
IMS
Version 13

Database Administration
(January 22, 2018 edition)

SC19-3652-04

IBM

IMS
Version 13

Database Administration
(January 22, 2018 edition)

SC19-3652-04

IBM

Note
Before you use this information and the product it supports, read the information in “Notices” on page 839.

January 22, 2018 edition.

This edition applies to IMS Version 13 (program number 5635-A04), IMS Database Value Unit Edition, V13.1
(program number 5655-DSM), IMS Transaction Manager Value Unit Edition, V13.1 (program number 5655-TM2),
and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1974, 2016.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information xi
Prerequisite knowledge xi
IMS function names used in this information . . . xi
How new and changed information is identified . . xi
How to read syntax diagrams xii
Accessibility features for IMS Version 13 xiii
How to send your comments xiv

Part 1. General database concepts,
standards, and procedures 1

Chapter 1. Introduction to IMS
databases 3
Database administration overview 3

DL/I 3
CICS 3
DBCTL and DCCTL 4

Open Database Access (ODBA) 4
Database administration tasks 4
Database concepts and terminology. 6

How data is stored in a database 6
The hierarchy in a database record 9
Types of IMS databases 12
The database record 13
The segment 15

Overview of optional database functions 18
How databases are defined to IMS 20
How application programs view the database . . . 20

Chapter 2. Standards, procedures, and
naming conventions for IMS databases. 23
Standards and procedures for database systems . . 23
General naming conventions for IMS databases . . 25

General rules for establishing naming
conventions 25
Naming conventions for HALDB partitions,
ddnames, and data sets 26

Chapter 3. Review process for
database development 29
The design review 29

Role of the database administrator in design
reviews 29
General information about reviews 29

Design review 1 30
Design review 2 30
Design review 3 31
Design review 4 31
Code inspection 1 32

Who attends code inspection 1 32
Code inspection 2 32
Security inspections 33
Post-implementation reviews 33

Chapter 4. Database security 35
Restricting the scope of data access 35
Restricting processing authority 35
Restricting access by non-IMS programs 37

Protecting data with VSAM passwords 37
Encrypting your database 37

Using a dictionary to help establish security . . . 38

Part 2. IMS catalog. 39

Chapter 5. Overview of the IMS catalog 41

Chapter 6. Backup and recovery of the
IMS catalog. 43
Backup methods for the IMS catalog 44

Chapter 7. Maintaining the IMS catalog 45

Chapter 8. Removing DBD and PSB
instances from the IMS catalog 47

Chapter 9. Using HALDB utilities with
an unregistered IMS catalog 49

Chapter 10. Format of records in the
IMS catalog database 51
HEADER segment format 51
DBD record segment formats 52

AREA segment type format 53
AREARMK segment type format 54
CAPXDBD segment type format 55
CAPXSEGM segment type format 56
CASE segment type format 58
CASERMK segment type format 59
CFLD segment type format 59
CFLDRMK segment type format 61
CMAR segment type format 61
CMARRMK segment type format 63
CPROP segment type format 63
DBD segment type format 64
DBDRMK segment type format. 66
DBDVEND segment type format 67
DSET segment type format 67
DSETRMK segment type format 70
FLD segment type format 71
FLDRMK segment type format 72
LCH2IDX segment type format 73
LCHILD segment type format 73
LCHRMK segment type format. 76
MAP segment type format 77
MAPRMK segment type format 78
MAR segment type format 78
MARRMK segment type format 79

© Copyright IBM Corp. 1974, 2016 iii

||

PROP segment type format 80
SEGM segment type format 80
SEGMRMK segment type format 84
XDFLD segment type format 84
XDFLDRMK segment type format 87

PSB record segment formats 87
DBDXREF segment type format 88
PCB segment type format 89
PCBRMK segment type format 91
PSB segment type format 92
PSBVEND segment type format 93
PSBRMK segment type format 94
SF segment type format 95
SFRMK segment type format 95
SS segment type format 96
SSRMK segment type format 98

Chapter 11. IMS catalog secondary
index 99

Part 3. Database types and
functions 101

Chapter 12. Summary of IMS database
types and functions 103

Chapter 13. Full-function database
types 105
Sequential storage method 105
Direct storage method 106
Databases supported with DBCTL 106
Databases supported with DCCTL 107
Performance considerations overview 107
Nonrecoverable full-function databases 112
HSAM databases 112

When to use HSAM 113
How an HSAM record is stored 113
DL/I calls against an HSAM database 114

HISAM databases 116
Criteria for selecting HISAM 117
How a HISAM record is stored 117
Accessing segments 121
Inserting root segments using VSAM 121
Inserting dependent segments 125
Deleting segments 126
Replacing segments 128

SHSAM, SHISAM, and GSAM databases 128
SHSAM databases 129
SHISAM databases 130
GSAM databases 130

HDAM, PHDAM, HIDAM, and PHIDAM
databases. 132

Maximum sizes of HD databases 133
DL/I calls that can be issued against HD
databases. 134
When to use HDAM and PHDAM 135
When to use HIDAM and PHIDAM. 135
Pointers in HD databases 135

General format of HD databases and use of
special fields 146
How HDAM and PHDAM records are stored 150
When not enough root storage room exists . . 153
How HIDAM and PHIDAM records are stored 154
Accessing segments 157
Inserting root segments 158
Inserting dependent segments 161
Deleting segments 162
Replacing segments 162
How the HD space search algorithm works . . 163
Locking protocols 164
Backup and recovery of HIDAM and PHIDAM
primary indexes 167

Partitions in PHDAM, PHIDAM, and PSINDEX
databases. 168

HALDB partition names and numbers 168
HALDB partition initialization. 171
HALDB partition data sets 171
HALDB partition selection 173
How application programs process HALDB
partitioned databases 175
IMS utilities supported by HALDB 179

Database I/O error management 180

Chapter 14. Fast Path database types 183
Data entry databases 183

DEDB functions 184
DEDB areas 184
Fixed- and variable-length segments in DEDBs 191
Parts of a DEDB area 192
Root segment storage. 197
Direct dependent segment storage 197
Sequential dependent segment storage 198
Enqueue level of segment CIs 198
DEDB space search algorithm 200
DEDB insert algorithm 201
DEDB free space algorithm 202
Managing unusable space with IMS tools . . . 203
DL/I calls against a DEDB 203
Mixed mode processing 204

Main storage databases (MSDBs) 204
When to use an MSDB 205
MSDBs storage 205
MSDB record storage 207
Saving MSDBs for restart 207
DL/I calls against an MSDB 207
Rules for using an SSA 207
Insertion and deletion of segments 208
Combination of binary and direct access
methods 208
Position in an MSDB 209
The field call 210
Call sequence results 210

Fast Path Virtual Storage Option 211
Restrictions for using VSO DEDB areas. . . . 212
Defining a VSO DEDB area. 212
Sharing of VSO DEDB areas 215
Defining a VSO DEDB cache structure name 217
Acquiring and accessing data spaces for VSO
DEDB areas 220

iv Database Administration

Resource control and locking 221
Preopen areas and VSO areas in a data sharing
environment. 222
Input and output processing with VSO 223
Castout thresholds for CIs in VSO areas . . . 225
Checkpoint processing 225
VSO options across IMS restart 226
Emergency restart processing 226
VSO options with XRF 226

Fast Path synchronization points 227
Phase 1 - build log record 227
Phase 2 - write record to system log 227

Managing I/O errors and long wait times 228
Registering Fast Path databases in DBRC 229

Chapter 15. Creating logical
relationships. 231
Secondary indexes versus logical relationships . . 232
Logical relationship types 234
Logical relationship pointer types 238
Paths in logical relationships 247
The logical child segment 249
Segment prefix information for logical relationships 250
Intersection data 251
Recursive structures: same database logical
relationships. 254
Defining sequence fields for logical relationships 257
PSBs, PCBs, and DBDs in logical relationships . . 258
Specifying logical relationships in the physical
DBD 259

Specifying bidirectional logical relationships . . 262
Checklist of rules for defining logical
relationships in physical databases 262

Specifying logical relationships in the logical DBD 263
Checklist of rules for defining logical databases 265

Choosing replace, insert, and delete rules for
logical relationships 270
Insert, delete, and replace rules for logical
relationships. 273

Specifying rules in the physical DBD 273
Insert rules 274
Replace rules 277
Delete rules 283
Using the DLET call 308
The segment delete byte 311
Insert, delete, and replace rules summary . . . 312

Logical relationships and HALDB databases . . . 315
Performance considerations for logical relationships 316

Chapter 16. Creating secondary
indexes 321
The purpose of secondary indexes 321
Characteristics of secondary indexes. 323
Segments used for secondary indexes 325
How secondary indexes restructure the hierarchy
of databases 328

How secondary indexes restructure the
hierarchy of full-function databases 328
How secondary indexes restructure the
hierarchy of DEDB databases 330

How a secondary index is stored 332
Format and use of fields in a pointer segment . . 333

Fields in the HISAM secondary index pointer 336
Fields in the SHISAM secondary index pointer 339

Making keys unique using system related fields 340
How sparse indexing suppresses index entries . . 342

Specifying a sparse index 343
How the secondary index is maintained 343
Processing a secondary index as a separate
database 344
Sharing secondary index databases 345
INDICES= parameter 348
Using secondary indexes with logical relationships 351
Using secondary indexes with variable-length
segments 351
Considerations when using secondary indexing 352
Example of defining secondary indexes. 353
DEDB partitioned secondary indexes 355
Multiple index entries for Fast Path secondary
indexes 360
Considerations for HALDB partitioned secondary
indexes 360

Chapter 17. Database versioning . . . 363
Database versioning overview 363
IMS catalog support for database versioning . . . 364
Database modifications supported by database
versioning 365
Database versioning, existing free space, and new
fields 366
System default for database versioning 368
Implementing database versioning 369
Logical relationships, secondary indexes, and
database versioning 370

Chapter 18. Optional database
functions 373
Variable-length segments 373

How to specify variable-length segments . . . 373
How variable-length segments are stored and
processed. 374
When to use variable-length segments 376
What application programmers need to know
about variable-length segments 376

Segment Edit/Compression exit routine 376
Considerations for using the Segment
Edit/Compression exit routine 378
Specifying the Segment Edit/Compression exit
routine 379

Data Capture exit routines 379
DBD parameters for Data Capture exit routines 380
Call sequence of Data Capture exit routines . . 381
Data passed to and captured by the Data
Capture exit routine 382
Data Capture call functions. 383
Cascade delete when crossing logical
relationships. 384
Data Capture exit routines and logically related
databases. 384

Field-level sensitivity 384

Contents v

||

||
||
||
|
||
|
||
||
||
|
||

How to specify use of field-level sensitivity in
the DBD and PSB 386
Retrieving segments using field-level sensitivity 387
Replacing segments using field-level sensitivity 387
Inserting segments using field-level sensitivity 388
Using field-level sensitivity when fields overlap 389
Using field-level sensitivity when path calls are
issued 389
Using field-level sensitivity with logical
relationships. 389
Using field-level sensitivity with variable-length
segments 390
General considerations for using field-level
sensitivity 395

Multiple data set groups 396
When to use multiple data set groups 396
HD databases using multiple data set groups 398

VSAM KSDS CI reclaim for full-function databases 404
Storing XML data in IMS databases 405

Chapter 19. XML storage in IMS
databases 407
Decomposed storage mode for XML. 408
Intact storage mode for XML 410

DBDs for intact XML storage 411
Side segments for secondary indexing 414

Generating an XML schema 414
XML to JDBC data type mapping. 415
JDBC interface for storing and retrieving XML . . 416

Part 4. Database design and
implementation. 417

Chapter 20. Analyzing data
requirements 419
Local view of a business process 419
Designing a conceptual data structure 424
Implementing a data structure with DL/I 426

Assigning data elements to segments 426
Resolving data conflicts 426

Chapter 21. Designing full-function
databases 429
Specifying free space (HDAM, PHDAM, HIDAM,
and PHIDAM only) 429
Estimating the size of the root addressable area
(HDAM or PHDAM only) 430
Determining which randomizing module to use
(HDAM and PHDAM only) 431
Choosing HDAM or PHDAM options 432
Choosing a logical record length for a HISAM
database 433
Choosing a logical record length for HD databases 436
Determining the size of CIs and blocks 437
Recommendations for specifying sizes for blocks,
CIs, and records 437
Number of open full-function database data sets 438
Buffering options 438

Multiple buffers in virtual storage 438

Subpool buffer use chain 439
The buffer handler 439
Background write option 439
Shared resource pools 439
Using separate subpools. 440
Hiperspace buffering 440
Buffer size 440
Number of buffers. 440
VSAM buffer sizes 441
OSAM buffer sizes 442
Specifying buffers 442

OSAM sequential buffering. 443
Sequential buffering introduction 443
Benefits of sequential buffering 444
Flexibility of SB use 445
How SB buffers data 445
Virtual storage considerations for SB 447
How to request the use of SB 447

VSAM options 451
Optional functions specified in the POOLID,
DBD, and VSRBF control statements. 453
Optional functions specified in the Access
Method Services DEFINE CLUSTER command . 454

OSAM options 455
Dump option (DUMP parameter). 455
Planning for maintenance 455

Chapter 22. Designing Fast Path
databases 457
Design guidelines for DEDBs 457

DEDB design guidelines. 457
DEDB area design guidelines 458
Determining the size of the CI. 459
Determining the size of the UOW 459
SDEP CI preallocation and reporting 460
Processing option P (PROCOPT=P) 461
DEDB randomizing routine design 462
Multiple copies of an area data set 463
Record deactivation 463
Physical child last pointers 464
Subset pointers 464

Designing a main storage database (MSDB) . . . 464
Calculating virtual storage requirements for an
MSDB 465
Understanding resource allocation, a key to
performance 465
Designing to minimize resource contention . . 467
Choosing MSDBs to load and page-fix 469
Auxiliary storage requirements for an MSDB 470

High-speed sequential processing (HSSP) 471
Benefits of the HSSP function 471
Limitations and restrictions when using HSSP 471
Using HSSP 472
HSSP processing option H (PROCOPT=H) . . 472
Image-copy option 473
UOW locking 473
Private buffer pools 474

Designing a DEDB or MSDB buffer pool 474
Fast Path buffer uses 475
Fast Path 64-bit buffer manager 475
Normal buffer allocation (NBA) 476

vi Database Administration

Overflow buffer allocation (OBA). 477
Fast Path buffer allocation algorithm 477
Fast Path buffer allocation when the DBFX
parameter is used 478
Determining the Fast Path buffer pool size . . 478
Fast Path buffer performance considerations . . 478
The NBA limit and sync point 479
The DBFX value and the low activity
environment. 479

Designing a DEDB buffer pool in the DBCTL
environment. 480

Fast Path buffer uses in a DBCTL environment 481
Normal buffer allocation for BMPs in a DBCTL
environment. 481
Normal buffer allocation for CCTL regions and
threads 481
Overflow buffer allocation for BMPs. 482
Overflow buffer allocation for CCTL threads 482
Fast Path buffer allocation algorithm for BMPs 482
Fast Path buffer allocation algorithm for CCTL
threads 483
Fast Path buffer allocation in DBCTL
environments 483
Determining the size of the Fast Path buffer
pool for DBCTL 484
Fast Path buffer performance considerations for
DBCTL 484
The NBA/FPB limit and sync point in a DBCTL
environment. 485
Low activity and the DBFX value in a DBCTL
environment. 485
Fast Path buffer allocation in IMS regions . . . 486

Chapter 23. Implementing database
design 487
Coding database descriptions as input for the
DBDGEN utility 488

DBD statement overview 489
DATASET statement overview. 489
AREA statement overview 489
SEGM statement overview 490
FIELD statement overview 490
DFSMARSH statement overview 492
LCHILD statement overview 492
XDFLD statement overview 492
DFSMAP statement overview 493
DFSCASE statement overview 493
DBDGEN and END statements overview . . . 494

Coding program specification blocks as input to
the PSBGEN utility 494

The alternate PCB statement 495
The database PCB statement 495
The SENSEG statement 496
The SENFLD statement 496
The PSBGEN statement 497
The END statement 497

Building the application control blocks (ACBGEN) 497
Defining DBD and PSB metadata to the generation
utilities 500

Specifying data types for application programs 501
Defining arrays in DBD source statements . . . 502

Defining a data structure in DBD source
statements 505
Redefining fields 506
Defining alternative field maps for a segment 507

Implementing HALDB design 510
Creating HALDB databases with the HALDB
Partition Definition utility 511
Allocating an ILDS 515

Defining generated program specification blocks
for SQL applications 516
Introducing databases into online systems 516

Adding databases dynamically to an online IMS
system 517
Adding MSDB databases dynamically to an
online IMS system. 518

Provision a Fast Path DEDB database with
z/OSMF 518

Chapter 24. Developing test databases 521
Test requirements 521
Disabling DBRC security for the RECON data set
in test environments 522
Designing, creating, and loading a test database 524

Using testing standards 524
Using IBM programs to develop a test database 525

Part 5. Database administrative
tasks 527

Chapter 25. Loading databases. . . . 529
Estimating the minimum size of the database . . 529

Step 1. Calculate the size of an average database
record 530
Step 2. Determine overhead needed for CI
resources 532
Step 3. Determine the number of CIs or blocks
needed 533
Step 4. Determine the number of blocks or CIs
needed for free space 536
Step 5. Determine the amount of space needed
for bitmaps 536

Allocating database data sets 537
Using OSAM as the access method 537
Allocating OSAM data sets 539

Writing a load program 544
Status codes for load programs 546
Using SSAs in a load program. 547
Loading a sequence of segments with the D
command code 547
Two types of initial load program 547
JCL for the initial load program 553
Loading a HISAM database 553
Loading a SHISAM database 553
Loading a GSAM database 554
Loading an HDAM or a PHDAM database . . 554
Loading a HIDAM or a PHIDAM database . . 554
Loading a database with logical relationships or
secondary indexes 554

Loading Fast Path databases 554
Loading an MSDB. 554

Contents vii

Loading a DEDB 555
Loading sequential dependent segments . . . 557

Loading HALDBs that have secondary indexes . . 557

Chapter 26. Database backup and
recovery 559
Database failures 559

Database write errors. 559
Database read errors 560

Database quiesce 560
Making database backup copies 565

Image copies and the IMS image copy utilities 565
HSSP image copies 569
Creating image copy data sets for future use 570
Recovery period of image copy data sets . . . 571
Reusing image copy data sets 573
HISAM copies (DFSURUL0 and DFSURRL0) 573
Nonstandard image copy data sets 574
Frequency and retention for backup copies . . 576
Image copies in an RSR environment 576

Recovery of databases 577
Recovery and data sets 579
Planning your database recovery strategy . . . 580
Supervising recovery using DBRC 582
Overview of recovery of databases 583
Example: recovering a HIDAM database in a
non-data-sharing environment. 585
Recovering a PHIDAM database in a
non-data-sharing environment. 587
Recovering a PHIDAM database in a data
sharing environment 590
Example: recovering a single HALDB partition
in a non-data-sharing environment 591
Example: recovering a HIDAM database in a
data-sharing environment 593
Concurrent image copy recovery 595
HSSP image copy recovery 595
DL/I I/O errors and recovery 595
Correcting bad pointers 597
Recovery in an RSR environment 598

Chapter 27. Database backout 603
Dynamic backout 603

Dynamic backouts and commit points 603
Dynamic backout in batch 605

Database batch backout 605
When to use the Batch Backout utility 606
System failure during backout 606

DL/I I/O errors during backout 606
Errors during dynamic backout 607
Recovering from errors during dynamic backout 607
Errors during batch backout 608
Errors on log during batch backout 608
Errors during emergency restart backout . . . 608

Chapter 28. Monitoring databases . . 609
IMS Monitor 609
Monitoring Fast Path systems 611

Fast Path log analysis utility 611
Interpreting Fast Path analysis reports 614

Chapter 29. Tuning databases 615
Reorganizing the database 615

When you should reorganize a database . . . 616
Reorganizing databases offline. 616
Protecting your database during an offline
reorganization 616
Reorganization utilities 616
Reorganizing HISAM, HD, and index databases
offline 636

Reorganizing HALDB databases 636
HALDB offline reorganization 637
HALDB online reorganization 642
The HALDB self-healing pointer process . . . 664

Changing the hierarchical structure of database
records 670

Changing the sequence of segment types . . . 670
Combining segments 670
Changing the hierarchical structure of a HALDB
database 671

Changing direct-access storage devices 671
Tuning OSAM sequential buffering 672

Example of a well-organized database 672
Example of a badly organized database . . . 672
Ensuring a well-organized database 672

Adjusting HDAM and PHDAM options 673
Adjusting buffers 674

Overview of dynamic database buffer pools . . 674
VSAM buffers 675
OSAM buffers 677
Adjusting OSAM and VSAM database buffers 678
Usage data for OSAM sequential buffering . . 681
Adjusting sequential buffers 682

Adjusting VSAM options 682
Adjusting VSAM options specified in the
OPTIONS control statement 682
Adjusting VSAM options specified in the Access
Method Services DEFINE CLUSTER command . 683

Adjusting OSAM options 684
Changing the amount of space allocated 684
Changing operating system access methods . . . 685
Tuning Fast Path systems 685

Transaction volume to a particular Fast Path
application program 686
DEDB structure considerations 686
Usage of buffers from a Fast Path buffer pool 687
Contention for DEDB control interval (CI)
resources 689
Exhaustion of DEDB DASD space 690
Utilization of available real storage 690
Synchronization point processing and physical
logging 690
Contention for output threads 691
Overhead resulting from reprocessing 691
Dispatching priority of processor-dominant and
I/O-dominant tasks 691
DASD contention due to I/O on DEDBs . . . 691
Maintaining read performance for multiple area
data sets 692
Resource locking considerations with block-level
data sharing 692
Resource name hash routine 693

viii Database Administration

Chapter 30. Modifying databases . . . 695
Modifying record segments. 695

Adding segment types 695
Deleting segment types 697
Moving segment types 698
Changing segment size 698
Adding or converting to variable-length
segments 699
Changing data in a segment (except for data at
the end of a segment) 700
Changing the position of data in a segment . . 700
Changing the name of a segment 701

Adding logical relationships 701
Examples of adding logical relationships . . . 702
Altering IMS logical relationships 714
Some restrictions on modifying existing logical
relationships. 717
Summary on use of utilities when adding
logical relationships 719

Converting a logical parent concatenated key from
virtual to physical or physical to virtual 720
Altering IMS indexes 720

Adding a secondary index to a full-function
database 720
Adding a secondary index to a new primary
DEDB 721
Adding a secondary index to a DEDB 722
Dropping an index 723

Changing the number of data set groups 723
Example flow for simple HD databases. . . . 725
Example flow for modifying HISAM databases
with the reorganization utilities 726
Example flow for HD databases with logical
relationships or secondary indexes 727

Converting to the Segment Edit/Compression exit
routine 730
Converting databases for Data Capture exit
routines and Asynchronous Data Capture 730
Modifying online databases 731

Altering the definition of an online HALDB
database 731
Altering the definition of an online DEDB
database with the DEDB Alter utility 742
Changing databases dynamically in online
systems 748
Activating database changes by using the online
change function 751

Extending DEDB independent overflow online . . 763
Modifying HALDB databases 765

Overview of modifying HALDB databases . . 766
Changing the high key of a partition 775
Adding partitions to an existing HALDB
database 776
Disabling and enabling HALDB partitions. . . 780

Deleting partitions from an existing HALDB
database 783
Changing the name of a HALDB partition. . . 787
Modifying the number of root anchor points in
a PHDAM partition 788
Modifications to HALDB record segments . . . 789
Modifying HALDB partition data sets 789
The maximum size of OSAM data sets and
HALDB databases 790
Exit routine modifications and HALDB
databases. 792
Adding a secondary index to a HALDB
database 794
Modifying a HALDB partitioned secondary
index 795

Chapter 31. Converting database
types 797
Converting a database from HISAM to HIDAM 797
Converting a database from HISAM to HDAM . . 798
Converting a database from HIDAM to HISAM 800
Converting a database from HIDAM to HDAM 800
Converting a database from HDAM to HISAM . . 802
Converting a database from HDAM to HIDAM 803
Converting HDAM and HIDAM databases to
HALDB 804

Parallel unload for migration to HALDB . . . 805
Backing up existing database information . . . 805
Converting simple HDAM or HIDAM databases
to HALDB PHDAM or PHIDAM 806
Converting HDAM or HIDAM databases with
secondary indexes to HALDB 812
Converting logically related HDAM or HIDAM
databases to HALDB 825
Changing the database name when converting a
simple database to HALDB. 832
Restoring a non-HALDB database after
conversion 833

Converting databases to DEDB 835

Part 6. Appendixes 837

Notices 839
Programming interface information 841
Trademarks 841
Terms and conditions for product documentation 842
IBM Online Privacy Statement. 843

Bibliography. 845

Index 847

Contents ix

|
||
|
||

|
||

x Database Administration

About this information

These topics describe IMS™ database types and concepts, and also describe how to
design, implement, maintain, modify, back up, and recover IMS databases.

