receives control whenever a request has completed its process. The
contents of the registers on entry are:

Register
Contents

1 Address of the PAPL

13 Address of an 18-word save area that this routine can use to save DRA
registers

14 Return address

15 Entry point address

The DRA does not expect any output from this routine.

Control exit routine

Exit Routines

The Control exit routine allows the database resource adapter (DRA) to notify the
CCTL about events occurring within the DRA or IMS DB. It also allows the CCTL
to notify the DRA how to respond to those events.

This routine receives control whenever the DRA must notify the CCTL of the
following events:

* The DRA successfully identifies itself to IMS DB.

* The identify attempt to IMS DB fails.

* The CCTL's INIT request is canceled.

* The DRA fails.

+ IMS DB fails.

* IMS DB terminates normally using the /CHECKPOINT FREEZE command.
* The DRA terminates due to a Control exit routine request.

The Control exit routine uses a PAPL that belongs to the DRA, never a CCTL PAPL
that is a DRA request.

For all of these events (except the last one), the CCTL must tell the DRA what
action to execute next. This is done using a return code that the CCTL places in the
PAPLRETC field prior to passing the PAPL back to the DRA. The DRA then acts
accordingly.

The contents of the registers on entry are:

Register
Contents

1 Address of the PAPL

13 Address of standard 18-word save area that the Control exit routine can
use

14 Return address

15 Entry point address

A list of possible events about which the DRA notifies the CCTL follows. With each
event, the contents of the PAPL are listed with possible actions for the CCTL to
take.

Subsections:

* [“The DRA successfully identifies itself to IMS DB”|

* [“The identify attempt to IMS DB fails” on page 54|

[“The CCTL's INIT request is canceled” on page 55|

[“The DRA fails” on page 56|

[“IMS DB fails” on page 57|

+ |“IMS DB terminates normally using the /CHECKPOINT FREEZE command” on|

page 52|

* [“The DRA terminates due to a Control exit routine request” on page 58|

The DRA successfully identifies itself to IMS DB

After the DRA successfully identifies to IMS DB, the contents of the PAPL passed
to the CCTL are:

Field Contents

PAPLFUNC
Resync function code, PAPLRSYN

PAPLRSLT
Resync list address, list of recovery tokens of indoubt UORs. First 4 bytes
in the list is the number of tokens in the list. Following this number are the
actual tokens, each being 16 bytes.

PAPLUSER
User data (passed on the INIT request).

PAPLDBCT
IMS DB identifier.

PAPLMTCB
Minimum thread count specified in the startup table or INIT request.

PAPLJOBN
IMS DB jobname.

Chapter 2. Database Manager exit routines 53

54

Exit Routines

PAPLCRC
IMS DB command recognition character.

PAPLIDTK
IMS DB identify token (unique store clock value representing the time the
CCTL identified with IMS DB).

PAPLDSID
IMS DB address space ID (ASID).

PAPLRSEN
DBRSE (IMS DB warm standby name, =DBRSENM, IMS DB execution
parameter). See IMS Version 13 System Definition for more information.

PAPLRGTY
IMS region type. The possible region types are:

PAPLDBCX
DB/DC with XRE

PAPLDBCO
DB/DC only.

PAPLDBCL
IMS DB
After the routine has completed analyzing the PAPL, it can insert the following
return codes in the PAPLRETC field to notify the DRA of the next action to take:
Code Returned

Meaning

0 IMS DB environment OK.

4 Terminate the DRA (the Control exit routine is not called again during this
DRA session).

The identify attempt to IMS DB fails

After the identify to IMS DB fails, the contents of the PAPL passed to the CCTL
are:

Field Contents

PAPLFUNC
Failure function code

PAPLSFNC
Identify request failed subfunction code

PAPLUSER
User data (passed on the INIT request)

PAPLDBCT
IMS DB identifier

PAPLRETC
Code returned from subsystem interface or IMS DB

PAPLRCOD
Reason code. The possible reason codes are:

PAPLNTUP
Subsystem exists but is not up

PAPLNOSS
Subsystem does not exist

PAPLINT
IMS DB is in initialization process

PAPLRSTN
IMS DB waiting for restart command

PAPLRST
In restart process

PAPLBRST
DB/DC XRF backup in tracking mode

PAPLTKOV
Backup in takeover mode
After the routine analyzes the PAPL, it can insert the following data in the output
fields in the PAPL to notify the DRA of the next action to take:
Field Contents

PAPLDBCN
New IMS DB identifier

PAPLRETC
Code returned from the CCTL to the DRA. PAPLRETC is passed to the
Control exit routine and must be reset.

Code Returned

Meaning

0 Issue a DFS0690A message and try to identify IMS DB again.

4 Proceed with DRA termination (the Control exit routine will not be called
again).

8 Reidentify with new IMS DB identifier (in the PAPLDBCN field).

The CCTL's INIT request is canceled

After the DRA INIT request is canceled by a cancel response to the DRF690
message, the contents of the PAPL passed to the CCTL are:

Field Contents

PAPLFUNC
Failure function code

PAPLSFNC
Cancelled INIT request subfunction code

PAPLUSER
User data (from the INIT request).

PAPLDBCT
IMS DB identifier.

PAPLRETC
Code returned from IMS DB.

PAPLRCOD
Reason code. The possible reason codes are:

Chapter 2. Database Manager exit routines 55

PAPLDBNZ
IMS DB rejected identify request.

PAPLOPC
Operator responded cancel to DFS690 message.
After the routine has completed analyzing the PAPL, it can insert the following
return codes in the PAPLRETC field to tell the DRA what to do next:
Code Returned

Meaning

0 Wait for a DRA TERM request.

4 Proceed with DRA termination (the Control exit routine will not be called
again).

PAPLRETC is passed to the Control exit routine and must be reset.
The DRA fails

When the DRA fails, the contents of the PAPL passed to the CCTL are:
Field Contents

PAPLFUNC
Failure function code

PAPLDRAF
DRA failure subfunction code.

PAPLUSER
User data.

PAPLDBCT
IMS DB identifier.

PAPLRCOD
Reason code

The reason codes possible are:

PAPLGMF
GETMAIN failed.

PAPLSSF
Subsystem interface failure.

PAPLDRAA
DRA abend.

PAPLESTF
Unable to establish DRA ESTAE.

The DRA expects no return code in PAPLRETC. The DRA fails and the Control exit
routine is not called when the failure occurs while processing a TERM request. In
this case, the PAPL return code of the returned TERM PAPL contains the failure
code.

56 Exit Routines

IMS DB fails

When IMS DB fails, the DRA first issues a U002 abend to all DRA thread TCBs. In
some cases, the DRA itself can also get a U002 abend and call the Control exit
routine as in the previous failure event. Otherwise, the contents of the PAPL
passed to the CCTL are:

Field Contents

PAPLFUNC
Failure function code.

PAPLDBCF
IMS DB failure subfunction code.

PAPLUSER
User data.

PAPLDBCT
IMS DB identifier.

PAPLRETC
Code returned from IMS DB.

PAPLRCOD
Reason code. The reason code is:

PAPLABND
IMS DB abend.
The DRA expects no return code in PAPLRETC.

After the exit routine analyzes the PAPL, it can insert the following identifier and
return codes in the output fields of the PAPL to notify the DRA of the next action
to take:

Field Contents

PAPLDBCN
New IMS DB identifier.

PAPLRETC

Code returned.
PAPLRETC is passed to the Control exit routine and must be reset.
Code Returned

Meaning

0 Wait for a DRA TERM request.

4 Wait for DRA termination.

8 Try to identify again with the new IMS DB identifier in the PAPLDBCN
field.

IMS DB terminates normally using the /CHECKPOINT FREEZE
command

After IMS DB terminates using a /CHECKPOINT FREEZE command, the contents
of the PAPL passed to the CCTL are:

Field Contents

Chapter 2. Database Manager exit routines 57

58

Exit Routines

PAPLFUNC
Failure function code.

PAPLDBCC
IMS DB /CHE FREEZE subfunction code.

PAPLUSER
User data.

PAPLDBCT
IMS DB identifier.

After the exit routine analyzes the PAPL, it can insert the following identifier and
return codes in the output fields of the PAPL to notify the DRA of the next action
to take:

Field Contents

PAPLDBCN
IMS DB identifier.

PAPLRETC
Code returned.

Code Returned

Meaning

0 Allow the DRA to shut itself down.

4 Terminate DRA immediately.

8 The current DRA threads are allowed to complete all current calls and are
then terminated. The DRA then reidentifies with the new IMS DB
identifier.

After the CCTL sets the return code equal to 0, the DRA follows the rules of the
/CHECK FREEZE command (for example, it allows the current threads to complete
their units of work). After the last thread completes, the DRA terminates. The
invocation of the Control exit routine signals the completion of the DRA shutdown
process.

The DRA terminates due to a Control exit routine request
After the DRA terminates due to a Control exit routine request, the contents of the
PAPL passed to the CCTL are:

Field Contents

PAPLFUNC
Failure function code.

PAPLDRAF
DRA failure subfunction code.

PAPLUSER
User data.

PAPLDBCT
IMS DB identifier.

PAPLRCOD
Reason code.

The possible reason codes are:

PAPLITCF
DRA terminated due to a Control exit routine request.

PAPLMXN2
Statistic #1 (see IMS Version 13 System Programming APIs)

PAPLMIN2
Statistic #2 (see IMS Version 13 System Programming APIs)

PAPLHIT2
Statistic #3 (see IMS Version 13 System Programming APIs)

PAPLTIM2
Statistic #4 (see IMS Version 13 System Programming APIs)

Since the DRA terminated, the CCTL does not pass any return codes to IMS DB.

Control is passed to this exit routine at the end of the DRA cleanup when the DRA
termination is due to a previous Control exit routine request. For example, after
being notified of a IMS DB failure or a /CHE FREEZE command, the Control exit
routine terminates the DRA.

Status exit routine

The Status exit routine prevents a z/OS S0C4 abend from occurring when a CCTL
thread attempts to access nonexistent storage.

The database resource adapter (DRA) passes control to the Status exit routine
when a task control block (TCB) for a DRA thread in a scheduled state is
collapsing.

The scheduled state is the time between the DRA's successful processing of a
schedule request and the DRA's successful processing of one of the following
thread function requests:

ABTTERM
Abort unit of work.

COMTERM
Commit unit of work.

TERMTHRD
Terminate thread.

Related Reading: Refer to the section on CCTL DRA function requests in IMS
Version 13 System Programming APIs for a description of the thread functions.

The status exit is called to:

* Notify CCTL that the DRA thread is about to terminate for a reason other than a
request from the CCTL.

* Allow CCTL to stop reference, by the CCTL thread, to storage that IMS DB
acquired on behalf of the thread.

* Notify CCTL to free the storage that IMS DB acquired for the thread.
When a DRA thread successfully processes a schedule request, the address of the

storage that IMS DB acquired in the CCTL's private storage is returned to the
CCTL. The storage is acquired and initialized with the user's PCBLIST and PCBs.

Chapter 2. Database Manager exit routines 59

60

Exit Routines

The CCTL thread uses the PCBLIST and PCBs to make DL/I requests and to
receive the results of the requests. The storage is referred to as user private storage
(UPSTOR).

Related Reading: See the topic on CCTL DRA function requests in IMS Version 13
System Programming APIs for PAPL fields returned to CCTL when the schedule
request is completed.

The CCTL thread has access to UPSTOR for the duration of the thread's scheduled
state. When the scheduled state terminates normally by a request from the CCTL,
IMS DB manages UPSTOR storage.

Reference to UPSTOR by the CCTL thread after the normal end of a scheduled
state can result in a z/OS S0C4 abend if IMS DB has freed the storage. If IMS DB
allocated the same storage to another thread, reference to UPSTOR can overlay the
second thread's data.

When the thread terminates abnormally during the scheduled state, the Status exit
routine notifies the CCTL. The CCTL is responsible for freeing UPSTOR. The
responsibility for freeing UPSTOR is assigned to the CCTL to ensure that UPSTOR
is freed at the proper time.

The UPSTOR area is acquired using the GETMAIN macro by DRA thread TCBs
out of subpool 0 (subpool 132 if the CCTL application is running with the public
key option set).

The default Status exit routine provided by the DRA frees UPSTOR. If the CCTL
chooses the default exit routine, it can incur a program check abend trying to
access that storage because the CCTL might execute after the DRA has freed the
storage.

The contents of the registers on entry are:

Register
Contents
1 Address of the PAPL.
13 Address of standard 18-word save area that the Status exit routine can use.
14 Return address.

15 Entry point address.

If DRA thread termination occurs during processing of a CCTL request, the CCTL's
PAPL is passed to the Status exit routine. Otherwise, the DRA builds a PAPL.

The contents of the PAPL that are significant for the call are:

Field Contents

PAPLUSR3
The value CCTL passed in PAPLUSR3 on the INIT request.

PAPLTOKT
The thread token set up by the CCTL. This is the token which the CCTL
passed, in PAPLTTOK, on the SCHED request.

PAPLUPSA
Address of UPSTOR.

PAPLUPSL
Length of UPSTOR.

The DRA expects no return code in the field PAPLRETC.

Data Capture exit routine

You can write a Data Capture exit routine that receives control whenever a
segment, for which the exit routine is defined, is updated. Your exit routine
processes the data after the DL/I call completes but before control is returned to
the application program.

This topic contains Product-sensitive Programming Interface information.

When an application program updates an IMS database with a DL/I insert,
replace, or delete call, the original and updated data, as applicable, are passed and
made available to a Data Capture exit routine. The DL/I call is considered
complete and the PCB status is set when the exit routine is called. The following
figure shows how control passes among the application, the full-function or DEDB
database, and the exit routine.

Application

(Full-function
databases or
DEDBs)

Data Capture |

exit routine N~

DB2

Figure 1. Calling order with data capture

You might want to capture changed data so that you can replicate that data to a
Db2® for z/OS database as shown in the previous figure.

As an alternative to capturing data synchronously, you can also propagate
captured data asynchronously by using either of the following methods:

* Use the logging option on the EXIT= parameter of DBDGEN.

* Use IMS DataPropagator and specify that the data is to be propagated
asynchronously.

The following table describes data capture support for IMS environments for both
full-function and DEDB databases.

Chapter 2. Database Manager exit routines 61

62

Exit Routines

Table 14. Data capture support for IMS environments

CICS® CICS IMS IMS

DB/CTL Batch Batch IMS IFP BMP IMS MPP
Data Capture Exit No Yes' Yes Yes Yes Yes
EXIT=exit_name
Asynchronous Data Yes Yes' Yes Yes Yes Yes

Capture EXIT= *, LOG

Note: 'BATCH is a pure IMS batch environment that is available with CICS DB/CTL (no
CICS code executing).

Subsections:
* [“About this routine”|

+ [“Communicating with IMS” on page 65|

* [“Extended Program Communication Block (XPCB)” on page 67|
+ [“Extended Segment Data Block (XSDB)” on page 69|
* [“Writing the routine in supported languages” on page 70|

* [“Storage requirements for Data Capture” on page 71|

* |“Storage failure” on page 72|

+ |“Data security and integrity” on page 72|

About this routine

The main purpose of capturing updated data and making it available to an exit
routine is to propagate the IMS data to the relational environment of Db2 for
z/0S. You can write your own exit routine, use a separate product, use IBM IMS
DataPropagator for z/OS, or write a IMS DataPropagator-supported exit routine. If
you write your own exit routine, you can code it to perform tasks other than data
propagation. The sample Data Capture exit routine provided at the end of this
topic only propagates data.

Restriction: This exit routine cannot be used with CICS, because it conflicts with
CICS architecture. (Asynchronous Data Capture does work with DBCTL.) Even
though the exit routine works with captured IMS data, CICS cannot use it.

Attributes of the routine

Regardless of its function, you must write the routine in assembly language, C
language, COBOL, or PL/I. Routines written in high-level languages running
under Language Environment for z/OS are not supported. Sample exit routines are
provided in COBOL and PL/I

Running Data Capture exit routines under Language Environment for z/OS might
result in performance problems unless the dependent region that is running the
application that causes the Data Capture exit routine to execute is pre-initialized in
the Language Environment for z/OS. This can be done with the preinitialization
list. Otherwise, every execution of the application in a dependent region causes the
Language Environment for z/OS to be initialized each time the application is
invoked and stopped each time the application terminates.

Binding the routine

If you bind the exit routine as either RENT or REUSE, it remains in storage until
the region terminates as if the exit routine was preloaded. However, non-REUSE
exit routines must be loaded each time, because they are deleted from storage after
each call.

Loading the routine

IMS loads the exit routine the first time IMS calls it; preloading the exit routine is
not necessary. However, runtime library routines used by high-level languages
should be preloaded. After abnormal termination in an IMS Fast Path region (IFP)
or in a message processing region (MPP), the exit routine is deleted and must be
reloaded. The exit routine must be reloaded when:

* A pseudo or standard abend of the application that is running in the region
occurs (regardless of whether the region itself abends along with the
application).

* The data capture routine gets an XPCB return code of 16.

Specifying data options

In addition to the necessary control information, you can have the following data
passed to your exit routine. The data is chained together using pointers.

Physical concatenated key
The fully concatenated key of each segment in the physical hierarchy,
including the updated segment. For logical relationships and secondary
indexes, this key differs from the key in the PCB feedback area.

Physical segment data
The physical segment updated by the application program, without any
PSB field sensitivity.

Data before a replace
The data as it looked before it was updated. Your exit routine must
determine what fields the application program changed.

Path data
The physical path data from the root segment to the parent of the updated
segment.

Cascade delete data
The data deleted by IMS when an application program deleted a segment
that is higher in the hierarchy.

The data is in the same format that was returned to the application program,
excluding PSB field sensitivity. For logical children, the segment data follows the
logical parent concatenated key. For segments with compression/edit exit routines
defined for them, the data is in its expanded or encoded form. For variable-length
segments, the first two bytes contain the length (LL') for the segment.

Additional guidelines
The Data Capture exit routine is called whenever a segment is updated that has
the exit routine defined, regardless of the execution environment. The exit routine

uses the INQY ENVIRON call to identify the execution environment (batch or
online) and determine what functions are available.

Chapter 2. Database Manager exit routines 63

64

Exit Routines

The exit routine can issue any DL/I calls allowed by the PSB using the AIB
Interface (AIBTDLI). However, any updates that the exit routine makes are not
captured and do not call an exit routine.

The Data Capture exit routine is treated as an extension of the application
program; IMS attributes SQL or DL/I calls made by the exit routine to the
application program. The exit routine and the application run under the same unit
of work. SQL and DL/I updates made by the exit routine are committed or
aborted along with the application program at sync-point time with the same
integrity as the application. The exit routine must follow the same rules as the
application program whether the routine makes IMS or Db2 for z/OS requests.

For data propagation, all DL/I updates must be passed to the exit routine to
determine whether to propagate the change to Db2 for z/OS or not. Both the IMS
data and Db2 for z/OS data must be available and on the same z/OS system for
either update to occur.

The Data Capture exit routine is called based on specification in the DBD rather
than in the PSB. The exit routine is always called. It is also a global exit routine:
once implemented for any segment, all activity in that segment causes IMS to call
the exit routine, regardless of which PSB is active. Any performance impact that
the exit routine causes occurs across the entire system.

Defining the routine for segments

The Data Capture exit routine is specified for a particular segment during
DBDGEN. Failure to locate the exit routine during processing results in an
application program abend.

DBDGEN supports the parameter, EXIT=, on the DBD and SEGM statements. If
specified on the DBD statement, the parameter applies to all segments within the
physical database structure. If specified on the SEGM statement, you can override
the specification on the DBD, or can limit the parameter so that only selected
segments are propagated when updated. As a SEGM parameter, EXIT= does not
apply to other segments; physical children do not inherit the parameters of any of
their parents.

You can specify multiple exit routine names, each with different data options, on a
single DBD or SEGM statement.

Multiple exit routines

A single DL/I call might call your exit routine more than once or it might call
more than one exit routine. Multiple exit routines are called when there are:

* Multiple exit routines per segment
* Path calls
* Cascade deletes

Multiple exit routines are called in succession before returning to the application
program. The sequence depends on the reason multiple exit routines are called:

* Multiple exit routines are defined.

When multiple exit routines are defined for a single physical segment, the
routines are called based on DBDGEN definition order. The first exit routine
listed in the DBD or SEGM statement is called, followed by each subsequent exit
routine defined for that segment.

* Multiple segments are updated.

When multiple physical segments are updated in a single call, the routines are
called in hierarchical order. IMS calls the exit routines for the segments in the
same order that the segments were physically updated:

— Top-down for path inserts and path replaces:

Parents must be inserted before dependents. The exit routine for the parent
segment must be called before the dependent segment’s exit routine.

— Bottom-up for cascade deletes:

The dependent segment's exit routine is called before the parent's exit routine.
The root segment's exit routine is called last. If the dependent segment has
several exit routines defined for it, they are all called at this time. Calling the
exit routines in bottom-up order allows propagation to Db2 for z/OS without
requiring referential integrity.

For each segment type, multiple segment occurrences might be deleted as
part of the cascade delete. Each exit routine is called once for each segment
occurrence that is deleted. The order the exit is called is the same order in
which DL/I deleted the segments.

Using IMS callable services with this routine
This exit is not eligible to use IMS callable services.
Communicating with IMS

Each segment that is passed in a dependent region and has the Data Capture exit
routine defined for it has two control blocks available for its use. Both the
Extended Program Communication Block (XPCB) and the Extended Segment Data
Block (XSDB) reside in private storage and have key 8. They are passed to the exit
routine according to the AMODE of the exit: above the 16 MB line for AMODE 31,
and below the 16 MB line for AMODE 24.

The order in which the control blocks receive control depends on the type of data
updated and passed to the Data Capture exit routine. The following figure shows
how control flows between the XPCB and the XSDB.

Chapter 2. Database Manager exit routines 65

Register 1

XPCB
|7 | ﬁ
a b c

v : v

first
XSDB XSDB XSDB

l

subsequent
XSDBs

l

last
XSDB

Figure 2. Control block flow with data capture

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of the XPCB address
13 Address of save area

14 Return address to IMS

15 Entry point of exit routine

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers. Return and
reason codes are placed in the XPCB.

Return and reason codes

The XPCB contains fields for the exit routine to communicate its status to IMS.
These fields are initialized to binary zeros. The return code set by the exit routine
defines the type of condition encountered; the higher the number, the more severe
the error. You can also assign a reason code to return codes of 8 or greater. The
reason code is for your use; IMS uses only the return code.

The following table outlines the return and reason codes that the exit routine

returns and places in the XPCB. If the return code placed in the XPCB is invalid,
an abend occurs and an invalid return code indicator is set.

66 Exit Routines

Table 15. XPCB return codes

Return Description Action DFS3314
code message
0 Good return. Normal completion of exit No
routine.
4 Indicates the exit routine wants Exit routine is not called for No
to ignore the DL/T call. any additional segments for
this DL/T call.
8 Exit routine encountered an DL/I call is terminated Yes
error during the DL/I call and without calling any other exit
wants to return to the routines and control is
application. returned to application
program.
12 This copy of the exit routine is Exit routine is deleted from Yes
not to be called again. (Used storage.
with a “dummy” exit routine.)
16 Abend the exit routine and the = Application program is Yes
application program. abended with a U3314.
20 Do not make further calls to this Terminate data capture for Yes

routine, or any other Data
Capture routines, for this region.

this region.

After an abend in an IFP or MPP region with return code 12 or 20, the interface
control blocks are reinitialized and the exit work area is reset. The exit routine can
then be called again.

Extended Program Communication Block (XPCB)

The XPCB identifies the segment and call functions, provides the address of a

work area, and contains additional information that is passed to the exit routine.

Every XPCB identifies the physical function performed by DL/I (insert, replace, or
delete) and points to the updated data that is passed to the exit routine. The
following two tables describe the contents of the XPCB.

For reentrant exit routines, the address of a 256-byte work area is passed in the
XPCB. The exit routine can use the work area to save information. One work area
exists for each exit routine, and it is initialized to binary zeros the first time the
exit routine is given control.

Table 16. XPCB by offset

Offset Field name Offset Field name Offset Field name

0 Eye catcher 4 Version 6 Release

8 User_Exit_Name 16 Exit_Return_Code 18 Exit_Reason_Code
20 Database_Name 28 DBD_Version_Ptr 32 Segment_Name
40 Call_Function 44 Physical_Function 48 reserved

52 DB_PCB_Ptr 56 DB_PCB_Name 64 INQY_Output_Ptr
68 I0_PCB_Ptr 72 Environment_Flags 73 reserved

74 Conc_Key_Length 76 Conc_Key_Ptr 80 Data_XSDB_Ptr
84 Before_XSDB_Ptr 88 Path_XSDB_Ptr 92 Set_Rols_Token
96 Next_Twin_Ptr 100 Cmd_Codes_Ptr 104 Exit_Work_Ptr

Chapter 2. Database Manager exit routines

67

Table 16. XPCB by offset (continued)

Offset Field name Offset Field name Offset Field name

108 Null_Ptr 112 reserved 116 Call_Timestamp

Table 17. XPCB alphabetically

Field name Offset Data type Length Field description

Before_XSDB_Ptr 84 Pointer 4 Address of XSDB for data before it was replaced.
Zero if not a physical replace or if data not
captured.

Call_Function 40 Character 4 Call used by application to update segment: ISRT,
DLET, REPL, FLD (field), or CASC (cascade).

Call_Timestamp 116 Character 8 Time stamp of completion of DL/I call. Obtained
from Store Clock instruction.

Cmd_Codes_Ptr 100 Pointer 4 Address of command codes. This field points to a
data area that has the same format as the
COMMAND_CODES in the CAPD block format.

Conc_Key_Length 74 Fixed 2 Length of the segment concatenated key for
physical path. Zero if data not captured. Key is
optional.

Conc_Key_Ptr 76 Pointer 4 Address of the segment concatenated key for
physical path. Zero if data not captured. Key is
optional.

Database_Name 20 Character 8 Name of physical database that contains the
updated segment.

Data_XSDB_Ptr 80 Pointer 4 Address of XSDB for segment data. Zero if data
not captured.

DBD_Version_Ptr 28 Pointer 4 Address of variable length character string to
identify the DBD used for update. First 2 bytes
contain length of string, followed by string itself.
String is from DBD VERSION= parameter if it
was used for DBDGEN. Otherwise, string is
date/time of DBDGEN.

DB_PCB_Ptr 52 Pointer 4 Address of database PCB used for DL /I call.

DB_PCB_Name 56 Character 8 The 8-byte name of database PCB used for DL/I
call. Null if name not assigned during PSBGEN
with the label or PCBNAME= parameter.

Environment_Flags 72 Flag byte 1 Flag bits describing execution environment.

Exit_Return_Code 16 Fixed 2 Return code from exit routine.

Exit_Reason_Code 18 Fixed 2 Reason code from exit routine.

Exit_Work_Ptr 104 Pointer 4 Address of 256-byte work area.

Eye catcher 0 Character 4 "XPCB'

INQY_Output_Ptr 64 Pointer 4 Address of output of an INQY ENVIRON call.

10_PCB_Ptr 68 Pointer 4 Address of I/0O PCB.

Next_Twin_Ptr 96 Pointer 4 Address of XSDB for the data of the twin that

follows the segment being inserted. Zero if not a
twin or if no other twins exist for the non-unique
segment.

68 Exit Routines

Table 17. XPCB alphabetically (continued)

Field name Offset Data type Length Field description

Null_Ptr 108 Pointer 4 Zero address for use as null address for languages
that do not recognize a zero address as null (such
as PL/I).

Path_XSDB_Ptr 88 Pointer 4 Address of XSDB for physical root when path
data option requested. XSDBs for path data are
chained together, in descending hierarchical order,
from physical root to parent of updated segment.
Last XSDB has a zero pointer.

Physical_Function 44 Character 4 Physical call function performed: ISRT, DLET, or
REPL.

Release 6 Character 2 XPCB release indicator. Along with version,
identifies the level of the control block. The
current release is R3.

Segment_Name 32 Character 8 Physical segment name of segment updated.

Sets_Rols_Token 92 Hexadecimal 4 Token that is used to identify the processing scope

data between the SETS and ROLS calls.

User_Exit_Name 8 Character 8 Entry point name of exit routine.

Version 4 Character 2 XPCB version indicator. Along with release,

identifies the level of the control block. The
current version is V1.

Extended Segment Data Block (XSDB)

The XPCB points to the first XSDB. For path data, subsequent XSDBs are chained
together. The XSDB points to the updated data that is passed to the exit routine. It
contains additional information that is also passed. The following two tables
describe the contents of the XSDB.

Table 18. XSDB by offset

Offset Field name Offset Field name Offset Field name

0 Eye catcher 4 Version 6 Release

8 Next_Ptr 12 Database_Name 20 Segment_Name

28 Physical_Path 29 CMD_CODE_R 30 reserved

32 Segment_Level 34 Key_Length 36 Key_Ptr

40 LP_Key_Length 42 Segment_Length 44 Segment_Ptr

48 reserved

Table 19. XSDB alphabetically

Field name Offset Data type Length Field description

CMD_CODE_R 29 Flag byte 1 Subset pointer command codes R1 through R8. Each bit
represents whether or not the corresponding command
code number was specified on the SSA.

Database_Name 12 Character 8 Name of physical database that contains the updated
segment.

Eye catcher 0 Character 4 "XSDB'

Key_Length 34 Fixed 2 Length of key for segment. Zero if segment not keyed.

Chapter 2. Database Manager exit routines 69

Table 19. XSDB alphabetically (continued)

Field name Offset Data type Length Field description

Key_Ptr 36 Pointer 4 Address of key for segment. Zero if segment not keyed.

LP_Key_Length 40 Fixed 2 Length of the concatenated key of a logical parent
segment included in segment data for logical children.

Next_Ptr 8 Pointer 4 Address of next XSDB in chain for path data. Zero for
last XSDB in chain.

Physical_Path 28 Character 1 Access by physical path (Y/N)

Release 6 Character 2 XSDB release indicator. Along with version, identifies
level of control block. The current release is R2.

Segment_Ptr 44 Pointer 4 Address of physical segment data.

Segment_Length 42 Fixed 2 Length of physical segment data.

Segment_Level 32 Fixed 2 Level of segment in physical database.

Segment_Name 20 Character 8 Physical segment name for segment data passed in this
block. Different from segment name in XPCB for path
data.

Version 4 Character 2 XSDB version indicator. Along with release, identifies

level of control block. The current version is V1.

70 Exit Routines

Writing the routine in supported languages

Although the Data Capture exit routine can be written in assembler language, C,
COBOL, or PL/I, you must follow certain guidelines depending on which
language you use.

Assembler

The exit routine is entered in primary mode, but the access registers can be
nonzero.

C

C does not support variable-length character strings using integer lengths, such as
those passed in the XPCB and XSDB. Key and segment data passed to the exit
routine is terminated by “null” (binary zero) values. Any null value in the data
itself might result in an invalid string length.

The following declarations and statements are used to locate the XPCB. Declare
XPCB_TYPE_PTR as a pointer to the XPCB structure.

XPCB_TYPE_PTR *TPTR;

TPTR = (XPCB_TYPE_PTR *) _ sysplist;

XPCB = *TPTR;

The exit routine must be defined as a main program with the PLIST(IMS) and
ENV(IMS) options specified. Use the following format to specify these options:

#pragma runopt(env(IMS), plist(IMS))
COBOL
The exit routine operates under a separate run unit from the application program.

The method used to establish the run unit depends on the compiler or on the
RES/NORES compiler option. For all COBOL programs compiled with newer

compilers, and older COBOL programs compiled with resident (RES), the exit
routine is given control by LINK. For older COBOL programs compiled with
nonresident (NORES), it is given control directly.

Recommendation: Use a compiler with RES and code the exit routine as reentrant
(RENT) and AMODE 31. With older compilers and NORES, the routine must be
AMODE 24 and it must not be reentrant.

Attention: You can use GOBACK to terminate the exit routine run unit and
return to the application program, but do not use STOP RUN and EXIT
PROGRAM because they are not supported and might cause unpredictable results
or abends.

The procedure division is:
exitname USING XPCB

PL/1

The exit routine must be compiled as a main program. The entry point can be
PLICALLA, so that the exit routine can use the assembler interface or use PL/1
compile-time option SYSTEM(IMS)

The procedure statement is:
exitname: PROCEDURE(XPCB_PTR) OPTIONS (MAIN);

Storage requirements for Data Capture

As your application program issues a DL/I call to update the database, the
updates are stored as required for use by the Data Capture exit routine or the
Asynchronous Data Capture. Because the amount of storage required can be
significant for update functions like a cascade delete, a data space is acquired for
each dependent region that uses the exit routine. The attributes of the data space
vary for online and batch-dependent regions, as illustrated in the following table.

Table 20. Data space characteristics (Data Capture exit routine and Asynchronous Data Capture)

Attribute Online Dependent Region Batch Dependent Region
Number of data spaces 1 per dependent region 1

Data space name SYSDFS01 @SYSDFS1

Storage key Key 7, not fetch protected to allow access from Key 8

dependent region in key 8

Storage size

By region controller By region controller. Default
size used if space requested
violates total size of key 8
data spaces.

Storage obtained During region initialization During region initialization
if exit routines are defined
Storage owned By region controller TCB By batch TCB

Added to access list

Dependent region address space, for access by program Batch TCB
controller TCB in message regions. Control regions SAS

address space for access by DL/I in an IMS DB/DC

system when data capture is required. DEDB capture

runs under program controller TCB.

Chapter 2. Database Manager exit routines 71

Table 20. Data space characteristics (Data Capture exit routine and Asynchronous Data Capture) (continued)

Attribute

Online Dependent Region Batch Dependent Region

Deleted from access list

Dependent region always accessed. Deleted from control Not deleted
region SAS access list during thread termination if added
to access list by data capture.

Data space cleared

During normal thread termination for message regions if Not cleared
data space storage was referenced.

Data space deleted

At region termination. At z/0OS job termination

72

Exit Routines

You can control the use of data spaces with the SMF IEFUSI Step Initiation exit
routine for key 8 batch regions. This exit routine determines the number and size
of the data space available for key 8. If you have batch application programs that
call the Data Capture exit routine, the data space specified for key 8 must be large
enough to accommodate the data space requirements of data capture.

Storage failure

The two types of storage failure for data capture are:

* Data space not obtained. This type of error occurs in batch regions when a data
space is not specified for each region. Online dependent regions can always
obtain data space.

* Insufficient storage in the data space. In online dependent regions, storage space
is specified by the region controller. Some database functions, such as cascade
delete, require more than the space allocated for successful completion. Batch
dependent regions can be limited in data space size. You must specify a data
space large enough for data capture to complete successfully.

Either type of storage failure terminates the region with a U814 abend.
Data security and integrity

The Data Capture exit routine is an extension of the application program with the
same capabilities as the application program; the exit routine and the application
have equal authorization and limitations. IMS and Db2 for z/OS resources that the
exit routine uses must be authorized in the IMS PSB or DB2® PLAN for the
application program. This behavior ensures that the application program can access
any IMS or Db2 for z/OS data that is available to the exit routine.

The data and the exit routine operate in unprotected, key-8 storage. The exit
routine is able to modify data or control blocks that can affect the successful
operation of the application program. The data passed to the exit routine is the
physical segment data. With PSB field sensitivity, this data might include data that
is unavailable to the application.

Related concepts:

[[Asynchronous data propagation (System Programming APIs)|
[# [2/0S: Dynamic Exits Facility]

[[IMS Configuration Manager for z/OS V2.2 |
Related reference:

[# [INQY call (Application Programming APIs)
[# [Examples of the DBDGEN utility (System Utilities)|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.spr/ims_propogate_captureddata.htm#ims_propogate_captureddata
http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ieae400/dynexit.htm
http://www.ibm.com/support/knowledgecenter/SSF2ZH_2.2.0/gplu-overview.dita
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apr/ims_inqycall.htm#ims_inqycall
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdexam.htm#ims_dbdexam

Related information:

[# [0814 (Messages and Codes)|

Sample Data Capture exit routine

A Data Capture exit routine can receive control whenever a segment, for which the
exit routine is defined, is updated.

This topic provides examples of the Data Capture exit routine in COBOL and PL/I.
The exit routine can also be written in assembler or C.

Subsections:

» ['COBOL]

+ [“PL/1” on page 75|

coB

The following example is the Data Capture exit routine in COBOL.

oL

IDENTIFICATION DIVISION.
PROGRAM-ID. DLICDCE.

REMARKS . *

___ *

DESCRIPTIVE NAME : HOSPITAL DATA BASE SEGMENT EXIT *

___ *

THIS IS A SAMPLE IMS EXIT. THIS WILL BE CALLED BY IMS. *

THIS PROGRAM PROPAGATES DATA FROM IMS TO DB2 SYNCHRONOUSLY.*

THE NAME OF THIS PROGRAM LOAD MODULE IS SPECIFIED *

ON SEGM MACRO DURING DBDGEN FOR THE HOSPITAL DATA BASE. =

*

THE DATA OPTIONS SELECTED FOR THIS EXIT : *

EXIT=(KEY,DATA,NOPATH, CASCADE) *

___ *

INPUT FOR THIS PROGRAM : XPCB, XSDB. *

*

OUTPUT: DISPLAY A MESSAGE WHEN THE IMS UPDATE IS NOT *

ISRT, REPL, DELE, CASC. DISPLAY 'SQLERRM' WHEN

SQLERROR OCCURS. *

*

UPDATES: UPDATES DB2 ILLNESS TABLE *

___ *

LOGIC: THIS PROGRAM IS CALLED BY IMS AFTER THE IMS UPDATEw

TO ILLNESS SEGMENT AND BEFORE IMS RETURNS TO THE

IMS APPLICATION PROGRAM. *

*

XPCB IS RECEIVED AS INPUT TO THIS PROGRAM. *

IF THERE IS NO ADDRESS OF XSDB IN XPCB THIS *

PROGRAM WILL RETURNS TO IMS OTHERWISE - *

*

LOGIC: THIS PROGRAM IS CALLED BY IMS AFTER THE IMS UPDATEw

WE GET THE ADDRESS OF XSDB FROM XPCB, FROM XSDB =

WE GET THE ADDRESS OF ILLNESS SEGMENT CONCATENATED*

KEY, AND ADDRESS OF THE PHYSICAL SEGMENT DATA *

*

UPDATE THE DB2 ILLNESS TABLE WITH THE UPDATED IMS *

SEGMENT DATA. *

__ *
INSTALLATION. IBM - SANTA TERESA LABORATORY.

DATE-WRITTEN.

JANUARY 1990.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-3090.
OBJECT-COMPUTER. IBM-3090.
DATA DIVISION.

WORKING-STORAGE SECTION.

EXEC SQL

INCLUDE SQLCA
END-EXEC. #--- DB2 ILLNESS TABLE DECLARATION

Chapter 2. Database Manager exit routines

73

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.msgs/msgs/0814.htm#imsabend0814

74

Exit Routines

EXEC SQL
DECLARE SYSADM.ILLNESS TABLE
(ILLDATE VARCHAR (6) NOT NULL,
PATNO VARCHAR (5) NOT NULL,
ILLNAME VARCHAR (10) NOT NULL)
END-EXEC.

Ko

01 W-POINTER POINTER.
01 W-POINTER-R REDEFINES W-POINTER PIC 9(8) COMP.

LINKAGE SECTION.

*--- EXIT SEGMENT CONTROL BLOCK

01 XPCB.
05 EYECATCHER PIC X(04).
05 VERSION PIC X(02).
05 RELEASE-ID PIC X(02).
05 EXIT-NAME PIC X(08).
05 EXIT-RETURN-CODE PIC 9(04) COMP.
05 EXIT-REASON-CODE PIC 9(04) COMP.
05 DATABASE-NAME PIC X(08).
05 DBD-VERSION-PTR POINTER.
05 SEGMENT-NAME PIC X(08).
05 CALL-FUNCTION PIC X(04).
05 PHYSICAL-FUNCTION PIC X(04).
05 FILLER PIC 9(08) COMP.
05 DB-PCB-PTR POINTER.
05 DB-PCB-NAME PIC X(08).
05 INQY-OUTPUT-PTR POINTER.
05 10-PCB-PTR POINTER.
05 ENVIRONMENT-FLAGS PIC X.
88 IMS-ENH-SUPPORT VALUE X'80'.
* RRS SUPPORT IS AVAILABLE IN SYSTEM
88 IMS-RRS-ENABLED VALUE X'40'.
* RRS=Y WAS SPECIFIED
88 CALL_AT_COMMIT VALUE X'20'.
* SET BY EXIT - CALL DURING COMMIT
88 XPCB_LOGX_FORMAT VALUE X'10'.
* REDUCED 9904 FORMAT
88 XPCB_EXIT_WAS_CALLED VALUE X'08'.
* INTERNAL FLAG USED BY™ IMS
88 XPCB_DPROP_EXIT VALUE X'04'.
* SET BY DPROP EXIT ROUTINE
05 FILLER PIC X.
* RESERVED
05 CONC-KEY-LENGTH PIC 9(04) COMP.
05 CONC-KEY-PTR POINTER.
05 DATA-XSDB-PTR POINTER.
05 BEFORE-XSDB-PTR POINTER.
05 PATH-XSDB-PTR POINTER.
05 FILLER POINTER.
05 FILLER POINTER.
05 FILLER POINTER.
05 EXIT-WORK-PTR POINTER.
05 NULL-PTR POINTER.
05 FILLER POINTER.
05 TIMESTAMP PIC X(08).
#--- EXIT SEGMENT DATA BLOCK
01 DATA-XSDB.
05 EYECATCHER PIC X(4).
05 VERSION PIC X(2).
05 RELEASE-ID PIC X(2).
05 NEXT-PTR POINTER.
05 DATABASE-NAME PIC X(8).
05 SEGMENT-NAME PIC X(8).
05 FILLER PIC X(4).
05 SEGMENT-LEVEL PIC 9(4) COMP.
05 KEY-LENGTH PIC 9(4) COMP.
05 KEY-PTR POINTER.
05 FILLER PIC 9(4) COMP.
05 SEGMENT-LENGTH PIC 9(4) COMP.
05 SEGMENT-DATA-PTR POINTER.
05 FILLER POINTER.
05 FILLER POINTER.
#--- ILLNESS SEGMENT DATA
01 LS-SEGMENT.
03 LS-ILLDATE PIC X(6).

03 LS-ILLNAME PIC X(10).
#--- ILLNESS SEGMENT CONCATENATED KEY

01 XPCB-CONCKEY.

02 LS-PATNO PIC X(5).
02 LS-ILLDT PIC X(6).
PROCEDURE DIVISION USING XPCB.
SET W-POINTER TO DATA-XSDB-PTR.
#--- LENGTH ZERO IF NOT CAPTURED

* IF W-POINTER-R EQUAL ZEROES GOBACK
* GOBACK
* END-IF

Ko

SET ADDRESS OF DATA-XSDB TO DATA-XSDB-PTR.
SET ADDRESS OF XPCB-CONCKEY TO CONC-KEY-PTR.
SET ADDRESS OF LS-SEGMENT TO SEGMENT-DATA-PTR.
K =
EXEC SQL
WHENEVER SQLWARNING CONTINUE
END-EXEC
EXEC SQL
WHENEVER SQLERROR GO TO BADSQL
END-EXEC
EXEC SQL
WHENEVER NOT FOUND GO TO BADSQL
END-EXEC

Ko
IF PHYSICAL-FUNCTION OF XPCB = "ISRT"

EXEC SQL
INSERT INTO SYSADM.ILLNESS
VALUES (::LS-ILLDATE,::LS-PATNO,
::LS-ILLNAME)
END-EXEC ELSE
IF PHYSICAL-FUNCTION OF XPCB
PHYSICAL-FUNCTION OF XPCB
EXEC SQL
DELETE FROM SYSADM.ILLNESS
WHERE (PATNO = ::LS-PATNO AND
ILLDATE = ::LS-ILLDATE)
END-EXEC
ELSE

"CASC" OR
"DLET"

IF PHYSICAL-FUNCTION OF XPCB = "REPL"

EXEC SQL
UPDATE SYSADM.ILLNESS
SET ILLNAME = ::LS-ILLNAME
WHERE (ILLDATE = ::LS-ILLDATE AND
PATNO = ::LS-PATNO)
END-EXEC
ELSE

DISPLAY "FUNCTION WASNT ISRT, REPL, DLET, OR CASC"
DISPLAY "--- NO SQL ACTION WAS TAKEN"

DISPLAY "PHYS FUNCTION IS "

DISPLAY PHYSICAL-FUNCTION OF XPCB

END-IF
END-IF
END-IF.
DISPLAY "SQLCODE " SQLCODE.
GOBACK.
BADSQL.
DISPLAY "SQLERRM".
MOVE 8 TO EXIT-RETURN-CODE OF XPCB.
MOVE SQLCODE TO EXIT-REASON-CODE OF XPCB.
GOBACK.

PL/

The following example is the Data Capture exit routine in PL/I.

Chapter 2. Database Manager exit routines

75

DLI2DB2: PROCEDURE(XPCB_PTR) OPTIONS(MAIN);

/*
K *
*REMARKS . *
K *
* DESCRIPTIVE NAME : HOSPITAL DATA BASE SEGMENT EXIT *
K *
* THIS IS A SAMPLE IMS EXIT THAT WILL BE CALLED BY IMS. *
* THIS PROGRAM PROPAGATES DATA FROM IMS TO DB2 SYNCHRONOUSLY.=
* THE NAME OF THIS PROGRAM LOAD MODULE IS SPECIFIED *
* ON SEGM MACRO DURING DBDGEN FOR THE HOSPITAL DATA BASE. *
* *
* THE DATA OPTIONS SELECTED FOR THIS EXIT ARE: *
* EXIT=(DLI2DB2,PATH,DATA, (CASCADE,PATH,DATA,NOKEY) *
K *
* *
* INPUT FOR THIS PROGRAM : XPCB, XSDB. *
* *
* OUTPUT: DISPLAY 'SQLERRM' WHEN SQLERROR OCCURS. *
* UPDATES: UPDATES DB2 TREATMT TABLE *
* *
* : RETURNS REASON CODE 14 RETURN CODE 16 WHEN PATH =
* NOT SPECIFIED ON THE DBDGEN EXIT STATEMENT, *
* RESULTING IN AN ABEND U3314. *
* *

*
*

LOGIC: THIS PROGRAM IS CALLED BY IMS AFTER AN UPDATE TO
THE TREATMT SEGMENT AND BEFORE IMS RETURNS TO
IMS APPLICATION PROGRAM.

THE ADDRESS OF AN XPCB IS PASSED TO THIS PROGRAM
FROM IMS. THE XPCB WILL PROVIDE THE ADDRESSES OF
THE XSDB FOR DATA, PATH DATA AND BEFORE DATA.

UPDATE THE DB2 TREATMT TABLE WITH THE UPDATED IMS
SEGMENT DATA.

HOSPITAL #x*skkkskskxksk

DATA BASE = *
* PATIENT * KEY FIELD IS PATNO
* *
Khkkkkkhkkhkkkkk
*
*
kkhkkkkkkhkkkkk
* *
» ILLNESS = KEY FIELD IS ILLDATE
* *

*kkkkkkkkkk
*
*

wxxxxxxxxxx KEY FIELD IS TRTDATE

* = FIELD, MEDICINE
* TREATMT = FIELD, QUANTITY
* * FIELD, DOCTOR (NOT IN DB2 TABLE)

kkkkkkkkkkk

TREATMENT TABLE

* PATNUMB * DATEILL * DATETRT * MEDICAT * AMOUNT =

ECE I S R R R S . . I N N I S R . I I I I
EEE I S T I R I SR R R R I I N R R I N I

K *

*/

[* wxx */

/* */

/% EXTENDED DATA BASE PCB --XPCB */

/* */

/* */

DECLARE

1 XPCB BASED(XPCB_PTR),

3 EYECATCHER CHAR(Z), /* "XPCB" EYECATCHER */
3 VERSION CHAR(2), /% XPCB VERSION INDICATOR */
3 RELEASE CHAR(2), /% XPCB RELEASE INDICATOR */
3 EXIT_NAME CHAR(8), /% SEGMENT EXIT NAME */
3 EXIT_RETURN_CODE FIXED BINARY (15), /* RETURN CODE */
3 EXIT_REASON_CODE FIXED BINARY (15), /% REASON CODE */

76 Exit Routines

3 ATABASE_NAME CHAR(8) , /* PHYSICAL DATA BASE NAME
3 DBD_VERSION_PTR POINTER, /* ADDRESS OF DBD VERSION ID
3 SEGMENT_NAME CHAR(8) , /* PHYSICAL SEGMENT NAME
3 CALL_FUNCTION CHAR(4), /* CALL FUNCTION
3 PHYSICAL_FUNCTION CHAR(4), /* DL/I PHYSICAL FUNCTION
3 FILLER1 FIXED BINARY (31), /* RESERVED
3 DB_PCB_PTR POINTER, /* ADDRESS OF DB PCB
3 DB_PCB_NAME CHAR(8) , /* NAME OF DB PCB
3 INQY_OUTPUT_PTR POINTER, /* ADDRESS OF "INQY" OUTPUT
3 10_PCB_PTR POINTER, /* ADDRESS OF I1/0 PCB
3 ENVIRONMENT-FLAGS CHAR(1), /* Environment Flags
/* IMS-ENH-SUPPORT X'80' RRS SUPPORT AVAILABLE IN SYSTEM =*/
/* IMS-RRS-ENABLED X'40' RRS=Y WAS SPECIFIED */
/* CALL_AT_COMMIT X'20"' SET BY EXIT-CALL DURING COMMIT =/
/* XPCB_LOGX_FORMAT X'10' REDUCED 9904 FORMAT */
/* XPCB_EXIT_WAS_CALLED X'08' INTERNAL FLAG USED BY IMS */
/* XPCB_DPROP_EXIT X'04' SET BY DPROP EXIT ROUTINE */
3 NEWFILLER CHAR(1), /* Reserved
3 FILLER2 FIXED BINARY (15), /* RESERVED
3 CONC_KEY_LENGTH FIXED BINARY (15), /* LENGTH OF FULLY
/* CONCATENATED KEY FOR SEGM
3 CONC_KEY_PTR POINTER, /* ADDRESS OF PHYSICAL FULLY
/* CONCATENATED KEY FOR SEGM
3 DATA_XSDB_PTR POINTER, /* ADDRESS OF XSDB FOR
/* PHYSICAL SEGMENT DATA
3 BEFORE_XSDB_PTR POINTER, /* ADDRESS OF XSDB FOR
/* PHYSICAL BEFORE DATA
3 PATH_XSDB_PTR POINTER, /* ADDRESS OF XSDB FOR
/% PHYSICAL PATH DATA
3 FILLER3 POINTER, /* RESERVED
3 FILLER4 POINTER, /* RESERVED
3 FILLERS POINTER, /* RESERVED
3 EXIT_WORK_PTR POINTER, /* ADDRESS OF 256 BYTE AREA
/* FOR THE EXIT
3 NULL_PTR POINTER, /* NULL POINTER VALUE
3 FILLER6 POINTER, /* RESERVED
3 CALL_TIMESTAMP CHAR(8), /* TIMESTAMP OF CALL
3 FILLER7 POINTER; /* RESERVED FOR NULLS AT END
DECLARE XPCB_PTR POINTER;
/*
/*
/* EXTENDED SEGMENT DATA --XSDB
/*
/*
DECLARE
1 XSDB BASED(XSDB_PTR),
3 EYECATCHER CHAR(4), /* "XSDB" EYECATCHER
3 VERSION CHAR(2), /* XSDB VERSION INDICATOR
3 RELEASE CHAR(2), /* XSDB RELEASE INDICATOR
3 NEXT_PTR POINTER, /* NEXT XSDB POINTER
3 DATABASE_NAME CHAR(8), /* PHYSICAL DATA BASE NAME
3 SEGMENT_NAME CHAR(8), /* PHYSICAL SEGMENT NAME
3 FILLER1 CHAR(4), /* RESERVED
3 SEGMENT_LEVEL FIXED BINARY (15), /* SEGMENT DATA BASE LEVEL
3 KEY_LENGTH FIXED BINARY (15), /* LENGTH OF PHYSICAL KEY
3 KEY_PTR POINTER, /* ADDRESS OF PHYSICAL KEY
3 FILLER2 FIXED BINARY (15), /* RESERVED
3 SEGMENT_LENGTH FIXED BINARY (15), /* LENGTH OF SEGMENT DATA
3 SEGMENT_DATA_PTR POINTER, /* ADDRESS OF SEGMENT DATA
3 FILLER3 POINTER, /* RESERVED
3 FILLER4 POINTER, /* RESERVED
3 FILLERS POINTER; /* RESERVED FOR NULLS AT END
DECLARE XSDB_PTR POINTER;
DECLARE
1 SEGMENT_XSDB LIKE XSDB BASED(XPCB.DATA_XSDB_PTR);
DECLARE /* TREATMENT SEGMENT */
1 SEGMENT_DATA BASED(SEGMENT_XSDB.SEGMENT_DATA_PTR),
3 SEGMENT_DATA_TRTDATE CHAR(6) , /* SEGMENT KEY */
3 SEGMENT_DATA_MEDICINE CHAR(10),
3 SEGMENT_DATA_QUANTITY CHAR(4),
3 SEGMENT_DATA_DOCTOR CHAR(10);
DECLARE
1 BEFORE_XSDB LIKE XSDB BASED(XPCB.BEFORE_XSDB_PTR);
DECLARE /* BEFORE TREATMENT SEGMENT =*/
1 BEFORE_DATA BASED(BEFORE_XSDB.SEGMENT_DATA_PTR),

3 BEFORE_DATA_TRTDATE CHAR(6), /% SEGMENT KEY =/
3 BEFORE_DATA MEDICINE CHAR(10),
3 BEFORE_DATA QUANTITY CHAR(4),

Chapter 2. Database Manager exit routines

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

77

3 BEFORE_DATA_DOCTOR CHAR(10);

DECLARE
1 PATH XSDB LIKE XSDB BASED(PATH_XSDB_PTR);
DECLARE /* PATIENT SEGMENT */
1 PATH_DATA BASED(PATH_XSDB.SEGMENT DATA_PTR),
3 PATHSEG_PATNO CHAR(5), /% SEGMENT KEY */
3 PATHSEG_NAME CHAR(10),
3 PATHSEG_ADDR CHAR(30) ; DECLARE
1 PATH2 XSDB LIKE XSDB BASED(PATH2 XSDB_PTR);
DECLARE /* PATIENT SEGMENT ~ */
1 PATH2_DATA BASED(PATH2_XSDB.SEGMENT DATA_PTR),
3 PATH2SEG_ILLDATE CHAR(6), /% SEGMENT KEY */
3 PATH2SEG_ILLNAME CHAR(10) ;
DECLARE PATH2_XSDB_PTR POINTER;
DECLARE /* TREATMENT TABLE ROW */
1 TREATROW BASED(XPCB.EXIT WORK PTR),
3 COL_PATNUM CHAR(5), /% FROM LEVEL 1 KEY /
3 COL_ILLDATE CHAR(6), /% FROM LEVEL 2 KEY /
3 COL_TRTDATE CHAR(6), /% FROM LEVEL 3 KEY +/
3 COL_MEDICINE CHAR(10), /* FROM LEVEL 3 */
3 COL_QUANTITY CHAR(4); /% FROM LEVEL 3 */

EXEC SQL
INCLUDE SQLCA;
/* - DB2 TREATMENT TABLE DECLARATION =

~

EXEC SQL
DECLARE SYSADM.TREATMNT TABLE
(PATNUMB VARCHAR (5) NOT NULL,
DATEILL VARCHAR (6) NOT NULL,
DATETRT VARCHAR (6) NOT NULL,
MEDICAT VARCHAR (10) NOT NULL,
AMOUNT VARCHAR (4) NOT NULL);

DECLARE /* CALL FUNCTIONS */
INSERT_FUNCTION CHAR(4) STATIC INIT('ISRT'),
DELETE_FUNCTION CHAR(4) STATIC INIT('DLET'),
REPLACE_FUNCTION CHAR(4) STATIC INIT('REPL'),
CASCADE_FUNCTION CHAR(4) STATIC INIT('CASC');

DECLARE ZERO FIXED BINARY (31) STATIC

INIT(0);
DECLARE SIXTEEN FIXED BINARY (31) STATIC
INIT(16);

o

PATH2_XSDB_PTR = PATH_XSDB.NEXT_PTR;

TREATROW.COL_PATNUM = PATH_DATA.PATHSEG_PATNO;
TREATROW.COL_ILLDATE = PATH2_DATA.PATH2SEG_ILLDATE;
TREATROW.COL_TRTDATE = SEGMENT_DATA.SEGMENT_DATA_TRTDATE;
TREATROW.COL_MEDICINE = SEGMENT_DATA.SEGMENT_DATA_MEDICINE;
TREATROW.COL_QUANTITY = SEGMENT_DATA.SEGMENT_DATA_QUANTITY;

EXEC SQL

WHENEVER SQLWARNING CONTINUE;
EXEC SQL

WHENEVER SQLERROR GOTO BADSQL;
EXEC SQL

WHENEVER NOT FOUND GOTO BADSQL;
IF XPCB.PATH_XSDB_PTR = XPCB.NULL_PTR

THEN DO;
GOTO BADPATH; /* PATH NOT SPECIFIED =/
END; ELSE DO; /* PRE-SET CODES TO ZERQ */
XPCB.EXIT_RETURN_CODE = ZERO;
XPCB.EXIT_REASON_CODE = ZERO;
END;
/* IF CALLED FOR DELETE OR CASCADE, */
/* PERFORM THE DB2 DELETE. */
/*====================================%/
IF XPCB.PHYSICAL_FUNCTION = DELETE_FUNCTION
THEN DO;
EXEC SQL
DELETE FROM SYSADM.TREATMNT
WHERE PATNUMB = ::TREATROW.COL_PATNUM AND
DATEILL = ::TREATROW.COL_ILLDATE AND
DATETRT = ::TREATROW.COL_TRTDATE;
END;
[*==%/
/* IF CALLED FOR INSERT, DO DB2 INSERT CALL */
#========================s==================% /

IF XPCB.CALL_FUNCTION = INSERT_FUNCTION

78 Exit Routines

THEN DO;
EXEC SQL

INSERT INTO SYSADM.TREATMNT

VALUES(: : TREATROW.COL_PATNUM,
: : TREATROW.COL_ILLDATE,
: : TREATROW.COL_TRTDATE,
: : TREATROW.COL_MEDICINE,

: : TREATROW. COL_QUANTITY) ;

END;

/* IF CALLED FOR REPLACE, UPDATE THE

*/

/* THE DB2 ROW, IF A FIELD DESTINED TO */
/* THE DB2 DATA BASE HAS BEEN CHANGED. */
R ——

IF XPCB.CALL_FUNCTION = REPLACE_FUNCTION

THEN DO; /* REPLACE */

IF (SEGMENT_DATA.SEGMENT_DATA_MEDICINE =

BEFORE_DATA.BEFORE_DATA MEDICINE) |

(SEGMENT_DATA.SEGMENT_DATA_QUANTITY =

BEFORE_DATA.BEFORE_DATA_QUANTITY)

THEN DO; /* UPDATE =*/

EXEC SQL

UPDATE SYSADM.TREATMNT
SET MEDICAT = ::SEGMENT_DATA.SEGMENT_DATA_MEDICINE,

AMOUNT = ::SEGMENT_DATA.SEGMENT_DATA_QUANTITY
WHERE PATNUMB = ::TREATROW.COL_PATNUM AND

DATEILL = ::TREATROW.COL_ILLDATE AND

DATETRT = ::TREATROW.COL_TRTDATE;

QLERRM) ;

SQLCODE;

END; /* OF UPDATE =/
END; /* OF REPLACE =/
STOP;

BADSQL: DO; DISPLAY(S
XPCB.EXIT_RETURN_CODE = 16;
XPCB.EXIT_REASON_CODE =

END;

BADPATH: DO;
XPCB.EXIT_RETURN_CODE = 16;
XPCB.EXIT_REASON_CODE = 14;

END;
END DLIZDB2B;

Sample Extended Program Communication Block (XPCB)

The segment that is passed in a dependent region and has the Data Capture exit

routine defined for it can use the XPCB to identify the segment and call functions,

provides the address of a work area, and contains additional information that is

passed to the Data Capture exit routine.

This topic provides examples of the XPCB in assembler, COBOL, and PL/L

Subsections:

e [“Assembler”|

+ [“COBOL” on page 80|

 [“PL/1” on page 81|

Assembler

The following code sample is an example of the XPCB in assembler.

SPACE 3
XPCB DSECT
XPCB_EYECATCHER
XPCB_VERSION
XPCB_RELEASE
XPCB_EXIT_NAME
XPCB_EXIT_RETURN_CODE
XPCB_EXIT_REASON_CODE
XPCB_DATABASE_NAME
XPCB_DBD_VERSION_PTR
XPCB_SEGMENT NAME

CL4
CL2
CL2
CL8
H
H
CL8
A
CL8

"XPCB" EYECATCHER

XPCB VERSION INDICATOR
XPCB RELEASE INDICATOR
SEGMENT EXIT NAME

RETURN CODE FROM EXIT
REASON CODE FROM EXIT
PHYSICAL DATA BASE NAME
ADDRESS OF DBD VERSION ID
PHYSICAL SEGMENT NAME

Chapter 2. Database Manager exit routines

79

XPCB_CALL_FUNCTION DS CL4 CALL FUNCTION
XPCB_PHYSICAL_FUNCTION DS CL4 PHYSICAL CALL FUNCTION
DS CL4
XPCB_DB_PCB_PTR DS A ADDRESS OF DB PCB
XPCB_DB_PCB_NAME DS CL8 NAME OF DB PCB
XPCB_INQY_OUTPUT_PTR DS A ADDRESS OF "INQY" OUTPUT
XPCB_I10_PCB_PTR DS A ADDRESS OF 1/0 PCB
XPCB_ENVIRONMENT_FLAGS DS X ENVIRONMENT FLAGS
XPCB_IMS_ENH_SUPPORT EQU X'80" RRS SUPPORT IS AVAILABLE IN SYSTEM
XPCB_IMS RRS_ENABLED EQU X'40' RRS=Y WAS SPECIFIED
XPCB_CALL_AT_COMMIT EQU X'20' SET BY EXIT - CALL DURING COMMIT
XPCB_LOGX_FORMAT EQU X'10' REDUCED 9904 FORMAT
XPCB_EXIT_WAS_CALLED EQU X'o8' INTERNAL FLAG USED BY IMS
XPCB_DPROP_EXIT EQU x'o4' SET BY DPROP EXIT ROUTINE
DS X RESERVED
XPCB_CONC_KEY_LENGTH DS H LENGTH OF CONCATENATED KEY
XPCB_CONC_KEY_PTR DS A ADDRESS OF CONCATENATED KEY
XPCB_DATA_XSDB_PTR DS A ADDRESS OF XSDB FOR DATA
XPCB_BEFORE_XSDB_PTR DS A ADDRESS OF XSDB FOR REPL DATA
XPCB_PATH_XSDB_PTR DS A ADDRESS OF XSDB FOR PATH DATA
XPCB_SETS_ROLS_TOKEN DS F TOKEN FOR SETS-ROLS CALL
DS F RESERVED
DS F RESERVED
XPCB_EXIT_WORK_PTR DS A ADDRESS OF WORK AREA
XPCB_ZERO_POINTER DS A ZERO ADDRESS
DS F RESERVED
XPCB_TIMESTAMP DS CL8 TIMESTAMP OF CALL
EJECT
COBOL
The following code sample is an example of the XPCB in COBOL.
01 XPCB.
05 EYECATCHER PIC X(04).
05 VERSION PIC X(02).
05 RELEASE-ID PIC X(02).
05 EXIT-NAME PIC X(08).
05 EXIT-RETURN-CODE PIC 9(04) COMP.
05 EXIT-REASON-CODE PIC 9(04) COMP.
05 DATABASE-NAME PIC X(08).
05 DBD-VERSION-PTR POINTER.
05 SEGMENT-NAME PIC X(08).
05 CALL-FUNCTION PIC X(04).
05 PHYSICAL-FUNCTION PIC X(04).
05 FILLER PIC 9(08) COMP.
05 DB-PCB-PTR POINTER.
05 DB-PCB-NAME PIC X(08).
05 INQY-OUTPUT-PTR POINTER.
05 1I0-PCB-PTR POINTER.
05 ENVIRONMENT-FLAGS PIC X.
88 IMS-ENH-SUPPORT VALUE X'80"'.
* RRS SUPPORT IS AVAILABLE IN SYSTEM
88 IMS-RRS-ENABLED VALUE X'40'.
* RRS=Y WAS SPECIFIED
88 CALL_AT_COMMIT VALUE X'20'.
* SET BY EXIT - CALL DURING COMMIT
88 XPCB_LOGX_FORMAT VALUE X'10'.
* REDUCED 9904 FORMAT
88 XPCB_EXIT_WAS CALLED VALUE X'08'.
* INTERNAL FLAG USED BY IMS
88 XPCB_DPROP_EXIT VALUE X'04'.
* SET BY DPROP EXIT ROUTINE
05 FILLER PIC X.
* RESERVED
05 CONC-KEY-LENGTH PIC 9(04) COMP.
05 CONC-KEY-PTR POINTER.