This information is available in IBM® Knowledge Center.

Prerequisite knowledge
Before using this book, you should understand basic z/OS® and IMS concepts and
your installation's IMS system. IMS can run in the following environments: DB
Batch, DCCTL, TM Batch, DB/DC, DBCTL. You should understand the
environments that apply to your installation. The IMS concepts that are explained
in this information pertain only to administering an IMS database. You should
know how to use DL/I calls and languages such as assembler, COBOL, PL/I, and
C.

You can learn more about z/OS by visiting the “z/OS basic skills” topics in IBM
Knowledge Center.

You can gain an understanding of basic IMS concepts by reading An Introduction to
IMS, an IBM Press publication.

IBM offers a wide variety of classroom and self-study courses to help you learn
IMS. For a complete list of courses available, go to the IBM Skills Gateway and
search for IMS.

IMS function names used in this information
In this information, the term HALDB Online Reorganization refers to the
integrated HALDB Online Reorganization function that is part of IMS Version 13,
unless otherwise indicated.

How new and changed information is identified
New and changed information in most IMS library PDF publications is denoted by
a character (revision marker) in the left margin. The first edition (-00) of Release
Planning, as well as the Program Directory and Licensed Program Specifications, do not
include revision markers.

Revision markers follow these general conventions:
v Only technical changes are marked; style and grammatical changes are not

marked.
v If part of an element, such as a paragraph, syntax diagram, list item, task step,

or figure is changed, the entire element is marked with revision markers, even
though only part of the element might have changed.

v If a topic is changed by more than 50%, the entire topic is marked with revision
markers (so it might seem to be a new topic, even though it is not).

Revision markers do not necessarily indicate all the changes made to the
information because deleted text and graphics cannot be marked with revision
markers.

© Copyright IBM Corp. 1974, 2016 xi

http://www-01.ibm.com/support/knowledgecenter/SSEPH2/welcome
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
https://www-03.ibm.com/services/learning/content/ites.wss/zz-en?pageType=page&c=a0011023

How to read syntax diagrams
The following rules apply to the syntax diagrams that are used in this information:
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line. The following conventions are used:
– The >>--- symbol indicates the beginning of a syntax diagram.
– The ---> symbol indicates that the syntax diagram is continued on the next

line.
– The >--- symbol indicates that a syntax diagram is continued from the

previous line.
– The --->< symbol indicates the end of a syntax diagram.

v Required items appear on the horizontal line (the main path).

►► required_item ►◄

v Optional items appear below the main path.

►► required_item
optional_item

►◄

If an optional item appears above the main path, that item has no effect on the
execution of the syntax element and is used only for readability.

►►
optional_item

required_item ►◄

v If you can choose from two or more items, they appear vertically, in a stack.
If you must choose one of the items, one item of the stack appears on the main
path.

►► required_item required_choice1
required_choice2

►◄

If choosing one of the items is optional, the entire stack appears below the main
path.

►► required_item
optional_choice1
optional_choice2

►◄

If one of the items is the default, it appears above the main path, and the
remaining choices are shown below.

►► required_item
default_choice

optional_choice
optional_choice

►◄

v An arrow returning to the left, above the main line, indicates an item that can be
repeated.

xii Database Administration

►► required_item ▼ repeatable_item ►◄

If the repeat arrow contains a comma, you must separate repeated items with a
comma.

►► required_item ▼

,

repeatable_item ►◄

A repeat arrow above a stack indicates that you can repeat the items in the
stack.

v Sometimes a diagram must be split into fragments. The syntax fragment is
shown separately from the main syntax diagram, but the contents of the
fragment should be read as if they are on the main path of the diagram.

►► required_item fragment-name ►◄

fragment-name:

required_item
optional_item

v In IMS, a b symbol indicates one blank position.
v Keywords, and their minimum abbreviations if applicable, appear in uppercase.

They must be spelled exactly as shown. Variables appear in all lowercase italic
letters (for example, column-name). They represent user-supplied names or
values.

v Separate keywords and parameters by at least one space if no intervening
punctuation is shown in the diagram.

v Enter punctuation marks, parentheses, arithmetic operators, and other symbols,
exactly as shown in the diagram.

v Footnotes are shown by a number in parentheses, for example (1).

Accessibility features for IMS Version 13
Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in z/OS products,
including IMS Version 13. These features support:
v Keyboard-only operation.
v Interfaces that are commonly used by screen readers and screen magnifiers.
v Customization of display attributes such as color, contrast, and font size.

Keyboard navigation

You can access IMS Version 13 ISPF panel functions by using a keyboard or
keyboard shortcut keys.

About this information xiii

For information about navigating the IMS Version 13 ISPF panels using TSO/E or
ISPF, refer to the z/OS TSO/E Primer, the z/OS TSO/E User's Guide, and the z/OS
ISPF User's Guide Volume 1. These guides describe how to navigate each interface,
including the use of keyboard shortcuts or function keys (PF keys). Each guide
includes the default settings for the PF keys and explains how to modify their
functions.

Related accessibility information

Online documentation for IMS Version 13 is available in IBM Knowledge Center.

IBM and accessibility

See the IBM Human Ability and Accessibility Center at www.ibm.com/able for more
information about the commitment that IBM has to accessibility.

How to send your comments
Your feedback is important in helping us provide the most accurate and highest
quality information. If you have any comments about this or any other IMS
information, you can take one of the following actions:
v Click the Contact Us tab at the bottom of any IBM Knowledge Center topic.
v Send an email to imspubs@us.ibm.com. Be sure to include the book title and the

publication number.

To help us respond quickly and accurately, please include as much information as
you can about the content you are commenting on, where we can find it, and what
your suggestions for improvement might be.

xiv Database Administration

http://www.ibm.com/able
http://www.ibm.com/support/knowledgecenter/SSEPH2/welcome

Part 1. General database concepts, standards, and
procedures

The following topics provide an introduction to the administration of databases
using IMS Database Manager, including a general discussion of IMS databases,
basic standards and procedures used when working with IMS databases, the basic
design and review process, and database security.

© Copyright IBM Corp. 1974, 2016 1

2 Database Administration

Chapter 1. Introduction to IMS databases

The introduction to IMS databases describes the tasks of database administration
and discusses the key concepts and terms used when administering IMS Database
Manager.

Database administration overview
The task of database administration is to design, implement, and maintain
databases.

This information describes the tasks involved in administering the Information
Management System Database Manager (IMS DB). IMS is composed of two parts:
IMS Database Manager and IMS Transaction Manager. IMS Database Manager
manages the physical storage of records in the database. IMS Transaction Manager
manages the terminal network, the input and output of messages, and online
system resources. The administration of IMS Transaction Manager is covered in
IMS Version 13 System Administration. IMS networking is covered in IMS Version 13
Communications and Connections.

This book presents the database administration tasks in the order in which you
normally perform the tasks. You perform some tasks in a specific sequence in the
database development process while other tasks are ongoing. It is important for
you to grasp not only what the tasks are, but also how they interrelate.

This first part of the book provides important concepts and procedures for the
entire database administration process. The second part contains the chapters
corresponding to particular tasks of database administration.
Related concepts:
“Database administration tasks” on page 4

DL/I
Data Language/I (DL/I) is the IMS data manipulation language, which is a
common high-level interface between a user application and IMS.

DL/I calls are invoked from application programs written in languages such as
PL/I, COBOL, VS Pascal, C, and Ada. It also can be invoked from assembler
language application programs by subroutine calls. IMS lets the user define data
structures, relate structures to the application, load structures, and reorganize
structures.
Related concepts:

Application programming for IMS DB (Application Programming)
Related reference:

Database management (Application Programming APIs)

CICS
Customer Information Control System (CICS®) accesses IMS databases through the
database resource adapter (DRA).

© Copyright IBM Corp. 1974, 2016 3

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_appdb.htm#ims_appdb
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apr/ims_dlicallsfordbmanagement.htm#ims_dlicallsfordbmanagement

CICS or other transaction management subsystems (excluding IMS Transaction
Manager) can access IMS full-function databases and data entry databases (DEDBs)
in a DB/DC or DBCTL environment through the DRA.

Whenever tasks differ for CICS users, a brief description about the differences is
included.

DBCTL and DCCTL
Database Control (DBCTL) supports non-message-driven batch message processing
(BMP) programs. Data Communications Control (DCCTL) is a transaction
management subsystem that does not support full-function DEDBs or MSDBs
(main storage databases), but does support GSAM databases in BMP regions.

DBCTL has its own log and participates in database recovery. Locking is provided
by IMS program isolation (PI) or the internal resource lock manager (IRLM).

To access databases in a DCCTL environment, DCCTL must connect to an external
subsystem that provides database support.

Open Database Access (ODBA)
Any program that runs in a z/OS address space can access IMS DB through the
Open Database Access (ODBA) callable interface.

Any z/OS application program running in a z/OS address space that is managed
by z/OS Resource Recovery Services (RRS) can access IMS full-function databases
and data entry databases (DEDBs). z/OS application programs that use the ODBA
interface are called ODBA applications.

From the perspective of IMS, the z/OS address space involved appears to be
another region called the z/OS application region.

Types of programs that can call the ODBA interface include:
v Db2® for z/OS stored procedures, including COBOL, PL/I, and Java™

procedures
v Enterprise Java Beans running in WebSphere® Application Server for z/OS
v Other z/OS applications
Related tasks:

Accessing IMS databases through the ODBA interface (Communications and
Connections)

Database administration tasks
The database administration tasks relevant to IMS databases are listed in this topic.

Participating in design reviews
Design reviews are a series of formal meetings you attend in which the
design and implementation of the database are examined. Design reviews
are an ongoing task during the design and implementation of a database
system. They are also held when new applications are added to an existing
system.

Analyzing data requirements
After the users at your installation identify their data processing
requirements, you will construct data structures. These structures show

4 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_odba_config_01.htm#ims_odba_config_01
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_odba_config_01.htm#ims_odba_config_01

what data will be in your database and how it will be organized. This task
precedes the actual design of the database.

Designing your database
After data structures are identified, the next step is to design your
database. Database design involves:
v Choosing how to physically organize your data
v Deciding which IMS processing options you need to use
v Making a series of decisions about design that determine how well your

database performs and uses available space

Developing a test database
Before the applications that will use your database are cut over to
production status, they should be tested. Depending on the form of your
existing data, you can use one or more of the IMS Database Design Aids to
design, create, load, and test your test database.

Implementing your database design
After your database is designed, implement the design by describing to
IMS the database's characteristics and how application programs will use
the database.

This task consists of coding database descriptions (DBDs) and program
specification blocks (PSBs), both of which are a series of macro statements.
Another part of implementing the database design is determining whether
to prebuild application control blocks (ACBs) of the database or to build
the ACBs dynamically.

Loading your database
After database characteristics are defined, write an initial load program to
put your data into the database. After you load the database, application
programs can be run against it.

Monitoring your database
When the database is running, routinely monitor its performance. A variety
of tools for monitoring the IMS system are available.

Tuning your database
Tune your database when performance degrades or utilization of external
storage is not optimum. Routine monitoring helps you determine when the
system needs to be tuned and what type of tuning needs to be done. Like
monitoring, the task of tuning the database is ongoing.

Modifying your database
As new applications are developed or the needs of your users change, you
might need to make changes to your database. For example, you can
change database organization, database hierarchies (or the segments and
fields within them), and you can add or delete one or more partitions. Like
monitoring and tuning, the task of modifying the database is ongoing.

Recovering your database
Database recovery involves restoring a database to its original condition
after it is rendered invalid by some failure. The task of developing
recovery procedures and performing recovery is an important one.
However, because it is difficult to separate data recovery from system
recovery, the task of recovery is treated separately in IMS Version 13
Operations and Automation.

Chapter 1. Introduction to IMS databases 5

You can use Database Recovery Control (DBRC) to support the recovery of
your databases. If your databases are registered in the RECON data set,
DBRC gains control during execution of these IMS utilities:
v Database Image Copy
v Online Database Image Copy
v Database Image Copy 2
v Change Accumulation
v Database Recovery
v Log Recovery
v Log Archive
v DEDB area data set create
v HD and HISAM Reorganization Unload and Reload
v HALDB Index/ILDS Rebuild

You must ensure that all database recoveries use the current IMS utilities,
rather than those of earlier releases.

Establishing security
You can keep unauthorized persons from accessing the data in your
database by using program communication blocks (PCBs). With PCBs, you
can control how much of the database a given user can see, and what can
be done with that data. In addition, you can take steps to keep non-IMS
programs from accessing your database.

Setting up standards and procedures
It is important to set standards and procedures for application and
database development. This is especially true in an environment with
multiple applications. If you have guidelines and standards, you will save
time in application development and avoid problems later on such as
inconsistent naming conventions or programming standards.

Related concepts:
“Database administration overview” on page 3
Related reference:

Log Archive utility (DFSUARC0) (System Utilities)

Log Recovery utility (DFSULTR0) (System Utilities)

Database concepts and terminology
This topic discusses the terms and concepts you need to understand to perform
IMS database administration tasks.

To understand this topic, you must know what a DL/I call is and how to code it.
You must understand function codes and Segment Search Arguments (SSAs) in
DL/I calls and know what is meant when a call is referred to as qualified or
unqualified (explained in IMS Version 13 Application Programming).

How data is stored in a database
The data in a database is grouped into a series of database records. Each database
record is composed of smaller groups of data called segments. A segment is the
smallest piece of data IMS can store. Segments, in turn, are made up of one or
more fields.

6 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_logarchive.htm#ims_logarchive
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_logrecovery.htm#ims_logrecovery

The following figure shows a record in a school database. Each of the boxes is a
segment or separate group of data in the database record. The segments in the
database record contain the following information:

COURSE
The name of the course

INSTR
The name of the teacher of the course

REPORT
A report the teacher needs at the end of the course

STUDENT
The names of students in the course

GRADE
The grade a student received in the course

PLACE
The room in which the course is taught

The segments within a database record exist in a hierarchy. A hierarchy is the order
in which segments are arranged. The order implies something. The school database
is storing data about courses that are taught. The COURSE segment is at the top of
the hierarchy. The other types of data in segments in the database record would be
meaningless if there was no COURSE.

Root segment
Only one root segment exists within a database record. All other segments in the
database record are called dependent segments.

In the example shown in “How data is stored in a database” on page 6, the
COURSE segment is the root segment. The segments INSTR, REPORT, STUDENT,
GRADE, and PLACE are the dependent segments. The existence of dependent
segments hinges on the existence of a root segment. For example, without the root
segment COURSE, there would be no reason for having a PLACE segment stating
in which room the course was held.

The third level of dependent segments, REPORT and GRADE, is subject to the
existence of second level segments INSTR and STUDENT. For example, without

Figure 1. Segment types in the school database record

Chapter 1. Introduction to IMS databases 7

the second level segment STUDENT, there would be no reason for having a
GRADE segment indicating the grade the student received in the course.

Parent and child segment
Another set of words used to refer to how segments relate to each other in a
hierarchy is parent segment and child segment. A parent segment is any segment that
has a dependent segment beneath it in the hierarchy.

In the figure shown in “How data is stored in a database” on page 6, COURSE is
the parent of INSTR, and INSTR is the parent of REPORT. A child segment is any
segment that is a dependent of another segment above it in the hierarchy. REPORT
is the child of INSTR, and INSTR is the child of COURSE. Note that INSTR is both
a parent segment in its relationship to REPORT and a child segment in its
relationship to COURSE.

Segment type and occurrence
The terms segment type and segment occurrence distinguish between a type of
segment in the database and a specific segment instance.

This is in contrast to the terms root, dependent, parent, and child, which describe
the relationship between segments.

The database shown in “How data is stored in a database” on page 6 is actually
the design of the database. It shows the segment types for the database.
“Relationship between segments” shows the actual database record with the
segment occurrences.

A segment occurrence is a single specific segment. Math is a single occurrence of
the COURSE segment type. Baker and Coe are multiple occurrences of the
STUDENT segment type.

Relationship between segments
One final term for describing segments is twin segment. Twin (like root, dependent,
parent, and child) describes a relationship between segments. Twin segments are
multiple occurrences of the same segment type under a single parent.

In the following figure, the segments Baker and Coe are twins. They have the same
parent (Math), and are of the same segment type (STUDENT). Pass and Inc are not
twins. Although Pass and Inc are the same segment type (GRADE), they do not
have the same parent. Pass is the child segment of Baker, and Inc is the child
segment of Coe.

8 Database Administration

The following topic discusses the hierarchy in more detail. Subsequent topics
describe the objects in a database, what they consist of and the rules governing
their existence and use. These objects are:

The database record
The segments in a database record
The fields within a segment

The hierarchy in a database record
A database is composed of a series of database records. Records contain segments,
and the segments are arranged in a hierarchy in the database record.

Numbering sequence in a hierarchy: top to bottom
When a database record is stored in the database, the hierarchical arrangement of
segments in the database record is the order in which segments are stored.

Starting at the top of a database record (at the root segment), segments are stored
in the database in the sequence shown by the numbers in the following figure.

The sequence goes from the top of the hierarchy to the bottom in the first (left
most) path or leg of the hierarchy. When the bottom of the database is reached, the
sequence is from left to right. When all segments have been stored in that path of
the hierarchy, the sequencing begins in the next path to the right, again proceeding
from top to bottom and then left to right. (In the second leg of the hierarchy there
is nothing to go to at the right.) The sequence in which segments are stored is
loosely called “top to bottom, left to right.”

The following figure shows sequencing of segment types for the school database
shown in “How data is stored in a database” on page 6. The sequence of segment
types are stored in the following order:
1. COURSE (top to bottom)
2. INSTR
3. REPORT
4. STUDENT (left to right)

Figure 2. Segment occurrences in a school database record

Chapter 1. Introduction to IMS databases 9

5. GRADE (top to bottom)
6. PLACE (left to right)

The following figure shows the segment occurrences for the school database record
as shown in “Relationship between segments” on page 8. Because there are
multiple occurrences of segment types, segments are read "front to back" in
addition to "top to bottom, left to right." The segment occurrences for the school
database are stored in the following order:
1. Math (top to bottom)
2. James
3. ReportA
4. ReportB (front to back)
5. Baker (left to right)
6. Pass (top to bottom)
7. Coe (front to back)
8. Inc (top to bottom)
9. Room2 (left to right)

Figure 3. Hierarchical sequence of segment types for a school database

10 Database Administration

Note that the numbering sequence is still initially from top to bottom. At the
bottom of the hierarchy, however, observe that there are two occurrences of the
REPORT segment.

Because you are at the bottom of the hierarchy, both segment occurrences are
picked up before you move to the right in this path of the hierarchy. Both reports
relate to the instructor segment James; therefore it makes sense to keep them stored
together in the database. In the second path of the hierarchy, there are also two
segment occurrences in the student segment. You are not at the bottom of the
hierarchical path until you reach the grade segment Pass. Therefore, sequencing is
not “interrupted” by the two occurrences of the student segment Baker and Coe.
This makes sense because you are keeping student and grade Baker and Pass
together.

Note that the grade Inc under student Coe is not considered another occurrence
under Baker. Coe and Inc become a separate path in the hierarchy. Only when you
reach the bottom of a hierarchical path is the “top to bottom, left to right”
sequencing interrupted to pick up multiple segment occurrences. You can refer to
sequencing in the hierarchy as “top to bottom, front to back, left to right”, but
“front to back” only occurs at the bottom of the hierarchy. Multiple occurrences of
a segment at any other level are sequenced as separate paths in the hierarchy.

As noted before, this numbering of segments represents the sequence in which
segments are stored in the database. If an application program requests all
segments in a database record in hierarchical sequence or issues Get-Next (GN)
calls, this is the order in which segments would be presented to the application
program.

Numbering sequence in a hierarchy: movement and position
The terms movement and position are used when talking about how segments are
accessed when an application program issues a call. They are used to help describe
the numbering sequence in a hierarchy.

Figure 4. Hierarchical sequence of segment occurrences for school database

Chapter 1. Introduction to IMS databases 11

When talking about movement through the hierarchy, it always means moving in
the sequence implied by the numbering scheme. Movement can be forward or
backward. When talking about position in the hierarchy, it means being located
(positioned) at a specific segment.

A segment is the smallest piece of data IMS can store. If an application program
issues a Get-Unique (GU) call for the student segment BAKER (see Figure 4 on
page 11), the current position is immediately after the BAKER segment occurrence.
If an application program then issues an unqualified GN call, IMS moves forward
in the database and returns the PASS segment occurrence.

Numbering sequence in a hierarchy: level
In a hierarchy, level is the position of a segment in the hierarchy in relation to the
root segment. The root segment is always on level one.

The following figure illustrates levels of the database record shown in
“Relationship between segments” on page 8.

Types of IMS databases
IMS allows you to define many different database types. You define the database
type that best suits your application's processing requirements.

You need to know that each IMS database has its own access method, because IMS
runs under control of the z/OS operating system. The operating system does not
know what a segment is because it processes logical records, not segments. IMS
access methods therefore manipulate segments in a database record. When a
logical record needs to be read, operating system access methods (or IMS) are
used.

The following table lists the IMS database types you can define, the IMS access
methods they use and the operating system access methods you can use with
them. Although each type of database varies slightly in its access method, they all
use database records.

Figure 5. Levels in the database

12 Database Administration

Table 1. Types of IMS databases and their z/OS access methods

Type of IMS
database Full name of database type

IMS or operating system access
methods that can be used

DEDB 1 Data Entry Database Media Manager

GSAM Generalized Sequential Access Method QSAM/BSAM or VSAM

HDAM Hierarchical Direct Access Method VSAM or OSAM

HIDAM Hierarchical Indexed Direct Access
Method

VSAM or OSAM

HISAM Hierarchical Indexed Sequential Access
Method

VSAM

HSAM Hierarchical Sequential Access Method BSAM or QSAM

MSDB 2 Main Storage Database N/A

PHDAM Partitioned Hierarchical Direct Access
Method

VSAM or OSAM

PHIDAM Partitioned Hierarchical Indexed Direct
Access Method

VSAM or OSAM

PSINDEX Partitioned Secondary Index VSAM

SHSAM Simple Hierarchical Sequential Access
Method

BSAM or QSAM

SHISAM Simple Hierarchical Indexed Sequential
Access Method

VSAM

Table notes:

1. For DBCTL, available only to BMPs
2. Not applicable to DBCTL

The databases listed in the above table are divided into two categories:
Full-function database types and Fast Path database types. DEDB and MSDB are
the only two Fast Path database types. All other databases in the above table are
considered full-function database types.
Related concepts:
Part 3, “Database types and functions,” on page 101
Chapter 12, “Summary of IMS database types and functions,” on page 103

The database record
A database consists of a series of database records, and a database record consists
of a series of segments.

Another thing to understand is that a specific database can only contain one kind
of database record. In the school database, for example, you can place as many
school records as desired. You could not, however, create a different type of
database record, such as the medical database record shown in the following
figure, and put it in the school database.

Chapter 1. Introduction to IMS databases 13

The only other thing to understand is that a specific database record, when stored
in the database, does not need to contain all the segment types you originally
designed. To exist in a database, a database record need only contain an occurrence
of the root segment. In the school database, all four of the records shown in the
following figure can be stored.

Figure 6. An example of a medical database record

Figure 7. Example of records that can be stored in the school database

14 Database Administration

However, no segment can be stored unless its parent is also stored. For example,
you could not store the records shown in the following figure.

Occurrences of any of the segment types can later be added to or deleted from the
database.

The segment
A database record consists of one or more segments, and the segment is the
smallest piece of data IMS can store.

Here are some additional facts you need to know about segments:
v A database record can contain a maximum of 255 segment types. The space you

allocate for the database limits the number of segment occurrences.
v You determine the length of a segment; however, a segment cannot be larger

than the physical record length of the device on which it is stored.
v The length of segments is specified by segment type. A segment type can be

either variable or fixed in length.

Segments consist of two parts (a prefix and the data), except when using a SHSAM
or SHISAM database. In SHSAM and SHISAM databases, the segment consists of
only the data. In a GSAM database, segments do not exist.

The following figure shows the format of a fixed-length segment.

The following figure shows the format of a variable-length segment.

Figure 8. Records that cannot be stored in the school database

Segment
code

Delete
byte

Pointer and
counter area

Prefix Fixed length data portion

Sequence
field

Specified for
segment type

Other data fields

VariesBytes 1 1

Figure 9. Format of fixed-length segments

Chapter 1. Introduction to IMS databases 15

IMS uses the prefix portion of the segment to “manage” the segment. The prefix
portion of a segment consists of: segment code, delete byte, and in some databases,
a pointer and counter area. Application programs do not “see” the prefix portion
of a segment. The data portion of a segment contains your data, arranged in one or
more fields.
Related concepts:
“SHSAM, SHISAM, and GSAM databases” on page 128
“Main storage databases (MSDBs)” on page 204
“Data entry databases” on page 183

Segment code
IMS needs a way to identify each segment type stored in a database. It uses the
segment code field for this purpose.

When loading a segment type, IMS assigns it a unique identifier (an integer from 1
to 255). IMS assigns numbers in ascending sequence, starting with the root
segment type (number 1) and continuing through all dependent segment types in
hierarchical sequence.

Delete byte
When an application program deletes a segment from a database, the space it
occupies might or might not be immediately available to reuse.

Deletion of a segment is described in the discussions of the individual database
types. For now, know that IMS uses this prefix byte to track the status of a deleted
segment.
Related reference:
“Bits in the delete byte” on page 311

Pointer and counter area
The pointer and counter area exists in HDAM, PHDAM, HIDAM, and PHIDAM
databases, and, in some special circumstances, HISAM databases.

The pointer and counter area can contain two types of information:
v Pointer information consists of one or more addresses of segments to which a

segment points.
v Counter information is used when logical relationships, an optional function of

IMS, are defined.

The length of the pointer and counter area depends on how many addresses a
segment contains and whether logical relationships are used. These topics are
covered in more detail later in this book.

Variable length data portion

2

Segment
code

Delete
byte

Pointer and
counter area

Prefix

Size
field

Sequence
field

Varies based
on a minimum and
maximum size specified
for segment type

Other fields

VariesBytes 1 1

Figure 10. Format of variable-length segments

16 Database Administration

The data portion
The data portion of a segment contains one or more data elements. The data is
processed and unlike the prefix portion of the segment, seen by an application
program.

The application program accesses segments in a database using the name of the
segment type. If an application program needs to reference part of a segment, a
field name can be defined to IMS for that part of the segment. Field names are
used in segment search arguments (SSAs) to qualify calls. An application program
can see data even if you do not define it as a field. But an application program
cannot qualify an SSA on the data unless it is defined as a field.

The maximum number of fields that you can define for a segment type is 255. The
maximum number of fields that can be defined for a database is 1000. Note that
1000 refers to types of fields in a database, not occurrences. The number of
occurrences of fields in a database is limited only by the amount of storage you
have defined for your database.

The three data portion field types
You can define three field types in the data portion of a segment: a sequence field,
data fields, and for variable-length segments, a size field stating the length of the
segment.

The first two field types contain your data, and an application program can use
both to qualify its calls. However, the sequence field has some other uses besides
that of containing your data.

You can use a sequence field, often referred to as a key, to keep occurrences of a
segment type in key sequence under a given parent. For example, in the database
record shown in the following figure, there are three segment occurrences of the
STUDENT segment, and the STUDENT segment has three data elements.

Figure 11. Three segment occurrences and three data elements of the STUDENT segment

Chapter 1. Introduction to IMS databases 17

Suppose you need the STUDENT segment, when stored in the database, to be in
alphabetic order by student name. If you define a field on the NAME data as a
unique sequence field, IMS stores STUDENT segment occurrences in alphabetical
sequence. The following figure shows three occurrences of the STUDENT segment
in alphabetical sequence.

When you define a sequence field in a root segment of a HISAM, HDAM,
PHDAM, HIDAM, or PHIDAM database, an application program can use it to
access a specific root segment, and thus a specific database record. By using a
sequence field, an application program does not need to search the database
sequentially to find a specific database record, but can retrieve records sequentially
(for HISAM, HIDAM, and PHIDAM databases).

You can also use a sequence field in other ways when using the IMS optional
functions of logical relationships or secondary indexing. These other uses are
discussed in detail later in this book.

The important things to know now about sequence fields are that:
v You do not always need to define a sequence field. This book describes cases

where a sequence field is necessary.
v The sequence field value can be defined as unique or non-unique.
v The data or value in the sequence field is called the “key” of the segment.

Overview of optional database functions
IMS has several optional functions you can use for your database.

The functions include:

Logical relationships
Logical relationships is a function you can use to let an application program
access a logical database record. A logical database record can consist of
segments from one or more physical database records. Physical database
records can be stored in one or more databases. Thus, a logical database
record lets an application program view a database structure that is
different from the physical database structure.

For example, if a logical data structure contains segments from two
different physical databases, a segment can be accessed from two different
paths:
v A segment can be physically stored in the path where it is most

frequently used and where the most urgent response time is required.

Figure 12. Example of STUDENT segments stored in alphabetic order

18 Database Administration

v A pointer containing the location of the segment can be physically stored
in the alternate path needed by another application program.

Secondary indexing
Secondary indexing is a function you can use to access segments in a
database in a sequence other than the one defined in the sequence field.

Variable-length segments
Variable-length segments is a function you can use to make the data portion
of a segment type variable in length. Use variable-length segments when
the size of the data portion of a segment type varies greatly from one
segment occurrence to the next. With variable-length segments, you define
the minimum and maximum length of a segment type. Defining both
minimum and maximum length saves space in the database whenever a
segment is shorter than the maximum length.

Field-level sensitivity
Field-level sensitivity is a function you can use to:
v Deny an application program access to selected fields in a segment for

security purposes.
v Allow an application program to use a subset of the fields that make up

a segment (and not process fields it does not use) or use fields in a
segment in a different order. Use field-level sensitivity in this way to
accommodate the differing needs of your application programs.

Segment edit/compression
Segment edit/compression is a function you can use with segments to:
v Encode or “scramble” segment data when it is on the device so only

application programs with access to the segment receive the data in
decoded form.

v Edit data so application programs can receive data in a format other
than the one in which it is stored.

v Compress data when writing a segment to the device, so the Direct
Access Storage Device (DASD) is better used.

A Data Capture exit routine
A Data Capture exit routine is used to capture segment data when an
application program updates IMS databases with an insert, replace, or
delete call. This is a synchronous activity that happens within the unit of
work or application update. Captured data is used for data propagation to
Db2 for z/OS databases. You can also use Data Capture exit routines to
perform tasks other than data propagation.

Asynchronous Data Capture
Asynchronous Data Capture is a function you use to capture segment data
when an application program updates IMS databases with an insert,
replace, or delete call. This is an asynchronous activity that happens
outside of the unit of work or application update. Captured data is used
for data propagation to Db2 for z/OS databases asynchronously. You can
also use Asynchronous Data Capture to perform tasks other than data
propagation.

IMS DataPropagator allows you to propagate the changed data to or from
IMS and Db2 for z/OS both synchronously and asynchronously.

Related reading: For more information on IMS DataPropagator see IMS
DataPropagator for z/OS: An Introduction.

Chapter 1. Introduction to IMS databases 19

Multiple data set groups
Multiple data set groups is a function you can use to put some segments in a
database record in data sets other than the primary data set. This can be
done without destroying the hierarchical sequence of segments in a
database record.

One reason to use multiple data set groups is to accommodate the differing
needs of your applications. By using multiple data set groups, you can
give an application program fast access to the segments in which it is
interested. The application program simply bypasses the data sets
containing unnecessary segments. Another reason for using multiple data
set groups is to improve performance by, for example, separating high-use
segments from low-use segments. You might also use multiple data set
groups to save space by putting segment types whose size varies greatly
from the average in a separate data set group.

Related concepts:
Chapter 18, “Optional database functions,” on page 373

How databases are defined to IMS
You define most characteristics of your database to IMS by coding a macro that
generates a DBD.

A DBD (database descriptor) is a series of macro instructions that describes the
organization and access methods for a database, the segments and fields in a
database record, and the relationship between types of segments.

Certain databases, such as IMS partitioned hierarchic direct databases, known
collectively as High Availability Large Databases (HALDB), require you to define
additional database characteristics in the RECON data set.

If you have the IBM DB/DC (database/data communication) Data Dictionary, you
can use it to define your database (except for DEDBs and MSDBs). The DB/DC
Data Dictionary may contain all the information you need to produce a DBD.

How application programs view the database
You control how an application program views your database.

An application program might not need use of all the segments or fields in a
database record. And an application program may not need access to specific
segments for security or integrity purposes. An application program may not need
to perform certain types of operations on some segments or fields. For example, an
application program needs read access to a SALARY segment but not update
access.

You control which segments and fields an application can view and which
operations it can perform on a segment by coding and generating a PSB (program
specification block).

A PSB is a series of macro instructions that describe an application program's
access to segments in the database. A PSB consists of one or more program
communication blocks (PCB), and each PCB describes the application program's
ability to read and use the database. For example, an application program can have
different views and uses of the same database. An application program can access
several different databases and can have several PCBs in its PSB.

20 Database Administration

If you have the IBM DB/DC Data Dictionary, you can use it to define an
application program's access to the database. It can contain all the information
needed to produce a program view.

Chapter 1. Introduction to IMS databases 21

22 Database Administration

Chapter 2. Standards, procedures, and naming conventions
for IMS databases

Well planned standards and procedures and a good understanding of IMS
conventions provide guidance to administrators, operators, and programmers
improve the reliability and efficiency of your installation.

Standards and procedures for database systems
You must develop standards and procedures for your database system.

Adequate standards and procedures improve:
v The quality of application systems, because setting up and following standards

and procedures gives you greater control over your entire application
development process

v The productivity in application and database design, because guidelines for
design decisions exist

v The productivity of application coding, because coding standards and
procedures exist

v The communication between you and application developers, because you each
have clearly defined responsibilities

v The reliability and recoverability in operations, because you have clear and
well-understood operating procedures

You must set up and test procedures and standards for database design,
application development, application programs' use of the database, application
design, and for batch operation. These standards are guidelines that change when
installation requirements change.

You can establish standard practices for the following aspects of database design:
v Database structure and segmentation

Number of segments within a database
Placement of segments
Size of segments
Use of variable-length segments
When to use segment edit/compression
When to use secondary data set groups
Number of databases within an application
When and how to use field-level sensitivity
Database size

v Access methods
When to use HISAM
Choice of record size for HISAM
HISAM organization using VSAM
When to use GSAM
Use of physical child/physical twin pointers
Use of twin backward pointers

© Copyright IBM Corp. 1974, 2016 23

Use of child last pointers
HIDAM or PHIDAM index organization using VSAM
HIDAM or PHIDAM pointer options at the root level
Sequencing twin chains
Use of HD free space
When to use HDAM or PHDAM
Processing an HDAM or a PHDAM database sequentially
Use of the “byte limit count” for HDAM or PHDAM
Use of twin backward pointer for HDAM or PHDAM roots
Use of free space with HDAM or PHDAM
When to use DEDBs
Processing DEDBs sequentially
Use of DEDB parameters
Use of subset pointers
Use of multiple area data sets

v Secondary indexing
For sequential processing
On volatile segments
In HISAM databases
Use of unique secondary indexes
Use of sparse indexing
Processing of the secondary index as a separate database

v Logical relationships
Use of direct pointers versus symbolic pointers
Avoidance of long logical twin chains
Sequencing of the logical twin chain
Placement of the real logical child segment

You can also establish standards for the ways in which application programs use
the database, for example:
v Requiring update and read functions to be in separate programs
v How many transaction types to allow per application program
v When applications are to issue a deliberate abnormal termination and the range

of abend codes that is permitted to applications
v Whether application programs are permitted to issue messages to the master

terminal
v The method of referencing data in the IOAREA, and referencing IMS variables

(such as PCBs and SSAs)
v Use of predefined structures, such as PCB masks, SSAs, or database segment

formats, by applications
v Use of GU calls to the message queue
v Re-usability of MPP and BMP programs
v Use of qualified calls and SSAs
v Use of path calls
v Use of the CHANGE call
v Use of the system calls: PURG, LOG, STAT, SNAP, GCMD, and CMD

24 Database Administration

Establish procedures to govern the following aspects of application design:
v The interaction between you and the application designer
v Use of the dictionary or COPY or STRUCTURE libraries for data elements and

structures
v The requirement of design reviews and inspections

For operations, consider developing:
v Procedures to limit access to computer facilities
v A control point, to ensure that:

– Jobs contain complete and proper submittal documentation
– Jobs are executed successfully on schedule
– Correct input and output volumes are used, and output is properly

distributed
– Test programs are executed only in accordance with a defined test plan
– An incident report is maintained to ensure that all problems are recorded and

reported to the responsible parties
v Normal operating procedures, including operations schedules, procedures for

cold start, warm start, and shutdown, and scheduling and execution of batch
programs.

v Procedures for emergency situations. During an emergency, the environment is
one of stress. Documented procedures provide step-by-step guidance to resolve
such situations. Include procedures for emergency restart, database backout,
database recovery, log recovery, and batch program restart.

v A master terminal operator's guide for the installation. This guide should be
supplemented by IMS Version 13 Operations and Automation.

v A master operations log. This log could contain a record of system availability,
time and type of failure, cause of the failure, recovery steps taken, and type of
system termination if normal.

v A system maintenance log. This log could contain a record of all release and
modification levels, release dependencies, program temporary fixes (PTFs)
applied, the status of APARs and date submitted, and bypass solutions.

General naming conventions for IMS databases
Naming conventions help users identify and manage the many resources in an IMS
system. Some naming conventions are defined by IMS, while many others can be
defined by you.

General rules for establishing naming conventions
Good naming conventions are mandatory in a data processing project, especially in
an environment with multiple applications.

A good naming convention includes the following general rules:
v Each name must be unique. If names are not unique, unpredictable errors can

occur.
v Each name must be meaningful and identify to all personnel the type of

resource that the named element is.

The following table provides an example of basic naming conventions. These
conventions are only an example, and you can establish your own naming
conventions.

Chapter 2. Standards, procedures, and naming conventions for IMS databases 25

Table 2. Example of basic naming conventions.

Resource type Convention

SYSTEM S as first letter

JOB J as first letter

PROGRAM P as first letter if this is an IMS program (to match PSB)
G as first letter otherwise

MODULE M as first letter

COPY C as first letter for a member that contains the segment structure A as first
letter for a member that contains all the SSAs for the segment Other
members must be the same as the segment name

TRANSACTION T as first letter

PSB P as first letter

PCB Same name as PSB Note: The PCB occurrence number indicates the
position of the PCB in the PSB

DATABASE D as first letter with the subsequent characters identifying the type of
database and its relationship to other databases. For example, Dtaaann, in
which the characters taaann indicate the following:

Character Meaning

t Database type. The database can be one of the following
types:

P Physical

L Logical

X Primary index

Y Secondary index

aaa A unique database identifier common to all logical and
index databases based on the same physical database

nn A unique identifier, if there are multiple logical or secondary
index databases

SEGMENT S, R, or O as first letter with the subsequent characters identifying the
type of segment and its relationship to its database. An R identifies
'segments' that are non-DL/I file record definitions. An O identifies any
other data areas, for example, terminal I/O areas, control blocks, report
lines, and so on. For example, Saaabbbb, in which the characters aaabbbb
indicate the following:

Character Meaning

aaa A unique database identifier; same as the physical database
in which the segment occurs
Note: Concatenated segments should have an aaa value
corresponding to the aaa of the logical child segment.

bbbb An identifier for the user name

ELEMENT E as first letter

Naming conventions for HALDB partitions, ddnames, and data
sets

HALDB naming conventions for partitions, ddnames, and data set names simplify
the management of numerous partitions and data sets in HALDB PHDAM,
PHIDAM, and PSINDEX databases.

26 Database Administration

Related concepts:
“Data set naming conventions for HALDB Online Reorganization” on page 650
Related tasks:
“Allocating logically related database data sets” on page 830
“Allocating the indexed database data sets” on page 822
“Allocating database data sets” on page 810

Naming convention for HALDB partitions
You assign names to each partition. Partition names are 1–7 bytes in length.

These names must be unique among the database names, partition names, and Fast
Path area names that are registered in the RECON data set. You can use partition
names to describe the data in the partition, but choose such names carefully. If you
add or delete partitions or modify their boundaries, data might move from one
partition to another. This movement can make the assignment of meaningful
names difficult. You cannot change the name of an existing partition without
deleting it and redefining it as a new partition.

Naming convention for HALDB data definition names (ddnames)
IMS defines HALDB data definition names (ddnames) by appending a 1-byte
suffix to the partition name. The suffix indicates the type of data set and, if you
use multiple data set groups, differentiates the data sets within the group.

The following table shows the HALDB data set types and the corresponding
ddname suffixes.

Table 3. Suffixes for HALDB ddnames by data set type

Data set type Ddname suffix Additional suffixes if HALDB Online
Reorganization is used

Database data set A–J M–V

Primary index (PHIDAM
only)

X Y

Indirect list data set (PHDAM
and PHIDAM only)

L L (the suffix for the ILDS does not
change)

If you use multiple data set groups, the A through J suffixes are the values that
you would specify for the DSGROUP parameter in the SEGM statements. The
letter A identifies the first database data set (DBDS), the letter B identifies the
second, and so forth, up to the letter J. If you do not use multiple data set groups,
you do not specify the DSGROUP parameter and the ddname for the single data
set that contains the record segments has the suffix A.

The suffixes M–V and Y are created automatically for the integrated HALDB
Online Reorganization function of IMS. You do not need to specify them in the
DBD. If you have never used the HALDB Online Reorganization function to
reorganize a given partition, the suffixes M–V and Y are not used in that partition.

In PSINDEX databases, each partition contains only one data set. The suffix A is
used for the ddname that corresponds to that data set.

For example, a PHIDAM database partition named PART1 would have ddnames of
PART1A for its first DBDS, PART1B for the second DBDS, up to PART1J for the
tenth DBDS. The indirect list data set (ILDS) and the primary index of partition

Chapter 2. Standards, procedures, and naming conventions for IMS databases 27

PART1 would have ddnames of PART1L and PART1X, respectively. And a
PSINDEX database partition named PARSI would have a ddname of PARSIA for
its data set.

When reorganizing a partition, the integrated HALDB Online Reorganization
function of IMS uses an additional data set for each data set that is active prior to
starting the online reorganization process. For example, a ddname of PART1M is
created to correspond to the active data set PART1A. A PART1N is created for
PART1B, and so on, up to PART1V for PART1J, if it exists.

The ddnames must be unique among the database names, partition names, and
Fast Path area names that are registered in the RECON data set.

Naming convention for HALDB data set names
You define a part of HALDB data set names and IMS creates the rest.

When you define a partition, you define a data set name prefix of up to 37
characters for the partition. A data set name prefix cannot be a duplicate of a data
set name prefix in any other HALDB database, but it can be duplicated within a
single HALDB database. Because partition IDs are unique, the suffix that IMS
appends to each data set name prefix makes the data set names unique for the
different partitions within a HALDB database. There is no required correlation
between the partition name and the names of its data sets.

To create the lowest-level qualifier, IMS appends a 6-character suffix to the prefix
to form the data set name. The first character of the IMS-supplied suffix is an
alphabetic character: either A–J, L, and X, or M–V, L, and Y. The 6-character suffix
is separated from the preceding data set name qualifiers by a period.

The first character of the data set name suffix matches the character that is used as
the suffix in the ddname. The remaining five digits of the suffix represent the
partition ID number, which is assigned by DBRC and you cannot change. For
example:
v A suffix of A00001 indicates the first or only DBDS in a partition with partition

ID 1
v A suffix of J00004 indicates the tenth DBDS in a partition with partition ID 4
v A suffix of L00007 indicates the ILDS in a partition with partition ID 7
v A suffix of X00011 indicates the primary index in a PHIDAM partition with

partition ID 11

28 Database Administration

Chapter 3. Review process for database development

One of the best ways to make sure a good database design is developed and
effectively implemented is to review the design at various stages in its
development.

The types of reviews are that are typically conducted during development of a
database system are described in the following topics.

Design reviews 1, 2, 3, and 4
Code inspections 1 and 2
Security inspection
Post-implementation review

The design review
Design reviews ensure that the functions being developed are adequate, the
performance is acceptable, the installation standards met, and the project is
understood and under control.

Hold reviews during development of the initial database system and, afterward,
whenever a program or set of programs is being developed to run against it.

Role of the database administrator in design reviews
The role of a database administrator in the review process is to ensure that a good
database design is developed and then effectively implemented. The role is
ongoing and provides a supporting framework for the other database
administration tasks.

The role of database administration in the review process is an important one.
Typically, a member of the database administration staff, someone not associated
with the specific system being developed, moderates the reviews. The moderator
does more than just conduct the meeting. The moderator also looks to see what
impact development of this system has on existing or future systems. You, the
database administrator responsible for developing the system, need to participate
in all reviews.

General information about reviews
During system development, development groups typically hold a series of
reviews that are common to most development projects.

For purposes of simplicity, “system” describes the object under review. In actuality,
the “system” could be a program, set of programs, or an entire database system.
The number of reviews, who attends them, and their specific role in the review
will differ slightly from one installation to the next. What you need to understand
is the importance of the reviews and the tasks performed at them. Here is some
general information about reviews:
v People attending all reviews (in addition to database administrators) include a

review team and the system designer. The review team generally has no
responsibility for developing the system. The review team consists of a small

© Copyright IBM Corp. 1974, 2016 29

group of people whose purpose is to ensure continuity and objectivity from one
review to the next. The system designer writes the initial functional
specifications.

v At the end of each review, make a list of issues raised during the review. These
issues are generally change requirements. Assign each issue to a specific person
for resolution, and set a target date for resolution. If certain issues require major
changes to the system, schedule other reviews until you resolve all major issues.

v If you have a data dictionary, update it at the end of each review to reflect any
decisions that you made. The dictionary is an important aid in keeping
information current and available especially during the first four reviews when
you make design decisions.

Design review 1
The purpose of design review 1 is to ensure that all user requirements have been
identified and that design assumptions are consistent with objectives.

The first design review takes place after initial functional specifications for the
system are complete. No detailed design for the system is or should be available at
this point. The review of the specifications will determine whether the project is
ready to proceed to a more detailed design. When design review 1 concludes
successfully, its output is an approved set of initial functional specifications.

People who attend design review 1, in addition to the regular attendees, include
someone from the organization that developed the requirement and anyone
participating in the development of detailed design. You are at the review
primarily for information. You also look at:

The relationship between data elements
Whether any of the needed data already exists

Design review 2
Your role in design review 2 is primarily to gather information.

The second design review takes place after final functional specifications for the
system are complete. This means the overall logic for each program in the system
is defined, as well as the interface and interactions between programs. Audit and
security requirements are defined at this point, along with most data requirements.
When design review 2 is successfully concluded, its output is an approved set of
final functional specifications.

Everyone who attended design review 1 should attend design review 2. People
from test and maintenance groups attend as observers to begin getting information
for test case design and maintenance. Those concerned with auditing and security
can also attend.

Your role in this review is still primarily to gather information. You also look at:
v Whether the specifications meet user requirements
v Whether the relationship between data items is correct
v Whether any of the required data already exists
v Whether audit and security requirements are consistent with user requirements
v Whether audit and security requirements can be implemented

30 Database Administration

Design review 3
Your role in design review 3 is to ensure that the flow of transactions is consistent
with the database design you are creating.

The third design review takes place after initial logic specifications for the system
are complete. At this point, high level pseudo code or flowcharts are complete.
These can only be considered complete when major decision points in the logic are
defined, calls or references to external data and modules are defined, and the
general logic flow is known. All modules and external interfaces are defined at this
point, definition of data requirements is complete, and database and data files are
designed. Initial test and recovery plans are available; however, no code has been
written. When design review 3 concludes successfully, its output is an approved
set of initial logic specifications.