05 DATA-XSDB-PTR POINTER.
05 BEFORE-XSDB-PTR POINTER.
05 PATH-XSDB-PTR POINTER.
05 FILLER POINTER.
05 FILLER POINTER.
05 FILLER POINTER.
05 EXIT-WORK-PTR POINTER.
05 NULL-PTR POINTER.
05 FILLER POINTER.
05 TIMESTAMP PIC X(08).
PL/
The following sample is an example of the XPCB in PL/I.
DECLARE
1 XPCB BASED(XPCB_PTR),
3 EYECATCHER CHAR(4), /* "XPCB" EYECATCHER */
3 VERSION CHAR(2) , /* XPCB VERSION INDICATOR */
3 RELEASE CHAR(2), /* XPCB RELEASE INDICATOR */
3 EXIT_NAME CHAR(8), /* SEGMENT EXIT NAME */
3 EXIT_RETURN_CODE FIXED BINARY (15), /* RETURN CODE */
3 EXIT_REASON_CODE FIXED BINARY (15), /* REASON CODE */
3 ATABASE_NAME CHAR(8), /* PHYSICAL DATA BASE NAME */
3 DBD_VERSION_PTR POINTER, /* ADDRESS OF DBD VERSION ID x/
3 SEGMENT_NAME CHAR(8) , /* PHYSICAL SEGMENT NAME */
3 CALL_FUNCTION CHAR(4), /* CALL FUNCTION */
3 PHYSICAL_FUNCTION CHAR(4), /* DL/I PHYSICAL FUNCTION */
3 FILLER1 FIXED BINARY (31), /* RESERVED */
3 DB_PCB_PTR POINTER, /* ADDRESS OF DB PCB */
3 DB_PCB_NAME CHAR(8), /* NAME OF DB PCB */
3 INQY_OUTPUT_PTR POINTER, /* ADDRESS OF "INQY" OUTPUT =/
3 10_PCB_PTR POINTER, /+ ADDRESS OF 1/0 PCB */
3 ENVIRONMENT-FLAGS CHAR(1), /* Environment Flags */
/* IMS-ENH-SUPPORT X'80' RRS SUPPORT AVAILABLE IN SYSTEM
/* IMS-RRS-ENABLED X'40"' RRS=Y WAS SPECIFIED
/* CALL_AT_COMMIT X'20"' SET BY EXIT-CALL DURING COMMIT
/* XPCB_LOGX_FORMAT X'10' REDUCED 9904 FORMAT
/* XPCB_EXIT WAS CALLED X'08' INTERNAL FLAG USED BY IMS
/* XPCB_DPROP_EXIT X'04' SET BY DPROP EXIT ROUTINE
3 NEWFILLER CHAR(1), /* Reserved */
3 CONC_KEY_LENGTH FIXED BINARY (15), /* LENGTH OF FULLY */
/* CONCATENATED KEY FOR SEGM =/
3 CONC_KEY_PTR POINTER, /* ADDRESS OF PHYSICAL FULLY =/
/* CONCATENATED KEY FOR SEGM =/
3 DATA_XSDB_PTR POINTER, /* ADDRESS OF XSDB FOR */
/* PHYSICAL SEGMENT DATA */
3 BEFORE_XSDB_PTR POINTER, /* ADDRESS OF XSDB FOR */
/* PHYSICAL BEFORE DATA */
3 PATH_XSDB_PTR POINTER, /* ADDRESS OF XSDB FOR */
/* PHYSICAL PATH DATA */
3 FILLER3 POINTER, /* RESERVED */
3 FILLER4 POINTER, /* RESERVED */
3 FILLER5S POINTER, /* RESERVED */
3 EXIT_WORK_PTR POINTER, /* ADDRESS OF 256 BYTE AREA =/
/* FOR THE EXIT */
3 NULL_PTR POINTER, /* NULL POINTER VALUE */
3 FILLERG6 POINTER, /* RESERVED */
3 CALL_TIMESTAMP CHAR(8) , /* TIMESTAMP OF CALL */
3 FILLERY POINTER; /* RESERVED FOR NULLS AT END =/
DECLARE XPCB_PTR POINTER;

Chapter 2. Database Manager exit routines

*/
*/
*/
*/
*/
*/

81

Sample Extended Segment Data Block (XSDB)

The segment that is passed in a dependent region and has the Data Capture exit
routine defined for it can use the XSDB, which points to the updated data that is
passed to the Data Capture exit routine.

This topic provides examples of the XSDB in assembler, COBOL, and PL/I.

Subsections:

* [Assembler’]
* ['COBOL]
» [PL/T7]

Assembler

The following code sample is an example of the XSDB in assembler.

SPACE 3
XSDB DSECT
XSDB_EYECATCHER DS CL4 "XSDB" EYECATCHER
XSDB_VERSION DS CL2 XSDB VERSION INDICATOR
XSDB_RELEASE DS CL2 XSDB RELEASE INDICATOR
XSDB_NEXT_PTR DS A NEXT XSDB POINTER
XSDB_DATABASE_NAME DS CL8 PHYSICAL DATA BASE NAME
XSDB_SEGMENT_NAME DS CL8 PHYSICAL SEGMENT NAME
DS CL4 RESERVED
XSDB_SEGMENT_LEVEL DS H SEGMENT DATA BASE LEVEL
XSDB_KEY_LENGTH DS H LENGTH OF PHYSICAL KEY
XSDB_KEY_PTR DS A ADDRESS OF PHYSICAL KEY
XSDB_LP_KEY_LENGTH DS H LENGTH OF LOGICAL PARENT KEY
XSDB_SEGMENT_LENGTH DS H LENGTH OF SEGMENT DATA
XSDB_SEGMENT_DATA_PTR DS A ADDRESS OF SEGMENT DATA
DS F RESERVED
DS F RESERVED
COBOL
The following code sample is an example of the XSDB in COBOL.
01 XSDB
05 EYECATCHER PIC X(4).
05 VERSION PIC X(2).
05 RELEASE-ID PIC X(2).
05 NEXT-PTR POINTER.
05 DATABASE-NAME PIC X(8).
05 SEGMENT-NAME PIC X(8).
05 FILLER PIC X(4).
05 SEGMENT-LEVEL PIC 9(4) COMP.
05 KEY-LENGTH PIC 9(4) COMP.
05 KEY-PTR POINTER.
05 LP-KEY-LENGTH PIC 9(4) COMP.
05 SEGMENT-LENGTH PIC 9(4) COMP.
05 SEGMENT-DATA-PTR POINTER.
05 FILLER POINTER.
05 FILLER POINTER.
PL/I
The following code sample is an example of the XSDB in PL/I.
DECLARE
1 XSDB BASED(XSDB_PTR),
3 EYECATCHER CHAR(4), /* "XSDB" EYECATCHER */
3 VERSION CHAR(2), /* XSDB VERSION INDICATOR */

82 Exit Routines

3 RELEASE CHAR(2), /* XSDB RELEASE INDICATOR */
3 NEXT_PTR POINTER, /* NEXT XSDB POINTER */
3 DATABASE_NAME CHAR(8), /* PHYSICAL DATA BASE NAME =/
3 SEGMENT_NAME CHAR(8), /* PHYSICAL SEGMENT NAME */
3 FILLER1 CHAR(4), /* RESERVED */
3 SEGMENT_LEVEL FIXED BINARY (15), /* SEGMENT DATA BASE LEVEL =/
3 KEY_LENGTH FIXED BINARY (15), /* LENGTH OF PHYSICAL KEY */
3 KEY_PTR POINTER, /* ADDRESS OF PHYSICAL KEY =/
3 LP_KEY_LENGTH FIXED BINARY (15), /* RESERVED */
3 SEGMENT_LENGTH FIXED BINARY (15), /* LENGTH OF SEGMENT DATA */
3 SEGMENT_DATA_PTR POINTER, /* ADDRESS OF SEGMENT DATA =/
3 FILLER3 POINTER, /* RESERVED */
3 FILLER4 POINTER, /* RESERVED */
3 FILLERS POINTER; /* RESERVED FOR NULLS AT END =/
DECLARE XSDB_PTR POINTER;

Data conversion user exit routine (DFSDBUX1)

The purpose of the Data Conversion exit routine (DFSDBUX1) is to provide a
method for modifying segment search arguments, the key feedback area, the I/O
area, and the status code.

This topic contains Product-sensitive Programming Interface information.

The Data Conversion user exit routine (DFSDBUX1) gets control at the beginning
of a DL/I call and at the end of the call. In the exit routine, you can modify
segment search arguments, the key feedback area, the I/O area, and the status
code.

Restriction: This exit routine gets control only for calls to full-function databases.

Subsections:
* |[“About this routine”)

+ [“Communicating with IMS” on page 84|

+ [“Data security and integrity” on page 85|

About this routine

Attributes of the routine

Regardless of its function, the exit routine must be written in assembler language,
C language, COBOL, or PL/I. Routines written in high-level languages running
under Language Environment for z/OS are not supported.

Binding the routine

Bind the exit routine DFSDBUX1 with the RENT attribute into an APF-authorized
library. This library can be either IMS.SDFSRESL, SYS1.LINKLIB, or any
partitioned data set that can be accessed by a JOBLIB or a STEPLIB DD statement
for the IMS control, SAS, batch, or CICS region.

Loading the routine

IMS attempts to load the exit routine on the first database call. If the exit routine
fails to load, IMS does not attempt to load it again.

Other considerations

Chapter 2. Database Manager exit routines 83

84

Exit Routines

A DBD generation is not required for IMS to call the exit routine.

Recommendation: Perform a DBD generation with the DATXEXIT=YES parameter
for DBDs that require the exit routine.

If you do not specify the DATXEXIT=YES parameter for a DBD, the call analyzer
(DFSDLAQO) issues a DFS20971 message if the exit routine specifies that it should
continue to be called for that DBD. After issuing message DFS20971, the call
analyzer DFSDLAQO dynamically sets the DATXEXIT parameter to YES for the
DBD and continues calling the exit routine. The DFS2097] message appears only
once per DBD.

If you bind an exit routine and want to prevent it from being called, remove the
DFSDBUX1 exit routine from the library in which you edited it.

If exit routine DFSDBUX1 is available to IMS, it is called regardless of the
DATXEXIT parameter specification. If the exit routine determines that the exit
routine should not be called again for the DBD, the routine returns abend code
X'FF' in the SRCHFLAG field in the JCB (SRCHFLAG EQUA JCBWKR55). Abend
code X'FF' causes call analyzer DFSDLAQO to dynamically mark the DBD as not
requiring the exit routine. In this case, the exit routine is not called again for that
DBD for the duration of the execution of this IMS or until the DMB is purged from
the DMB pool.

If you use exit routine DFSDBUX], it is loaded and called on each database call. If
you do not want to run the DFSDBUX1 exit routine for every database, create a
table in the DFSDBUX1 exit routine that includes the names of the databases you
want the routine to process every time it is called. When exit routine DFSDBUX]1 is
called, it checks the table of database names. If a database name is not in that
table, the DFSDBUX1 exit routine flags that database with a X'FF' value in the JCB
when it first calls it, which indicates that the database is not processed further.

Preloading the exit routine is not necessary. After it is loaded, the exit routine
remains loaded until region termination.

Using IMS callable services with this routine
This exit is not eligible to use IMS callable services.
Issuing SVC calls

In an online environment, the exit routine might be running in cross-memory
mode. To prevent OF8 abends, the exit should avoid issuing SVC calls.

Communicating with IMS

IMS uses the general purpose registers and several IMS control blocks to
communicate with the DFSDBUX1 exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

0 The characters 'IN' at the start of the DL/I call and the characters 'OUT" at
the end of the DL/I call.

1 Address of the Partition Specification Table.

3 Address of the Database Program Communication Block (DBPCB).

5 Address of the PSB Directory (PDIR).

6 Address of the System Contents Directory (SCD).

7 Address of the Program Specification Block (PSB).

9 Address of the Job Control Block (JCB).

10 Address of the Segment Descriptor Block (SDB).

13 Address of save area. The exit routine must not change the first three words.
14 Return address to IMS.

15 Entry point of exit routine.

Contents of registers on exit

Before returning to IMS, the exit routine must restore registers 0 through 14. The
value of Register 15 must be a 2-byte or less positive value set as follows:

Register Contents
0 The exit routine has successfully processed the request.
non-0 The exit routine has set a status code or pseudoabend.

Data security and integrity

The exit routine is an extension of the application program with the same
capabilities as the application program; the exit routine and the application have
equal authorization and limitations.

In batch, the data and the exit routine operate in unprotected key-8 storage.
Online, the data and the exit routine operate in unprotected key-7 storage. The exit
routine is able to modify data or control blocks that can affect the successful
operation of the application program.

Data Entry Database Partition Selection exit routine (DBFPSEQ00)

Use the Data Entry Database (DEDB) Partition Selection exit routine to partition
data for HISAM or SHISAM secondary index databases.

Subsections:
* [“About this routine”|

+ [“Communicating with IMS” on page 88|

About this routine
The DEDB Partition Selection exit routine is defined in the primary DEDB database

DBD when its secondary index databases are HISAM or SHISAM databases and
user partitioning is required.

Chapter 2. Database Manager exit routines 85

86

Exit Routines

A partitioned database contains a range of secondary index keys. The DEDB
Partition Selection exit routine selects an appropriate partition based on the key
value of a search key of the secondary index or other user defined partition
selection criteria. The sample partition selection exit routine DBFPSEQQ uses the
high key for each partition to determine partition selection. A DEDB Partition
Selection exit routine can have its own user partition selection criteria.

The PSELRTN= parameter on a XDFLD statement defines a DEDB Partition
Selection exit routine for HISAM or SHISAM secondary index databases.

A logical HISAM or SHISAM partition index database can include one or multiple
partitions. The PSELOPT=MULT | SNGL parameter on either a PCB statement with
the PROCSEQD= parameter, or on a XDFLD statement, determines how partitions
are grouped in the index database.

The following naming rules apply to the DEDB Partition Selection exit routine:
* The exit routine name cannot be longer than 8 characters.
* The first character must be alphabetic.

* The remaining characters must be alphabetic, numeric, or #, @, $.

If the PSELRTN= parameter specifies a DEDB Partition Selection exit routine name
that violates one or more naming rules, the DBDGEN utility terminates with a
MNOTE 8 and message XDFLD235.

The DEDB Partition Selection exit routine supports three functions:
e PTDBINIT: Initialization

* PTDBPSEL: Partition database selection

 PTDBTERM: Termination

The PTDBINIT function is driven when a primary DEDB database that has a
DEDB Partition Selection exit routine defined in the PSELRTN= parameter on a
XDEFLD statement is opened.

The PTDBPSEL function is driven when a primary DEDB database is being
accessed or updated using its HISAM or SHISAM secondary index and user
partitioning is requested as defined in the primary DEDB database DBD. The
DEDB Partition Selection exit routine allows you to select a user partition database
among a group of HISAM secondary index databases or a group of SHIASM
secondary databases defined in the NAME= parameter on the LCHILD statement
and its corresponding XDFLD statement has the DEDB Partition Selection exit
routine defined in the PSELRTN= parameter in the primary DEDB database DBD.

The PTDBTERM function is driven when a primary DEDB database that has a
DEDB Partition Selection exit routine defined in the PSELRTN= parameter on a
XDFLD statement is closed. A DEDB Partition Selection exit routine has similar
attributes as a DEDB randomizing module. [Table 21 on page 87| summarizes the
attributes of a DEDB Partition Selection exit routine for HISAM or SHISAM
secondary index databases.

Option to access user partition databases in a user partition group as a separate
logical database

Each user partition database can be accessed as a separate database. In addition, all
user partition databases in a user partition group can be accessed as a separate
logical database using PSELRTN and PSELOPT=MULT | SNGL parameters.

When ACCESS=DB is specified or defaulted on a PCB statement with the
PROCSEQD parameter, the user partition databases in a user partition group are
accessed as a secondary index to access the primary DEDB database in an alternate
sequence.

When ACCESS=INDEX is specified on a PCB statement with the PROCSEQD
parameter, the user partition databases in a user partition group are accessed as
one single separate logical database. The PSELRTN and PSELOPT=MULT | SNGL
are used to control which partition database to access, and one or more subsequent
partition databases are in the separate logical database.

The SENSEGS statements in a PCB with the PROCSEQD parameter for both
ACCESS=DB and ACCESS=INDEX are the same even though the primary DEDB
database is not accessed when ACCESS=INDEX is specified. This requirement
allows compatibility of PSBGEN utility and ACBGEN utility for ACCESS=DB and
ACCESS=INDEX.

Attributes of the routine

The following table shows the attributes of the Data Entry Database Partition
Selection exit routine.

Table 21. Data Entry Database Partition Selection exit routine attributes

Attribute Description
IMS environments DB/DC, DBCTL.

Naming convention The name given to the load module used for partition selection
should also appear in the DBD generation associated with the
database. The load module name must be the value of the “mod”
parameter of the PSELRTN= parameter on the XDFLD statement in
the DEDB DBD generation.

Link editing After you compile and test your routine, bind it into IMS.SDFSRESL,
SYS1.LINKLIB, or any operating system partitioned data set that can
be accessed by a JOBLIB or STEPLIB JCL statement for the IMS
control and SAS regions.

Including the No special steps are needed to include this routine.
routine

IMS callable services This exit routine is not eligible to use IMS callable services.

Sample routine IMS.SDFSSRC (member name DBFPSEQ0).
location

Loading and deleting the routine

One DEDB Partition Selection exit routine can be shared by both HISAM and
SHISAM secondary index databases. A DEDB Partition Selection exit routine
resides in the IMS.SDFSRESL, SYS1.LINKLIB, or any operating system partitioned
data set that can be accessed by a JOBLIB or STEPLIB JCL statement for the IMS
control and SAS regions.

Chapter 2. Database Manager exit routines 87

88

Exit Routines

When a primary DEDB database has a DEDB Partition Selection exit routine
defined in the PSELRTN= parameter, IMS loads the exit at IMS initialization or at
/START DB or UPDATE DB START(ACCESS) command if the exit has not been
loaded.

When a primary DEDB database is closed, its DEDB Partition Selection exit routine
is logically deleted. When all the primary DEDB databases sharing the DEDB
Partition Selection exit routine are closed, the DEDB Partition Selection exit routine
is physically deleted.

When a DEDB Partition Selection exit routine is physically deleted in an IMS
system, you can refresh your DEDB Partition Selection exit routine if you need to
update your exit routine. After you have refreshed your DEDB Partition Selection
exit routine in the library where it resides, issue a /STA DB or UPDATE DB
START(ACCESS) command on the primary DEDB database to load the updated
DEDB Partition Selection exit routine.

Communicating with IMS

IMS uses the entry registers, parameter list, and exit registers to communicate with
the routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of parameter list mapped by DBFPTDBP macro
13 Address of save area chain for use by this routine.

14 Return address of IMS.

15 Entry point of exit routine.

Contents of registers on exit

Before returning to IMS, the routine must restore all registers except for register 15,
which must contain one of the following:

Return code Meaning

0 Successful completion

4 Unsuccessful. If the exit function was initialization, this return code indicates
that the primary DEDB is marked unavailable for access. If the exit function
was termination, the primary DEDB is unaffected.

DEDB Partition Selection parameter list

The following table describes the parameter list for the DEDB Partition Selection
exit routine (mapped by DBFPTDBP). The DBFPTDBP parameter list macro is
located in the IMS macro target library SDFSMAC.

Related concepts:

[[DEDB partitioned secondary indexes (Database Administration)|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dag/ims_dedbpartsecindex.htm#ims_dedbpartsecindex

| Sample data entry database randomizing routines (DBFHDC40 /
| DBFHDC20 DBFHDC44 / DBFHDC24 DBFHDC2S)

A data entry database randomizing module is required for placing root segments
in or retrieving them from a DEDB.

Subsections:
* |“About this routine”|

+ [“Communicating with IMS” on page 91|

About this routine

Several DEDBs can share the same routine, but all areas in a DEDB must use the
same routine.

If you are using data sharing, you must use the same randomizing routine on both
systems.

IMS supplies sample DEDB randomizing modules (DBFHDC40, DBFHDC20,
DBFHDC44, and DBFHDC24) on IMS.SDFSSMPL. You can use one of these
IMS-supplied routines or you can write your own.

Sample randomizer module DBFHDC?2S is in IMS.ADFSSMPL data set. You must
understand the key structure of the database and modify this sample appropriately
before you use it.

DBFHDC20 and DBFHDC24 are limited two-stage randomizers that are intended
for use with the DEDB Alter Utility.

DBFHDC20 is a two-stage randomizer that is based on DBFHDC40, and
DBFHDC24 is a two-stage randomizer that is based on DBFHDC44. They have the
same attribute and interface as DBFHDC40 and DBFHDC44.

These randomizers first hash the root key to an area by using an arbitrary 4K
RAPs/area, and then re-hash the key within the selected area by using the
standard DBFHDC4x technique. As a result, a key will not move between areas
even if the total number of RAPs in the DEDB changes as a result of changes to
the ROOT or UOW parameters for any particular areas in the DBD.

However, if the number of areas that are defined in the DBD changes, a key might
move between areas across the DBD change. In that sense, they are limited
two-stage randomizers because a true two-stage randomizer would not move a key
between areas even if the number of areas that are defined in the DBD changes.
Such randomizers are usually table-driven and require a detailed knowledge of the
key structure and key frequency distribution.

For purposes of the DEDB Alter utility, a DEDB that uses DBFHDC20 or
DBFHDC24 can be the target of a DBD alteration that enlarges or reduces the
UOW or ROOT parameters of individual areas, so long as the number of areas in
DBD does not change.

Restrictions: When you first convert from DBFHDC40 or DBFHDC44, a full

unload and reload of the DEDB is required because DBFHDC20 and DBFHDC24
will not randomize keys to the same area or RAP as DBFHDC40 or DBFHDC44.

Chapter 2. Database Manager exit routines 89

90

Exit Routines

DBD can be changed to specify RMNAME=(DBFHDC20,2) or (DBFHDC24,2).
However, the restriction on changing the number of areas must be obeyed because
it is not enforced by IMS. Adding or deleting an area is a database-level change for
purposes of online change, even with a randomizer that is defined as “two stage”.
If the DBD is changed to add or delete an area, a full unload and reload of the
DEDB is required.

The following table shows the attributes of the Data Entry Database Randomizing
routine.

Table 22. Data Entry Database randomizing routine attributes

Attribute Description
IMS environments DB/TM, DBCTL

Naming convention = The name given to the load module used for randomizing functions
with a specific database should also appear in the DBD generation
that is associated with the database. The load module name must be
the value of the “mod” parameter of the RMNAME= operand on
the DBD statement in the DEDB DBD generation.

Binding After you compile and test your randomizing module, bind it into
IMS.SDFSRESL, SYS1.LINKLIB, or any operating system partitioned
data set that can be accessed by a JOBLIB or STEPLIB JCL statement
for the IMS control and SAS regions.

Including the routine No special steps are needed to include this routine.

IMS callable services This exit is not eligible to use IMS callable services.

Sample routine IMS.SDFSSMPL (member name DBFHDC40) IMS.SDFSSMPL

location (member name DBFHDC20) IMS.SDFSSMPL (member name
DBFHDC44) IMS.SDFSSMPL (member name DBFHD(C24)
IMS.ADFSSMPL (member name DBFHDC?2S)

Loading the routine

All randomizing modules are loaded from their resident library by IMS. The name
of the module is the name that you specified in the RMNAME parameter of the
DBD statement of the database description (DBD).

Related Reading: For details on coding the RMNAME parameter, see IMS Version
13 System Utilities.

You can use one copy of the randomizing module to service several databases that
are concurrently open. At initialization time, the randomizing module can be
placed in the main storage or the LPA (link pack area). When running under z/OS,
the randomizing module is loaded into the Common Service Area (CSA). If you
are to bind with RMODE ANY, you can load it into the Extended Common Service
Area (ECSA).

Activating the routine

When an application program issues a Get Unique or Insert call that operates on a
root segment of a DEDB database, the user-supplied randomizing module is
activated.

The source of the root key that IMS supplies to the randomizing routine is as
follows:

* For a root insert, it is taken from the I/O area containing the root to be inserted.

* For a call qualified on the root key, it is the key value in the segment search
argument.

Related Reading: For information about processing Get Next (GN) calls qualified
on the root key and calls with root qualification that allow a range of key values,
see IMS Version 13 Application Programming.

The key is supplied to the randomizing module for conversion to a relative block
number and anchor point number within the database. In addition to the key
supplied by an application program, parameters from the DBD generation
associated with the database being used are available to the randomizing module.
Communicating with IMS

IMS uses the entry and exit registers to communicate with the routine.

Contents of registers on entry

On entry to the randomizing module, the registers contain the following:

Register Contents

0 Number of entries in the MRMB (total number of areas in the DEDB).
1 Address of first MRMB the routine uses.

2 Size of an entry in the MRMB.

3 Address of the root key.

4 Length of the root key in bytes.

5 Total number of RAPs in the DEDB.

6 Address of an eight-word area that the randomizing module can use.
10 Address of the EPST (Extended Partition Specification Table).

11 Address of the ESCD (Extended System Content Directory).

13 Address of save area. The routine must not change the first three words
14 Return address to IMS.

15 Entry point of randomizing module.

The randomizing module must neither change the key value nor modify any
control blocks.

Note: When you run z/OS batch utilities (such as DBFUCDX0 or MSDB-to-DEDB
conversion), register 10 contains decimal -1 (X'FFFFFFFF') and register 11 contains
zeros. Specific utilities might have additional communication requirements.

Description of parameters

MRMB

To support the facility of randomizing within an area, the routine is passed the
address of a Randomizing Module Block (MRMB).

Each area has one 3-word entry. MRMB entries are built in the same order as
their associated AREA macros in the DBDGEN for the database. The content of
an entry is mapped by DBFMRMB macro and contains the following:

Chapter 2. Database Manager exit routines 91

92

MRMB DSECT

MRMBARTD DS OF START IS WORD-ALIGNED

MRMBARTC DS F ADDRESS OF THE AREA SELECTED
MRMBARTI DS F NUMBER OF ANCHOR POINTS IN THIS AREA
MRMBARTN DS F CUMULATIVE NUMBER OF ANCHOR POINTS

* IN ALL AREAS OF THE DEDB UP TO AND

* INCLUDING THIS ONE

MRMBARTZ DS OF END OF THIS ENTRY, START OF NEXT
MRMBARTL EQU MBMBARTZ-MRMBARTD

* LENGTH OF A SINGLE ENTRY

Caller Environment
This field contains 4-byte characters to allow the XCI randomizer to distinguish
between the IMS online or OS batch caller. The value 'IMS ' indicates IMS
online caller, and the value 'OS ' indicates OS batch caller.

Contents of registers on exit

Before returning to IMS, your routine must restore all registers, except for registers
0, 1, and 15, which must contain the following:

Register Contents

0 Relative root anchor point number within the selected area (0 for first root
anchor point).

1 DMAC address of the area selected.

15 Return code interpreted as follows:

Return code Meaning

0 Register 1 contains the address of the area selected. If the area
is not contained in the DMCB or the HSSP sublist,
ABENDU1021 is issued.

4 Status 'FM' needs to be issued.
Any other return code causes ABENDU1021 to be issued.

When randomizing through the entire DEDB, the randomizing module must
derive an area and a relative root anchor point number to conform to the exit
interface. You can use the third word of the MRMB entry to accomplish this.

Related concepts:

[Chapter 1, “Guidelines for writing IMS exit routines,” on page 3|

Related reference:

[‘Routine binding restrictions” on page 9|

[# [Database Description (DBD) Generation utility (System Utilities)|

Sample DEDB randomizing routines (DBFHDCA40)

Exit Routines

You can use the IMS-supplied sample DEDB randomizing modules DBFHDC40 on
IMS.DBSOURCE.

The sample exit routine is based on the generalized Randomizing Routine
(DFSHDC40) and has been modified to work with DEDB databases. The
modifications are:

1. The module uses the DEDB input and output interfaces.

2. The module can return an anchor point in block 1, because DEDB areas do not
use a bit map at this location.

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdgen.htm#ims_dbdgen

Extended call interface (XCI) option

The XCI option specifies that this DEDB uses the extended call interface when
making calls to the randomizer.

The extended call interface (XCI) option can be specified in the RMNAME=
parameter list in the DBD statement of a DBDGEN.

Subsections:
* |“About this routine”|

+ [“Communicating with IMS”|

About this routine

The XCI option specifies that this DEDB uses the extended call interface when
making calls to the randomizer. This option allows the XCI randomizer to be called
in 3 different ways. On initialization of IMS, or during a /START DB command, IMS
will first load the randomizer and then make an 'INIT" call to the randomizer to
invoke its initialization routines. During a /DBR DB command, IMS will make a
'TERM' call to the randomizer to invoke the termination routines before unloading
the randomizer. The normal randomizing call is made when the application issues
a GU or ISRT call on a root segment. The XCI randomizer option is valid only for
DEDBs.

Attributes of the routine

The attributes of the routine are the same as the non-XCI randomizer.

Invoking the routine

An XCI randomizer is invoked with an initialization call during Fast Path
initialization and during a /START DB command. The XCI randomizer is invoked
with a termination call during a /DBR DB command. Otherwise, a regular
randomizing call is made to the XCI randomizer when an application program
issues a GU or ISRT call which operates on a root segment of a DEDB database,
just as in a non-XCI randomizer.

Communicating with IMS

IMS uses the entry and exit registers to communicate with the routine.

Note: In an OS batch caller environment, you can set the values of the IMS name
and ECB address fields to zeros. These fields are normally used for randomizing,
initialization, and termination calls, but are not used in an OS batch caller
environment.

Contents of registers on entry for a randomizing call

On entry for a randomizing call, register 0 contains the constant 'XCI ' (be sure to
include a space after the 'XCI').

Register 1 contains the address of the parameter list with the following layout.

Chapter 2. Database Manager exit routines 93

94

Exit Routines

Table 23. Sample Parameter List for a Randomizing Call

Hex

Offset Contents

X'0' 0

X'4' Number of areas

X'8' Address of randomizing module block (MRMB)

xXc Size of MRMB

X'10' Address of key

X'14' Key length

X'18' Total number of route anchor points (RAPs)

X'1C Address of work area

X'20' Any user data

X224 0 (XCI parameter version field)

X'28' 8-byte IMS name with trailing blanks

X'30' IMS level, specified as the value of the &DFSLEV variable of the DFSLEV macro
X'34' 8-byte PSB name with trailing blanks

X'3C' 8-byte caller environment label with trailing blanks: IMS for an online IMS caller

or OS for an OS batch caller

Contents of registers on entry for an initialization call

On entry for an initialization call, register 0 contains the constant 'XCI ' (be sure to
include a space after the 'XCT').

Register 1 contains the address of the parameter list with the following layout.

Table 24. Sample Parameter List for an Initialization Call

g?fxse t Contents

X0 4

X'4' Addpress of the DEDB master control block (DMCB)

X'8' Address of an event control block (ECB)

X'B' Any user data

X'10' 0 (XCI parameter version field)

X'14' 8-byte IMS name with trailing blanks

X'1C' IMS level, specified as the value of the &DFSLEV variable of the DFSLEV macro
X'20' 8-byte caller environment label with trailing blanks: IMS for an online IMS

caller or OS for an OS batch caller

Contents of registers on entry for a termination call

On entry for a termination call, register 0 contains the constant 'XCI ' (be sure to
include a space after the 'XCT').

Register 1 contains the address of the parameter list with the following layout.

Table 25. Sample Parameter List for a Termination Call

g?;(set Contents

X0 8

X'4' Address of the DEDB master control block (DMCB)

X'8' Address of an event control block (ECB)

XB' Any user data

X'10' 0 (XCI parameter version field)

X'14' 8-byte IMS name with trailing blanks

X'1C' IMS level, specified as the value of the &DFSLEV variable of the DFSLEV macro
X'20' 8-byte caller environment label with trailing blanks: IMS for an online IMS caller

or OS for an OS batch caller

XCI Parameter Version Field

The content of the XCI parameter version field is determined by the version of IMS
that is using the XCI randomizer.

If the XCI randomizer runs on multiple versions of IMS, you must check the XCI
version number. The version number will be incremented when new fields are
added. Before accessing fields that are added with a new version number, the
version must be checked to ensure that the fields exist.

Contents of registers on exit from a randomizing call

The contents of registers on exit from a randomizing call are as follows:

Register Contents

0 Relative root anchor point number within the selected AREA (0 for first root
anchor point).

1 DMAC address of the AREA selected.

15 Return code interpreted as follows:

Return Code Meaning

0 Register 1 contains the address of the area selected. If the area
is not contained in the DMCB or the HSSP sublist,
ABENDU1021 is issued.

4 Status 'FM' needs to be issued.

Any other return code causes ABENDU1021 to be issued.

Contents of registers on exit from an initialization call

Register Contents
1 Reason code for a non-zero return code.
15 Return code.

Contents of registers on exit from a termination call

The contents of registers on exit from a termination call are as follows:

Chapter 2. Database Manager exit routines 95

Register Contents

1 Reason code for a non-zero return code.

15 Return code.

Data Entry Database Resource Name hash routine (DBFLHSHO0)

The IMS DEDB Resource Name hash routine is used with the Internal Resource
Lock Manager (IRLM) and enables IMS and DBCTL to maintain and retrieve
information about the control intervals (Cls) used by sharing subsystems.

Subsections:
+ [“About this routine”|

+ [“Communicating with IMS” on page 97

About this routine

The routine performs a hashing function on the high-order three bytes of the
relative byte address (RBA) representing a CI and uses the hashing result as a
displacement into the hash table. If you are using IRLM in your system, the
routine IMS supplies (DBFLHSHO) or the replacement routine that you write
yourself is called automatically.

You can write the routine and bind it as reentrant (RENT) like the one supplied by
IMS. It receives control and must return control in 31-bit addressing mode. It must
be able to execute in cross-memory and TASK modes.

Important: All IMS systems sharing data must use the same hashing routine or the
contents of DEDBs might be lost. IMS does not check to ensure that the routines
are the same.

Attributes of the routine

The following table shows the attributes of the Data Entry Database Resource
Name Hash routine.

Table 26. Data Entry Database resource name hash routine attributes

Attribute

Description

IMS environments

DB/DC, DBCTL

Naming convention

You must name this exit routine DBFLHSHO.

Binding

After you compile and test the routine, bind it into IMS.SDFSRESL or to the library
specified in the USERLIB= parameter of the IMSGEN macro statement.

Including the routine

At system definition time, you must specify the name of your routine in the UHASH
parameter of the DBC, FDR, or IMS procedure.

Related Reading: For details, see the on the UHASH and the above procedures in IMS
Version 13 System Definition.

IMS callable services

This exit is not eligible to use IMS callable services.

Sample routine location

IMS.SDFSSMPL (member name DBFLHSHO)

96 Exit Routines

Assembling the routine

In a multiple-IMS environment, all IMS systems must use the same hashing routine
and compile that routine at the same time. If you write your own routine, you
must store the compile time in the module using &SYSDATE and &SYSTIME. You
also must place the address of the date and time in the first field of the routine's
CSECT.

Communicating with IMS

IMS uses the entry registers and parameter list, and the exit registers to
communicate with the routine.

Contents of registers on entry

On entry, the routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of Extended Partition Specification Table (EPST).

13 Address of save area. The routine must not change the first three words.
14 Return address to IMS.

15 Entry point of hash routine.

Description of parameters

As input to the hashing routine, you need to supply one of the following:
* the high-order byte of an RBA.

¢ the names of both a database and an area.

The routine performs an EXCLUSIVELY OR on this input, stores it in a field, and
returns a hash value result to the field EPSTRSHS.

EPST (Extended Program Specification Table) input to the routine

Register 1 points to the extended program specification table (EPST) that contains
this input as follows:

Field name Content

EPSTRSHS Hashing routine result. Only the low-order 14 bits are significant.

Chapter 2. Database Manager exit routines 97

98

Exit Routines

Field name Content

EPSTRSID Start of the lock name to be hashed. Lock resource name consists the
following are shown in the following list:

EPSTLKID
A lock identifier. If EPSTLKID = 0, resource name is for CI. If
EPSTLKID is not zero, name is for the area. 1 byte. See the
following figure.

EPSTRBA
Bit 0 through 23 of RBA. 3 bytes.

EPSTDMCB
DB Number as defined by DBRC. 2 bytes.

EPSTAREA
Area number. 1 byte.

EPSTDBNM
Database name. 8 bytes.

EPSTARNM
Area name. 8 bytes.

Cl resource name

EPSTRBA EPSTAREA
EPSTLKID | EPSTDMCB

EPST 1B| 3B 2B |1B

X'00'

Area resource name

EPSTDBNM
EPSTLKID EPSTARNM
EPST 1B| 8B ‘ 8B
Nonzero

Figure 3. Lock resource name

EPST DSECT

The DSECT of the extended program specification table (EPST) (name: DBFEPST),

and the DEDB area control list (DMAC) (name: DBFDMAC) can be used. The
DMAC address is set at the EPSTDMAA field.

Related concepts:

[Chapter 1, “Guidelines for writing IMS exit routines,” on page 3|

[[Resource name hash routine (Database Administration)|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dag/ims_resnamehash.htm#ims_resnamehash

Sample hashing routine result format

Be aware that the IMS-supplied sample hashing routine (DBFLHSHO) has a
particular layout and organization for the segments it contains.

The following figure shows the layout of the hash value stored in EPSTRSHS using
the IMS-supplied routine DBFLHSHO.

Figure 4. Format of a hash value

The following table describes the segments within a hash value and their sizes.

Table 27. Segments of a hash value

Segment Description Size

A Bits 0 - 17 of EPSTRSHS 18 bits

B Bits 21 - 25 of CI RBN XOR'd 5 bits
COMB value

C Bits 26 - 29 of CI RBN ! 4 bits

D Bits 16 - 20 of CI RBN XOR'd 5 bits
COMB value 2

Note:

1. COMB VALUE (bits 3 - 7) = bits 11 - 15 of DMCB XOR'd with bits 7, 6, 5, 4,
and 3 of the area number.

2. CIRBN = RBA divided by the CI size.

Data Entry Database Sequential Dependent Scan utility exit routine
(DBFUMSE1)

You can write an exit routine that is used with the DEDB Sequential Dependent
Scan utility to copy and process a subset of the segments that are scanned by the
utility.

Subsections:
+ [“About this routine”|

* [“Communicating with IMS” on page 100|

About this routine

The DEDB Sequential Dependent Scan utility might change both the content and
length of the segments scanned. You can choose to sort or not to sort the segments.

If you do not write an exit routine, the Scan utility defaults to passing unchanged
segment contents through the range you have specified for scanning. If you do not
specify a limit on the range of segments that the utility can scan, the utility scans
and copies all of the dependent segments.

Indoubt segments are not passed to this exit routine.

Chapter 2. Database Manager exit routines 99

100

Exit Routines

Related Reading: For guidance-level information to help you determine whether to
write an exit routine for use with the Scan utility, see IMS Version 13 Database
Utilities.

You can write the routine and bind it as reentrant (RENT) like the one supplied by
IMS. The routine receives control and must return control in 31-bit addressing. The
routine must be able to execute in cross-memory and TASK modes.

Attributes of the routine

The following table shows the attributes of the Data Entry Database Sequential
Dependent Scan Utility exit routine.

Table 28. Data Entry Database sequential dependent scan utility exit routine attributes

Attribute Description
IMS environments DB/DC, DBCTL.

Naming convention This exit routine has no specific naming requirements or restrictions;
standard naming conventions apply.

Link editing After you compile your routine, include it into IMS.SDFSRESL or
into any operating system partitioned data set to which access is
provided with a JOBLIB or STEPLIB control region JCL statement.

Including the No special steps are needed to include this routine.
routine

IMS callable services This exit routine is not eligible to use IMS callable services.

Calling the routine

If you want IMS to call your routine instead of the IMS-supplied routine
(DBFUMSEQ), you must specify the name of your routine in the EXIT control
statement of the SYSIN DD data set of the Scan Utility JCL.

Related Reading: For details, see IMS Version 13 Database Ultilities.

Communicating with IMS

IMS uses the entry registers, parameter list, and exit registers to communicate with
the routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of parameter list. The parameter list is mapped by macro
DBFUTDW.

13 Address of save area. The exit routine must not change the first three words.

14 Return address of IMS.

15 Entry point of exit routine.

Contents of registers on exit

Before returning to IMS, the routine must restore all registers except for register 15,
which must contain one of the following:

Return code Meaning

0 Use segment.

4 Do not use segment.

Related concepts:

[Chapter 1, “Guidelines for writing IMS exit routines,” on page 3|

Related reference:

[“Exit routine naming conventions” on page 3|

[“Routine binding restrictions” on page 9|

Sample DEDB Sequential Dependent Scan utility exit routine
(DBFUMSE1)

The sample DEDB sequential dependent scan utility exit routine is an example
showing entry and exit code to help you write your own scan routine.

The following code sample is not a usable exit routine provided by IMS nor is it
found in IMS.SDFSSMPL library.

TITLE 'DBFUMSE1 IMS DEDB ONLINE UTILITY SCAN EXIT'

ek e e e o o ook o o ko ko o ok ook o e ok ek e e ek ek
MODULE NAME : DBFUMSE1
TITLE : STANDARD EXIT FROM SCAN UTILITY

CONTAINS RESTRICTED MATERIALS OF IBM
COPYRIGHT : REFERENCE MODULE DBFCOPYR

ENTRY POINT(S)/PURPOSE : DBFUMSE1

FUNCTION : THIS IS A SAMPLE OF THE SCAN UTILITY USER EXIT.
ITS PURPOSE IS TO DEFINE THE INTERFACE BETWEEN
THE UTILITY AND THE EXIT. IT IS NOT INTENDED TO
BE A USABLE EXIT. IN THIS EXAMPLE, OUTPUT TO THE
SCAN DATASET IS SUPPRESSED IF THE SEGMENT BEGINS
WITH HEX ZEROES.

ENTRY INTERFACES:

REGISTERS AT ENTRY : R1 ADDRESS OF USER PARAMETER LIST
R13 ADDRESS OF SAVE AREA
R14 ADDRESS OF RETURN POINT
R15 ADDRESS OF ENTRY POINT
REGISTERS ARE SAVED AND RESTORED BY THE
CALLING MODULES.

CONTENT OF PARAMETER LIST (UTDWUSER) :
UTDWDATA - ADDRESS OF SEGMENT (FULLWORD)
ZERO AFTER LAST SEGMENT
1. AT ENTRY ADDRESS OF SEGMENT
2. AT EXIT ADDRESS OF DATA TO BE
PICKED UP AND PUT INTO SCAN
OUTPUT DATA SET REFERRED TO
BY SCANCOPY DD CARD.
UTDWMIN - MINIMUM LENGTH OF SEGMENT (HALFWORD)
AS IN DBD-GENERATION
UTDWMAX - MAXIMUM LENGTH OF SEGMENT (HALFWORD)
AS IN DBD-GENERATION

L I T R N N R R I R R R I S R S T R R N N
EE R I R R R R R R S T R R R T R R T T R R R

Chapter 2. Database Manager exit routines 101

102

Exit Routines

UTDWUFLD - FIELD FOR USER (FULLWORD)
ZERO WITH FIRST SEGMENT,
UNCHANGED BY THE UTILITY
UTDWMOUT - MAXIMUM SEGMENT LENGTH (HALFWORD)

NOTE: THE USER MAY CHANGE LENGTH AND
CONTENT OF THE SEGMENT USING HIS
OWN WORKSPACE. IF HOWEVER THE LENGTH=
EXCEEDS THE LENGTH OF THE SCAN
OUTPUT BUFFER - 8 THE UTILITY IS
TERMINATED.

L R

DATA/OTHER : NONE

EXIT INTERFACES :
REGISTERS AT EXIT : R15 CONTAINS RETURN CODE
RETURN CODES : 00 USE SEGMENT

04 DO NOT USE SEGMENT

DATA/OTHER : NONE
EXTERNAL ROUTINES CALLED : NONE
TABLES/WORKAREAS : NONE
REGISTER USAGE : R1 PARAMETER LIST
R2 SEGMENT ADDRESS
R12 MODULE BASE REGISTER
R14 RETURN ADDRESS
R15 RETURN CODE - 00 WRITE SEGMENT
04 DO NOT WRITE SEGMENT
MESSAGE NUMBERS : NONE

ABEND CODES : NONE

Lo O T T N R R N R S R TN I I R

LR R R R R T I N T R T I T

""""""" 2 T T T T

EJECT ,
*PCODE :
KAk Kk hhkhhhkhhhhkhhhhhhhhhhdhhhhhhhhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhkdhdhhhhhhhhhkhhdkx
* *
* IF SEGMENT EXISTS *
* IF THE SEGMENT STARTS WITH X'00'S *
* SET RC=4 (DON'T WRITE THE SEGMENT) *
* ELSE *
* SET RC=0 (WRITE THE SEGMENT) *
* ENDIF *
* ELSE *
* SET RC=4 (DON'T WRITE THE SEGMENT) *
* ENDIF *
* RETURN *
* *
khkkkkhkhkkkhkhkkhhhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhhhhhhhhhhhhhhhhhhhhhkhhhhkhhkkhhhkkkhkhkkhkhkhkxkx
*ENDPCODE :

SPACE 10

PRINT NOGEN

REQUATE

DBFUTDW DSECT FOR PARM LIST

SPACE 10
DBFUMSEL CSECT

USING DBFUMSE1,R12 MODULE BASE REGISTER

USING UTDWUSER,RI PARAMETER LIST BASE REGISTER

L R2,UTDWDATA GET ADDRESS OF SEGMENT

LTR R2,R2 IS THERE A SEGMENT?

BZ NOWRITE NO SEGMENT, DON'T WRITE
*

LA R2,2(,R2) SKIP PAST SEGMENT LENGTH

CLC 0(6,R2),ZEROES DOES SEGMENT START WITH 0'S?

BNE WRITESEG NON-ZERO DATA. WRITE IT.
* OTHERWISE, DON'T WRITE IT.
NOWRITE DS OH

LA R15,4

BR R14
WRITESEG DS OH

XR R15,R15

BR R14
ZEROES DC XL6'00'

END

HALDB Partition Selection exit routine (DFSPSE00)

You can develop a HALDB Partition Selection exit routine so that PHDAM,
PHIDAM, or PSINDEX databases can select partitions by criteria other than high
key.

This topic contains Product-sensitive Programming Interface information.

Subsections:
+ [“About this routine”|

+ [“Communicating with IMS” on page 105|

About this routine

You can specify the name of the HALDB Partition Selection exit routine during
DBD generation, with the HALDB Partition Definition utility, or on the DBRC
INIT.DB command.

Use one of the following options to specify the name of the exit routine:
* During DBD generation, use the PSNAME keyword.

* With the HALDB Partition Definition utility, specify the exit routine name as the
Partition Selection name.

* Use the PARTSEL keyword on the DBRC INIT.DB command when you register a
HALDB database with DBRC.

If you do not specify an exit routine, IMS selects a partition using the high key
method and does not invoke the HALDB Partition Selection exit routine.

The following table shows the attributes of the HALDB Partition Selection exit
routine.

Table 29. HALDB patrtition selection exit routine attributes

Attribute Description
IMS environments DB/DC, DBCTL.

Naming convention
The name given to the load module used for partition selection

appears in the DBD associated with the database, the HALDB
Partition Definition utility, or the DBRC INIT.DB command. The
load module name must be the value of the parameter of the
PSNAME operand on the DBD statement, Partition Selection name
in the HALDB Partition Definition utility, or value of the parameter
PARTSEL on the DBRC INIT.DB command.

Chapter 2. Database Manager exit routines 103

104

Exit Routines

Table 29. HALDB patrtition selection exit routine attributes (continued)

Attribute Description

Bindin
8 After you compile and test your exit routine, bind it into
IMS.SDFSRESL, SYS1.LINKLIB, or any operating system partitioned
data set that can be accessed by a JOBLIB or STEPLIB JCL statement
for the IMS control and SAS regions.

Including the routine
No special steps are needed to include this routine.

IMS callable services
This exit is not eligible to use IMS callable services.

Sample routine IMS.SDFSSMPL.
location

Loading and deleting the routine

One HALDB Parttion Selection exit routine can be shared by multiple HALDBs. A
HALDB Partition Selection exit routine can be placed in the IMS.SDFSRESL,
SYS1.LINKLIB, or any operating system partitioned data set that can be accessed
by a JOBLIB or STEPLIB JCL statement for the IMS control region and SAS region.

When a HALDB definition in the RECON data set includes a HALDB Partition
Selection exit routine definition, IMS loads the exit during IMS initialization if the
HALDB is resident, during the first application scheduling if the HALDB is
non-resident, or at the /START DB partition_name OPEN or UPDATE DB
NAME(partition_name) START(ACCESS) OPTION(OPEN) command if the exit has
not already been loaded.

When a HALDB database is taken offline, the associated HALDB Partition
Selection exit routine is logically deleted from system memory. When all HALDB
databases sharing a HALDB Partition Selection exit routine are offline, the exit
routine is physically deleted from system memory. The following commands will
delete the exit routine:

* UPDATE DB NAME(HALDB_master_name) STOP(ACCESS)
 UPDATE DB NAME(HALDB_master_name) STOP(UPDATES)
< /DBR DB HALDB_master_name

« /DBD DB HALDB_master_name

When a HALDB Partition Selection exit routine is not loaded, you can update or
refresh the exit routine in the library where it is stored.

Calling the routine
IMS loads this routine at IMS initialization time.

The HALDB Partition Selection exit routine receives control during modification of
the internal partition definition control block and when a DL/I call requires the
selection of a partition. The following processing activities activate the HALDB
Partition Selection exit routine:

¢ Control block initialization
¢ Control block termination
¢ Control block modification

* Selection of first partition
* Selection of next partition
* Selection of target partition

IMS calls a HALDB Partition Selection exit routine when an exit routine is
specified for the database. When the internal partition definition control blocks are
created, modified, or terminated, this call to the exit routine allows your exit to be
aware of the current configuration of the HALDB partitions and to have some
influence on its validity for subsequent DL/I processing. The initialization call that
indicates that the control blocks were created occurs prior to authorizing and
opening the partition data sets.

Cross memory mode

The following factors determine whether your HALDB Partition Selection exit
routine is called in cross-memory mode:

* The IMS environment, either online (DLI) or batch (DBB)
* The call type, either control block manipulation or partition selection

Cross memory mode in batch Cross memory mode in online
Call type environment environment

Control block No No
manipulation calls

Partition selection calls No Yes

Communicating with IMS

IMS communicates with the HALDB Partition Selection exit routine through the
entry registers.

Contents of registers on entry
The HALDB Partition Selection exit routine is called with the following registers

established:

Register
Contents

1 Specifies the address of the parameter list that identifies the call. The
parameters are:

1 A full word that contains the number of parameters in the list. The
value of 2 is specified.

2 The Exit Communication Area that is mapped by DFSPECA.
3 The Partition Definition Area that is mapped by DFSPDA.

13 Addpress of a standard save area. Four pre-chained save areas are provided
for this exit routine to use.

14 Return address to IMS.
15 Exit entry point address.

Area mapping

Chapter 2. Database Manager exit routines 105

106

Exit Routines

DFSPECA
Partition Exit Communication Area Mapping. Dynamically initialized from
static storage.

DFSPDA
Partition Definition Area Mapping. Allocated and initialized during
internal partition definition control block initialization.

Contents of registers on exit

The HALDB Partition Selection exit routine is involved in the processing of
internal partition definition control block initialization, termination, rebuild, and
partition selection. The exit routine can identify some processing and control block
conditions as errors, according to your specifications. The exit routine informs IMS
of the response to the error condition by specifying a return code. The return code
is returned in field PECRC of the Partition Exit Communication Area (DFSPECA).
The action that IMS takes depends on both the return code that is supplied by the
exit routine and the call reason for invoking the exit routine. The exit routine can
request IMS to stop the database or issue a pseudo abend. The following return
codes can be sent to IMS:

Return code

Description

0 Normal return. No exception processing required.

4 Abnormal return. IMS can stop the database during control block calls, and
IMS passes a status code FM back to the application program.

8 Pseudo abend return. IMS issues user abend 3499.

12 Exception return. No more partitions are available for Select Next

processing. IMS treats this condition as the end of the HALDB.

Depending on the call reason and call history, IMS takes certain actions when
return code 12 is received from the HALDB Partition Selection exit routine. The
rules are as follows:

1. When the exit routine is called for control block initialization, termination, or
modification (rebuild), the return codes can be 0, 4, or 8. A return code of 12 or
above is not supported. The return code from a control block termination
(PECTERM) call is ignored by IMS if it is 0, 4, or 8 (12 and above are not
supported). IMS terminates the control block in all cases when the return code
is 0, 4, or 8 for the PECTERM call.

2. When the exit routine is called for partition selection, return codes 0, 4, 8, and
12 are supported. If the partition selection is "Select Next", return code 12 from
the exit routine indicates that no partitions are available. If the partition
selection is "Select Target" or "Select First", return code 12 indicates a request
for ABEND 3499.

3. When the exit routine is called for any partition selection, a check is made to
see whether any prior call from the control block initialization, termination, and
rebuild has resulted in a pending request for ABEND 3499. If such a request
has been made, ABEND 3499 is issued.

Related tasks:

[[Creating HALDB databases with the HALDB Partition Definition utility]
[(Database Administration)|

Related reference:

[‘Routine binding restrictions” on page 9|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dag/ims_createhaldbpartdef.htm#ims_createhaldbpartdef
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dag/ims_createhaldbpartdef.htm#ims_createhaldbpartdef

[#* [Database Description (DBD) Generation utility (System Utilities)|
[# [INIT.DB command (Commands)|

Sample partition selection exit routine (DFSPSEO00)

DFSPSEQ0 contains code that supports control block initialization, termination, and
modification calls, as well as partition selection calls.

Be aware that the actual partition selection processing in the sample DFSPSEQ0 is
based on a high key value and not a user defined string value. The sample exit is
written in assembler language and located in the IMS Sample library.

The sample exit routine demonstrates the use of the interface and control blocks.
The sample exit performs partition selection processing by using partition high key.

Partition exit communication area mapping (DFSPECA)

The HALDB Partition Selection exit routine uses the DFSPECA communication
area to communicate the result of exit processing.

The DFSPECA storage area is dynamically initialized from static storage for each
invocation of the HALDB Partition Selection exit routine. The DFSPECA DSECT
can be obtained by assembling DFSPSEIB.

DFSPECA Field Definitions:
Field Description

PECDBN
The name of the HALDB.

PECRSWD1
Not used; the contents are unpredictable.

PECRC
Return code indicating the result of exit processing.

PECFDB
Exit feedback area consisting of two halfword fields.

The exit returns the partition ID of the partition selected in field PECFDB2.

PECKEY
Address of the key associated with the DL/I call.

PECCPID
Current Partition ID.

The partition ID of the last partition selected.

PECKEYL
The length of the key minus 1.

PECACT
The invocation action informing the exit what processing is required.

PECFLAG1
IMS control data flag. Defines additional information for exit processing.

PECINEWP
A flag indicating that one or more new partitions were added to the
internal partition definition control block. To indicate that the entry defines

Chapter 2. Database Manager exit routines 107

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdgen.htm#ims_dbdgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_initdb.htm#ims_cr3initdb

108

a partition that was not previously defined, set flag PDAFLAGI to
PDAFI101 in each related PDA entry. Set the flag for the exit REBUILD call
and then reset.

PECFLAG2
Flag byte available for exit use.

Note: The user exit can set PECFLAG2 to any value, but that value is not
preserved across calls to the exit routine.

PECVRSN
A halfword with the value PECURVER that is set by IMS before invoking
the partition selection exit. The user exit can check the version number in
PECVRSN with the constant PECURVER to ensure it is using the same or
higher version of the DFSPECA control block passed by IMS. If the
PECVRSN value is less than PECURVER value, a mismatch exists because
the exit has been compiled with a higher version of the DFSPECA than the
one used by IMS.

PECUSER
Dynamic work area for exit use. This work area storage is not preserved
across calls to the exit routine.

Partition definition area mapping (DFSPDA)

Exit Routines

The HALDB Partition Selection exit routine uses the DFSPDA partition definition
area to define internal partition control blocks.

The DFSPDA storage area is allocated and initialized during initialization of the
internal partition definition control block. DFSPDA storage area is maintained until
the control block changes. Any control block change causes the storage to be
released and a new area allocated and initialized. Each invocation of the HALDB
Partition Selection exit routine passes the DFSPDA area. The DFSPDA DSECT can
be obtained by assembling DFSPSEIB.

DFSPDA field definitions

PDAPDE

The address of the first partition definition entry.
PDANUM

The number of DFSPDA entries.
PDARSWD1

Not used; the contents are unpredictable.
PDALSTRL

The length of the longest string that is defined for the partitions.
PDADORG

The database organization: PHDAM, PHIDAM, or PSINDEX.
PDAUSRn

Five words that are available for exit use (PDAUSR1, PDAUSR?2,
PDAUSR3, PDAUSR4, and PDAUSRS).

The exit routine can use these words to anchor storage that has been
allocated by the exit and these values will be available for use the next
time the exit is called. The exit can also use the GETMAIN and
FREEMAIN macros.

PDAPLEN
The length of the Partition Definition Area Prefix.

DFSPDAE field definitions

PDAPN
The name of the associated partition.

PDASTRG
The address of the user-defined Partition String value. If PDASTRG is zero,
it indicates a null Partition String. This 256-byte area contains the string
value that you define. You can modify this area during Structure
Initialization processing to assist in selection processing.

PDAPID
The partition ID of the associated partition.

PDARAP
The number of Root Anchor Points defined for the partition. Provided for
PHDAM organization only; otherwise, it contains zeros.

PDABLKR
The number of blocks containing Root Anchor Points. Provided for
PHDAM organization only; otherwise, it contains zeros.

PDASTRGL
The length of the user string minus 1.

PDAFLAG1
IMS control data flag. Defines unique PDA entry information for exit
processing.

PDAF101
A flag within PDAF101 indicating whether this PDA entry defines a new
partition that was not previously defined. When PDAF101 is on for the
control block modification call, it indicates that this entry is for a new
partition; when off, PDAF101 indicates a previously defined partition.

PDAELEN
The length of the Partition Definition Area entry.

Length added to the entry address to provide the address of the next entry.

HDAM and PHDAM randomizing routines (DFSHDC40)
The DL/I HDAM and PHDAM access method requires you to supply a

randomizing module for placing root segments in, or retrieving them from, an
HDAM and PHDAM database.

This topic contains Product-sensitive Programming Interface information.

Subsections:

* |“About these routines” on page 110|

* [“Communicating with IMS” on page 112}
* [“Sample HDAM and PHDAM randomizing routines” on page 114|

Chapter 2. Database Manager exit routines 109

About these routines

Several databases can share the same routine, but each of those databases must be
associated with a single randomizing routine. If you are using data sharing, you
must use the same randomizing routine on all systems that share a given database.

A randomizing module uses a mathematical technique to convert a key into an
address. A specific key always converts to the same address. The randomizing
module required by IMS must convert a key field value into a relative block
number and an anchor point number. The result of a randomizing routine is a
relative block number that ranges from 1 to 2**-1. The anchor point number ranges
from 1 to the number of anchor points per block as defined in the database's DBD.
The maximum is 255.

The key field value is supplied by an application program in the data itself for
inserting segments into the database and in an application program in an SSA
(segment search argument) for retrieving segments from a database.

Four randomizing modules are supplied with IMS. Although four are supplied,
DFSHDCA40 is the only one recommended for use. You can use this one or write
your own randomizing module.

Related Reading: To help you determine the module that best meets your need,
see IMS Version 13 Database Administration.

If you write your own module, follow the guidelines included in this topic.
Attributes of the routine

The following table shows the attributes of the HDAM and PHDAM Randomizing
routine.

Table 30. HDAM and PHDAM randomizing routine attributes

Attribute Description

IMS environments DB/DC and DBCTL.

Naming convention
The name you give to the load module used for randomizing

functions with a specific database must appear in the DBD
generation associated with the database. The load module name
must be the value of the “mod” parameter of the RMNAME=
operand on the DBD statement in the HDAM and PHDAM DBD
generation.

Related Reading: For details on coding this parameter, see
“Database description (DBD) generation”, in IMS Version 13 System
Utilities.

Link editing
After you compile and test a randomizing module, bind it into
IMS.SDFSRESL, SYS1.LINKLIB, or into any operating system
partitioned data set that can be accessed by a JOBLIB or STEPLIB
JCL statement for the IMS control, SAS, and batch regions.

To ensure that the routines run as they did in prior IMS releases,
bind them as neither reentrant nor reusable.

Including the routine No special steps are needed to include this routine.

IMS callable services This exit routine is not eligible to use IMS callable services.

110 Exit Routines

Table 30. HDAM and PHDAM randomizing routine attributes (continued)

Attribute Description
Sample routine For the latest version of the sample routine (DFSHDC40), see
location IMS.ADFSSRC; member name is DFSHDC40.

You must write, compile, and bind the randomizing module as one of the
following:

REENTRANT
IMS does not serialize the database before calling the routine. A single
copy of the routine is used for the databases.

REUSABLE
IMS serializes the database before calling the routine. If the routine is used
for multiple databases, it must be written and compiled as reentrant, even
if it is not bound as reentrant.

NONREUSE
IMS serializes the database before calling the routine. Each database has its
own copy of the routine.

All modules receive control and must return control in 31-bit addressing mode.
They must be able to execute in cross-memory and task modes.

Loading the routine

IMS loads all randomizing modules from their resident library when the database
is opened. IMS obtains the name of the randomizing module from the name you
have specified in the RMNAME parameter of the DBD statement of the database
description (DBD).

Related Reading: For details on coding the RMNAME parameter, see IMS Version
13 Database Ultilities.

The necessary randomizing module associated with a specific database is brought
into main storage at the time the associated database is opened. It can also be
placed in the LPA (link pack area). This allows one copy of the module to service
several databases that are concurrently open.

If you use any of the Local Storage Options (LSO), the randomizing module is
loaded in CTL or DL/I SAS private storage. Otherwise, the module is loaded into
CSA.

Calling the routine

When an application program issues a Get Unique or Insert call that operates on a
root segment of an HDAM and PHDAM database, the randomizing module is
called.

The source of the root key that IMS supplies to the randomizing routine is as
follows:

* For a root insert, IMS takes the key from the I/O area containing the root to be
inserted.

* For a call qualified on the root key, IMS uses the key value in the segment
search argument.

Chapter 2. Database Manager exit routines 111

112

Exit Routines

Related Reading: For information on processing Get Next (GN) calls qualified on
the root key and calls with root qualification that allows a range of key values, see
IMS Version 13 Application Programming.

The key is supplied to the randomizing module for conversion to a relative block
number and anchor point number within the database. In addition to the key
supplied by an application program, parameters from the DBD generation for the
database are available to the randomizing module.

Communicating with IMS

IMS uses the entry and exit registers to communicate with the randomizing
routine.