Everyone who attended design review 2 should attend design review 3. If the
project is large, those developing detailed design need only be present during the
review of their portion of the project.

It is possible now that logic specifications are available.

At this point in the design review process, you are designing hierarchies and
starting to design the database.
Related concepts:
Chapter 20, “Analyzing data requirements,” on page 419
Chapter 13, “Full-function database types,” on page 105
Chapter 18, “Optional database functions,” on page 373
Chapter 21, “Designing full-function databases,” on page 429

Design review 4
The primary objective of design review 4 is to make sure that system performance
will be acceptable.

The fourth design review takes place after design review 3 is completed and all
interested parties are satisfied that system design is essentially complete. No
special document is examined at this review, although final functional
specifications and either initial or final logic specifications are available.

At this point in the development process, sufficient flexibility exists to make
necessary adjustments to the design, since no code exists but detailed design is
complete. Although some design changes undoubtedly occur once coding is begun,
these changes should not impact the entire system. Although no code exists at this
point, you can and should run tests to check that the database you have designed
will produce the results you expect.

When design review 4 concludes successfully, database design is considered
complete.

The people who attend all design reviews (moderator, review team, database
administrator, and system designer) should attend design review 4. Others attend
only as specific detail is required.

At this point in the review process, you are almost finished with the database
administration tasks along with designing and testing your database.

Chapter 3. Review process for database development 31

Related concepts:
Chapter 20, “Analyzing data requirements,” on page 419
Chapter 13, “Full-function database types,” on page 105
Chapter 24, “Developing test databases,” on page 521

Code inspection 1
The objective of code inspection 1 is to ensure that the correctly developed logic
interprets the functional specification. Code inspection 1 also provides an
opportunity to review the logic flow for any performance implications or
problems.

The first code inspection takes place after final logic specifications for the system
are complete.

At this point, no code is written but the final functional specifications have been
interpreted. Both pseudo code and flowcharts have a statement or logic box for
every 5 to 25 lines of assembler language code, 5 to 15 lines of COBOL code, or 5
to 15 lines of PL/I code that needs writing. In addition, module prologues are
written, and entry and exit logic along with all data areas are defined.

When code inspection 1 successfully concludes, its output is an approved set of
final logic specifications.

Who attends code inspection 1
Code inspection 1 is attended primarily by those doing the coding. People who
attend all design reviews (moderator, review team, database administrator, and
system designer) also attend the code inspection 1. Testing people present the test
cases that will be used to validate the code, while maintenance people are there to
learn and evaluate maintainability of the database.

Your role in this review is now a less active one than it has been. You are there to
ensure that everyone adheres to the use of data and access sequences defined in
the previous reviews.

At this point in the review process, you are starting to implement database design,
to develop test databases, and to load databases.
Related concepts:
Chapter 23, “Implementing database design,” on page 487
Chapter 24, “Developing test databases,” on page 521
Chapter 25, “Loading databases,” on page 529

Code inspection 2
The objective of the second code inspection is to make sure module logic matches
pseudo code or flowcharts. Interface and register conventions along with the
general quality of the code are checked. Documentation and maintainability of the
code are evaluated.

The code inspection 2 takes place after coding is complete and before testing by
the test organization begins.

Everyone who attended code inspection 1 should attend code inspection 2.

32 Database Administration

Your role in this review is the same as your role in code inspection 1.

At this point in the review process, you are almost finished with the database
administration tasks of developing a test database, implementing the database
design, and loading the database.

During your testing of the database, you should run the DB monitor to make sure
your database still meets the performance expectations you have established.
Related concepts:
Chapter 28, “Monitoring databases,” on page 609

Security inspections
The purpose of a security inspection review is to look for any code that violates
the security of system interfaces, secured databases, tables, or other high-risk items.

The security inspection is optional but highly recommended if security is a
significant concern. Security inspections can take place at any appropriate point in
the system development process. Define security strategy early, and check its
implementation during design reviews. This particular security inspection takes
place after all unit and integration testing is complete.

People who attend the security inspection review include the moderator, system
designer, designated security officer, and database administrator. Because the
database administrator is responsible for implementing and monitoring the
security of the database, you might, in fact, be the designated security officer. If
security is a significant concern, you might prefer that the review team not attend
this inspection.

During this and other security inspection, you are involved in the database
administration task of establishing security.
Related concepts:
Chapter 4, “Database security,” on page 35

Post-implementation reviews
A post-implementation review is typically held about six months after the database
system is running. Its objective is to make sure the system is meeting user
requirements.

Recommendation: Conduct a post-implementation review.

Everyone who has been involved in design and implementation of the database
system should attend the post-implementation review. If the system is not meeting
user requirements, the output of this review should be a plan to correct design or
performance problems to meet user requirements.

Chapter 3. Review process for database development 33

34 Database Administration

Chapter 4. Database security

Database security has two aspects: user verification and user authority.

User verification refers to how you establish that the person using an online
database is in fact the person you have authorized.

User authority refers to how you control what users can see and what the users can
do with what they see after you verify the user's identity.

These topics deal primarily with how you can control a user's view of data and the
user's actions with respect to the data.

Related reading: If you use CICS, see CICS Transaction Server for z/OS RACF
Security Guide for information on establishing security.
Related concepts:
“Security inspections” on page 33

Restricting the scope of data access
You can restrict a user's access to (and even knowledge of) elements of a database
by limiting the view of a database that you define for an application program.

The PCB defines a program's (and therefore the user's) view of the database. You
can think of a PCB as a "mask" over the data structure defined by the DBD. The
PCB mask can hide certain parts of the data structure.

In “Restricting processing authority,” the top of the first figure shows the
hierarchical structure for a PAYROLL database as seen by you and defined by the
DBD. For certain applications, it is not necessary (nor desirable) to access the
SALARY segment. By omitting SENSEG statement in the DB PCB for the SALARY
segment, you can make it seem that this segment simply does not exist. By doing
this, you have denied unauthorized users access to the segment, and you have
denied users knowledge of its very existence.

For this method to be successful, the segment being masked off must not be in the
search path of an accessed segment. If it is, then the application is made aware of
at least the key of the segment to be “hidden.”

With field-level sensitivity, you can achieve the same masking effect at the field
level. If SALARY and NAME were in the same segment, you could still restrict
access to the SALARY field without denying access to other fields in the segment.

Restricting processing authority
After you have controlled the scope of data a user has access to, you can also
control authority within that scope.

Controlling authority allows you to decide what processing actions against the
data a given user is permitted. For example, you could give some application
programs authority only to read segments in a database, while you give others
authority to update or delete segments.

© Copyright IBM Corp. 1974, 2016 35

Control processing authority with the PROCOPT parameter

You can control the processing actions of a user through the PROCOPT parameter
when you define a program view (PSB). The PROCOPT parameter tells IMS what
actions you permit against the database. A program can do what is declared in the
PROCOPT.

You can specify the PROCOPT parameter on SENSEG and PCB statements when
you code the macro instructions for the PSB Generation utility.

Limit program sensitivity to only required segments

In addition to restricting access and authority, you can limit the segments to which
an application program is sensitive. The number of sensitive segments and the
processing option specified can have an impact on data availability. To achieve
maximum data availability, the PSB should be sensitive only to the segments
required and the processing option should be as restrictive as possible.

For example, the database definition in the following macro instructions for the
DBD Generation utility describes a payroll database that stores the name, address,
position, and salary of employees. The hierarchical structure of the database record
is shown in figure following the code.

DBD NAME=PAYROLL,...
DATASET ...
SEGM NAME=NAME,PARENT=0...
FIELD NAME=
SEGM NAME=ADDRESS,PARENT=NAME,...
FIELD NAME=
SEGM NAME=POSITION,PARENT=NAME,...
FIELD NAME=
SEGM NAME=SALARY,PARENT=NAME,...
FIELD NAME=...

If an application needs access to the name, address, and position of employees, but
not the salary, you can use the SENSEG statement in the DB PCB macro
instructions for the PSB Generation utility to make the application sensitive to only
the name, address, and position segments. The SENSEG statements on the DB PCB
creates a mask over the database record hiding segments from application. The

Figure 13. Example database definition for a payroll database

Figure 14. Payroll database record without a mask

36 Database Administration

following code shows the DB PCB that masks the SALARY segment of the payroll
database from the application.

PCB TYPE=DB.DBDNAME=PAYROLL,...
SENSEG NAME=NAME,PARENT=0,...
SENSEG NAME=ADDRESS,PARENT=NAME,...
SENSEG NAME=POSITION,PARENT=NAME,......

The following figure shows what the payroll database record looks like to the
application based on the preceding program view definitions. It looks just like the
database record in the preceding figure except that the SALARY segment is
hidden.

Restricting access by non-IMS programs
One potential security exposure is from people attempting to access IMS data sets
with non-IMS programs. Two methods of protecting against this exposure are data
set password protection and database encryption.

Protecting data with VSAM passwords
You can take advantage of VSAM password protection to prevent non-IMS
programs from reading VSAM data sets on which you have your IMS databases.

To protect data with VSAM passwords, enable password protection for your
VSAM data sets by coding PASSWD=YES on the DBD statement. IMS then passes
the DBD name as the password. If you specify PASSWD=NO on the DBD
statement, the console operator is prompted to provide a password to VSAM each
time the data set is opened.

This method is only useful in the batch environment, and VSAM password
checking is bypassed entirely in the online system. (If you have RACF® installed,
you can use it to protect VSAM data sets.)
Related reference:

DBD statements (System Utilities)

Encrypting your database
You can encrypt DL/I databases to help prevent non-IMS programs from reading.

Figure 15. Example PCB for a payroll database

Figure 16. Payroll database record with SALARY segment masked

Chapter 4. Database security 37

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdstmt.htm#ims_dbdstmt

You can encrypt DL/I segments using your own encryption routine, entered at the
segment edit/compression exit. Before segments are written on the database, IMS
passes control to your routine, which encrypts them. Then, each time they are
retrieved, they are decrypted by your routine before presentation to the application
program.

Do not change the key or the location of the key field in index databases or in root
segments of HISAM data bases.
Related concepts:
“Segment Edit/Compression exit routine” on page 376

Using a dictionary to help establish security
A dictionary, such as the IBM DB/DC Data Dictionary, monitors relationships
among entities in your computing environment (such as, which programs use
which data elements), making it an ideal tool to administer security.

You can use the dictionary to define your authorization matrixes. Through the
extensibility feature, you can define terminals, programs, users, data, and their
relationships to each other. In this way, you can produce reports that show:
dangerous trends, who uses what from which terminal, and which user gets what
data. For each user, the dictionary could be used to list the following information:
v Programs that can be used
v Types of transactions that can be entered
v Data sets that can be read
v Data sets that can be modified
v Categories of data within a data set that can be read
v Categories of data that can be modified

38 Database Administration

Part 2. IMS catalog

The following topics describe the purpose and content of the IMS catalog database
and administrative tasks to maintain the IMS catalog.

© Copyright IBM Corp. 1974, 2016 39

40 Database Administration

Chapter 5. Overview of the IMS catalog

The IMS catalog contains trusted metadata and definitions of the IMS databases
and application program views that are defined to IMS.

The IMS catalog is itself a HALDB PHIDAM database. Each database and
application program view that is defined to IMS is stored in a separate record in
the IMS catalog. In each record, the root header segment identifies the type of
resource that it contains: either a database definition (DBD) or a program view
(PSB).

The header segment is followed in the hierarchy by a DBD or a PSB segment. The
DBD or PSB segment and its dependent segments store the definition and
metadata of the database or program view.

Subsequent definitions of a database or program view are stored in the same
record as the previous definitions of the database or program view by inserting
more instances of the DBD or PSB segment and its dependents. The different
instances of a database or program view are differentiated by a time stamp.

The database and program view instances in a record can include an active
instance that is being used by the online IMS system, previously defined instances,
and draft instances that were never activated.

If database versioning is used, the DBD segments for a previous version of a
database must be retained in the DBD record in the IMS catalog to provide
application programs access to the previous version of the database.

The ACBLIB of an IMS system contains DBDs and PSBs for the databases and
applications in that system. However, that information is not directly accessible by
an IMS administrator or application programmer. During ACBGEN, this
information can be automatically replicated to the IMS catalog database. The IMS
catalog database can be queried with standard DL/I processing, with DL/I
processing through the Universal DL/I driver, and with SQL through the Universal
JDBC driver. IMS catalog database records cannot be updated, replaced, inserted,
or deleted except with the provided utilities.

Some types of data are not derived from the ACBLIB because the information is
not stored in the ACBLIB. IMS derives this information, including definitions for
GSAM and logical databases, from the DBDLIB and PSBLIB during the ACBGEN
process. GSAM databases are included in the catalog only if they are referenced in
a mixed PSB that includes both GSAM and non-GSAM databases.

Important: If the IMS catalog is not enabled in the DFSDFxxx IMS PROCLIB
member for the IMS system, no catalog information is created during ACBGEN.

Data is stored in the IMS catalog database as hexadecimal (type X) for numeric
values, or Cp1047 EBCDIC character data. In some cases, values are truncated to
save space. If a field contains blanks (for character data), that indicates that the
field does not apply to that database or program specification block. Individual
field definitions might indicate other meanings for a blank field.

© Copyright IBM Corp. 1974, 2016 41

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

IMS provides a skeletal COBOL copybook and skeletal PL/I program for accessing
the catalog database. The COBOL copybook is called DFS3DCBL and can be found
in IMS.ADFSISRC. The PL/I sample application is named DFS3DPL1 and can be
found in the IMS sample library, IMS.ADFSSMPL.

When the catalog is enabled in the DFSDFxxx member of the IMS.PROCLIB data
set, IMS automatically adds a PCB list for the IMS catalog to each user PSB at run
time.

IMS provides two DBDs for the IMS catalog, one for the main IMS catalog
database and the other for the secondary index. IMS provides several PSBs for the
IMS catalog for different purposes and application program types. The DBDs and
PSBs for the IMS catalog are defined as resident.

The catalog database segment types are grouped into four different data set groups
(A - D) based on how frequently that segment type is accessed in database queries.
The root segment type (HEADER) and the DBD and PSB segment types are in data
set group A. The least frequently accessed segment types, such as user remarks, are
grouped in data set D.

As a HALDB PHIDAM database, the IMS catalog can be queried with standard
DL/I processing, with DL/I processing through the Universal DL/I driver, and
with SQL through the Universal JDBC driver. IMS catalog database records cannot
be updated, replaced, inserted, or deleted except with the provided utilities.
Related concepts:

IMS catalog definition and tailoring (System Definition)
Related tasks:

Installing the IMS catalog DBDs and PSBs (System Definition)
Related reference:

IMS catalog data set groups (System Definition)

IMS catalog utilities (System Utilities)

The IMS Catalog Redpaper

42 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_catalog_definition.htm#ims_catalog_definition
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_catalog_res_install.htm#ims_catalog_res_install
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_cat_db_dsgs.htm#ims_cat_db_dsgs
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_catalogutilities.htm#ims_catalogutilities
http://www.redbooks.ibm.com/abstracts/redp4812.html?Open

Chapter 6. Backup and recovery of the IMS catalog

The IMS catalog is a HALDB database, so you can use standard HALDB backup
and recovery procedures to back up and recover an IMS catalog, but you must
make sure that the records in the recovered IMS catalog match that application
control blocks (ACBs) that are active in the IMS system.

For certain IMS functions, such as database versioning, the ability to recover the
IMS catalog from back up copies is required. If these functions are not used, you
can recover the IMS catalog by using one of the population utilities to rebuild it
from ACB, DBD, and PSB libraries.

One of the functions that requires backup copies for recovery is database
versioning. When database versioning is used, the DBDs for previous versions of a
database exist only in the IMS catalog and cannot be repopulated from the ACB
library. Only the version of the database definition (DBD) that is designated as
active can be repopulated from the active ACB library.

IMS catalog data sets

The IMS catalog is a HALDB partitioned HIDAM (PHIDAM) database with a
primary index data set, an indirect list data set (ILDS). The IMS catalog includes a
HALDB partitioned secondary index (PSINDEX) database.

Coordinating IMS catalog recovery with the active ACBs

When you recover the IMS catalog from backup image copies, you must ensure
that the recovered IMS catalog is in sync with the active ACB library. The time
stamps of the records in the IMS catalog must match the time stamps of the
corresponding ACB members in the active ACB library.

DBRC, the IMS recovery utilities, and the IMS catalog

All standard IMS utilities can run on the catalog data sets, including the image
copy and database recovery utilities that are provided with IMS.

When the IMS catalog is managed by DBRC, the utilities that are provided with
IMS create recovery information in the log data sets when the IMS catalog is
updated. DBRC manages the logs, image copies, and JCL required for recovery of
the IMS catalog. You can perform a full database recovery or a point-in-time
recovery for the IMS catalog partitions.

When DBRC is not used with the IMS catalog, the IMS catalog can be recovered by
using the standard backup and recovery processes that are used for other HALDB
databases. However, you must have processes in place to manage the logs, image
copies, JCL, and so on.

Recovery by repopulation

If your installation does not use database versioning, as an alternative to
recovering the IMS catalog from image copies and log records, you can re-create
the IMS catalog from your ACB, DBD, and PSB libraries by running either the IMS

© Copyright IBM Corp. 1974, 2016 43

|
|
|
|
|

Catalog Populate utility (DFS3PU00) or the ACB Generation and Catalog Populate
utility (DFS3UACB) to reload the IMS catalog.

Re-creating the IMS catalog from ACB, DBD, and PSB libraries by using one of the
population utilities restores only the record segments in the IMS catalog that are in
the libraries. Use this method only if you do not need record segments for past
instances of your DBDs and PSBS or the historical metadata that those segment
instances contain.

An initial load of the catalog by either of the population utilities does not create
any database recovery information in the log data sets. Create an image copy
immediately after the IMS catalog is loaded to ensure that the image copy is
consistent with the active ACB library.
Related concepts:
“Making database backup copies” on page 565
“Recovery of databases” on page 577
Chapter 26, “Database backup and recovery,” on page 559
Related reference:

IMS catalog utilities (System Utilities)

Backup methods for the IMS catalog
Because the IMS catalog is a HALDB PHIDAM database, you can use the IMS
image copy utilities to back up the partition data sets of the main database and the
secondary index.

Like the recovery of other HALDB databases, the recovery of the IMS catalog does
not use image copies of the primary index data set or the indirect list data set
(ILDS). Instead, these data sets are recovered by rebuilding them by using the
HALDB Index/ILDS Rebuild utility (DFSPREC0).

When the IMS image copy utilities are used and the IMS catalog is managed by
DBRC, the image copies and the required log data sets are managed by DBRC.

If the IMS catalog is shared between IMS systems, the IMS Catalog must be added
to a change accumulation (CA) group so that the logs from all of the IMS systems
can be merged before a recovery.
Related concepts:
“Making database backup copies” on page 565
Chapter 26, “Database backup and recovery,” on page 559
Related reference:

Backup utilities (Database Utilities)

IMS catalog utilities (System Utilities)
Related information:

44 Database Administration

|

|
|
|

|
|
|
|

|
|

|
|
|

|

|

|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_catalogutilities.htm#ims_catalogutilities
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dur03.htm#ims_dur-gen2
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_catalogutilities.htm#ims_catalogutilities

Chapter 7. Maintaining the IMS catalog

The IMS catalog is an IMS HALDB full-function database, so even though it
should not require much maintenance, the same maintenance considerations that
apply to other HALDB full-function databases apply to the IMS catalog.

How often you need to reorganize or otherwise maintain the IMS catalog depends
on how often your installation adds or updates the PSB and DBD records in the
IMS catalog for new or changed databases and application programs in your IMS
environment.

To reorganize the IMS catalog, use HALDB Online Reorganization (OLR) to avoid
taking the IMS catalog offline. Because the IMS catalog is smaller than the typical
HALDB database, running OLR on the IMS catalog should not significantly impact
performance or resources.

If you can take the IMS catalog offline, you can reorganize the IMS catalog by
using the HD Reorganization Unload utility (DFSURGU0) and the HD
Reorganization Reload utility (DFSURGL0).

To clean out instances of PSBs and DBDs that are no longer needed from the IMS
catalog, you can use the IMS Catalog Record Purge utility (DFS3PU10).
Related concepts:
Chapter 8, “Removing DBD and PSB instances from the IMS catalog,” on page 47
Related reference:

HD Reorganization Unload utility (DFSURGU0) (Database Utilities)

HD Reorganization Reload utility (DFSURGL0) (Database Utilities)

IMS Catalog Record Purge utility (DFS3PU10) (System Utilities)

© Copyright IBM Corp. 1974, 2016 45

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dfsurgu0.htm#ims_dfsurgu0
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dfsurgl0.htm#ims_dfsurgl0
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_catalog_cleanuputility.htm#ims_catalog_cleanuputility

46 Database Administration

Chapter 8. Removing DBD and PSB instances from the IMS
catalog

You can remove the segments that represent individual DBD and PSB instances
from the DBD and PSB records in the IMS catalog by using the IMS Catalog
Record Purge utility (DFS3PU10).

You can also use the IMS Catalog Record Purge utility to delete all DBD instances
of a particular DBD version from a DBD record in the IMS catalog. When a DBD
version is deleted, all DBD instances of the DBD version are deleted from the DBD
record. After deletion, the version of the DBD no longer exists in the IMS catalog.

To help avoid the unintentional deletion of DBD or PSB segments that you still
need, you can define retention criteria for the DBD and PSB records in the IMS
catalog. Based on the retention criteria in effect for each record in the catalog, the
analysis function of the IMS Catalog Record Purge utility identifies and creates
DELETE statements for the DBD or PSB segment instances that are eligible for
deletion.

Retention criteria specific to a DBD or PSB record is set by the UPDATE control
statement of the IMS Catalog Record Purge utility and are stored in the HEADER
segment of the record. If no retention criteria is specified for a given record,
catalog records are subject to the default retention criteria that is set by the
RETENTION statement in the CATALOG section of the DFSDFxxx member of the
IMS.PROCLIB data set.

The retention criteria includes the minimum number of segment instances IMS
must retain in a DBD or PSB record and the minimum period of time segment
instances must be retained before they can be deleted. By default, IMS retains a
minimum DBD and PSB instances a record. There is no default for the period of
time an instance must be retained. Periods of time are measured in days.

For example, if the number of instances of DBD or PSB segments in a record is
equal to or less than the retention number that is set for the record, no instances
can be deleted. If the number of days that a DBD or PSB instance has been in the
IMS catalog is equal to or less than the retention period defined for the DBD or
PSB record that contains it, the DBD or PSB instance cannot be deleted.

When you define your retention criteria for the segment instances in DBD and PSB
records, keep in mind that each additional instance increases the amount of storage
that is required for the IMS catalog.
Related reference:
“HEADER segment format” on page 51

IMS Catalog Record Purge utility (DFS3PU10) (System Utilities)

CATALOG and CATALOGxxxx sections of the DFSDFxxx member (System
Definition)

© Copyright IBM Corp. 1974, 2016 47

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_catalog_cleanuputility.htm#ims_catalog_cleanuputility
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsdfxxx_proclib_catalog.htm#ims_dfsdfxxx_proclib_catalog
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsdfxxx_proclib_catalog.htm#ims_dfsdfxxx_proclib_catalog

48 Database Administration

Chapter 9. Using HALDB utilities with an unregistered IMS
catalog

All HALDB utilities are supported for an IMS catalog database that is registered in
the RECON data set and managed by DBRC. Some restrictions apply to an
unregistered catalog.

You can use the IMS Catalog Partition Definition Data Set utility to configure an
IMS catalog database that is not managed by DBRC. Some of the standard HALDB
utilities can be used with an unregistered catalog database, with certain
restrictions.

Database Image Copy utility (DFSUDMP0)
You can use this utility to make batch image copies of an unregistered IMS
catalog database. Concurrent image copying is not supported for
unregistered IMS catalog databases. Additionally, you must specify the
Datain DD statement because dynamic data set allocation is not supported
for an unregistered catalog database.

Note: See Chapter 6, “Backup and recovery of the IMS catalog,” on page
43 for more information about recovering the IMS catalog database.

Batch Backout utility (DFSBBO00)
Database Recovery utility (DFSURDB0)
HALDB Index/ILE Dataset Rebuild utility (DFSPREC0)
HD Reorganization Unload utility (DFSURGU0)
HD Reorganization Reload utility (DFSURGL0)

You can use these utilities with an unregistered IMS catalog database, but
you must include the DFSDF= parameter for the utility EXEC statement.
The DFSDF parameter specifies the 3-character suffix of the DFSDFxxx
member of the IMS.PROCLIB dataset that specifies unregistered IMS
catalog databases. The DFSDFxxx member specifies unregistered IMS
catalog database names with the UNREGCATLG parameter of the
DATABASE statement.

HALDB Partition Data Set Initialization utility (DFSUPNT0)
This utility is not compatible with an unregistered IMS catalog database.
The Catalog Populate utility (DFS3PU00) provides analogous support for
registered and unregistered IMS catalog databases.

Related reference:

HALDB Index/ILDS Rebuild utility (DFSPREC0) (Database Utilities)

HD Reorganization Unload utility (DFSURGU0) (Database Utilities)

HD Reorganization Reload utility (DFSURGL0) (Database Utilities)

Database Recovery utility (DFSURDB0) (Database Utilities)

Database Image Copy utility (DFSUDMP0) (Database Utilities)

IMS catalog utilities (System Utilities)

© Copyright IBM Corp. 1974, 2016 49

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dfsprec0.htm#ims_dfsprec0
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dfsurgu0.htm#ims_dfsurgu0
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dfsurgl0.htm#ims_dfsurgl0
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dfsurdb0.htm#ims_dfsurdb0
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dfsudmp0.htm#ims_dfsudmp0
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_catalogutilities.htm#ims_catalogutilities

50 Database Administration

Chapter 10. Format of records in the IMS catalog database

The IMS catalog database contains a unique record for each PSB and DBD defined
during ACB generation. Each type of record, and each type of segment within a
record, has a predefined format.

The catalog database segment types are grouped into four different data set groups
(A - D) based on how frequently that segment type is accessed in database queries.
The most frequently accessed segment types, such as the root segment type
(HEADER), are located in data set group A. The least frequently accessed segment
types, such as user remarks segments, are grouped in data set D.

Some segment types in the catalog database, such as DBDHXXX, are not currently
used and are reserved for future development. The segment definitions are
included in the catalog to allow for the implementation of future service and
development enhancements without an unload and reload of the catalog database.
Related reference:

IMS catalog data set groups (System Definition)

HEADER segment format
The IMS catalog HEADER segment type, also called the resource header, is the root
segment type for the IMS catalog database.

The resource header for an IMS catalog database record contains information about
the type of metadata that is stored in that record. The resource header indicates
whether a specific IMS catalog record contains DBD or PSB metadata, and includes
the IMS name and alias name of the resource that the catalog record describes.

The root key for a catalog record is the value of the RHDRSEQ field in this
segment. This key value is generated by the IMS catalog populate utility
(DFS3PU00) or the ACB generation and catalog populate utility (DFS3UACB). The
value is created by concatenating the record type and the IMS member name of the
resource. The record type is eight characters long and is right-padded with blank
characters. The IMS member name is always eight characters long.

For example, the root key for a DBD record with the name ACF12000 is the
following:
DBD ACF12000

The root key for a PSB record with the name MXG88888 is the following:
PSB MXG88888

The root key value is also used to sort catalog records into database partitions, if
your catalog database consists of more than one partition. The partition high key
for the last partition in the database must be high enough to contain the
highest-key record in the catalog.

Segment name
HEADER

Parent name
Not applicable

© Copyright IBM Corp. 1974, 2016 51

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_cat_db_dsgs.htm#ims_cat_db_dsgs

Sequence field
RHDRSEQ

Segment length
56 bytes

Table 4. HEADER segment map.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this resource header segment

3 2 X CTL Control field

5 2 X SEQNUM Segment sequence number

9 16 C RHDRSEQ Sequence field, type = U X

9 8 C TYPE Type of resource metadata in this catalog record

17 8 C IMSNAME Name of the resource described in this catalog
record

25 4 X RETNINST The minimum number of instances of the DBD or
PSB that must be kept in this record when record
segments are deleted. This value is modified with
the UPDATE statement of the IMS Catalog Record
Purge utility. If you do not provide a value for
this field, the utility uses the value specified on
the RETENTION statement in the CATALOG
section of the DFSDFxxx member of the
IMS.PROCLIB data set.

29 4 X RETNDAYS Minimum number of days to keep each instance
of the DBD or PSB in this record before the
instances is eligible for deletion. This value is
modified with the UPDATE statement of the IMS
Catalog Record Purge utility. If you do not
provide a value for this field, there are two
possible scenarios:

v If the RETNINST field contains a value of 1 or
greater, the IMS Catalog Record Purge utility
does not purge instances of this DBD or PSB
based on their age.

v If the RETINST field contains 0, the IMS
Catalog Record Purge utility uses the values
specified in the DFSDFxxx member to
determine the retention criteria for the DBD or
PSB instances in this record.

33 8 C FILLER1 Reserved

41 7 C ACTTS Active record timestamp. Identifies the timestamp
of the active member.

48 7 C PNDTS Pending record timestamp. Identifies the
timestamp of the pending member.

55 2 C FILLER2 Reserved

DBD record segment formats
The DBD record segments in the IMS catalog are used to store information about
an IMS database definition (DBD).

52 Database Administration

The following figure shows the high level organization of an IMS catalog record
for a DBD:

AREA segment type format
The IMS catalog AREA segment type contains information about a database area in
a Fast Path database.

HEADER

DBD

DBDRMK

SEGMRMK

MAR

PROP XDFLDRMK

CFLD

CMAR

CPROP

CASE

DSETRMK

AREA

LCHILD

XDFLD LCH2IDX

DBDVEND

MAP

CAPXDBD

CAPXSEGM

FLDRMK

MARRMK

CASERMK

CFLDRMK

CMARRMK

MAPRMK

DSET

FLD

LCHRMK

AREARMK

SEGM

Figure 17. Format of an IMS catalog record for a database description

Chapter 10. Format of records in the IMS catalog database 53

This segment type is used only in IMS catalog records for Fast Path databases.

Segment name
AREA

Parent name
DBD

Sequence field
AREASEQ

Segment length
40 bytes

Table 5. AREA segment type format.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment.

3 2 X CTL Control field.

5 2 X AREASEQ Sequence field, type = U. X

5 2 X SEQNUM Sequence number.

9 8 C DD1 The data set name of this database area.

17 2 X SIZE The size of the control interval of this database
area in bytes.

19 2 X UOW1 The number of control intervals in a unit of work
for this database area.

21 2 X UOW2 The number of control intervals in the overflow
section of a unit of work for this database area.

23 2 X ROOT1 The total space allocated to the root addressable
section of this database area. This value is given
in number of units of work (UOW) for the UOW
size given in field UOW1.

25 2 X ROOT2 The total space allocated for independent
overflow in this database area. This value is given
in number of units of work (UOW) for the UOW
size given in field UOW2.

27 14 C FILLER Reserved.

Related concepts:
“AREA statement overview” on page 489
Related reference:

AREA statement (System Utilities)

AREARMK segment type format
The IMS catalog AREARMK segment type contains user comments about a
database area definition for a Fast Path database.

This segment is a direct child of the AREA segment instance that the comments
pertain to.

Segment name
AREARMK

54 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_areastmt.htm#ims_areastmt

Parent name
AREA

Sequence field
ARCMSEQ

Segment length
264 bytes

Table 6. AREARMK segment map.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X ARCMSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

7 2 C FILLER Reserved

9 256 C REMARKS User comments for this database area

CAPXDBD segment type format
The IMS catalog CAPXDBD segment contains information about a Data Capture
exit routine used by a DBD.

The metadata in this segment includes the name of the exit routine and processing
options. Multiple DBDs can reference a single data capture exit, and a single DBD
can reference multiple data capture exits. In the latter case, there are multiple child
instances of this segment type for a single parent DBD segment instance.

Segment name
CAPXDBD

Parent name
DBD

Sequence field
DDCAPSEQ

Segment length
32 bytes

Table 7. CAPXDBD segment map.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Segment length

3 2 X CTL Control field

5 2 X DDCAPSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

9 8 C EXITNAME The module name of this data capture exit
routine

17 1 C LOG Indicates if the data capture exit routine control
blocks and data are written to the IMS system log

Chapter 10. Format of records in the IMS catalog database 55

Table 7. CAPXDBD segment map (continued).

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

18 1 C KEY Indicates if the data capture exit routine is passed
the physical concatenated key of the segment that
was updated when the exit routine is called

19 1 C PATH Indicates if the exit routine is passed the data
from each segment in the hierarchical path of the
physical root segment

20 1 C DATA Indicates if the physical segment data is passed to
the data capture exit routine

21 1 C BEFORE Indicates if Before data is included in type X'99'
log records written for REPL calls

22 1 C DLET Indicates if type X'99' log records are written for
DLET calls

23 1 C CASCADE Indicates if this data capture exit routine is called
when a DL/I call deletes this segment as a result
of deleting a parent segment

24 1 C CKEY Indicates if the physical concatenated key is
passed to the exit routine during a call that
resulted from a cascade delete operation

25 1 C CPATH Indicates if the data from each segment in the
hierarchical path of the physical root segment is
passed to the exit routine during a call that
resulted from a cascade delete operation

26 1 C CDATA Indicates if the physical segment data is passed to
the exit routine during a call that resulted from a
cascade delete operation

27 1 C CBEFORE Indicates if Before data is included in type X'99'
log records written for REPL calls for a DEDB

28 1 C CDLET Indicates if type X'99' log records are written for
DLET calls for a DEDB

29 4 C FILLER Reserved

Related tasks:
“DBD parameters for Data Capture exit routines” on page 380
Related reference:

DBD statements (System Utilities)

CAPXSEGM segment type format
The IMS catalog CAPXSEGM segment type contains information about a Data
Capture exit routine specified for a database segment.

The metadata in this segment includes the name of the exit routine and processing
options. Multiple segments can reference a single data capture exit, and a single
segment can reference multiple data capture exits. In the latter case, there are
multiple child instances of this segment type for a single parent SEGM segment
instance.

Segment name
CAPXSEGM

56 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdstmt.htm#ims_dbdstmt

Parent name
SEGM

Sequence field
SDCAPSEQ

Segment length
32 bytes

Table 8. CAPXSEGM segment map.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X SDCAPSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

9 8 C EXITNAME The module name of this exit routine

17 1 C LOG Indicates whether the data capture exit routine
control blocks and data are written to the IMS
system log

18 1 C KEY Indicates whether the data capture exit routine is
passed the physical concatenated key of the
segment that was updated when the exit routine
is called

19 1 C PATH Indicates whether the exit routine is passed the
data from each segment in the hierarchical path
of the physical root segment

20 1 C DATA Indicates whether the physical segment data is
passed to the data capture exit routine

21 1 C BEFORE Indicates whether before data is included in type
X'99' log records written for REPL calls

22 1 C DLET Indicates whether type X'99' log records are
written for DLET calls

23 1 C CASCADE Indicates whether this data capture exit routine is
called when a DL/I call deletes this segment as a
result of deleting a parent segment (during a
cascade delete operation)

24 1 C CKEY Indicates whether the physical concatenated key
is passed to the exit routine during a call that
resulted from a cascade delete operation

25 1 C CPATH Indicates whether the data from each segment in
the hierarchical path of the physical root segment
is passed to the exit routine during a call that
resulted from a cascade delete operation

26 1 C CDATA Indicates whether the physical segment data is
passed to the exit routine during a call that
resulted from a cascade delete operation

27 1 C CBEFORE Indicates whether Before data is included in type
X'99' log records written for REPL calls for a
DEDB

28 1 C CDLET Indicates whether type X'99' log records are
written for DLET calls for a DEDB

Chapter 10. Format of records in the IMS catalog database 57

Table 8. CAPXSEGM segment map (continued).

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

29 4 C FILLER Reserved

Related tasks:
“DBD parameters for Data Capture exit routines” on page 380
Related reference:

SEGM statements (System Utilities)

CASE segment type format
The IMS catalog CASE segment type contains information about a specific case for
a mapping of an IMS database segment.

Segment name
CASE

Parent name
MAP

Sequence field
CASESEQ

Segment length
656 bytes

Table 9. CASE segment type format.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X CASESEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

7 2 C FILLER Reserved

9 1 C CASETYPE The encoding type of the CASEID field. This field
specifies either C for Cp1047 EBCDIC encoding or
X for a hexadecimal binary representation.

10 7 C FILLER01 Reserved

17 128 C CASENAME The name of this case

145 128 C CASEID The unique identifier for this case. Interpret this
field based on the value of the CASETYPE field.

273 128 C MAPNAME Name of the segment type mapping that this case
belongs to

401 256 C FILLER02 Reserved

Related reference:

DFSCASE statements (System Utilities)

58 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_segmstmt.htm#ims_segmstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dfscasestmt.htm#ims_dfscasestmt

CASERMK segment type format
The IMS catalog CASERMK segment type contains user-specified comments about
a case for a segment type mapping.

This segment is a direct child of the CASE segment instance that the comments
pertain to.

Segment name
CASERMK

Parent name
CASE

Sequence field
CASCMSEQ

Segment length
264 bytes

Table 10. CASERMK segment map.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X CASCMSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

7 2 C FILLER Reserved

9 256 C REMARKS User comments for the case definition described
by the parent CASE segment

CFLD segment type format
The IMS catalog CFLD segment type contains information about a field in a
particular segment type format case.

Each instance of the CFLD segment describes a field for one case in a segment type
format. The information in a CFLD segment instance is valid for a user database
segment only if that segment is mapped with the mapping case defined in the
parent CASE segment instance.

Segment name
CFLD

Parent name
CASE

Sequence field
FIELDSEQ

Segment length
904 bytes

Chapter 10. Format of records in the IMS catalog database 59

Table 11. CFLD segment type format.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X FIELDSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

9 8 C IMSNAME The 8-character IMS name of this field

17 3 C NAMESEQ Indicates if this field is a sequence field

20 1 C SEQUM Indicates whether this field is a unique sequence
field (U) or non-unique (M)

21 2 X BYTES The length of this field in bytes

23 2 X START The starting offset of this field from the beginning
of the segment, in bytes. If this field contains
data, the STARTAFT field is not used.

25 1 C TYPE Indicates what type of binary data IMS uses to
pad empty space in this field:

X Left-padded, X'00'.

P Left-padded, X'00'.

C Right-padded, X'40'.

F Binary fullword data. Only used for
MSDBs.

H Binary halfword data. Only used for
MSDBs.

26 15 C FILLER01 Reserved

41 9 C DATATYPE The external (non-IMS) data type of the field

50 3 C FILLER02 Reserved

53 2 X PRECISN The precision of a field with a decimal data type

55 2 X SCALE The scale of a field with a decimal data type

57 4 X MINOCCUR The minimum number of elements in a
DATATYPE=ARRAY field

61 4 X MAXOCCUR The maximum number of elements in a
DATATYPE=ARRAY field

65 4 X MAXBYTES The maximum number of bytes in a
DATATYPE=ARRAY field or in a
DATATYPE=STRUCT field that contains an array

69 4 X RELSTART The relative starting position of the field in bytes

73 128 C NAME The external alias name of this field

201 128 C PARENT The external alias name of another field that this
field is nested under

329 128 C REDEFINE The external alias name of another field that this
field can be redefined as. The field defined by this
instance of the CFLD segment type and the field
with the name specified in the REDEFINE field
can be processed with a REDEFINES statement in
a COBOL application.

60 Database Administration

Table 11. CFLD segment type format (continued).

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

457 128 C DEPENDON The mapping selector field that the field defined
by this instance of the CFLD segment type
depends on

585 128 C CASENAME The name of the mapping case that this field
belongs to

713 128 C STARTAFT The external alias name of the field that directly
precedes this field in the segment. If this field
contains data, the START field does not.

841 64 C FILLER03 Reserved

Related reference:

FIELD statements (System Utilities)

DFSMARSH statements (System Utilities)

CFLDRMK segment type format
The IMS catalog CFLDRMK segment type contains user comments for a database
field that is part of a specific segment type format case.

This segment is a direct child of the CFLD segment instance that the comments
pertain to.

Segment name
CFLDRMK

Parent name
CFLD

Sequence field
CFLDCSEQ

Segment length
264 bytes

Table 12. CFLDRMK segment map.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X CFLDCSEQ Sequence field, type = U X

5 2 X SEQNUM Segment code

7 2 C FILLER Reserved

9 256 C REMARKS User comments for the parent CFLD segment

CMAR segment type format
The IMS catalog CMAR segment type contains information about a field
marshaller definition in an IMS database that applies only to a specific case of a
segment type format.

Chapter 10. Format of records in the IMS catalog database 61

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_fieldstmt.htm#ims_fieldstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dfsmarshstmt.htm#ims_marshalstmt

Each CASEFLD segment can have a CMAR child segment that contains data
marshalling properties for the field.

Segment name
CMAR

Parent name
CFLD

Sequence field
MARSHSEQ

Segment length
704 bytes

Table 13. CMAR segment type format.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X MARSHSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

9 8 C OVERFLOW Reserved

17 1 C SIGN For data with the data type of DECIMAL (data
that uses either the PACKEDDECIMAL or
ZONEDDECIMAL internal type converter), this
field indicates if the data is a signed decimal
value.

18 6 C FILLER01 Reserved

24 25 C ENCODING Identifies the encoding type (code page) of the
data in the field identified by the parent FLD
segment

49 50 C PATTERN Identifies the pattern mask to convert the data in
the field identified by the parent FLD segment
into a Java date object

99 30 C ITYPCONV Identifies the internal type converter for the
parent FLD segment. If this field contains data,
the UTYPCONV field contains blanks. The
internal type converter is used to convert IMS
data to a specific type of Java data object.

129 256 C UTYPCONV Identifies the user type converter for the parent
FLD segment. If this field contains data, the
ITYPCONV field contains blanks.

385 256 C URL Reserved

641 64 C FILLER02 Reserved

Related reference:

DFSMARSH statements (System Utilities)

DFSCASE statements (System Utilities)

62 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dfsmarshstmt.htm#ims_marshalstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dfscasestmt.htm#ims_dfscasestmt

CMARRMK segment type format
The IMS catalog CMARRMK segment type contains user-specified comments about
a field marshaller definition in a specific case of a segment type mapping.

This segment is a direct child of the CMAR segment instance that the comments
pertain to.

Segment name
CMARRMK

Parent name
CMAR

Sequence field
CMARCSEQ

Segment length
264 bytes

Table 14. CMARRMK segment map.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X CMARCSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

7 2 C FILLER Reserved

9 256 C REMARKS User comments for marshalling properties that
are defined in the parent CMAR segment

CPROP segment type format
The IMS catalog CPROP segment type contains user-defined marshaller properties
for a particular case of an IMS segment type mapping.

Segment name
CPROP

Parent name
CMAR

Sequence field
CPROSEQ

Segment length
304 bytes

Table 15. CPROP segment type format.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X CPROSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

Chapter 10. Format of records in the IMS catalog database 63

Table 15. CPROP segment type format (continued).

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

9 128 C NAME Name of this user-defined marshalling property

137 128 C VALUE User-defined value of this marshalling property

265 40 C FILLER Reserved

Related reference:

DFSCASE statements (System Utilities)

DFSMARSH statements (System Utilities)

DBD segment type format
The IMS catalog DBD segment type contains metadata about an IMS user database.

This information is collected from the parameters submitted to the DBDGEN utility
during system definition.

Segment name
DBD

Parent name
HEADER

Sequence field
DBDSEQ

Segment length
552 bytes

Table 16. DBD segment type format.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X SEQNUM Sequence number

9 17 X DBDSEQ Sequence field, type = U X

9 4 X CATVERS Version number of the database definition that is
recorded by this DBD segment and its
dependents.

13 13 C TSVERS ACB generation timestamp for this version, in the
following format: yyDDDHHmmssff

26 1 C FILLER Reserved

27 2 X RLVL ACB generation utility release level

29 7 C ACCESS DL/I database type for this database

36 4 C OSACC Access method for this database

64 Database Administration

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dfscasestmt.htm#ims_dfscasestmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dfsmarshstmt.htm#ims_marshalstmt

Table 16. DBD segment type format (continued).

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

40 6 C PROT In a secondary index database, this field indicates
if integrity protection is used for index pointer
segments.

v If this field contains PROT, a delete operation
that removes an index pointer segment also
removes the target segment pointer but the
source segment is not deleted.

v If this field contains NOPROT, an application
program can replace all fields within a pointer
segment except the constant, search, and
subsequence control fields.

46 7 C DOSCOMP Indicates that this database is a DLI/DOS index
and that a DLI/DOS segment code is included in
the prefix of segments in this database. IMS
preserves the code during segment processing
and provides a new code when segments are
inserted.

53 8 C PSNAME The name of the HALDB Partition Selection exit
routine for this database.

61 8 C RMNAME The module name of the randomizing exit routine
for an HDAM or PHDAM database, or a Fast
Path data entry database (DEDB).

69 4 X RMRBN The maximum relative block number that the
randomizing exit routine produces for this
HDAM or PHDAM database. This value is also
the number of control blocks or intervals in the
root addressable area of the database.

73 4 X RMBYTES The maximum number of bytes of user data that
can be stored in the root addressable area of this
database by an unbroken sequence of insert
operations. A database record that exceeds this
size is partially stored in the overflow area.

77 2 X RMANCH The meaning of this field is different for Fast Path
DEDB databases and full-function HDAM or
PHDAM databases.

For DEDB databases, indicates the type of
randomizer: a value of 1 indicates a one-stage
randomizer. A value of 2 indicates a two-stage
randomizer.

For HDAM and PHDAM databases, this value
indicates the number of root anchor points in
each control block or interval in the root
addressable area of the HDAM or PHDAM
database.

79 1 C RMXCI Indicates if this DEDB uses the Extended Call
Interface (XCI) when it calls the randomizing exit
routine.

80 3 C FILLER01 Reserved

Chapter 10. Format of records in the IMS catalog database 65

Table 16. DBD segment type format (continued).

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

83 1 C PASSWD Indicates if this database uses a default VSAM
password (the DBD name) to prevent accidental
database operations by programs other than IMS.

84 1 C DATXEXIT Indicates if this database uses the Data
Conversion user exit routine DFSDBUX1.

85 1 C FPI Indicates if this database is a secondary index for
a Fast Path database.

86 255 C VERSION User-supplied version information for this
database

341 2 C FILLER02 Reserved

343 2 X IDXCNT Number of shared secondary indexes

345 8 C IDXNM01 Shared secondary index name

353 8 C IDXNM02 Shared secondary index name

361 8 C IDXNM03 Shared secondary index name

369 8 C IDXNM04 Shared secondary index name

377 8 C IDXNM05 Shared secondary index name

385 8 C IDXNM06 Shared secondary index name

393 8 C IDXNM07 Shared secondary index name

401 8 C IDXNM08 Shared secondary index name

409 8 C IDXNM09 Shared secondary index name

417 8 C IDXNM10 Shared secondary index name

425 8 C IDXNM11 Shared secondary index name

433 8 C IDXNM12 Shared secondary index name

441 8 C IDXNM13 Shared secondary index name

449 8 C IDXNM14 Shared secondary index name

457 8 C IDXNM15 Shared secondary index name

465 8 C IDXNM16 Shared secondary index name

473 8 C CREATEBY Reserved

481 25 C ENCODING Code page used to encode all character data in
this database. Individual segment and field
definitions can override this value.

506 47 C FILLER03 Reserved

DBDRMK segment type format
The IMS catalog DBDRMK segment type contains user-specified comments about a
database definition.

This segment is a direct child of the DBD segment instance that the comments
pertain to.

Segment name
DBDRMK

66 Database Administration

Parent name
DBD

Sequence field
DBDCMSEQ

Segment length
264 bytes

Table 17. DBDRMK segment map.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X DBDCMSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

7 2 C FILLER Reserved

9 256 C REMARKS User comments for this DBD

DBDVEND segment type format
The IMS catalog DBDVEND segment type contains a short header followed by a
large block of unformatted space.

This segment type is reserved for use by vendor-supplied tools.

Segment name
DBDVEND

Parent name
DBD

Sequence field
DVNDSEQ

Segment length
4000 bytes

Table 18. DBDVEND segment map.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X SEQNUM Segment sequence number

7 2 C FILLER Reserved

9 3992 X DATA Vendor product DBD data

5 2 X DVNDSEQ Sequence field, type = U X

DSET segment type format
The IMS catalog DSET segment type contains metadata about a data set group
specification for an IMS database.