Contents of registers on entry

On entry, the randomizing routine must save all registers using the provided save
area. The registers contain the following:

Register Content

0 Address of Data Management Block (DMB).

1 Address of the DMBDACS CSECT.

7 Address of Partition Specification Table (PST).

9 Address of first byte of key field value supplied by an application program.
13 Address of save area. The exit routine must not change the first three words.
14 Return to IMS address.

15 Entry point of randomizing module.

If an HDAM and PHDAM database does not have a sequence field defined:

* The executable key length field in the CSECT named RDMVTAB is not
initialized and must not be used.

* The value in register 9 module contains the address of the first byte of the
segment.

If an HDAM and PHDAM database does not have a sequence field defined at the
root level, the randomizing module is given control on an insert call. All retrieval
calls result in a scan of the root-level qualification. On Get Unique (GU) calls, the
scan starts at the beginning of the database. On Get Next (GN) calls, the scan starts
at the current root-level position within the database.

The randomizing module is invoked on Get calls, particularly when the database
contains a secondary index or a logical relationship. The randomizing module
must produce the same results on the Get call as it did on the Insert call.

The first eight words of the PST are available to the randomizing module as a
work area. These words are also used by DL/I and must not be used by other exit
routines. If an additional work area is needed, CSECT RDMVTAB can be expanded
to provide additional space.

Internal IMS control blocks that can be of value to a randomizing routine are the
Partition Specification Table (PST), the Physical Segment Description Block (PSDB)
for the root segment, and the first Field Description Block (FDB). The FDB is the
root segment key field format description.

Description of parameters

The parameters from DBD generation are available to randomizing modules. Their
area is described by the DMBDACS DSECT. It contains information such as the
randomizing routine's name, anchor point information, and the total area length.
You can extend the area by an assembly and bind process to contain any data or
algorithm information.

The root 32 bytes of the RDMVTAB CSECT (described by the DMBDACS DSECT)
contains constants defined by DBDGEN. If you extend the area to include
additional parameters, this field must be duplicated. The DMBDASZE field must
be updated to reflect the total length of this area (including the added parameters).

After assembly, you can bind the expanded RDMVTAB CSECT to replace the old
one. Use an ENTRY statement specifying the name of the DBD and an ORDER
statement to make sure the original order of the multiple CSECTs is maintained.
For more information, see information on the z/OS binder and loader in the z/OS
product library.

The following DSECT defines the format of the area pointed to by register 1:

DMBDACS DSECT
DMBDANME DS CL8 NAME OF ADDR ALGORITHM LOAD MODULE
DMBDAKL DS CL1 EXECUTABLE KEY LENGTH OF ROOT

DS CL3
DMBDASZE DS H SIZE OF THIS CSECT
DMBDARAP DS H NUMBER OF ROOT ANCHOR POINTS/BLOCK
DMBDABLK DS F NUM OF HIGHEST BLOCK DIRECTLY ADDRSD
DMBDABYM DS F MAX NUMBER OF BYTES BEFORE OFLOW TO

2NDARY

DMBDARC DS CL1 RETURN CODE FROM RANDOMIZER

DS CL3 RESERVED
DMBDACP DS F RESULT OF LAST ADDRESS CONVERSION

Contents of registers on exit

Before returning to IMS, the randomizing routine must restore all registers. The
parameter list pointed to by register 1 can contain one of the following return
codes:

Return code Meaning

0 Continue processing; randomizing properly.
4 Set FM status code and return to caller.
8 U812 abend.

For any randomizing routine that passes these return codes, ensure that application
programs that use the database can accept the return codes.

The return code from a randomizing module can be in either character or binary
form. In other words, X'FO' and X'0' are both valid for a return code of zero. This
return code must be placed in the DMBDARC field of the CSECT addressed by
register 1.

You do not need to explicitly set a return code of zero in DMBDARC, because it is
the default return code and the field is preset to zero.

Results of the routine on exit

Chapter 2. Database Manager exit routines 113

114

The result of a randomizing module conversion must be in the form BBBR where
BBB is a 3-byte binary number of the block into which a root segment is inserted
or from which it is retrieved and R is a 1-byte binary number of the appropriate
anchor point, within a relative block, within a data set of the database.

This result must be placed in the CSECT addressed by register 1 in the 4-byte fixed
name DMBDACTP. If the result exceeds the content of the field DMBDABLK, the
result is changed to the highest block and last anchor point of that block.

Sample HDAM and PHDAM randomizing routines

IMS supplies four randomizing module samples (DFSHDC10, DFSHDC20,
DFSHDC30, and DFSHDC40) to help you write your own HDAM and PHDAM
randomizing module. The modules are linked into the IMS.SDFSRESL data set
during system definition. The modules use the following randomizing techniques:

* Modular or division method (DFSHDC10)
* Binary halving method (DFSHDC20)
* Hashing method (DFSHDC30 and DFSHDC40)

Module DFSHDC40 is recommended; the source code for all four modules resides
in the IMS.SOURCE library. The next provides guidelines for using the sample
module, DFSHDC40.

Restriction: These routines do not support nonsequenced HDAM and PHDAM
databases. They all use the key length in their calculations.

Related concepts:

[Chapter 1, “Guidelines for writing IMS exit routines,” on page 3|

Sample HDAM and PHDAM generalized randomizing routine
(DFSHDCA40)

Exit Routines

You can use the IMS-supplied sample DEDB randomizing modules DFSHDC40 on
IMS.SOURCE.

If root keys are unique and totally random storage is desired, this routine can be
used for any HDAM and PHDAM database without performing an analysis of key
distributions.

This randomizing routine works with the entire key and has the following
characteristics:

* It is reentrant.

* Keys can contain any of the 256 characters, and key length can be from 1 to 256
bytes.

* It converts any key distribution (with unique key values) to a totally random
address distribution.

* It never returns an address in block 1, which is always a bit map block in
HDAM and PHDAM. You can specify any number of blocks and RAPs.

* The number of blocks must be in the range between 2 and 2%%.1; the number of
RAPs must be in the range of 2 to 2°'-1 when RAPs are multiplied by blocks.
The RBN subparameter of the RMNAME= parameter of the DBD statement
must be specified for the upper limit, together with DFSHDC40 as the “mod”
subparameter, if this randomizing routine is chosen.

* It allows the insertion of a dummy root at the highest block-RAP to ensure the
formatting of the entire root addressable area at load time.

The basic logic of the routine is:

1. Convert the key into a 4-byte binary number by translating the key digits
twice. Determine the offset into the translation table using the key length and
individual digits. For example:

Key 123456

Digits are used in series of threes. Two work areas are used. In the first pass,
the first work area contains X'F2F3'; the second contains X'F1F2F3'.

The first work area is translated into the translation table with a zero point of 4
(key length 2). The second work area is translated into the translation table
with a zero point of X'F5', the fifth digit. These two translated numbers are
multiplied and added into an accumulator. The remaining digits are converted
and added into the accumulator.

The conversion number for key 123456 is X'45683199'".

2. Translate the converted number, and set the top bit to zero to ensure a positive
number.

3. Multiply the maximum number of blocks minus one by the number of RAPs.
Multiply the result by the translated key.

4. After adjustment to ensure block 1 is not used, store the result in DMBDACP.

Secondary Index Database Maintenance exit routine

You can use the Secondary Index Database Maintenance exit routine to control the
density of a secondary index by selectively suppress secondary indexing.

Subsections:
+ [“About this routine”)

* [“Communicating with IMS” on page 117

About this routine

Two options are available to the Database Manager to control the volume of entries
in secondary index databases: the NULLVAL operand and the index maintenance
exit routine. To build and maintain a sparse index, you can use suppression of
indexing, the process of withholding a prospective index pointer segment from the
index.

Use the NULLVAL operand to suppress indexing when the entire indexed field
contains one specified character or value. For example, you might want to use
NULLVAL to suppress indexing when the indexed field contains only blanks. A
different NULLVAL can be specified for each indexed segment.

Alternatively, secondary indexing allows you to specify, during the DBDGEN, a
user-supplied exit routine that can selectively suppress secondary indexing. One
exit routine is allowed for every secondary index; however, one generalized routine
can be written to serve several index relationships.

If you bind this exit routine as reentrant (RENT), it must be truly reentrant (it

cannot depend on any information from a previous invocation and it cannot store
into itself).

Chapter 2. Database Manager exit routines 115

If you bind this exit routine as reusable (REUSE), it must be truly reusable (it
cannot depend on any information in itself from a previous call), but it can depend
on information that it saves in the specific database segment block that is passed to
it. In addition, if the same exit routine is used for two different segments, the
single copy of the exit can be called concurrently for each segment. In this case, the
exit routine must be written as reentrant.

If you bind this exit routine so that it is neither RENT nor REUSE, it can store into
itself and depend on the information saved in the database segment block that is
passed to it.

The following table shows the attributes of the Secondary Index Database
Maintenance exit routine.

Table 31. Secondary index database maintenance exit routine attributes

Attribute

Description

IMS environments

DB/DC, DBCTL.

Naming convention

Each exit routine must have a name unique with respect to all IMS module names and
to any other exit routines in the IMS libraries. The name of this exit routine is specified
for each DBD with the EXTRTN parameter of the XDFLD statement submitted to the
DBDGEN utility.

Before an index source segment in a database can be loaded or updated, its EXTRTN
routine must be in the system library.

Link editing

After an exit routine has been compiled and tested, it can be placed into the
IMS.SDFSRESL data set, from which it is loaded by IMS. It can also be placed in
SYS1.LINKLIB, or in any operating system partitioned data set to which access is
provided with a JOBLIB or STEPLIB JCL statement.

Including the routine

No special steps are need to include this routine.

IMS callable services

This exit routine is not eligible to use IMS callable services.

116 Exit Routines

Loading the routine

The first time that an exit routine associated with the specific database is
referenced, it is loaded into storage in either the IMS online control program region
or batch processing region when the associated database is opened. The loaded
routine will be used by any other databases that require the same exit routine. This
allows one copy of the module to service several databases that are open
concurrently. The routine is not refreshed during the current IMS execution.

When an index maintenance exit routine is used in either the IMS online control
region or a DL/I batch processing region and the exit routine does not exist in
LINKPACK, you must provide space in the IMS control region or in the DL/I
separate address space (DLISAS) to accommodate the exit routines that can be
used for online databases.

Calling the routine
When an application program issues a REPL, ISRT, or DLET call of a segment
serving as an index source segment for one or more indexing relationships, the

DL/I index maintenance routine is invoked.

DLET call

In the case of DLET, an indexing segment is built corresponding to the existing
index source segment. If it passes the null value test, the index exit routine is
invoked. This routine indicates whether this indexing segment should appear in
the index. If it should appear, the actual indexing segment is retrieved and deleted;
otherwise, no delete is attempted.

ISRT call

In the case of ISRT, the indexing segment is built to correspond to the segment to
be inserted, and the null value test and the exit routine tests are performed. If no
suppression of indexing is indicated by either, it is inserted into the index.

REPL call

A REPL call can be a combination of a DLET call and an ISRT call, a simple
replace, or a NOP, depending on the fields changed in the replace. If a field in the
Index Source Segment (ISS) is changed by a REPL call that changes the indexed
data or subsequent data, the existing indexing segment is deleted and a new one
inserted. The index edit routine is invoked for each operation. If the change in the
ISS affects a source data field, a replace operation on the indexing segment is
executed, unless the index exit routine indicated that indexing was suppressed. If
the ISS replace made no changes in the indexing segment, no action is taken.

The suppression of indexing by the exit routine must be consistent. The same
indexing segment cannot be examined at two different times and have suppression
indicated only once. If the indexing segment contains user data, this user data
cannot be used to evaluate suppression, since the actual indexing segment is seen
by the exit routine just before the insertion of a new one. In the cases of replace
and delete, only a prototype is passed. The prototype contains the constant,
indexed data, subsequence data, duplicate data, and any symbolic pointer that was
added. Therefore, index suppression must not be based on any user data.

The exit routine issues a return code and indicates either that the present index
pointer segment belongs in the index or that it should be suppressed. The exit
routine must not change any IMS control blocks, or any fields in the indexing
segment.

You can include additional information about the segment in the exit routine
CSECT. This CSECT is part of the DBD, and as such can be replaced by a bind. It
is of variable-length and contains a fixed-format header. A separate CSECT is
provided for each XDFLD in the DBD for which an exit routine is specified. The
availability of this CSECT is described in the exit routine specifications. You can
replace this control section in the same manner as you can the segment
compression control section.

Communicating with IMS
IMS communicates with the exit routine through the entry and exit registers.
Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of Partition Specification Table (PST).

Chapter 2. Database Manager exit routines 117

118

Exit Routines

Register

Contents

2

Address of proposed or existing index segment.

3 Address of Index Maintenance Routine Parameters CSECT.

4 Address of Index Source Segment.

13 Address of save area. The exit routine must not change the first three words.
14 Return address to IMS.

15 Entry point of exit routine.

Description of parameters

On entry to the routine, IMS passes the address of the CSECT shown in the

following figure.

0
Indexed segment name
8
Indexed field (XDFLD) name
16
Indexed Maintenance
exit routine name
24
Entry point address
28

CSECT length

RSVD

32

User data

Figure 5. Index maintenance exit routine parameter list CSECT

The following DSECT defines the format of this CSECT:

DMBXMPRM
DMBXMSGN
DMBXMXDN
DMBXMXNM
DMBXMXEP
DMBXMPLN

DSECT
DS
DS
DS
DS
DS
DS

CL8
CL8
CL8
A
H
H

Name of indexed segment
Name of indexed field
Name of exit routine
Entry point addr

Total Tength of CSECT
Not Used

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except register

15, which contains one of the following return codes:

Return code Meaning

0 The indexing segment should appear in the index for this database segment.

4 Indexing should be suppressed.

Related reference:

[‘Routine binding restrictions” on page 9|

Sample Secondary Index Database Maintenance exit routine

The sample secondary index database maintenance exit routine shows entry and
exit code to help you write your own routine.

The following secondary index database maintenance exit routine example is not a
usable exit routine provided by IMS, nor is it found in the IMS.SDFSSMPL library.
SAMPLE ~ TITLE 'SAMPLE OF SECONDARY INDEX EXIT ROUTINE'

* k kK kK k k kK k k k k k k k k k k k k k k k k¥ k k k k k k k¥ k k *k Kk k %
*

SAMPLE OF SECONDARY INDEX DATA BASE MAINTENANCE EXIT ROUTINE

THIS SAMPLE IS NOT INTENDED TO BE A USABLE EXIT ROUTINE.
IT IS PROVIDED HERE TO SHOW ENTRY AND EXIT CODE.

THIS SAMPLE SUPPRESSES THE INDEX ENTRY IF ALL BYTES OF THE
INDEX KEY ARE BLANK.

REGISTERS ON ENTRY

R1 - PARTITION SPECIFICATION TABLE (PST) ADDRESS

R2 - ADDRESS OF (PROPOSED OR EXISTING) INDEX SEGMENT
ADDRESS OF INDEX MAINTENANCE ROUTINE PARMS CSECT
R4 - ADDRESS OF INDEX SOURCE SEGMENT
R13 - SAVE AREA ADDRESS
R14 - RETURN ADDRESS
R15 - ENTRY ADDRESS

REGISTERS ON EXIT

R15 - 0 TO NOT SUPPRESS THE INDEX ENTRY
- 4 TO SUPPRESS THE INDEX ENTRY
RO THRU R13 ARE RESTORED

LN I N S I I R I I N
Pl
w
]

R I S R S R N

Kok ok ok ok kK k Kk Kk ok k Kk Kk Kk ok k Kk Kk K k Kk Kk ok k k Kk Kk X k Kk Kk K k *
SPACE 1

INDEXXIT CSECT
STM R14,R12,12(R13) SAVE REGISTERS 14 THRU 12
L R13,8(R13) SET 13 TO NEXT IMS PRE-CHAINED SAVE SET

LR R12,R15 SET 12 AS BASE
USING INDEXXIT,R12 USE R12 AS BASE FOR PROGRAM
USING PST,R1 USE R1 AS BASE FOR PST

USING XRECORD,R2 USE R2 AS BASE FOR INDEX RECORD

USING DMBXMPRM,R3 USE R3 AS BASE FOR INDEX CSECT

USING XSOURCE,R4 USE R4 AS BASE FOR INDEX SOURCE SEGMENT
SPACE 2

* k kK kK k kK k k k kK k k kK k k k k k k k k k k k k *k k¥ k *k *k kx *k k% *%

LOGIC SHOULD BE PROVIDED HERE TO DECIDE WHETHER THE INDEX RECORD
SHOULD BE SUPPRESSED.

THE FOLLOWING CODE WILL TEST WHETHER THE KEY OF THE INDEX
RECORD IS ALL BLANK. IF THE FIELD IS ALL BLANK, THE INDEX ENTRY
WILL BE SUPPRESSED.

EEE I
* % F Ok F X X X X X

Kok ok ok ok K k Kk Kk ok k Kk Kk ok ok k Kk Kk K k Kk Kk ok kx k Kk kX k Kk Kk K k *
SPACE 1
CLC XFIELD1,BLANKS IS FIELD BLANK
BE SUPPRESS YES, SUPPRESS INDEX FOR FIELD
B NOSUPP NO, ALLOW INDEX FOR FIELD
SPACE 2

* %k % k% k& k¥ * k k¥ ¥ k¥ k k¥ ¥ k¥ k¥ ¥ k¥ *k ¥ ¥ k¥ ¥k ¥ k¥ *k ¥ *¥ *x *k * *x * *

SUPPRESS RETURN, SET 4 IN R15 TO TELL IMS TO SUPPRESS THE ENTRY

* Ok X X
EE

* kK kK k kX kK k k k¥ k¥ kx k k kx k¥ k¥ k¥ kx k k¥ kx k¥ k¥ k¥ k¥ k¥ k¥ k¥ *x ¥ *¥ *x k% *%

SPACE 1

Chapter 2. Database Manager exit routines 119

SUPPRESS DS OH

L R13,4(R13) BACK UP TO PRIOR SAVE AREA

RETURN (14,12),RC=4 RETURN WITH 4 IN R15

SPACE 2
* k k k k k k * k k * k * *k *k k¥ *k k¥ ¥ *k ¥ *k k¥ ¥ *k ¥ ¥ ¥ ¥ *k ¥ ¥ *x * *k *x
* *
* NORMAL RETURN, SET @ IN R15 TO TELL IMS TO NOT SUPPRESS THE INDEX *
* *
* k kK k k k k k kK k *k k k *k k k¥ k k *k k k¥ *k k *k *k *¥ *k * ¥ *k *¥ *k *x * *k *

SPACE 1
NOSUPP DS OH

L R13,4(R13) BACK UP TO PRIOR SAVE AREA

RETURN (14,12),RC=0 RETURN WITH 0 IN R15

SPACE 2
BLANKS DC CL255' ' CONSTANT OF 255 BLANKS

SPACE 2

* k% k¥ x¥ k¥ k¥ *¥ k¥ k¥ ¥ ¥ k¥ k¥ *¥ ¥ k¥ ¥ ¥ k¥ k¥ ¥ ¥ ¥ ¥ ¥ k¥ ¥ *¥ *x¥ ¥ k¥ *x * *

GENERATE DSECT FOR THE INDEX RECORD

L B
I

Kok ok ok ok K k Kk Kk ok k Kk Kk k K k Kk Kk K ok Kk ok Kk X k Kk Kk X k Kk Kk k k *
SPACE 1

XRECORD DSECT

XFIELD1 DS CL5

SPACE 2

* k * k k k k * k k * k * *k *k k¥ *k k¥ ¥ *k ¥ k¥ k¥ ¥ *k ¥ ¥ * ¥ *k ¥ % *x *x % *x
* *
* GENERATE DSECT FOR THE INDEX SOURCE SEGMENT *
* *
* k k k k k k * k k *k k * *k k ¥k *k k¥ *k *k ¥ *k k¥ ¥k *k ¥ *k * ¥ *k * *k *x * *k *x
SPACE 1
XSOURCE DSECT DSECT FOR INDEX SOURCE SEGMENT
XSFIELDI DS CL5 FIELD 1 OF INDEX SOURCE SEGMENT
SPACE 2
* k k k k k k Kk Kk k Kk k* k¥ k¥ k¥ k¥ ¥ k¥ k¥ k¥ k¥ k¥ k¥ k¥ k¥ k¥ k¥ ¥k % k% k% % % % % %
* *
* DSECT FOR INDEX MAINTENANCE EXIT ROUTINE PARAMETER CSECT *
* *
* k k* k k k* k * k *k * *k * *k *k k¥ *k k¥ ¥ *k ¥ ¥k k¥ ¥ *k ¥ ¥ k¥ ¥ *k ¥ ¥ *x * *k *x
SPACE 1
DMBXMPRM DSECT
DMBXMSGN DS CL8 NAME OF INDEXED SEGMENT
DMBXMXDN DS CL8 NAME OF INDEXED FIELD
DMBXMXNM DS CL8 NAME OF USER EXIT ROUTINE
DMBXMXEP DS A EXIT ROUTINE ENTRY POINT ADDRESS
DMBXMPLN DS H TOTAL LENGTH OF CSECT
DS H NOT USED
DMBUSERD DS C START OF USER DATA IF ANY
SPACE 2

* k% %k k% k ¥ *¥ k¥ k¥ ¥ k¥ k¥ ¥ ¥ ¥ k¥ ¥ ¥ k¥ ¥ ¥ ¥ k¥ ¥ ¥ k¥ ¥ ¥ *x *k k¥ *x * *

GENERATE DSECT FOR THE IMS PST WHICH IS PASSED IN R1

* %k X X F
I

Kok ok ok ko k k Kk Kk Kk ok Kk ok ok K k Kk Kk K ok Kk Kk ok ok k Kk Kk ok k Kk Kk ok kK
SPACE 1
PRINT NOGEN
IDLI PSTBASE=0
PRINT GEN
SPACE 2

* ko k kK ok kK ok kK ok k ok k ok k k k Kk k Kk k kK k kK k k *k k *k k k * Kk *k %

GENERATE EQUATES FOR SYMBOLIC REGISTERS

E
EEE

Kok ok ok Kk Kk Kk Kk K ok Kk ok ok K k Kk Kk K ok Kk ok ok k k Kk ok ok ok ok Kk ok kK
SPACE 1
REQUATE
SPACE 2
END

Segment edit/compression exit routines

You can write a segment edit/compression exit routine to compress and expand
segments of data.

120 Exit Routines

This topic describes the segment edit/compression exit routine, its attributes, how
to activate it, how the routine communicates with IMS, and the restrictions that
apply. The topic also provides a description of sample segment
compression/expansion modules.

Subsections:
* [“About this routine”]

* [“Restrictions” on page 128|

+ [“Communicating with IMS” on page 128|

About this routine

Segment compression saves space and can result in reduced logging. You can write
an exit routine to:

* Edit or compress both fixed- and variable-length segments

* Accomplish either data edit/compression (DEDBs or full-function databases) or
key edit/compression (full-function databases only).

If you write your own exit routine, you can also allow for editing, such as
encoding and decoding segments for security purposes, and for validating and
formatting data. The logic for data encoding and decoding (or for other desired
editing or formatting) can be based on information contained within the
user-written routine itself. It also can be based on information from an external
source, such as data provided in the DBD block, or from tables examined at
execution time.

Segment compression is possible for both full-function databases and data entry
databases (DEDBs). You can use either DFSCMPX0 or DFSKMPX0, write your own,
or generate one which invokes hardware data compression.

You can apply the same exit routine to multiple segment types within the same or
different databases.

Recommendation: Use the DFSCMPX0 sample routine, because it uses z/OS
services.

The segment edit/compression exit routine is optional. No default routine is called.
The sample exit routines only perform segment compression and expansion. The
exit routines should be implemented by those having overall systems or database
responsibility for an installation. These routines should be transparent to the
application programs that access the databases.

Related Reading: For a list of the specific full-function databases that are
supported and for additional guidance-level information, see IMS Version 13
Database Administration.

Restriction: The DEDB Sequential Dependent Scan utility (DBFUMSCO) provides
support for SDEP segment decompression only if the EXPANDSEG command is
specified.

Related Reading: For details on coding the EXPANDSEG command, see IMS
Version 13 Database Ultilities.

The following table shows the attributes of the segment edit/compression exit
routine.

Chapter 2. Database Manager exit routines 121

122

Exit Routines

Table 32. Segment edit/compression exit routine attributes

Attribute Description

IMS environments All environments that support databases.

Naming convention = According to user's naming convention.

Link editing After an edit routine has been compiled and tested and before it is
used by the IMS system, it must be placed into IMS.SDFSRESL,
SYS1.LINKLIB, or into any operating system partitioned data set to
which access is provided with a JOBLIB or STEPLIB control region
JCL statement. You must also specify one entry point to the exit
routine.

Including the routine Routine is specified in the SEGM macro for the DBDGEN.

IMS callable services To use IMS callable services with this routine, you must do the
following:

* Issue an initialization call (DFSCSIIO) to obtain the callable service
token and a parameter list in which to build the function-specific
parameter list for the desired callable service.

* Use the PST address found in register 1 as the ECB.
* Link DFSCSIO0 with your user exit.

Sample routine IMS.ADFSSMPL.
location

Attributes of the Routine

The following list describes the attributes of the segment edit/compression exit
routine.

Minimum Authorization
Supervisor state in key 7.

APF Authorization
Must reside in either in IMS.SDFSRESL, SYS1.LINKLIB, or in an authorized
PDS library specified in JOBLIB or STEPLIB. It can also reside in any
library specified in LNKLSTxx of SYS1.PARMLIB. It can be in SYS1.LPALIB
only if the library is included in IEAAPFxx of SYS1.PARMLIB.

Cross Memory Mode
Exit can be entered in cross-memory mode in the online environment but
not in batch mode.

AMODE, RMODE
Exit resides in 24-bit and can be entered only in 24-bit.

Handling Abnormal Conditions
Any error conditions that are returned by system services on
compression/expansion are handled by the sample routine DFSCMPXO0,
which sets register 0 and register 15 with abend code 2990 and reason code
before returning to caller. See the reason codes in Table 26. However, the
action modules normally pseudoabend the application with a U840 abend.

The following attributes of the segment edit/compression exit routine differ
depending on the type of database that uses the routine.

Full-Function Database
The exit routine must be coded to be serially reusable.

IMS does not reload the routine between consecutive calls to the exit. IMS
loads the routine once per segment reference. If the exit is link-edited as
reusable (REUS), the same physical copy of the load module in storage is
used to satisfy all load requests.

Because IMS calls the exit by branch and link, there is no operating system
serialization of exit calls. IMS internally serializes calls to full-function
database compression exits at the database level. For HALDB database
compression exits, this means that all calls to the database, regardless of
which partition the segments reside in, are serialized through the
compression exit.

If the same exit name is used across more than one database or is used in a
HALDB database organization, the exit must either be coded and
link-edited (bound) as reentrant and reusable, or it must be coded as
reusable but link-edited as not-reusable. If the exit is link-edited as
not-reusable, a separate copy of the exit is loaded for each segment
reference and used only by that segment reference. Code the exit as
logically reentrant so that it is also serially reusable.

DEDB If the segment edit/compression exit routine is used with DEDBs, you
must write it and bind it as reentrant. In addition, the exit routine is
loaded during control region initialization rather than during the opening
of a database (as it is with a full-function database).

Loading the routine

Each time a database is opened, IMS examines each segment description to
determine whether edit/compression has been specified for that segment type. If
so, the exit routine is loaded from its resident library by IMS. IMS obtains the
name of the routine from the COMPRTN parameter of the SEGM statement of the
DBD.

An IMS restart is required to refresh the loaded exit routine with a new version.
Related Reading: For details on coding the COMPRIN parameter, see IMS Version

13 System Utilities. Adequate storage for the edit/compression routine must be
provided for both batch and online systems.

How the segment edit/compression facility works

When a segment requiring editing or compression is accessed, IMS gives your edit
routine control and provides it with the following information:

* Address of the data portion of the segment.
* Address of the segment work area.

Definition: Although the exit can be used for functions other than compression,
from this point on the use of the term compression refers to the process of
converting the segment from the application program form to the form written to
external storage. The term expansion refers to the process of converting the segment
from the external storage form to the application program form.

Two types of segments can be presented to the routine: fixed length segments, with
a data length that is static and is reflected in control blocks; and variable-length
segments, with its data length contained within a field in the first two bytes of the
segment itself. While a routine dealing with a single-segment type normally does
not need to recognize the differences, a more general purpose module involved

Chapter 2. Database Manager exit routines 123

124

Exit Routines

with multiple segment types can obtain sufficient information to differentiate
between them. This is done by examining data provided in the segment
compression control section.

Segments being processed using the segment edit/compression facility are stored
as variable-length segments in the database. Variable-length segments have a size
field in the first two bytes of the data portion of the segment. This size field
defines the length of the data portion of the segment. When segments are defined
to the application program as fixed length, your routine must expand it to the
fixed length expected by the application program. In reverse, if the application
program presents a fixed-length segment, your edit routine must add the size field
to the compression segment. If the segment is a variable-length segment, it must
update the size field with the correct segment length.

Example

Although your edit routine can modify the key fields in a segment, the segment's
position in the database is determined by the original key field.

Example: If the key field of a segment type is based on last names and the
database has segments for people named Mclvor, Hurd, and Caldwell, these
segments are maintained in alphabetic sequence—Caldwell, Hurd, and Mclvor.
Assume your edit routine encodes the names as follows:

Caldwell ------ > 29665
Hurd ------ > 16552
McIvor ------ > 24938

The encoded value is put in the key field. However, the segments in the database
remain in their original sequence (Caldwell, Hurd, Mclvor) rather than in the
numeric sequence of the encoded values (16552, 24938, 29665). Because segments in
the database are maintained in their original sequence, application programs can
issue GN calls and retrieve the correct segment even though segments are encoded.
This is also true for secondary index fields contained in index source segments.

Using the DBD table

The DBD control block has a table appended to it in the form of an assembler
language CSECT. One CSECT is filled in for each segment type that specifies the
use of the segment edit/compression facility. The CSECT contains basic
information, such as the name of your edit routine and the name of the segment
type. You can extend the CSECT to contain any editing parameters or criteria you
want. In other words, some or all of the logic for editing a segment type can be
put in the CSECT. You can perform different editing operations on different
segment types with a single edit routine. If you want additional information for
editing a segment type, any external source can provide it, not just the table in the
DBD.

Related Reading: For information on the DBD control statement SEGM, see the
section “SEGM Statement” in IMS Version 13 Database Administration.

Activating the routine

When the application program is activated and begins accessing segments, IMS
interfaces with the segment edit/compression exit routine as described in this
section. In all cases, IMS passes an entry code to the exit routine. Your exit routine
must examine this entry code to determine the function to be performed.

Activating the routine for compression

For compression, regardless of the format at the source address, the segment at the
destination address must be in variable-length format. The following figure shows
the input (a fixed- or variable- length segment) in expanded format that is passed
to the edit/compression routine and output (as a variable-length segment) in
compressed format. The first data field of the destination segment is a 2-byte
segment size field.

fixed- or variable-
Input —» length segment in
expanded format

-

edit/compression
routine

!

variable-length

Output —» segment in
compressed format

Figure 6. Segment compression
Segment length

If a fixed- or variable-length segment requires compression, and the data format is
such that compression cannot take place, the addition of control information by
your exit routine (indicating the segment could not be compressed) lengthens the
segment beyond the maximum length definition. To allow for this expansion, and
to allow IMS to check the validity of compression results, you can increase the size
of your segment. You can increase the size of fixed-length segments by up to 10
bytes:

* For full-function fixed-length segments, you can increase the segment size by
more than 10 bytes if the value for the COMPRTN parameter of the DBD SEGM
statement specifies more. You can increase the size of a full-function variable
length segment up to the maximum defined size.

* You can increase the size of a DEDB variable length segment up to the
maximum defined size plus 10 bytes, but it must not exceed 120 bytes less than
the control interval (CI) size.

The length of the segment to be moved is provided in one of two places:

* If the segment length specified in the DBD is fixed, the source length is in the
DMBCPSGL field.

* If the segment is defined as variable in length, the source length is provided as a
binary value in the first two bytes at the source address.

Chapter 2. Database Manager exit routines 125

126

Exit Routines

In either case, the move operation provided by the edit/compression routine must
result in a 2-byte length field, followed by the corresponding quantity of data in
the segment work area.

IMS might pad a segment to a length greater than that created by your exit
routine. IMS pads full-function variable-length segments to their minimum length.
IMS pads full-function fixed-length segments to their pad length if it is specified
on the COMPRTN parameter of the DBD SEGM statement. IMS does not pad
DEDB segments.

Activating the routine for expansion

For expansion, the input segment has a variable-length format. The following
figure shows the input (a variable-length segment) in compressed format that is
passed to the edit/compression routine and output (as a fixed- or variable- length
segment) in expanded format.

variable-length
Input —» segment in
compressed format

v

edit/compression
routine

!

fixed- or variable-
Output — length segment in
expanded format

Figure 7. Segment expansion

Entry code determination

For segment expansion that occurs during the segment retrieval process, IMS
examines the application program request. If the request is satisfied by a
compressed segment, a test is made to determine the type of compression used,
either key or data. Then, depending on the type of retrieval request, either entry
code 4 or 8 is passed to the expansion routine. The following criteria are used as a
basis for the decision:

* If the segment can be accepted without analysis of either a key or data field,
control is transferred using entry code 4. The segment is expanded to the form
presented to the user.

* If the value of the segment sequence field requires examination prior to segment
selection, an additional check is performed to determine data or key
compression. Data compression requires no additional processing, while key
compression requires activation of entry code 8. If the segment is qualified for
presentation after the key field is validated, IMS formats the segment using
entry code 4 and passes it to the exit routine.

* If data field analysis is necessary to properly satisfy the DL/I call, proper
expansion of the segment by entry code 4 occurs. When the correct segment is
found, it is passed to the user.

The format of the segment presented through entry codes 4 and 8 of the
compression routine is identical to that of a variable-length segment (a 2-byte
segment size field followed by the appropriate quantity of data). The exit routine
must expand the segment at the destination address in correct format, either fixed
or variable-length. In the case of key compression, the exit routine must expand
the segment from its start to the sequence field. For variable-length segments, the
segment data length field, after processing by the key expansion, must reflect the
length of the expanded portion of the segment at the destination address.

Using the routine with tabled data information

You have two options for processing tabled data information:
* Include the tabled data in the DBD module itself.

For each segment defined during DBDGEN as eligible for edit/compression, an
entry is developed in an assembly language control section. This control section
can be extended by assembling and binding it to contain any desired data or
algorithm information.

* Load the tabled data when the exit routine is initialized.

Specifying INIT on the COMPRTN parameter of the SEGM statement in the
DBD causes the routine to be called for initialization processing. The routine can
issue IMS callable services calls to provide functions equivalent to the
LOAD/DELETE or GETMAIN/FREEMAIN macro instructions. These calls bring
additional information into storage in the form of modules from IMS.SDFSRESL
library. For example, the routine can maintain a table of substitution characters
that is separate from the executable code. This table can reflect different
combinations for different segments, resulting in a general purpose, table-driven
routine capable of processing several segment types.

IMS provides two additional entry codes that allow you to process tabled data
information. IMS calls a segment edit/compression exit routine with these entry
codes if you specify the INIT keyword on the COMPRTN parameter of the SEGM
statement. With these codes, IMS passes control to the initialization and
termination subroutines immediately after the full-function database or DEDB area
is opened, and immediately before the full-function database or DEDB area is
closed. Any processing required for the database segments that cannot be directly
related to any one segment can be done at this time using these options.
Initialization processing and termination processing can include the loading and
deleting of the compression algorithm table.

Code Description

12 Initialization processing call. Control is obtained for algorithm initialization
processing immediately after the full-function database or DEDB area is
opened. Registers 2 and 3 are unpredictable.

16 Termination processing call. Control is obtained for algorithm termination
processing immediately before the full-function database or DEDB area is
closed. Registers 2 and 3 are unpredictable.

When control is passed to the exit routine as a result of these two entry codes,
execution is not in cross-memory mode. For online systems, execution is in the
control region address space or, if a DL/I separate address space is used (LSO=S),

Chapter 2. Database Manager exit routines 127

execution is in the DL/I separate address space.
Restrictions

Keep the following restrictions in mind when using the segment edit/compression

Facility:

* Because this routine becomes a part of the IMS control or batch region, any
abnormal termination of this routine terminates the entire IMS region. Any
user-written segment edit/compression exit routine should return to IMS with
an abend code and a reason code instead of initiating a standard abend.

* The exit routine cannot use operating system macros such as LOAD, GETMAIN,
SPIE, or STAE.

+ All editing or compression of segments occurs as the segments are described in
a physical database only. For specific restrictions, see IMS Version 13 Database
Administration.

* The exit routine must not modify or alter the relative position of a key field in a
DEDB segment. If the key field in a DEDB segment changes or moves during a
compress or expand call, IMS issues abend 0799, subcode 1. For more
information about this abend, see IMS Version 13 Messages and Codes, Volume 3:
IMS Abend Codes.

* When you specify the maximum size of the data portion of the segment in the
DBD, if you use the segment edit/compression exit routine with full-function
variable-length segments, you might need to include extra bytes. These extra
bytes are needed if your exit routine makes the segment larger than its
maximum size. For example, if the maximum length of your data is 100 bytes
and your exit routine might add 2 bytes to the segment, specify 102 bytes as the
maximum size. Increasing the maximum size accounts for the size of the
segment from the application program (100 bytes) and the 2 bytes added by the
exit routine. This restriction does not apply to full function fixed-length
segments or to segments in DEDBs. Using the segment edit/compression exit
routine for both types of segments might increase their data sizes to values that
are larger than those specified in the DBD.

Communicating with IMS

All IMS control blocks provided to the segment edit/compression exit routine are
for reference only; no data can be changed, including the segment at the source
area address. The only modification allowed is the alteration of the segment during
the move operation from the source to the destination address. DSECT
addressability to the control blocks is provided by the IMS IDLI macro.

Contents of registers on entry

On entry to the exit routine, the registers contain the following:

Register Contents

0 Set to zero before call to exit routine. Can contain Abend code U2990 on
return if the exit routine detected an error.

1 Address of the Partition Specification Table (PST).

2 Address of the first byte of the segment to be modified (source address).

128 Exit Routines

Register

Contents

3

Address where the modified segment is returned (destination address). For
DEDB segments, this area is 10 bytes larger than the maximum segment size.
For full-function fixed-length segments, this area is 10 bytes larger than the
maximum segment size, unless a larger size was specified in the DBD. For
full-function variable-length segments, this area is the maximum segment
size.

4 Address of the physical segment description block (PSDB). From this block,
the field description blocks (FDB) can be located. (Register 4 is always zero
when a DEDB is accessed by the exit routine, because the PSDB does not
exist for DEDBs.)

5 Address of the segment edit/compression control section.

6 Entry code (detailed in the following section):

0 Segment compression call

4 Entire segment expansion call

8 Partial segment expansion call (full-function databases only)
12 Full-function database or DEDB area open call

16 Full-function database or DEDB area close call

7 For DEDB only, the minimum length as coded in DBD (SDBLMIN). Register
7 is only valid for function code 0 (segment compression) and function code
4 (segment expansion).

13 Address of save area. The exit routine must not change the first three words.

14 Return address to IMS.

15 Entry point of exit routine.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers.

Compressing and expanding segments

The following two entry codes are required for segment compression and
expansion; they are used when you specify the DATA compression operand.

Code Description

0 Segment compression call. The source address points to an uncompressed
segment image as it appears in the application program input/output area.

4 Entire segment expansion call. The source address points to a compressed

segment. Application program requests qualified on a data field require the
use of entry code 4 for normal retrieval expansions.

To reduce the amount of processing overhead required with the movement of data,
the following third entry is required when the KEY compression operand is used.
The KEY operand is for use with full-function databases only. Key compression is
not supported for DEDBs.

Chapter 2. Database Manager exit routines 129

Code Description

8 Partial segment expansion call with the KEY operand (full-function databases
only). Expansion takes place from the start of the segment through the
sequence field. This facility is required if you elect to use key compression,
or if you compress any field that alters the starting position of the key field.
All DL/I calls using sequence field qualification on key compressed
segments require the use of this entry code.

Description of entry codes

The entry code that is passed to the exit routine in register 6 indicates the reason
IMS called the exit routine. The five possible entry codes are described in the
following sections.

Description of parameters

The length of the segment to be moved is provided in one of two places:

1. If the segment length specified in the DBD is a fixed length, the source length
is in the DMBCPSGL field.

2. If the segment is defined as variable in length, the source length is provided as
a binary value in the first two bytes at the source address.

In either case, the move operation provided by the edit/compression routine must
result in a 2-byte length field, followed by the corresponding quantity of data in
the segment work area.

To help you provide parameters to the edit/compression routine, the DBD control
block has a table appended to it that is made up of assembly language control
sections. One control section is developed for each segment type to be edited or
compressed. Each control section has a CSECT name equal to that of the segment
name.

These control sections are placed at the end of the DBD module. They contain
information such as the segment edit/compression routine name, the name of the
segment, and the total length of that control section. Each control section can be
extended to contain any desired data or algorithm information. A sample segment
control section is shown in the following table.

Table 33. Segment edit/compression control section (DMBCPAC)

Hex
offset Contents
+0 Segment name
+8 Routine name
+10 Entry point address Flag byte | Sequence | Sequence field
field offset
length -1
+18 Segment length / |Total length of Reserved for exit routine
maximum length [CSECT
+20 Any user data (length varies)

Information in the various fields shown in the previous code sample are as
follows:

130 Exit Routines

DMBCPAC

DMBCPCNM
DMBCPCSG
DMBCPEP

DMBCPFLG
DMBCPKEY
DMBCPNIT

DMBCPVLR
DMBCPSEQ

DMBCPJJD
DMBCPSQF

DMBCPSQL
DMBCPSGL

DMBCPLNG

DMBCPUSR

The first 28 bytes are constants defined by DBDGEN. When the new table is

DSECT
DS

DS

DS

DS
EQU
EQU

EQU
EQU

EQU
DS

DS
DS

DS

DS

CL8
CL8

XL1
X'e2'

X'o1'

X'04'
X'08'

X'10'

XL1

OF

Segment name

edit/compression routine name
Entry point address

Flag byte

Segment has key compression
option

Initialization processing is
required

Segment is variable-length
Segment has key sequence field
defined

Exit caller requests a return code
rather than hard abending.
Executable Tength of sequence
field, if defined

Sequence field offset

For fixed length segments -
segment length; for variable
length segments - maximum
length

Total Tength of CSECT; fixed
length plus length of
user-defined parameters (always
a multiple of 8)

Any quantity of user-defined
data.

defined to include additional parameters, these fields must be duplicated. The only
exception to this rule is that the CSECT length field must be updated to reflect the
new length. After an assembly of the new table, bind is done to exchange the new
table for the old one. User-added code should not contain address constants,
because this CSECT is moved after it is loaded. Use an ENTRY statement to
specify the name of the DBD when this operation takes place, as well as an
ORDER statement to ensure that the original order of multiple CSECTs is
maintained. For details about this, see the section on automatic CSECT replacement

in the z/OS product library.

If your exit routine references IMS control blocks other than the one shown in

[Table 33 on page 130} you need to reassemble the routine using the current release

of IMS.

Related reference:

[“Initialization of IMS callable services (DFSCSII0)” on page 17

[‘Routine binding restrictions” on page 9|

Description of sample segment compression/expansion

modules

Use the sample segment compression/expansion modules to compress three, four

or more repeated strings.

Subsections:

* |“About this routine” on page 132]

* [“The compression routine” on page 132|

[“The initialization processing routine” on page 133|

* [“Program messages and codes” on page 133|

* [“Program assumptions” on page 135|

Chapter 2. Database Manager exit routines

131

132

Exit Routines

About this routine

Compression/expansion examples are provided as guidance to the IMS system
user.

DFSCMPX0 and DFSKMPXO0 can be used by either full-function databases or
DEDBs. Both routines perform segment compression. The only differences are:

* DFSCMPXO0 compresses three or more repeated strings. This exit routine
employs z/OS services to accomplish segment compression and expansion. For
more information on these services, see the z/OS library. (DFSCMPXO is the
recommended compression routine.)

* DFSKMPX0 compresses four or more repeated strings. This exit routine relies on
programming logic to accomplish segment compression and expansion.
(DFSKMPXO is not recommended, but it will continue to be supplied and
supported for compatibility reasons.)

When control is given to DFSCMPX0 or DFSKMPXO0, the program checks the entry
code passed in register 6. The entry code indicates whether the request is for
compression of a segment or for the partial (full-function databases only) or entire
expansion of a compressed segment. It then branches to an appropriate routine to
perform the required task. On normal completion of the task, it returns control to
the IMS Control Program with a return code of 0.

Specific rules and restrictions followed in compression and expansion of a segment
are detailed in this topic. For sample code, see the IMS.SDFSSMPL library.

For the latest versions of DFSCMPX0 and DFSKMPXO0, see the IMS.SDFSSMPL
library; the member names are DFSCMPX0 and DFSKMPXO0. Because DFSCMPX0
provides improved performance and possibly better compression, IBM does not
recommend the use of DFSKMPXO0.

The compression routine

Compression of a segment requires different data handling according to the data
organization of the segment. The two data formats are fixed and variable-length.

You can specify the KEY (full-function databases only) or DATA operand for either
of the two data formats. The following figure shows data before and after
compression for both fixed- and variable-length segments.

- N
Data before compression Data after compression
Fixed length: KEY operand ' | p ‘ D" K | D
D ‘ K ‘ D

DATA operand LL'| D ‘ K ‘ P | D

Variable length:
KEY operand LL' | LL ‘ P ‘ D’ ‘ K| D

LL‘D‘K‘D

DATA operand LL'| D ‘ K ‘ LL‘ P| D

- /

Figure 8. Data handling formats

D data
K pointer to the 1st CCB
LL' new statement

LL original segment length

D' and K'
compressed data and key

Compression of a segment results in one of the four formats listed in the preceding
figure, depending on the original record format and the operand specified.

The initialization processing routine

When specified, IMS gives control to the segment edit/compression routine
immediately after the databases are opened and immediately before the databases
are closed.

When a command code is given to branch to the initialization processing routine
or to the termination processing routine in the DFSKMPX0 program, the
DFSKMPXO0 program returns to the calling program. No processing of particular
data is attempted at this stage.

Program messages and codes

When a Segment Edit/Compression exit routine detects a problem and initiates a
standard abend, that abend can bring down the IMS. This severely impacts all
other IMS applications running in an online IMS environment. The Segment
Edit/Compression exit routines return to the caller with an abend code in register
0 and a reason code in register 15. Thus, abends in Segment Edit/Compression exit
routines are converted to IMS abend U0840s so that only the dependent region that
the abending application is running in is brought down.

The following table lists the abend codes.

Chapter 2. Database Manager exit routines 133

134

Exit Routines

Table 34. Program messages and codes - abend codes

User abend Description
2989

A segment data organization is variable-length, but its length field is

2>N>32767

A fixed-length record, but the segment length in Compaction Control

Table indicates: 0>N>32767

2990

A command code passed by the control program is out of a valid range:

0>N>16

1. REASON - D4D7E701: During a compression request, the input length
of the variable length segment is less than 2 bytes.

2. REASON - D4D7E702: During an expansion request, the input length
of the compressed segment is less than 2 bytes.

3. REASON - D4D7E703: During an expansion request, a non-zero
return code was returned by the z/OS expansion service.
(CSRCESRV).

4. REASON - D4D7E704: INIT was not specified in the COMPRTN
parameter of the SEGM statement.

5. REASON - D4D7E705: Invalid function code. A command code passed
by the control program is out of valid range.

6. REASON - D4D7E706: The key field length (sequence field) plus the
offset of the key field within the segment is greater than the segment
length indicated in the segment length field of a Compression Control
Table.

7. REASON - D4D7E707: The length of a segment indicated in the
segment length field of a Compression Control Table is negative.

2991

A command code is passed to compress after, or expand up to, a
sequence field of a segment. No sequence field is defined in the segment.

Table 34. Program messages and codes - abend codes (continued)

User abend Description
2992

Any of the following conditions results in an abend with this code.

Applicable to both fixed- and variable-length segments:
¢ A D/K length is greater than an SCL length of a segment.

Applicable only to a variable-length segment:
* A D/K length is greater than a LL length.
* A LL length is greater than an SGL length.
* A LL length is less than 2.

* An SGL length is less than 2.

Applicable to a fixed segment:
* An SGL length is a negative value.

D/K length =
A sum of length from the beginning of a segment to the end
of a key field (SEQUENCE FIELD).

SGL length =
A length of a segment indicated in the segment length field of
a Compression Control Table.

LL length =
A length of a variable-length record indicated in the first two
bytes of a precompressed segment.

Program assumptions

All parameters and data passed by the IMS control program, such as the address
of the input segment data, the output data area address, and the length of an input
segment, are considered valid data.

The IMS control program passes an address of an input segment data area in
register 2 and an address of an output data area in register 3.

The size of output data area is:

* A segment length plus two bytes for a fixed-length segment.
* The maximum segment length for a variable-length segment.
* No segment length greater than 32,767 bytes.

All segments processed by the compression routine are treated as variable-length
by the IMS system control program, regardless of their precompression format.

Although no DFSKMPXO0 sample exit routine is provided here, the exit routine is
supported and supplied in the IMS.ADFSMPL library.

Hardware data compression support

You can compress or expand full-function and DEDB databases by using Hardware
Data Compression support.

Hardware Data Compression (HDC) reduces DASD storage requirements for
databases, reduces database 1/O, and improves database performance.

Chapter 2. Database Manager exit routines 135

136

Exit Routines

With HDC support, you can generate exit routines to activate the
hardware-assisted data compression available on processors. The processors use a
compression technique that uses a fixed number of bits to replace a variable
number of bytes.

If compression hardware is installed, the segment is compressed or expanded
using the hardware instruction CMPSC. If compression hardware is not installed,
the standard HDC exit routine calls the z/OS CSRCMPSC macro to compress or
expand the segment by activating software simulation.

HDC compresses and expands segment data by calling a compression exit routine
that has been specified on the SEGM statement during DBDGEN. This exit routine
is created by binding a user-defined dictionary and an IMS-supplied base exit
routine.

The space saved by compression depends on the user-defined dictionary, which
performs the translation between compressed and uncompressed data. Different
dictionaries are built for different sets of data. You receive the best results by
creating a dictionary that compresses the most frequently occurring data in the
largest databases.

If a fixed or variable-length segment requires compression and the data format is
such that compression cannot take place, then the exit routine adds control
information which indicates that the segment could not be compressed. This
addition of the control information will lengthen the segment beyond the
maximum length definition. To allow for this expansion and to allow IMS to
validity check the compression results, you can add an arbitrary value of 10 bytes
to the segment length.

If the segment length specified in the DBD is variable and the database is a DEDB,
the length can exceed the maximum by up to 10 bytes but must not exceed 120
bytes less than the control interval (CI) size. If the segment length specified in the
DBD is variable and the database is a HIDAM, HISAM, HDAM, or PHADM the
length cannot exceed the DBDGEN maximum.

Implementing HDC support

Using the Hardware Data Compression Dictionary (HDCD) utility (DFSZLDUO),
you can implement hardware compression, build a hardware compression
dictionary, and compare hardware compression statistics.

To implement hardware data compression with HISAM, HIDAM, PHIDAM,
HDAM, PHDAM, and DEDB databases, follow these steps:

1. Create an HDC dictionary, using the Hardware Data Compression Dictionary
utility (DFSZLDUO).

2. Bind the HDC dictionary to an IMS-supplied base exit routine, which produces
a segment edit/compression routine. The base module is about 1 KB and is
bound with 64-KB dictionaries. Therefore, the user exit routines require slightly
more than 64 KB of memory.

3. In the DBDGEN SEGM statement COMPRTN parameter, specify the newly
created segment edit or compression routine and the INIT keyword. The name
of the routine must not be the same as the DBDNAME.

4. Unload the database using the old DBD.
5. Create the new DBD specifying the new exit routine.

6. Reload the database using the new DBD. (A new DBD requires that you run
ACBGEN.)

Building the HDC dictionary

To build the HDC dictionary, use a sequential variable-length file as input to the
HDCD utility. This must be a QSAM file of a variable record format and contain
uncompressed segments, which are used to build the dictionary. You can create
this QSAM file with a user-written unload program, or with the HD
Reorganization Unload utility (DFSURGUO). Use your own data analysis to
determine what uncompressed segments to use. Use the QSAM data set with the
procedure.

Exception: If you use a QSAM file created by the DFSURGUO utility, the dictionary
build process includes (will not ignore) the header and trailer records created by
the DFSURGUO utility. Also, the dictionary build process includes (will not ignore)
the prefix added to each data segment by the DFSURGUO utility.

Other HDCD utility functions

In addition to creating the HDC dictionary, the HDCD utility provides:

* Compression statistics program, which is generated from the QSAM input file or
from an alternate file. By using an alternate file, you can compare statistics and
evaluate the dictionary's effectiveness.

The compression statistics program:
— Calculates the potential storage savings percentage as follows:

SAVINGS=(100-((average compressed segment size/average precompressed
segment size)*100)).

If the potential storage savings do not meet the HDCDCTL default
parameter's criteria, a dictionary object file is not built.

— Prints the following statistics:
- HDCDCTL parameters.
- Number of segments read.
- Smallest precompressed and compressed segment sizes.
- Largest precompressed and compressed segment sizes.
- Average precompressed and compressed segment sizes.
- Potential storage savings percentage.

The value shown for either the smallest or largest uncompressed segment
could represent the length of the DFSURGUO utility header or trailer segment.

— Produces data integrity validation option.

— Produces an object file for the specific HDC dictionary, provided that the
following compression criteria are met:

- Precompressed data matches expanded data if the data integrity validation
option is specified.
- Potential storage savings exceed the user-specified minimum percentage.
Related reference:

[‘Sample JCL procedure”|

Sample JCL procedure
To build the hardware compression dictionary, you must create a QSAM data set
containing uncompressed database segments that can be used with JCL procedures.

Use the QSAM data set with the following JCL procedure.

Chapter 2. Database Manager exit routines 137

138

Exit Routines

//HDCDBLD PROC

/! HDCDNAM=DFSZHDCD, /*USER SUP. DICT NAME,8 CHARS*/
/! QSAMIN='USER.QSAM', /* INPUT QSAM FILE NAME =/
// QSAMIT="'USER.QSAMALT', /% ALTERNATE QSAM FILE NAMEx*/
/! DICTLIB='HDC.DICTLIB', /% DICTIONARY LOAD LIBRARY =/
/] DICTNAM='DFSZHXYZ', /* USER DICT. MEMBER NAME +/
/] CMPXIT='USER.COMPLIB', /* COMPRESSION EXIT LIBRARY*/
/] CMPMBR="'CMPXITOL', /* USER EXIT MEMBER NAME */
// RGN=2048K,

/] SYS2=,

// SOUT=+*,

/! UNIT=SYSDA,

// VOLSER=,

// CYL=TRK,PRIM=5,SEC=2,BLKSZ=3120
//**
//+ CREATE STATISTICS AND HDC DICTIONARY OBJECT FILE. *

//**

//HDCDGEN EXEC PGM=DFSZLDUO,REGION=&RGN,PARM=&DICTNAM
//STEPLIB DD DSN=IMS.&SYS2.SDFSRESL,DISP=SHR
//SYSPRINT DD SYSOUT=&SOUT

//SYSUDUMP DD SYSOUT=&SOUT

//HDCDIN DD DSN=&QSAMIN,DISP=SHR;

//HDCDIT DD DSN=&QSAMIT,DISP=SHR;

//HDCDOUT DD DSN=IMS.&HDCDNAM.HDCDOBJ,

/] DISP=(,CATLG,DELETE),

/] UNIT=&UNIT,

/! SPACE=(&CYL, (&PRIM, &SEC) ,RLSE),

// DCB=(LRECL=80,BLKSIZE=&BLKSZ ,RECFM=FB)
//HDCDCTL DD DUMMY /* 'DUMMY' USES DEFAULT PARMS */
/1*

//***

//* CREATE LOAD MODULE FROM DICTIONARY OBJECT TEXT DECK. =

[[FHFkk ke dkk K HR kK xxI IR Khhhhhhkrrhhh kK k% *kkxrhhhhhkkxkh kA *kkk

//LINK1 EXEC PGM=IEWL,COND=(0,NE),

// PARM="'SIZE=(180K,20K) ,RENT,REFR,NCAL, LET,XREF,LIST"
//SYSLMOD DD DSN=8DICTLIB(&DICTNAM),DISP=SHR

//SYSUT1 DD UNIT=&UNIT,DISP=(,DELETE),

// SPACE=(CYL, (10,1),RLSE)

//SYSPRINT DD SYSOUT=&SOUT

//SYSLIN DD DSN=IMS.&HDCDNAM.HDCDOBJ,DISP=(0LD,DELETE,KEEP)
/1%
//***
//* THE USER COMPRESSION EXIT ROUTINE IS BUILT BY LINKING *
//* MODULE DFSZLDX® AND THE HDC DICTIONARY TOGETHER. THE =
//* THE HDC DICTIONARY MUST BE THE FIRST CSECT WITHIN THE =*
//* USER EXIT ROUTINE AND ALSO BE ON A PAGE BOUNDARY. *

//***

//LINK2 EXEC PGM=IEWL,

// PARM="'SIZE=(180K,20K) ,RENT,REFR,NCAL,LET,XREF,LIST'
//SYSLMOD DD DSN=&CMPXIT (&MPMBR),DISP=SHR

<litdata>

//SYSUT1 DD UNIT=&UNIT,DISP=(,DELETE),

// SPACE=(CYL, (10,1),RLSE)

//SYSPRINT DD SYSOUT=&SOUT

//SDFSRESL DD DSN=IMS.&SYS2.SDFSRESL,DISP=SHR

//DICTLIB DD DSN=&DICTLIB,DISP=SHR;

//***

//*THE FOLLOWING CONTROL STATEMENTS MUST BE IN THE ORDER AS =*
//* TLLUSTRATED. *
//* *
//* DFSZHXYZ: THE HDC DICTIONARY NAME FOR THE SEGMENT. *
//* (&DICTNAM) THIS HAS TO BE CHANGED TO A FIXED NAME OF =
//* DFSZHDCD SO THAT THE COMPRESSION EXIT DRIVER =*
//* CAN BE LINKED TO IT. *
//* *
//* DFSZLDX0: THE COMPRESSION EXIT DRIVER ROUTINE. *
//* *
//* &CMPMBR: USER SPECIFIED COMPRESSION/EXPANSION EXIT *
/1% ROUTINE NAME THAT IS USED ON THE *
//* SEGM COMPRTN= (&CMPMBR,DATA) DBD STATEMENT. *

//***

//SYSLIN DD =*

CHANGE &DICTNAM(DFSZHDCD) (&DICTNAM) DICTIONARY NAME
INCLUDE DICTLIB(&DICTNAM) DICTIONARY MUST BE 1ST CSECT
INCLUDE SDFSRESL(DFSZLDX0) STANDARD COMPRESSION EXIT

PAGE DFSZHDCD

ENTRY DFSZLDXO

NAME &CMPMBR(R) (&CMPMBR) COMPRESSION EXIT
/*
// PEND

Subsection:

+ [“DD name descriptions’]

DD name descriptions

HDCDIN DD
The input sequential variable length data set that contains the IMS database
segment data that you extracted.

HDCDIT DD
The input sequential variable length data set or an alternate file that is used to
calculate the compression statistics.

HDCDOUT DD
Output HDC dictionary object deck. The z/OS format dictionary is built and
converted into a bind compatible object deck for subsequent use in the
dictionary link edit step.

SYSPRINT DD
Compression analysis statistics.

HDCDCTL DD
A data set containing the following control statements. The value specified for
a control statement must conform to the rules described for each control
statement. Code the value after the keyword for the control statement. Use a
blank or a comma to separate control statements.

RECS=
The number of input records to be processed. The default is ALL. Specify a
number between zero and 2147483647. If any number outside this range is
specified, the default ALL is used.

PERC=
The percentage of storage savings to be realized. The default is 5 percent.
One or two digits are allowed.

INTEG=
By specifying Y or N, this keyword checks or does not check the data
integrity of compressed segments. The default is N.

Chapter 2. Database Manager exit routines 139

140

Exit Routines

Tips for hardware data compression
Hardware data compression (HDC) can help you save I/O and storage.

To decide whether to use HDC, run the HDCD utility and analyze the output
statistics to determine how much storage and I/O savings you can achieve.

You might want to limit the use of HDC to one time per database, since its
implementation requires an unload and reload of the database.

Recommendation: Evaluate all the segments in a database before implementing
compression. If you use compression for multiple segment types, implement
compression for all of them at the same time.

Because uniquely tailored dictionaries yield the most compression, you should use
the dictionaries for high-volume segments to maximize savings.

You can create more generally-tailored dictionaries for other reasons. If you know
the type of data in most segments, you can create dictionaries by using a sampling
of similar data from many of those segments. For example, you might want
general dictionaries for upper-case text, mixed-case text, numeric, alphabetic, and
general mixed data. You can use these dictionaries for multiple segment types,
eliminating the need to produce unique dictionaries for each segment type.

Compression usually saves I/0O for sequential processing and can also save 1/O for
random processing. Typically, savings for random processing is realized with large
database records, especially if the record is spread over multiple blocks or CIs.
Compression can reduce the number of blocks or Cls that must be read to access a
segment. This is likely to apply to twin chains of multiple blocks or CIs, even after
reorganizations.

Return codes from the HDCD utility

The HDCD utility ends and issues one of five return codes.

The following return codes can be issued from the HDCD utility:

Code Description
0 Utility ended successfully and issued the accompanying DFSZ11701 message.
4 Utility ended successfully and issued the accompanying DFSZ1171W

message, but it did not build a dictionary because the requested storage
savings percentage was not met.

8 Utility ended successfully and issued the accompanying DFSZ1172E message,
but it did not build a dictionary because data integrity checks were detected
between a source QSAM input record and its equivalent re-expanded record.

12 Utility ended unsuccessfully and issued the accompanying DFSZ1173W
message, because z/OS CSRCMPSC is not installed on the machine.

16 Utility ended unsuccessfully and issued the accompanying DFSZ1174E
message, because a logic error occurred during invocation of the CSRCMPSC
compression service macro.

Related Reading: For more information about these messages, refer to IMS Version
13 Messages and Codes, Volume 4: IMS Component Codes.

Sequential Buffering Initialization exit routine (DFSSBUXO0)

This exit routine can dynamically control the use of Sequential Buffering (SB) for
online and batch IMS subsystems, as well as DBCTL.

Subsections:
+ [“About this routine”|

* [“Communicating with IMS”|

About this routine

By using one of the five sample SB routines that IMS provides or one that you

write, you can:

* Disallow the use of SB.

* Specify that SB be conditionally activated by default whenever IMS detects a
sequential I/O pattern in batch or BMP regions.

* Change the IMS default values for the number of buffer sets in each SB buffer
pool.

The SB exit routine (DFSSBUXO0) is called before each application program or
utility. This enables the exit routine to dynamically change SB options and
parameters and dynamically control how your system uses SB.

The following table shows the attributes of the Sequential Buffering Initialization
exit routine.

Table 35. Sequential Buffering initialization exit routine attributes

Attribute

Description

IMS environments

DB/DC, DBCTL.

Naming convention

You must name this exit routine DFSSBUXO0.

Binding

After you compile and test your module, bind it into IMS.SDFSRESL, SYS1.LINKLIB,
or into any operating system partitioned data set that can be accessed by a JOBLIB or
STEPLIB JCL statement for the IMS control, SAS, and batch regions.

Including the routine

No special steps are needed to include this routine.

IMS callable services

This exit is not eligible to use IMS callable services.

Loading the routine

IMS loads the routine at IMS initialization time.

Considering performance

DFSSBUXO is called frequently during the scheduling of MPPs and PSBs of CICS
in a DBCTL environment. If you modify an SB sample routine or write your own
routine, code it to minimize overhead during the call to the routine for these
programs.

Communicating with IMS

IMS uses the entry registers, parameter list, and exit registers to communicate with
the exit routine.

Chapter 2. Database Manager exit routines 141

142

Exit Routines

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of parameter list.

10 Address of partition specification table (PST).

11 Address of SCD.

13 Address of save area. The exit routine must not change the first three words.
14 Return address of IMS.

15 Entry point of exit routine.

Description of parameters

DFSSBUXO receives the address of a parameter area in Register 1. This parameter
area is mapped by the DFSSBUXP macro and contains:

* The region type (batch, BMP, MPP, Fast Path, DBCTL) in the SBPRMREG field.

* The job, program, and PSB names. (Exceptions: IMS utilities executed without a
PSB have a DBD name instead of a PSB name.)

* The message classes of the message region (when running in an MPP region).
* The IMS default values for SB options and parameters.

The following paragraphs describe how DFSSBUXO0 can change the default values
of SB options in the SB parameter area. Each change applies only to the current
application program or utility being invoked. The DSECT of the parameter area is
presented at the end of the discussion.

Disallowing the use of SB

The SBPRMPDI bit determines whether the use of SB is disallowed. The default
value for this bit is off. DFSSBUXO can set this bit on, however, to disallow the use
of SB and cause IMS to ignore any PSBGEN or SB control card requests to the
contrary. You can set this bit during peak periods of online use to save real storage
space, especially if your system's real-storage is already constrained.

Conditionally activating SB by default

The SBPRMPAD bit determines whether IMS conditionally activates SB by default.
The default value for this bit is off. DFSSBUXO0 can set this bit on, however, so that
IMS samples I/O reference pattern statistics of batch and BMP application
programs. If IMS detects both a sequential I/O pattern and a reasonable activity
rate, IMS activates SB. This occurs only if PSBGEN and SB control cards provide
no specifications to override this process.

Exception: Since statistic sampling has an initialization overhead each time an
application program is scheduled, IMS does not support conditionally activating
SB by default for MPPs, Fast Path regions, or CICS applications.

You might want to use DFSSBUXO to conditionally activate SB by default in the
following situations:

* To activate SB for specific batch and BMP programs and for IMS utilities by
setting the bit according to the program, job, or PSB name for a program

* To always set the bit to activate SB for all BMP and batch programs and for
utilities for z/OS systems that are not storage-constrained

* To set the bit depending on the time of day (for example, during night batch
processing when most sequential applications are running and a lot of storage is
available for buffering purposes)

Changing the number of SB buffer sets

The SBPRMPNR full word field specifies a default value for the number of buffer
sets (BUFSETS) in each SB buffer pool. The default value for this field is 4.
However, DFSSBUXO can set this field to a value ranging from 1 to 25, inclusive. If
this value is greater than 1, SB can anticipate the future database calls of a BMP or
batch program by concurrently reading the next set of blocks while IMS is
processing current database calls.

Recommendation: If your databases are well organized, set a default BUFSETS
value of 2 or 3 to save virtual storage space. If your databases are poorly
organized, however, you can set a default BUFSETS value of 6 or greater to
increase the chance that what your application program or utility is looking for is
already in a buffer set.

DEFSSBUXO0 can also change the default BUFSETS value based on the time of day.
For example, you might want DFSSBUXO0 to choose a small value for BUFSETS
during daytime main online processing time and a larger value during night batch
processing time.

The following DSECT describes the format of the SB parameter area:
SBPRMP DSECT

*

SBPRMP1 EQU = *+%%% READ-ONLY INFO FOR EXIT
SBPRMJOB DC cL8' ' JOBNAME
SBPRMPGM DC CcLs' ! PGM NAME (BLANK FOR CICS)
SBPRMPSB DC cLs' ! PSB NAME
SBPRMCLA DC cL4 ! IMS MESSAGE CLASSES
SBPRMREG DC X'00' REGION-TYPE
SBPRMRE1 EQU 1 ...BATCH (EXCLUSIVE CICS)
SBPRMREZ EQU 2 ...CICS
SBPRMRE3 EQU 3 ...BMP
SBPRMRE4 EQU 4 ...MPP
SBPRMRE5 EQU 5 ...IFP (FAST PATH)

DC XL3'00' RESERVED
*

DS OF
SBPRMPZ2 EQU = *%%%% MODIFIABLE SB PARMS FOR EXIT
SBPRMPNR DC F'o' NBR OF BUFFER-SETS
SBPRMPFL DC X'00' FLAGS
SBPRMPDI EQU X'80' ...DISALLOW USAGE OF SB
SBPRMPAD EQU X'40' ...CONDITIONAL SB ACTIVATION BY DEFAULT
*
SBPRMPL EQU *-SBPRMP LENGTH OF PARAMETER AREA

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers.
Related concepts:

[Chapter 1, “Guidelines for writing IMS exit routines,” on page 3|

Chapter 2. Database Manager exit routines 143

144

O [OSAM sequential buffering (Database Administration)|

Related reference:

[‘Routine binding restrictions” on page 9|

Sample SB initialization routines

Use the sample SB initialization routines in present form, modify, or use as
guidelines for writing your own SB routine.

Exit Routines

IMS supplies five SB sample routines. The first module disallows the use of SB; the
next four cause IMS to conditionally activate SB by default.

SB sample

routines

Description

DFSSBU1

The sample Sequential Buffering (SB) exit routine disallows the use of
SB.

For the latest version of the DFSSBU1 source code, see the
IMS.SDFSSMPL library.

DFSSBU2

This sample exit routine causes IMS to activate Sequential Buffering (SB)
by default when IMS detects a sequential I/O reference pattern and
reasonable activity rate. This exit routine can be used for DataRefresher”
IMS utilities that can benefit from SB in both batch and BMP regions.

For the latest version of the DFSSBU2 source code, see the
IMS.SDFSSMPL library.

DFSSBU3

This sample exit routine causes IMS to activate Sequential Buffering (SB)
by default when it detects a sequential I/O reference pattern and
reasonable activity rate. In batch regions, this applies to all application
programs and utilities; in BMP regions, this applies to DataRefresher, as
well as those IMS utilities that can benefit from SB.

For the latest version of the DFSSBU3 source code, see the
IMS.SDFSSMPL library.

DFSSBU4

This sample exit routine causes IMS to activate Sequential Buffering (SB)
by default when it detects a sequential I/O reference pattern and
reasonable activity rate. This applies to all application programs and
utilities in both batch and BMP regions.

For the latest version of the DFSSBU4 source code, see the
IMS.SDFSSMPL library.

DFSSBU9

This sample exit routine either disallows the use of sequential buffering
(SB) or causes IMS to activate SB by default based on specific times of
day. The routine is coded as follows:

* The time between 1100 hours and 1400 hours is the peak period for
processing online transactions. During this time frame, SB is
disallowed.

* During the time between 0900 hours and 1100 hours, and 1400 hours

and 1700 hours, SB is neither disallowed nor activated by default for
batch and BMP regions.

* The rest of the time, SB is conditionally activated by default for batch
and BMP regions.

For the latest version of the DFSSBU9 source code, see the
IMS.SDFSSMPL library.

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dag/ims_osamseqbuffer.htm#ims_osamseqbuffer

Chapter 3. Transaction Manager exit routines

Transaction Manager exit routines provide support for message processing,
including specialized routing and editing of messages. Additional routines perform
terminal functions, provide security, and facilitate sign on and sign off support.

2972/2980 Input edit routine (DFS29800)

The 2972/2980 Input Edit Routine processes each entered message segment after
that message segment has been translated by IMS.

This topic contains Product-sensitive Programming Interface information.

Subsections:
* |[“About this routine”)

* [“Communicating with IMS” on page 146|

About this routine

An input edit routine is required to perform terminal-related functions inherent in
the design of the 2972/2980 General Banking Terminal system. IMS passes control
to the 2972 /2980 Input Edit Routine to process each entered message segment after
that message segment has been translated by IMS.

The 2972/2980 Input edit routine must perform the following functions:

1. Determine the IMS destination (SMB or CNT) of messages entered from a 2980
teller or administrative station.

2. Determine end-of-message of multisegment messages (by setting DECCSWST
bit 7 to indicate EOM).

3. Reposition the entered data at the beginning of the input buffer for IMS
processing. The entered segment must be in standard IMS input message
format after edit processing; a two-byte length field is followed by the text.

In addition to performing the preceding required functions, the 2972 /2980 Input
edit routine can add input terminal status information to the entered segment, such
as the presence or absence of a passbook or auditor key on the input terminal. The
2972/2980 Input edit routine can initiate retransmission of the last successfully
transmitted message to a 2980 logical terminal by a return code to the calling
routine.

The following table shows the attributes of the 2972/2980 Input Edit exit routine.

Table 36. 2972/2980 input edit exit routine attributes

Attribute

Description

IMS environments

DB/DC, DCCTL.

Naming convention

You must name this exit routine DFS29800.

Including the routine

Because the Input Edit Routine will be called directly by the IMS 2972/2980 device
dependent module (DFSDN110), you must bind the input edit routine with the IMS
control region nucleus.

© Copyright IBM Corp. 1974, 2017 145

Table 36. 2972/2980 input edit exit routine attributes (continued)

Attribute

Description

IMS callable services

To use IMS callable services with this routine, you must issue an initialization call
(DFSCSIIO0) to obtain the callable service token and a parameter list in which to build
the function-specific parameter list for the desired callable service. Use the ECB in
register 9 for the DFSCSIIO call. This exit is automatically linked to DFSCSI0O0 by IMS.
No additional linking is required to use IMS callable services.

Sample routine location

No sample is provided.

146

Exit Routines

Communicating with IMS

Familiarity with IMS terminal handling procedures and control blocks is required
for a user to write an Input edit routine to interface with IMS routines in the IMS
control region. Examination of these control blocks might be required, but
modification of IMS control blocks by a user-written routine seriously endangers
the integrity of the entire system.

Contents of registers on entry

On entry to the exit routine, all registers must be saved using the save area
provided. The registers contain the following;:

Register Contents

0 Length of input buffer.

1 Address of the input area.

2 Length of input data. (The length of the area pointed to in register 1.)
7 Address of CTB.

9 Address of CLB.

11 Base of SCD.

13 Address of save area. The first three words must not be changed.

14 Return address to IMS.

15 Entry point of exit routine.

The format of the data contained in the buffer pointed to by register 1 at entry to
the exit routine is as follows:

1. 9 blanks
2. Terminal address
3. Entered text

If the entered text is from a 2980-4, the first byte of the entry is the teller
identification.

Contents of registers on exit

On return to IMS, all registers must be restored except for registers 2, 10, and 15,
which must contain the following:

Register Contents

2 Data length after edit (a zero length signifies a no-data segment).

Register Contents

10 The inputting CNT address if a retransmission of the last successfully
outputted message is required.

15 One of the following return codes:

Return code Meaning

0 Process the entered segment.

4 Re-send the last message to the CNT in register 10.

Related reference:

[‘Routine binding restrictions” on page 9|
[“Initialization of IMS callable services (DFSCSII0)” on page 17|

4701 Transaction Input Edit routine (DFS36010)

The 4701 Transaction Input Edit routine appends a blank and the eight-byte node
name to a transaction input message. The routine also allows MPP to set up the
appropriate change call for output.

This topic contains Product-sensitive Programming Interface information.

Subsections:
+ [“About this routine”’

* [“Communicating with IMS”|

About this routine

This exit is provided as a sample routine that appends a blank and the eight-byte
node name to a transaction input message. If you have established a naming
convention that relates node names to LTERM names, the node name can be used
by the MPP to set up the appropriate change call for output.

The following table shows the attributes of the 4701 Transaction Input Edit routine.

Table 37. 4701 transaction input edit routine attributes

Attribute

Description

IMS environments

DB/DC, DCCTL.

Naming convention

You must name this exit routine DFS36010.

Including the routine

No special steps are required to include this routine.

IMS callable services

To use IMS callable services with this routine, you must issue an initialization call
(DFSCSIIO0) to obtain the callable service token and a parameter list in which to build
the function-specific parameter list for the desired callable service. Use the ECB found
in register 9 for the DFSCSI00 call. This exit is automatically linked to DFSCSI00 by
IMS. No additional linking is required to use IMS callable services.

Sample routine location

IMS.ADFSSMPL (member name DFS36010).

Communicating with IMS
IMS uses the entry and exit registers to communicate with the exit routine.

Contents of registers on entry

Chapter 3. Transaction Manager exit routines 147

On entry to the exit routine, all registers must be saved using the save area
provided. The registers contain the following;:

Register Contents

1 Address of the input buffer
7 Address of CTB

9 Address of CLB

11 Address of SCD

13 Address of save area

15 Entry point of exit routine

Contents of registers on exit

On return to IMS, all registers must be restored except for register 15, which must
contain the following return code:

Return code Meaning

0 Normal processing

Related reference:

[‘Routine binding restrictions” on page 9|
[“Initialization of IMS callable services (DFSCSII0)” on page 17

| Build Security Environment user exit (BSEX)

148

Exit Routines

The Build Security Environment user exit provides users with a mechanism to tell
IMS whether or not to build the RACF® or equivalent security environment in an
IMS dependent region for an application that has received its input message from
neither OTMA nor an LU 6.2 device.

Use the Build Security Environment user exit to tell IMSO whether to build the
RACF® or equivalent security environment in an IMS dependent region for an
application that has not received its input message from OTMA or from an LU 6.2
device.

You can also use this user exit to request that IMS bypass some part of the security
processing in the dependent region when one of the following events occurs for a
message that did not originate from an OTMA or LU6.2 device:

* CHNG call

e AUTH call.

* Deferred conversational program switch on the local system (when the system

where the inputting terminal is active). Security authorization for the deferred
conversational program switch occurs only on the local system.

Subsections:

* |“About this routine” on page 149

+ [“Communicating with IMS” on page 150

About this routine

The Build Security Environment user exit receives control before the first or next
input message is given to an IMS application program and the input message is
from neither OTMA nor an LU 6.2 device.

This routine executes in key 7, non-cross-memory mode under the dependent

region TCB.

The following table shows the attributes of the Build Security Environment user

exit.

Table 38. Build security environment user exit attributes

Attribute

Description

IMS environments

DB/DC, DCCTL.
Note: Also supported in a DBCTL environment for non-message
driven BMPs.

Naming convention

You can name this exit routine DFSBSEX0 and link it into a library
that is included in the STEPLIB concatenation.

Alternatively, you can define one or more exit routine modules with
the EXITDEF parameter of the USER_EXITS section of the
DFSDFxxx member of the IMS.PROCLIB data set. The routines are
called in the order they are listed in the parameter.

Binding

You must write this user exit using reentrant coding techniques. You
must link your user exit into the IMS.SDFSRESL library.

If you use IMS callable services, you must link DFSCSI00 with your
user exit. The following is an example of the bind JCL statements
needed:

INCLUDE LOAD(DFSBSEX0)
INCLUDE LOAD(DFSCSI00)
ENTRY DFSBSEXO

NAME DFSBSEXO(R)

Including the routine

The module or modules must be included in an authorized library
in the JOBLIB, STEPLIB, or LINKLIST concatenation. No additional
steps are necessary to use a single exit routine that is named
DFSBSEXO. If you use multiple exit routines, specify
EXITDEF=(TYPE= BSEX,EXIT=(exit_names)) in the EXITDEF
parameter of the USER_EXITS section of the DFSDFxxx member of
the IMS.PROCLIB data set.

IMS callable services

To use IMS callable services with this user exit, examine the value

of the SXPLATOK field in the |[“IMS standard user exit parameter|

list” on page 5

» If SXPLATOK is zero, you cannot use IMS callable services with
this user exit.

¢ If SXPLATOK is non-zero, the value is the callable services token
for this user exit. You can use the 256-byte work area addressed
by the SXPLAWRK field to call DFSCSIFO.

Sample routine
location

No sample exit routine is provided.

Chapter 3. Transaction Manager exit routines 149

150

Exit Routines

Communicating with IMS

IMS uses the entry registers, the Standard User exit parameter list (SXPL), and the
Build Security Environment user exit (BSEX) parameter list to communicate with
this routine.

This routine uses register 15 to communicate with IMS.

Contents of registers on entry

The contents of the registers on entry are as follows:

Register Contents

Register Contents

1 Address of the IMS Standard User exit parameter list (SXPL).
13 Address of a single standard z/OS save area.

14 Return address to IMS.

15 Address of BSEX.

All other registers are undefined.
Contents of registers on exit

The contents of the registers on exit are as follows:

Register Contents

15 Return code indicating requested action:

Return Code (decimal)
Meaning

00 IMS is not to build the security environment during the
scheduling phase of the transaction. The security environment
can be built later if needed for processing a CHNG call, AUTH
call, or a deferred conversational program switch.

04 IMS is to build the security environment during the scheduling
phase of the transaction. If the security environment is needed
later by a CHNG call, AUTH call, or a deferred conversational
program switch, this same security environment is used. If the
application program does not ever need the security
environment, the build of the security environment is
unnecessary.

08 Invoke the SAF interface (RACF, or equivalent product) on a
CHNG call, an AUTH call, and a deferred conversational
program switch, but bypass the dynamic creation of the
security environment. If the transaction is running in the local
system, and the user who entered the transaction is still signed
on, the security environment created by SIGNON is used.
Otherwise, the default security environment of the IMS control
region or the IMS dependent region is used for the SAF call.
Normally, the security environment of the dependent region is
used. However, if the dependent region is running with LSO=Y
or is a BMP with PARDLI=1 specified, then the security
environment of the Control Region is used.

12 Bypass invoking the SAF interface on a CHNG call, an AUTH
call, and a deferred conversational program switch.

16 Bypass invoking the SAF interface on a CHNG call, an AUTH
call, and a deferred conversational program switch, and bypass
the calls to the DESCTRNO and DFSCTSEO user exits.

20 Invoke the SAF interface on a CHNG call, an AUTH call, and
deferred conversational program switch, and bypass the calls to
the DFSCTRNO and DFSCTSEOQ user exits.

Note:

1. For return codes 08, 12 and 16, IMS does not dynamically build the security
environment during transaction scheduling, or later for a CHNG call, an AUTH
call, or a deferred conversational program switch.

2. When return code 16 is used, the application gets a status code in the IOPCB of
blanks. For the AUTH call, the status field in the I/O area has the value 24
(X'18"): transaction authorization not active.

All other registers are to be restored by this routine.

[“IMS standard user exit parameter list” on page 5|

This user exit uses the Version 6 standard exit parameter list. The address of the
work area passed to this user exit in SXPLAWRK can be different each time that
this user exit is called.

Chapter 3. Transaction Manager exit routines 151

152

Exit Routines

If your BSEX user exit can be called in an enhanced user exit environment,
additional user exit routines might be called after your routine. When your user
exit routine finds a transaction upon which to act, it can set SXPL_CALLNXTN in
the byte that SXPLCNXT points to. This tells IMS to not call additional exit
routines.

Build Security Environment user exit (BSEX) parameter list

The address of the BSEX parameter list (mapped by DFSBSEXP) on entry to this
routine is contained in field SXPLFSPL of the IMS Standard User Exit parameter
list. The following table describes the BSEX parameter list.

Table 39. BSEX parameter list (mapped by DFSBSEXO0)

Offset Field length Description

X'00' 4 bytes Transaction scheduling class.

X'04' 8 bytes Transaction code of the input transaction.
xXocC' 8 bytes PSB name.

X'14' 8 bytes Program name.

X1 8 bytes User ID. Specifies one of the following:

e Actual user ID of the user who entered the transaction.

¢ LTERM name of the terminal from which the transaction
was entered.

¢ Blanks.

This is the user ID for which the security environment will
be built if requested by this exit routine.

X124 8 bytes Group name.

X2C 32 bytes Application parameter (APARM= on dependent region
JCL).

X'4C' 64 bytes First 64 bytes of the input message or zeros if the input
transaction is conversational.

X'8C' 8 bytes User ID of the dependent region address space.

X'94' 1 byte Indicator for contents of user ID field:
U User ID
L LTERM
P PSB name
(6] Other name

X'95' 3 bytes Reserved.

Related reference:

[‘Routine binding restrictions” on page 9|

[‘Resource Access Security user exit (RASE)” on page 431

[“IMS callable services” on page 13|

[“IMS standard user exit parameter list” on page 5|

Conversational Abnormal Termination exit routine (DFSCONEO)

The Conversational Abnormal Termination exit routine (DFSCONEQ) provides an
application program to clean up, if required, when a conversation is prematurely
terminated.

This topic contains Product-sensitive Programming Interface information.

A conversational process terminates abnormally when:
* A conversation is ended by an /EXIT or /START command.

* A conversational application program terminates abnormally during a
conversation.

* A conversational program fails to insert a message into a response PCB or into
an alternate PCB that represents another conversational program.

¢ A non-correctable IMS conversational error occurs.

If used, the Conversational Abnormal Termination exit routine can be scheduled
twice: once when an /EXIT or /START command is issued, and again either when
an application program inserts a SPA, or when the conversational response is
received from a remote system.

Subsections:
+ |[“About this routine”)

* [“Communicating with IMS” on page 154

About this routine

You can provide an application program to clean up, if required, when a
conversation is prematurely terminated. On entry, this program's I/O PCB contains
the name of the terminal that had its conversation abended. An exit routine to
schedule the application program is required. IMS provides a sample exit routine
named DFSCONEQ, or you can write your own. To use the IMS-provided routine,
you must:

* Define a transaction code named DFSCONE.
* Write a nonconversational application program to be activated by DFSCONE.

When the sample exit routine (DFSCONEQD) is finished, the IMS conversational
processor determines whether the transaction DFSCONE has been defined. If
DFSCONE is not defined, the conversation terminates and the SPA is discarded. If
DFSCONE is defined, the conversational processor schedules the transaction
DFSCONE with the SPA of the terminated conversation as a nonconversational
single-segment message.

As an alternative, you can provide a more tailored exit routine. For example, you
might want to interrogate the conversation control block (CCB) to determine the
transaction that was in process when the conversation terminated, or you might
want to inspect the SPA to find out what had occurred before the conversation
terminated. No DL/I calls can be issued by your exit routine. A message
processing program should be scheduled to handle database inquiries and updates
or extensive analysis of the conversation. The application program can send
messages to the terminal associated with the terminated conversation.

To cause your application program to be scheduled, your exit routine must:

Chapter 3. Transaction Manager exit routines 153

154

Exit Routines

* Place the 8-byte name of the nonconversational transaction into the SPA (offset 6
bytes into the SPA).

* Set the desired length of the SPA.
* Insert information to be communicated to the scheduled program into the SPA.

* Set a return code of X'10' in register 15.

The transaction code inserted into the SPA must be for a valid, nonconversational
transaction. Otherwise, no transaction will be scheduled, the SPA is discarded, and
the response message (if available) is sent to the input terminal.

If you do not provide a DFSCONEQ exit routine, IMS processing is the same as if
an exit routine existed and it returned a return code of 0. The default IMS action is
as follows:

1. Terminate the conversation if it is still active.
2. Discard the SPA.
3. Discard the response message if available.

Attributes of the Routine

The following table shows the attributes for the Conversational Abnormal
Termination exit routine.

Table 40. Conversational abnormal termination exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention = You must name this exit routine DFSCONEO.

Binding You must write this routine using reentrant coding techniques. You
must link your routine into the IMS.SDFSRESL library.

If you choose to use IMS callable services, you must link DFSCSI00
with your routine. The following is an example of the bind JCL
statements needed:

INCLUDE LOAD(DFSCONEO)
INCLUDE LOAD(DFSCSI00)
ENTRY DFSCONEO

NAME DFSCONEQ (R)

Including the routine No special steps are required to include this routine. To use the
sample user exit, you need to define the transaction DFSCONE.

IMS callable services
To use IMS callable services with this routine, you must issue an

initialization call (DFSCSIIO) to obtain the callable service token and
a parameter list in which to build the function specific parameter
list for the desired callable service. Use the ECB in Register 9 for
IMS callable services.

Sample routine IMS.ADFSSMPL (member name DFSCONEQ).
location

Communicating with IMS
IMS uses the entry and exit registers to communicate with the exit routine.

Contents of registers on entry

Register 0 contains a flag that identifies the reason why the conversation was
terminated.

Byte Contents
0

Flags Meaning
X'01' Request for termination that is no longer active.

X'02' The /EXIT or /START command was issued by a different terminal
than the one in conversation; this causes the conversation to be
terminated. If this flag is not on, the request for termination of the
conversation is from the terminal in conversation.

X'04' The input CNT could not be found. The master terminal of the
current system is set as the input terminal.

X'08' The transaction was discarded by the processing of the /EXIT
command.

Return Code
Meaning

X'o1' Conversation was terminated previously by an /EXIT, /START, or
IMS cold start. The conversation transaction processed successfully,
and IMS is sending (queuing) the response message to the input
terminal.

2 Reserved

Chapter 3. Transaction Manager exit routines 155

156

Exit Routines

Byte

Contents

A flag byte that indicates the calling reason:

Flag Reason

X'00" Conversational application program abended.

X'04' Reserved.

X'08' /EXIT command for input or other (remote) terminal processed.

X'0C' /START LINE or NODE command processed for terminal in
conversation. The /START LINE command is valid only if no PTERMs
are specified.

X'10' SPA received for an inactive conversation.

X'14'" Inconsistent conversational definitions found in a multisystem
conversation. Execute the /MSVERIFY command to show the
inconsistencies.

X'18' /EXIT command terminated the conversation and the latest SPA is

not currently available. (It is queued for processing in this system, or
it is in the MSC network.) The SPA passed to the exit routine is either
the one from the previous step of the conversation, or a short SPA
with just the header information.

The exit routine is called with vector 10 when the current step in
progress completes; at this time the latest (and last) SPA for the
conversation is passed to the exit routine. This can not occur if an
IMS restart results in the loss of the SPA in this or another IMS
system.

X"1C' The explanation for the /START LINE or NODE command is the same
as for Vector 18.

X'20' A conversational application program terminated without inserting to
a response PCB or an alternate PCB that represents another
conversational program.

X'28' /EXIT command for input or other (remote) ISC terminal processed.

X'30' The link receive entry point of the TM and MSC Message Routing
and Control user exit routine (DFSMSCEQ) canceled the input
transaction.

The contents of the remaining registers are as follows:

Register Contents

1 Address of the SPA.

2 Pointer to a parameter list that contains SPA processing options. See "SPA
Options Parameter List" for a list of the parameters.

6 Address of the CCB for the terminal in conversation, if the conversation is
still active. Zero if the conversation is already terminated.

7 If zero, the conversation is already terminated. If positive, the register
contains the address of the CTB for the terminal in conversation (if the
conversation is active). If negative, the register contains the complemented
address of the SPOB for the signed-off user, which can be the result of the
exit being called because of an /EXIT CONV USER command.

09 Address of the ECB.

11 Address of the SCD.

Register

Contents

13 Address of save area. The exit routine must not change the first three words.
14 Return address to IMS.
15 Entry point of DFSCONEQ.

The following table shows the SPA options parameter list. This parameter list is
mapped in the sample exit routine.

Table 41. SPA options parameter list

Field Description

CONESPAH Maximum SPA length

CONESPAL Current SPA length

CONEFLG1 Flag 1. This flag can be set as follows:

CONEI1TDO (X'80")
If this flag is set, register 1 points to a SPA buffer that
contains the SPA at the maximum length. If this flag is not
set, register 1 points to a SPA that is the length of the SPA
for the current transaction. Truncated data option is set for
the SPA parameter in the TRANSACT macro.

CONE1SQ (X'40")
shared queues are active.

Contents of registers on exit

On return to IMS, all registers must be restored except for register 15, which must
contain one of the following return codes:

Reason code Meaning

X'00'

Exit has completed all cleanup required; no further action is necessary. IMS
does the following:

* Terminates the conversation (if still active).
* Discards the SPA.
* Discards the response message (if available).

X'04'

The conversation is ended. The name field is used as a transaction code for a
new nonconversational transaction. The remaining data in the SPA is used as
input data for a new transaction.

IMS does the following:
* Terminates the conversation (if still active).
* Attempts to queue the SPA to the indicated transaction and schedule it.

* Discards the response message (if available).

X'08'

Exit has completed all cleanup required. No further action is necessary.

IMS does the following:

* Terminates the conversation (if still active).

* Discards the SPA.

* Sends the response message to the input terminal (if available).

Chapter 3. Transaction Manager exit routines 157

Reason code Meaning

X'oC' The conversation is ended. The name field is used as a transaction code for a
new non-conversational transaction. The remaining data in the SPA is used
as input for a new transaction.

IMS does the following:
* Terminates the conversation (if still active).

* Attempts to queue the SPA to the indicated transaction and schedule it.

* Sends the response message to the input terminal (if available).

X'10' The conversation is ended. The name field is used as a transaction code for a
new non-conversational transaction. The remaining data in the SPA is used
as input data for a new transaction.

IMS does the following:
* Terminates the conversation (if still active).
* Attempts to queue the SPA to the indicated transaction and schedule it.

¢ Discards the response message (if available).

Notes for Contents of Registers on Exit:

1. If the SPA cannot be queued to the transaction because the transaction is not
defined or defined incorrectly, the response message is still discarded.

2. On entry, if bit 7 in register 0, byte 1, is set on (RO="XX01XXXX'), the response
message is available.

3. If the SPA cannot be queued to the transaction because the transaction is not
defined or defined incorrectly, the response message is not discarded but is sent
to the input terminal. On entry, if bit 7 in register 0, byte 1, is set on
(RO="XX01XXXX'), the response message is available.

Related reference:

[“Initialization of IMS callable services (DFSCSII0)” on page 17|

Destination Creation exit routine (DFSINSXO0)

158

Exit Routines

The Destination Creation exit routine creates an LTERM or a transaction when a
destination for a message does not exist.

This topic contains Product-sensitive Programming Interface information.

Subsections:
* |“About this routine”|

* [“Restrictions” on page 159

+ [“Communicating with IMS” on page 160

About this routine

IMS will call the Destination Creation exit routine to create an LTERM or a
transaction when a destination for a message does not exist. DFSINSXO0 tells IMS
which type of destination to create: LTERMs, transactions for queuing, or
transactions for scheduling. LTERM is the default destination.

The following table illustrates the types of destinations that are enabled under
specific conditions that are specified for your environment in the IMS PROCLIB
members:

Table 42. Environment specifications and destination types created by DFSINSX0

Environment specification: Destination type:

ETO=Y LTERM

SHAREDQ=name Transaction for queuing
MODBLKS=DYN Transaction for scheduling

Attributes of the routine

The following table shows the attributes of the Destination Creation exit routine.

Table 43. Destination Creation exit routine attributes

Attribute

Description

IMS environments

DB/DC, DCCTL.

Naming convention

You must name this exit routine DFSINSXO.

Binding

This exit routine must be reentrant.

The exit routine can be called in cross-memory mode.

Including the routine

If you want IMS to call the Destination Creation exit routine, include it in an
authorized library in the JOBLIB, STEPLIB, or LINKLIST library concatenated in front
of the IMS.SDFSRESL. If the exit routine is included, IMS automatically loads it.

IMS callable services

To use IMS callable services with this routine, you must do the following;:

» Issue an initialization call (DFSCSIIO) to obtain the callable service token and a
parameter list in which to build the function-specific parameter list for the desired
callable service.

* Use the ECB found at offset 0 of the Destination Creation exit routine parameter list
for the DFSCSIIO call.

» Link DFSCSI00 with your user exit.

Sample routine location

IMS.ADFSSMPL (member name DFSINSXO0).

Restrictions

The following restrictions apply to the use of the Destination Creation exit routine
(DFSINSX0):

* DFSINSXO0 is not called during XRF tracking on an XRF alternate system.

* When DFSINSXO0 is used to create LTERMs, then DFSINSX0 and the Signon exit
routine (DFSSGNXO0) are corequisite. If you provide one exit routine to supply
queue data for additional LTERMs, you must provide the other exit routine also.
Both exit routines create the user control block structure and related LTERMSs
(including multiple LTERMs for a user): DFSINSX0 using an LTERM name and
DFSSGNXO0 using the user ID. These exit routines must contain the same logic so
that the user structure is identical, regardless of which exit routine created it.
However, DFSINSX0 cannot return the address of a user descriptor. The address
of a user descriptor can only be provided using the Signon exit routine
(DFSSGNXO).

* When extended terminal option is inactive (ETO=N), you cannot write
DFSINSXO0 to create dynamic LTERMs. When ETO=N, you can write DFSINSX0
only to create dynamic transactions.

* When dynamic resource definition is disabled (MODBLKS=OLC) in the
DFSCGxxx or the DFSDFxxx member of the IMS.PROCLIB members, you can

Chapter 3. Transaction Manager exit routines 159

write DFSINSXO to create transactions that can only be used for queuing
messages on the shared queues. You cannot write DFSINSXO to create
transactions that can be scheduled when dynamic resource definition is disabled.

* When shared queues are not active (the SHAREDQ= parameter is not specified
on the IMS Procedure), you cannot use DFSINSXO0 to supply destinations for
queuing transactions.

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of the |“IMS standard user exit parameter list” on page 5| (Version 1)
13 Save area address

14 Return address to IMS

15 Entry point address of exit routine

The following table shows the Destination Creation exit routine parameters. The
address of this parameter list is in the standard exit parameter list field SXPLFSPL.

This parameter list is mapped by DSECT INSXMAIN, which can be found in the
DFSINSXP macro.

Table 44. Destination creation exit parameter list

Offset Length Description

+0 4 ECB address.

+4 4 SCD address.

+8 4 User Table address.

+12 4 Address of a buffer for use by the exit routine to

return user ID and queue data. The mapping of the
buffer is DSECT USEQDATA in USEQDATA COPY.
For additional details on the content and format,
refer to the prolog in the sample routine (DFSINSX0
in IMS.SDFSSMPL).

The value is zero for the following conditions:
* An XRF alternate system.

¢ The destination must be a transaction and there is
an indicator at offset +20.

160 Exit Routines

Table 44. Destination creation exit parameter list (continued)

Offset Length Description

+16 4 Address of a buffer for use by the exit routine to
return Autologon Override parameters. The mapping
of the buffer is DSECT ATLGPARM in DFSINSXP
macro. For additional details on the content and
format, refer to the prolog in the sample routine
(DFSINSXO0 in IMS.SDFSSMPL).

The value is zero for the following conditions:
* An XRF alternate system.

* The destination must be a transaction and there is
an indicator at offset +20.

+20 4 Address of a buffer containing destination name, and
other environment flags, including indicators for the
following:

* Dynamic resource definition, ETO, or shared
queues is enabled.

¢ LTERMs or transaction control blocks can be
created.

* The exit routine output is an LTERM or a
transaction control block.

The mapping of the buffer is DSECT INSXDATA in
DFSINSXP macro.

+24 4 Address of a buffer for use by the exit routine. The
mapping of the buffer is DSECT INSXTRNQ in
DFSINSXP macro. The buffer returns information that
is used to create a transaction control block if the
destination is a transaction, including transaction
attributes. The value is zero if the destination is an
LTERM.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for
register 15, which contains one of the following return codes. If an application
INSERT call forced the LTERM creation, IMS ignores the return code.

Return code Meaning

0 IMS creates the destination.

nonzero IMS rejects the destination creation attempt for alternate PCBs. If an
application INSERT call caused IMS to attempt the destination creation, the
nonzero return code is returned to the application as an 'Al' status code. I/O
PCBs force LTERM creation and ignore the return code.

In addition to the return codes, the exit routine can indicate whether to create an
LTERM (set INSXTYPE equal to INSXCNT in the INSXDATA DSECT) or a
transaction (set INSXTYPE equal to INSXSMB in the INSXDATA DSECT).

Related concepts:

[[Remote LTERMs (Communications and Connections)|

[[MSC descriptors (System Definition)|
Related reference:

Chapter 3. Transaction Manager exit routines 161

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_msc_ovrvw_011.htm#ims_msc_ovrvw_011
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_ie0i2tla1041768.htm#ie0i2tla1041768

162

[“Routine binding restrictions” on page 9|
[“Initialization of IMS callable services (DFSCSII0)” on page 17
[“Signon exit routine (DFSSGNX0)” on page 283

['IMS standard user exit parameter list” on page 5|

DFSINSX0 when extended terminal option is active

Exit Routines

When ETO=Y, you can write DFSINSXO0 to supply queue data that will create local
or remote LTERMS, when the destination does not exist.

You can specify that the extended terminal option is active by stating that ETO=Y
in the IMS or DCC startup procedure.

Based on the selected user descriptor when ETO=Y, DFSINSXO can perform the
following tasks:
+ If the selected user descriptor is the DFSUSER descriptor,

— Add additional LTERMs to the structure and supply queue data for those
additional LTERMs, based on supplied autologon parameters such as LU
name, user 1D, logon descriptor name, and mode table name.

— Override queue data and autologon parameters.

— Override the user ID derived from the user structure.

— Provide the correct user ID for the user receiving messages.

— Use the correct user ID to create the name of the user control block structure,
including LTERM control blocks.

* If the selected user descriptor is a non-DFSUSER descriptor,

— Override queue data and autologon parameters for only one LTERM that is
derived from the non-DFSUSER descriptor.

— Cannot override the user ID.

If no user ID is supplied and extended terminal option is active, the name of the
user structure is the name of the target LTERM. If no user control block structure
exists, IMS uses the same name for both the target LTERM and the selected user
descriptor.

IMS creates LTERMs from information in the selected user descriptor, from
information that the Destination Creation exit routine supplies, or, in the case of
remote LTERMS, IMS will use Multiple Systems Coupling (MSC) descriptors. If an
LTERM is not available (that is, it is already assigned to another user), the user
control block is created without the LTERM. LTERMs can be added later using the
/ASSIGN command.

Related reading:

e See IMS Version 13 Communications and Connections for more information
regarding ETO.

* The Destination Creation exit routine creates destinations based on
environmental specifications. For more information on these specifications, see
the prolog of sample DFSINSXO0.

Providing queue data and autologon parameters

Depending on the user descriptor selected, the Destination Creation exit routine
can provide queue data (LTERM data) and autologon parameters. If the exit

routine returns data that it is not allowed to return (as discussed in the following
cases), IMS rejects the LTERM creation attempt.

There are two cases which describe what data the Destination Creation exit routine
can supply. The two cases are based on whether a DFSUSER (Case 1) or a
non-DFSUSER (Case 2) descriptor is selected. (For this exit routine, non-DFSUSER
descriptors are descriptors based on the target LTERM name.) Each case is
discussed in the sections that follow.

If the Destination Creation exit routine does not provide data to override the
existing queue data, IMS proceeds as if you did not include the Destination
Creation exit routine; IMS uses the information in the selected user descriptor to
create the LTERMs.

Case 1

If the DFSUSER descriptor is selected, the Destination Creation exit routine:

* Can supply any of the fields defined in the interface (including LTERM names).
The exit routine can change LTERM data, but not the actual name of the first
LTERM provided.

* Can provide data for additional LTERMs.

* Can provide the correct user ID to override the user ID derived from the target
LTERM.

* Can override autologon parameters. If the user structure already exists, the
user's existing autologon parameters are not changed.

Case 2

If a non-DFSUSER descriptor is selected, the Destination Creation exit routine can
only specify queue data to override data derived from the user descriptor. The exit
routine:

* Can supply queue data (except LTERM names) to override data that the
descriptor provides,

* Can override autologon parameters. If the user structure already exists, the
user's existing autologon parameters are not changed.

* Cannot provide data for additional LTERMs or override the user ID.

In both cases, IMS verifies the additional LTERMs that are specified against the
LTERMs that already exist in the system. IMS automatically allocates the user to
the indicated node and attempts to establish a session with that node. If an LTERM
that is specified as an additional LTERM already exists in the system, IMS assumes
that this LTERM has been assigned to a different user, and it is not made part of
the user structure of the user for which messages are queued.

Identifying which user descriptor IMS selected

If the user control block structure already exists for the user for whom messages
need queuing but for which the target LTERM is missing, IMS selects the user
descriptor that was used to build the user structure and calls the exit routine. If
IMS locates the target LTERM name, it selects that user descriptor and calls
DFSINSXO.

If IMS does not find a descriptor that contains the target LTERM name, it selects
DFSUSER to create the user structure. IMS renames the descriptor, giving it the

Chapter 3. Transaction Manager exit routines 163

164

name of the target LTERM, and equates the user ID to this name. IMS then calls
DFSINSX0, which can supply the correct user ID, overriding the one derived from
the target LTERM.

If no user descriptor can be found, including DFSUSER, IMS rejects the LTERM
creation request.

Remote LTERM creation for Multiple Systems Coupling

If Multiple Systems Coupling (MSC) is being used, the exit routine can request that
a remote LTERM (RCNT) be built instead of a local ETO LTERM (CNT) if the
destination of the message is an LTERM in a remote system. The exit routine
supplies the associated MSC MSNAME and the remote LTERM name in field
INSXMSN in the INSXDATA input parameter list. This name is a link name
(MSNAME) rather than a descriptor name.

The MSNAME and remote LTERM input creates the RCNT, similar to if an MSC
descriptor had been used. Do not change any other parameter values in the
INSXDATA input parameter list. The RCNT is assigned to the link name (LNB)
representing the MSNAME.

Related Reading: For more information on MSC descriptors, see IMS Version 13
System Definition.

DFSINSX0 when shared queues are active

Exit Routines

You can use the Destination Creation exit routine (DFSINSXO0), formerly called the
Output Creation exit routine, to create a transaction that queues messages in the
shared message queues.

Before enabling dynamic resource definition or shared queues, evaluate any
existing DFSINSXO exit routines. The DFSINSX0 exit might need to be changed so
that it checks whether LTERM creation is allowed before it accesses the
USEQDATA parameter list that is related to LTERM processing. If LTERM creation
is not allowed, the USEQDATA buffer address (INSXAUSQ) is zero.

If you specify that shared queues are active (SHAREDQ=name) in the IMS
PROCLIB members, you can create a transaction that queues messages in the
shared message queues and can be processed by another IMS in the IMSplex. The
transaction cannot be scheduled on the local IMS system unless DRD is also
enabled.

When the exit routine indicates that the destination is a transaction, IMS creates a
transaction control block. DFSINSXO0 returns information to IMS about the
transaction, including whether the transaction is in conversational or response
mode, and the SPA size if applicable. The transaction control block is not deleted
until IMS is restarted. IMS can use the same transaction control block if it
encounters additional instances of the undefined transaction input message.

The Destination Creation exit routine creates destinations based on environmental
specifications. For more information about these specifications, see the prolog of
sample DFSINSXO.

Related information:

[[DFS3824 (Messages and Codes)|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.msgs/msgs/dfs3824.htm#dfs3824

DFSINSX0 when dynamic resource definition is enabled

If dynamic resource definition is enabled, DFSINSX0 can create transactions that
can be used for queuing messages and it can create transactions that can be
scheduled. When DFSINSXO creates transactions that can be scheduled, DFSINSX0
also has the ability to create programs for those transactions.

Before enabling dynamic resource definition or shared queues, evaluate any
existing DFSINSXO exit routines. The DFSINSX0 exit might need to be changed so
that it checks whether LTERM creation is allowed before it accesses the
USEQDATA parameter list that is related to LTERM processing. If LTERM creation
is not allowed, the USEQDATA buffer address (INSXAUSQ) is zero.

If you specify that dynamic resource definition (DRD) is enabled
(MODBLKS=DYN) in the IMS PROCLIB members, DFSINSX0 can create a
transaction and an application program for scheduling on the local IMS system.

If inconsistent or invalid transaction attributes are returned, the new transaction is
not created, and the message for that transaction code is rejected as an invalid
destination. Any transactions or application programs created by DFSINSXO inherit
the global TRANSTAT parameter, as specified in the DFSDFxxx IMS.PROCLIB
member.

Transactions created for scheduling
Transactions that are created for scheduling can be enqueued, scheduled,
and executed. The DFSINSXO0 exit routine can set attributes for the
transaction and application program in the appropriate fields in the
INSXTRNQ parameter list DSECT.

Transactions created only for queuing
Transactions that are created only for queuing by the DFSINSX0 exit
routine have a status of DYN. The purpose of a queue-only transaction is
to queue a message to the shared queues. Queue-only transactions are not
recovered at restart unless they are stopped or a checkpoint has not yet
occurred since creation of the transaction.

Before DFSINSXO is called, you do not have to define the application program that
is scheduled to process the transaction. If the application program is not already
defined, DFSINSXO can create the program with specific attributes. The DFSINSX0
exit routine can set the same attributes as those that are set by the CREATE TRAN
command.

DEFSINSX0 does not require Resource Manager (RM) to dynamically create a
transaction. However, if RM is using a resource structure, and the transaction is
created for queuing or scheduling in any IMS system, the new transaction name is
registered with RM. This prevents another IMS system from creating an LTERM
with the same name.

The Destination Creation exit routine (DFSINSXO0) exit might fail with a completion
code of 1D7 and the DFS3824 message if the default descriptor is being imported
from the IMS change list in the IMSRSC repository or was not successfully
imported from the change list. This error can occur if the default descriptor is not
the IMS system-defined default descriptor.

Subsections:

+ [“Creating transactions across an IMSplex” on page 166

+ [“Creating default or duplicate transactions” on page 167|

Chapter 3. Transaction Manager exit routines 165

+ [“Exporting resource definitions to the IMSRSC repository” on page 168

Creating transactions across an IMSplex

DFSINSXO0 exit routine can create transactions on other IMS systems in an IMSplex
in specific environments. The following table lists these environments, and the
options available to DFSINSXO0 in these environments.

Table 45. Environments in which the DFSINSXO0 exit routine can create transactions across

an IMSplex

Options that the DFSINSXO exit routine can use to create
Environment transactions
Non-shared queues Dynamic transactions that the DFSINSXO exit routine creates

are always for scheduling. Bit TRNQ_FC_SCHD is ignored;
however, if you set this bit, your exit does not need to be
recoded if you move to a shared queues environment.

Shared queues, without the Dynamic transactions that the DFSINSXO0 exit routine creates

Structured Call Interface can be either for queuing (TRNQ_FC_SCHD = 0) or for

(SCI) scheduling (TRNQ_FC_SCHD = 1). The transaction is created
on the local IMS system only (the system in which the
DFSINSXO0 exit routine is called). The dynamic transaction
definition is not propagated to other IMS systems in the
IMSplex.

166 Exit Routines

Table 45. Environments in which the DFSINSXO exit routine can create transactions across
an IMSplex (continued)

Options that the DFSINSXO exit routine can use to create
Environment transactions

Shared queues with SCI Dynamic transactions that the DFSINSXO0 exit routine creates
can be either for queuing (TRNQ_FC_SCHD = 0) or for
scheduling (TRNQ_FC_SCHD = 1). The transaction can be
created for the following:

Queuing on the local IMS only
If TRNQ_FC_SCHD is set to 0, the transaction is
created for queuing on the local IMS system only.
Field TRNQ_IMS is ignored. This is the default if
your exit does not modify bit TRNQ_FC_SCHD.

Scheduling on the local IMS only
If TRNQ_FC_SCHD is set to 1 and no name is set in
field TRNQ_IMS, the transaction is created for
scheduling on the local IMS. It is not created on any
other IMS in the IMSplex.

Scheduling on one local IMS and one additional IMS,

while queuing on all other IMS systems
If TRNQ_FC_SCHD is set to 1 and the name
(IMSID) of an IMS is specified in the TRNQ_IMS
field, a transaction is created for scheduling on both
the local IMS and on the IMS whose IMSID is
specified in the TRNQ_IMS field. If the IMSID
specified in the TRNQ_IMS field refers to the local
IMS, the transaction is created for scheduling on the
local IMS only. In both cases, the transaction is
created for queuing on the other active IMS systems
in the IMSplex. If the transaction is already created
for scheduling on one or more of the other IMS
systems in the IMSplex, it will not be changed to a
queuing-only transaction. The transaction will still
be able to be scheduled on those IMS systems.

Scheduling on all IMS systems in the IMSplex
If TRNQ_FC_SCHD is set to 1 with an asterisk (*) in
field TRNQ_IMS, the transaction is created for
scheduling on all IMS systems that are currently
active in the IMSplex.

Creating default or duplicate transactions

If you want the DFSINSXO exit routine to create a transaction using the current set
of system defaults (that is, as specified by the current transaction default
descriptor), do not set any of the definition bits in the INSXTRNQ DSECT. If you
want the DFSINSXO0 exit routine to create a transaction that matches an existing
transaction or descriptor, specify the name of the transaction or descriptor in the
TRNQ_TRAND field of the INSXTRNQ DSECT. You may need to specify the
program name if the descriptor does not have a program name defined.

If you create a transaction or program but specify an invalid attribute combination
in the INSXTRNQ parameter list, you will receive message DFS534241 to help
diagnose the problem. Message DFS3424I contains the resource name, return code,
reason code, and completion code, if applicable.

Chapter 3. Transaction Manager exit routines 167

Exporting resource definitions to the IMSRSC repository

The transaction and program resources that are created by DFSINSXO0 can be

defined to be exported by setting TRNQ_FC_EXPORT=1 on the exit parameter list.

If IMS is defined to use the repository, the resources created by DFSINSXO are

exported to the repository when one of the following conditions is satisfied:

* The names of the resources are specified with the NAME keyword on the
EXPORT TARGET(REPO) command

* An EXPORT DEFN TARGET(REPO) OPTION(CHANGESONLY) command is
issued after DFSINSXO creates the resources

* The resources are created in-between the range specified by the STARTTIME and
ENDTIME keywords on the EXPORT DEFN TARGET(REPO) command

Related reading:

¢ The Destination Creation exit routine creates destinations based on
environmental specifications. For more information about these specifications,
see the prolog of the sample DFSINSX0 module in IMS.ADFSSMPL.

Related concepts:

[[Monitoring transaction-level statistics (System Administration)|

[[Dynamic resource definition (System Definition)|

Related reference:

[# [EXPORT command (Commands)|

[# |CREATE TRAN command (Commands)|

[# [DESDFxxx member of the IMS PROCLIB data set (System Definition)|

Fast Path Input Edit/Routing exit routine (DBFHAGUO)

The Fast Path Input Edit/Routing exit routine (DBFHAGUO) provides the
minimum level of support required for IMS to use Fast Path's Expedited Message
Handler (EMH).

IMS systems with a very high transaction rate use EMH. EMH is a performance
option that speeds up message processing by imposing restrictions on message
lengths and segmentation. To use EMH, an edit/routing routine must receive
control from the Input exit routine and determine the eligibility of an incoming
message for Fast Path processing. The sample exit provides the minimum level of
support required to use IMS Fast Path.

Subsections:
* |“About this routine”|

* [“Using the routine with shared EMH queues” on page 169|

* |“Restrictions” on page 170|

+ [“Communicating with IMS” on page 170

About this routine

The Fast Path EMH buffer is dynamically allocated and might not be present at

entry. Therefore, DBFHAGUO can receive the message in an EMH bulffer or queue
buffer, depending on the terminal type. The exit routine is not permitted to move
the data out of the input location. If the message is in a queue buffer at entry, the

168 Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_monit_translvlstats.htm#ims_monit_translvlstats
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dynamic_system_definition.htm#dynamic_system_definition
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_export.htm#ims_cr1export
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_createtran.htm#ims_cr1createtran
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib

Fast Path system moves it to an EMH buffer. In editing the input message, the
application should not increase the length beyond a length that fits in any message
buffer.

If an EMH buffer cannot be obtained, the following message is sent to the input
terminal:

DFS3971 Unable to process Fast Path due to EMH buffer shortage

The following table shows the attributes for the Fast Path Input Edit/Routing exit
routine.

Table 46. Fast Path input edit/routing exit routine attributes

Attribute Description
IMS environments DB/DC, DCCTL

Naming convention You must name this exit routine DBFHAGUO.

Binding This exit routine must be reentrant if APPC/IMS support is active.

Including the routine DBFHAGUO is a separately linked module in the IMS.SDFSRESL.
IMS automatically loads it during Fast Path initialization. If IMS
cannot find DBFHAGUQ, IMS terminates abnormally with
ABENDU1011 and displays the following message:

DFS2730A UNABLE TO LOAD FP INPUT ROUTING EXIT: DBFHAGUO

IMS callable services
To use IMS callable services with this routine, you must issue an

initialization call (DFSCSIIO) to obtain the callable service token and
a parameter list in which to build the function-specific parameter
list for the desired callable service. Use the ECB found at offset X'0'
of the Fast Path Input Edit/Routing Exit parameter list for the
DFSCSIIO call. This exit routine is automatically linked to DFSCSI00
by IMS. No additional linking is required to use callable services.

Sample routine IMS.SDFSSMPL (member name DBFHAGUO0).
location

Expanding the routine

A transaction that is not Fast Path-exclusive can be directed to EMH processing by
an expanded edit/routing routine, based on some condition or conditions beyond
transaction code. For example, certain transactions can be routed to EMH if they
originate at specified physical or logical terminals or if they reference the content
of some portion of the message (for example, account number). The user-supplied
DBFHAGUO would have to develop appropriate routing codes based on such
conditions.

Using the routine with shared EMH queues

If your installation uses shared EMH queues, DBFHAGUO can place messages on
the shared-queue structure for processing by any sharing IMS subsystem in the
sysplex.

You can modify the exit routine to specify an application name for the application
program used to process Fast Path input messages. If you do not specify an
application name, Fast Path locates the transaction or routing code in the local IMS
subsystem. Fast Path rejects the input message if it cannot locate the transaction or
routing code.

Chapter 3. Transaction Manager exit routines 169

170

Exit Routines

You can also specify a sysplex processing code that determines how a message
transaction or routing code is processed. The following sysplex routing options are
available:

Local First
Specifies that the message is processed on the local subsystem if an IFP
region is available. If no IFP region is available, the message is passed to
the EMH queue structure. A program name specified in the exit routine for
message processing overrides the transaction or routing code. Local First is
the default.

Local Only
Specifies that Fast Path does not place the message on the EMH queue
structure. Fast Path input messages are processed on the local IMS
subsystem.

Global Only
Specifies that Fast Path places the input message on the EMH queue
structure. The application program that processes the input message must
be active on all sharing IMS subsystems. If the application is not active,
Fast Path discards the input message and issues an error message. A
program name specified in the exit routine for message processing
overrides the transaction or routing code.

Recommendation: To avoid implicit priority for Local Only messages over Local
First messages, process Local First and Local Only messages under separate
program names. IMS places Local Only messages on the balancing group (BALG)
queue and Local First messages on the shared EMH queue. When an IFP region
becomes available, it checks the BALG queue for messages to process before it
checks the shared EMH queue. This sequence gives implicit priority to Local Only
messages that are processed in the same program.

Restrictions

You must rewrite your Fast Path Input Edit/Routing exit routine for this release of
IMS, based on the DBFHAGUO sample (located in the IMS.SDFSSMPL library) and
the guidelines in this .

The exit routine cannot move the data out of the input location.

The exit routine must not increase the length of the message beyond a length that
fits in any message bulffer.

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents
1 Address of Standard Exit Parameter List.
13 Save area address.

Register Contents

14 Return address to IMS.

15 Entry point address of exit routine.

This exit routine uses the Version 1 standard exit parameter list.

The following table lists the Fast Path exit parameters. The address of this
parameter list is in the standard exit parameter list field SXPLFSPL.

Table 47. Fast Path input edit/routing exit parameter list

Offset Length

(decimal) (decimal) Description

+0 4 ECB address.

+4 4 SCD address.

+8 4 Input message.

+12 4 Address of routing code table entry if this is a Fast Path
exclusive transaction, or zero.

+16 4 Eight-character work area to supply a routing code name.

+20 4 Address of ESCD.

+24 4 The length of the EMH Buffer for this application.

+28 4 Address of the DBFHAGUO extended parameter list. This

parameter list exists if shared EMH queues are used.

Otherwise, the extended parameter list is 0.

The following table lists the Extended Parameter list parameters.

Table 48. DBFHAGUO extended parameter list

Offset Length Description
(decimal) (decimal)
+0 4 Address of the 8-byte PSB name
+4 4 Sysplex processing code (decimal)
0 Local First (Default)
4 Local Only
8 Global Only
+8 4 Address of the Local PSB name table
+12 4 Address of the Global PSB name table
+16 4 System definition code (decimal)
0 Transaction Defined in local system
4 Transaction not defined in local system
+20 4 Input message code (decimal)
0 Fast Path exclusive transaction
4 Fast Path potential transaction
Note:

1. The sample DSECT for the local program name table and the global program name table

can be found in the DBFPGNT macro.

Chapter 3. Transaction Manager exit routines

171

Contents of registers on exit

On return, all registers must be restored except for register 1 and 15, which must
contain the following:

Register Contents
1 Message number to send to inputting terminal.
15 One of the following return codes:

Return code Meaning

(decimal)

00 Schedule with Fast Path. Register 3 points to the RCTE to be
used.

04 Schedule with Fast Path using transaction code as the routing
code.

08 Schedule with Fast Path using the routing code you provide.

12 Return to IMS for processing.

16 Schedule with Fast Path using transaction code if the routing
code equal to transaction code is active; otherwise, let IMS
process it.

20 Schedule with Fast Path using routing code provided the
routing code is active; otherwise, let IMS process it. This is the
same action as user exit return code 08.

24 Discard input, send message from user table back to inputting
terminal.

28 Discard input, send message from system message table.

Related reference:
[“Initialization of IMS callable services (DFSCSII0)” on page 17|

['IMS standard user exit parameter list” on page 5|

Front-End Switch exit routine (DFSFEBJO0)

The Front-End Switch (FES) exit routine allows you to keep the input terminal in
response mode while it is waiting for the reply from the processing system for
messages entered in an IMS system by a front-end switchable VTAM node and
processed in another system (such as IMS or CICS).

This topic contains Product-sensitive Programming Interface information.

Subsections:
* |“About this routine”|

* [“Restrictions” on page 173|

+ [“Communicating with IMS” on page 174|

About this routine

During system definition, you specify the FES exit routine on the COMM macro
with the FESEXIT parameter, and you specify which VTAM nodes can do
front-end switching.

The connection between intermediate IMS systems must be through Intersystem
Communication (ISC), although connections with non-IMS back-end systems can

172 Exit Routines

be any VTAM protocol that IMS supports, such as SLUTYPEP or SLUTYPE2.
IMS-to-IMS and IMS-to-non-IMS interconnections are referred to as
intermediate/back-end or IBE links, and front-end systems are referred to as FE
systems.

Front-End Switch is not related to Multiple Systems Coupling (MSC), and cannot
be used with MSC for the processing of the same transaction. Front-End Switch is
designed to connect an IMS network to non-IMS systems, and MSC is used for
homogeneous IMS networks.

Attributes of the routine

The following table shows the attributes of the Front-End Switch exit routine.

Table 49. Front-end switch exit routine attributes

Attribute Description
IMS environments DB/DC, DCCTL.

Naming convention = You must name this exit routine DFSFEB]O0.

Binding
This routine must be reentrant.

Including the routine If you want IMS to call the exit, include it in an authorized library
in the JOBLIB, STEPLIB, or LINKLIST library concatenated in front
of IMS.SDFSRESL. If the exit routine is included, IMS automatically
loads it each time IMS is initialized.

IMS callable services
To use IMS callable services with this routine, you need to issue an

initialization call (DFSCSIIO) to obtain the callable service token and
a parameter list in which to build the function-specific parameter
list for the desired callable service.

Use the ECB found in Register 9 for IMS callable services. This exit
is automatically linked to DFSCSI00 by IMS. No additional linking
is required to use IMS callable services.

Sample routine IMS.ADFSMPL.
location

You must code the exit routine for AMODE=31. You can define the RMODE as
ANY.

Restrictions

The following restrictions apply to the Front-End Switch exit routine:

* The FES function can be used with the COMM macro statement specifying
OPTIONS=BLKREQD or NOBLANK. However, you must specify a blank
following the transaction code regardless of the option specified.

* If the back-end or intermediate system detects an error for an input transaction,
the error message can not be sent back to the input terminal. It is sent to the
MTO of the system detecting the error. It also can be sent back over the IBE
session that sent the original input, or the input message can be sent to an ERP,
if one is specified.

If an error is sent over the ISC session, IMS will CLSDST the session thus
making the error more visible and keep future ones from occurring. This can be
valuable during a debugging period of a new FES exit or application; however,
it can prove bothersome during production time. To avoid this, specify a

Chapter 3. Transaction Manager exit routines 173

174

Exit Routines

FEIBERPN when processing input from an ISC session and develop an
application to log or process these errors should they occur.

Conversational transactions are not supported.

If the front-end system is part of an XRF complex, the terminal operator might
not get the reply to a switched message in case of a takeover even if the reply
comes in time. The terminal receives an IMS message instead.

For a local transaction defined as full-function, nonresponse mode, the exit
routine switches a transaction (TXNNA) to a local transaction (TXNB) and turns
on the timer facility. TXNB executes locally and replies to the originating
terminal. However, the terminal is left in response mode. When the timeout
transaction processes, a response is sent to the terminal, which resets the
response mode.

If the back-end system is non-IMS, the reply message that the back-end system
sends to IMS must be asynchronous (nonresponse) and expect no
counter-response from IMS. You can do this in one of two ways:

— End the response with an end bracket (EB).

— Append the FMH6 SCHEDULER header to the FMHS5 header at attach time,
and use a change direction (CD) indicator.

Related Reading: For more information, see IMS Version 13 Communications and
Connections.

Communicating with IMS

IMS uses the entry and exit registers to communicate with the exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Content

1

Address of the FEIB. The FEIB contains all the information necessary for the
exit to function. The exit routine must store additional information in the
FEIB which is required for successful processing.

9 Address of ECB.

13 Address of save area. The exit routine must not change the first three words.
14 Return address to IMS.

15 Entry point of exit routine.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for
register 15, which must contain one of the following return codes:

Return code Meaning

0 No message switching

2 New destination from FE
6 New destination from IBE
8 Reply message

12 User table error

Related reference:

[‘Routine binding restrictions” on page 9|
[“Initialization of IMS callable services (DFSCSII0)” on page 17|

Terminal input processing

By the time the message arrives for terminal input, it already has been edited by
routines such as Basic Edit, ISC (Intersystem Communication), and MFS Edit.

The Front-End Switch exit routine gains control from an IMS system when the first
segment of an input message is received before IMS determines the destination of
the message. All input from FES-capable nodes and from ISC links are processed
by this exit routine. Both MFS Edit and Basic Edit can remove characters that have
a value less than X'41".

For a diagram of the relationships among the front-end system, the intermediate
system, and the back-end system with regard to message switching, see the
following figure.

This exit routine can do any of the following;:

* Indicate a destination change for an input message to an IBE destination or local
transaction program defined in this IMS system. Changing the destination forces
the originating terminal to be in response mode. (Front-end system processing.)

* Indicate a destination change for an input message from an IBE link to another
IBE destination or to a local transaction program defined in this IMS system.
(Intermediate system processing.)

* Define a transaction code that can be initiated when a specified time interval
expires after switching the message. (Timeout processing.)

* Specify the message that can be sent directly to the input terminal for timeout
processing.

* Provide IMS with additional routing information to expand the original message
for any IBE system.

* Specify the name of a transaction program (full-function response mode or Fast
Path) that processes or logs input messages due to user exit routine failures
detected in other than the original terminal input (for example, ISC input).

The exit routine must provide additional routing information to identify the reply
to this message when it comes back to the IMS front-end system. The user can tell
IMS to remove the added information before the reply message is sent to the
original terminal.

Intermediate Back-end
Front-end system systems system
(o e) D
- input IMS LUe.1. IMS ! LUG6.1| IMS
= Basic DFSFEBJO | ISC ISC o
message Edit routine ' ;
origin N '
Message

Figure 9. Message flow with the front-end switch exit routine

Chapter 3. Transaction Manager exit routines 175

176

In the preceding figure, the reply path is not shown to keep the diagram simple.
The reply would usually follow the same path back through the intermediate
system or systems to the front-end, and then to the originating terminal.

IBE input processing

Correlate the reply message to a previously switched input message as part of IBE
input processing. A reply to an input message, when received from another system,
is treated by IMS as an input message.

The exit routine takes control of each message that comes from an ISC or
FES-defined link. You must correlate the reply message to a previously switched
input message.

The exit routine at this point can:

* Analyze the message text.

* Copy the LTERM name from the message text into the FEIBLTRM field.

* Copy the message identifier from the message text into the FEIBUNID field.
* Specify a destination for a late reply message in the FEIBLDST field.