Chapter 10. Format of records in the IMS catalog database 67

The information in this segment is generated based on the parameters of the
DATASET statement of the DBDGEN utility. All DBD catalog records have at least
one child DSET segment instance.

Segment name
DSET

Parent name
DBD

Sequence field
DSETSEQ

Segment length
96 bytes

Table 19. DSET segment type format.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X DSETSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

9 8 C DD1
The name of the first data set in this data set
group.

v For HSAM, SHSAM and GSAM databases, this
field is the name of the input data set.

v For HISAM. SHISAM and INDEX databases,
this field is the name of the primary data set.

v For Fast Path databases, this field is the name
of a defined data area.

MSDBs and logical databases do not use this
field.

17 8 C DD2 The name of the output data set for HSAM,
SHSAM, and GSAM databases. If no name is
specified for a GSAM database, DD1 is used as
the output data set.

25 8 C OVERFLOW The name of the overflow data set in this group.

33 2 X BLOCK1 Blocking factor 1 for the data set group. See the
DATASET statement of the DBDGEN utility for
usage information.

35 2 X BLOCK2 Blocking factor 2 for the data set group. See the
DATASET statement of the DBDGEN utility for
usage information.

37 2 X SIZE1 Block size 1 for the data set group. See the
DATASET statement of the DBDGEN utility for
usage information.

39 2 X SIZE2 Block size 2 for the data set group. See the
DATASET statement of the DBDGEN utility for
usage information.

68 Database Administration

Table 19. DSET segment type format (continued).

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

41 2 X RECORD1 Record size 1 for the data set group. See the
DATASET statement of the DBDGEN utility for
usage information.

43 2 X RECORD2 Record size 2 for the data set group. See the
DATASET statement of the DBDGEN utility for
usage information.

45 2 X SCAN The number of DASD cylinders that are scanned
for free storage during a segment insert
operation. Used only for HIDAM and HDAM
databases.

47 2 X SEARCHA The type of algorithm used to search for free
storage during a segment insert operation. Used
only for HIDAM and HDAM databases. The
different type codes and meanings are:

0 IMS chooses which algorithm to use.

1 IMS does not search for space in the
second-most desirable block or control
interval.

2 IMS includes a search for space in the
second-most desirable block or control
interval.

49 2 C RECFM The format of records in this data set group for a
GSAM database:

F Fixed-length

FB Fixed-length and blocked

V Variable-length

VB Variable-length and blocked

U Undefined length

51 2 X FRSPFBFF The number data blocks per block of free space
that are allocated in an HDAM or HIDAM
database.

53 2 X FRSPFSPF The minimum percentage of free space in each
control block or interval in this data set group.
Used only for HDAM and HIDAM databases.

Chapter 10. Format of records in the IMS catalog database 69

Table 19. DSET segment type format (continued).

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

55 8 C REL1 The terminal relationship type and segment
ownership type in an MSDB:

NO Non-terminal-related without terminal
keys

TERM Non-terminal-related with the LTERM
name as the key

FIXED Terminal-related with the LTERM name
as the key, with segment insertions and
deletions disabled

DYNAMIC
Terminal-related with the LTERM name
as a key, with segment insertions and
deletions enabled

63 8 C REL2 The name of the pseudo-sequence field for a
keyed MSDB. Segment search arguments can use
the name of this pseudo-field and the LTERM
name as the key value.

71 26 C FILLER Reserved

DSETRMK segment type format
The IMS catalog DSETRMK segment type contains user-specified comments about
a data set group definition.

This segment is a direct child of the DSET segment instance that the comments
pertain to.

Segment name
DSETRMK

Parent name
DSET

Sequence field
DSCMSEQ

Segment length
264 bytes

Table 20. DSETRMK segment map.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X DSCMSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

7 2 C FILLER Reserved

9 256 C REMARKS User comments for this DSET

70 Database Administration

FLD segment type format
The IMS catalog FLD segment type contains metadata about a field in an IMS
database.

Each instance of the FLD segment describes a field for one segment in a database.
This information is collected during system generation from the FIELD statement
of the DBDGEN utility.

Segment name
FLD

Parent name
SEGM

Sequence field
FLDSEQ

Segment length
904 bytes

Table 21. FLD segment type format.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X FLDSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

9 8 C IMSNAME The 8-character IMS name of this field

17 3 C NAMESEQ Indicates if this field is a sequence field

20 1 C SEQUM Indicates whether this field is a unique sequence
field (U) or a non-unique sequence field (M)

21 2 X BYTES The length of this field in bytes

23 2 X START The starting offset of this field from the beginning
of the segment, in bytes. If this field contains
data, the STARTAFT field is not used.

25 1 C TYPE Indicates what type of binary data IMS uses to
pad empty space in this field:

X Left-padded, X'00'

P Left-padded, X'00'

C Right-padded, X'40'

F Binary fullword data. Used only for
MSDBs.

H Binary halfword data. Used only for
MSDBs.

26 15 C FILLER01 Reserved

41 9 C DATATYPE The external data type of the field

50 3 C FILLER02 Reserved

53 2 X PRECISN The precision of a field with a decimal data type

55 2 X SCALE The scale of a field with a decimal data type

Chapter 10. Format of records in the IMS catalog database 71

Table 21. FLD segment type format (continued).

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

57 4 X MINOCCUR The minimum number of elements in a
DATATYPE=ARRAY field

61 4 X MAXOCCUR The maximum number of elements in a
DATATYPE=ARRAY field

65 4 X MAXBYTES The maximum number of bytes in a
DATATYPE=ARRAY field or in a
DATATYPE=STRUCT field that contains an array

69 4 X RELSTART The relative starting offset in bytes from the end
of a dynamic array or struct if an array or struct
occurs in the parent segment before this field

73 128 C NAME The external alias name of this field

201 128 C PARENT The external alias name of another field that this
field is nested under

329 128 C REDEFINE The external alias name of another field that this
field can be redefined as. This field and the field
indicated with the REDEFINE field can be
processed with a REDEFINES statement in a
COBOL application.

457 128 C DEPENDON This field contains blanks

585 128 C CASENAME This field contains blanks

713 128 C STARTAFT The external alias name of the field that directly
precedes this field in the segment. If this field
contains data, the START field does not.

841 64 C FILLER03 Reserved

FLDRMK segment type format
The IMS catalog FLDRMK segment type contains user comments for a database
field.

This segment is a direct child of the FLD segment instance that the comments
pertain to.

Segment name
FLDRMK

Parent name
FLD

Sequence field
FLDCMSEQ

Segment length
264 bytes

Table 22. FLDRMK segment map.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
Key
Field

1 2 X LEN Length of this segment

72 Database Administration

Table 22. FLDRMK segment map (continued).

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
Key
Field

3 2 X CTL Control field

5 2 X FLDCMSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

7 2 C FILLER Reserved

9 256 C REMARKS User comments for the parent FLD

LCH2IDX segment type format
The IMS catalog LCH2IDX segment type contains information about a Fast Path
secondary index specified on the LCHILD statement defined in the parent LCHILD
segment.

Segment name
LCH2IDX

Parent name
LCHILD

Sequence field
LCH2ISEQ

Segment length
24 bytes

Table 23. LCH2IDX segment map.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X LCH2ISEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

7 2 C FILLER01 Reserved

9 8 C IMSNAME IMS name

17 8 C DBDNAME Target secondary index name

LCHILD segment type format
The IMS catalog LCHILD segment type contains information about a relationship
between segment types.

Segment name
LCHILD

Parent name
SEGM

Sequence field
LCHLDSEQ

Chapter 10. Format of records in the IMS catalog database 73

Segment length
72 bytes

Table 24. LCHILD segment map.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X LCHILDSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

9 8 C IMSNAME Name of the segment type that is associated with
the parent segment type in this logical
relationship

17 8 C DBNAME Name of the database that contains the segment
identified by the IMSNAME field

74 Database Administration

Table 24. LCHILD segment map (continued).

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

25 4 C PTR Identifies the type of pointer used in this logical
relationship:
SNGL Indicates that a logical child first pointer

field is reserved in the parent segment
type. This field is used in one of three
ways:
v For a logical parent relationship, the

pointer field contains a direct address
pointer to the first occurrence of a
logical child segment type.

v For a HIDAM primary index database
relationship, the pointer field contains
a direct address pointer to a HIDAM
root database segment.

v For a secondary index relationship, the
pointer field contains a direct address
pointer to an index target segment.

DBLE Indicates that two 4-byte pointer fields
are reserved in the logical parent
segment type. The first pointer field
contains the address of the first
occurrence of the logical child segment
type, and the second pointer field
contains the address of the last
occurrence of the logical child segment
type.

NONE No pointer fields are reserved in the
logical parent segment type. The
relationship between the logical parent
and logical child is either not
implemented or is maintained with
physically paired segments.

INDX For the first logical child relationship in
a HIDAM database, this value indicates
that the parent segment is the root
segment type in a HIDAM database and
the target segment is the root segment of
the primary index for the database. For
subsequent logical child relationships in
a HIDAM database and for other
databases, this value indicates that the
target segment type is a secondary index
target for this database.

SYMB This value indicates that the pointer field
in the primary database does not contain
direct target addresses to the target
segments in the secondary index
database. Instead, the pointer field
contains the concatenated key of the
target segment. In a secondary index
database, this value indicates that no
space is reserved in the index pointer
segments for the address of the target
segment.

Chapter 10. Format of records in the IMS catalog database 75

Table 24. LCHILD segment map (continued).

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

29 8 C PAIR Name of the segment paired with the segment
identified in the IMSNAME field in a
bidirectional logical relationship

37 8 C INDEX The name of the sequence field of the root
segment type of the HIDAM database that this
database is the primary index for. This field
contains data only if this database is the primary
index for a HIDAM database.

45 5 C RULES Indicates how virtual logical child segments are
sequenced during a DL/I insert operation when
they do not include a sequence field or use a
non-unique sequence field:

FIRST If no sequence field exists, new segment
instances are inserted before the first
existing instance of the logical child. If a
non-unique sequence field exists, new
segment instances are inserted before all
existing instances that have the same key
value as the new instance.

LAST If no sequence field exists, new segment
instances are inserted after the last
existing instance of the logical child. If a
non-unique sequence field exists, new
segment instances are inserted after all
existing instances with the same key
value as the new instance.

HERE The new instance is inserted at the
location of the cursor after the last DL/I
call. If there is no current position, FIRST
is used instead.

50 1 C MULTI Indicates whether the LCHILD statement is a
member of a multiple secondary index segment
group

51 2 C FILLER01 Reserved

53 4 X RKSIZE The root key size of the target databases. This
field is only used for partitioned secondary index
databases.

57 16 C FILLER02 Reserved

Related concepts:
“Logical relationship types” on page 234
“The logical child segment” on page 249
Related reference:

LCHILD statements (System Utilities)

LCHRMK segment type format
The IMS catalog LCHRMK segment type contains user-specified comments about a
logical child relationship in an IMS database.

76 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_lchildstmt.htm#ims_lchildstmt

This segment is a direct child of the LCHILD segment that comments pertain to.

Segment name
LCHRMK

Parent name
LCHILD

Sequence field
LCHCMSEQ

Segment length
264 bytes

Table 25. LCHRMK segment map.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X LCHCMSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

7 2 C FILLER Reserved

9 256 C REMARKS User comments for this logical relationship

MAP segment type format
The IMS catalog MAP segment type contains information about a segment type
mapping in an IMS database segment.

Segment name
MAP

Parent name
SEGM

Sequence field
MAPSEQ

Segment length
520 bytes

Table 26. MAP segment type format.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X MAPSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

7 2 C FILLER Reserved

9 128 C NAME Name of this map

Chapter 10. Format of records in the IMS catalog database 77

Table 26. MAP segment type format (continued).

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

137 128 C DEPENDON The external name of the control field within this
segment (found in the NAME field of the FLD
catalog record) that determines which map case is
used for each mapped segment instance in the
user database.

265 256 C FILLER Reserved

Related reference:

DFSMAP statements (System Utilities)

MAPRMK segment type format
The IMS catalog MAPRMK segment type contains user comments for a segment
type mapping definition.

Segment name
MAPRMK

Parent name
MAP

Sequence field
MAPCMSEQ

Segment length
264 bytes

Table 27. MAPRMK segment map.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X MAPCMSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

7 2 C FILLER Reserved

9 256 C REMARKS User comments for the parent MAP segment

MAR segment type format
The IMS catalog MAR segment type contains information about a field marshaller
definition in an IMS database.

Each FLD segment can have a MAR child segment that contains data marshalling
properties for the field. The information in this segment type is generated from the
input parameters of the DFSMARSH statement of the DBDGEN utility.

Segment name
MAR

Parent name
FLD

78 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dfsmapstmt.htm#ims_dfsmapstmt

Sequence field
MARSEQ

Segment length
704 bytes

Table 28. MAR segment type format.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X MARSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

7 2 C FILLER Reserved

9 8 C OVERFLOW Reserved

17 1 C SIGN For data with the data type of DECIMAL (data
that uses either the PACKEDDECIMAL or
ZONEDDECIMAL internal type converter), this
field indicates if the data is a signed decimal
value.

18 6 C FILLER01 Reserved

24 25 C ENCODING Identifies the encoding type (code page) of the
data in the field identified by the parent FLD
segment

49 50 C PATTERN Identifies the pattern mask to convert the data in
the field identified by the parent FLD segment
into a Java date object

99 30 C ITYPCONV Identifies the internal type converter for the
parent FLD segment. If this field contains data,
the UTYPCONV field contains blanks. The
internal type converter is used to convert IMS
data into a specific type of Java data object.

129 256 C UTYPCONV Identifies the user type converter for the parent
FLD segment. If this field contains data, the
ITYPCONV field contains blanks.

385 256 C URL Reserved

641 64 C FILLER02 Reserved

MARRMK segment type format
The IMS catalog MARRMK segment type contains user comments for a field
marshaller definition.

Segment name
MARRMK

Parent name
MAR

Sequence field
MARCMSEQ

Segment length
264 bytes

Chapter 10. Format of records in the IMS catalog database 79

Table 29. MARRMK segment map.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X MARCMSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

7 2 C FILLER Reserved

9 256 C REMARKS User comments for the parent MAR segment

PROP segment type format
The IMS catalog PROP segment type contains a user-defined marshaller property
definition.

Segment name
PROP

Parent name
MAR

Sequence field
PROPSEQ

Segment length
304 bytes

Table 30. PROP segment type format.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X PROPSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

9 128 C NAME Name of this user-defined marshaller property

137 128 C VALUE User-defined marshaller property information

265 40 C FILLER Reserved

Related reference:

DFSMARSH statements (System Utilities)

SEGM segment type format
The IMS catalog SEGM segment type contains metadata about an IMS database
segment.

This information is generated based on the parameters of the SEGM statement of
the DBDGEN utility.

Segment name
SEGM

80 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dfsmarshstmt.htm#ims_marshalstmt

Parent name
DBD

Sequence field
SEGMSEQ

Segment length
376 bytes

Table 31. SEGM segment type format.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment.

3 2 X CTL Control field.

5 2 X SEGMSEQ Sequence field, type = U. X

5 2 X SEQNUM Sequence number.

9 8 C IMSNAME Name of this segment.

17 8 C PARPHY Name of the logical parent of this segment.

25 4 C PARTYPE Type of physical child pointers (SNGL or DBLE)
that are included in all occurrences of the physical
parent of this segment.

29 8 C PARLOG Name of the logical parent of this segment.

37 8 C PARCHK Indicates whether the concatenated key of the
logical parent is virtual or physical.

45 8 C DBNAME Name of the database that the logical parent of
this segment is defined in.

53 4 X BYTE1 Maximum length of a variable-length segment in
bytes, or the number of bytes in the data area of a
fixed-length segment.

57 4 X BYTE2 Minimum length of a variable-length segment in
bytes. If this field contains data, this segment type
is variable-length.

61 4 X FREQ Estimated number of times that this segment
occurs for each instance of the physical parent.
This value is used by IMS to determine the logical
record length and physical storage block sizes for
data set groups in the database that contains this
segment type.

65 3 C RULE1 Path type that must be used to insert, delete, or
replace an instance of this segment type. This field
contains three characters. The first character is the
path type for insert operations, the second
character is the path type for delete operations,
and the third character is the path type for replace
operations.

68 5 C RULE2 The rule that IMS uses when adding a new
instance of a segment type that does not have a
unique sequence field:

Chapter 10. Format of records in the IMS catalog database 81

Table 31. SEGM segment type format (continued).

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

73 8 C SRCSEG1
In a catalog record for a virtual logical child
segment type, this is the name of the real logical
child that corresponds with this virtual logical
child.

In a catalog record for a segment type in a logical
database, this is the name of the source segment
in a physical database that is being defined as a
logical segment type.

81 4 C SRCFBK1
In a catalog record for a virtual logical child
segment type, this field indicates if only the key
of the real logical child or both the key and data
portions of the real logical child are used to
construct this segment type in the user I/O area.

This field is only used for segments in logical
databases.

85 8 C SRCDBN1 Name of the database that contains the segment
type identified in the SRCSEG1 field.

93 8 C SRCSEG2
In a catalog record for a concatenated virtual
logical child segment type, this is the name of the
physical parent of the real logical child segment.

In a catalog record for a segment in a logical
database, this is the name of the logical or
physical parent segment in a physical database
that is used to construct the destination parent
section of this logical concatenated segment.

If this field contains data, this segment is a logical
concatenated segment.

101 4 C SRCFBK2
In a catalog record for a concatenated virtual
logical child segment type, this field indicates if
only the key of the real logical child or both the
key and data portions of the real logical child are
used to construct this segment type in the user
I/O area.

The key value of a concatenated segment is either
the value in the physical twin sequence field or
the logical twin sequence field, depending on
which path the logical child is accessed from.

This field is used only for concatenated segments
in logical databases.

105 8 C SRCDBN2 Name of the database that contains the segment
type identified in the SRCSEG2 field.

113 8 C COMPRTN Name of the Segment Edit/Compression exit
routine used for this segment.

82 Database Administration

Table 31. SEGM segment type format (continued).

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

121 4 C COMPDATA Indicates whether the Segment Edit/Compression
exit routine for this segment only condenses or
modifies data fields and not sequence fields.

125 4 C COMPINIT Indicates if initialization and termination
processing control is required for the Segment
Edit/Compression exit routine identified in the
COMPRTN field.

129 4 X COMPMAX Indicates the maximum expansion size (in bytes)
for this segment when it is modified by the
Segment Edit/Compression exit routine identified
in the COMPRTN field.

133 3 C COMPPAD Indicates that a segment instance will be padded
to the size given in the COMPMAX field if the
Segment Edit/Compression exit routine
compresses it to a smaller size.

136 1 C FILLER01 Reserved.

137 7 C PTR1 Indicates if pointer fields are reserved in the
segment prefix for a HIER (hierarchic forward
pointer), HIERBWD (hierarchic forward and
backward pointers), TWIN (twin forward pointer),
TWINBWD (twin forward and backward
pointers), or NOTWIN (no reserved field for
physical twin pointers) relationship. See the
POINTER= parameter of the SEGM statement in
the DBDGEN utility for more details about these
values.

144 8 C PTR2 Indicates if pointer fields are reserved in the
segment prefix for a LTWIN (logical twin forward
pointer) or LTWINBWD (logical twin forward and
backward pointers) relationship.

152 6 C PTR3 Indicates if a pointer field is reserved in the
segment prefix for a LPARNT (pointer to a logical
parent segment) relationship.

158 3 C PTR4 Indicates if a 4-byte field is reserved in the
segment prefix for a logical relationship counter.

161 6 C PTR5 Indicates if this segment type is part of a
bidirectional logical relationship.

167 2 X SSPTR The number of subset pointers. A value of 0 in
this field indicates that subset pointers are not
used in this segment type.

169 3 C TYPE Indicates the type of DEDB dependent segment
for this segment type, either sequential or
dependent.

172 1 C DSGRP The data set group identifier for this segment.
This field is only used for segments in a HALDB.

173 2 X DSGHAL Reserved for internal use.

175 12 C FILLER02 Reserved.

187 128 C NAME The external alias name for this segment.

Chapter 10. Format of records in the IMS catalog database 83

Table 31. SEGM segment type format (continued).

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

315 25 C ENCODING The code page used to encode all character data
in this segment.

340 37 C FILLER03 Reserved.

Related concepts:
“SEGM statement overview” on page 490
Related reference:

SEGM statements (System Utilities)

SEGMRMK segment type format
The IMS catalog SEGMRMK segment type contains user comments for a database
segment.

Segment name
SEGMRMK

Parent name
SEGM

Sequence field
SGMCMSEQ

Segment length
264 bytes

Table 32. SEGMRMK segment map.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X SGMCMSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

7 2 C FILLER Reserved

9 256 C REMARKS User comments for the parent SEGM

XDFLD segment type format
The IMS catalog XDFLD segment type contains metadata about an indexed field in
a secondary index relationship.

Each XDFLD segment instance is a direct child of an LCHILD segment instance
that defines a secondary index relationship.

Segment name
XDFLD

Parent name
LCHILD

84 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_segmstmt.htm#ims_segmstmt

Sequence field
XDFLDSEQ

Segment length
200 bytes

Table 33. XDFLD segment type format.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment.

3 2 X CTL Control field.

5 2 X XDFLDSEQ Sequence field, type = U. X

5 2 X SEQNUM Sequence number.

9 8 C NAME Name of this field.

17 8 C SEGMENT Indicates the name of the index source segment
type for the secondary index relationship.

25 8 C SRCH1 Indicates one of up to five fields in the index
source segment that can be used as search fields
in the secondary index.

33 8 C SRCH2 Indicates one of up to five fields in the index
source segment that can be used as search fields
in the secondary index.

41 8 C SRCH3 Indicates one of up to five fields in the index
source segment that can be used as search fields
in the secondary index.

49 8 C SRCH4 Indicates one of up to five fields in the index
source segment that can be used as search fields
in the secondary index.

57 8 C SRCH5 Indicates one of up to five fields in the index
source segment that can be used as search fields
in the secondary index.

65 8 C SUBSEQ1 Indicates one of up to five fields in the index
source segment that are used as the subsequence
field of the secondary index.

73 8 C SUBSEQ2 Indicates one of up to five fields in the index
source segment that are used as the subsequence
field of the secondary index.

81 8 C SUBSEQ3 Indicates one of up to five fields in the index
source segment that are used as the subsequence
field of the secondary index.

89 8 C SUBSEQ4 Indicates one of up to five fields in the index
source segment that are used as the subsequence
field of the secondary index.

97 8 C SUBSEQ5 Indicates one of up to five fields in the index
source segment that are used as the subsequence
field of the secondary index.

105 8 C DDATA1 Indicates one of up to five fields in the index
source segment that are used as the duplicate
data field of the secondary index.

Chapter 10. Format of records in the IMS catalog database 85

Table 33. XDFLD segment type format (continued).

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

113 8 C DDATA2 Indicates one of up to five fields in the index
source segment that are used as the duplicate
data field of the secondary index.

121 8 C DDATA3 Indicates one of up to five fields in the index
source segment that are used as the duplicate
data field of the secondary index.

129 8 C DDATA4 Indicates one of up to five fields in the index
source segment that are used as the duplicate
data field of the secondary index.

137 8 C DDATA5 Indicates one of up to five fields in the index
source segment that are used as the duplicate
data field of the secondary index.

145 8 C EXITRTN The name of the user-supplied Secondary Index
Database Maintenance exit routine for this
secondary index relationship.

153 8 C PSELRTN The name of the user-supplied Partition Selection
exit routine that is used when user partitioning is
requested for this HISAM or SHISAM database
that is defined as secondary index for a Fast Path
primary database.

161 1 C PSELOPT Indicates how partition databases in a user
partition group are logically grouped for GN calls
that can process past the end of the first partition:

M (multiple grouping)
The selected user partition and
subsequent partitioned databases are
included in the group as they are
defined in the NAME field of the
LCHILD segment instance in the
primary DEDB catalog record.

S (single grouping)
Only the selected user partition database
is used.

162 3 C FILLER01 Reserved.

165 5 C CONSTANT Indicates a character that identifies every index
pointer in a particular secondary index. This
value differentiates pointers for different
secondary indexes that are stored in the same
database.