 Tell IMS to remove the routing data from the message by specifying a length > 0
in the FEIBULNG field.

* Set the FEIBRPQ1 indicator if the reply message has to be sent directly to the
original input terminal.

* Indicate the change of the destination code to a local transaction code
(full-function non-response mode) in the FEIBNDST field.

» Set FEIBRPN to an error processing program (ERP) name that receives the input
message if errors are detected in the verification of the exit parameters. An error
message appears on the MTO of the system detecting the error.

Front-end interface block

Exit Routines

A Front-End Interface Block (FEIB) is created for each FES capable terminal. The
FEIB is used to communicate between the Front-End Switch exit routine and IMS.

For a VTAM node (excluding ISC) defined as FES capable (by an OPTIONS=FES
on the TERMINAL, or TYPE macro, or ETO logon descriptor), the FEIB is allocated
when the session has been established. The block is released when the VTAM
session terminates and no reply for an FES message is outstanding.

Related Reading: For more information on the Extended Terminal Option (ETO)
feature, see IMS Version 13 Communications and Connections.

The interface block is also allocated for each ISC parallel session. This is done
automatically without special system definition at LOGON or OPEN DEST time.
The interface block is destroyed at LOGOEFF time, at CLOSE DEST time, or at
session failure.

If the exit routine is not defined in the system or if the VTAM node is not defined
as FES capable, the FEIB will not be allocated.

Register 1 on entry to the exit contains the address of the interface block.

The FEIB layout is in the following example.

* FEIB - FRONT END MESSAGE SWITCH INTERFACE BLOCK DSECT *
R T L L T T T L L T L L L L T T T T *
FEIB DSECT

FEIBIFLG DS X USER EXIT INPUT FLAGS

FEIBISC EQU X'80' MESSAGE FROM AN ISC LINK

* EQU X'40" RESERVED BY IBM

* EQU X'20 RESERVED BY IBM

* EQU X'l0' RESERVED BY IBM

* EQU X'08' RESERVED BY IBM

* EQU X'04' RESERVED BY IBM

* EQU X'02 RESERVED BY IBM

* EQU X'01 RESERVED BY IBM

FEIBOFLG DS X USER EXIT OUTPUT FLAGS

FEIBRPQL EQU X'80" QUEUE RESPONSE TO ORIG DEVICE

* ELSE QUEUE SMB NAMED IN FEIBNDST
FEIBERP EQU X'40' ON TIMEOUT CALL ERP, ELSE ERR MSG
* EQU X'20 RESERVED BY IBM

FEIBTMED EQU X'l10' TIME RESPONSE WITH SYSDEF VALUE

* EQU X'08' RESERVED BY IBM

* EQU X'04" RESERVED BY IBM

* EQU X'02' RESERVED BY IBM

* EQU Xx'0l' RESERVED BY IBM

FEIBMSGN DS H TIMEOUT ERROR MESSAGE NUMBER

* ONLY USED IF FEIBERP OFF

FEIBLTRM DS CL8 LTERM NAME OF ORIGINAL TERMINAL

* ONLY AVAILABLE IF FEIBISC OFF
FEIBMSG DS A POINTER TO INPUT MESSAGE BUFFER
FEIBUNID DS F UNIQUE ID NUMBER (FULL WORD BIN)
FEIBNDST DS CL8 NAME OF NEW DEST TO QUEUE MESSAGE
FEIBERPN DS CL8 NAME OF ERP TO CALL ON TIMEOUT

* ONLY USED IF FEIBERP ON

FEIBLDST DS CL8 NAME OF DEST TO QUEUE LATE MESSAGE
FEIBULNG DS H LENGTH OF DATA IN USER AREA
FEIBUSER DS CL40 USER AREA FOR DATA TO PREFIX MSG
* ONLY USED IF FEIBULNG > 0.
FEIBIMID DS CL4 IMS IDENTIFIER

FEIBTIME DS H TIMEOUT INTERVAL (SECONDS)
FEIBPRN DS cL8 PRIMARY RESOURCE NAME ADDED

TO USER DATA BY ISC EDIT

Description of the FEIB fields

Correlate the reply message to a previously switched input message by associating
message components with the values in the front-end interface block (FEIB) fields.

The following table provides a description of the FEIB fields.

Table 50. Description of the FEIB fields

Field

Description

FEIBIFLG

Input flag:
FEIBISC (bit 0)

* on: message is from an ISC link

* off: message is from an FES capable device

FEIBISC (bits 1-7)
Reserved

Chapter 3. Transaction Manager exit routines

177

Table 50. Description of the FEIB fields (continued)

Field

Description

FEIBOFLG

Output flags:
FEIBRPQ1 (bit 0)

* on: reply message has to be sent directly to the original input terminal
* off: reply message has to an SMB named in FEIBNDST

FEIBERP (bit 1)
¢ on: on timeout, schedule the SMB named in FEIBERPN
+ off: on timeout send text of error message defined in FEIBMSGN to the
original input terminal (only used if FEIBTMED is ON.)
FEIBTMED (bit 3)
* on: release terminal from response mode when the timeout value is exceeded

» off: timeout facility is not used for this message

FEIBDELT (bit 4)
* on: defer timeout facility until FP sync—point
* off: timeout facility will be activated immediately at input message processing
(only used if FEIBTMED is ON)

FEIBDELT (bits 2, 5-7)
Reserved

FEIBMSGN

User message number from table (DFSCMTUO) which is sent to the original input
terminal in the case of a timeout. The message number can only be specified if the
FEIBERP bit is off. Values range from 1-999. (Binary Number.)

FEIBLTRM

Logical Terminal Name (LTERM) of the input terminal. For a reply message, DFSFEBJO
must store the LTERM name into this field, padding with blanks on the right.

FEIBMSG

Pointer to the DC buffer containing the input message.

FEIBUNID

Unique message identifier is only available if the FEIBISC bit is off on input to the exit
routine. The exit routine must store the unique identifier (a binary number) into this field.

FEIBNDST

New destination name for the message. This identify an IBE destination or a transaction
code. (Blank padded on right.)

FEIBERPN

Error processing program name (transaction code) to be scheduled in the case of a
timeout. The FEIBERP bit must be set on if the program name is specified. (Blank padded
on right.) This field is also used to specify an optional ERP if the input is from an IBE
session. In this case, FEIBERP need not be set, and the ERP is scheduled with the input
from the IBE session.

FEIBLDST

Transaction name that is scheduled when a reply message arrives after timeout. (Blank
padded on right.)

FEIBULNG

This field must contain the length of the user data for an input message. It is used by IMS
to expand the original message. This field can contain the length of the user data to be
removed by IMS from the reply message for an output message.

FEIBUSER

User data area for routing information that IMS uses to expand the message. This field is
used for input messages only if the FEIBULNG field is greater than zero.

FEIBIMID

At input to the exit routine, this field contains the identifier for the IMS system as
specified during system definition on the IMSCTRL macro.

FEIBTIME

Timeout interval override (in seconds). This field is used to override the system
Front-End-Switch timeout value as supplied on the COMM macro. If a value of 0 is in
this field, the system default override value is used.

FEIBPRN

At input to the exit routine, this field contains the primary resource name that was added
to the user data by ISC edit.

178 Exit Routines

The following table shows the FEIB usage.

Table 51. FEIB usage

Input message processing

Reply message processing

Front-end Back-end Intermediate Front-end Intermediate Back-end
Entry name and system system system system system system
data Type In Out In Out In Out In Out In Out In Out
FEIBMSG DS A X X X N/A N/A X X
FEIBLTRM DS CL8 X X X N/A N/A X X X
FEIBERPN DS CL8 X X N/A N/A X X
FEIBMSGN DS H X N/A N/A
FEIBNDST DS CL8 X X N/A N/A X X
FEIBUNID DS F X N/A N/A X
FEIBLDST DS CL8 N/A N/A X
FEIBULNG DS H X N/A N/A X
FEIBUSER DS CL40 X N/A N/A
FEIBISC EQU BIT X(0) X(1) X(1) N/A N/A X(1) X(1)
FEIBRPQ1 EQU BIT N/A N/A X
FEIBERP EQU BIT X N/A N/A
FEIBTMED EQU BIT X N/A N/A
FEIBIMID DS CL4 X X X N/A N/A X X
FEIBTIME DS H X N/A N/A
FEIBPRN DS CL8 X X X N/A N/A
Return code (R15) 2-New 6-New 0-Nothing N/A 6-New 8-Reply

destination destination destination
from FE from IBE from IBE

Note: X(0) = off X(1) = on

Related reference:

[‘Routing information” on page 181]

Input and output fields

Depending on the system, front-end interface block (FEIB) fields will be used for
input, which are stored by IMS, while other FEIB fields will be used for output

and stored by the Front-End Switch exit routine.

The following table show the input fields and the output fields

Chapter 3. Transaction Manager exit routines

179

180

Exit Routines

Table 52. FES data flow for input message processing

System

Input

Output

Front-end system

FEIBLTRM (CLS)

FEIBERPM (CL8)

FEIBMSG (A)

FEIBMSGN (H)

FEIBUNID (F)

FEIBNDST (CL8)

FEIBIMID (CL4)

FEIBUSER (CL40)

FEIBPRN (CL8)

FEIBULNG (H)

FEIBTIME (H)

Return codes:

0 - nothing

12 - Table error

Flags: FEIBISC

Flags: FEIBERP, FEIBTMED

Intermediate system

FEIBMSG (A)

FEIBNDST (CL8)

FEIBIMID (CL4)

FEIBERPN (CLS)

FEIBLTRM (CL8)

FEIBPRN (CLS8)

Return codes:

6 - New destination from IBE

12 - Table error

Flags: FEIBISC

Flags: N/A

Back-end system

FEIBMSG (A)

FEIBIMID (CLA4)

FEIBLTRM (CLS8)

FEIBPRN (CL8)

Return codes:

0 - Nothing

Flags: FEIBISC

Flags: N/A

The following table shows the input and output fields for reply message

processing.

Table 53. FES data flow for reply message processing

System

Input

Output

Front-end system

FEIBMSG (A)

FEIBLTRM (CL8)

FEIBIMID (CL4)

FEIBUNID (F)

FEIBLTRM (CL8)

FEIBLDST (CL8)

FEIBNDST (CL8)
FEIBULNG (H)
FEIBERPN (CLS)

Return codes:

0 - nothing

8 - Reply

12 - Table error
Flags: FEIBRPQ1
FEIBNDST (CL8)

Flags: FEIBISC
Intermediate system FEIBMSG (A)

FEIBIMID (CL4)
FEIBLTRM (CLS8)

FEIBERPN (CL8)

Return codes:

0 - Nothing

6 - New destination from IBE
12 - Table error
Flags: FEIBISC Flags: N/A
Back-end system N/A N/A

Routing information
You are responsible for the format and the contents of the routing information.

If the value of the FEIBULNG field is greater than zero, IMS adds the user data on
an input message from an FE device to the input message between the old
destination and the message text.Both MFS edit and Basic Edit can remove
characters that have a value less than X'41'. As part of the routing information, the
following is required:

* A unique identifier assigned to the input message from the originating terminal.
This identifier must be sent with the user data to identify the reply to this
message when it comes back to IMS. For messages being processed by either
MEFS or Basic Edit, the identifier value must be translated into unpacked format.

* The LTERM name of the originating terminal. IMS does not have access to the
control blocks of the originating terminal when the reply to a switched message
arrives. Therefore the exit routine must add the LTERM name of the originating
terminal to the user data. This LTERM name is to be rerouted with the reply
from the back-end system and must not be removed or changed by any
intermediate system.

When the exit routine gains control from IMS on input of the reply message, it
obtains the LTERM name and the unique identifier from the message text and

stores them into the corresponding fields of the FEIB. IMS then determines the

Chapter 3. Transaction Manager exit routines 181

182

original input terminal and checks if timeout has already occurred. The destination
of the message is determined by the result of this check.

If the timer has not expired, one of the following occurs:
* The message is sent directly to the original input terminal.

* The message is queued to a local transaction, which can cause a reply message
to be sent to the originating LTERM using the I/O PCB.

Be aware that the TPCBTSYM field of the I/O (TPPCB) might contain the ISC
LTERM name when the application does an ISRT reply back to the originating
LTERM. This choice is decided by the exit routine.

If the timer has expired, the message is no longer expected at the original terminal,
because it is already released from response mode. The message is then sent to the
destination defined by the exit routine for late reply messages.

Besides required routing information, the routine can store additional information,
such as a unique system identification throughout all connected systems.

Application programs processing FES messages must understand that the input
message contains routing information which must be rerouted to the front-end
system. The routing information in all the involved systems must be in agreement.
The routing information in the input message must be included in the output
message.

Message expansion

Exit Routines

Combine the original message with the routine information and store it in the new
buffer.

Because the DC buffer is not large enough to store the routing information, use the
FEIBUSER field of the FEIB. The length of the user data must be stored in the
FEIBULNG field of the FEIB. The maximum length of user data is 40 bytes. IMS
combines the original message with the user data and stores both into the new
buffer. The new destination (FEIBNDST) is also stored into the new buffer.

The following figure shows the original and new buffer formats.

Original buffer format
LL| zz | Old_Dest | blank | Msg_Text

Buffer format with RC=6
LL| ZZ | New_Dest | blank | Old_Dest | blank | Msg Text

Buffer format with RC=2
LL| ZZ | New_Dest | blank | Old_Dest | blank | User Data | Msg Text

Figure 10. Old and new buffer formats

New_Dest
New destination from FEIBNDST field

User_Data
User data from FEIBUSER field

The old destination and the new destination are both followed by a blank. You
must lay out the routing information. After IMS has expanded the message, the
routing information should precede the original message text.

Timer facility
The timer facility controls each input message that is routine to a back-end system.

When the specified time interval expires without a reply to the input message, the
input terminal is released from response mode. The timeout value is specified
during system definition on the COMM macro and can be overwritten by the
FESTIM parameter on the IMS procedure, or by specifying a non-zero value in the
FEIBTIME field during front-end processing of an input message. To make use of
the timer, set the FEIBTMED flag in the FEIB. In addition, you must specify the
action which has to be taken at timeout. This can be done by specifying either the
name of a program that is to be given control (FEIBERPN field) or a message that
is to be issued (FEIBMSGN field). The message number must be included in the
user message table DFSCMTUQ. See DFSCMTUO for more information. The
program can send a message to the input terminal using the I/O PCB. This
response releases the terminal from response mode. The message text is directly
sent to the input terminal if you define a message number.

If the reply comes in time, the timer request for the input message is canceled. No
timeout can occur if you do not set the FEIBTMED indicator. If no reply is
received, the terminal is not released from response mode.

If the input terminal is in an active conversation status, the timer facility will not
be activated.

When switching to a local Fast Path transaction, the timeout facility can be
deferred until Fast Path sync-point by setting the FEIBDELT flag.

FEIBRPQ1 indicator

The FEIBRPQ1 indicator must be set in the FEIB for a reply message to be sent
directly to the original input terminal.

This indicator can only be set when a reply message has a return code of 8 in
register 15. If you do not set it, you have to store a new destination into the
FEIBNDST field of the FEIB. IMS checks the indicator and sends the message,
depending on the values in the FEIB.

If you change the destination code of an input message to a local transaction which
sends a message across a link, the timer supervisor includes the elapsed time for
the local transaction.

If the destination of a reply message is changed to a local transaction, the original
input terminal is released from the timer supervisor before the local transaction is
scheduled. If the transaction is not available or if the application program does not
send an output message to the original input terminal, the terminal is not released
from response mode.

Example of the front-end switch exit routine (DFSFEBJ0)

A front-end switch exit routine allows you to keep the front-end system in
response mode while it is waiting for the reply from the intermediate system for
messages entered in a back-end system.

Chapter 3. Transaction Manager exit routines 183

184

Exit Routines

Subsections:

* [“Routing scheme”|

+ [“Description of sample exit routine” on page 185|

Routing scheme

In the following figure, three IMS systems are connected by ISC links. SFIMS2 acts
as the front-end system, and LAIMS1 and NYIMSI can act as a back-end system.
In addition, LAIMS1 can act as an intermediate system.

SFIMS2 LAIMSH1 NYIMS1
[) (] (]
LOC-code LOC-code LOC-code
with) ISC R with) ISC R with
2,3) " 4,5) 0,1,6-9,
IMS 3 IMS 2 IMS 1

Figure 11. Routing scheme of front-end switch exit routine example

In each system, you can enter a transaction FESTX1. This is not defined as a
transaction in the system, but is a special transaction code used by the sample exit
routine that identifies this message as an FES transaction. The exit routine in the
front-end system (SFIMS2) changes the transaction code to FESTX2, which must be
defined in the system as a valid transaction.

There is an eight-digit location code (LOC-code) in the user data. The decision as
to which system processes the transaction depends on this LOC-code. If the
transaction is to be processed in another system, the exit routine changes the
destination to LAIMS1 so that either LAIMS1 or NYIMSI processes the transaction
FESTX2.

The following location codes are defined:

System Location code (LOC-code)
SFIMS2 20000000 - 39999999
LAIMS1 40000000 - 59999999
NYIMS1

00000000 - 19999999
60000000 - 99999999

The system that processes the transaction FESTX2 generates an output message
containing the transaction code FESTX3 in front of the message text. As with FESTX1,
this is not defined as a transaction in the system, but is a special transaction code
used by the sample exit routine that identifies this message as a reply to an FES
transaction. This output message has to be routed to the front-end system where
the corresponding FESTX1 transaction was entered which is now the target system
for the reply message.

The following tables show routing information for each system.

Table 54. SFIMS2 tables

SFIMS?2 - table I

SFIMS?2 - table II'

1st digit of LOC-code

Next
system

Target
system

Next
system

©C OO U O

LAIMS1
LAIMS1
LAIMS1
LAIMS1
LAIMS1
LAIMS1
LAIMS1
LAIMS1

LAIMS1
NYIMS1

LAIMS1
LAIMS1

Note: ' This table is used only if it is an intermediate system

Table 55. LAIMS1 tables

LAIMST1 - table I LAIMSI1 - table II
1st digit of LOC-code
Next Target Next
system system system
0 NYIMS1 SFIMS2 SFIMS2
1 NYIMS1 NYIMS1 NYIMS1
2 SFIMS2
3 SFIMS2
6 NYIMS1
7 NYIMS1
8 NYIMS1
9 NYIMS1
Table 56. NYIMS1 tables
NYIMST1 - table I NYIMS1 - table II*
1st digit of LOC-code
Next Target Next
system system system
2 LAIMS1 LAIMS1 LAIMS1
3 LAIMS1 SFIMS2 LAIMS1
4 LAIMS1
5 LAIMS1

Note: ' This table is used only if it is an intermediate system

Description of sample exit routine

The example in this section is based on the assumption that ISCEDIT is used for
editing the messages going across ISC links. ISCEDIT removes the first data field

of the message text on output to an ISC destination.

Chapter 3. Transaction Manager exit routines

185

The exit routine is designed to run in each of the three systems without modifying
the code. It has to process different tables with routing information for each
system, and has to know the name of the owning system. This is obtained from the
FEIBIMID field. In this example:

* NYIMS1=IMS1' back-end system
* LAIMS1=TMS2' back-end or intermediate system
* SFIMS2="IMS3' front-end system

The exit routine in each system must analyze the transaction code and the
LOC-code in the message text:

¢ If the transaction code is FESTX1, and
— Change the transaction code to FESTX2.
— If the LOC-code is in table I:
- Change the transaction code to FESTX2.

- Change the destination to the corresponding destination from table I
(FEIBNDST).

- Set the FEIBTMED indicator on, if appropriate.
- Set the FEIBERP indicator on, if appropriate.
- Set the transaction code for ERP (FEIBERPN), if appropriate.

- Store the following routing information into the user area of the FEIB
(FEIBUSER) as shown in the following figure.
The FEIBUNID value is unpacked into zoned format to prevent MFS Edit

FE-ID ‘ FEIBLTRM ‘ FEIBUNID

‘ \—> Unique identifier from FEIB

» LTERM name of input terminal from FEIB
» Name of front-end system (input)
or target system (reply)

Figure 12. User area of FEIB (FEIBUSER)

or Basic Edit from removing characters less than X'41".
- Set the user data length field to 24 (FIEBULNG).
- Set the RC=02 in register 15.
— Else Set RC=00 in register 15.
* If the transaction code is FESTX2 and the LOC—code is in table I:

— Change the destination to the corresponding destination from table I
(FEIBNDST).

— Set the RC=06 in register 15.
* If the transaction code is FESTX3:
— Analyze the routing information.

— If the name of the target system in the routing information (FE-ID) is not the
name of the owning system:

- Change the destination to the corresponding destination from table II
(FEIBNDST).

- Set the RC=06 in register 15.
— If the name of the target system is not table II, set RC=12 in register 15.

— If the name of the target system in the routing information is the name of the
owning:

186 Exit Routines

- Get the LTERM name from the routing information and store it into the
interface block (FEIBLTRM).

- Get a unique identifier from the routing information, change it from zoned
to packed format, and store it in the interface block (FEIBUNID).

- Set the transaction code for a message which comes too late (FEIBLDST).
- Set the FEIBRPQIl-indicator.

- Set the user data length field to 31 (FIEBULNG).

- Set the RC=08 in register 15.

« In all other cases no action is taken by the exit routine."

Global Physical Terminal (Input) edit routine (DFSGPIXO0)

The Global Physical Terminal (Input) edit routine (DFSGPIXO) is called before the
IMS Basic Edit routine and eliminates the overhead associated with defining the
edit routine for each terminal through system definition.

This topic contains Product-sensitive Programming Interface information.

This topic describes the Global Physical Terminal Input edit routine. This routine is
a user-written edit routine that performs the same functions as the Physical
Terminal Input edit routine (DFSPIXTO).

Subsections:
+ [“About this routine”|

* [“Communicating with IMS” on page 189

About this routine

If you write and include the routine in your system, IMS calls it for all terminals
that do not have the Physical Terminal Input edit routine specified. By using the
Global Physical Terminal Input edit routine instead of the Physical Terminal Input
edit routine, you can eliminate the overhead associated with defining the edit
routine for each terminal through system definition.

If the input message is processed by MFS, the Global Physical Terminal (Input) edit
routine is not called. This edit routine is only called when a non-LU 6.2 message is
entered from a terminal; it is not called when the message is inserted by a
program-to-program switch.

Message segments are passed one at a time to the Global Physical Terminal (Input)
edit routine, and the edit routine can handle them in one of the following ways:

* Accept the segment and release it for further editing by the IMS Basic Edit
routine.

* Modify the segment (for example, change the transaction code or reformat the
message text) and release it for further editing by the IMS Basic edit routine.
Examples of segment modifications that can be made are:

- changing the transaction code.
— reformatting the message text.

* You can make any required modifications within the original segment because
IMS has not yet performed destination or security checking.

1. In an IMS back-end system, which processes TX2, an application program generates the output message with TX3.

Chapter 3. Transaction Manager exit routines 187

188

Exit Routines

* You cannot alter the length of this segment.

* Cancel the segment.

* Cancel the message and request that IMS send a corresponding message to the

terminal operator.

* Cancel the message and request that IMS send a specific message from the User
Message Table to the terminal operator.

The following table shows the attributes of the Global Physical Terminal (Input)

Edit exit routine.

Table 57. Global physical terminal input edit routine attributes

Attribute

Description

IMS environments

DB/DC, DCCTL.

Naming convention

You must name this exit routine DFSGPIXO0.

Including the routine

No special steps are required to include this routine.

IMS callable services

To use IMS callable services with this routine, you must do the
following:

* Issue initialization call (DFSCSIIO) to obtain the callable service
token and a parameter list in which to build the function-specific
parameter list for the desired callable service.

* Use the ECB found in register 9 for the DFSCSIIO call.
* Link DFSCSIO0 with your user exit.

Sample routine
location

No sample exit routine is provided. Instead, use the
IMS.ADFSSMPL distribution library (member name DFSPIXTO).

The sample is identical to the Physical Terminal (Input) edit routine
(DFSPIXTO), because the two edit routines perform the same
function.

This routine performs the following functions:

* Scans the input message segment for an expected
format—TESTEXIT.

* Generates return codes (XX) based on the input request
(TESTEXIT,XX).

* Verifies the user message number (YYY) if specified
(TESTEXIT,XX,YYY).

* Replaces TESTEXIT with ERROR if return code or message
number is invalid and passes the segment to IMS (return code 0).

Note: The sample exit routine is not reentrant. You must assemble
it with PARM='OBJECT,NODECK,NORENT" and link-edit it with
PARM='NCAL,LET,LIST XREF,SIZE(880K,64k)".

Bypassing Basic Edit

If the IMS application program supplies DFS.EDTN in the MOD name parameter
for the output message, IMS bypasses the Basic Edit routine, except for transaction
code and password validation.

Related Reading: For further information see “MFS Bypass for 3270 or SLU 2” in
the “Application Programming Using MFS” in IMS Version 13 Application

Programming APIs.

The Physical Terminal Input edit routine must position the transaction code, and
optionally the password, if the terminal is not operating in conversational or preset
destination mode. The edit routine should detect errors and have IMS send a
message to the terminal operator if the routine finds any errors.

IMS maintains a flag in the CTB (bit CTB6TRNI in the CTBFLAGS® field) to indicate
when 3270 MFS bypass, nonconversational, no preset destination and first segment
exist on input to the Global Physical Terminal (Input) edit routine. This flag
notifies the Global Physical Terminal Input edit routine that it can add a minimum
of one byte and a maximum of 18 bytes to the front of the message segment for a
transaction code and optional password. The minimum of one byte to be added to
the front of the message segment consists of a one-byte transaction code. If
NOBLANK is not specified at system definition, a minimum of two bytes is added
to the front of the message segment, consisting of a one-byte transaction code and
one blank, which is necessary as a separator. To add a transaction code and
optional password, the exit routine can put a return code of 16 in register 15 and
set register 1 to point to an LLZZ field followed by the data to be added. You
cannot, however, alter the length of the segment passed in to the exit. If you need
to insert a transaction or destination code, and an optional password, set register 1
to the address of a static data field that consists of a halfword length (LL), a
halfword of binary zeroes (ZZ), and zero to 14 bytes of user data.

Specifying the routine

You must assemble and bind the edit routine into the IMS execution time library or
user library concatenated in front of the IMS execution time library.

IMS calls the Global Physical Terminal Input edit routine (DFSGPIX0) for each
terminal that does not have EDIT=(,YES) coded on the TERMINAL macro or ETO
logon descriptor.

For terminals that do have EDIT=(,YES) specified on the TERMINAL macro or
ETO logon descriptor, IMS calls the Physical Terminal Input edit routine
(DFSPIXTO0).

Related Reading:

* For more information on the TERMINAL macro, see IMS Version 13 System
Definition.

Communicating with IMS
IMS uses the entry and exit registers to communicate with the exit routine.
Contents of registers on entry

On entry to the edit routine, all registers must be saved using the save area
provided. The registers contain the following:

Chapter 3. Transaction Manager exit routines 189

190

Exit Routines

Register Content

1 Address of the input message segment buffer. IMS editing has not been
performed. The first two bytes of the buffer contain the segment length
(binary length includes the 4-byte overhead). The third and fourth bytes of
the buffer are binary zeros. The message text begins in the fifth byte of the
buffer.

If the device was defined with MFS support, but this message is not being
processed by MFS, the first segment of the message has backspace error
correction performed before entry to this edit routine. If escape (**) was
entered by the terminal operator, the first two data bytes have been changed
to binary zeros.

7 Address of CTB for the physical terminal from which the message was
entered.

9 Address of CLB for the physical terminal from which the message was
entered.

13 Address of save area. The exit routine must not change the first three words.

14 Return address to IMS.

15 Entry point of edit routine.

The edit routine you supply can edit the message segment in the buffer pointed to
by register 1.

You can reduce the length of the message segment to any size by replacing the
length in the buffer with the appropriate value. The length field must appear in the
same place at exit as at entry, and bytes 3 and 4 must not be changed.

Contents of registers on exit

Before returning to IMS, the edit routine must restore all registers except for
register 1, which contains a message number if register 15 contains a value of 12;
otherwise register 1 is ignored. Register 15 contains one of the following return
codes:

Return codes Meaning

00 Segment is processed normally.

04 Segment is canceled.

08 Message is canceled and the terminal operator is notified.

12 Message is canceled, and the message identified by register 1 is sent to the
terminal.

16 Insert the transaction code and optional password following the LLZZ
pointed to by register 1. This return code is only valid for 3270 MFS bypass
terminals.

When the entering terminal is not a 3270 MFS bypass terminal, and the
physical terminal input exit gives a return code of 16, IMS issues an error
message, and the transaction code is not inserted in the message.

Any other return code causes the message to be canceled and the terminal operator
to be notified.

Related reference:

[“Routine binding restrictions” on page 9|

[“IMS callable services” on page 13|
[“Physical Terminal (Input) edit routine (DESPIXT0)” on page 261

Greeting Messages exit routine (DFSGMSGO)

The Greeting Messages exit routine (DFSGMSGO) allows you to tailor how IMS
handles messages issued during the logon and signon process.

The exit also allows you to:

* Change the MFS Message Output Description (MOD) name without changing
the message. (However, if the terminal is the Master Terminal and is master
formatted, the request to change the MOD name is ignored.)

* Change the message without changing the MOD name.
* Send a null message (no data) for formatting purposes.

Subsections:
* [“About this routine”|

* [“Communicating with IMS” on page 192|

About this routine

IMS builds a message based on the calling module's request. This message, plus
information useful to the exit and a buffer for returning an alternate message built
by the exit, are passed as input to the exit. The exit indicates by a return code if
the message built by IMS should be used, or if an alternate message has been
returned and should be used. The message length returned must be at least five
bytes (four bytes for the length field and a one-byte message).

The following table shows the attributes of the Greeting Messages exit routine.

Table 58. Greeting messages exit routine attributes

Attribute

Description

IMS environments

DB/DC, DCCTL.

Naming convention

You must name this exit routine DFSGMSGO.

Including the routine

You can assemble the sample exit routine, or one that you write (using the standard
IMS macro and copy files), and include it in an authorized library in the JOBLIB,
STEPLIB, or LINKLIST library concatenated in front of the IMS.SDFSRESL. If the
Greeting Messages exit routine is included, IMS automatically loads it each time IMS is
initialized.

IMS callable services

To use IMS callable services with this routine, you must do the following;:

* Issue an initialization call (DFSCSIIO) to obtain the callable service token and a
parameter list in which to build the function-specific parameter list for the desired
callable service.

* Use the ECB found at offset 0 of the Greeting Messages Exit parameter list.
* Link DFSCSI00 with your user exit.

Sample routine location

IMS.ADFSSMPL (member name DFSGMSGO).

The sample exit uses the DFS3649 and DFS2467 messages built by IMS, but it converts
the DFS3650 message to a single-segment message. You can also write your own exit
routine.

Chapter 3. Transaction Manager exit routines 191

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of the [“IMS standard user exit parameter list” on page 5| (Version 1)
13 Save area address

14 Return address to IMS

15 Entry point address of exit routine

The following table shows the greeting messages exit parameters. The address of
this parameter list is in the standard exit parameter list field SXPLFSPL.

Table 59. Greeting messages exit parameter list

Offset Length Description

+0 4 ECB address.

+4 4 SCD address.

+8 4 Pointer to User Table.

+12 4 Address of parameter list for this exit. For additional

details on the content and the format of these
parameters, see the prolog in the sample routine.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for
register 15, which contains the return code. The returns codes are as follows:

Register Contents

15 One of the following return codes:

Return code
Meaning

X'00' Use the message built by IMS.
X'04' Use the message in the alternate buffer (single segment).
X'08' Use the message in the alternate buffer (multiple segment).

X'0C' Send a null message so that the device is formatted with the MFS
format specified by IMS or returned by the exit.

X'10' Bypass password verification. Valid only for message DFS3656A.

Related reference:

[‘Routine binding restrictions” on page 9|

“IMS callable services” on page 13|
pag

Related information:

192 Exit Routines

[[DFS3656A (Messages and Codes)|

IMS Adapter for REXX exit routine (DFSREXXU)

The IMS Adapter for REXX exit routine (DFSREXXU) gets control before the
environment is built, just before an exec is executed, and just after it ends.

You can use DFSREXXU with the IMS adapter for the REXX environment. It is
optional and can be omitted from the bind step. The user exit routine is used more
for an installation than for a specific execution. The user exit routine is provided
by the IMS adapter for REXX and is called only when a new REXX transaction is
scheduled and ends. The user exit is not associated with the standard REXX exits
provided by TSO. A sample user exit routine (DFSREXXU) is shipped with IMS (in
source code only). For the latest version of the DFSREXXU source code, see the
IMS.SDFSSRC distribution library; member name is DFSREXXU.

The routine has the ability to do the following:

* Opverride the exec name to be executed. This name defaults to the IMS program
name.

* Choose not to execute any exec and have the IMS adapter for REXX return to
IMS.

It is the exit routine's responsibility to do any required processing such as
issuing a GU (Get-Unique) call if the region type is MPP.

* Issue DL/I calls using the AIB interface as part of its logic in determining what
exec to execute.

* Set REXX variables (through IRXEXCOM) before the exec is started. The
variables are then available to the exec.

* Extract REXX variables (through IRXEXCOM) after the exec ends. These
variables were set earlier by the exec or exit routine.

* Change the initial default IMSRXTRC tracing level.

The user exit routine must conform to all of the restrictions that apply to IMS
application programs.

Subsections
* |“About this routine”|

* [“Parameters” on page 194

About this routine

The following table shows the attributes of the IMS Adapter for REXX exit routine.
Table 60. IMS Adapter for REXX exit routine attributes

Attribute Description
IMS environments DB/DC, DBCTL, DCCTL.

Naming convention = The user exit routine must be named DFSREXXO.

Binding You must bind the user exit with DFSREXX1 during installation of
the IMS adapter for REXX.

Including the routine No special steps are required to include this routine.

IMS callable services This exit routine is not eligible to use IMS callable services.

Chapter 3. Transaction Manager exit routines 193

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.msgs/msgs/dfs3656a.htm#dfs3656a

Table 60. IMS Adapter for REXX exit routine attributes (continued)

Attribute Description
Sample routine IMS.SDFSSRC distribution library.
location

The routine must be written to be reentrant (RENT), AMODE 31, RMODE ANY.
Parameters

Entry parameters are:

RO Pointer to REXX Environment Block as described in z/OS TSO/E REXX
Reference.

R1 Pointer to parameter list
R13 Pointer to save area

R14 Return address

R15 Entry point address

On exit, all registers except R15 must be restored. Only the parameters can be
altered. The content of R15 is ignored on exit.

The parameter list contains a list of pointers to the parameters. All character data is
left justified and padded with blanks, if necessary. Omitted fields are set to blanks.
All fields are read-only unless otherwise specified. The following table shows the
user exit parameter list format.

Table 61. User exit parameter list

Name

Offset Data type Length Description
(decimal) (decimal)

Function

0

Pointer 4 Pointer to one word function type. Func=0 on Setup Call,
Func=1 on Entry Call, Func=2 on Exit Call.

EXECParm

Pointer 4 Pointer to 128-byte area containing parameters that are
passed to the REXX interpreter. The format of the area is
a halfword length field that contains the length of the
text string that follows. The first blank separated word or
the entire string if no blanks are present is the exec name
to execute. On entry this field is set to the program name
followed by one blank and the transaction code if
available. The exit can rebuild this field when called on
entry to alter the exec name or parameters that are
passed. The length field can be set to zero indicating no
exec is to be executed.

PgmName

Pointer 4 Pointer to 8-byte area containing the Program name that
was scheduled.

TranCode

12

Pointer 4 Pointer to 8-byte area containing the Transaction Code
that was scheduled, if available (MPP,BMP,IFP).

User_ID

16

Pointer 4 Pointer to 8-byte area containing the current user ID for
the scheduled program, if available (MPP,BMPIFP).

194 Exit Routines

Table 61. User exit parameter list (continued)

Name Offset Data type
(decimal)

Length
(decimal)

Description

IMSRXTRC 20

Pointer

4

Pointer to one word IMSRXTRC level. This value defaults
to 1 at exec startup but can be overridden by the user
exit. See IMS Version 13 Application Programming for more
information on values. Note that the level field here is a
FULLWORD and not EBCDIC.

UserArea 24

Pointer

Pointer to 8-byte (word aligned) user area that is passed
on entry and is preserved verbatim on exit. This field is
set to binary zeros whenever the REXX environment is
built in the dependent region. The user area can be
altered by the user exit and is provided as an anchor.

RetCode 28

Pointer

Pointer to one word return code. The return code must
be set to zero.

UseridInd 32

Pointer

Pointer to one-byte User ID Indicator that describes the
content of the user ID field. The indicator can be: U-User
ID, L-LTERM, P-PSBname, or O-Other.

Note:

1. When on a Setup call the next four parameters are not available; their addresses are 0.

For each user exit parameter described in the preceding table, the following table
shows the corresponding DFSREXXU parameter.

Table 62. DFSREXXU parameter list

User exit parameter

DFSREXXU parameter

Function pointer

FUNCTION_CODE DS F FUNC_SETUP EQU 0
FUNC_BEFORE EQU 1 FUNC_AFTER EQU 2

EXECParm pointer

EXEC_PARM DS 0CL128 EXEC_PARM_LL DS H
EXEC_PARM_TXT DS CL126

PgmName pointer

PGM_NAME DS CL8

TranCode pointer

TRAN_CODE DS CL8

User_ID pointer

USER_ID DS CL8

IMSRXTRC pointer

IMSRXTRC_LEV DS F

UserArea pointer

USER_AREA DS 2F

RetCode pointer

RETURN_CODE DS F

Useridind pointer

USERID_IND DS F

Related concepts:

[# [z/0S: Using the environment block]

Initialization exit routine (DFSINTXO0)

Use the Initialization exit routine (DFSINTXO0) to create two user data areas that
can be used by some of your installation's exit routines.

This topic contains Product-sensitive Programming Interface information.

IMS calls the Initialization exit routine during initialization as a common
Transaction Manager exit routine. Certain IMS user exit routines are called before

Chapter 3. Transaction Manager exit routines 195

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.ikja300/ebuse.htm

196

Exit Routines

the DFSINTXO user exit routine is called. These user exit routines are: DFSPSEQO,
DFSHINTO, DESZINTO, RASE, DFSAOE00, and DFSQSPCO0/DFSSSSPO.
* General user data area
The address of this user data area is passed as part of the IMS standard user exit
interface. Any exit routine that uses this interface will have access to this data
area (if it exists). The address of this data area is also passed as part of the
nonstandard interface to the following exit routines:
Command Authorization exit routine (DFSCCMDO0)
Greeting Messages exit routine (DFSGMSGO)
Logoff exit routine (DFSLGFXO0)
Logon exit routine (DFSLGNXO0)
Destination Creation exit routine (DFSINSXO0)
Signoff exit routine (DFSSGFXO0)
Signon exit routine (DFSSGNXO0)
The general user data area is not available to some IMS user exit routines when
they are called during IMS initialization, because the DFSINTXO0 user exit routine
is called during IMS initialization after these user exit routines are called. The
user data area is not available to the following exit routines when they are called
during IMS initialization: DFSAOE00, DFSPSE00, DFSHINTO, DFSZINTO, RASE,
and DFSQSPC0/DFSSSSPO.

Other TM exit routines can address the user data table through SCDINTXP.
Refer to the topic for each exit routine for information on the routine's parameter
list.

* LU 6.2 user data area
The LU 6.2 user data area is not passed as part of the IMS standard user exit
interface. It is passed as part the nonstandard interface to the LU 6.2 Edit exit
routine.

You can also use this exit routine to alter the setting for the Extended Terminal
Option (ETO) feature. You can leave ETO activated or override the setting to
indicate that ETO is not required, even if you previously requested it.

This exit is also used to enable password verification. The IMS default processing
is to disable password verification. With password verification, users signing on to
VTAM terminals that change their password are prompted to verify the new
password.

Subsections:
* |“About this routine”|

+ [“Communicating with IMS” on page 197

About this routine

The Initialization exit routine is optional. If the exit is included in the system, IMS
calls it before IMS loads the ETO descriptors and any exit routine that requires
ETO to be active. If ETO is required for an exit routine, the documentation for the
routine states that requirement. If the Initialization exit routine returns a return
code indicating that ETO should not be made available, the ETO exit routines and
descriptors will not be loaded. If this exit is not included in the system, IMS
proceeds using the setting for the ETO= keyword that is specified as an EXEC
parameter or in the DFESPBxx of IMS.PROCLIB.

The initialization exit routine can optionally enable password verification and an
alternate ETO ALOT=0 option by setting the appropriate flags in the exit routine
parameter list.

Attributes of the routine

The following table shows the attributes of the Initialization exit routine.

Table 63. Initialization exit routine attributes

Attribute Description
IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSINTXO0.

Binding This exit routine must be reentrant.

Including the routine If you want IMS to call the Initialization exit routine, include it in
an authorized library in the JOBLIB, STEPLIB, or LINKLIST library
concatenated in front of the IMS.SDFSRESL. If the exit routine is
included, IMS automatically loads it and calls it at initialization.

IMS callable services DFSINTXO0 can use callable storage services. To use IMS callable
services with this routine, you must do the following:

* Issue an initialization call (DFSCSIIO) to obtain the callable service
token and a parameter list in which to build the function-specific
parameter list for the desired callable service.

¢ Use the ECB found at offset X'0' of the IMS Initialization exit
parameter list.

» Link DFSCSI00 with your user exit.

Sample routine IMS.ADFSSMPL (member name DFSINTXO).
location

About user data areas

The user data areas can be used to provide access to user tables that can then be
referenced by any user exit that has access to the data area. An example of the use
of general user data area is for ETO. You can use the general user data area to
define access limits for terminals or users by total number, department, time of
day, or other criteria. You can also use the data area to define LTERM-to-user or
user-to-terminal relationships to aid your installation logon and signon exit routine
processes.

For APPC, you can use the LU6.2 user data area along with the LU6.2 User Edit
exit routine to emulate MFS. To do so, the LU6.2 user data area is built by
DEFSINTXO to hold a list of LTERM and MOD names available to the I/O PCB. IMS
then passes the address of the LU6.2 user data area LU 6.2 Edit exit routine for
input and output messages from a LU6.2 destination. The LU 6.2 Edit exit routine
can use the list of LTERM names to redirect output to a non-LU6.2 destination, or
the list of MOD names to format a message.

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the exit routine.

Contents of registers on entry

Chapter 3. Transaction Manager exit routines 197

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

R1 Address of the [“IMS standard user exit parameter list” on page 5| (Version 1)
R13 Save area address

R14 Return address to IMS

R15 Entry point address of exit routine

The following table shows the IMS initialization exit parameters. The address of
this parameter list is in the IMS standard user exit parameter list field SXPLFSPL.
The Initialization exit routine parameter list is mapped by macro DFSINTXP.

Table 64. IMS initialization exit parameter list

Offset Length Description
+0 4 CLB address
+4 4 SCD address
+8 4 0, as an indication that no user table exists
+12 4 0, as an indication that no LU 6.2 user table exists
+16 1 Input/Output Flag Byte
X'80'
0 No password verification (default).
To enable password verification, set
this flag to 1.
X'40'
0 Default ETO ALOT=0 process
X'10'
0 Static ISC resource sharing (default)
X'08'
0 ETO LU type 3 is not allowed to
log on as a SLU1 (default)
X'04'

0 ETO LU type 3 is not allowed to
log on as a 3270 printer (default)

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for
register 15, which contains the return code.

The address of the general user data area created by this exit routine can be
returned in the Initialization exit parameter list at +8. If zero, no general user data
area was created. If non-zero, IMS saves the address in the SCD control block at
SCDINTXP.

198 Exit Routines

The address of the LU 6.2 user table created by this exit routine can be returned in
the Initialization exit parameter list at +12. If zero, no LU 6.2 user table was

created.
Register Contents
15 One of the following return codes:

Return code Meaning

0 Initialization of IMS continues.

4 Regardless of ETO specification, ETO terminal support is not
required. Message DFS3648 is sent to the system console.
Setting RC=4 resets both ETO function and logon user data

support.

8 Regardless of ETO specification, ETO terminal support is not
required but logon user data is supported for static terminals.
Message DFS3648 is sent to the system console. Setting RC=8

resets ETO function only.

Table 65. IMS initialization exit parameter list

Offset Length Description
+16 1 Input/Output Flag Byte
X'80'

X'40'

X'20'

X'10'

X'08'

X'04'

No password verification (default)

Enable password verification

Default ETO ALOT=0 process
Alternate ETO ALOT=0 process

Default VGR for ISC
Disable VGR for ISC

Normal static ISC resource sharing
(default)

Disable resource sharing for static
ISC terminals in the IMSplex

ETO LU type 3 is not allowed to
log on as a SLU1 (default)

ETO LU lipe 3 is allowed to log on
as a SLULL

ETO LU type 3 is not allowed to
log on as a 3270 printer (default)

ETO LU type 3 is allowed to log on
as a 3270 printe

Chapter 3. Transaction Manager exit routines 199

Table 65. IMS initialization exit parameter list (continued)

Offset Length Description

Notes:
1. ETO LU type 3 is allowed to log on either as SLU1 or 3270 printer, but not both.

Related tasks:
[# [Using the MOD name and LTERM interface (Communications and|

|£ ;onnections)|

Related reference:

[“LU 6.2 Edit exit routine (DFSLUEE0)” on page 215|
[“IMS callable services” on page 13|

[“IMS standard user exit parameter list” on page 5|

Input Message Field edit routine (DFSMEQ000)

Use the Input Message Field edit routine (DFSMEQ00) to perform common editing
functions and simplify programming.

This topic contains Product-sensitive Programming Interface information. \

This topic describes how to write an Input Message Field edit routine. Because this
routine is usually used with the Input Message Segment edit routine, you'll find
references to both routines throughout the following paragraphs.

Subsections:
* [“About this routine”]

* [“Communicating with IMS” on page 201

About this routine

MFS application designers should consider the use of Input Message Field and
Segment edit routines to perform common editing functions such as numeric
validation or conversion of blanks to numeric zeros. Field and Segment edit
routines can simplify programming by using standard field edits to perform
functions that would otherwise have to be coded in each application program.

The following table shows the attributes of the Input Message Field Edit routine.

Table 66. Input message field edit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSMEQ00.

Binding A Field edit routine must have a CSECT name of DFSMEnnn, where nnn is a number
from 001 to 126 that corresponds with the routine number specified in the MFLD
statement.

The edit routine needs to be linked into the library specified by the USERLIB
parameter of the IMSGEN Stage 1 macro before running the IMSGEN. The default for
this parameter is IMS.SDFSRESL.

The Field edit routine can only modify the data in the field created by MFS and must
not cause any waits.

200 Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_appcad_apps_usingmodname.htm#ims_appcad_apps_usingmodname
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_appcad_apps_usingmodname.htm#ims_appcad_apps_usingmodname

Table 66. Input message

field edit routine attributes (continued)

Attribute

Description

Including the routine

No special steps are required to include this routine.

IMS callable services

To use IMS callable services with this routine, you must issue an initialization call
(DFSCSI00) to obtain the callable service token and a parameter list in which to build
the function-specific parameter list for the desired callable service.

Use the ECB found in register 9 for IMS callable services. This exit is automatically
linked to DFSCSIO0 by IMS. No additional linking is required to use IMS callable
services.

Sample routine location

IMS.SDFSSMPL (member name DFSMEQ00).

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the exit routine.

Contents of registers on entry

On entry, the edit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of parameter list.

9 Address of CLB/ECB.

13 Address of save area. The exit routine must not change the first three words.
14 Return address to IMS.

15 Entry point of edit routine.

Description of parameter list format

IMS.ADFSMAC contains a DSECT of the parameter list addressed by register 1
(use COPY MFSFLDE) as follows:

Byte Contents
0
Bit Contents
0,1 Message formatting option:
* 00 = option 1
* 01 = option 2
* 11 = option 3
2 Zero (Field edit routine)
3 Reserved
4 1 if the first 2 bytes in the field contains attribute information
5 1 if the field contains extended field attribute information
6 Reserved
7 Reserved
1 Zeros

Chapter 3. Transaction Manager exit routines 201

202

Byte Contents

2 The number of reserved extended field attribute bytes in the field. These
bytes appear immediately after the 3270 attribute bytes, if any.

3 The entry vector in binary (0 to 255).

4-7 The execute length (Iength-1) of the field as defined in the MFLD statement.

If ATTR=YES is specified, this field contains (length-3).

8-11 The field address after MFS editing (before uppercase translation and null
compression for option 1 and 2 fields). If ATTR=YES is specified, this is the
address of the first data byte after the two attribute bytes. For option 3, this
is the address of the 2-byte field length, which begins the completed option 3
field.

Contents of registers on exit

Before returning to IMS, the edit routine must restore all registers except for
register 15, which must contain one of the following return codes:

Register Contents

15 Return code value from 0 to 255

Function of the sample routine

The functions of this IMS-supplied routine are as follows:

Vector Resulting action
0 Converts blanks to zoned decimal zeros (X'F0').
1 Converts blanks to zoned decimal zeros (X'F0') and replaces non-zoned

decimal characters with a question mark (?). If ? is inserted, the routine sets a
return code of 8 and, if an attribute (ATTR) area is present, sets the
CURSOR,HI attributes.

2 Converts the binary cursor address field to zoned decimal if its length is 4
bytes. If the field is not 4 bytes, a return code of 8 is set.

>2 Sets a return code equal to the entry vector (if the vector is greater than 2).

This routine will handle option 1, 2, and 3 formats. For option 1 and 2, MFLD
FILL=NULL and an entry vector of 1 can produce undesirable results.

Related reference:
[‘Input Message Segment edit routine (DFSME127)” on page 204
[“IMS callable services” on page 13|

[‘Routine binding restrictions” on page 9|

Calling the Input Message Field edit routine

Exit Routines

Call the Input Message Field edit routine after MFS editing.

Field edit routines are given control after MFS editing (before Segment edit
routines, uppercase translation for all options, and null compression for option 1 or
2). The routine can validate or alter the data and pass a return code to MFS. MFS
maintains the highest return code of all Field edit routines for each segment and
passes that code to the Segment edit routine after all fields for that segment are
edited.

Defining edit routines

Assign routine numbers and entry vectors for the Input Message Field edit routine
in the MFSEXIT parameter in the COMM macro.

Field edit routines are defined in the MID's MFLD statements in terms of a routine
number and entry vector.

Routine numbers identify the routine to be used for this field /segment. Routine
numbers range from 000 to 127. IMS-provided routines use numbers 000 (field edit,
DFSMEQ00) and 127 (segment edit, DFSME127).

If you are using both the Field edit and Segment edit routines with your IMS
system, the Field edit routine should be assigned routine numbers that are lower
than the numbers assigned for the Segment edit routine. Therefore, the Field edit
number should be a decimal number greater than or equal to 0, and less than the
default or specified value for the Segment edit routine number parameter. The
default for the Field edit routine is 0.

An installation standard should be established regarding the assignment of routine
numbers. For example, you could assign Field edit routines numbers in ascending
sequence from 001 to 063 (and if you're using Segment edit routines as well, assign
them numbers in descending sequence from 126 to 064).

Recommendation: Assign lower numbers to field exit routines and higher number
to segment exit routines.

Entry vectors are passed to the edit routine when it is activated. Entry vector
values can range from 0 to 255. The entry vector value can be thought of as an
additional qualification of the routine to be activated. For example, routine number
025 can perform numeric validation of a field; entry vector 0 can replace leading
blanks with zeros, and entry vector 1 can perform numeric validation.

If data is entered from the terminal in lowercase, the data is in lowercase when it
is presented to the edit routine. If data in an input segment is in nongraphic form,
GRAPHIC=NO should be specified in the SEG statement to prevent null
compression and uppercase translation. A valid byte value of a binary field could
be equivalent to a null character (X'3F') or some lowercase alphanumeric (for
example, a=X'81"). In this case, GRAPHIC=NO should be specified.

Related Reading: For a description of which characters MFS considers graphic, see
the SEG statement section in IMS Version 13 System Ultilities.

Related information:

[[COMM macro statement (System Definition)|

Performance considerations

When Field and Segment edit routines are used, extra processing occurs in the IMS
control region and, if used extensively, a measurable performance cost is incurred.

These edit routines also can improve performance by reducing processing time in
the message processing region, by reducing logging and queuing time, and by
allowing field verification and correction to be accomplished without scheduling
an application program. Efficiency of these user-written routines should be a prime
concern. Because these routines execute in the IMS control region, an abend in the
edit routine causes the IMS control region to abend.

Chapter 3. Transaction Manager exit routines 203

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_ie0i2exm1002472.htm#ie0i2exm1002472

Input Message Segment edit routine (DFSME127)

204

Exit Routines

The Input Message Segment edit routine (DFSME127) can be used by MFS
application designers to perform common editing functions such as numeric
validation or conversion of blanks to numeric zeros. Field and Segment edit
routines can simplify programming by using standard field edits to perform
functions that would otherwise need to be coded in each application program.

This topic contains Product-sensitive Programming Interface information.

This topic describes how to write an Input Message Segment edit routine. Because
this routine is usually used with the Input Message Field edit routine, you will
find references to both routines throughout the following paragraphs.

Subsections:
+ [“About this routine”|

* [“Communicating with IMS”)

* [“Function of the sample routine” on page 206|

About this routine

The following table shows the attributes of the Input Message Segment edit
routine.

Table 67. Input message segment edit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSME127.

bindin
8 A Segment edit routine must have a CSECT name of DFSMEnnn,
where nnn is a number from 001 to 126 that corresponds with the
routine number specified in the SEG statement. It must be stored in
USERLIB before Stage 2 of IMS system definition is executed.

Including the routine No special steps are required to include this routine.

IMS callable services To use IMS callable services with this routine, you must issue an
initialization call (DFSCSIIO) to obtain the callable service token and
a parameter list in which to build the function-specific parameter
list for the desired callable service.

Use the ECB found in register 9 for IMS callable services. This exit
is automatically linked to DFSCSI00 by IMS. No additional linking
is required to use IMS callable services.

Sample routine IMS.ADFSSRC (member name DFSME127)
location

Communicating with IMS

IMS uses the entry registers, parameter list, and exit registers to communicate with
the edit routine.

Contents of registers on entry

On entry to the edit routine, all registers must be saved using the save area
provided. The registers contain the following:

Register Contents

0 Address of CLB.

1 Address of parameter list.

9 Address of CLB/ECB.

13 Address of save area. The edit routine must not change the first three words.
14 Return address to IMS.

15 Entry point of edit routine.

Description of parameter list format

IMS.ADFSMAC contains a DSECT of the parameter list addressed by register 1
(use COPY MFSSEGE) as follows:

Byte Contents
0
Bit Contents
0,1 Message formatting option:
00 = option 1
01 = option 2
11 = option 3
2 1 (Segment edit routine)
3
1 If this message can be routed back to the device
by specifying return code 16. This bit is set on
when the following conditions are met:

* PAGDEL=YES or OPTIONS=(...,PAGDEL,...) is
specified in the TERMINAL macro for this
device.

* The device has an output logical terminal.

If the message contains a valid operator logical

paging request, bit 3 can be set on. However,

this message is not returned to the terminal if
requested.
4-7 Reserved

1,2 Zeros

3 The entry vector is binary (0 to 255).

4-7 The maximum segment length.

8-11 The segment address.

12-15 The highest return code from the Field edits for this segment.

16-23 The next MOD name.

The Segment Edit routine can modify only the segment contents, the save area,
and the next MOD name field of the parameter list. The MOD name field name
should be changed when the edit routine returns the input message to the device.
If the segment is option 1 or 2, the routine can set the segment length field to any
value from 0 to the maximum segment length. The Segment Edit routine must not
cause any waits.

Chapter 3. Transaction Manager exit routines 205

206

Exit Routines

Contents of registers on exit

On return to IMS, all registers must be restored except for register 15, which must
contain one of the following return codes:

Return code Meaning

0 Continue processing.

4 Cancel this segment.

8 Cancel this message (IMS sends the message DFS298 INPUT MESSAGE
CANCELED BY MFS EXIT).

12 Cancel this message and return to the user the message whose number is in
register 1.

16 Return this message to the input device. This code is allowed only when bit

3 of byte 0 in the parameter list is set on.

All segments of a multisegment message are edited before the message is returned
to the device (return code 16); if return code 8 or 12 is specified for a segment
other than the final one, the message is canceled immediately and the remaining
segments are not edited.

In IMS releases with ETO, the Input Message Segment edit routine cannot use
return code 16 during the ETO signon process. This is due to the lack of a valid
output LTERM.

Function of the sample routine

The functions of this routine are based on the entry vector and the highest Field
edit routine return code (FLD-RC) for the segment. This routine only performs
modifications of messages using formatting options 1 and 2. The functions are
shown in the following table.

Table 68. Input message segment edit routine functions based on the entry vector.

Input
vector FLD-RC Resulting function action SEG-RC
0 <4 None. 0
>=4 Places EBCDIC return code in last 3 bytes of the 0
segment.
1 <4 None. 0
>=4 Places EBCDIC return code in last 3 bytes of the 0
segment.
<8 None. 4
2 <4 None. 0
=4 <8 Places EBCDIC return code in last 3 bytes of the 0
segment.
>=8 None. 8
3 <4 None. 0
=4 <8 Places EBCDIC return code in last 3 bytes of the
segment.
>=8 None. 6
4 ANY Sets FLD-RC as user message number. 12

Table 68. Input message segment edit routine functions based on the entry
vector (continued).

Input
vector FLD-RC Resulting function action SEG-RC

Notes:

1. To continue processing

To cancel this segment

To cancel this message

To send this message back to the entering terminal

o~ wDN

To cancel this message and send the user message, whose number is in register 1, back
to the entering terminal

Related reference:
[“Input Message Field edit routine (DFSME000)” on page 200|
[‘Routine binding restrictions” on page 9|

[“IMS callable services” on page 13|

Calling the Input Message Segment edit routine

Segment edit routines are given control when all the MFS editing and editing by
Field edit routines is complete for a message (before uppercase translation, but
after null compression for messages using option 1 and 2, and after field sort for
option 3 messages).

Based on the return code received from Field or Segment edit routine, the Segment
edit routine can:

* Continue processing.
* Modity the segment.
* Cancel the segment.

* Cancel the message and IMS will notify the operator using the message DFS298
INPUT MESSAGE CANCELED BY MFS EXIT.

* Return a predefined message to the terminal.
* Return the input message to the terminal.

Restriction: The following applies only to IMS releases with ETO. During the ETO
dynamic terminal signon process, the Input Message Segment edit routine cannot
use return code 16 to return the input message to the terminal. This is because a
valid output LTERM has not yet been established.

Defining edit routines

Assign a routine number and an entry vector for the Input Message Segment edit
routine in the MFSEXIT parameter in the COMM macro.

Segment edit routines are defined in the MID's SEG statements. Each routine is
defined in terms of a routine number and an entry vector.

Routine numbers identify the routine to be used for this field or segment. Routine
numbers range from 000 to 127. IMS-provided routines use numbers 000 (Field
edit, DFSMEQ00) and 127 (Segment edit, DFSME127).

If you are using both the Field edit and Segment edit routines with your IMS
system, the Field edit routine should be assigned routine numbers lower than the

Chapter 3. Transaction Manager exit routines 207

numbers assigned for the Segment edit routine. Therefore, the Field exit number
should be a decimal number greater than or equal to 0, and less than the default or
specified value for the Segment exit routine number parameter. The default for the
Field edit routine is 0.

An installation standard should be established regarding the assignment of routine
numbers. For example, you could assign Segment edit routines numbers in
descending sequence from 126 to 064 (and if you're using Field edit routines as
well, assign them numbers in ascending sequence from 001 to 063).

Recommendation: Assign lower numbers to Field edit routines and higher
numbers to Segment edit routines.

Entry vectors are passed to the edit routine when it is activated. Entry vector
values can range from 0 to 255. The entry vector value can be thought of as an
additional qualification of the routine to be activated. For example, routine number
025 can perform numeric validation of a field; entry vector 0 can replace leading
blanks with zeros, and entry vector 1 can perform numeric validation.

If data is entered from the terminal in lowercase, the data is in lowercase when it
is presented to the edit routine. If data in an input segment is in nongraphic form,
GRAPHIC=NO should be specified in the SEG statement to prevent null
compression and uppercase translation. A valid byte value of a binary field could
be a null character (X'3F') or some lowercase alphanumeric (for example, a=X'81").
In this case, GRAPHIC=NO should be specified.

Related reference:

[#* [SEG statement (System Utilities)|
Related information:

[[COMM macro statement (System Definition)|

Performance considerations

Efficiency of the Input Message Segment edit routine should be a prime concern.

When Field and Segment edit routines are used, extra processing occurs in the IMS
control region and, if used extensively, a measurable performance cost is incurred.
At the same time, these edit routines can improve performance by reducing
processing time in the message processing region, by reducing logging and
queuing time, and by allowing field verification and correction to be accomplished
without scheduling an application program.

Logoff exit routine (DFSLGFXO0)

208

Exit Routines

The Logoff exit routine handles all non-MSC, non-LU 6.2 VTAM nodes with which
IMS communicates.

This topic contains Product-sensitive Programming Interface information.

This topic describes how you can use the Logoff exit routine to perform processing
that complements the Logon exit routine (DFSLGNXO0).

Subsections:

+ |“About this routine” on page 209

+ [“Communicating with IMS” on page 210)

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_mfslangsegstmt.htm#ims_mfslangsegstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_ie0i2exm1002472.htm#ie0i2exm1002472

About this routine

IMS calls the Logoff exit routine for all non-MSC, non-LU 6.2 VTAM nodes with
which IMS communicates and for all master terminal operator (MTO) logoffs, even
if it did not call the Logon exit routine for the MTO at logon. (Keep this in mind if
your installation maintains a logon count.) All attempts to log off of ACF/VTAM
terminals cause IMS to call this exit routine.

Recommendation: Although the Logon exit routine and the Logoff exit routine are
optional, if you include one, you should also include the other to perform any

necessary cleanup operations.

The following table shows the attributes of the Logoff exit routine.

Table 69. Logoff exit routine attributes

Attribute

Description

IMS environments

DB/DC, DCCTL.

Naming convention

You must name this exit routine DFSLGFXO0.

Including the routine

If you want IMS to call this exit routine, include it in an authorized library in the
JOBLIB, STEPLIB, or LINKLIST library concatenated in front of the IMS.SDFSRESL. If
the Logoff exit routine is included, IMS automatically loads it each time IMS is
initialized.

IMS callable services

To use callable services with this routine, you must do the following:

* Issue an initialization call (DFSCSI00) to obtain the callable service token and a
parameter list in which to build the function-specific parameter list for the desired
callable service.

» Use the ECB found at offset 0 of the Logoff user exit parameter list.

* Link DFSCSI00 with your user exit.

Sample routine location

IMS.ADFSSMPL (member name DFSLGEXO0).

Extended Recovery Facility (XRF) considerations

Each time IMS calls the Logoff exit routine, the exit routine receives information on
the XRF status of IMS. IMS calls the exit routine if XRF tracking fails.

Resetting the significant status

You can use this exit to reset the significant status for a terminal in one of the
following states:

Conversational
Exclusive

Test

Preset

MFS test
Full-function response
Fast Path response

Note: Test and preset states are nonrecoverable, so IMS resets the significant status
automatically.

Chapter 3. Transaction Manager exit routines 209

210

Exit Routines

A parameter passed to the exit routine indicates the status of the terminal or ETO
user at signoff. All users except ETO terminals can reset the status in the output
parameters.

For conversation mode, IMS performs the equivalent of an /EXIT command for the
conversation.

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

R1 Address of the [“IMS standard user exit parameter list” on page 5| (Version 1)
R13 Save area address

R14 Return address to IMS

R15 Entry point address of exit routine

The following table lists the logoff exit parameters. The address of this parameter
list is in the standard exit parameter list field SXPLFSPL.

Table 70. Logoff exit parameter list

Offset Length Description

+0 4 Current ECB address

+4 4 SCD address

+8 4 Address of User Table

+12 4 Address of the STATUS_IN and STATUS_OUT

vectors. The status vectors are mapped by the
DFSSTCHK macro. For the contents of the
STATUS_IN vector see the following table.