170 5 X NULLVAL The pointer suppression value for index search
fields. No index pointers are created when all of
the SRCH fields of the index source segment
contain this value.

175 26 C FILLER Reserved.

175 26 C FILLER02 The external alias name of this XDFLD.

Related concepts:
Chapter 16, “Creating secondary indexes,” on page 321
Related reference:

86 Database Administration

||||||

XDFLD statements (System Utilities)

Secondary Index Database Maintenance exit routine (Exit Routines)

XDFLDRMK segment type format
The IMS catalog XDFLDRMK segment type contains user-specified comments
about the XDFLD segment type defined by the parent XDFLD segment instance.

Segment name
XDFLDRMK

Parent name
XDFLD

Sequence field
XDFRMSEQ

Segment length
264 bytes

Table 34. XDFLDRMK segment map.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X XDFRMSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

7 2 X RMKLEN Remarks length

9 256 C REMARKS User-specified comments for the parent XDFLD
statement definition

PSB record segment formats
The PSB record segments in the IMS catalog are used to store information about
application program views and schemas of IMS databases, otherwise known as
program specification blocks (PSBs) and program communication blocks (PCBs).

The following figure shows the high-level organization of an IMS catalog record
for a PSB:

Chapter 10. Format of records in the IMS catalog database 87

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_xdfldstmt.htm#ims_xdfldstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_secondindexdbmaint.htm#ims_secondindexdbmaint

DBDXREF segment type format
The IMS catalog DBDXREF segment type contains metadata about a DBD in the
intent list of a program specification block (PSB).

Segment name
DBDXREF

Parent name
PSB

Sequence field
DBDXSEQ

Segment length
48 bytes

Table 35. DBDXREF segment map.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length

3 2 X CTL Control field

5 2 X DBDXSEQ Sequence field, type = U X

HEADER

PSB

DFSCX000
Secondary

Index

PCB DBDXREFPSBRMK

PCBRMK SS

SFSSRMK

SFRMK

PSBVEND

Figure 18. Format of an IMS catalog record for a program specification block

88 Database Administration

Table 35. DBDXREF segment map (continued).

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

5 2 X SEQNUM Sequence number

9 4 X CATVERS Catalog version number

13 13 C TSVERS ACB generation timestamp for this version, in the
following format: yyDDDHHmmssff

26 3 C FILLER Reserved

29 8 C IMSNAME Name of the DBD

37 8 C PSBNAME Name of the PSB that includes the DBD named in
the IMSNAME field in the PSB intent list

Related concepts:
Chapter 11, “IMS catalog secondary index,” on page 99

PCB segment type format
The IMS catalog PCB segment type contains metadata about a program control
block definition.

Information in this segment type is generated based on the parameters of the PCB
statement of the PSBGEN utility.

Segment name
PCB

Parent name
PSB

Sequence field
PCBSEQ

Segment length
288 bytes

Table 36. PCB segment type format.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X PCBSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

9 8 C IMSNAME The name of the physical or logical DBD that is
the primary source of database segments for this
PCB. Other databases may be added to the logical
data structure for this PCB with secondary
indexes and cross references.

In an alternate PCB, this field is the name of the
LTERM that the output message is sent to.

17 8 C PCBNAME 8-character IMS name of this PCB based on the
PCBNAME or LABEL parameter of the PCB
statement.

Chapter 10. Format of records in the IMS catalog database 89

Table 36. PCB segment type format (continued).

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

25 8 C LABEL 8-character IMS name of this PCB based on the
PCB label parameter. If this field contains data,
the PCBNAME field contains blanks.

33 4 C TYPE Identifies whether this PCB is a standard or
alternate PCB. A standard PCB returns its output
message to the source of the input message. An
alternate PCB returns the message to a different
destination such as a terminal or transaction
queue.
DB Standard PCB
TP Alternate PCB

37 4 C PROCOPT Identifies the processing options for this PCB.
Processing options define what types of
operations an application program using the PCB
can perform. There can be up to four options for
one PCB.

41 8 C PROCSEQ The name of a secondary index for the database
identified in the IMSNAME field. Application
programs that use this PCB use the processing
sequence of the secondary index rather than the
primary database.

49 8 C PROCSEQD The name of a secondary index for the Fast Path
database identified in the IMSNAME field.
Application programs that use this PCB use the
processing sequence of the secondary index rather
than the primary Fast Path database.

57 2 X KEYLEN The number of bytes in the longest concatenated
key for a hierarchical path of sensitive segments
used in the data structure accessed with this PCB.

59 2 X COPIES The number of runtime copies that exist for this
PCB. This value is used for XQUERY processing.

61 4 C VIEW Identifies that this PCB for a Fast Path database
uses either the DEDB commit view or the MSDB
commit view.

65 1 C ALTRESP Identifies if this alternate PCB can be used instead
of the standard I/O PCB for terminal response
messages in response mode, conversational mode,
or exclusive mode.

66 1 C EXPRESS Identifies whether queued messages are sent (Y)
or backed out (N) by this alternate PCB if the
application program using it abends.

67 1 C MODIFY Specifies if the destination name for this alternate
PCB can be dynamically modified.

68 1 C SAMETRM Identifies if IMS verifies that the destination
logical terminal for this alternate PCB is the same
as the logical terminal that sent the input
message.

69 1 C SB Identifies if this PCB is buffered with sequential
buffering when possible.

90 Database Administration

Table 36. PCB segment type format (continued).

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

70 1 C POS Identifies whether this PCB uses single (S) or
multiple (M) positioning in the target data
structure.

71 1 C LIST Identifies if this PCB is included in the PCB list
passed to an application program when it is given
control.

72 1 C PSELOPT Indicates how this PCB logically groups user
partition databases for qualified GN calls without
SSA processing before the end of the data is
reached in the user partition databases:

M The selected user partition database and
subsequent user partition databases
within a user data partition are grouped
as they are physically defined in the
NAME field of the LCHILD definition of
the primary Fast Path database DBD.

S Only the selected user partition database
is used by the PCB. Subsequent user
partition databases are not added to the
logical group.

This field is only used for Fast Path secondary
index databases.

73 1 C FILLER01 Reserved

74 7 C ACCESS Indicates whether this PCB accesses the target
database using the normal secondary index or a
separate logical database.

81 128 C NAME External alias name of this PCB

209 13 C DBDTS DBDGEN timestamp

222 4 X DBVER Requested DBD version

226 63 N/A N/A Reserved bytes

Related concepts:
“Coding program specification blocks as input to the PSBGEN utility” on page 494

Related reference:

Full-function or Fast Path database PCB statement (System Utilities)

Alternate PCB statement (System Utilities)

PCBRMK segment type format
The IMS catalog PCBRMK segment type contains user-specified comments about
an IMS program control block.

This segment is a direct child of the PCB segment instance that the comments
pertain to.

Segment name
PCBRMK

Chapter 10. Format of records in the IMS catalog database 91

||||||

||||||

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_psbgendlipcbstmt.htm#ims_psbgendlipcbstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_psbgenaltpcbstmt.htm#ims_psbgenaltpcbstmt

Parent name
PCB

Sequence field
PCBCMSEQ

Segment length
264 bytes

Table 37. PCBRMK segment map.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X PCBCMSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

7 2 C FILLER Reserved

9 256 C REMARKS User comments for this PCB

PSB segment type format
The IMS catalog PSB segment type contains metadata about an IMS program
specification block.

Segment name
PSB

Parent name
HEADER

Sequence field
PSBSEQ

Segment length
88 bytes

Table 38. PSB segment type format.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X SEQNUM Sequence number

9 17 X PSBSEQ Sequence field, type = U X

9 4 X CATVERS Catalog version number

13 13 C TSVERS ACB generation timestamp for this version, in the
following format: yyDDDHHmmssff

26 1 C FILLER Reserved

27 2 X RLVL ACB generation utility release level

37 6 C LANG Compiler language for the message or batch
processing program used by this application

92 Database Administration

Table 38. PSB segment type format (continued).

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

43 2 X IOERCC The condition code returned to the operating
system when IMS terminates normally and one or
more errors occurred on any database during the
execution of a program that used this PSB. If this
value is 451 and the IMS abend code is U451, IMS
terminates with a U451 abend instead of issuing a
condition code. If the IMS abend code is not
U451, IMS also issues a DFS0426I message.

45 4 C IOERWTOR Indicates if IMS issues a WTOR DFS0451A error
message and waits for the operator to respond
with the ABEND command before terminating
after a database error.

49 2 X MAXQ The maximum number of database calls with Qx
command codes between synchronization points
that can be issued with this PSB.

51 2 X LOCKMAX The maximum number of locks that can
application program can obtain at one time with
this PSB. The value is in thousands of locks. A
value of 0 indicates that there is no limit on the
number of locks that an application program can
obtain with this PSB.

53 1 C CMPAT Indicates if the PSB is always treated as if it has
an I/O PCB even if it is being executed in
Batch-DL/I

54 1 C OLIC Indicates if users of this PSB can execute the
Online Database Image Copy utility or the
Surveyor utility

55 1 C GSROLBOK Indicates whether an internal ROLB call (Y) or a
type 777 user abend (N) is issued for non-GSAM
databases when the following conditions are true:

v The application is a non-message-driven BMP

v The PSB contains a GSAM PCB

v DB2® for z/OS reports a deadlock either on a
thread create or on an SQL call

56 1 C DBLEVEL Requested default DBD version

57 8 C FILLER01 Reserved

65 8 C CREATEBY Reserved

73 16 C FILLER03 Reserved

Related concepts:
“Coding program specification blocks as input to the PSBGEN utility” on page 494

Related reference:

Program Specification Block (PSB) Generation utility (System Utilities)

PSBVEND segment type format
The IMS catalog PSBVEND segment type contains a short header followed by a
large block of unformatted space.

Chapter 10. Format of records in the IMS catalog database 93

||||||

||||||

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_psbgen.htm#ims_psbgen

This segment type is reserved for use by vendor-supplied tools.

Segment name
PSBVEND

Parent name
PSB

Sequence field
PVNDSEQ

Segment length
4000 bytes

Table 39. PSBVEND segment map

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X SEQNUM Segment sequence number

7 2 C FILLER Reserved

9 3992 X DATA Vendor product PSB data

5 2 X PVNDSEQ Sequence field, type = U X

PSBRMK segment type format
The IMS catalog PSBRMK segment type contains user-specified comments about an
IMS program specification block.

This segment is a direct child of the PSB segment instance that the comments
pertain to.

Segment name
PSBRMK

Parent name
PSB

Sequence field
PSBCMSEQ

Segment length
264 bytes

Table 40. PSBRMK segment map.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X PSBCMSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

7 2 C FILLER Reserved

9 256 C REMARKS User comments for this PSB

94 Database Administration

SF segment type format
The IMS catalog SF segment type contains information about a sensitive field
definition for a sensitive segment in a program control block (PCB).

Segment name
SF

Parent name
SS

Sequence field
SENFLSEQ

Segment length
40 bytes

Table 41. SF segment type format.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X SENFLSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

9 8 C IMSNAME The IMS name of the field as defined in the FLD
catalog record

17 2 X START The offset of the field from the beginning of the
segment as returned in the user I/O area

19 1 C REPL Indicates if the field can be altered on a replace
call

20 21 C FILLER Reserved

SFRMK segment type format
The IMS catalog SFRMK segment type contains user comments for a sensitive field
definition.

This segment is a direct child of the SF segment instance that the comments
pertain to.

Segment name
SFRMK

Parent name
SF

Sequence field
SENFLSEQ

Segment length
264 bytes

Chapter 10. Format of records in the IMS catalog database 95

Table 42. SFRMK segment type format.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X SENFLSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

7 2 C FILLER Reserved

9 256 C REMARKS User comments for the parent SEGM

SS segment type format
The IMS catalog SS segment type contains information about a sensitive segment
definition for a program control block (PCB).

Segment name
SS

Parent name
PCB

Sequence field
SENSGSEQ

Segment length
328 bytes

Table 43. SS segment type format.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment.

3 2 X CTL Control field.

5 2 X SENSGSEQ Sequence field, type = U. X

5 2 X SEQNUM Sequence number.

9 8 C IMSNAME Name of the sensitive segment type.

17 8 C PARENT Name of the direct parent of the sensitive
segment type. If the value of this field is 0, this is
a sensitive root segment type.

25 4 C PROCOPT The processing options that are valid for use with
this sensitive segment.

29 2 X IDXCNT The number of secondary indexes with a valid
path to this sensitive segment type.

31 2 X SSPTRCNT The number of subset pointers for this sensitive
segment.

33 256 C INDICES A list of up to 32 DBD names of secondary index
databases that have valid path to this sensitive
segment type.

289 2 X SSPNUM01 Order in which this subset pointer was specified
in the PSB source.

96 Database Administration

Table 43. SS segment type format (continued).

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

291 1 C SSPSEN01 Sensitivity type for this subset pointer: read (R) or
update (U) sensitivity.

292 1 C SSPFILL1 Reserved.

293 2 X SSPNUM02 Order in which this subset pointer was specified
in the PSB source.

295 1 C SSPSEN02 Sensitivity type for this subset pointer: read (R) or
update (U) sensitivity.

296 1 C SSPFILL2 Reserved.

297 2 X SSPNUM03 Order in which this subset pointer was specified
in the PSB source.

299 1 C SSPSEN03 Sensitivity type for this subset pointer: read (R) or
update (U) sensitivity.

300 1 C SSPFILL3 Reserved.

301 2 X SSPNUM04 Order in which this subset pointer was specified
in the PSB source.

303 1 C SSPSEN04 Sensitivity type for this subset pointer: read (R) or
update (U) sensitivity.

304 1 C SSPFILL4 Reserved.

305 2 X SSPNUM05 Order in which this subset pointer was specified
in the PSB source.

307 1 C SSPSEN05 Sensitivity type for this subset pointer: read (R) or
update (U) sensitivity.

308 1 C SSPFILL5 Reserved.

309 2 X SSPNUM06 Order in which this subset pointer was specified
in the PSB source.

311 1 C SSPSEN06 Sensitivity type for this subset pointer: read (R) or
update (U) sensitivity.

312 1 C SSPFILL6 Reserved.

313 2 X SSPNUM07 Order in which this subset pointer was specified
in the PSB source.

315 1 C SSPSEN07 Sensitivity type for this subset pointer: read (R) or
update (U) sensitivity.

316 1 C SSPFILL7 Reserved.

317 2 X SSPNUM08 Order in which this subset pointer was specified
in the PSB source.

319 1 C SSPSEN08 Sensitivity type for this subset pointer: read (R) or
update (U) sensitivity.

320 1 C SSPFILL8 Reserved.

321 8 C FILLER Reserved.

Related concepts:
“The SENSEG statement” on page 496
Related reference:

SENSEG statement (System Utilities)

Chapter 10. Format of records in the IMS catalog database 97

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_psbgensensegstmt.htm#ims_psbgensensegstmt

SSRMK segment type format
The IMS catalog SSRMK segment type contains user-specified comments about a
sensitive segment definition.

This segment is a direct child of the SS segment instance that the comments pertain
to.

Segment name
SSRMK

Parent name
SS

Sequence field
SENSGSEQ

Segment length
264 bytes

Table 44. SSRMK segment type format.

Offset (bytes)
Length
(bytes)

Data
type Field name Description

Unique
key
field

1 2 X LEN Length of this segment

3 2 X CTL Control field

5 2 X SENSGSEQ Sequence field, type = U X

5 2 X SEQNUM Sequence number

7 2 C FILLER Reserved

9 256 C REMARKS User comments for this sensitive segment
definition

98 Database Administration

Chapter 11. IMS catalog secondary index

The IMS catalog secondary index provides a short processing path for determining
which PSBs refer to a specific DBD.

Overview

The IMS application environment can contain an arbitrary number of databases
that are each accessed through one or many IMS PSBs. Before an IMS database can
be safely changed or removed, the database administrator must know which
applications have a dependency on the database. The IMS catalog secondary index
provides a fast processing path for determining which PSBs have a dependency on
a specific DBD.

The IMS catalog secondary index (DFSCX000) root segment type, DBDPSB, is
logically linked to the DBDXREF segment type in the IMS catalog database. The
DFSC prefix is replaced with the catalog alias prefix, if one is defined to IMS.

The IMSNAME field of the DBDXREF segment type is indexed as the DBD2PSB
XDFLD for the secondary index relationship. The IMSNAME field contains the
8-character IMS name for the DBD that is referenced by the PSB described by the
catalog record. You can search the DBDXREF segment on the IMSNAME (the DBD
name), PSBNAME, or TSVERS fields.

Usage

You can use the IMS catalog secondary index to process the IMS catalog metadata
in the following ways:
v Use the DFSCATSX PCB to process the primary catalog database (DFSCD000)

with PROCSEQ=DFSCX000. The DBDXREF segment type is the only segment
type defined as a sensitive segment in this PCB.

v Use the DFSCATX0 PCB to directly process the catalog secondary index. The
secondary index root segment type (DBDPSB) is the only segment type in the
secondary index.

Both PCBs are included in the IMS catalog PSBs, DFSCPxxx, that are dynamically
attached to user PSBs when the IMS catalog is active.
Related concepts:
Chapter 16, “Creating secondary indexes,” on page 321

Application programming with the IMS catalog (Application Programming)
Related reference:
“DBDXREF segment type format” on page 88

© Copyright IBM Corp. 1974, 2016 99

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_catalog_prog.htm#ims_catalog_prog

100 Database Administration

Part 3. Database types and functions

IMS databases come in two general classes: full-function and Fast Path. Each class
includes different types of databases and each database type can have different
functions and characteristics.
Related concepts:
“Types of IMS databases” on page 12

© Copyright IBM Corp. 1974, 2016 101

102 Database Administration

Chapter 12. Summary of IMS database types and functions

The following table provides a summary of characteristics, functions, and options
of the different types of IMS databases.

Table 45. Summary of database characteristics and options for database types

Characteristic HSAM HISAM HDAM PHDAM HIDAM PHIDAM DEDB MSDB

Hierarchical structures Y Y Y Y Y Y Y N

Direct access storage Y Y Y Y Y Y Y N

Multiple data set groups N N Y Y Y Y N N

Logical relationships N Y Y Y Y Y N N

Variable-length segments N Y Y Y Y Y Y N

Segment Edit/Compression N Y Y Y Y Y Y N

Data Capture exit routines N Y Y Y Y Y Y N

Field-level sensitivity Y Y Y Y Y Y N N

Primary index N Y N N Y Y N N

Secondary index N Y Y Y Y Y Y N

Logging, recovery, offline
reorganization

N Y Y Y Y Y Y Y

VSAM N Y Y Y Y Y Y N/A

OSAM N N Y Y Y Y N N/A

QSAM/BSAM Y N N N N N N N/A

Boolean operators Y Y Y Y Y Y Y N

Command codes Y Y Y Y Y Y Y N

Subset pointers N N N N N N Y N

Uses main storage N N N N N N N Y

High parallelism (field call) N N N N N N N Y

Compaction Y Y Y Y Y Y Y N

DBRC support Y Y Y Required Y Required1 Y N/A

Partitioning support N N N Y N Y Y N

Data sharing Y Y Y Y Y Y Y N

Partition sharing N N N Y N Y Y N

Block level sharing Y Y Y Y Y Y Y N

Area sharing N/A N/A N/A N/A N/A N/A Y N/A

Record deactivation N N N N N N Y N/A

Database size med med med lg med lg lg sml

Online utilities N N N N N N Y N

Online reorganization N N N Y N Y Y N

Batch Y Y Y Y Y Y N N

Table notes:

© Copyright IBM Corp. 1974, 2016 103

1. The IMS catalog is a PHIDAM database. Unlike other HALDB databases, the
IMS catalog PHIDAM database does not require DBRC support. However,
DBRC support is strongly recommended outside of test and development
environments.

Related concepts:
“Types of IMS databases” on page 12
Chapter 14, “Fast Path database types,” on page 183
Chapter 13, “Full-function database types,” on page 105
“Performance considerations overview” on page 107

104 Database Administration

Chapter 13. Full-function database types

IMS full-function databases are hierarchical databases that are accessed through
DL/I calls. IMS makes it possible for application programs to retrieve, replace,
delete, and add segments to IMS databases.

IMS allows you to define twelve database types. Each type has different
organization processing characteristics. Except for DEDB and MSDB, all the
database types are discussed in this chapter.

Understanding how the database types differ enables you to choose the type that
best suits your application's processing requirements.

Each database type has its own access method. The following table shows each
database type and its access method:

Table 46. Database types and their access methods

Type of database Access method

HSAM Hierarchical Sequential Access Method

HISAM Hierarchical Indexed Sequential Access Method

SHSAM Simple Hierarchical Sequential Access Method

SHISAM Simple Hierarchical Indexed Sequential Access Method

GSAM Generalized Sequential Access Method

HDAM Hierarchical Direct Access Method

PHDAM Partitioned Hierarchical Direct Access Method

HIDAM Hierarchical Indexed Direct Access Method

PHIDAM Partitioned Hierarchical Indexed Direct Access Method

PSINDEX Partitioned Secondary Index Database

DEDB Data Entry Database (Hierarchical Direct Access)

MSDB Main Storage Database (Hierarchical Direct Access)

Based on the access method used, the various databases can be classified into two
groups: sequential storage and direct storage.
Related concepts:
Chapter 12, “Summary of IMS database types and functions,” on page 103
“Data entry databases” on page 183
“Main storage databases (MSDBs)” on page 204
“Design review 3” on page 31
“Design review 4” on page 31

Sequential storage method
HSAM, HISAM, SHSAM, and SHISAM databases use the sequential method of
accessing data.

© Copyright IBM Corp. 1974, 2016 105

With this method, the hierarchical sequence of segments in the database is
maintained by putting segments in storage locations that are physically adjacent to
each other. GSAM databases also use the sequential method of accessing data, but
no concept of hierarchy, database record, or segment exists in GSAM databases.

Direct storage method
HDAM, PHDAM, HIDAM, DEDB, MSDB, and PHIDAM databases use the direct
method of accessing data. With this method, the hierarchical sequence of segments
is maintained by putting direct-address pointers in each segment's prefix.
Related concepts:
“Performance considerations overview” on page 107

Databases supported with DBCTL
Database Control (DBCTL) configuration of IMS supports all IMS full-function
databases.

The full-function databases supported by DBCTL include:
HSAM
HISAM
SHSAM
SHISAM
HDAM
PHDAM
HIDAM
PHIDAM
PSINDEX

Databases can be accessed through DBCTL from IMS BMP regions, as well as from
independent transaction-management subsystems. Only batch-oriented BMP
programs are supported because DBCTL provides no message or transaction
support.

CICS online programs can access the same IMS database concurrently; however, an
IMS batch program must have exclusive access to the database (if you are not
participating in IMS data sharing).

If you have batch jobs that currently access IMS databases through IMS data
sharing, you can convert them to run as BMPs directly accessing databases through
DBCTL, thereby improving performance. You can additionally convert current
batch programs to BMPs to access DEDBs.
Related concepts:

Batch processing online: batch-oriented BMPs (Application Programming)
Related reference:

EXEC parameters for IMS batch message processing regions (System
Definition)

106 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_bmpprocessingbatchoriented.htm#ims_bmpprocessingbatchoriented
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_i2hcprp.htm#i2hcprp
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_i2hcprp.htm#i2hcprp

Databases supported with DCCTL
The DCCTL configuration of IMS supports several database and dependent region
combinations.

The database and dependent region combinations supported by the DCCTL
configuration of IMS include:
v GSAM databases for BMP regions
v Db2 for z/OS databases for BMP, MPP, and IFP regions through the External

Subsystem attachment facility (ESAF)
v Db2 for z/OS databases for JMP and JBP regions through the DB2 Recoverable

Resource Manager Services attachment facility (RRSAF)

Restriction: DCCTL does not support full-function or Fast Path databases.

Related reading: For more information on RRSAF, see DB2 for z/OS Application
Programming and SQL Guide.
Related concepts:
“GSAM databases” on page 130

External Subsystem Attach Facility (ESAF) (Communications and Connections)

Related tasks:

DB2 Attach Facility (Communications and Connections)
Related reference:

IMS system exit routines (Exit Routines)

Performance considerations overview
The functional and performance characteristics of IMS databases vary from one
type of IMS databases to another. You will want to make an informed decision
regarding the type of database organizations which will best serve your purposes.