Contents of STATUS_IN

The input status vector is a two-byte field that indicates the significant status of a
terminal when the exit routine is called. The second byte of the field is reserved.
The first byte of the field contains a value that indicates the significant status as
follows:

Value Description

X'80' Conversation

X'40' Exclusive

X20' Test

X'10' Preset

X'08' MEFS test

X'04' Full-function response

Value Description

X'02' Fast Path response

Contents of STATUS_OUT

The output status vector is a two-byte field that indicates changes to the terminal's
significant status made by the exit routine. IMS uses the contents of STATUS_OUT
as an indicator to exit a conversation and reset significant status. The default for
this field is zeros, indicating that no significant status is reset.

The second byte of the field is reserved. The first byte of the field contains a value
that indicates the significant status as follows:

Value Description

X'80' Exit conversation

X'40' Reset exclusive

X'20' Reset test

X'10' Reset preset

X'08' Reset MFS test

X'04' Reset full-function response
X'02' Reset Fast Path response

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for
register 15. The content of registers on exit is as follows:

Register Contents

15 Ignored by IMS in all cases.

Related reference:
[‘Logon exit routine (DFSLGNX0)"]

[“Routine binding restrictions” on page 9|

[“IMS standard user exit parameter list” on page 5|

Logon exit routine (DFSLGNXO0)

The Logon exit routine (DFSLGNX0) handles all non-MSC, non-LU 6.2 VTAM
nodes (excluding MTOs at IMS initialization) with which IMS communicates. The
Logon exit routine enables you to control the way logons are processed.

This topic contains Product-sensitive Programming Interface information.

Subsections:

+ [“About this routine” on page 212|

+ [“Communicating with IMS” on page 213|

Chapter 3. Transaction Manager exit routines 211

About this routine

The exit routine must handle all non-MSC, non-LU 6.2 VTAM nodes (excluding
MTOs at IMS initialization) with which IMS communicates. All attempts to log on
to ACF/VTAM terminals if ETO is active cause IMS to call this exit routine.

Depending on your installation's needs, you can write the Logon exit routine to:

Select the logon descriptor that you want IMS to reference when building the
terminal control block structure for the logical unit (LU) that is logging on.
Create or modify the user data that you want IMS to pass to the Signon exit
routine (DFSSGNXO0). The user data can be entered as autologon data, with the
/OPNDST command, or with the VTAM internal commands INITSELF or
INITOTHER. Alternatively, the Logon exit routine can build the user data.

Allow or disallow a logon attempt based on the maximum number of sessions,
or manage logons according to the time of day, certain terminal names, or other
criteria that you specify.

Specify or override the autologoff (ALOT), autosignoff (ASOT), screen size, or
model values.

Override the AUTOSIGN and NOAUTSGN keywords for static terminals.
Override the default status recovery mode for the following terminals:

Static terminals

SLUP dynamic terminals
FINANCE dynamic terminals
ISC dynamic terminals

The Logon exit routine is optional.

Recommendation: If you include this exit routine, you should also include the
Logoff exit routine (DFSLGFXO0) to perform any necessary cleanup operations.

If you do not supply the Logon exit routine, logons proceed as usual with the
chosen logon descriptor.

The following table shows the attributes of the Logon exit routine.

Table 71. Logon exit routine attributes

Attribute

Description

IMS environments

DB/DC, DCCTL.

Naming convention

You must name this exit routine DFSLGNXO0.

Including the routine

If you want IMS to call the Logon exit routine, include it in an authorized library in
the JOBLIB, STEPLIB, or LINKLIST library concatenated in front of the IMS.SDFSRESL.
If the exit routine is included, IMS automatically loads it each time IMS is initialized if
ETO=Y (after the Initialization exit routine, DFSINTXO0, changed the ETO= keyword).

212 Exit Routines

Table 71. Logon exit routine attributes (continued)

Attribute

Description

IMS callable services

To use callable services with this routine, you must do the following;:

» Issue an initialization call (DFSCSIIO) to obtain the callable service token and a
parameter list in which to build the function-specific parameter list for the desired
callable service.

¢ Use the current address ECB found at offset 0 for the DFSCSIIO call.
» Link DFSCSI00 with your user exit.

Restriction: Global terminal or user resource information is not available to user exit
DFSLGNXO0. Callable services will only return local information for DFSLGNXO.

Sample routine location

IMS.ADFSSMPL

Extended Recovery Facility (XRF) considerations

During XRF tracking mode, IMS calls the Logon exit routine in the alternate
system when the terminal control blocks are created for an XRF type 1 session with
an ETO terminal. If processing is on an XRF alternate system, IMS ignores the
contents of register 15 on exit. The exit routine is called during XRF alternate
tracking only for the logon of a class 1 terminal.

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

Register Contents

R1 Address of the [“IMS standard user exit parameter list” on page 5| (Version 1)
R13 Save area address

R14 Return address to IMS

R15 Entry point address of exit routine

The following table lists the user logon parameters. The mapping for this
parameter list is DSECT LGNXPARM in DFSLGNXP macro. The address of this
parameter list is in the standard exit parameter list field SXPLFSPL.

Table 72. User logon exit parameter list

Offset Length Description

+0 4 Current ECB address.
+4 4 SCD address.

+8 4 Pointer to User Table.

Chapter 3. Transaction Manager exit routines 213

214

Table 72. User logon exit parameter list (continued)

Offset Length Description

+12 4 Pointer to the parameter list received from
ACF/VTAM when application logon or SCIP bind
exit routines are scheduled. If processing is on an
XRF system, this value is zero.

+16 4 Pointer to multi-word parameter list, mapped by
DSECT LGNXPARM in DFSLGNXP macro.

+20 4 CLB pointer for the node trying to logon. If the node
does not yet exist, this value is zero. The node
always exists on an XRF system.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for
register 15, which contains one of the following return codes:

Register Contents

15 One of the following return codes:

Return code Meaning
0 LOGON accepted
4 LOGON rejected

Related reference:
[“Logoff exit routine (DFSLGEX0)” on page 208
[“Routine binding restrictions” on page 9|

[“IMS callable services” on page 13|

[‘IMS standard user exit parameter list” on page 5|

[# [2/0S: LOGON exif]

Selecting a logon descriptor

Exit Routines

If the terminal control block structure already exists for the terminal that is logging
on, no logon descriptor is needed, and IMS uses the existing terminal control block
structure.

If no terminal control block structure exists for the terminal, you can write the
Logon exit routine to select the logon descriptor, select a logon descriptor by using
the LOGOND= keyword, or let IMS select the logon descriptor using the LU name
or default descriptor.

The following figure shows the search order IMS uses to select the logon
descriptor. IMS selects the first valid logon descriptor that it finds and uses that
logon descriptor to build the terminal control block structure. If IMS cannot find a
valid logon descriptor, including the default logon descriptor, it rejects the logon
request.

http://www-01.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.istprg0/snasess.htm

Logon LOGOND LU name Default
exit routine keyword ' descriptor ' descriptor

Figure 13. Logon descriptor search order

If the exit routine supplies the name of a valid logon descriptor, IMS uses the
logon descriptor associated with that name to build the terminal control block
structure. If the Logon exit routine does not choose a logon descriptor, or if the exit
routine is not included in the system, IMS uses the logon descriptor requested on
the LOGOND= keyword (entering the keyword and descriptor as user data when
you log on). If neither the exit routine nor the LOGOND= keyword identifies a
valid logon descriptor, IMS searches for a logon descriptor with the same name as
the logical unit (LU). If IMS cannot locate a logon descriptor with this name, IMS
uses the default logon descriptor table shown in the following table to select the
logon descriptor.

Table 73. Default logon descriptor table

CINIT LUTYPE CINIT TS Default logon descriptor
X'06' Not applicable DFSLU61

X'04' Not applicable DFSSLU4

X'02' Not applicable DFSSLU2

X1 Not applicable DFSSLU1

X'00' X'04' DFSSLUP

X'00' X'03' DFS3270

IMS cannot generate DFSFIN or DFSNTO logon descriptors because of conflicting
CINIT information. The wrong default logon descriptors are chosen for the
FINANCE and NTO terminal types unless you do all of the following:

* Write the Logon exit routine so that it always supplies the appropriate logon
descriptor name.
¢ Rename DFSFIN to DFSSLUP if no SLU P terminals exist.

¢ Rename DFSNTO to DFSSLU1 if no SLU1 terminals exist.

If you do not want dynamic logons for a certain LU type, delete the default logon
descriptor for that type from the system, and be sure that the exit routine does not
attempt to choose it.

Regardless of how the logon descriptor is selected, the descriptor must agree with
the LUTYPE and TS fields (in the MODEENT macro of the VTAM mode table), or
IMS rejects the logon request.

LU 6.2 Edit exit routine (DFSLUEEO)

The LU 6.2 Edit exit routine (DFSLUEEOQ) enables you to edit input and output LU
6.2 messages for IMS-managed LU 6.2 conversations. It is also called if a message
is inserted from an alternate PCB destined for an LU 6.2 destination.

This topic describes the LU 6.2 Edit exit routine. This exit routine is for use with

standard IMS and modified IMS application programs. It is not called for CPI
Communications driven application programs.

Chapter 3. Transaction Manager exit routines 215

Subsections:
* [“About this routine”]

+ [“Communicating with IMS” on page 217

About this routine

You can write the LU 6.2 Edit exit routine to:

* Change the APPC local LU name of an asynchronous LU 6.2 outbound
conversation.

* Change the synchronization level of an asynchronous LU 6.2 conversation.
* View the contents of a message segment and continue processing.

* Change the contents of a message segment and continue processing.

* Discard a message segment.

* Perform a DEALLOCATE_ABEND of the LU 6.2 conversation.

For input messages, IMS calls the LU 6.2 Edit exit routine for each message
segment before the message segment is inserted to the IMS message queue. The
exit routine can edit message segments as necessary before the application program
processes the input message.

For output messages, IMS calls the LU 6.2 Edit exit routine for each message
segment before the message segment is sent to the LU 6.2 program. The exit
routine can intercept the data sent by the application program and edit it for the
particular destination.

The following table shows the attributes of the LU 6.2 Edit exit routine.

Table 74. LU 6.2 edit exit routine attributes

Attribute

Description

IMS environments

DB/DC, DCCTL.

Naming convention

You must name this exit routine DFSLUEEQ.

Binding

The LU 6.2 Edit exit routine must be reentrant.

The IMS-provided default exit routine specifies a return code of zero. If you write your
own exit routine, replace the IMS default routine by binding the one you wrote into
the IMS.SDFSRESL or including it in an authorized library in the JOBLIB, STEPLIB, or
LINKLIB library concatenated in front of IMS.SDFSRESL.

Including the routine

No special steps are required to include this routine.

IMS callable services

This exit routine is not eligible to use IMS callable services.

Sample routine location

IMS.ADFSSRC (member name DFSLUEEQ).

This sample is a default exit routine, which IMS always calls for LU 6.2 messages
processed under the DL/I call interface.

216 Exit Routines

Changing a message segment

The LU 6.2 Edit exit routine can change the message length and contents, provided
that it resets the message length field to reflect the new length. The exit routine can
increase the message length by up to 256 bytes, but the total length (length field,
flag field, and message) cannot exceed 32,767 bytes. If the message exceeds this

limit, IMS truncates the message and issues DFS1967 to the master terminal
operator (MTO) to indicate a message buffer overlay. The exit routine can reduce
the message length without restriction.

Changing a local LU name

The LU 6.2 Edit exit routine can change the local LU name. Word 12 points to the
local LU name that is used to allocate outbound conversations. The LU 6.2 Edit
exit routine can be used to change that name. The local LU name can be changed
only for outbound conversations.

Network-qualified names

Network-qualified LU names can be up to 17 bytes long.

MOD name support for APPC

An LU 6.2 application program can send the LTERM and the MOD name in the
first segment of the message. IMS saves the LTERM and MOD name in the I/O
PCB.

At entry, IMS provides the address of the MOD name in the first segment of the
message sent to the LU 6.2 Edit exit routine (DFSLUEEQ). DFSLUEEOQ checks the
contents of the first message segment. If IMS finds the MOD name, it uses the
MOD name to format the output message. If IMS finds the LTERM, it can use the
LTERM to change the destination of the output.

Use the Initialization exit routine (DFSINTXO0) to create the user table. This exit
routine must pass the address of the user table to IMS, and IMS passes the address
to DFSLUEEQ.

Communicating with IMS

IMS uses the entry and exit registers and a parameter list to communicate with the
exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Chapter 3. Transaction Manager exit routines 217

218

Exit Routines

Register Contents

1 Address of parameter list. The parameter list contains the following
addresses.
Bytes Content
00-03 Address of a flag field indicating what type of message caused

IMS to call the exit routine. This field contains one of the
following flags (fixed length, right justified, padded with

Z€eros):
0 Input message
4 Output message
04-07 Address of the area containing either the input or output

message segment length, message flag, and message segment
(variable length, left justified). The value in the length field
includes the length field, flag field, and message.

08-11 Address of transaction code (fixed length, left justified, padded
with blanks).

12-15 Address of LU name (fixed length, left justified, padded with
blanks).

16-19 Address of user ID (fixed length, left justified, padded with
blanks).

20-23 Address of return code, which is an exit parameter.

24-27 Address of LTERM (fixed length, left justified, padded with
blanks).

28-31 Address of MOD name (fixed length, left justified, padded with
blanks).

32-35 Address of user table, which is an entry parameter.

36-39 Address of message flag (if bit zero of the message flag equals

1, it is the first segment).

40-43 Address of user ID indicator byte, which describes the content
of the user ID field and can have a value of one of the
following: U (user ID), L (LTERM), P (PSBname), or O (Other).

44-47 For asynchronous outbound conversations the exit can change
the address of the synchronization level (one byte). The
synchronization level can be N (None), C (Confirm), or S
(Syncpoint). For asynchronous conversations the exit can
change the synchronization level. Note that only
synchronization level N and C are supported for asynchronous
conversations.

48-52 Address of the local LU name (8 bytes) or the base LU if no
local LU name has been used. For asynchronous outbound
conversations, the exit can change it to another LU defined for

this IMS.
13 Address of save area. The exit routine must not change the first three words.
14 Return address to IMS.
15 Entry point of exit routine.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers. The registers
contain the following:

Register

Contents

1

Address of parameter list (provided at entry). The parameter list contains the
following addresses.

Bytes Content
00-03 Used on entry only.
04-07 Address of the area containing the message segment length,

message flag, and message segment (variable length, left
justified). The value in the length field is the total length and
includes the length field, flag field, and message.

08-19 Used on entry only.

20-23 Address of the area for one of the following return codes from
the exit routine. (IMS treats any other value as 0.)
0 IMS performs the default action: continue processing.
2 For asynchronous conversations, IMS must discard

the message if it is not deliverable.

4 Discard this message segment.
8 DEALLOCATE_ABEND the conversation.

24-27 Address of LTERM (exit parameter).

28-31 Address of MOD name (entry and exit parameter).

32-35 Address of User Table (entry parameter).

36-39 Address of message flag (Bit 0 = 1 then first segment) (entry
parameter).

40-43 Address of user ID indicator.

44-47 For asynchronous outbound conversations the exit can change

the address of the synchronization level (one byte). The
synchronization level can be N (None), C (Confirm), or S
(Syncpoint). For asynchronous conversations the exit can
change the synchronization level. Note that only
synchronization level N and C are supported for asynchronous
conversations.

48-52 Address of the local LU name (8 bytes) or the base LU if no
local LU name has been used. For asynchronous outbound
conversations, the exit can change it to another LU defined for
this IMS.

Data format of parameters

The following table shows the data type, length, and format of the fields to which
the parameter list (addressed by register 1) points.

Table 75. Format of parameters

Bytes Data address Parameter use Data type Data length Data format'
00-03 Address of flag Fixed length, right Input 4 bytes X'flag'
justified, padded
with zeros
04-07 Address of message Variable length, left ~ Input and output n bytes’ LLZZmessage
segment length, justified

message flag, and
message segment

Chapter 3. Transaction Manager exit routines 219

Table 75. Format of parameters (continued)

Bytes Data address Parameter use Data type Data length Data format'
08-11 Address of transaction Fixed length, left Input 8 bytes codebbbb
code justified, padded
with blanks
12-15 Address of LU name Fixed length, left Input 17 bytes namebbbb
justified, padded
with blanks
16-19 Address of user ID Fixed length, left Input 8 bytes user IDbb
justified, padded
with blanks
20-23 Address of return Fixed length, right Output 4 bytes X'code'
code justified, padded
with zeros
24-27 Address of LTERM Fixed length, right Output 8 bytes ltermname
justified, padded
with zeros
28-31 Address of MOD Fixed length, Input and output 8 bytes modname
name left-justified, padded
with blanks
32-35 Address of user table Variable length Output ? bytes® usertablename
36-39 Address of message Fixed length Output 1 byte X'code'
flag
40-43 Address of user ID Fixed length Input 1 byte indicator
indicator
44-47 Address of Fixed length Input and output 1 byte APPC
synchronization level synchronization
level
48-52 Address of the local Fixed length Input and output 8 bytes APPC local LU
LU name name
Note:

'ZZ = flag field; LL = length field; bb = blanks; words in italics represent data values. The value in the length field LL
includes the length field, flag field, and message.

“The exit routine can increase the message length by up to 256 bytes, but the total length cannot exceed 32,767 bytes.

’The length of this user table is determined by the user.

Related tasks:

[#* [Qualifying network LU names (Communications and Connections)

Related reference:

[‘Routine binding restrictions” on page 9|

Message Control/Error exit routine (DFSCMUXO0)

You can use the Message Control/Error exit routine (DFSCMUXO) to control
transactions, responses, and message switches that are in error.

This topic contains Product-sensitive Programming Interface information.

220 Exit Routines

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_appcad_qualif_netnames.htm#ims_appcad_qualif_netnames

This topic describes the Message Control/Error exit routine. The exit routine can
request that IMS handle the messages that are in error, depending on the condition
that led IMS to call the exit routine. The /DEQUEUE command supports the
MSNAME keyword so that this control is extended to messages queued on
Multiple Systems Coupling (MSC) links.

Subsections:

[“About this routine”|

[“Communicating with IMS” on page 223

About this routine

You can write the Message Control/Error exit routine to:

Perform processing at MSC link start and link termination time that is unique to
your installation, such as obtaining and freeing additional storage, and activating
and deactivating a program.

Reroute a message to a different local or remote transaction, local or remote
LTERM, or an LU 6.2 destination. The target LTERM must be an existing
LTERM; IMS does not dynamically create the LTERM, even if the Extended
Terminal Option (ETO) feature is active. For more information about the ETO
feature, see [Overview of the Extended Terminal Option (Communications and|

Eonnections !}

Discard a message and send an informational message to the current master
terminal operator (MTO) or input terminal to indicate that the message is
discarded.

Suppress the /DEQUEUE command, or suppress the command and send an
informational message to the entering to indicate that the command is
suppressed.

Process late or redundant response messages that are sent in response to a
synchronous program switch request. A late response message is any message
that is sent after the original request timed out. A redundant response message
is any message that is sent after the request receives the first response. The
default action for a late or redundant response message is to dequeue it. You can
write a DFSCMUXO exit routine to route late or redundant response messages to
a logical terminal or an OTMA destination instead.

A sample exit routine is available from the IMS library. The sample exit routine is
the default routine. IMS calls the sample exit routine unless you replace it with
your own version. The sample exit routine includes code that supports the
following keywords on the /DEQUEUE command:

Iterm
node
msname

luname plus tpname

The default action for this exit routine is to proceed with the /DEQUEUE
command.

The following table shows the attributes of the Message Control/Error exit routine.

Table 76. Message control/error exit routine attributes

Attribute

Description

IMS environments

DB/DC, DCCTL.

Chapter 3. Transaction Manager exit routines 221

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_eto_overview.htm#ims_eto_overview
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_eto_overview.htm#ims_eto_overview

Table 76. Message control/error exit routine attributes (continued)

Attribute

Description

Naming convention

You must name this exit routine DFSCMUXO0.

Binding

This exit routine must be reentrant.

The sample exit routine is a default routine. If you write your own exit routine, you
must bind it with the IMS control region SDFSRESL.

IMS callable services

This exit routine cannot use callable services.

Sample routine location

IMS.SDFSSMPL (member name DFSCMUXO0).

The sample routine provided is compatible with the MSC error handling and
/DEQUEUE command processing that exists for prior releases of IMS. You can ensure
compatibility by including this sample exit routine logic in your customized version.

The sample exit routine prolog contains additional usage information.

The MSNB DSECT is located in IMS.SDFSSMPL (member name MSNB).

222 Exit Routines

Calling the routine

IMS calls the Message Control/Error exit routine and sets an entry flag in the
interface block as a result of one of the following:

e Link start.

A RSTART LINK command is entered to start an MSC link or when the MSC
link is started by the partner system (MSC environment only).

¢ Link termination.

This exit routine is called at link termination time mainly when a PSTOP link
command is entered from IMS, or the link is stopped by the partner IMS, for all
access methods of MSC. Most errors (such as, invalid data, queue error, or access
method) in MSC do not cause the link to be terminated.

For MSC VTAM, the exit routine is also called in the following cases:
— CLSDST/TERMSESS complete
— Lost term error
— Request canceled by CLSDST
— Error during start
— Clean up or Notify
— Z-net or cancel
* Send error.
— z/0S cross-system coupling facility send failed.

— An invalid data block (send error) is detected during a transmission (MSC
environment only). The sender must handle the message that is in error. You
can write the exit routine to check if the link is down or stopped at this time.
DFS2140 with reason code 2146 indicates a send error.

— An LU 6.2 session failed while sending an output message to an LU 6.2
program. The exit routine can only reroute or discard the message. The
default action is to discard the message.

— Asend to an LU 6.2 program is rejected with a deallocate or with a send
error. The exit routine can only ask IMS to reroute or discard the message.
The default action is to discard the message.

Restriction: When the exit routine discards a message from an LU 6.2
conversation because a send error occurred, the exit routine must not send an
informational message to the originating LU 6.2 application. The informational
message can be rejected for the same reason that the original message was
rejected.

If a send error occurs while sending a reply from an IMS local conversational
transaction or a Fast Path transaction to an LU 6.2 program, this exit routine is
not called. If the reply is from a remote transaction or a local nonconversational
transaction, this exit routine is called.

* Receive error

An input message error (receive error) is detected by the receiver of a message
(MSC environment only). The following messages indicate a receive error:
DFS064, DFS065, DFS076, DFS1959E, DFS2125, DFS2126, DFS2127, DFS2128,
DFS2129, DFS2130, DFS2131, DFS2132, DFS2133, DFS2134, DFS2137, DFS2141,
DFS2143, DFS2163, DFS2164, DFS2165, DFS2167, DFS2174, DFS2175, DFS2176,
and DFS3470.

* A /DEQUEUE command with the specified Ilterm, node, msname, luname plus tpname
and tmember name plus tpipe name keyword is entered. IMS calls the exit routine
before processing each message on the queue.

Communicating with IMS

IMS uses the entry and exit registers, and the MSNB interface control block to
communicate with the exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers in the provided save area. The
registers contain the following information:

Register Contents

1 Address of Message Control/Error exit interface block, MSNB.

13 Address of save area. The exit routine must not change the first 3 words.
14 Return address to IMS.

15 Entry point of exit routine.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers. The contents of
the interface block pointed to by register 1 can be different.

Related reference:

[“Routine binding restrictions” on page 9|

Rerouting messages

Given certain conditions, the Message Control/Error exit routine enables you to
reroute transactions, responses, and message switches that are in error.

The Message Control/Error exit routine enables you to reroute transactions,
responses, and message switches that are in error. When you reroute a message to
a different destination, that destination must be a local or remote transaction, a
local or remote LTERM, an LU 6.2 destination, or OTMA tmember and tpipename.
The new destination must be capable of processing the message.

Chapter 3. Transaction Manager exit routines 223

224

Exit Routines

Restriction: You cannot reroute a message to a CPI-C driven application program.

An LU 6.2 destination is the LU 6.2 application program and is always defined
with the LU name, plus the TP name.

A message that is rerouted to a transaction (conversational or nonconversational)
can include the interface block if your exit routine sets the MSX2QBK bit in the
MSXFLG2 field of the MSNB interface block. If this bit is on, a new message (with
the interface block included) is built and enqueued to the new destination. If this
bit is off, the original message is enqueued.

The format of the message depends on the message type and the new destination
type as shown in the following table. Each destination type is discussed in the
topic following the figure.

Table 77. Rerouting messages to new destinations

Message format (if

Message type New destination MSX20QBK is turned on)
1. Conversational Conversational transaction ~ SPA + interface block +
message

2. Conversational Nonconversational Interface block + unpacked
transaction SPA + message

3. Nonconversational (but not Nonconversational Interface block + message

message switch) transaction

4. Message switch Nonconversational Interface block + message
transaction

5. Message switch LTERM Original message

6. All types Luname, tpname

7. OTMA Transaction, lterm, luname + Interface block + message if
tpname, or OTMA member the new destination is
name + tpipe name transaction or lterm, the

message format rules for
message types 1 through 5
are applicable.

Recommendation: If a message must be rerouted, reroute it to a local
nonconversational transaction to avoid further error. This nonconversational
transaction is a special-purpose error processing transaction and can process all
messages that are rerouted to it.

Attention: During the rerouting process, the original message is dequeued first,
and then the newly built message is enqueued to the new destination. If a system
failure occurs between the dequeue and enqueue processing, the message can be

lost.

Subsections:

+ [“Rerouting to a conversational transaction” on page 225|

+ [“Rerouting to a nonconversational transaction” on page 225|
* |“Rerouting to an LTERM” on page 226

Rerouting to a conversational transaction

When a conversational message is rerouted to another conversational transaction,
the scratchpad area (SPA) is the first segment, and the interface block is the next
segment (if your exit routine sets the MSX2QBK bit). If you reroute a
conversational transaction to a different conversational transaction, make sure that
both transactions have the same SPA size.

Rerouting to a nonconversational transaction

When the new destination is a nonconversational transaction, the interface block is
the first segment of the rerouted message (if your exit routine sets the MSX2QBK
bit).

If the message is conversational, the segment following the interface block is the
unpacked SPA and should be treated as a data segment by the new destination's
application program. If the message is conversational or is in response mode (or
both), it is the user's responsibility to end the conversation and take the input
terminal out of response mode. One of the following can be done to end the
conversation or take the terminal out of response mode:

* Enter the /EXIT command from the input terminal, if the keyboard is not locked.

* If the input terminal is a static terminal, from the MTO or system console of the
input system, enter:

/DISPLAY CONVERSATION HELD NODE nodename
or
/DISPLAY CONVERSATION BUSY NODE nodename

(to determine the conversation ID)
— /STOP NODE nodename
— /EXIT CONVERSATION conversation id NODE nodename
— /START NODE nodename
(if appropriate)
These commands can also be issued from an AOI program.

* If the input terminal was dynamically created using the Extended Terminal
Option (ETO) feature, from the MTO or system console of the input system,
enter:

/DISPLAY CONVERSATION HELD USER username or
/DISPLAY CONVERSATION BUSY USER username

(to determine the conversation ID)
— /STOP USER username
— /EXIT CONVERSATION conversation id USER username
— /START USER username
(if appropriate)
These commands can be issued from an AOI program.

Related Reading: For more information on these commands, see IMS Version 13
Commands, Volume 1: IMS Commands A-M.

Chapter 3. Transaction Manager exit routines 225

226

Rerouting to an LTERM

When the new destination for a message is an LTERM and a message is rerouted
from one physical terminal type to another, IMS rejects the message and issues an
error message (such as DFS2078) if the new destination cannot handle the data.

Related Reading: For more information, see IMS Version 13 Messages and Codes,
Volume 1: DFS Messages.

Related reference:
[“Message Control/Error Exit Interface Block (MSNB)”|

Message Control/Error Exit Interface Block (MSNB)

Exit Routines

The interface block for the Message Control/Error exit routine contains all of the
information about the message, including contents of key fields as they appear on
entry and exit. The exit fields are used to return information to IMS.

The entry flag (MSNFLG1) indicates the reason the exit routine is called, and the
exit flag (MSXFLG1) determines what action will be performed when control is
returned to IMS. MSNBSEG1 points to the first segment of the message. If the
segment is a SPA, IMS unpacks it before passing control to the exit routine. The
exit routine can place any information that it needs into the user work area
(MSNBUSRA); IMS does not disturb the contents of this work area.

The Message Control/Error exit routine can only modify seven fields: MSNBRTPG,
MSNBRTPN, MSNBDEST, MSNBRINF, MSNBUSRA, MSXFLG1, and MSXFLG2.
All other fields are read-only. If the exit routine modifies MSNBDEST, it must
modify MSNBRINE. If the exit routine modifies MSNBRTPG and MSNBRTPN, it
must modify MSNBRINE In addition, the exit routine can modify MSXFLG?2 if the
exit routine modifies MSNBDEST and MSNBRINF, or MSNBRTPG, MSNBRTPN
and MSNBDEST.

Subsections:

* [“Contents of interface block on entry”|

* [“Contents of interface block on exit” on page 228|

+ [“Logging the interface block” on page 230|

Contents of interface block on entry

The following table shows the contents of key fields in the Message Control/Error
exit interface block as they appear on entry.

Table 78. Key fields of interface block on entry

Byte Field name Contents
xXc MSNFLG1 Entry Flag
Meaning
X'80' MSC link start
X'40' MSC link termination
X'20' Send error detected
X'10' Receive error detected
X'08' /DEQUEUE command entered
X'04’ /DEQUEUE command called CONUO before exit
X'02' DFS message send error detected
X’01" Late response message to a synchronous program switch request
XD' MSNFLG2 Entry Flag
Meaning
X'80' Message prefix error detected
X'40' Invalid data block detected
X'20' LU 6.2 session failed or send action was rejected
X'04' z/OS cross-system coupling facility send action failed
X'E' MSNFLG3 Entry Flag
Meaning
X'80' DEQUEUE NODE command entered
X'40' DEQUEUE LTERM command entered
X'20' DEQUEUE MSNAME command entered
X'10' DEQUEUE LUNAME TPNAME command entered
X'08' DEQUEUE TMEMBER TPIPE name entered
XF MSNFLG4 Entry Flag
Meaning
X'80' Message is a transaction
X'40' Message is a message switch
X'20' Message is a response
X'10' SPA in the message
X'os' Response mode message
X'04' Conversation starting
X'02' Message switch from DFSAPPC
X'01' Message from APPC type message
X'26' MSNBOSID Source SYSID (if MSC)
X28' MSNBDSID Destination SYSID (if MSC)
X2A' MSNBMGID Error message number (if receive error)
xX2C MSNBORGN Message origin source name '
X'5C' MSNBDSNM Final destination of message

Chapter 3. Transaction Manager exit routines

227

Table 78. Key fields of interface block on entry (continued)

Byte Field name Contents

X'88' MSNBRTPG Length of TP name from /DEQ LU name TP name command

X'8A' MSNBRMEM Rerouted destination member name for OTMA or tmember name of /DEQ
tmem/tpipe

X'8A' MSNBRTPN TP name from /DEQ LU name TP name command

X'CA’ MSNBDEST * Node if /DEQ node command

* LTERM if /DEQ lterm command
* MSNAME if /DEQ msname command

* LU name TP name if /DEQ luname tpname command

X'14E' MSNBUSRA User work area

Note: ' In an LU 6.2 conversation, when the outbound message is re-enqueued across restart, the message origin
source name (MSNBORGN) is blank.

Contents of interface block on exit
The following table shows the contents of key fields in the Message Control/Error

exit interface block as they appear on exit. The exit routine uses these fields to
return information to IMS.

228 Exit Routines

Table 79. Key fields of interface block on exit

Byte

Field name

Contents

X'84'

MSXFLG1

Exit Flag

X'00'

X'80'

X'60'
X'40'

X'30'
X'20'

X'10'

Meaning

No message is involved. (Perform the default action,

which is the same action as in the prior release.) You

can modify the exit routine to perform:

* Initialization processing (including external IMS
System Services) at link start

* Clean-up processing at link termination

Reroute the message to a different local or remote
transaction, a local or remote LTERM, or an LU 6.2
destination. The exit routine must provide the new
destination name in the MSNBDEST field, and set
MSNBRINF to indicate an LTERM, a transaction, or
an LU 6.2 destination.

Perform actions of both X'20' and X'40'".

Discard the message or proceed with the /DEQUEUE
command.

Perform actions of both X'10' and X'20'".

If the exit routine selects this action, IMS sends an

informational message:

e If the /DEQUEUE command was entered, IMS sends
DFS2185 to the entering terminal.

o If IMS detected a receive error, IMS sends DFS2184
to the current MTO or input terminal.

o If IMS detected a send error, IMS sends DFS2184 to
the current MTO.

If this action is selected by default and not by the exit

routine, IMS sends an informational message:

* On a send error, IMS sends DFS2140.

* On a receive error, IMS sends the message number
in the MSNBMGID field.

This exit flag can be specified only in combination

with exit flag X'10" or X'40'.

Suppress the /DEQUEUE command. The /DEQUEUE PURGE
operation is terminated if the exit routine requests to
suppress the command.

X'85'

MSXDFT1

Exit Flag

X'00'

X'80'
X'40'

X'20'

X'10'

Meaning

No message involved (link start or link termination)
or the default action.

Reroute message to a different destination.

Discard the message or proceed with the /DEQUEUE
command.

Send error message to current MTO or input
terminal.

Suppress the /DEQUEUE command.

Chapter 3. Transaction Manager exit routines 229

230

Exit Routines

Table 79. Key fields of interface block on exit (continued)

Byte

Field name

Contents

X'86'

MSXFLG2

Exit Flag
Meaning

X'80' MSX2QBK field; include interface block in the
message when rerouting to a different destination.

X'88'

MSNBRTPG

Length of rerouted TP name.

X'8A'

MSNBRMEM

Rerouted destination member name for OTMA or tmember
name of /DEQ tmem/tpipe

X'8A'

MSNBRTPN

Rerouted TP name.

X'CA'

MSNBDEST

Destination name of local or remote transaction or local or
remote LTERM, or reroute LU name or reroute netid.luname
(left-justified, padded with blanks) if reroute the message.

X'105'

MSNBRINF

Exit Flag
Meaning

X'80' Destination is a transaction.

X'40' Destination is an LTERM.

X'20' Destination is a dynamic local LTERM.
X'10' Destination of LU name plus TP name.
X'08' Destination of OTMA member plus tpipe.

X’04 Destination is the OTMA tmember and tpipe
specified in the descriptor for a late response message
to a synchronous program switch request.

X'107'

MSNBRFL1

Exit Flag
Meaning

X'80' Destination is a local transaction.
X'40' Destination is a remote transaction.

X'20' Destination is a remote LTERM.

X'10D

MSMFLG1

Exit Flag
Meaning

X'80' Next segment is a SPA.

X'40' The two-byte SID was provided in the MSC
extension.

X'12A'

MSNBMSG

Message area when error encountered in the interface module.

X'14E'

MSNBUSRA

User work area.

Logging the interface block

Two copies of the interface block are added to the existing X'6701' log record. The
first copy is labeled “MSNB” and represents the interface block before IMS calls
the Message Control/Error exit routine with the log record ID of CMEA. The
second copy is labeled “USR MSNB” and represents the interface block after IMS
calls the exit routine with the log record ID of CMEB. The X'6701' log record can be
logged for informational reasons or to indicate an error in preparing to call the exit
routine, or in performing the action(s) requested by the exit routine. The trace ID is

CMEL These log entries are forced entries for a send error, a receive error, and a
/DEQUEUE command, regardless of any trace options that are specified. For link
start and link termination, the interface block is only logged if the trace option is in
effect on the link or node involved.

Related Reading: For more information on this log record, see IMS Version 13
Diagnosis.

Valid flags and default actions

IMS performs the default actions if the exit routine returns control to IMS without
modifying the exit flag field, if the exit routine requests an invalid exit flag, or if
IMS encounters an error while trying to perform the action requested by the exit
routine

Default actions are specified in the MSXDFT1 field. The exit flag field (MSXFLG1)
is located in the interface block. If an invalid exit flag is requested, IMS sends error
message DFS2184 to the current MTO, in addition to performing the default action.

The following table shows valid entry flags, exit flags, and default actions.

Table 80. Flags and default actions

Entry flag (MSNFLG1) Valid exit flags (MSXFLG1) Default action (MSXDFT1)
X'80' X'00’ X'00’

X'40' X'00’ X'00’

X'20' X'00, X'40', X'60', X'80' X'60" + stop MSNAME
X'10' X'00, X'40', X'60', X'80' X'60'

X'08' X'00', X'10', X'30', X'40', X'80' X'40'

Note: The default action for a send error (entry flag = X'20') includes STOP MSNAME. In
addition, the default action for the DEQUEUE command is to proceed with the command. If
you do not want these actions to take place, specify a different exit flag depending on the
actions that you want to occur.

If any errors are encountered while IMS tries to perform the requested action, the
action is ignored and the default action is performed. The MSNBMSG field of the
interface block of the forced 6701 CMEI log record will contain one of the
following brief descriptions that describe the error encountered, if applicable:

* No storage for message buffer

* Invalid destination for reroute

* Cannot reroute MSG switch to CONV

* Error while building rerouted MSG

* Reroute destination not found

* Cannot reroute CONV MSG to LTERM

* Cannot reroute non-CONV MSG to CONV

Related reference:

[“Message Control/Error Exit Interface Block (MSNB)” on page 226|

Chapter 3. Transaction Manager exit routines 231

Message Switching (Input) edit routine (DFSCNTEO)

This Message Switching (Input) edit routine (DFSCNTEQ) is called when a message
is entered from a terminal with EDIT=(YES,...) in the NAME macro to another
terminal

This topic contains Product-sensitive Programming Interface information.

This topic describes the Message Switching (Input) Edit routine. Information about
using a sample routine is provided at the end of this topic.

Subsections:
* [“About this routine”]

* “Communicating with IMS”]

About this routine

A facility similar to the Transaction Code (Input) Edit is provided for message
switching. The optional user-written routine, whose CSECT and load module name
must be DFSCNTEQ, is included in the system at IMS system definition time. Only
one Message Switching edit routine can be specified for an IMS online control
program. This routine is specified for inclusion with the online control program by
specifying EDIT=(YES,...) in one or more NAME macros during system definition.
It is not called when the message is inserted using a program-to-program switch.

The Message Switching (Input) edit routine does not support terminals that are
defined dynamically using the Extended Terminal Option (ETO) feature.

Related Reading: For more information on ETO, see IMS Version 13
Communications and Connections.

The following table shows the attributes of the Message Switching (Input) edit exit
routine.

Table 81. Message switching (input) edit exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSCNTEO.

Including the routine No special steps are required to include this routine.

IMS callable services To use IMS callable services with this routine, you must issue an initialization call

(DFSCSIIO0) to obtain the callable service token and a parameter list in which to build
the function-specific parameter list for the desired callable service. Use the ECB found
in register 9 for the DFSCSIIO call.

This exit routine is automatically linked to DFSCSIO0 by IMS. No additional linking is
required To use IMS callable services.

Sample routine location IMS.ADFSSMPL (member name DFSCNTEQ).

Communicating with IMS
IMS uses the entry and exit registers to communicate with the routine.

Contents of registers on entry

232 Exit Routines

On entry, the edit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 The buffer location of the input message segment after translation to EBCDIC
and after IMS Basic Editing. The first two bytes of the buffer contain a binary
message length. The third byte of the buffer is binary zeros. The binary count
includes the 4-byte prefix. The fifth byte contains the first byte of message

text.
7 Address of CTB.
9 Address of CLB.
13 Address of save area. The exit routine must not change the first three words.
14 Return address to IMS.
15 Entry point of edit routine.

Use the message segment in the buffer addressed by register 1 as input to the edit
routine.

The edit routine must place the text of the edited message segment to be returned
to IMS in the buffer addressed by register 1. If the input was processed by the IMS
Basic Edit, this buffer is always 10 bytes greater than the 2-byte binary count at the
beginning of the message segment. The length of the message segment can be
expanded or reduced to any desired size. The format of the edited message
segment in the buffer on return to IMS must be two bytes of binary count (LL),
two bytes of binary zeros (Z2Z), and edited text. The second two bytes (ZZ) should
not be changed or edited. The LLZZ field is the first four bytes of the message
segment.

Contents of registers on exit

Before returning to IMS, the edit routine must restore all registers except register
15, which must contain one of the following return codes.

Return code Meaning

00 Segment is processed normally.

04 Segment is canceled.

08 Message is canceled and the terminal operator is notified.

12 Message is canceled and the user message identified by register 1 is sent to

the terminal.

Register 1 contains the message number if register 15 contains a return code of 12;
otherwise it is ignored. Any other value causes the message to be canceled and the
terminal operator to be notified.

Related reference:

[‘Routine binding restrictions” on page 9|
[“Initialization of IMS callable services (DFSCSII0)” on page 17|

Using the sample message switching edit routine (DFSCNTEO)

The edit routine can be used to identify, in the text of the message to the output
terminal, the logical terminal name from which the message was entered and the
message number.

Chapter 3. Transaction Manager exit routines 233

In the example, the input logical terminal name is used. This name is found in the
Communication Name Table (CNT), which is the IMS control block for the input
logical terminal. The CNT is addressed by a field called CTBCNTPT in the
Communication Terminal Block. The field in the CNT containing the logical
terminal name is called CNTNAME. Control blocks are defined in IMS Version 13
Diagnosis.

I Non-Discardable Messages user exit (NDMX)

234

Exit Routines

The Non-Discardable Messages exit routine provides users with a mechanism to
tell IMS what to do with the input message associated with an abended
application program.

If IMS does not call the Non-Discardable Messages exit routine, IMS arbitrarily
discards messages from the system and issues message DFS555I.

Subsections:
* |“About this routine”|

* [“Processing options” on page 235|

* [“Restrictions” on page 237]

+ [“Communicating with IMS” on page 237

About this routine

The Non-Discardable Messages exit routine receives control when an IMS
application abends with an input message in process.

The following table shows the attributes of the Non-Discardable Messages exit
routine.

Table 82. Non-discardable messages exit routine attributes

Attribute Description
IMS environments DB/DC, DCCTL.

Naming convention You can name this exit routine DFSNDMXO0 and link it into a library
that is included in the STEPLIB concatenation.

Alternatively, you can define one or more exit routine modules with

the EXITDEF parameter of the USER_EXITS section of the DFSDFxxx
member of the IMS.PROCLIB data set. The routines are called in the

order that they are listed in the parameter.

Binding This exit routine must be reentrant. It executes in non-cross-memory
mode.

Table 82. Non-discardable messages exit routine attributes (continued)

Attribute

Description

Including the routine

If you write your own exit routine and plan to use IMS callable
services, you must manually link edit the routine with DFSCSI00
and you must link the routine with IMS.SDFSRESL. The following
example shows the required bind JCL statements.

INCLUDE LOAD (DFSNDMX0)
INCLUDE LOAD(DFSCSI00)
ENTRY DFSNDMXO

NAME DFSNDMX0 (R)

The module or modules must be included in an authorized library
in the JOBLIB, STEPLIB, or LINKLIST concatenation. No additional
steps are necessary to use a single exit routine that is named
DFSNDMXO. If you use multiple exit routines, specify
EXITDEF=(TYPE=NDMX,EXIT=(exit_names)) in the EXITDEF
parameter of the USER_EXITS section of the DFSDFxxx member of
the IMS.PROCLIB data set.

IMS callable services

To use callable services with this routine examine the value of the
SXPLATOK field in the IMS standard user exit parameter list to see
if a callable services token is passed to the routine.

+ If SXPLATOK is zero, you cannot use callable services with this
routine.

» If SXPLATOK is non-zero, the callable services token is included,
and you can use callable services. You can use the 256-byte work
area addressed by SXPLAWRK in the standard user exit
parameter list to call DFSCSIFO.

Sample routine
location

IMS.ADFSSMPL (member name DFSNDMXO0). The mapping of the
NDM interface block is available from the IMS library
IMS.ADFSMAC (member name DFSNDM).

Processing options

The following processing options are valid for DFSNDMXO. If you request an
option that is not valid, IMS ignores your request and continues normal processing

(the default option).

Continue normal processing

Continue normal processing is the default option. Request this option by setting
register 15 to zero before returning to IMS. IMS proceeds as if this exit routine had
not been called.

Depending on the type of application abend that initiated the exit routine, IMS
might delete the message, issue a DFS555] message to the originating terminal and
master terminal, and issue a DFS554A message to the master terminal.

Delete the input message from the system

Request this option by setting register 15 to 4 before returning to IMS. If you
request this option, IMS does the following:

1.

Issues a DFS5551 message to the originating terminal (if possible) and to the

master terminal

Deletes the input message from the system

Issues a DFS554A message to the master terminal

Chapter 3. Transaction Manager exit routines 235

236

Exit Routines

Queue the message to the suspend queue

Request this option by setting register 15 to 8 before returning to IMS. If you
request this option, IMS queues the input message to the suspend queue of the
transaction that was being processed when the application abended. IMS suspends
the transaction and, depending on the type of abend, might issue a DFS554A
message to the master terminal.

Requeue the input message to the original transaction

Request this option by setting register 15 to 12 before returning to IMS. If you
request this option, IMS queues the input message to the normal processing queue
of the transaction that was being processed when the application abended. IMS
USTOPs the transaction unless directed to do otherwise by the contents of
NDMTRNST and, depending on the type of abend, might issue a DFS554A
message to the master terminal.

Queue the message to an alternate destination

Request this option by setting register 15 to 16 before returning to IMS and placing
a valid destination name in the NDMDEST field of the NDM interface block. The
following table shows the valid destination types and how to specify them in
NDMDEST.

Table 83. Valid alternate destinations
Alternate destination NDMDEST value

LTERM Specify a local, remote, or ETO LTERM, using the LTERM name or
ETO user descriptor name.

OTMA Specify the OTMA TPIPE name, or a name that is meaningful to the
OTMA exit routines.

LU 6.2 Specify a local LU 6.2 device descriptor. The LU 6.2 device must be

on the local IMS subsystem.

Transaction Specify a local or remote transaction code. The following transaction
types are not valid destinations:

* Fast Path exclusive transaction.
* Conversational transaction.

* SAA communications-driven transaction (that is, a CPI-C driven
transaction).

If you specify an invalid transaction type, IMS ignores the request
and continues normal processing.

If NDMDEST contains an invalid destination, such as zeros or blanks, IMS ignores
the request to change the destination and continues normal processing.

If NDMDEST contains a destination that is unknown to IMS, processing depends
on whether OTMA, and ETO or shared queues are active.

With OTMA, and ETO or shared queues active
IMS invokes the OTMA exit routines before invoking the Destination
Creation exit routine (DFSINSXO0).

Without OTMA, ETO, or shared queues
IMS ignores the request and continues normal processing.

When IMS requeues the input message to a valid destination, IMS completes the
message processing as follows:

1. Issues a DFS550I message (succeeded version) to the master terminal

2. Issues a DFS5551 message to the originating terminal (if possible) and to the
master terminal

3. Deletes the input message from the abended transaction
4. Issues a DFS554A message to the master terminal

Restrictions

Not all destinations are valid alternates for input messages. You can use this exit
routine to requeue messages to alternate destinations.

Communicating with IMS

This exit routine uses a parameter list, entry and exit registers, and the
Non-Discardable Messages interface block (NDM) to communicate with IMS.

Contents of registers on entry

At entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Content

1 Address of the[“IMS standard user exit parameter list” on page 5|
13 Address of a single standard z/OS save area

14 Return address to IMS

15 Entry point of this exit routine

Standard user exit parameter list

This exit routine uses the Version 6 standard exit parameter list. The address of the
work area passed to this exit routine in SXPLAWRK can be different each time that
this exit routine is called.

If your NDMX user exit can be called in an enhanced user exit environment,
additional user exit routines might be called after your routine. When your user
exit routine finds a transaction upon which to act, it can set SXPL_CALLNXTN in
the byte that SXPLCNXT points to. This tells IMS to not call additional exit
routines.

NDM interface block

The following table shows the contents of the NDM interface block. The address of
this parameter list is in the standard user exit parameter list (field name
SXPLESPL). The mapping of the NDM interface block is available from the IMS
library IMS.ADFSMAC (member name DFSNDM).

Table 84. NDM interface block
Field Offset Length Content
NDMEYE X'00' 4 NDM eye catcher.

Chapter 3. Transaction Manager exit routines 237

Table 84. NDM interface block (continued)

Field Offset Length Content

NDMTRAN X'04' 8 Transaction that the application was
processing when it abended. This transaction
is associated with the input message pointed
to by NDMMSGA.

NDMPSBN X'oC' 8 PSB associated with the application that
abended.

NDMUSID X'14' 8 User ID.

NDMGRPNM X'1C' 8 Group name.

NDMUSIDI X'24'

—_

Character flag for contents of user ID field
NDMUSID:

Character
Meaning

User ID
LTERM

R

PSB name
(0] Other name

NDMSRCFL X'25' 1 A flag that indicates the origin of the input
message. This flag is set with one of the
following values:

Value Meaning
0 NDMLTERM

The source of the input message is
an LTERM. Subsequent fields contain
information about the LTERM.

1 NDMOTMA

The source of the input message is
OTMA. Subsequent fields contain
information about the OTMA source.

2 NDMLU62

The source of the input message is
an LU 6.2 device. Subsequent fields
contain information about the LU 6.2
device.

NDMSRCIN X'26' 1 Start of source description.

NDMLTERM X'26' 8 Name of the originating LTERM if
NDMSRCEFL is set to NDMLTERM (value 0).

NDMTPIPE X'26' 8 OTMA TPIPE name if NDMSRCEFL is set to
NDMOTMA (value 1).

NDMMEM X'2E' 16 OTMA member name.

NDMTPSYN X'3E' 1 OTMA TPIPE synchronization level.

NDMMGSYN X'3F' 1 OTMA message synchronization level.

NDMLUNM X'26' 8 LU name if NDMSRCEFL is set to NDMLU62
(value 2).

NDMNWID X2E' 8 Network identifier.

NDMSIDE X'36' 8 APPC side information name.

238 Exit Routines

Table 84. NDM interface block (continued)

Field Offset Length Content

NDMMODE X'3E' 8 VTAM mode table name.

NDMTPNML X'46' 2 Length of TP name contained in NDMTPNM.

NDMTPNM X'48' 64 TP name.

NDMCONV X'88' 1 APPC conversation type.

NDMSYNC X'89' 1 APPC synchronization level.

X'8A' 18 Reserved.

NDMABEND X'9C' 4 Abend code in system format 00sssuuu,
where:
sss z/0S system abend code
uuu IMS user abend code

NDMTSLCL X'AQ 8 The local time stamp of the arrival of the
input message in the system. NDMTSLCL
contains the two fields NDMDLCL and
NDMTLCL.

NDMDLCL X'AQ 4 The local date that the message arrived in the
system. The date format is YYYYDDDf, where:
YYYY Year
DDD Julian day
f X'F'

NDMTLCL X'A4' 4 The local time that the message arrived in the

system. The time format is HHMMSSTf, where:
HH Hour

MM Minutes

SS Seconds

T Tenths of the second

f X'F'

Chapter 3. Transaction Manager exit routines 239

Table 84. NDM interface block (continued)

Field Offset Length Content

NDMTSUTC X'A8' 12 The UTC time stamp of the arrival of the
input message in the system. The time stamp
format is the following;:

Year/day
YYYYDDDf

Time HHMMSSTHm1 ju
Offset Aqq$

The time stamp fields include the following:
YYYY Year

DDD Julian day

f X'F'

HH Hour

MM Minutes

SS Seconds

T Tenths of the second

H Hundredths of the second

m Milliseconds

Tenths of a millisecond

e

Hundredths of a millisecond

—

u Microseconds
Attribute of the time value

qq Quarter-hours of offset from UTC

$ Decimal sign for the offset, either
positive (X'C') or negative (X'D’)
NDMSPAA X'B4' 4 Address of the SPA if the transaction in

NDMTRAN is a conversational transaction.
Otherwise, this field contains zeros.

If the SPA is present, the format is as follows:
LL 7777 transaction_code data

LL Two-byte length field that includes
the length of LLZZZZ

7777 Four-byte field that always contains
Zeros

transaction_code
Eight-byte field that contains the
transaction code for the conversation
or blanks

data SPA user data

240 Exit Routines

Table 84. NDM interface block (continued)
Field Offset Length Content

NDMMSGA X'B8' 4 Contains the address of the input message if
this field is non-zero. If this field is zero, there
is no message segment and can be an SPA
segment only. The message format is as
follows:

LL ZZ message-segment

LL Two-byte length field that includes
the length of LLZZ

77 Two-byte field that always contains
zeros, except for the last message
segment which contains X'FFFF'

message-segment input

message
segment

For a single-segment message:
LL=NDMMSGL and ZZ=X'FFFF'

For a multi-segment message, the pattern is:
* NDMMSGA=address of first segment
* NDMMSGA+LL=address of second

segment
* NDMMSGA+LL+LL= address of third
segment
NDMMSGL X'BC' 4 Total length of input message
X'Co' 20 Reserved
NDMABRSN X'D4' 4 Abend reason code if available.

Chapter 3. Transaction Manager exit routines 241

242

Exit Routines

Table 84. NDM interface block (continued)

Field Offset Length

Content

NDMTRNST X'D§8' 4

Transaction status flag. DFSNDMXO0 can set
this field to any one of the following values.
IMS examines this field on return from
DFSNDMXO.

Value
1

Description

Do not (U)STOP the abended
transaction and do not STOP the
abended program.

Do not send the DFS5551 message.

Do not (U)STOP the abended
transaction and do not STOP the
abended program, and, do not send
the DFS555I message.

Allow messages to continue to queue
for the transaction, but do not allow
the transaction to continue to be
scheduled. This is equivalent to the
PSTOP TRAN command for this
transaction only. The PSB and
application program are not affected.

Allow the transaction to continue to
schedule, but do not allow messages
to continue to queue for the
transaction. This is equivalent to the
PURGE TRAN command for this
transaction only. The PSB and
application program are not affected.

Stop the transaction. This is
equivalent to the STOP TRAN
command. The PSB and application
program are not affected.

Start the transaction. This is
equivalent to the START TRAN
command. The PSB and application
program are not affected.

NDMDEST X'DC' 8

Name of the alternate destination to which
the input message is to be queued. IMS only
examines this field if you pass return code 16
in register 15. Otherwise, IMS ignores this

field.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except register
15, which must contain one of the following return codes:

Return code Meaning

0 Continue normal processing.
4 Delete the input message from the system.
8 Queue the input message to the suspend queue.

Return code Meaning

12 Requeue the input message to the original transaction.

Queue the message to an alternate destination that is named in the
16 NDMDEST field in the NDM interface block.

Related reference:

[“Routine binding restrictions” on page 9|

[“Initialization of IMS callable services (DFSCSII0)” on page 17

[‘IMS standard user exit parameter list” on page 5|

[“OTMA User Data Formatting exit routine (DFSYDRUO()” on page 251

“OTMA Input/Output Edit user exit (DFSYIOE(Q and other OTMAIOED type|
exits)” on page 247

“OTMA Destination Resolution user exit (DFSYPRX0 and other OTMAYPRX type|
exits)”

[“Destination Creation exit routine (DFSINSX0)” on page 158

OTMA Destination Resolution user exit (DFSYPRX0 and other
OTMAYPRX type exits)

The OTMA Destination Resolution user exit determines whether an asynchronous
output message needs to be routed to an OTMA destination or a non-OTMA
destination. If the message should be routed to an OTMA destination, the user exit
can determine the final OTMA destination client or Tpipe.

You can use OTMA destination descriptors as an alternative to coding an
OTMAYPRX user exit.

Subsections:
* [“About this routine”]

* [“Communicating with IMS” on page 244|

About this routine

The following rules apply for this user exit:

* This routine is optional, and can be written so that IMS data is not prerouted.

* If the destination name is an IMS scheduler message block (SMB) name, this
routine cannot change it.

* Transaction output can be directed to an OTMA client, even if the transaction
originates from a non-OTMA source.

* Transaction output can be directed to a non-OTMA destination, even if the
transaction originates from an OTMA client.

* In an IMS subsystem, only one OTMA Destination Resolution user exit is
allowed.

Important: Within a shared-queues group, ensure that the OTMAYPRX user exit is
the same for both front-end and back-end IMS systems. If these exit routines differ
on one or more back-end IMS systems, asynchronous output might be sent to
different destinations, depending on which back-end IMS system processed the
input.

Chapter 3. Transaction Manager exit routines 243

If multiple user exits routines are used, ensure the OTMARTUX user exit routines
are defined in the same order on front-end and back-end IMS systems.

The following table shows the attributes of the OTMA Destination Resolution user

exit.

Table 85. OTMA Destination Resolution user exit attributes

Attribute

Description

IMS environments

DB/DC, DCCTL.

Naming convention

You can name this exit routine DFSYPRX0 and link it into a library that is included in
the STEPLIB concatenation.

Alternatively, you can define one or more exit routine modules with the EXITDEF
parameter of the USER_EXITS section of the DFSDFxxx member of the IMS.PROCLIB
data set. The routines are called in the order that they are listed in the parameter.

Link editing

The OTMA Destination Resolution user exit must be reentrant.

The OTMA Destination Resolution user exit must be included in an authorized library
in the JOBLIB, STEPLIB, or LINKLIST library concatenated in front of the
IMS.SDFSRESL. This exit routine is optional.

Including the routine

Add Including the routine section of the OTMA Destination Resolution user exit
routine attributes that says the following: The module or modules must be included in
an authorized library in the JOBLIB, STEPLIB, or LINKLIST concatenation. No
additional steps are necessary to use a single exit routine that is named DFSYPRXO. If
you use multiple exit routines, specify

EXITDEF=(TYPE=OTMAYPRX, EXIT=(exit_names)) in the EXITDEF parameter of the
USER_EXITS section of the DFSDFxxx member of the IMS.PROCLIB data set.

IMS callable services

This user exit is eligible to use IMS callable services. To use callable services, examine
the value of the SXPLATOK field in the IMS standard exit parameter list to determine
if a callable services token was passed to the routine. If the value of the field is zero,
no callable services are available. If the value is non-zero, examine the value of the
SXPLAWRK field in the parameter list for the address to a 256-byte work area. Use the
work area to issue calls to DFSCSIFO.

Sample routine location

IMS.ADFSSMPL (member name DFSYPRXO).

244

Exit Routines

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the user exit.

Contents of registers at entry

At entry, the user exit must save all registers using the provided save area. The
registers contain the following:

Register Contents

R1

Address of the ['IMS standard user exit parameter list” on page 5|

R13 Save area address (points to a single save area, not a save area chain)
R14 Return address
R15 Entry point address

Standard exit parameter list

This user exit uses the Version 6 standard exit parameter list. The address of the
work area passed to this user exit in SXPLAWRK will be the same each time that
this exit routine is called.

If your OTMAYPRX user exit can be called in an enhanced user exit environment,
additional user exit routines can be called after your routine. When your user exit
routine finds a message upon which to act, it can set SXPL_CALLNXTN in the
byte SXPLCNXT points to. This tells IMS to not call additional exit routines.

Function specific parameter list on entry

The following table describes the contents of the OTMA Destination Resolution
user exit parameter list. The address of this parameter list is in standard exit
parameter list field SXPLFSPL.

Table 86. Contents of the OTMA Destination Resolution user exit parameter list

Offset
(decimal) Description

+0 Name of the originating LTERM or OTMA transaction pipe.
+8 Destination name.
+16 Transaction name or program name.
+24 Flag byte:
Flag bits
Description

X'80' An OTMA prefix exists.

X'20' An OTMA message was submitted by an OTMA client with super
member support. The OTMA state data pointed to by the input
parameter list contains a 1-4 byte super member name at offset X'E'
from the start of the state data.

X'10' A DL/IICAL call for synchronous program switch was issued. If the
X'80' flag is also set, this flag indicates that an OTMA transaction
initiated the ICAL call and the LTERM or tpipe name and input client
member name in the exit parameter list are from the original OTMA
transaction.

X'08' The destination name matches an entry in the OTMA destination
descriptor. The name is for an IMS Connect destination.

X'04' The destination name matches an entry in the OTMA destination
descriptor. The name is for an IBM MQ destination.

X'02' The destination name matches an entry in the OTMA destination
descriptor. The name is for a non-OTMA destination.

+25 Synchronization level.

+26 Reserved.

+27 A 1-byte field that indicates the version of the exit routine parameter list:
X'80' If set, indicates that at offset +88, the user exit parameter list includes

the 4-byte address of the OTMA destination descriptor information.
+28 User ID.

+36 Group name.
+44 Address of the PST block.
+48 Name of the originating OTMA client, if the message originated from an

OTMA client; otherwise zeros.

Chapter 3. Transaction Manager exit routines 245

246

Exit Routines

Table 86. Contents of the OTMA Destination Resolution user exit parameter list (continued)

Offset
(decimal)

Description

+64

Address of the input Message Control Information prefix section of the OTMA
message.

If this call is from an ICAL request for synchronous program switch, the
message control information is generated by IMS. The information is not
propagated from the original message prefix. However, the LTERM or TPIPE
name and input client name are passed from the original OTMA message.

+68

Address of the input State Data prefix section of the OTMA message.

Check the prefix flag in the Message Control Information section to determine
the specific type of State Data section specified.

If this call is from an ICAL request for synchronous program switch, the state
data information is generated by IMS. The information is not propagated from
the original message prefix. However, the correlator field, TMAMHCOR, is
passed from the original OTMA state data. The LTERM or TPIPE name and
input client name are also passed from the original OTMA message.

+72

Address of the input User Data prefix section of the OTMA message.

+76

Address of SCD control block.

+80

Address of the 16-byte client override name, if any, to be returned to IMS.

This field is set by IMS at entry. It points to a 16-byte buffer area to which the
OTMA client name is written, if one does not exist at entry. Do not alter this
address.

The OTMA client name is written when the transaction originates from a
non-OTMA LTERM and is to be routed to an OTMA destination.

If the transaction is invoked from an OTMA client and the OTMAMD
initialization parameter is set to Y in the DFSPBxxx PROCLIB member, the
client override name is accepted.

+84

Address of the 8-byte Tpipe override name, if any, to be used for OTMA
output message queuing and transmission. If blank, this field is ignored.

+88

Address of the OTMA destination descriptor. The address points to a location
where the routing information that is defined in the descriptor for IBM MQ
and IMS Connect is stored. If the destination name is for a non-OTMA
destination, or if the destination name does not match any entry in the OTMA
destination descriptor, this field is set to 0.

For detailed information about IMS Connect destination routing, see the
TMAMICON_DESCRIPTOR DSECT mapping.

For detailed information about IBM MQ destination routing, see the
TMAMMOQS_DESCRIPTOR DSECT mapping.

Any other return code generates a DF523701 message.

Contents of registers at exit

Before returning to IMS, the exit routine must restore all registers, except register
15, which must contain one of the following return codes:

Return code Meaning

0 Input message came from OTMA, destination is same or different OTMA
client. Or, input message did not come from OTMA, output is not OTMA

4 The message did not originally come from OTMA, but its destination is
OTMA.

Note: You must set the z/OS cross-system coupling facility member
name of the OTMA client

8 The message came from OTMA, but the destination is not OTMA.

100 Use the routing information from the destination descriptor without
modification. If the destination is IMS Connect or IBM MQ, the
DFSYDRUO exit routine is called and can modify the routing information.
This return code is valid only when EXIT=Y is specified for the
destination descriptor.

For the OTMAYPRX user exit, any other return code generates a DFS2370I message
with the return code listed in hex. The hex equivalents for the return codes are:

0 X'00'

4 X'04'
8 X'08'
100 X'64'

Error conditions

An Al status code is returned to the application program when the following
erTors occur:

* Incorrect 16-byte OTMA client override name is specified. The client name
cannot contain all blanks or zeroes. If the client name is shorter than 16 bytes, it
must be padded with blanks.

* Incorrect return code is specified for the exit.

Related concepts:

[[OTMA destination descriptors (Communications and Connections)|

Related reference:
[“OTMA User Data Formatting exit routine (DFSYDRUO)” on page 251|
[‘Routine binding restrictions” on page 9|

| OTMA Input/Output Edit user exit (DFSYIOEO and other OTMAIOED

| type exits)

You can use the OTMA Input/Output Edit user exit to modify or cancel IMS Open
Transaction Manager Access (OTMA) input and output messages. You can also use
this user exit to format the User Prefix section of an OTMA input or output
message.

Subsections:

+ [“About this routine” on page 248|

+ [“Communicating with IMS” on page 249)|

Chapter 3. Transaction Manager exit routines 247

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_otma_admin_006.htm#ims_otma_admin_006

248

Exit Routines

About this routine

This user exit can do the following for OTMA input and output messages:
* Modify the length or data of a message segment.

IMS sends the modified message after it receives control from the user exit.
* Cancel a message segment.

* Cancel a message.

However, this user exit cannot be used for OTMA synchronous callout messages
using DL/I ICAL calls.

If your OTMAIOED user exit can be called in an enhanced user exit environment,
additional user exit routines might be called after your routine. When your user
exit routine finds a transaction upon which to act, it can set SXPL_CALLNXTN in
SXPL_FLGA. This tells IMS to not call additional exit routines.

Table 87. Canceling a message segment

Segment being

canceled IMS sends

First The full OTMA message prefix, with null data.
Last The last segment, with null data.

Other Nothing. IMS does not send the message segment.

Table 88. Canceling a message

Segment being

canceled IMS sends

First Nothing. IMS does not send the message, and returns a status
code.

Other The last segment, with null data. In the OTMA prefix, the “discard

chain” flag is set.

The length of each message segment is limited to 32 KB. If a message segment
exceeds this limit, IMS issues message DFS1294E, and processes the message as
follows:

Segment being

processed IMS sends

First The full OTMA message prefix, with null data.
Last The last segment, with null data.

Other Nothing. IMS does not send the message segment.

The following table shows the attributes of the OTMA Input/Output Edit user exit.

Table 89. OTMA input/output edit exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Table 89. OTMA input/output edit exit routine attributes (continued)

Attribute

Description

Naming convention

You can name this user exit DFSYIOEQ and link it into a library that
is included in the STEPLIB concatenation.

Alternatively, you can define one or more user exit modules with
the EXITDEF parameter of the USER_EXITS section of the
DFSDFxxx member of the IMS.PROCLIB data set. The routines are
called in the order that they are listed in the parameter.

Binding

The OTMA Input/Output Edit user exit must be reentrant.

The OTMA Input/Output Edit user exit must be included in an
authorized library in the JOBLIB, STEPLIB, or LINKLIST library
concatenated in front of the IMS.SDFSRESL. This user exit is
optional.

Including the routine

The module or modules must be included in an authorized library
in the JOBLIB, STEPLIB, or LINKLIST concatenation. No additional
steps are necessary to use a single user exit that is named
DFSYIOEQ. If you use multiple user exits, specify EXITDEF=(TYPE=
OTMAIOED,EXIT=(exit_names)) in the EXITDEF parameter of the
USER_EXITS section of the DFSDFxxx member of the IMS.PROCLIB
data set.

IMS callable services

This user exit is eligible to use IMS callable services.

To use IMS callable services with this routine, examine the value of
the SXPLATOK field in the [“IMS standard user exit parameter list”]

to see if a callable services token is available. If the value

of SXPLATOK is zero, you cannot use callable services with this
routine. If the value of SXPLATOK is non-zero, the callable services
token is included, and you can use callable services. You can use
the 256-byte work area addressed by SXPLAWRK in the standard
user exit parameter list to call DFSCSIFO.

Sample routine
location

IMS.ADFSSMPL (member name DFSYIOEQ).

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate

with the user exit.

Contents of registers at entry

At entry, the user exit must save all registers using the provided save area. The
registers contain the following:

Register Contents

R1 Address of the [“IMS standard user exit parameter list” on page 5|
R13 Save area address

R14 Return address

R15 Entry point address

Standard exit parameter list

Chapter 3. Transaction Manager exit routines 249

250

Exit Routines

This user exit uses the [“Version 6 standard exit parameter list” on page 6] The
address of the work area passed to this user exit in SXPLAWRK will be the same
each time that this exit routine is called.

If your OTMAIOED user exit can be called in an enhanced user exit environment,
additional user exit routines might be called after your routine. When your user
exit routine finds a transaction upon which to act, it can set SXPL_CALLNXTN in
the byte that SXPLCNXT points to. This tells IMS to not call additional exit
routines.

Function-specific parameter list on entry

The following are the contents of the OTMA Input/Output Edit user exit

parameter list. The address of this parameter list is in standard exit parameter list
field SXPLFSPL.

Table 90. OTMA Input/Output Edit user exit parameter list
Offset Contents

+0 Input/output flag. Set to 0 for an input message segment; set to 4 for an output
message segment.

+1 Segment-type flag. Set to 0 for the first message segment; set to 4 for any other
message segment.

+2 Reserved.

+4 Address of the message segment. The segment has the format LLZZDD:

LL Total length (2 bytes)
77z Flag (2 bytes). Z1 is reserved for IMS. The exit routine can change Z2.
DD Message segment

If the user exit modifies the message segment, it must also modify the LL with the
new segment length. For null segments, LL must be set to 4 (2 bytes for LL and 2
bytes for ZZ).

The user exit can increase any segment to a maximum of 256 bytes. The overall
message, however, cannot exceed 32767 bytes (including the LL and ZZ fields). If
a segment exceeds the 256-byte limit, IMS truncates it and issues message

DFS1967.
+8 Address of the transaction code.
+12 Address of the OTMA transaction pipe name.
+16 Address of the z/OS cross-system coupling facility member name.
+20 Address of the user ID.
+24 Address of the OTMA user table, if any.
+28 Address of the message control region, available from input/output message

prefix. This is an entry parameter only.

+32 Address of state data, available from input/output message prefix. This is an
entry parameter only.

+36 Address of user data, available from input/output message prefix. This area can
be used to return modified user data, but the length of user data cannot be
changed. The format of the user data is:
0-1 Length of the user data that follows (including this length field). This
user exit cannot change the length of user data.
2 User data.

Table 90. OTMA Input/Output Edit user exit parameter list (continued)

Offset Contents

+40 Address of the output parameter list. The output parameter list is used to return
information to IMS and is defined as follows:
+00 8-byte LTERM override. This field is used to override the destination
override specified in the state data.
+08 8-byte map name override. This field is used to override the map name
specified in the state data.

+16
Flag Description
X'80' Wait for write for CM1 Fast Path transaction
X'00' Request check write for CM1 Fast Path transaction.
+17 Reserved.
+44 Address of the SCD.

Contents of registers at exit

Before returning to IMS, the user exit must restore all registers, except register 15,
which must contain one of the following return codes:

Return code Meaning

0 Processing continues.

4 Discard the message segment.

8 Terminate processing for the transaction.
12 Destination is invalid.

Status AX will be returned to the application program and a 67D0 log
record will be issued indicating error return code X'24".

IMS treats any other return code as if it were 0, and processing continues.
Related reference:

[“Routine binding restrictions” on page 9|

[“IMS standard user exit parameter list” on page 5|

OTMA User Data Formatting exit routine (DFSYDRUO0)

The OTMA User Data Formatting exit routine can determine and change the final
destination of OTMA messages. The DESYDRUO exit routine can also format the
User Prefix section of an OTMA asynchronous output message.

The DFSYDRUO exit routine can change the final destination of OTMA messages
by specifying OTMA member names, transaction pipe (Tpipe) names, or names of
remote IMS systems.

You can specify OTMA C/I to use the HOLDQ when asynchronous output is
created before the OTMA C/I client has established via client-bid. This is optional,
as any queued output is moved by OTMA to the HOLDQ once the OTMA C/I
client has connected and specified it is HOLDQ capable.

You can use the OTMA destination descriptor to avoid coding this user exit. See

DFSYDTx in IMS Version 13 System Definition for full details on specifying OTMA
descriptors.

Chapter 3. Transaction Manager exit routines 251

252

Exit Routines

Subsections:
* [“About this routine”]

+ [“Communicating with IMS” on page 253|

s |[“Error conditions” on page 25|

About this routine

The following rules apply for this exit routine:
* This routine is optional.

* This routine is not called if the destination is an IMS scheduler message block
(SMB) name.

* This routine cannot override the originating LTERM name.
* This routine can only set the final destination once.

If output is routed from one OTMA client to another, that client cannot use its
own Destination Resolution exit routine to set a different final destination.

Recommendation: Within a shared-queues group, ensure that the DFSYDRUO exit
routine is the same for both front-end and back-end IMS systems. If these exit
routines differ on one or more back-end IMS systems, asynchronous output might
be sent to different destinations, depending on which back-end IMS system
processed the input.

An OTMA client should not use a transaction name as a transaction pipe name (or
routing key) because of potential conflict with the SMB name.

In a single IMS, multiple OTMA Destination Resolution exit routines are allowed.
To display the DFSYDRUO exit routine associated with an OTMA client, issue the
/DISPLAY TMEMBER command.

IMS identifies the OTMA User Data Formatting exit routine for an OTMA client by
searching, in the order listed, the following;:

1. The exit routine specified on the client-bid call
2. The OTMA client descriptor
3. The default exit routine name, DFSYDRUQ, if it exists

The exit routine specified on the client-bid call overrides the OTMA descriptor. The
OTMA descriptor overrides the default exit routine name. If the default exit
routine name does not exist, the OTMA User Data Formatting exit routine is not
used.

The following table shows the attributes of the OTMA User Data Formatting exit
routine.

Table 91. OTMA User Data Formatting exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention Different clients can have different exit routine names, or the clients
can all use the default exit routine name of DFSYDRUO.

Table 91. OTMA User Data Formatting exit routine attributes (continued)

Attribute Description

Binding The OTMA User Data Formatting exit routine must be reentrant.

The OTMA User Data Formatting exit routine must be included in
an authorized library in the JOBLIB, STEPLIB, or LINKLIST library
concatenated in front of the IMS.SDFSRESL. This exit routine is
optional.

Including the routine No special steps are required to include this routine.

IMS callable services This exit routine is eligible to use IMS callable services.

Sample routine IMS.ADFSSMPL (member name DFSYDRUO).
location

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the exit routine.

Contents of registers at entry

At entry, the exit routine must save all registers using the provided save area. The
registers contain the following information:

Register Contents

R1 Address of the [“IMS standard user exit parameter list” on page 5|

R13 Save area address (points to a single SAVEAREA, not a SAVEAREA
chain)

R14 Return address

R15 Entry point address

This exit routine uses the Version 6 standard exit parameter list. The address of the
work area that is passed to this exit routine in SXPLAWRK can be different each
time that this exit routine is called.

The following table describes the contents of the OTMA User Data Formatting exit
routine parameter list. The address of this parameter list is in the standard exit
parameter list field SXPLFSPL.

Table 92. Contents of the OTMA User Data Formatting exit routine parameter list.

Offset Contents

(decimal)

+0 Name of the originating LTERM or OTMA transaction pipe.

+8 Destination name. If the destination is for OTMA and no Tpipe name is

specified in the output area, this field is used as the name of the Tpipe to
queue and deliver the output message.

When a matching destination descriptor with EXIT=YES is found and the
DFSYPRXO0 exit routine either sets RC=100 or does not exist, this field
contains the TPIPE name that is specified in the destination descriptor.

+16 Transaction name or program name.

Chapter 3. Transaction Manager exit routines 253

254

Exit Routines

Table 92. Contents of the OTMA User Data Formatting exit routine parameter
list (continued).

Offset Contents
(decimal)
+24 Flag byte:

X'80' An OTMA prefix exists.

X'40' The exit routine can override the client name.

X'20' OTMA message submitted by OTMA client with super member
support. The OTMA state data pointed to by the input parameter list
has the 1-4 bytes super member name at offset X'E' from the
beginning of the state data.

X'10' The exit routine is called to process a late response to a synchronous
program switch request. If the X'80' flag is also set, the LTERM or
TPIPE name and input client member name in the parameter list are
propagated from the original OTMA transaction that initiated the
ICAL call.

X'08' The destination name matches an entry in the OTMA destination
descriptor for IMS Connect.

X'04' The destination name matches an entry in the OTMA destination
descriptor for IBM MQ.

X'02' The destination name matches an entry in the OTMA destination
descriptor for a non-OTMA destination.

+25 Synchronization level.
+26 Destination type flag:

X'80' Transaction pipe exists for the client.

X'40' LTERM exists in IMS (non-maintenenced versions).

X'20' LU 6.2 descriptor exists.

X'10' ETO is available.

X'08' Client is active.

X'o4' Tpipe trace is active.

+27 A 1-byte field that indicates the version of the exit routine parameter list:

X'80' If set, indicates that at offset +100, the parameter list includes the
address of the information from the OTMA destination descriptor
for IBM MQ or IMS Connect.

X'40' If set, indicates that at offset +104, the parameter list includes the
original CHNG call value.

+28 User ID.
+36 Group name.
+44 The 16-byte name of the destination OTMA client.

When a matching descriptor with EXIT=YES is found and the DFSYPRXO exit

routine either sets RC=100 or does not exist, this field contains the tmember

name that is specified in the destination descriptor.
+60 Address of the PST block.
+64 Name of the originating OTMA client, if the message originated from an

OTMA client; otherwise zeros.

Table 92. Contents of the OTMA User Data Formatting exit routine parameter
list (continued).

Offset
(decimal)

Contents

+80

Address of the input Message Control Information prefix section of the
OTMA message.

If the exit is called to process a synchronous program switch response and
the original transaction is from OTMA, this message control information is
generated by IMS. The original message prefix from the OTMA client is not
propagated to the exit routine. However, the LTERM or TPIPE name and the
input client member name in this parameter list are from the original OTMA
message.

+84

Address of the input State Data prefix section of the OTMA message.

Check the prefix flag in the Message Control Information section to
determine the specific type of State Data section specified.

If the OTMA super member feature is used, the super member name is
located at offset +14 from the beginning of the state data. See the
TMAMSPNM field of the DFSYMSG macro.

If the exit is called to process a synchronous program switch response and
the original transaction is from OTMA, this state data information is
generated by IMS. The state data prefix from the OTMA client is not
propagated to the exit routine. However, the correlator field (TMAMHCOR),
the LTERM or TPIPE name, and the input client member name in this
parameter list are from the original OTMA message.

+88

Address of the input User Data prefix section of the OTMA message.

The area is also used to return new or modified user data, up to a maximum
of 1024 bytes.

+92

Address of the SCD block.

+96

Address of the output parameter list. This parameter list is used to return
information to IMS. The contents of the output parameter list are shown in
the following table.

+100

Address of the routing information defined in the OTMA destination
descriptor for IBM MQ and IMS Connect. If the destination name matches a
non-OTMA destination descriptor, or the name does not match any entry in
the OTMA destination descriptor, this field contains 0.

See the TMAMICON_DESCRIPTOR DSECT mapping for the layout of the
routing information for an IMS Connect destination.

See the TMAMMOQS_DESCRIPTOR DSECT mapping for the layout of the
routing information for an IBM MQ destination.

+104

The 8-byte destination name from the original CHNG call. If the name is less
than 8-bytes, it is leftjustified and padded with blanks. This is an entry
parameter only.

Contents of the output parameter list

The following table shows the contents of the output parameters list.

Chapter 3. Transaction Manager exit routines 255

256

Exit Routines

Table 93. Contents of the output parameter list

Offset (decimal)

Contents

+0

The 16-byte client override name, if any.

This field is used when the destination is a
different OTMA client. A return code of 8
must also be set.

+16

Output flag.

X'80' If this flag is set, a synchronized
transaction pipe must be created.
However, if the OTMASP
initialization parameter is set to Y in
the DFSPBxxx PROCLIB member,
the synchronized transaction pipe is
always created. This flag can be set

only if the return code is 0.

X'40' If this flag is set, the message is
persistent and a recoverable
sequence number must be set. This
flag is valid only if a synchronized

transaction pipe is specified.

X'20' If this flag is set, this ALT_PCB
output is for an OTMA hold queue
capable client, such as IMS Connect.
This is an optional flag that is used

only in the following scenario:

In the shared queues back-end IMS,
the first call to DRU exit is to
process a message from a
non-OTMA client instead of an
OTMA hold queue capable client.

If this flag is set, OTMA ensures that
the output is always saved in a hold
queue. However, without this flag
set in this scenario, the output is
stored in the regular tpipe queue
instead of in the hold queue.

X'10' If set, indicates that this ALT-PCB
output message is to be sent to a
remote IMS system for processing
by way of an IMS Connect to IMS
Connect TCP/IP connection. You
must build a user data prefix that
includes at least the names of both
the destination remote IMS system
and the remote IMS Connect that
supports the remote IMS system.

+17

Reserved (3 bytes).

+20

The 8-byte Tpipe name, if any. This field
specifies the name of the Tpipe that is used
for queuing and transmitting the output
message. If it contains all blanks, the
destination name is used for the Tpipe name.
(This field is valid only when the return code
is 0.)

Table 93. Contents of the output parameter list (continued)

Offset (decimal) Contents

+28 The 4-byte super member name.

This field specifies the name of the super
member and is used only in the following
scenario:

In the shared queues back-end IMS, the first
call to DRU exit is to process a message from
a non-OTMA client instead of an OTMA hold
queue capable client. And, the output is
destined to a hold queue capable client
which supports super member.

This field is valid only when the return code
of DRU exit is set to 0 and the output flag
byte is set to X'20".

Contents of registers at exit

Before returning to IMS, the exit routine must restore all registers, except register
15, which must contain one of the following return codes:

Return code Meaning
X'00' Destination is the OTMA TPIPE.

When the destination client name is from a matching destination
descriptor with EXIT=YES, the descriptor defines the default destination
for output message. However, if any value in the output parameter list is
set, the user exit then determines the output destination instead of the

descriptor.
X'04' Destination is a non-OTMA LTERM.
X'08' Destination is a different OTMA client (need to specify). The new client

DRUO exit will be invoked.

Note: The OTMA Destination Resolution user exit (OTMAYPRX) can
make all routing decisions by setting OTMAMD-=Y in the DFSPBXXX
PROCLIB member.

x'oC' Destination is invalid. AL status on CHNG call. Can also be used to
indicate any error in module processing.

X'64' Use the routing information from the destination descriptor without
modification.
X'100' The matching OTMA destination descriptor determines both the

destination and the user data prefix in the output message. This return
code is accepted when EXIT=YES is specified in the matching OTMA
destination descriptor.

X101 The matching OTMA destination descriptor determines the destination
only. The DFSYDRUO exit routine determines the user data prefix in the
output message. Any value in the output parameter list are ignored.

Any other return code causes IMS to generate a DF523701 message.

Chapter 3. Transaction Manager exit routines 257

Error conditions

An Al status code will be returned to the application program when the following
errors occur:

* Incorrect 16-byte OTMA client override name is specified. The client name
cannot contain all blanks or zeroes. If the client name is shorter than 16 bytes, it
must be padded with blanks.

* The length of modified OTMA user data is over 1K.
* Incorrect return code is specified for the exit.
Related reference:

[‘Routine binding restrictions” on page 9|

[“IMS standard user exit parameter list” on page 5|

| OTMA Resume TPIPE Security user exit (OTMARTUX)

[The OTMA Resume TPIPE Security user exit (OTMARTUX) provides one of two
[possible layers of security for RESUME TPIPE calls that are issued to retrieve
[messages queued to the OTMA asynchronous hold queue.

This topic contains Product-sensitive Programming Interface information.

This level of security authorization interfaces with SAF and RACF only if the
default resource class, RIMS, is defined to RACF. IMS installations can use this exit
routine to authorize both the user ID and the transaction pipe name that is in the
Resume TPIPE call message, to receive the output contained in the Resume TPIPE
call message, in order to receive the output messages before any of these messages
are sent to an OTMA client.

| If the OTMARTUX user exit is defined to IMS, it is invoked, regardless of whether
[the first level authorization procedure is performed.

Subsections:
* [“About this routine”

* [“Communicating with IMS” on page 259

About this routine

The OTMA Resume TPIPE Security exit is invoked when a RESUME TPIPE call is
received by OTMA if the user exit exists in the appropriate library. There are two
security procedures with regard to TPIPE name and user ID authorization:

* RACEF security procedure

Verifies the existence of RACF resource name, RIMS or Rxxxxxxx, where xxxxxxx
is the value from the RCLASS EXEC parameter, the DFSPBxxx PROCLIB
member or the DFSDCxxx PROCLIB member, and RACF authorization of the
Resume TPIPE name and user ID combination.

* User exit security procedure

[— Invokes the OTMARTUX user exit. Your exit might take the result of the
I RACEF security procedure, override its result, or add more restrictive security
[rules.

[If authorization is successful, output messages in the hold queue are returned to
| the OTMA client. A rejection message (NAK) of the RESUME TPIPE call is sent to the

258 Exit Routines

client if authorization fails. If the user exit is not modified (that is, invoked as a
passthru), the value of the sense code and the reason code in the message prefix
remains the same. The return code in register R15 and the reason code in register
RO are the values from the first security procedure if performed. If not, register R15
and register RO should contain zeroes. If the user exit is modified, you can
complement the RACF security procedure or ignore it.

Attributes of the routine

The exit routine can serve the following functions for OTMA input and output
messages:

* Override the results of the SAF and RACF interaction.

* Function as stand-alone resume transaction pipe security.

* Complement or supplement the security that is defined to RACFE.
* Be invoked as a passthru module.

The following table shows the attributes of the OTMA Resume TPIPE Security exit
routine.

Table 94. OTMA Resume TPIPE Security exit routine attributes

Attribute

Description

IMS environments

DB/DC, DCCTL.

Naming convention

You can name this exit routine DFSYRTUX and link it into a library that is included in
the STEPLIB concatenation.

Alternatively, you can define one or more exit routine modules with the EXITDEF
parameter of the USER_EXITS section of the DFSDFxxx member of the IMS.PROCLIB
data set. The routines are called in the order that they are listed in the parameter.

Binding

The OTMA Resume TPIPE Security exit routine must be reentrant.

IMS callable services

This exit routine is eligible for callable services. To use IMS callable services with this
exit routine, examine the value of the SXPLATOK field in the |“IMS standard user exit|
[parameter list” on page 5}

* If SXPLATOK is zero, you cannot use IMS callable services with this exit routine.

¢ If SXPLATOK is non-zero, the value is the callable services token for this exit
routine. You can use the 256-byte work area addressed by the SXPLAWRK field to
call DFSCSIFO.

Including the routine

The module or modules must be included in an authorized library in the JOBLIB,
STEPLIB, or LINKLIST concatenation. No additional steps are necessary to use a single
exit routine that is named DFSYRTUX. If you use want the exit to be refreshable,
specify EXITDEF=(TYPE=OTMARTUX,EXIT=(exit_names)) in the EXITDEF parameter
of the USER_EXITS section of the DFSDFxxx member of the IMS.PROCLIB data set.

Sample routine location

IMS.SDFSSMPL (member name DFSYRTUX).

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the exit routine.

Contents of registers at entry

Normal linkage convention is used on entry and exit to and from this routine.

Chapter 3. Transaction Manager exit routines 259

260

Exit Routines

Register Contents

RO Reason code

R1 Address of the ['IMS standard user exit parameter list” on page 5|
R13 Save area address

R14 Return address

R15 Entry point address

Standard exit parameter list

This exit routine uses the Version 6 standard exit parameter list. The address of the
work area that is passed to this exit routine in SXPLAWRK can be different each
time that this exit routine is called.

If your OTMARTUX user exit can be called in an enhanced user exit environment,
additional user exit routines might be called after your routine. When your user
exit routine finds a transaction upon which to act, it can set SXPL_CALLNXTN in
the byte that SXPLCNXT points to. This tells IMS to not call additional exit
routines.

Contents of registers at exit

Return code Meaning

0 Authorization is successful. TPIPE protected.

4 Authorization is successful. TPIPE unprotected. all users/groups allowed
access

8 Authorization Failure. See list of reason codes below under RTUPRSNC.

If register R15 is X'04', the sense code in the message prefix TMAMCSNC is X'33".
This sense code indicates that there must be a reason code in the message prefix
TMAMCRSC. The applicable reason codes are listed in the following table under
RTUPRSNC.

The following table describes the parameter list (DFSYRTUP) for the OTMA
Resume TPIPE Security exit routine.

Table 95. Contents of the interface, DFSYRTUP

Label Description

RTUPVERS Version number of the parameter list.

RTUPTPNM Address of the TPIPE name.

RTUPUSID Address of the user ID. If this address is zero, there is no user ID
(user ID is provided by the client).

RTUPSENC Address of the sense code. The sense code for a failure in Resume

TPIPE authorization is X'33".

Table 95. Contents of the interface, DFSYRTUP (continued)
Label Description

RTUPRSNC Address of the reason code. The following reason codes are possible:
* X'01': Security header was not provided in the message prefix
¢ X'02": User ID was not provided in the message prefix
¢ X'03": Group ID was not provided in the message prefix
* X'04" User token was not provided in the message prefix
* X'05'": TPIPE name was not provided in the message prefix
* X'06": RACF system failure
* X'07': RACF security violation; no profile was defined for the user
* X'08": User ID or Group ID is not authorized

RTUPRRET Address of the return code from RACE. If this address is zero, the
SAF parameter area does not exist.

RTUPRREA Address of the reason code from RACE. If this address is zero, the
SAF parameter area does not exist.

RTUPSFRC Address of the return code from SAF. If this address is zero, the SAF
parameter area does not exist.

RTUPSFRS Address of the reason code from SAF. If this address is zero, the SAF
parameter area does not exist.

RTUPSAFP Address of SAF.

RTUPAMCI Address of MCI.

RTUPASTD Address of the prefix for state data.

RTUPASEC Address of the prefix for security data. If this address is zero, there is
no security data section in the prefix provided by the client.

RTUPINRC Return code at entry to the exit routine.

RTUPINRS Reason code at entry to the exit routine.

Related reference:

[“Routine binding restrictions” on page 9|

Physical Terminal (Input) edit routine (DFSPIXTO)

The Physical Terminal (Input) edit routine (DFSPIXTO0) user-written edit routine
gains control before the IMS Basic Edit routine. It is used to accept, modify, and
cancel segments and messages.

This topic contains Product-sensitive Programming Interface information.

This chapter describes the Physical Terminal (Input) Edit routine. This user-written
edit routine gains control before the IMS Basic Edit routine. If the input message is
processed by MFS, the Physical Terminal (Input) edit routine is not called. This edit
routine is called only when inserted from a terminal; it is not called when the
message is inserted by a program-to-program switch. This edit routine is not called
for LU 6.2 terminal input.

Subsections:

+ [“About this routine” on page 262|

+ [“Communicating with IMS” on page 263|

Chapter 3. Transaction Manager exit routines 261

262

Exit Routines

About this routine

Message segments are passed one at a time to the Physical Terminal Input edit
routine, and the edit routine can handle them in one of the following ways:

* Accept the segment and release it for further editing by the IMS basic edit
routine.

* Modify the segment and release it for further editing by the IMS basic edit
routine. Examples of segment modifications that can be made are changing the
transaction code and reformatting the message text. Make any required
modifications, because IMS has not yet performed destination or security
checking.

* Cancel the segment.

* Cancel the message and request that the terminal operator be notified
accordingly.

* Cancel the message and request that a specific message from the User Message
Table be sent to the terminal operator.

The Physical Terminal Input edit routine requests these actions by specifying
different return codes that are interpreted and acted on by IMS.

The following table shows the attributes of Physical Terminal (Input) edit routine.

Table 96. Physical terminal (input) edit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must provide 1-byte to 8-byte name.

Binding
This routine must be reentrant.

Including the routine When the routine is specified in the EDIT parameter of the
LINEGRP or TYPE macro, stage 2 system definition will contain an
ORDER DFSPIXTO statement and an INCLUDE
USERLIB(DFSPIXTO0) statement, which will bind the routine into
DFSVNUCXx.

If the exit is only defined on an ETO descriptor, and not on any
static terminal LINEGRP or TYPE macros, then it will be loaded
dynamically if it is included into an authorized library in the
JOBLIB, STEPLIB, or LINKLIST library concatenated in front of the
IMS.SDFSRESL.

IMS callable services
To use IMS callable services with this routine, you must issue an

initialization call (DFSCSIIO) to obtain the callable service token and
a parameter list in which to build the function-specific parameter
list for the desired callable service. Use the ECB found in register 9
for the DFSCSIIO call.

This exit is automatically linked to DFSCSIO0 by IMS. No additional
linking is required to use IMS callable services.

Sample routine IMS.ADFSSMPL.

location Note: The sample exit routine is not reentrant. You must assemble
it with PARM='OBJECT,NODECK,NORENT" and link-edit it with
PARM='NCAL,LET,LIST,XREF,SIZE(880K,64k)".

Bypassing Basic Edit

If the IMS application program supplies DFS.EDTN in the MOD name parameter
for the output message, the IMS basic edit routine will be bypassed except for
transaction code and password validation.

Related Reading: For further information, see “MFS Bypass for the 3270 or SLU 2”
in the “Application Programming Using MFS” chapter in IMS Version 13
Application Programming APISs.

The Physical Terminal Input edit routine must position the transaction code, and
optionally the password, if the terminal is not operating in conversational or preset
destination mode. The exit routine should detect errors and return a message to
the terminal operator if any errors are found.

IMS maintains a flag in the CTB (bit CTB6TRNI in the CTBFLAGS field) to indicate
when 3270 MFS bypass, nonconversational, no preset destination, and first segment
exist on input to the Physical Terminal Input exit routine. This flag notifies the
Physical Terminal Input exit routine that it can add a minimum of 1 and a
maximum of 18 bytes to the front of the message segment for a transaction code
and optional password. The minimum of 1 byte to be added to the front of the
message segment consists of a 1-byte transaction code. If NOBLANK is not
specified at system definition, a minimum of 2 bytes is added to the front of the
message segment, consisting of a 1-byte transaction code and 1 blank, which is
necessary as a separator. To add a transaction code and optional password, the exit
routine can put a return code of 16 in register 15 and set register 1 to point to an
LLZZ field, followed by the data to be added.

Specifying the routine

The Physical Terminal Input exit routine (DFSPIXTO0) is specified on the LINEGRP
or TYPE macros as part of the EDIT parameter. If you are using both the Physical
Terminal Input and Output edit routines, you must specify (YES,YES) on the EDIT
parameter of the TERMINAL macro or Extended Terminal Option (ETO) logon
descriptor.

The CSECT name for this edit routine is the name specified in the TYPE or
LINEGRP macro statement for which this edit routine applies. You must also
specify YES in the EDIT parameter of the TERMINAL macro statement or ETO
logon descriptor.

The Global Physical Terminal Input edit routine (DFSGPIX0) performs the same
functions as this edit routine but does not require system definition.

Related Reading:

For information on coding the LINEGRP, TYPE, and TERMINAL macros, see
IMS Version 13 System Definition.

For more information on the ETO feature, see IMS Version 13 Communications
and Connections.

Communicating with IMS
IMS uses the entry and exit registers to communicate with the exit routine.

Contents of registers on entry

Chapter 3. Transaction Manager exit routines 263

264

Exit Routines

On entry to the edit routine, all registers must be saved using the save area
provided. The registers contain the following;:

Register Contents

1 Address of the input message segment buffer. IMS editing has not been
performed. The first two bytes of the buffer contain the segment length
(binary length includes the 4-byte overhead). The third and fourth bytes of
the buffer are binary zeros. The message text begins in the fifth byte of the
buffer.

If the device was defined with MFS support but this message is not being
processed by MFS, the first segment of the message has backspace error
correction performed before entry to this edit routine. If escape (**) was
entered by the terminal operator, the first two data bytes have been changed
to binary zeros.

7 Address of CTB for the physical terminal from which the message was
entered.

9 Address of CLB for the physical terminal from which the message was
entered.

13 Address of save area. The first three words must not be changed.

14 Return address to IMS.

15 Entry point of edit routine.

The edit routine you supply can edit the message segment in the buffer pointed to
by register 1.

You can reduce the length of the message segment to any size by replacing the
length in the buffer with the appropriate value. The length field must appear in the
same place at exit as at entry, and bytes 3 and 4 must not be changed.

Contents of registers on exit

On return to IMS, all registers must be restored except for register 1, which
contains a message number if register 15 contains a value of 12; otherwise it is
ignored. Register 15 contains one of the following return codes:

Return code Meaning

00 Segment is processed normally.

04 Segment is canceled.

08 Message is canceled and the terminal operator is notified.

12 Message is canceled, and the message identified by register 1 is sent to the
terminal.

16 Insert the transaction code and optional password following the LLZZ
pointed to by register 1. This return code is only valid for 3270 MFS bypass
terminals.

When the entering terminal is not a 3270 MFS bypass terminal, and the
physical terminal input exit gives a return code of 16, IMS issues an error
message, and the transaction code is not inserted in the message.

Any other return code causes the message to be canceled and the terminal operator
to be notified.

Related reference:

[“Routine binding restrictions” on page 9|
[“Initialization of IMS callable services (DFSCSII0)” on page 17
[‘Global Physical Terminal (Input) edit routine (DFSGPIX0)” on page 187

Sample Physical Terminal (Input) edit routine (DFSPIXTO)

Use the Sample Physical Terminal (Input) edit routine (DFSPIXTO) to test input
message segments.

This routine performs the following functions:

* Scans the input message segment for an expected format (TESTEXIT)

* Generates return codes (XX) based on the input request (TESTEXIT,XX)
* Verifies the user message number (YYY) if specified (TESTEXIT,XX,YYY)

* Replaces TESTEXIT with ERROR if return code or message number is invalid
and passes the segment to IMS (return code 0)

Physical Terminal (Output) edit routine (DFSCTTOO)

The Physical Terminal (Output) edit routine enables you to edit output messages
immediately before they are sent to a terminal.

This topic contains Product-sensitive Programming Interface information.

Subsections:
* [“About this routine”]

* [“Communicating with IMS” on page 267

About this routine

During system definition, you specify which physical terminals or set of VTAM
nodes use the defined edit routine for output editing. You can use these edit
routines to meet your special editing needs associated with different
communication terminals.

An output message can be processed by 1) a Physical Terminal Output edit routine
and the IMS Basic Edit routine or 2) a Physical Terminal Output edit routine and
MFS (Message Format Service). Output editing is performed in this sequence.
Therefore, the input to the edit routine is the output of the application program,
and the output of the edit routine is the input to MFS or the IMS Basic Edit
routine.

You can also specify that this edit routine cancel an output message so that it is not
delivered to the terminal. Instead, the routine can optionally request that an error
message be sent in place of the canceled message.

The following criteria apply to message cancellation:
* Output messages can be canceled if they are destined for VTAM terminals only.

* Conversational output and IMS in-core system messages cannot be canceled.
Such cancellation requests from the exit are ignored, and the output message is
sent.

* The request to cancel must be made for the first segment of a message. Requests
for non-first segments of a message to be canceled are ignored, causing normal
output processing to continue for the message.

Chapter 3. Transaction Manager exit routines 265

266

Exit Routines

* This routine is not activated for messages going across an MSC VTAM link, so
these messages cannot be canceled.

The following table shows the attributes of the Physical Terminal (Output) edit
routine.

Table 97. Physical terminal (output) edit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must provide a 1-byte to 8-byte name.

Binding This routine must be reentrant.

Including the routine When the routine is specified in the EDIT parameter of the
LINEGRP or TYPE macro, stage 2 system definition will contain an
ORDER DFSCTTOO statement and an INCLUDE
USERLIB(DFSCTTOO) statement, which will bind the routine into
DFSVNUCXx.

If the exit is only defined on an ETO descriptor, and not on any
static terminal LINEGRP or TYPE macros, then it will be loaded
dynamically if it is included into an authorized library in the
JOBLIB, STEPLIB, or LINKLIST library concatenated in front of the
IMS.SDFSRESL.

IMS callable services
To use IMS callable services with this routine, you must issue an

initialization call (DFSCSIIO) to obtain the callable service token and
a parameter list in which to build the function-specific parameter
list for the desired callable service. Use the ECB found in register 9
for the DFSCSIIO call.

If this exit routine is used exclusively by static terminals, this exit is
included in the IMS nucleus and is therefore automatically linked to
DFSCSI00 by IMS. No additional linking is required to use IMS
callable services.

If this exit routine is used exclusively by ETO terminals, this exit
must exist standalone in SDFSRESL and an additional link is
required to use IMS callable services. If you do not perform this
additional link, the IMS control region will abnormally terminate
with a SOC1 code.

If this exit routine is used by both static and ETO terminals, then
this exit is automatically linked to DFSCSIO0 in the same manner as
exits that are used by only static terminals.

Sample routine IMS.ADFSSMPL.
location

Specifying the routine

The Physical Terminal Output edit routine (DFSCTTOO) is specified on the
LINEGRP or TYPE macro as part of the EDIT= parameter. If you are using both
the Physical Terminal Input and Output edit routines, you must specify (YES,YES)
on the EDIT= parameter of the TERMINAL macro.

Related Reading: For information on coding the LINEGRP, TYPE, and TERMINAL
macros, see the section on “Macros” in IMS Version 13 System Definition.

Communicating with IMS
IMS uses the entry and exit registers to communicate with the exit routine.
Contents of registers on entry

On entry, the edit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 The address of a buffer containing the output message segment to be edited.
The first two bytes are a binary count of the message segment length. The
second two bytes are control information provided by the application
program that constructed the message. The text of the output message starts
in byte 5. The count includes the first four bytes in length.

This register contains zeros if flag CTBAEOM in field CTBACTL of the CTB
is on, indicating end-of-message. Any exit that modifies the contents of the
buffer passed in register 1 should test for an end-of-message condition.

2 The address of an 8-byte field that contains either binary zeros or the user ID
associated with the output message. The contents of the user ID field are
described in IMS Version 13 Application Programming in the section on “I/O
PCB Masks” in “Defining Application Program Elements”.

The user ID in the output message can be compared to the user ID in the
CTB (CTBUSID) to determine editing requirements. The user ID is only
checked on the first segment of a multisegment message. DFSCTTOO uses
CTBAEOM and ENTSTAT to determine which segment is being processed.

3 Address of storage area. For details of the format of this storage area, see the
prolog in the sample routine (IMS.ADFSSRC; member name is DFSCTTOO).

7 CTB address for the destination terminal.

CTBFLAGC field: CTBCDSDT bit on means that session restart has occurred
for this terminal. If the edit routine is called with the CTBCDSDT on, the edit
can assume that this is the first application output message selected for
output processing since the session has restarted (provided that the bit is
turned off by the edit routine after the first message is processed).

IMS turns this bit on every time SDT (Start Data Traffic) for VTAM occurs.
The edit routine is responsible for resetting this flag after it receives the first
message.

CTBFLAGH4 field: CTB4RESP bit on means that the terminal is in response
mode. After a system restart, IMS resets CTB4RESP.

9 Address of CLB. This block starts with a DECB. The content of the
DECAREA field in the DECB is equivalent to the content of register 1.

11 Address of SCD.

13 Address of save area. The edit routine must not change the first three words.
14 Return address to IMS.
15 Entry point of edit routine.

The output message segment that your edit routine returns to IMS from must be
pointed to by the contents of the DECAREA field of the DECB. The first four bytes
must be in a format as received at input with the binary count updated to the
edited message segment length inclusive of the four bytes of prefix.

Chapter 3. Transaction Manager exit routines 267

268

Exit Routines

Contents of registers on exit (if no cancel request)

Before returning to IMS, the edit routine must restore all registers. If you are
editing the message in place, you can increase its length by a maximum of ten
bytes.

When the last segment of a message has been edited, IMS returns control to the
routine. The routine has no new message data to edit.

Whenever a Physical Terminal Output edit routine is called, the CTB is in register
7. A 1-byte field, CTBACTK, in the CTB contains a 1 in the second bit position if
this entry to the routine is for end of message (EOM).

Contents of registers on exit (if cancel request)

On return, registers must be restored except for register 15, which must contain the
following return code.

Return code Meaning

0 Message canceled without error message DFS3489. The buffer length must
be set to zero.

4 Message canceled. The buffer length must be set to zero.

All registers are not restored when a cancel request is made and the edit requests
that IMS send an error message DFS3489 to the terminal for a non-response-mode
message.

In order for IMS to cancel an output message before it is sent to the terminal, the
Physical Terminal Output edit routine must make a request when the first segment
of an output message is presented to it. The edit makes this request by setting the
length of the first segment to zero in the buffer pointed to by DECAREA.

If the edit routine wants IMS to send error message DFS3489 in place of the
canceled message, it places a return code of 4 in register 15 (in addition to zeroing
the length field of the first segment).

If the terminal is in response mode, IMS always replaces the canceled message
with error message DFS3489. Across a system restart, response mode is reset.
Therefore, if an output message is canceled after the system restart, no error
message is sent.

If the terminal is not in response mode, the edit routine is not required to have
IMS send error message DFS3489. Nevertheless, it might be necessary to have IMS
send the error message to prevent a hang condition for certain device types that
are expecting a message.

Related Reading: For an explanation of error message DFS3489, see IMS Version 13
Messages and Codes, Volume 1: DFS Messages.

Related reference:

[“Links with your exit routine and DFSCSI00” on page 16
[“Initialization of IMS callable services (DFSCSII0)” on page 17|
[‘Routine binding restrictions” on page 9|

Sample Physical Terminal (Output) edit routine (DFSCTTOO0)

The Sample Physical Terminal (Output) edit routine (DFSCTTOO) shows how to
extend an output message and how to attach a prefix.

IMS callable services are used to get and release storage. This example applies to
single-segment or multisegment messages, and to as many devices as the edit
routine's table is assembled to handle. The default table size allows for five
devices, but can be changed by modifying the label NUMENTS. If the table
capacity is exceeded, an ABENDUS55 results. If the prefix had not increased the
message length by more than ten bytes, it could have been attached without the
creation of an additional buffer area.

Queue Space Notification exit routine (DFSQSPCO0/DFSQSSP0)

The Queue Space Notification exit routine (DFSQSPCO0) is activated and a message
is issued when a logical record is assigned to or released from a message queue
data set.

This topic contains Product-sensitive Programming Interface information.

This routine causes a message to be issued when one of following occurs:

* The number of records currently in use exceeds upper threshold percentage
value of the maximum number assignable before initiation of automatic
shutdown.

* The number of records currently in use falls below the lower threshold
percentage value of the same maximum.

IMS sets an upper threshold value of 75 percent, and a lower threshold value of 60
percent. You can modify these values by using the QTU and QTL parameters of
the IMS procedure.

QTU has a range of 2 percent through 100 percent, and QTL has a range of 1
percent through 99 percent.

The exit routine can also be called optionally when a BMP's unit of work is
completed.

In a shared-queues environment, the Queue Space Notification exit routine is
DFSQSSPO0. The following information is passed when this exit routine runs.

* The shared queue structure is in an overflow state.

* The destination queue in a shared-queues environment is in an overflow state.

Subsections:
* [“About this routine”|

* [“Restrictions” on page 272|

* [“Communicating with IMS” on page 272

About this routine

By using the SHUTDWN parameter of the MSGQUEUE macro, you can reserve a
number of records in each message queue data set. If the data set fills up with

unprocessed messages, the system automatically shuts down with an internal
CHECKPOINT DUMPQ.

Chapter 3. Transaction Manager exit routines 269

270

Exit Routines

If unprocessed messages overflow a message queue data set before the automatic
shutdown completes, a U0758 abend occurs.

This exit routine provides a warning before the automatic shutdown is initiated, so
you can reduce message queue buildup, possibly avoiding the automatic shutdown
and, most importantly, the U0758 abend.

You can replace the IMS-supplied exit routine with your own to establish your
own threshold algorithm or issue user messages, which can then be captured by
the AOI exit routine to reduce queue usage.

As an option, for certain units of work, you can modify this exit to find the
number of records currently in use by the calling task. You can also request
information that can be used to terminate the unit of work. For each application,
LU 6.2 conversation, or OTMA session, IMS maintains counts of short and long
message queue records (DRRNs) assigned, and supplies them to
DFSQSPC0/DFSQSSPO if this option is used.

If you use this option, the expanded parameter list contains an output field that
allows you to tell IMS that you want the unit of work stopped because one or both
of the counts have exceeded specified limits. Different count limits can be
established for different tasks.

For most program types, the record counts are reset when one of the following
occurs:

* A message is retrieved (GU call) from the message queues.
* A sync point occurs.
* A rollback occurs.

* The application terminates normally.

Exception: For non-message-driven BMPs, and for multiple-mode transactions
(MODE=MULT specified on the TRANSACT macro), the queue counts are not
reset until normal termination. If the unit of work is a DC transaction or
conversation the counts are not provided.

For LU 6.2 conversations, the record counts are reset for each new message.

For OTMA sessions, the record counts are reset:
* For each new incoming message.
* For each IMS conversational iteration.

* When MSC remote output is received at the original IMS. The original IMS will
then deliver the output to the OTMA client.

The exit routine terminates a unit of work in the following ways:

* For an application program, an 'A7' status code is returned to the application. If
the AIBTDLI call interface was used, the application also gets an AIB return
code (X'104') and a reason code (X'190"). If the application tries to insert a
message after the unit of work terminates or to a destination that is stopped, the
application immediately receives an 'A7' status code and the call is not
processed.

* For an LU 6.2 conversation, message DFS07771 is sent and the conversation is
deallocated.

* For an OTMA session, message DFS12891 is sent.

After the unit of work terminates, message queue records in use are released.

The sample exit routine DFSQSPCO0/DFSQSSP0 (IMS.ADFSSRC) describes how to
enable this option. Using this option creates some additional overhead from
building the expanded parameter list. The default for this option is NO.

The following table shows the attributes of the Queue Space Notification exit
routine.

Table 98. Queue space notification exit routine attributes

Attribute

Description

IMS environments

DB/DC, DCCTL.

Naming convention

You must name this exit routine DFSQSPCO (or DFSQSSP0 for shared queues).

Binding

This routine must be reentrant. It can be called in cross-memory mode.

DFSCSIO00 (callable services module) must be included in this load module if you plan
to use IMS callable services from this exit routine. An example of the bind control
statements is:

INCLUDE LOAD(DFSQSPCO) SPACE NOTIFY USER EXIT
INCLUDE LOAD(DFSCSIO00) IMS callable services
MODE AMODE (31) ,RMODE (ANY)

ENTRY DFSQSPCO

NAME DFSQSPCO(R)

Including the routine

DFSQSPCO is a separately linked composite module in the IMS.SDFSRESL. If you
write your own exit routine, it must be linked into IMS.SDFSRESL.

IMS callable services

To use callable services with this routine, you must issue an initialization call
(DFSCSIIO0) to obtain the callable service token and a parameter list in which to build
the function-specific parameter list for the desired callable service.

The IMS-provided version of DFSQSPC0/DFSQSSPO0 includes an example that uses
callable services to obtain working storage during an initialization call to
DFSQSPCO0/DFSQSSPO.

Use the ECB passed in parameter list QSPCECB for IMS callable services.

Sample routine location

IMS.ADFSSRC (member name DFSQSPCO or DFSQSSPO0).

The DFSPARM macro is in IMS.ADFSMAC (member name DFSPARM).

Exit routine call types

The following call types are recognized by the Queue Space Notification exit
routine. Some of the parameters that are passed to the exit routine vary with the
call type.

Call type Description

Initialization call

Application assigned DRRN (for example, a DL/I application)
LU 6.2 assigned DRRN

Free the DRRN

OTMA assigned DRRN

MSC DRRN ASSIGN CALL

RIS |G| W=

BMP unit of work completed (optional)

Chapter 3. Transaction Manager exit routines 271

Restrictions

The following restrictions apply to DFSQSPCO0/DFSQSSP0:

* z/0S services are unavailable to programs that are running in cross-memory
mode unless the service's documentation specifically states that it is available.

* Code running in cross-memory mode cannot issue any SVCs except ABEND.

Because this exit is called every time a message queue data set record is assigned
or released, the logic you add to this exit can have a negative effect on system
performance. IWAITs, time-consuming algorithms, and excessive use of IMS
callable services should be avoided.

If you want to issue user messages instead of IMS system messages DFS2013
through DFS2018, you must provide an exit that returns user message keys in
register 15. The value that is returned in register 15 is actually the negative of the
key in the user message table. In addition to returning the appropriate message
key in register 15, ensure that the message text is in the user-supplied message
table, DFSCMTUO.

Communicating with IMS

The queue space notification exit routine is called whenever a logical record is
assigned to or released from a message queue data set. A parameter list is passed
to the exit routine. Its contents depend on whether the user-provided
DFSQSPC0/DFSQSSPO takes advantage of the optional capabilities that are
provided by IMS. The IMS-provided DFSQSPC0/DFSQSSP0 does not use the
optional capabilities, although it does describe how they can be used.

To take advantage of the optional capabilities, you must modify
DFSQSPCO0/DFSQSSPO to recognize the initialization call type (Type 1). When the
call is made, if bit QSPCF2IN in the parameter list field QSPCFLG2 is turned on,
IMS will set a flag in the SCD. The SCD flag tells IMS to provide the expanded
parameter list to DFSQSPC0/DFSQSSPO0. To activate optional call type of BMP, set
bit QSPCE3BT in the parameter list field QSPCFLG3. This will set a flag in the
QSCD that tells IMS to call the exit when a BMP Unit of Work has completed. The
INIT call is made only during early IMS (Queue Manager) initialization to enable
the user exit to obtain working storage that is always to be available to DFSQSPCO0
through the parameter list.

User-provided versions of DFSQSPC0/DFSQSSP0 need not change if the message
record count capability is not used.

The parameter list is mapped by the macro DFSPARM. The parameter list has the
following parts:

1. Message queue data set in-use count and threshold status
¢ The number of records currently in use
The high-order byte of the in-use count is used as a flag byte.

¢ The maximum number of records assignable before shutdown (not provided
for shared queues)

The exit routine interrogates these values and sets the parameter flag and a
return code (register 15) based on their values. The return code is either zero
or an error message number.

2. Pointers to control blocks and thresholds
These fields are always passed to DFSQSPC0/DFSQSSPO:

272 Exit Routines

e Address of the SCD control block
* Address of the ECB (required for IMS callable services).
* Address of user exit's work area or zero

— During the initialization call to DFSQSPCO0/DFSQSSP0, you can use IMS
callable services to obtain working storage for your exit. The address that
you store in the parameter list is saved by IMS and returned to your exit
on every call. IMS only saves the address returned by the exit during the
initialization call. Addresses that are returned during other calls are
overlaid by the address that is returned from the initialization call, or by
zero if no address was returned.

— User-provided exit is responsible for obtaining the work area during the
initialization call to DFSQSPCO0/DFSQSSP0 and storing its address in the
parameter list.

* Upper and lower threshold limits (Same values as found in QSCDQTU and
QSCDQTL). The threshold values will not be set on a call type of 8.

* DFSQSSPO0 is passed the same fields as DFSQSPCO, except for the upper and
lower threshold limits.

The parameter list fields QSPCQTU and QSPCQTL contain the upper and
lower threshold values (DFSQSPCO only). The thresholds are either:

* IMS defaults (75 percent and 60 percent).
* Your default values specified in QTU and QTL in the DFSPBxxx member.
* QTU and QTL values specified in the IMS procedure.

3. Type of Call and other input/output flags

The following fields are only used while processing call types: 1, 2, 3, 5, 6, and
8. In all other cases, the call type is set to zero. For call type 8, only the call
type is set.

 Call type
* Assign/Free DRRN indicator
* Message Queue record count exceeded flag - set by exit
The following flags can be set if shared queues are active (DFSQSSP0):
* Shared queue structure is in an overflow state.
* Destination queue is in an overflow state.
4. Unit of work information

These fields are only used while processing a DL/I (Call Type 2) application,
an LU 6.2 (Call Type 3) terminal request, or an OTMA (Call Type 6) request:

* Accumulated counts of short and long message queue records assigned by
this unit of work

* Identification of the unit of work making the call:
For a DL/I application: TRAN name, PSB name, and Terminal Symbolic
For an LU 6.2 Terminal: LU name, TP name and length, Side name

For an OTMA client: Tpipe name, z/OS cross-system coupling facility
member name, and override LTERM name

5. Message destination name

The message destination name is used while processing Call types 2, 3, 5, and
6. If the destination name is not available at the time of the call, this field is set
to zero.

The IMS-supplied Queue Space Notification exit routine, which is found in
IMS.ADFSSRC, can be used as a guide in creating your own exit routine.

Chapter 3. Transaction Manager exit routines 273

274

Exit Routines

If you want to change the threshold notification algorithm, note the following
interface requirements.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

0 Data set indicator:
00 QBLKS data set or Call Type 8. For Call Type 8, there is no

data set indicator value to put in Register 0.

04 SMSGQ data set
08 LMSGQ data set

2 Address of parameter list

9 Address of ECB

10 Address of SCD

14 Return address to IMS

15 Entry point of exit routine

Description of parameters

The macro DFSPARM generates the DSECT for the parameter area passed to
DFSQSPCO0/DFSQSSPO0 by IMS. For more information, refer to the DFSPARM
macro included in IMS.ADFSMAC.

A pointer to the SCD is contained in the input field QSPCSCD as well as in
Register 10.

Recommendation: Get addressability to the SCD from the parameter list rather
than register 10.

Contents of registers on exit
Before returning to IMS, the exit routine must restore all registers except for

register 15. Register 15 must contain one of the following return codes, except for
call type 8, which does not check for a return code.

Return code Meaning

0 No message is issued

Message key Queue Manager issues a message
Negative User-defined message is sent

Related concepts:

[Chapter 1, “Guidelines for writing IMS exit routines,” on page 3|

[# [Recovery-related EXEC parameters for the control region (System Definition)|

Related reference:

[‘Routine binding restrictions” on page 9|
[“Initialization of IMS callable services (DFSCSII0)” on page 17|
[“User Message table (DFSCMTUO0)” on page 478|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_sdr64.htm#sdr64

Security Reverification exit routine (DFSCTSEO)

The Security Reverification exit routine (DFSCTSEQ) allows you to reevaluate
transaction authorization checking on the DL/I CHNG Call

Transaction Manager applications that use Multiple System Coupling (MSC),
CHNG calls, and AUTH calls on a remote IMS system can benefit from coding this
exit routine. By coding this exit routine, you can avoid a security failure that
occurs when RACF or a non-RACF security environment is called in a destination
MSC system by a user that is not signed on to that particular IMS system.

This routine is optional when IMS dynamically creates a security environment in a
remote IMS back-end system (or a local IMS system if the user has signed off) to
accomplish the RACF authorization check. You can control the creation of the
security environment by using the Build Security Environment user exit (BSEX).
IMS calls this routine, if available, to provide compatibility.

The IMS security exit routines do not need to be bound to the IMS nucleus, can
run in 31-bit storage, and can share a work storage area. The following security
exit routines have these attributes:

* Signon/off security exit routine (DFSCSGNO)

DFSCSGNO is called during IMS initialization to give the exit routine the chance
to acquire a work storage area. The exit routine passes the address back to IMS.
Then, IMS passes the address to the other security exit routines every time they
are called.

* Security Reverification exit routine (DFSCTSEOQ)
* Transaction Authorization exit routine (DFSCTRNO)

Subsections:
* [“About this routine”]

* [“Communicating with IMS” on page 276|

About this routine

This exit routine is an entry point in DESCTRNO. If you do not code this entry
point, IMS does not call it.

The following table shows the attributes of the Security Reverification exit routine.

Table 99. Security reverification exit routine attributes

Attribute Description
IMS environments DB/DC, DCCTL.
Naming convention You must name this exit routine DFSCTSEQ.

Chapter 3. Transaction Manager exit routines 275

Table 99. Security reverification exit routine attributes (continued)

Attribute

Description

Binding

DFSCTSEOQ can be bound to DFSCTRNO, or coded as an explicit part of DFSCTRNO. If
you code this entry point, it must have access to a table of valid user IDs, passwords,
and transactions associated with each valid user ID, or contain some algorithm to
derive this authorization information. For addressability, this table must reside in this
module, in the /SIGN ON exit (DFSCSGNO), or in the IMS nucleus.

In IMS Version 12 and earlier, the security exit routines must be bound to the IMS
nucleus because the SECURITY macro is included in the IMS nucleus. In IMS Version
13 and later, the SECURITY macro is not supported and the security exit routines can
be bound separately.

If the security exit routines are linked in one of the STEPLIB or LINKLIST libraries,
IMS loads the exit routine. There is no startup parameter to specify whether to load
the routines. Message DFS1937I is issued for every exit routine that is loaded into
31-bit storage.

If the exit routines cannot be linked separately or cannot use a common work area,
they must be linked in the following manner:

* If the CSECT of DFSCTSEQ is part of DFSCTRNO source, DFSCTSEQ must be linked
as an ALIAS of DFSCTRNO.

* If virtual address spaces are used to exchange data between DFSCSGNO,
DFSCTRNO, and DFSCTSEOQ, you must link DFSCTSEO and DFSCSGNO as ALIASs of
DFSCTRNO.

Including the routine

If DFSCTSEO is link edited to DFSCTRNQO, it is called on return from DFSCTRNO.

IMS callable services

To use callable services with this routine, you must do the following;:

* Issue an initialization call (DFSCSIIO) to obtain the callable service token and a
parameter list in which to build the function-specific parameter list for the desired
callable service.

* Use the ECB found in register 9 for the DFSCSIIO call.
+ Link DFSCSIO0 with your user exit routine.

Sample routine location

No sample is provided.

276

Exit Routines

Communicating with IMS

You can call the exit routine in the following environments:

If you are operating in a RACF environment and the RACF FRACHECK call
returns a valid return code (0 or 4), IMS immediately calls the exit routine
DFSCTRNO if DFSCTRNO exists. On returning from DFSCTRNO, regardless of its
return code, IMS immediately calls DFSCTSEQ if DFSCTSEO exists. This applies
to AUTH and CHNG calls only.

If you are operating in a non-RACF environment and DFSCTSEQ is coded as an
entry point, IMS calls this entry point following each call to DFSCTRNO if
DFSCTRNO exists. This applies to AUTH and CHNG calls only. IMS calls this
entry point regardless of the return code received from DFSCTRNO.

Whether you are operating in a RACF or non-RACF environment, DFSCTRNO
passes the return code directly to DFSCTSEQ in register 3.

Contents of registers on entry

On entry, the exit routine must save all registers using the save area provided. The
registers contain the following:

Register Contents
0 Address of the user ID from PST (PSTUSID)
1

Address of the password or zero

For AUTH call, address of GENERIC class

For TRAN call, address of TRAN class

For FIELD call, address of FIELD class

For DATABASE call, address of DATABASE class
For SEGMENT call, address of SEGMENT class
For OTHER call, address of OTHER class

2 Calling routine number as follows:

12 (X'0C)

DFSDLA30 for DFSCTSEQ only, CHNG call
32 (X209

DFSDLA30 for DFSCTSEQ only, AUTH call
12 (X'0C)

DFSDLA30 for DFSCTSEQ only, CHNG call
32 (X209

DFSDLA30 for DFSCTSEO only, AUTH call

3 Return code from prior routines

4 For details of the format of this storage area, see the prolog in the sample
routine (IMS.SDFSSMP; member name is DFSCTRNO).

7 Address of source CTB or zeros.
Recommendation: Do not write an application that requires the contents of
this register, because they vary depending on the type of call to the exit
routine and the environment from which the call is made.

9 Address of PST.

10 Address of transaction code or resource name.

11 Address of SCD.

13 Address of save area. The exit routine must not change the first three words.
15 Entry point of exit routine.

Contents of registers on exit

On return, all registers must be restored except for register 15, which must contain
one of the return codes shown in the following table, to indicate the success or
failure of the user's authorization to issue a AUTH or CHNG call.

Return code Meaning

0 IMS accepts the CHNG call.

4 The resource is not protected.

8 The user is not authorized.

Positive IMS rejects the CHNG call.

Negative User is authorized. The negative value is the complemented address that

points to user data provided by RACF (AUTH call).

Related reference:
[“Transaction Authorization exit routine (DFSCTRNO0)” on page 313|
[“Initialization of IMS callable services (DFSCSII0)” on page 17|

Chapter 3. Transaction Manager exit routines 277

Shared Printer exit routine (DFSSIMLO)

The Shared Printer exit routine (DFSSIMLO0) decides whether a terminal that is
unavailable can be automatically acquired by IMS or an AOI application program.

This information documents Product-sensitive Programming Interface and
Associated Guidance Information provided by IMS.

Subsections:
* |“About this routine”|

+ [“Communicating with IMS” on page 279

About this routine

To acquire SLU 1, or 328X BSC/VTAM printers that are defined to IMS as shared,
the IMS message router activates a Shared Printer exit routine. This is a routine
that you write to decide whether a terminal that is unavailable can be
automatically acquired by IMS or an AOI application program. The Shared Printer
exit routine should return the name of the AOI application program.

A Shared Printer exit routine is not necessary to use shared printing. If no exit
routine exists, the message router simulates a /OPN command when the terminal
is defined as shared.

Attributes of the routine

The following table shows the attributes of the Shared Printer exit routine.

Table 100. Shared printer exit routine attributes

Attribute

Description

IMS environments

DB/DC, DCCTL.

Naming convention

You must name this exit routine DFSSIMLO.

Including the routine

No special steps are required to include this routine.

IMS callable services

To use IMS callable services with this routine, you must issue an initialization call
(DFSCSIIO0) to obtain the callable service token and a parameter list in which to build
the function-specific parameter list for the desired callable service. Use the ECB found
in register 9 for the DFSCSIIO call.

This exit is automatically linked to DFSCSI0O0 by IMS. No additional linking is required
to use IMS callable services.

Sample routine location

IMS.ADFSSMPL (member name DFSSIMLO).

278

Exit Routines

Special considerations

If you decide to write a Shared Printer exit routine, here are some things you need
to know:

* If the exit routine returns a bad return code, it is disabled and message DFS52084
is sent to the master terminal operator. A bad return code, in this case, is a
return code of 8 when no transaction name is in the area pointed to by register 1
or when the transaction name returned is invalid. After the exit routine has been
disabled, a return code of 0 is assumed. For the exit routine to be enabled, IMS
must be restarted.

* The exit routine must not issue any waits, OS macros, or SVCs.

* The exit routine can examine output destination but cannot modify it.

* The exit routine should return the name of the AQOI application program in the
field provided by the message router.

* The exit routine receives control of the messages after they are queued.

* Because the exit routine runs in the IMS control region, your installation must
maintain security. Installation procedures should not let an unauthorized routine
be linked into the nucleus.

Communicating with IMS

IMS uses the entry and exit registers to communicate with the routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1 Address of the area where the AOI transaction name is to be returned.

6 Address of CNT.

7 Address of CTB.

9 Address of CLB.

11 Address of SCD.

13 Address of save area. The exit routine must not change the first three words.
14 Return address to IMS.

15 Entry point of exit routine.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for
register 15, which must contain one of the following return codes:

Return code Meaning

0 A SIMLOGON with the Q and RELRQ options is issued. This tells the other
subsystem or VTAM application connected to the printer that IMS needs the
printer.

4 No special processing is required. Normal processing continues.

8 The AOQI transaction is activated. This transaction cannot be a conversational,

Fast Path, remote, or password-protected transaction.

Related reference:

[“Routine binding restrictions” on page 9|
[“Initialization of IMS callable services (DFSCSII0)” on page 17

Signoff exit routine (DFSSGFXO0)

Signoff exit routine (DFSSGFXO0) performs processing that complements the Signon
exit routine (DFSSGNXO0). You can also use this exit routine to reset the significant
status for terminals during user signoff.

This topic contains Product-sensitive Programming Interface information.

Chapter 3. Transaction Manager exit routines 279

Subsections:
* [“About this routine”]

+ [“Restrictions” on page 281|

* [“Communicating with IMS” on page 281|

About this routine

All attempts to sign off from ACF/VTAM terminals cause IMS to call this exit
routine. The Signoff exit routine is also called if either RACF or the Signon/off
Security exit routine (DFSCSGNO) fails a signon attempt.

Recommendation: Although the Signon exit routine and this exit routine are
optional, if you include one, you should also include the other to perform any
cleanup operations that are necessary.

The following table shows the attributes of the Signoff exit routine.

Table 101. Signoff exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSSGFXO0.

Including the routine If you want IMS to call the Signoff exit routine, include it in an authorized library in

the JOBLIB, STEPLIB, or LINKLIST library concatenated in front of the IMS.SDFSRESL.

IMS callable services To use callable services with this routine, you must do the following;:

* Issue an initialization call (DFSCSIIO) to obtain the callable service token and a
parameter list in which to build the function-specific parameter list for the desired
callable service.

¢ Use the current address ECB found at offset 0 for the DFSCSIIO call.
» Link DFSCSI00 with your user exit.

Sample routine location IMS.ADFSSMPL (member name DFSSGFXO0).

Extended Recovery Facility (XRF) considerations

Each time IMS calls the Signoff exit routine, the exit routine receives information
on the XRF status of IMS. The exit routine can check this information and return
the appropriate error message if necessary. IMS calls the exit routine if XRF
tracking fails.

Resetting the significant status

You can use this exit to reset the significant status for a terminal in one of the
following states:

Conversational
Exclusive

Test

Preset

MEFS test
Full-function response
Fast Path response

280 Exit Routines

Note: Test and preset states are nonrecoverable, so IMS resets the significant
status automatically.

A parameter passed to the exit routine indicates the status of the terminal or ETO
user at sign off. You can reset the status in the output parameters.

For conversation mode, IMS performs the equivalent of an /EXIT command for the
conversation.

Restrictions
The Signoff exit routine cannot be used by LU 6.2 terminals.
Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

R1 Address of the [“IMS standard user exit parameter list” on page 5| (Version 1)
R13 Save area address

R14 Return address to IMS

R15 Entry point address of exit routine

The following table lists the sign off parameters. The address of this parameter list
is in the standard exit parameter list field SXPLFSPL.

Table 102. Signoff exit parameter list

Offset (decimal) Length Description

+0 4 Current ECB address.

+4 4 SCD address.

+8 4 Address of the user table created by initialization
user exit DFSINTXO or zero, if none.

+12 4 Address of USERID associated with Sign Off.

+16 4 CLB address.

+20 4 Address of the STATUS_IN and STATUS_OUT

vectors. The status vectors are mapped by the
DFSSTCHK macro.

Contents of STATUS_IN

The input status vector is a 2-byte field that indicates the terminal's significant
status when the exit routine is called. The second byte of the field is reserved. The
first byte of the field contains a value that indicates the significant status as
follows:

Chapter 3. Transaction Manager exit routines 281

282

Exit Routines

Value Description

X'80' Conversation

X'40' Exclusive

X'20' Test

X'10' Preset

X'08' MES test

X'04' Full-function response
X'02' Fast Path response

Contents of STATUS_OUT

The output status vector is a two-byte field that indicates changes to the significant
status made by the exit routine. IMS uses the contents of STATUS_OUT as an
indicator to exit a conversation and reset significant status. The default for this
field is zeros, indicating that no significant status is reset.

The second byte of the field is reserved. The first byte of the field contains a value
that indicates the significant status to be reset as follows:

Value Description

X'80' Exit conversation

X'40' Reset exclusive

X20' Reset test

X'10' Reset preset

X'08' Reset MFS test

X'04' Reset full-function response
X'02' Reset Fast Path response

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for
register 15, which contains one of the following return codes:

Return code Meaning

0 Normal return.
Negative The specified user message is sent to the terminal signing off. This message
value can be used to trigger an AOI facility following a signoff operation.

Related reference:

[“Routine binding restrictions” on page 9|
[“Initialization of IMS callable services (DFSCSII0)” on page 17
[“IMS standard user exit parameter list” on page 5|

Signon exit routine (DFSSGNXO0)

IMS calls the Signon exit routine for signon processing if ETO=Y is specified as an
execution parameter.

This topic contains Product-sensitive Programming Interface information.

This topic describes the Signon exit routine. All attempts to sign on to ACF/VTAM
terminals if the Extended Terminal Option (ETO) feature is active cause IMS to call
this exit routine. The Signon exit routine cannot be used by LU 6.2 terminals.

IMS calls the Signon exit routine before RACF validation (if requested) is
performed and before the Signon/off Security exit routine (DFSCSGNO) is called.
This exit routine contains logic and function that complement the Signon/off
Security exit routine. Review your use of the Signon/off Security exit routine to
determine if the function that it provides is necessary or conflicts with the Signon
exit routine.

Related Reading;:

e For more information on ETO and LU 6.2, see IMS Version 13 Communications
and Connections.

Subsections:
* |“About this routine”|

+ [“Communicating with IMS” on page 286|

About this routine

You can write the Signon exit routine to:

* Select the user descriptor (based on the user ID, node name, or DFSUSER) that
you want IMS to reference when building the control block structure for the user
that is signing on.

* Provide queue data for the user that is signing on. This could be data to
override the queue data derived from the user descriptor. If the user descriptor
is DFSUSER, the exit routine can also supply queue data to add additional
LTERMs to the structure.

* Supply parameters that you want IMS to reference when building associated
printer control block structures.

* Allow or disallow a signon attempt based on a maximum number of users, or
according to any criteria that you specify.

* Specify, or override, autologoff parameter and autosignoff (ASOT) value.

* Opverride the default Status Recovery Mode for dynamic non-STSN terminals
(terminals other than SLUP, FINANCE, and ISC).

For the latest version of DFSSGNXO0, see the IMS.SDFSSMPL library; member name
is DFSSGNXO0. If you write your own Signon exit routine or modify the sample,
you must include the portion of the sample exit routine (or the equivalent logic)
that removes extraneous blank fields that RACF (if used) creates. (When the
Signon exit routine is not included in the system, internal IMS logic removes these
extraneous blank fields.) The sample exit routine also provides an example of
associated printing.

When the Signon exit routine (DFSSGNXO0) is not included in the system and the
MEFS formats for the DFS3649 message have not been modified, internal IMS logic

Chapter 3. Transaction Manager exit routines 283

284

Exit Routines

removes these extraneous blank fields. If the MFS formats for the DFS3649 message
have been modified, corresponding changes to the logic in the Signon exit routine
that removes the extraneous blank fields might be necessary. This logic is included
in the Signon exit routine so that adjustments can be made when changes are
made to the DFS3649 MFS formats.

The Signon exit routine and the Destination Creation exit routine (DFSINSX0) are
corequisite exit routines, under the following conditions. If you provide one exit
routine to supply queue data for additional LTERMSs, you must provide the other
exit routine also. They both create the user control block structure and related
LTERMs (including multiple LTERMs for a user): the Signon exit routine using the
user ID and the Destination Creation exit routine using an LTERM name. Both exit
routines must have the same logic so that the structure created is identical,
regardless of which exit routine created it.

You can use the Signoff exit routine (DFSSGFX0) to complement any processing
that the Signon exit routine performs.

The following table shows the attributes of the Signon exit routine.

Table 103. Signon exit routine attributes

Attribute Description
IMS environments DB/DC, DCCTL.

Naming convention

You must name the Signon exit routine DFSSGNXO.

Including the routine If you want IMS to call the Signoff exit routine, include it in an
authorized library in the JOBLIB, STEPLIB, or LINKLIST library
concatenated in front of the IMS.SDFSRESL.

IMS callable services
To use IMS callable services with this routine, you must do the

following:

* Issue an initialization call (DFSCSIIO) to obtain the callable service
token and a parameter list in which to build the function-specific
parameter list for the desired callable service.

* Use the current address ECB found at offset 0 for the DFSCSIIO
call.

* Link DFSCSIO0 with your user exit.

Sample routine IMS.ADFSSMPL.
location

Assembling and loading the routine

A sample Signon exit routine is provided in IMS.SDFSSMPL. Alternatively, you can
write your own exit routine. You can assemble the sample exit routine or one that
you write (using the standard IMS macro and copy files), and include it in an
authorized library in the JOBLIB, STEPLIB, or LINKLIST library concatenated in
front of the IMS.SDFSRESL. If the Signon exit routine is included, IMS
automatically loads it each time IMS is initialized if ETO=Y (after the Initialization
exit routine, DFSINTXO, has changed the ETO= parameter).

If you want associated printing, be sure to specify the following when you
assemble the sample exit routine:

&ASSOCPRT SETC 'YES'

This specification ensures that the associated printing sample code is generated.
User ID

The Signon exit routine informs the external subsystem of the user ID associated
with the transaction input message. The user ID can be one of the following:

* The inputting LTERM name if the terminal user is not signed on
* The ID of the terminal user

* The RACF/user-authorized user ID associated with a non-message driven BMP
or CPIC application

* The PSB name specified on the JOB statement
IMS determines the user ID in the following order.

For CPIC application:

1. RACEF ID if the accessor environment element (ACEE) is cloned in the
dependent region

PSTBUSER if the field does not contain binary zeros or blanks
PSTUSID if the field does not contain blanks

PSTSYMBO if the field does not contain blanks

PDIRSYM

ok

For a message driven BMP that has done a GU, or IFP that has done a GU, or
MPP:

1. PSTUSID if the field does not contain blanks

2. PSTSYMBO if the field does not contain blanks

3. PSTBUSER if the field does not contain binary zeros or blanks
4. PDIRSYM

For message driven BMP that has not done a GU or IFP that has not done a GU:
1. PSTBUSER if the field does not contain binary zeros or blanks
2. PDIRSYM

For non-message driven BMP:

1. PSTBUSER if the field does not contain binary zeros or blanks and the
DFSDCxxx PROCLIB member specifies BMPUSID=USERID

2. PDIRSYM

When a dependent region connection is initially established, the Signon exit
routine is activated before a thread is created by the Create Thread exit routine. All
subsequent Signon requests result in the exit routine being activated after a thread
is created. For example, Signon is activated for each message processed during a
single scheduling, whether or not the messages are separated by commit
processing.

Extended Recovery Facility (XRF) considerations
IMS calls the Signon exit routine in the XRF alternate system for a type 1 session
with ETO. When IMS calls the exit routine in the alternate system, the exit routine

is not allowed to change anything related to the terminal or user structures,
including fields that the exit routine can normally change.

Chapter 3. Transaction Manager exit routines 285

286

Exit Routines

Each time IMS calls the Signon exit routine, the exit routine receives information
on the XRF status of IMS.

Supporting associated printing

Associated printing is the ability to direct application printer output to a printer
logical unit (LU) name. This LU name is provided at either logon or sign on time.
If the Logon exit routine (DFSLGNXO) is written to detect LU names entered as
logon user data, IMS passes these LU names to the Signon exit routine.

If you modify the DFS3649A MFS format to allow LU names to be entered as
/SIGN ON user data, the Signon exit routine must be able to detect the LU names.
If the user can enter LU names directly at sign on, the exit routine must determine
the queue name that is allocated to each printer. There should be a unique
relationship between the user ID and the queue name. The Signon exit routine
passes the queue name to IMS, which creates the control block structure. An
application program can use the same algorithm to determine the queue name
when the application processes a transaction scheduled for a particular user ID.

The exit routine must insert a period (.) in the sign-on user verification string
(UVS) after building the associated printer buffer.

Communicating with IMS

IMS uses the entry and exit registers, as well as parameter lists, to communicate
with the exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

R1 Address of the |“IMS standard user exit parameter list” on page 5| (Version 1)
R13 Save area address

R14 Return address to IMS

R15 Entry point address of exit routine

The following table lists the signon exit parameters. The address of this parameter
list is in the standard exit parameter list field SXPLFSPL.

Table 104. Signon exit parameter list

Offset (decimal) Length Description

+0 4 Current ECB address.

+4 4 SCD address.

+8 4 Address of the user table created by Initialization

User Exit routine DFSINTXO0 or zero, if none.

Table 104. Signon exit parameter list (continued)

Offset (decimal)

Length

Description

+12

4

Address of a buffer for use by your user exit to
return user descriptor and queue data exit
parameters. For additional details on the content and
the format, refer to the prolog in the sample routine.

Set to zero:

» For a static terminal.

* If processing on an XRF alternate system.
 If processing /SIGN ON ETO STSN device.

The USEQDATA DSECT is provided for parameter
area mapping.

+16

Address of a buffer for use by your user exit to
return associated printer exit parameters. For
additional details on the content and the format, refer
to the prolog in the sample routine.

Set to zero, if processing on an XRF alternate system.

+20

Address of a parameter list created by one of the
following:

¢ Session initiation from LOGON data.
* Input from the /SIGN ON command.

For additional details on the content and the format,
refer to the prolog in the sample routine.

Set to zero, if processing XRF alternate.

+24

Address of a parameter list, which contains pointers
to available user control block structures (SPQBs) and
default autosignoff values. For additional details on
the content and the format, refer to the prolog in the
sample routine.

Set to zero:

» For a static terminal.

* If processing on an XRF alternate system.

* If processing /SIGN ON ETO STSN device.

+28

CLB address.

+32

Table of existing user structures. For additional
details on the content and the format, refer to the
prolog in the sample routine.

+36

Address of general Input/Output parameters. For
additional details see DSECT DFSSGNXP macro for
the format.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except for
register 15, which contains one of the following return codes.

The content of register 15 will be ignored if processing is on an XRF alternate

system.

Chapter 3. Transaction Manager exit routines 287

288

Return code = Meaning
0 IMS continues SIGNON processing.

4 IMS rejects the SIGNON attempt. The SIGNON required message, DFS3649,
is resent to the terminal with some added information indicating the reason
for rejection.

Negative The same as return code 4, but IMS sends the specified user message
instead of DFS3649.

Related reference:

[“Signon /off Security exit routine (DFSCSGNO)” on page 291|
[“Routine binding restrictions” on page 9|

[“Initialization of IMS callable services (DFSCSII0)” on page 17
[“IMS standard user exit parameter list” on page 5|

User descriptor selection

Exit Routines

If the user control block structure already exists for the user that is signing on, IMS
searches for the user structure and passes the addresses of the existing nodename
structure along with the address of any existing user ID structure to the exit
routine in the parameter list ESPQBTAB.

The exit routine can determine whether to use the user ID structure or the
nodename structure by examining the passed structure without making an explicit
IMS callable service routine call to find the nodename user structure.

If the exit routine chooses the nodename as the user structure name, the user ID is
hashed to a non-SPQB user hash table.

If no user control block structure exists, you can select a user descriptor by using
the USERD= keyword, write the Signon exit routine to select the user descriptor, or
let IMS select a descriptor. The following figure shows the search order that IMS
uses to select the user descriptor.

USERD= Sign-On First in

keyword exit routine spQBPARM ~ > DFSUSER

Figure 14. User descriptor selection order

You can use the USERD keyword (entering it as user data with the /SIGN ON
command) to select the user descriptor. If your Signon exit routine does not choose
a user descriptor, IMS uses the user descriptor requested by the USERD parameter.

The Signon exit routine is called with the parameter list SPQBPTRS, which
contains the address of the USERD= keyword specified, and the addresses of the
user ID descriptor, node name descriptor, and DFSUSER descriptor. The exit
routine can choose among these descriptors by specifying the descriptor's address
in the USEQUSED field of the USEQDATA DSECT. If the exit routine selects one of
these user descriptors, IMS uses it to create the user control block structure. (A
user descriptor that the exit routine specifies overrides any descriptor specified on
the USERD= keyword.)

The exit routine can also create an arbitrary user structure name by specifying the
name in the eight-byte USEQUSTN field in the USEQDATA parameter list. IMS

creates the user structure with the name from this field and stores the returned
name in the SPQB user hash table. Security is based on the original user ID that
the user signed on with and is stored in the non-SPQB user hash table.

If no user descriptor is specified on the USERD= keyword and the Signon exit
routine does not return the address of a user descriptor, IMS selects the first
descriptor address that it finds in the SPQBPTRS among the user ID descriptor,
node name descriptor, and the DFSUSER descriptor, respectively. IMS uses this
descriptor to create the user control block structure.

If none of these methods returns a user descriptor, IMS uses DFSUSER to create
the user structure. If no user descriptor can be found, including DFSUSER, IMS
rejects the signon request.

Regardless of how the user descriptor is chosen, only DFSUSER or descriptors
associated with the user ID or node name are valid. There is no user-based output
security if the selected descriptor is the node name descriptor.

Providing queue (LTERM) data

Depending on the user descriptor selected, the exit routine can provide queue data.
If the exit routine returns data that it was not authorized to return, IMS rejects the
sign-on request.

Cases

Four cases describe what data the Signon exit routine (DFSSGNXO0) can supply. The
four cases are based on whether the user structure exists and whether DFSUSER or
a non-DFSUSER descriptor is selected.

For the Signon exit routine, non-DFSUSER descriptors are descriptors based on the
user ID or node name.

Table 105. Case numbers identifying what data DFSSGNXO can provide

Descriptor User structure exists User structure does not exist
DFSUSER Case 1 Case 2

Non-DFSUSER Case 3 Case 4

Case 1

The Signon exit routine is called using the descriptor, DFSUSER, that was used to
create the user control block structure. The exit routine can:

* Supply queue data (except LTERM names) to override data of the existing
structure

* Provide data for additional LTERMS, if it supplies the data for the existing
LTERMs first and in the order in which they are chained

IMS verifies the additional LTERMs that are specified (but are not in the existing
user structure) against the LTERMs that already exist in the system. If an LTERM
that is specified as an additional LTERM already exists in the system, IMS assumes
that this LTERM has been assigned to a different user, and it is not made part of
the user structure of the user that is signing on. If this is the only LTERM that the
descriptor or the Signon exit routine specifies for this user, IMS rejects the signon
attempt.

Chapter 3. Transaction Manager exit routines 289

290

Exit Routines

Case 2

If DFSUSER is selected and no user control block structure exists, the Signon exit
routine:

* Can supply any queue data desired (including LTERM names)

If the exit routine does not provide queue data, one LTERM (named for the user
ID) is created. If any queue data is passed, this default user ID LTERM is not
created and must be specified in the queue data if it is desired.

IMS verifies the additional LTERMs that are specified against the LTERMs that
already exist in the system. If an LTERM that is specified already exists in the
system, IMS assumes that this LTERM has been assigned to a different user, and it
is not made part of the user structure of the user that is signing on. If this is the
only LTERM that the descriptor or exit routine specifies for this user, IMS rejects
the sign-on attempt.

Case 3

The Signon exit routine is called with the same non-DFSUSER descriptor that was
used to create the user control block structure (either the user ID or node name
descriptor). The exit routine:

* Can supply any queue data (except LTERM names) to override data of the
existing structure

* Cannot provide data for additional LTERMs

IMS verifies the LTERMs that are specified in the descriptor (but are not in the
existing structure) against the LTERMs that already exist in the system. If an
LTERM is specified in the descriptor but is not in the existing structure, IMS
assumes that this LTERM has been assigned to a different user and deleted. The
LTERM is given back to the user and is made part of the user structure of the user
that is signing on.

Case 4

If a non-DFSUSER descriptor is selected and no user control block structure exists,

the Sign On exit routine:

* Can supply queue data (except LTERM names) to override data that the
descriptor provides

» Cannot provide data for additional LTERMs

IMS verifies the LTERMs specified in the descriptor against the LTERMs that
already exist in the system. If an LTERM that is specified in the descriptor already
exists in the system, IMS assumes that this LTERM has been assigned to a different
user, and it is not made part of the user structure of the user that is signing on. If
this is the only LTERM that the descriptor or exit routine specifies for this user,
IMS rejects the signon attempt.

Related tasks:

[“User descriptor selection” on page 288|

Signon/off Security exit routine (DFSCSGNO0)

Use the Signon/off Security exit routine (DFSCSGNO) to verify a user's ID and
password.

This topic contains Product-sensitive Programming Interface information.

This chapter describes the Signon/off Security exit routine. You can use this exit
routine to verify a user's ID and password.

This exit routine can conflict with the Signon exit routine (DFSSGNXO).

Subsections:
* [“About this routine”]

* [“Communicating with IMS” on page 292

About this routine

You can use the Signon/off Security exit routine with or without RACF to verify
the user ID and password. IMS calls this exit routine after RACF /SIGN ON
verification has been performed. If the /SIGN ON request is rejected by RACEF,
IMS does not call this exit routine. If the RACF option is not selected in the IMS
system definition, you can use this exit routine to verify the user's identification
and passwords at /SIGN ON time.

If ETO=Y is specified as an execution parameter, the Signon exit routine
(DFSSGNX0) performs signon processing before IMS calls RACF or the Signon/ off
Security exit routine. If the Signon exit routine rejects the signon attempt, IMS does
not call the Signon/off Security exit routine.

If shared queues are active and the security environment for a transaction is
created on the back-end IMS subsystem, IMS does not call this exit routine.

The Signon/off Security exit routine should have access to a table of valid user IDs
and the passwords associated with each ID. The exit routine should note successful
/SIGN ONs to prevent additional attempts to perform the /SIGN ON function.
When the /SIGN ON command is executed, the exit routine should mark that user
ID as available for /SIGN ON. For logging purposes, the exit routine can also
place information into the data portion of the user verification string that is passed
to the exit.

If you plan to use the Signon exit routine, review how you use the Signon/off
Security exit routine to determine if the function that this exit routine provides is
necessary or might even conflict with the Signon exit routine.

Like both the Security Reverification exit routine (DFSCTSEQ) and the Transaction
Authorization exit routine (DFSCTRNO), the Signon/off Security exit routine does
not need to be bound to the IMS nucleus, can run in 31-bit storage, and can share
a work storage area using a standard technique.

The Signon/off Security exit routine is called during IMS initialization to give the
exit routine the chance to acquire a work storage area. If storage is acquired, the
exit routine passes the address back to IMS in register 2. Then, IMS passes the
address to the DFSCTSEO, DFSCTRNO, and DFSCSGNO security exit routines every
time they are called.

Chapter 3. Transaction Manager exit routines 291

If the Signon/off Security exit routine is linked in one of the STEPLIB or LINKLIST
libraries, IMS loads the exit routine. There is no startup parameter to specify
whether to load the routines. Message DFS19371 is issued when the Signon/off
Security exit routine is loaded.

Signon/off Security exit routine is called after the Initialization exit routine
(DFSINTXO0) is called.

The following table shows the attributes of the Signon/off Security exit routine.

Table 106. Signon/off security exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSCSGNO.
Including the routine No special steps are required to include this routine.

IMS callable services
To use callable services with this routine, you must issue an initialization call

(DFSCSIIO0) to obtain the callable service token and a parameter list in which to build
the function-specific parameter list for the desired callable service. Use the ECB found
in register 9 for callable services. This exit is automatically linked to DFSCSI0O0 by IMS.
No additional linking is required to use callable services.

Sample routine location IMS.ADFSSMPL (member name DFSCSGNO).

Communicating with IMS
IMS uses the entry and exit registers to communicate with the exit routine.
Contents of registers on entry

On entry to the exit routine, all registers must be saved using the save area
provided. The registers contain the following;:

Register Contents
0 /SIGN function (ON or OFF):
0 /SIGN ON
1 /SIGN OFF
2 /SIGN ON in XRF alternate system.
3 /SIGN OFF in XRF alternate system.
4 IMS initialization. The exit can return an address that is passed to

DFSCTRNO, DFSCTSEO, and DFSCSGNO.

1 Pointer to the variable-length user verification string, if the SIGN function is
/SIGN ON. The string format is LLZZ (4 bytes), followed by the text, starting
with the first character of the user ID.

Address of the user ID if the SIGN function is /SIGN ON in an XRF
environment.

Insignificant if the SIGN function is /SIGN OFF.

292 Exit Routines

Register Contents

7 Address of source CTB or zeros.
Recommendation: Do not write an application that requires the contents of
this register, because the contents of this register vary depending on the type
of call to the exit routine and on the environment from which the call was

made.
9 Address of ECB.
11 Address of SCD.
13 Address of save area. The exit routine must not change the first three words.
14 Return address to IMS.
15 Entry point of exit routine.

Contents of registers on exit

On return to IMS, all registers must be restored except for register 15, which
contains one of the following return codes:

Return code Meaning

0 IMS accepts the /SIGN ON

4 IMS stores the address returned by this exit routine and passes it to
(initialization DFSCTRNO, DFSCTSEQ, and DFSCSGNO.

only)

Positive IMS rejects the /SIGN ON. IMS sends message DFS2467 if sign-on is not

required and message DFS3649 if sign-on is required. This return causes a
“BY IMS EXIT” to be appended to the message to indicate that the exit
routine caused the return code.

Negative IMS rejects the /SIGN ON command and sends a user-defined message. The
message number is complemented into a message number. This number
must be less than -24, otherwise a DFS2467 message is sent instead. You
must list the absolute value of this message number in the User Message
Table, DFSCMTUO.

Exception: The exit routine does not check this return code on return from
RACEF or during /SIGN OFF processing.

Related tasks:

[[Extended Terminal Option (ETO) (Communications and Connections)|

Related reference:

[“Signon exit routine (DFSSGNX0)” on page 283|

[“Transaction Authorization exit routine (DFSCTRNO0)” on page 313|
[“Security Reverification exit routine (DFSCTSE(0)” on page 275|

[“Routine binding restrictions” on page 9|
[“Initialization of IMS callable services (DFSCSII0)” on page 17
[“User Message table (DFSCMTUO0)” on page 478|

Chapter 3. Transaction Manager exit routines 293

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ccg_part_eto.htm#ims_ccg_part_eto

Time-Controlled Operations (TCO) Communication Name Table (CNT)
exit routine (DFSTCNTO)

The Time-Controlled Operations (TCO) Communication Name Table (CNT)
controls which IMS LTERMs are allowed to load TCO scripts.

Subsections:
* |“About this routine”|

+ [“Communicating with IMS” on page 295|

About this routine

The Time-Controlled Operations (TCO) Communication Name Table (CNT) exit
routine gets control from the IMS Communication Analyzer module (DFSICIOO0)
whenever both of the following conditions are true:

* TCO is active.

* A message switch occurs for the DFSTCF LTERM.

The message switch acts as a load command from DFSTCEF to load another TCO
script. Use this exit routine to control which LTERMs are allowed to load TCO

scripts.

The default exit routine immediately returns control to DFSICIOO0, and you can
load TCO scripts from any terminal.

This routine cannot be used in a DBCTL environment.

The following table shows the attributes of the TCO CNT exit routine.

Table 107. TCO CNT exit routine attributes

Attribute

Description

IMS environments

DB/DC, DCCTL.

Naming convention

If you are writing your own routine, you can give it any name. If you are using the
IMS-supplied routine, use the name DFSTCNTO.

294

Exit Routines

Table 107. TCO CNT exit routine attributes (continued)

Attribute

Description

Binding

You should write, compile, and bind the routine as re-entrant (RENT). The following
JCL is an example of binding a routine named MYEXIT to DFSICIOO.

//XIT JOB 1, MSGLEVEL=1
//LINK EXEX PGM=IEWL, PARM=RENT
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK, (20,20))
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSN=IMS.SDFSRESL,DISP=SHR
//INLIB DD DSN=IMS.0BJ,DISP=SHR
//SYSLIN DD *

INCLUDE INLIB(MYEXIT)

INCLUDE INLIB(DFSICIOO)

NAME MYEXIT(R)
/*

In this example, IMS.SDFSRESL is an authorized library that contains all load modules.
IMS.OB]J is a library that contains all object modules. The JCL in this example expects
to find the object modules of the exit routine (MYEXIT) and the IMS Communication
Analyzer module (DFSICIOO0) in IMS.OBJ and places the result of the into
IMS.SDFSRESL.

After you've compiled and tested your routine (or if you are using the routine
supplied by IMS), you must bind the exit routine with the TCO Language Interface
module (DFSTDLIO).

IMS callable services

This exit is not eligible to use IMS callable services.

Sample routine location

IMS.SDFSSMPL (member name DFSTCNTO).

Communicating with IMS

IMS uses the entry and exit registers to communicate with the routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

1

The buffer location of the input message segment after translation to EBCDIC
and after IMS Basic Editing. The first two bytes of the buffer contain a binary
message length. The third byte of the buffer is binary zeros. The binary count
includes the 4-byte prefix. The fifth byte contains the first byte of message
text.

7 Address of CTB.

9 Address of CLB.

13 Address of save area. The exit routine must not change the first three words.
14 Return address to IMS.

15 Entry point of edit routine.

Use the message segment in the buffer addressed by register 1 as input to the exit
routine.

The exit routine must place the text of the edited message segment to be returned
to IMS in the buffer addressed by register 1. If the input was processed by the IMS

Chapter 3. Transaction Manager exit routines 295

Basic Edit, this buffer is always 10 bytes greater than the 2-byte binary count at the
beginning of the message segment. The length of the message segment can be
expanded or reduced to any desired size. The format of the edited message
segment in the buffer on return to IMS must be two bytes of binary count (LL),
two bytes of binary zeros (ZZ), and edited text. The second two bytes (ZZ) should
not be changed or edited. The LLZZ field is the first four bytes of the message
segment.

Contents of registers on exit

Before returning to IMS, the exit routine must restore all registers except register
15, which must contain one of the following return codes.

Return code Meaning

00 Segment is processed normally.

04 Segment is canceled.

08 Message is canceled and the terminal operator is notified.

12 Message is canceled and the user message identified by register 1 is sent to

the terminal.

Register 1 contains the message number if register 15 contains a return code of 12;
otherwise it is ignored. Any other value causes the message to be canceled and the
terminal operator to be notified.

Time-Controlled Operations (TCO) exit routine (DFSTXITO)

296

Exit Routines

The TCO exit routine inserts messages in the message queue at a specific time for
processing.

Subsections:
* |“About this routine”|

* [“Communicating with IMS” on page 297

About this routine

The TCO exit routine inserts messages that are the commands, transactions, and
message switches that you specify in the time schedule requests and message sets
that make up a script member. The TCO exit routine passes any data found in
columns 56 through 71 of the time schedule request to IMS to be processed.

You do not have to write your own exit routine. You can schedule predefined
commands, transactions, and message switches at predefined times with
DEFSTXITO, the TCO exit routine IMS supplies. If you do write your own, you can
write it in COBOL or assembler.

Restriction: PL/I and C language exit routines are not supported. Cobol routines
running under Language Environment for z/OS are not supported.

This routine cannot be used in a DBCTL environment.

The following table shows the attributes of the Time-Controlled Operations (TCO)
exit routine.

Table 108. Time-Controlled Operations (TCO) exit routine attributes

Attribute

Description

IMS environments

DB/DC, DCCTL.

Naming convention

If you are writing your own routine, you can name it anything you want. If you are
using the IMS-supplied routine, use the name DFSTXITO.

Binding

You should write, compile, and bind the routine as serially reusable (REUS).

The following JCL is an example of binding a routine named MYEXIT to DFSTDLIO.

[/XIT JOB 1, MSGLEVEL=1
//LINK EXEX PGM=IEWL, PARM=REUS
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK, (20,20))
//SYSPRINT DD SYSOUT=A
//SYSLMOD DD DSN=IMS.SDFSRESL,DISP=SHR
//INLIB DD DSN=IMS.0BJ,DISP=SHR
//SYSLIN DD *

INCLUDE INLIB(MYEXIT)

INCLUDE INLIB(DFSTDLIO)

NAME MYEXIT(R)
/*

In this example, IMS.SDFSRESL is an authorized library that contains all load modules.
IMS.OB]J is a library that contains all object modules. The JCL in this example expects
to find the object modules of the exit routine (MYEXIT) and the TCO Language
Interface module (DFSTDLIO) in IMS.OBJ and places the result of the bind into
IMS.SDFSRESL.

After you've compiled and tested your routine (or if you are using the routine
supplied by IMS), you must bind the exit routine with the TCO Language Interface
module (DFSTDLIO) and place them into IMS.SDFSRESL.

Including the routine

To load and execute the routine, it must be referred to in a time schedule request in
the script member that is executing.

Related Reading: For more information about time schedule requests and script
members, see IMS Version 13 Operations and Automation.

The following is an example of a time schedule request in a script member that wants
the routine “MYEXIT” to be executed.

*TIME 1200 MYEXIT

* Columns 1-5 contain the Identification field. *TIME' is in this field.

* Columns 7-10 contain the initial dispatch time. In this example it is 12:00 p.m.

* Columns 12-19 contain the name of the exit routine, left-justified and padded with
blanks. The name in this example is ' MYEXIT'".

IMS callable services

This exit is not eligible to use IMS callable services.

Sample routine location

IMS.SDFSSRC (member name DFSTXITO0).

Communicating with IMS

IMS uses the entry and exit registers, and parameters to communicate with the exit
routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Chapter 3. Transaction Manager exit routines 297

298

Exit Routines

Register Contents

1 Address of a parameter list that contains the address of the program
communication block (PCB) used in the exit routine calls.

10 Reserved for TCO.

13 Address of save area. The exit routine must not change the first three words.

14 Return address to IMS.

15 Entry point of exit routine.

The PCB

The program communication block (PCB) contains the actual scheduling time for
the time-initiated message processing. It is in the PCBTIME field (PCB + 16).
Under most circumstances, this is the same time as the time initiated request. In
very busy systems, however, that actual scheduled time can differ from the
schedule request. For example, if you request your exit routine to be scheduled at
12:01 and a busy system prevents it from being scheduled until 12:03, the PCB
contains 12:03.

DL/I calls

The calls you can use in this exit routine are:
GU Get the message that caused scheduling.
ISRT Put a message segment into the queue for processing.

PURG Terminate the prior segments as a message and insert the first segment on
the next message (if an I/O area is provided).

GSCD Get the address of the IMS system contents directory. The address is
returned in the first word of the I/O area, which must begin on a word
boundary.

The TCO exit routine calls the TCO Language Interface module (DFSTDLIO) to
process these calls. You can call DFSTDLIO or CBLTDLIO (for COBOL) to process
the call.

You must pass a parameter list with the call in standard DL/I format (for example,
register 1 contains the address of a 2- or 3-word parameter list whose end is
indicated by a X'80' in the high-order byte). The PURG call can have two or three
parameters. The other calls require three parameters.

The parameter list consists of:

1. The call function

2. The address of the I/O PCB

3. The address of the I/O area (optional with PURG)

Status codes
A blank status code is returned to the exit routine after a successful call.

The following status codes can be returned to the exit routine after an unsuccessful
call:

AB The call didn't specify an I/O area.

AD The function parameter on the call is invalid or is not supplied. The
functions recognized by TCO are GU, ISRT, PURG, and GSCD.

AX The I/0O PCB name was invalid.
AZ An ISRT or PURG call with an unacceptable message count was issued.
QcC There are no additional input messages to process for this time request.

ox The ISRT or PURG call could not be processed because of insufficient
storage.

Message formats

A GU call always retrieves a message in one of these formats:

* A 20-byte example as shown in the following figure.

LL | ZZ | 16-byte user data found in time required
20 (col. 56-71 of time schedule request)

2 2 16

Figure 15. Format of 20-byte message example

* An 8-byte example as shown in the following figure.

LL | ZZ | Address of the first segment of a message set
8 (col. 56-59 of the time schedule request was ****)

2 2 4

Figure 16. Format of 8-byte message example

* An example in which the address of a message set is retrieved as shown in the
following figure.

Next
segment | LL | ZZ | Data
pointer

4 2 2 Variable

length
Figure 17. Format of message where the address of a message set is retrieved

The last message of the message set contains binary zeros in the “next segment”
field.

If the message set is broken into individual messages and segments (by the use of

a space and an S in column 72), this is shown in the ZZ field of each segment. The
values are as follows:

Chapter 3. Transaction Manager exit routines 299

Value Meaning

0001 First segment of a message

0000 Middle segment of a message

0002 Last segment of a message

0003 First and last (only) segment of a message

TM and MSC Message Routing and Control User exit routine

(DFSMSCEOQ)

300

Exit Routines

The TM and MSC Message Routing and Control User exit routine (DFSMSCEOQ)
provides maximum routing control for TM and MSC messages.

This topic contains Product-sensitive Programming Interface information.

Subsections:

[“About this routine”|

[“Sample IMS configurations” on page 301

[‘Defining entry points” on page 304|

[“Authorization checking” on page 305|

[“Attributes of the routine” on page 306|

[“Communicating with IMS” on page 307|

About this routine

The DFSMSCEQ user exit routine does the following:

Eases TM and MSC coding and maintenance requirements, and reduces the
number of exit modules.

Supports a consistent set of routing capabilities across all of the exit entry points
(or functions).

This exit routine receives control for all User Type messages from:
— Terminal/message input

— MSC link input

— Application program output

Restriction: The DFSMSCEOQ user exit routine is not called for DL/I ICAL
requests for synchronous program switch.

In turn, the exit is allowed to affect the routing of most of these messages.
Exceptions are cases where rerouting would violate IMS architecture or cause
problems such as hung terminals or incorrect application program operation. For
example, rerouting application program output messages to the I/O PCB is one
of these exceptions (it is not allowed), or affinity routing of synchronous
APPC/OTMA transaction messages to another IMS in a shared queues
environment when the resource recovery service or APPC/OTMA enablement
service is not set.

For details on the routing capabilities for each exit entry point, see the user
reroute flags MSTRFL2 (terminal), MSLRFL2 (MSC link), and
MSPRFL2/MSPRFL3 (application) in the DFSMSCEP user parameter list
mapping tables in [Table 110 on page 308] Messages will be canceled or rerouted
if you have set one of more of these flags in conjunction with the destination

type.

The user reroute request flags are MSTRFL2 (terminal), MSLRFL2 (MSC link),
and MSPRFL2/MSPRFL3 (application). Setting one or more of these flags in
conjunction with changing destination type fields, causes the message to be
canceled or rerouted (see following note).

See the DFSMSCEQ sample exit for examples of message routing.

For affinity routing restrictions, see the topic "Managing APPC and OTMA
messages in a sysplex environment" in IMS Version 13 System Administration.

DFSMSCEP parameters that the exit can set or change to affect message routing
are marked with a "U" or "B" as follows:

I IMS SETS (EXIT MUST NOT CHANGE)
U USER EXIT SETS
B BOTH IMS/USER EXIT SET (OR CHANGE)

* Provides a common parameter list interface and linkage interface to the various
entry points (or functions).

* Provides the ability to append an optional user prefix segment to TM and MSC
messages which TM and MSC user exit routines can use to communicate and
control user-customized routing needs.

* Provides new entry points:
— Control at IMS initialization and termination
— Control of messages in an MSC intermediate system
— Application program inserts to a non-modifiable PCB
All the entry points are optional, using a vector table that you code at the
beginning of the common exit module.

* Logs routing errors and footprints in the message to indicate those exit routines
that reroute the message.

Note: The DFSMSCEQ exit routine replaces the following exit routines:
* Input Message Routing exit routine (DFSNPRTO)

* Link Receive exit routine (DFSCMLR0/DFSCMLR1)

* Program Routing exit routine (DFSCMPRO)

* Terminal Routing exit routine (DFSCMTRO)

Sample IMS configurations

These samples describe four separate IMS configurations and the points where the
DEFSMSCEQO exit routine receives control during the flow of a transaction and
response message.

Single IMS system

In a single IMS environment, the TR exit routine can receive control when a
message is received from the terminal. The PR exit routine receives control when

an application program issues a CHNG call to a modifiable PCB or on an ISRT call
to a I/O or ALT PCB to insert a message, or a GU call to the I/O PCB.

Chapter 3. Transaction Manager exit routines 301

302

Exit Routines

Single IMS

L]
IMSA
» Transaction message —> I
R Application
program
= Je Response «————
[\ PR
Input
terminal

Figure 18. Single IMS system environment

Multiple Systems Coupling environment

In an MSC environment, the following occurs:

1. The TR exit routine receives control when a message is received from a
terminal.

2. The PR exit routine receives control when the application program issues a
CHNG call to a modifiable PCB or on an ISRT call to an I/O or ALT PCB to
insert a message, or a GU call to the I/O PCB.

3. The LR exit routine receives control each time a message is received on an MSC
link. The following figure shows the message flow when the transaction is
received on the MSC link in IMSB (LR1) and on the MSC link in IMSC (LR2).
In the response message flow, the LR exit receives control when the message
arrives on the MSC link in IMSB (LR3) and when it arrives in IMSA (LR4).

Local Intermediate Remote
IMS IMS IMS
IMSA IMSB IMSC
. - Remote ---- transaction ---- message --------1 >
¥| TR MSC | LR1 MSC | LR2 Application
— link link plieglElit
Input
terminal ¢-1----"""---- - Response ---- message «--------------- --
LR4 LR3 PR

Figure 19. MSC environment

Shared-queues environment

A shared-queues environment is similar to a single-IMS environment. The TR exit
routine receives control on the front-end IMS system, when the message is received
from the terminal. The PR exit routine receives control on the back-end IMS system
when the application program receives control and issues a CHNG or ISRT call to
insert a message (PR).

The PR exit routine receives control when the application program issues a CHNG
call to a modifiable PCB or on an ISRT call to the I/O or ALT PCB to insert a

message, or a GU call to the I/O PCB.

Front-end Back-end
IMS IMS
IMSA IMSB
b{------ Transaction --message --------1----- >
- Shared Application
i\ queues program
Input
terminal € Response -- message «------{-------
PR

Figure 20. Shared-queues environment

Shared-queues MSC environment

The following occurs in a shared-queues MSC environment:

1. The TR exit routine receives control in the front-end IMS system when the
transaction message is received from the terminal.

2. The PR exit routine receives control in the front-end IMS (PR1), the back-end
IMS (PR2), or the remote IMS (PR3) systems when the application program
receives control and issues a CHNG call to a modifiable PCB or on an ISRT call
to the I/O or ALT PCB to insert a message, or a GU call to the I/O PCB.

3. The LR exit routine receives control in the remote IMS system when the
transaction message is received on the MSC link (LR1), and then in the
back-end IMS system when the response message is received on the MSC link
(LR2).

In a shared-queues environment, two additional levels of affinity routing are
available for messages destined to a transaction. One level requests the transaction
message to be routed locally on the current IMS system. This is referred to as local
affinity. The other level requests the transaction message to be routed to the
back-end IMS system. This is referred to as back-end affinity. Affinity routing is
available in the terminal, link receive, and program routing entry points.

Chapter 3. Transaction Manager exit routines 303

304

Exit Routines

Front-end Back-end Remote
IMS IMS IMS

IMSA IMSB IMSC

(- - Remote ---- transaction ---- message --------1 »>
I I
- TR Shared MSC | LR1 PR3 --- Application

Je=—— queue link program
Input | |
terminal ¢-1—--------- Response ---- message «--------------- --

PR1 t’llq.? LR2

Application Application
program program

Figure 21. Shared-queues MSC environment

Defining entry points

You can define the entry points and conditions for IMS to call the DFSMSCEO exit
routine by coding the user vector table macro (DFSMSCVT). In the front of the
module, code the VECTOR=MSCVTABLE parameter in the DFSMSCSV macro to point to
the resulting vector table. The DFSMSCVT macro supports 12 entry points that you
can specify to select those conditions for which the exit routine is called (2 for IMS
initialization and termination, and 10 entry points in the flow of TM message
processing).

The entry points enable:

* Rerouting a message to a different destination name or a different remote IMS in
a MSC system.

* Requesting transaction affinity processing (processing messages in a specific
IMS) in a shared queues IMSplex system by requesting that the message process
locally in the current IMS or in a different back-end IMS.

* Rejecting the message

The DFSMSCEQ user exit routine can change the routing of a message by setting
flags and fields in the user parameter list that IMS passes to the exit routine. This
parameter list is mapped by the DFSMSCEP macro, and then returned to IMS. The
parameter list contains:

* Fields and flags to indicate IMS conditions, such as MSC or shared-queues
system definition

* Information regarding the message, such as source and destination names and
MSC system identifiers (SYSIDs) for routing control

Some of the information in the parameter list is for reference only, while other
information can be changed to affect the rerouting of the message. See the
DFSMSCEP macro, described in [Table 110 on page 308| through [Table 115 on page]
for more information.

At any of the user exit entry points (other than the initialization or termination
entry points), the exit routine can request a user prefix segment to be added to the
message. If a user prefix is already obtained for this message by a previous call to
the exit routine, IMS passes the address of the user prefix to the exit routine. The
exit routine can reference or change the user prefix, but cannot delete it or change
its length. This prefix can contain user routing information that can be passed to
the other routing exit entry points to be used to reroute the message. After the user
prefix is obtained, it remains appended to the message and is logged with the
message (for example, a type 01 or type 03 message log record is mapped by the
QLOGMSGP macro).

For each routing request, the user exit routine is passed a 512-byte work area that
is initialized to zeros and that the user exit routine can use as a work area, such as
for creating a user prefix.

No IMS System Definition changes are needed to invoke the DFSMSCEOQ exit
routine, and MSC does not need to be available; however, several of the routing
functions are only available for MSC messages. The DFSMSCEOQ exit routine is
loaded at IMS initialization, provided that the load module is link edited into
IMS.SDFSRESL or a user library concatenated to IMS.SDFSRESL.

Authorization checking

The exit call during link receive processing controls the level of authorization
checking. The level of authorization is controlled by the field MSLRFL3 of the
parameter list during link receive. IMS sets one of the flags in MSLRFL3 when
calling the link receive entry points to indicate which level of security checking is
active. If the message is a local transaction message, resetting or changing this flag
will override the level of security to be performed for this message. Flag MSLRFL1
can be tested to determine if the message is a local transaction. The following
parameters in the MSLRFLS3 field specify the level of authorization:

MSLR3MSN
Authorization by MSNAME. The accessor environment element (ACEE)
dynamically created for first authorization, then reused.

The specification of MSLR3MSN causes the security environment based on
the MSNAME to be built the first time it is needed for an authorization
check. Thereafter, the environment is saved and is reused for subsequent
checking.

MSLR3CTL
Authorization by CTL address space security. The specification of
MSLR3CTL uses the security environment of the CTL address space that
already exists.

MSLR3USR
Authorization by user ID of input terminal. ACEE dynamically created and
deleted for each authorization.

The specification of MSLR3USR causes the security environment based on
the user ID of the input terminal (that entered the transaction) to be built
each time it is needed for an authorization check.

Chapter 3. Transaction Manager exit routines 305

MSLR3XIT
Authorization by user exit (DFSCTRNO). MSLR3XIT can be specified by
itself, or with either MSLR3MSN, MSLR3CTL, or MSLR3USR. The
specification of MSLR3XIT causes DFSCTRNO or DFSCTSEO to be called, if
they exist.

MSLR3NON
No security authorization checking.

MSLR3NON can only be specified without any of the other four options.
The specification of MSLR3NON bypasses all security checking, and allows
the use of the transaction destination.

MSLR3MSN, MSLR3CTL, and MSLR3USR are mutually exclusive. The use of
MSLR3MSN, MSLR3CTL, or MSLR3USR causes RACF (or an equivalent product)
to be called for authorization of the use of the transaction destination.

On entry, the MSLRFLS3 field contains the system default value from
MSCSEC=(,xxx) in the DFSDCxxx PROCLIB member. The exit can then override
the system default, or leave it as is.

Attributes of the routine

The TM and MSC Message Routing and Control user exit routine must be written
as reentrant. The exit routine receives control while running in a 31-bit addressing
mode, and must return control in that mode. The exit routine is called in TASK
mode, with no locks held, and can be in cross memory, non_AR mode.

The following table shows the attributes of the TM and MSC Message Routing and
Control User exit routine.

Table 109. TM and MSC message routing and control user exit routine attributes

Attribute Description
IMS environments DB/DC, DCCTL.
Naming convention = Must be named DFSMSCEQ.

Binding This exit routine must be reentrant.

The sample exit routine is a default routine. If you write your own
exit routine, you must bind it with the IMS control region
SDFSRESL.

Link edit stand alone, NAME/ENTRY = DFSMSCEQ,
RMODE=ANY, AMODE=31, and Reentrant (RENT). Program
routing entry points (DFSMSCVT ENTRYP=PRCHNG, PRISRT)
execute in cross-memory mode under the dependent region TCB.
All other entry points execute under the control region TCB.

Including the routine IMS loads and initializes the exit if found in IMS.SDFSRESL or
concatenated library. The module has 12 possible entry points
selectable by the ENTRYP parameter of the DFSMSCVT macro
coded in the module (see sample DFSMSCEQ).

306 Exit Routines

Table 109. TM and MSC message routing and control user exit routine attributes (continued)

Attribute Description

IMS callable services To use callable services with this exit routine, it must be given a
callable services token by IMS when it is given control. To
determine if you can use callable services, check the value of the
SXPLATOK field in the [“IMS standard user exit parameter list” on|
* If the value of SXPLATOK is zero, you cannot use callable
services with this exit routine.

¢ If the value of SXPLATOK is non-zero, the callable services token
is included and you can use callable services with this routine.
Use the 256-byte work area addressed by the SXPLAWRK field to
call DFSCSIFO.

Sample routine Recommendation: Use the sample DFSMSCEO exit routine that is
location shipped in IMS.ADFSSMPL and tailor it when first coding the user
exit routine. This sample contains examples of the following:

* Routing messages, using all the supported routing options (by
setting the appropriate flags and fields in the DFSMSCEP area).

* Canceling messages.

* Using the DFSMSCVT (entry vector table) macro and all 12 entry
points.

* Using the DESMSCSV (save) macro to set up the entry
environment.

* Using the DFSMSCLV (leave) macro to return to IMS.

* Chaining and using the 6 save sets that are passed to the exit
routine.

* Using the 512-byte work area to build a user prefix and
requesting that IMS obtain a prefix buffer to build a prefix.

* Storing information in the user prefix

Communicating with IMS

This section provides information about how to communicate with IMS using the
DFSMSCEQO user exit routine.

Contents of registers on entry

On entry, the exit routine must save all registers using the provided save area. The
registers contain the following:

Register Contents

R1 Address of the [“IMS standard user exit parameter list” on page 5|
R13 Address of save area

R14 Return address

R15 Address of entry point

This exit routine uses the Version 6 standard exit parameter list. The address of the
work area that is passed to this exit routine in SXPLAWRK can be different each
time that this exit routine is called.

The DFSMSCEQ user parameter list and field definitions are mapped by the
DFSMSCEP macro.

Chapter 3. Transaction Manager exit routines 307

308

Exit Routines

Table 110. Main user exit parameter list mapped by the DFSMSCEP macro

Field Offset Length Description
MSCEIMID 00 8 IMSID of this IMS
MSCEIMSR 08 1 Source IMS release number
MSCEIMSL 09 1 Source IMS mod level
MSCEPLVER 0A 2 DFSMSCEP parameter list version (current
version=0004)

MSCEFL1 0C 1 Main flag 1
MSCEFL2 0D 1 Main flag 2
MSCEFL3 0E 1 Main flag 3
MSCEFL4 OF 1 Main flag 4
MSCEECB 10 4 Address of ECB
MSCESCD 14 4 Address of SCD
MSCESIDT 18 4 Address of SID_Table
MSCESEG 1C 4 Address of MSG_Segment
MSCEUPR 20 4 Address of User_PFX_Seg
MSCEIPR 24 4 Address of IMS_PFX_Seg
MSCEUPRL 28 2 User_PFX_Len (halfword)
MSCEIPRL 2C 2 IMS_PFX_Len (halfword)
MSCESSET 2E 4 Address of Save_sets
MSCEMSEB 30 4 Address of DFSMSCEB

34 4 Reserved
MSCEUSID 38 8 User ID
MSCEGRPN 40 8 Group name
MSCEUSI 48 1 User ID indicator

49 3 Reserved
MSCEAFIN 4C 8 IMSID to route message for shared queues

affinity routing
54 20 Reserved
68 End main parameters

The initialization entry parameter list and field definitions are mapped by the
DFSMSCEP macro.

Table 111. Initialization entry parameters for user exit parameter list mapped by the

DFSMSCEP macro
Field Offset Length Description
MSINFL1 68 1 Initialization flagl
MSINFL2 69 1 Initialization flag2
MSINFL3 6A 1 Initialization flag3
MSINFL4 6B 1 Initialization flag4
6C 12 Reserved
78 End of IMS initialization parameters

The termination entry parameter list and field definitions are mapped by the
DFSMSCEP macro.

Table 112. Termination entry parameters for user exit parameter list mapped by the
DFSMSCEP macro

Field Offset Length Description
MSTEFL1 68 1 Termination flagl
MSTEFL2 69 1 Termination flag2
MSTEFL3 6A 1 Termination flag3
MSTEFL4 6B 1 Termination flag4
6C 12 Reserved
78 End of IMS termination parameters

The terminal routing parameter list and field definitions are mapped by the
DFSMSCEP macro.

Table 113. Terminal routing parameters for user exit parameter list mapped by the
DFSMSCEP macro

Field Offset Length Description

MSTRFL1 68 1 XL1 TR flagl

MSTRFL2 69 1 XL1 TR flag2

MSTRFL3 6A 1 XL1 TR flag3

MSTRFL4 6B 1 XL1 TR flag4

MSTRDEST 6C 8 DEST_NAME

MSTRSRCE 74 8 SRCE_NAME

MSTRLUNM 7C 4 LU_NAME

MSTRMSGR 80 4 APPC_WORK

MSTRDMSN 84 8 MSNAME

MSTRDSID 8C 2 Dest_SID

MSTRKEY 8E 2 MSG_KEY

MSTRLTMN 90 8 OTMA destination override name
98 16 Reserved
A8 End of terminal routing parameters

The link receive parameter list and field definitions are mapped by the DESMSCEP
macro.

Table 114. Link receive routing parameters for user exit parameter list mapped by the
DFSMSCEP macro

Field Offset Length Description

MSLRFL1 68 1 Link receive flagl
MSLRFL2 69 1 Link receive flag2
MSLRFL3 6A 1 Link receive flag3

MSLRFL4 6B
MSLRDEST 6C

—_

Link receive flag4
DEST_NAME

e}

Chapter 3. Transaction Manager exit routines 309

310

Exit Routines

Table 114. Link receive routing parameters for user exit parameter list mapped by the
DFSMSCEP macro (continued)

Field Offset Length Description

MSLRSRCE 74 8 SRCE_NAME
MSLRDMSN 7C 8 DST_MSNAME
MSLRDSID 84 2 DEST_SID
MSLRSMSN 86 8 SRC_MSNAME
MSLRSSID 8E 2 Source_SID
MSLRKEY 90 2 MSG_KEY
92 22 Reserved
A8 End of link receive routing parameters

The program routing parameter list and field definitions are mapped by the
DFSMSCEP macro.

Table 115. Program routing parameters for user exit parameter list mapped by the
DFSMSCEP macro

Field Offset Length Description
MSPRFL1 68 1 Program routing flagl
MSPRFL2 69 1 Program routing flag2
MSPRFL3 6A 1 Program routing flag3
MSPRFL4 6B 1 Program routing flag4
MSPRDEST 6C 8 DEST_NAME
MSPRSRCE 74 8 SRCE_NAME
MSPRDMSN 7C 8 DST_MSNAME
MSPRDSID 84 2 DEST_SID
MSPRDMSN 86 8 DEST_MSNAME
MSPRSSID 8E 2 Source_SID
MSPRSTAT 90 2 Status_Code

92 22 Reserved

A8 End of program routing parameters

The DFSMSCEQ exit routine is called with one caller save area in R13. Field
MSCESSET in DFSMSCEP points to six preformatted save sets for the exit routine's
use. The routine (INITSAV) in the sample exit routine (DFSMSCEQ) chains these
save sets to the caller save set and moves R13 to the first save set in MSCESSET.
This allows the DFSMSCEQ exit routine to call other routines and to pass a save set
chain. When DFSMSCEQ returns to IMS, the DEFSMSCLV macro (Linkage=Yes)
returns to the caller save set and restores registers.

Callable services
Storage services and control block services can be performed by invoking IMS

callable services. This exit routine can use callable services with the ECB passed at
MSCEECB of the user exit PARMLIST.

This exit routine can use IMS Callable Storage Services. This exit routine is defined
to IMS as an IMS standard user exit. Exit routines that are defined to IMS receive
the callable services token in the standard exit parameter list. This exit routine does
not need to issue an initialization call (DFSCSII0) to use IMS callable services.

The exit routine receives control at the following points: the Terminal Routing (TR)
call, the Link Receive (LR) call, and the Program Routing (PR) call. In each
situation, if the DFSMSCEQ user exit routine is called (based on the DFSMSCVT
vector entry) and obtains a user prefix, IMS attaches the prefix to the message and
passes it on to other DFSMSCEQ entry points.

For each entry point parameter selected by the DFSMSCVT macro, the exit routine
must provide a label for the entry point, as shown in the following table.

Table 116. Labels for entry point parameters selected by the DFSMSCVT macro

Parameter Label Function/when called

1. INIT IMS_INITIALIZATION IMS initialization

2. TERM IMS_TERMINATION IMS termination

3. TRBTAM TERMINAL_ROUTING_BTAMS System console message

4. TRVTAM TERMINAL_ROUTING_VTAM VTAM messages

5. TRAPPC TERMINAL_ROUTING_APPC APPC messages

6. TROTMA TERMINAL_ROUTING_OTMA OTMA messages

7. LRTRAN LINK_RECEIVE_LOCAL_TRANSACTION Local tran messages

8. LRLTERM LINK_RECEIVE_LOCAL_LTERM Local LTERM messages

9. LRDIR LINK_RECEIVE_LOCAL_DIRECT_ROUTING Local DIR RTE messages

10. LRINT LINK_RECEIVE_INTERMEDIATE Intermediate messages

11. PRCHNG PROGRAM_ROUTING_CHNG_CALL Application program
CHNG call

12. PRISRT PROGRAM_ROUTING_ISRT_CALL First message segment ISRT
call

13. PRGU PROGRAM_ROUTING_ISRT_CALL Application program issued

GU call

The DFSMSCVT macro parameters listed in the preceding table have the following

characteristics:

INIT entry point
Receives control at IMS initialization, immediately after the exit routine is
loaded.

TERM entry point
Receives control at IMS termination when IMS is shutting down. The INIT
and TERM entry points are not associated with a message.

The next 4 entry points are for the Link Receive (LR) user exit routine:

LRTRAN

Receives control when a message is received on an MSC link, and the
destination is a local transaction in the received system.

LRLTERM

Receives control when a message is received on an MSC link, and the
destination is a local LTERM in the received system.

Chapter 3. Transaction Manager exit routines

311

LRDIR
Receives control when a direct-routed message is received for the local IMS
system. The destination can be an LTERM or a transaction. Direct-routed
messages are created by an application program running in a remote MSC
system that inserts messages using directed routing (in other words, inserts
messages to a PCB MSNAME destination).

LRINT
Receives control for any message received on an intermediate IMS system
(in other words, a message received on an MSC link that is destined to
another remote MSC system). This includes intermediate messages that are
inserted by a remote IMS system using directed routing.

The next 2 entry points are for the Program Routing (PR) user exit routine:

PRCHNG
Receives control when an application program issues a CHNG call to a
modifiable PCB.

PRISRT
Receives control when an application program issues the first ISRT call
(first segment) to a modifiable PCB, non-modifiable PCB, or I/O PCB.

PRGU Receives control when an application program issues a GU call to a I/O
PCB. The exit may request or update a user prefix but no message routing
is supported.

Using user prefixes

Messages contain a variety of prefixes that IMS uses to route and process the
message. These prefixes are mapped by the QLOGMSGP macro, and are in front of
the message, before the user data segments. These prefixes are for internal IMS
use. DFSMSCEOQ can add a user prefix to this message. This prefix is mapped by
the DFSMSCUP macro. The exit routine can build this prefix in one of two ways:

* Test the field MSCEUPR in DFSMSCEP for zero to see if a user prefix already
exists. If not obtained (zero), build a prefix in the 512-byte work area by
addressing some area in the work area that is large enough to hold the prefix.
Set bytes 0 and 1 to the prefix length (5 to 512 bytes), storing the address back in
MSCEUPR. The exit routine can then alter the user data portion of the prefix
(bytes 4 to 512). When the exit routine returns control to IMS, IMS sets the prefix
code (byte 2 = 8E) and the reserved flag (byte 3) and copies the prefix to the
message.

* Test the field MSCEUPR in DESMSCEP for zero to see if a user prefix already
exists. If not obtained (zero), set flag MSCE2UPR=1 and field MSCEUPRL to the
length of the requested prefix (5 to 512 bytes) and return to IMS. IMS obtains
storage that is large enough for the user prefix and stores the address in
MSCEUPR, resets flag MSCE2UPR, and returns control to the exit routine. The
exit routine can then alter the user data portion of the prefix (bytes 4 to 512).
When the exit routine returns control to IMS, IMS sets the prefix code (byte 2 =
8E) and the reserved flag (byte 3) and copies the prefix to the message, and then
frees the original prefix storage.

Note: If the user prefix is obtained for the DFSMSCEQ exit, the size of that prefix

should be considered along with the accumulated size of the other prefix items
when calculating the record lengths for the short and long message queue records.

312 Exit Routines

Related reading: For more information on MSGQUEUE macro message prefix sizes
for each supported IMS release, see IMS Version 13 System Definition.

Related reference:

[“Routine binding restrictions” on page 9|

[“IMS standard user exit parameter list” on page 5|

Transaction Authorization exit routine (DFSCTRNO)

The Transaction Authorization exit routine works with the Security Reverification
exit routine (DFSCTSEQ) and the Signon/off Security exit routine (DFSCSGNO) to
check an individual user ID for authority to use a transaction.

This information documents Product-sensitive Programming Interface and
Associated Guidance Information provided by IMS.

Subsections:
* [“About this routine”]

* [“Communicating with IMS” on page 314|

About this routine

This exit routine can be used with or without RACF to verify that the user's ID is
authorized to run a transaction. If the RACF option is selected and the Transaction
Authorization exit routine is loaded, the exit is activated after RACF verifies the
transaction. If the transaction request is rejected by RACE, the exit is not called. If
the RACF option is not selected in the IMS system definition, this exit routine can
be used to verify the user's authorization and the password, if required, for that
transaction.

Attention: Changing RCF=N to RCF=R requires a cold start of the IMS control
region.

The exit routine should have access to a table of valid user IDs, and the passwords
and transactions associated with each valid user ID.

If you want to generate your own messages for the routine, you need to make the
message number negative in register 15 to issue a specific message, and you need
to list the absolute value of this message number in the User Message Table,
DFSCMTUOQ. For details, see [“User Message table (DFSCMTUO0)” on page 478

If you do not list this message in the User Message Table, message DFS060I is
issued instead of the message you wanted to send.

The IMS security exit routines do not need to be bound to the IMS nucleus, can
run in 31-bit storage, and can share a work storage area. The following security
exit routines now have these attributes:

* Signon/off security exit routine (DFSCSGNO)

DFSCSGNO is called during IMS initialization to give the exit routine the chance
to acquire a work storage area. The exit routine passes the address back to IMS.
Then, IMS passes the address to the other security exit routines every time they
are called.

* Security Reverification exit routine (DFSCTSEOQ)
* Transaction Authorization exit routine (DFSCTRNO)

Chapter 3. Transaction Manager exit routines 313

If the security exit routines are linked in one of the STEPLIB or LINKLIST libraries,
IMS loads the exit routine. There is no startup parameter to specify whether to
load the routines. Message DFS19371 is issued for every exit routine that is loaded
into 31-bit storage.

The following table shows the attributes of the Transaction Authorization exit
routine.

Table 117. Transaction authorization exit routine attributes

Attribute Description

IMS environments DB/DC, DCCTL.

Naming convention You must name this exit routine DFSCTRNO.

Binding The Security Reverification exit routine (DFSCTSEQ) can be bound to DFSCTRNO or

coded as an explicit part of DEFSCTRNO. If you code this entry point, it should have
access to a table of valid user IDs, passwords, and transactions associated with each
valid user ID, or contain some algorithm to derive this authorization information. For
addressability, this table should reside in this module, in the /SIGN ON exit
(DFSCSGNO), or in the IMS nucleus.

The security exit routines can be bound separately.

If the security exit routines are linked in one of the STEPLIB or LINKLIST libraries,
IMS loads the exit routine. There is no startup parameter to specify whether to load
the routines. IMS issues message DFS19371 each time a DFSCSGNO, DFSCTRNO, or
DFSCTSEQ exit routine is loaded.

If the exit routines cannot be linked separately or cannot use a common work area,
they must be linked in the following manner:

* If the CSECT of DFSCTSEQ is part of DFSCTRNO source, DFSCTSEQ must be linked
as an ALIAS of DFSCTRNO.

* If virtual address spaces are used to exchange data between DFSCSGNO,
DFSCTR