The following lists briefly summarize the performance characteristics of the various
full-function database types, highlighting efficiencies and deficiencies of
hierarchical sequential, hierarchical direct, and general sequential databases.

General sequential (GSAM)

v Supported by DCCTL
v No hierarchy, database records, segments, or keys
v No DLET or REPL
v ISRT adds records at end of data set
v GN and GU processed in batch or BMP applications only
v Allows IMS symbolic checkpoint calls and restart from checkpoint

(except VSAM-loaded databases)
v Good for converting data to IMS and for passing data
v Not accessible from an MPP or JMP region
v Space efficient
v Not time efficient

VSAM

v Fixed- or variable-length records are usable

Chapter 13. Full-function database types 107

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_esaf.htm#ims_esaf
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_db2af.htm#ims_db2af
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_systemexitroutines.htm#systemexitroutines

v VSAM ESDS DASD stored
v IMS symbolic checkpoint call allowed
v Restart from checkpoint not allowed

BSAM/QSAM

v Fixed-, variable-, or undefined-length records are usable
v BSAM/QSAM DS tape or DASD stored
v Allows IMS symbolic checkpoint calls and restart from

checkpoint

Hierarchical sequential
Segments are linked by physical contiguity

HSAM

v Supported by DBCTL
v Physical sequential access to roots and dependents stored on

tape or DASD
v ISRT allowed only when database is loaded
v GU, GN, and GNP allowed
v Database update done by merging databases and writing new

database
v QSAM and BSAM accessible
v Space efficient but not time efficient
v Sequential access

HISAM

v Supported by DBCTL
v Hierarchical indexed access to roots
v Sequential access to dependents
v Stored on DASD
v VSAM accessible
v All DL/I calls allowed
v Index is on root segment sequence field
v Good for databases not updated often
v Not space efficient with many updates
v Time efficient with SSA-qualified calls

SHSAM

v Supported by DBCTL
v Simple hierarchical sequential access method to root segments

only
v ISRT allowed only when database is loaded
v GU, GN, and GNP allowed
v Database update done by reloaded database
v QSAM and BSAM accessible
v Allows IMS symbolic checkpoint calls and restart from

checkpoint (except VSAM-loaded databases)
v Good for converting data to IMS and for passing data
v Not accessible from an MPP or JMP region
v Space efficient

108 Database Administration

v Not time efficient

SHISAM

v Supported by DBCTL
v Simple hierarchical indexed access to roots only
v Stored on DASD
v VSAM accessible
v All DL/I calls allowed
v Good for converting data to IMS and for passing data
v Not space efficient
v Time efficient

Hierarchical direct
Segments are linked by pointers

HDAM

v Supported by DBCTL
v Hashing access to roots
v Sequential access by secondary index to segments
v All DL/I calls allowed
v Stored on DASD in VSAM ESDS or OSAM data set
v Good for direct access to records
v Hierarchical pointers allowed

– Hierarchical sequential access to dependent segments
– Better performance than child and twin pointers
– Less space required than child and twin pointers

v Child and twin pointers allowed
– Direct access to pointers
– More space required by additional index VSAM ESDS

database

HIDAM

v Supported by DBCTL
v Indexed access to roots
v Pointer access to dependent segments
v All DL/I calls allowed
v Stored on DASD in VSAM ESDS or OSAM data set
v Good for random and sequential access to records
v Good for random access to segment paths
v Hierarchical pointers allowed

– Hierarchical sequential access to dependent segments
– Better performance than child and twin pointers
– Less space required than child and twin pointers

v Child and twin pointers allowed
– Direct access to pointers
– More space required by additional index VSAM ESDS

database

Chapter 13. Full-function database types 109

HALDB partitioned hierarchical direct
Segments are linked by pointers. HALDB databases contain one to 1 001
partitions. HALDB databases are the best choice for large databases

PHDAM

v Supported by DBCTL
v Supports up to 1 001 partitions
v Partitions support up to 10 database data sets and one indirect

list data set (ILDS)
v Maximum size for OSAM data sets is 4 or 8 GB and for VSAM

data sets is 4 GB
v Partitions within the database can be allocated, authorized,

processed, reorganized, and recovered independently of the
other partitions in the database

v Parallel processing of partitions reduces reorganization times
v Each partition can have a different root addressable area (RAA)
v Indirect pointers are used for logical relationships and secondary

indexes, which:
– Allow for the automatic update, or self healing, of indirect

pointers after database reorganizations
– Require an ILDS for each partition

v Hashing access to roots
v Sequential access by secondary index to segments
v All DL/I calls allowed
v Stored on DASD in VSAM ESDS or OSAM data sets
v Good for direct access to records
v Direct pointers are used in logical relationships, and symbolic

pointers are not supported
v No hierarchical pointers
v Child and twin pointers allowed

– Direct access to pointers
– More space required by additional index VSAM ESDS

database

PHIDAM

v Supported by DBCTL
v Supports up to 1 001 partitions
v Partitions support up to 10 database data sets, one primary

index data set, and one indirect list data set (ILDS)
v Maximum size for OSAM data sets is 4 or 8 GB and for VSAM

data sets is 4 GB
v Partitions within the database can be allocated, authorized,

processed, reorganized, and recovered independently of the
other partitions in the database

v Parallel processing of partitions reduces reorganization times
v Indirect pointers are used for logical relationships and secondary

indexes, which:
– Allow for the automatic update, or self healing, of indirect

pointers after database reorganizations
– Require an ILDS for each partition

110 Database Administration

|
|

|
|

v Indexed access to roots
v Primary index is a nonrecoverable database, so database update

logs are smaller, even before they are compressed when moved
to the SLDS

v Record keys are stored in sequence within each partition;
whether the sequence of records is maintained across partitions
depends on the method of partition selection used

v Pointer access to dependent segments
v All DL/I calls allowed
v Stored on DASD in a VSAM ESDS or OSAM data set
v Good for random and sequential access to records
v Good for random access to segment paths
v Direct pointers are used in logical relationships and symbolic

pointers are not supported
v No hierarchical pointers
v Child and twin pointers allowed

– Direct access to pointers
– More space required by additional index VSAM ESDS

database

HALDB partitioned secondary index

PSINDEX

v Supported by DBCTL
v Supports up to 1 001 partitions
v Partitions support only a single data set
v Stored on DASD in VSAM KSDS data set
v Maximum size of the VSAM data set is 4 GB
v Do not need to rebuild after reorganizations of the indexed

database because of the HALDB self-healing pointer process
v Partitions within the partitioned secondary index (PSINDEX) can

be allocated, authorized, processed, reorganized, and recovered
independently of the other partitions in the database

v Segments have a larger prefix than non-partitioned secondary
indexes to accommodate both a 28-byte extended pointer set
(EPS) and the length of the root key of the secondary index
target segment

v Does not support shared secondary indexes
v Does not support symbolic pointers
v Requires that the secondary index record segments have unique

keys
Related concepts:
Chapter 12, “Summary of IMS database types and functions,” on page 103
“Data entry databases” on page 183
“Main storage databases (MSDBs)” on page 204
“Direct storage method” on page 106

Chapter 13. Full-function database types 111

Nonrecoverable full-function databases
You can define a full-function database as nonrecoverable in the RECON data set by
using DBRC commands.

When a full-function database is defined as nonrecoverable, each time the data in
the database is updated, IMS logs only the data as it exists before the update. IMS
does not log the data as it exists after the update. For this reason, you can backout
updates to a nonrecoverable full-function database, but you cannot recover a
database by reapplying updates to a prior image copy of the database.

This “before” image of the data from nonrecoverable full-function databases is
logged in type X'50' log records.

You can use the NONRECOV keyword on either of the DBRC commands INIT.DB
or CHANGE.DB to define a database as nonrecoverable.
Related tasks:

Making databases recoverable or nonrecoverable (Operations and Automation)

Related reference:

INIT.DB command (Commands)

CHANGE.DB command (Commands)

HSAM databases
Hierarchical sequential access method (HSAM) databases use the sequential
method of accessing data. All database records and all segments within each
database record are physically adjacent in storage.

An HSAM database can be stored on tape or on a direct-access storage device.
They are processed using either basic sequential access method (BSAM) or queued
sequential access method (QSAM) as the operating system access method. Specify
your access method on the PROCOPT= parameter in the PCB. If you specify
PROCOPT=GS, QSAM is always used. If you specify PROCOPT=G, BSAM is used.

HSAM data sets are loaded with root segments in ascending key sequence (if keys
exist for the root) and dependent segments in hierarchical sequence. You do not
need to define a key field in root segments. You must, however, present segments
to the load program in the order in which they must be loaded. HSAM data sets
use a fixed-length, unblocked record format (RECFM=F), which means that the
logical record length is the same as the physical block size.

HSAM databases can only be updated by rewriting them. Delete (DLET) and
replace (REPL) calls are not allowed, and insert (ISRT) calls are only allowed when
the database is being loaded. Although the field-level sensitivity option can be
used with HSAM databases, the following options cannot be used with HSAM
databases:
v Multiple data set groups
v Logical relationships
v Secondary indexing
v Variable-length segments
v Segment edit/compression exit routine

112 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.oag/ims_makedb_recover.htm#ims_makedb_recover
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_initdb.htm#ims_cr3initdb
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_chgdb.htm#ims_cr3chgdb

v Data Capture exit routines
v Asynchronous data capture
v Logging, recovery, or reorganization

Multiple positioning and multiple PCBs cannot be used in HSAM databases.

When to use HSAM
HSAM is used for applications requiring sequential processing only.

The uses of HSAM are limited because of its processing characteristics. Typically,
HSAM is used for low-use files. These are files containing, for example, audit
trails, statistical reports or files containing historical or archive data that has been
purged from the main database.

How an HSAM record is stored
Segments in an HSAM database are loaded in the order in which you present them
to the load program.

You should present all segments within a database record in hierarchical sequence.
If a sequence field has been defined for root segments, you should present
database records to the load program in ascending root key sequence.

The following figure shows an example HSAM database.

The following figure shows how the example HSAM database shown in the
preceding figure would be stored in blocks.

Figure 19. Example HSAM database

Chapter 13. Full-function database types 113

In the data set, a database record is stored in one or more consecutive blocks. You
define what the block size will be. Each block is filled with segments of the
database record until there is not enough space left in the block to store the next
segment. When this happens, the remaining space in the block is padded with
zeros and the next segment is stored in the next consecutive block. When the last
segment of a database record has been stored in a block, any unused space, if
sufficient, is filled with segments from the next database record.

In storage, an HSAM segment consists of a 2-byte prefix followed by user data.
The first byte of the prefix is the segment code, which identifies the segment type
to IMS. This number can be from 1 to 255. The segment code is assigned to the
segment by IMS in ascending sequence, starting with the root segment and
continuing through all dependents in hierarchical sequence. The second byte of the
prefix is the delete byte. Because DLET calls cannot be used against an HSAM
database, the second byte is not used.

DL/I calls against an HSAM database
Initial entry to an HSAM database is through GU or GN calls. When the first call
is issued, the search for the desired segment starts at the beginning of the database
and passes sequentially through all segments stored in the database until the
desired segment is reached.

After the desired segment is reached, its position is used as the starting position
for any additional calls that process the database in a forward direction.

After position in an HSAM database has been established, the way in which GU
calls are handled depends on whether a sequence field is defined for the root
segment and what processing options are in effect. The following figure shows a
flow chart of the actions taken based on whether a sequence field is defined and
what processing options are in effect.

Figure 20. Example HSAM database stored in blocks

114 Database Administration

No sequence field defined
If no sequence field has been defined, each GU call causes the search for the
desired segment to start at the beginning of the database regardless of current
position.

This allows direct processing of the HSAM database. The processing, however, is
restricted to one volume.

Sequence field defined
If a sequence field has been defined and the GU call retrieves a segment that is
forward in the database, the search starts from the current position and moves
forward to the desired segment.

Root
segment

sequence field
defined?

SSA Key< SSA Key
on last call?

Yes

Yes

G

GS

No

Search forward
from current
position in
database

Search forward
from beginning

of database

GU call
Issued

PSB PROCOPT=

Backspace 2 blocks
read forward 1

No

Figure 21. GU calls against an HSAM database

Chapter 13. Full-function database types 115

If access to the desired segment requires backward movement in the database, the
PROCOPT= parameters G or GS (specified during PSBGEN) determine how
backward movement is accomplished. If you specify PROCOPT=GS (that is, the
database is read using QSAM), the search for the desired segment starts at the
beginning of the database and moves forward. If you specify PROCOPT=G (that is,
the database is read using BSAM), the search moves backward in the database.
This is accomplished by backspacing over the block just read and the block
previous to it, then reading this previous block forward until the wanted segment
is found.

Because of the way in which segments are accessed in an HSAM database, it is
most practical to access root segments sequentially and dependent segments in
hierarchical sequence within a database record. Other methods of access, involving
backspacing, rewinding of the tape, or scanning the data set from the beginning,
can be time consuming.

As stated previously, DLET and REPL calls cannot be issued against an HSAM
database. ISRT calls are allowed only when the database is being loaded. To
update an HSAM database, you must write a program that merges the current
HSAM database and the update data. The update data can be in one or more files.
The output data set created by this process is the new updated HSAM database.
The following figure illustrates this process.

HISAM databases
In a hierarchical indexed sequential access method (HISAM) database, as with an
HSAM database, segments in each database record are related through physical
adjacency in storage.

Unlike HSAM, however, each HISAM database record is indexed, allowing direct
access to a database record. In defining a HISAM database, you must define a
unique sequence field in each root segment. These sequence fields are then used to
construct an index to root segments (and therefore database records) in the
database.

Figure 22. Updating an HSAM database

116 Database Administration

HISAM databases are stored on direct-access devices. They can be processed using
the virtual storage access method (VSAM) utility. Unlike HSAM, all DL/I calls can
be issued against a HISAM database. In addition, the following options are
available for HISAM databases:
v Logical relationships
v Secondary indexing
v Variable-length segments
v Segment edit/compression exit routine
v Data Capture exit routines
v Field-level sensitivity
v Logging, recovery, and reorganization

Criteria for selecting HISAM
You should use HISAM when you need sequential or direct access to roots and
sequential processing of dependent segments in a database record.

HISAM is a good choice of data organization when your database has most, or all,
of the following characteristics.
v Each root has few dependents.

Root segment access is indexed, and is therefore fast. Dependent segment access
is sequential, and is therefore slower.

v You have a small number of delete operations against the database.
Except for deleting root segments, all delete operations result in the creation of
space that is unusable until the database is reorganized.

v Your applications depend on a small volume of root segments being inserted
within a narrow key range (VSAM).
Root segments inserted after initial load are inserted in root key sequence in the
appropriate CI in the KSDS. If many roots have keys within a narrow key range,
many CI splits can occur. This will degrade performance.

v Most of your database records are about the same size.
The similar sizes allow you to pick logical record lengths and CI sizes so most
database records fit on the primary data set. You want most database records to
fit on the primary data set, because additional read and seek operations are
required to access those parts of a database record on the overflow data set.
Additional reads and seeks degrade performance. If, however, most of the
processing you do against a database record occurs on segments in the primary
data set (in other words, your high-use segments fit on the primary data set),
these considerations might not be as important.
Having most of your database records the same size also saves space. Each
database record starts at the beginning of a logical record. All space in the
logical records not used by the database record is unusable. This is true of
logical records in both the primary and overflow data set. If the size of your
database records varies tremendously, large gaps of unused space can occur at
the end of many logical records.

How a HISAM record is stored
HISAM database records are stored in two data sets: a primary data set and an
overflow data set.

The primary data set contains an index and all segments in a database record that
can fit in one logical record. The index provides direct access to the root segment

Chapter 13. Full-function database types 117

(and therefore to database records). The overflow data set, contains all segments in
the database record that cannot fit in the primary data set. A key-sequenced data
set (KSDS) is the primary data set and an entry-sequenced data set (ESDS) is the
overflow data set.

There are several things you need to know about storage of HISAM database
records:
v You define the logical record length of both the primary and overflow data set

(subject to the rules listed in this topic). The logical record length can be
different for each data set. This allows you to define the logical record length in
the primary data set as large enough to hold an “average” database record or
the most frequently accessed segments in the database record. Logical record
length in the overflow data set can then be defined (subject to some restrictions)
as whatever is most efficient given the characteristics of your database records.

v Logical records are grouped into control intervals (CIs). A control interval is the
unit of data transferred between an I/O device and storage. You define the size
of CIs.

v Each database record starts at the beginning of a logical record in the primary
data set. A database record can only occupy one logical record in the primary
data set, but overflow segments of the database record can occupy more than
one logical record in the overflow data set.

v Segments in a database record cannot be split and stored across two logical
records. Because of this and because each database record starts a new logical
record, unused space exists at the end of many logical records. When the
database is initially loaded, IMS inserts a root segment with a key of all X'FF's as
the last root segment in the database.

The following figure shows four HISAM database records.

118 Database Administration

The following figure shows the four records from the preceding figure as they are
initially stored on the primary and overflow data sets. In storage, a HISAM
segment consists of a 2-byte prefix followed by user data. The first byte of the
prefix is the segment code, which identifies the segment type to IMS. This number
can be from 1 to 255. The segment code is assigned to the segment by IMS in
ascending sequence, starting with the root segment and continuing through all
dependents in hierarchical sequence. The second byte of the prefix is the delete
byte.

Figure 23. Example HISAM database records

Chapter 13. Full-function database types 119

Each logical record in the primary data set contains the root plus all dependents of
the root (in hierarchical sequence) for which there is enough space. The remaining
segments of the database record are put in the overflow data set (again in
hierarchical sequence). The two “parts” of the database record are chained together
with a direct-address pointer. When overflow segments in a database record use
more than one logical record in the overflow data set, as is the case for the first
and second database records in the preceding figure, the logical records are also
chained together with a direct-address pointer. Note in the figure that HISAM
indexes do not contain a pointer to each root segment in the database. Rather, they
point to the highest root key in each block or CI.

The following figure illustrates the following points regarding the structure of a
logical record in a HISAM database:
v In a logical record, the first 4 bytes are a direct-address pointer to the next

logical record in the database record. This pointer maintains all logical records in
a database record in correct sequence. The last logical record in a database
record contains zeros in this field.

v Following the pointer are one or more segments of the database record in
hierarchical sequence.

v Following the segments is a 1-byte segment code of 0. It says that the last
segment in the logical record has been reached.

Primary data set Overflow data set

Prefix Data

Segment

code

Delete

byte

SKILL2 SKILL4

SKILL4 data

SKILL1

SKILL2

NAME1

NAME3

EDUC1

EXPR3

SKILL3

SKILL4

EDUC2 EDUC3

EDUC4 EDUC5

NAME2

NAME4

EXPR2

EXPR1

SALARY

SALARY

1

2

EDUC6

Figure 24. Example HISAM database records in storage

120 Database Administration

Accessing segments
When accessing a segment in a HISAM database, the application program follows
a set search sequence.

In HISAM, when an application program issues a call with a segment search
argument (SSA) qualified on the key of the root segment, the segment is found by:
1. Searching the index for the first pointer with a value greater than or equal to

the specified root key (the index points to the highest root key in each CI)
2. Following the index pointer to the correct CI
3. Searching this CI for the correct logical record (the root key value is compared

with each root key in the CI)
4. When the correct logical record (and therefore database record) is found,

searching sequentially through it for the specified segment

If an application program issues a GU call with an unqualified SSA for a root
segment or with an SSA qualified on other than the root key, the HISAM index
cannot be used. The search for the segment starts at the beginning of the database
and proceeds sequentially until the specified segment is found.

Inserting root segments using VSAM
After an initial load, root segments inserted into a HISAM database are stored in
the primary data set in ascending key sequence.

The CI might or might not contain a free logical record into which the new root
can be inserted. Both situations are described next.

A free logical record exists
This example shows how insertion takes place when a free logical record exists.

In the following figure, the new root is inserted into the CI in root key sequence. If
there are logical records in the CI containing roots with higher keys, they are
“pushed down” to create space for the new logical record.

1

RBA Segment Segment Segment
code
of 0

Unused
space

Varies VariesBytes 4

Figure 25. Format of a logical record in a HISAM database

Chapter 13. Full-function database types 121

No free logical record exists
This example shows how insertion takes place when no free logical record exists in
the CI.

The CI is split forming two new CIs, both equal in size to the original one. Where
the CI is split depends on what you have coded in the INSERT=parameter on the
OPTIONS statement in the DFSVSAMP data set for batch environments or the
DFSVSMxx PROCLIB member for online environments.

KSDS

KSDS

Dependent

Dependent

Dependent

Dependent

Root 14

Root 14

Dependent

Dependent

Root 16

Root 21

Root 21

Dependent

Dependent

Root 21

Root 21

ESDS

ESDS

After

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Before

Insert Root 16

Figure 26. Inserting a root segment into a HISAM database (free logical record exists in the
CI)

122 Database Administration

The split can occur at the point at which the root is inserted or midpoint in the CI.
After the CI is split, free logical records exist in each new CI and the new root is
inserted into the proper CI in root key sequence. If, as was the case in the figure
shown in “A free logical record exists” on page 121, logical records in the new CI
contained roots with higher keys, those logical records would be “pushed down”
to create space for the new logical record.

When adding new root segments to a HISAM database, performance can be
slightly improved if roots are added in ascending key sequence.

Chapter 13. Full-function database types 123

Related reference:

DFSVSMxx member of the IMS PROCLIB data set (System Definition)

DD statements for IMS procedures (System Definition)

CI Containing
3 LogicalRecords

Index

Insert Root 15

BEFORE

AFTER
KSDS

KSDS

ESDS

ESDS

New CI
Containing 3
Logical Records

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Dependent

Root 14

Root 14

Root 21

Dependent

Dependent

Dependent

Dependent

Root 15

Root 16

Root 16

Root 21`

Dependent

Dependent

Root 16 Root 21

Root 21

Figure 27. Inserting a root segment into a HISAM database (no free logical record exists in
the CI)

124 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsvsmxx_proclib.htm#ims_dfsvsmxx_proclib
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dd_statements.htm#ims_dd_statements

Inserting dependent segments
Dependent segments inserted into a HISAM database after initial load are inserted
in hierarchical sequence. IMS decides where in the appropriate logical record the
new dependent should be inserted.

Two situations are possible. Either there is enough space in the logical record for
the new dependent or there is not.

The following figure shows how segment insertion takes place when there is
enough space in the logical record. The new dependent is stored in its proper
hierarchical position in the logical record by shifting the segments that
hierarchically follow it to the right in the logical record.

The following figure shows how segment insertion takes place when there is not
enough space in the logical record. As in the previous case, new dependents are
always stored in their proper hierarchical sequence in the logical record. However,
all segments to the right of the new segment are moved to the first empty logical
record in the overflow data set.

Dependent BRoot 14

Primary or overflow

Dependent D

Dependent D

Root 14 Dependent A

Dependent A

Primary or overflow

Insert segment B

Figure 28. Inserting a dependent segment into a HISAM database (space exists in the logical
record)

Chapter 13. Full-function database types 125

Deleting segments
When segments are deleted from a HISAM database, they are marked as deleted in
the delete byte in their prefix. They are not physically removed from the database;
the one exception to this is discussed later in this topic.

Before

Insert dependent segment G
for root 14

Primary

Primary

Overflow

Overflow

After

Cl or block containing two logical records

Dependent G

Dependent HDependent I

Dependent B

Dependent B

Dependent K

Dependent K

Dependent I

Dependent B

Dependent B

Dependent M

Dependent M

Dependent D

Dependent D

Dependent F

Dependent F

Dependent X

Dependent X

Dependent A

Dependent A

Dependent D

Dependent D

Dependent J

Dependent J

Dependent H

Dependent A

Dependent A

Root 14

Root 14

Root 16

Root 16

Figure 29. Inserting a dependent segment into a HISAM database (no space exists in the
logical record)

126 Database Administration

Dependent segments of the deleted segment are not marked as deleted, but
because their parent is, the dependent segments cannot be accessed. These
unmarked segments (as well as segments marked as deleted) are deleted when the
database is reorganized.

One thing you should note is that when a segment is accessed that hierarchically
follows deleted segments in a database record, the deleted segments must still be
“searched through”. This concept is shown in the following figures.

Segment B2 is deleted from this database record. This means that segment B2 and
its dependents (C1, C2, and C3) can no longer be accessed, even though they still
exist in the database.

A request to access segment D1 is made. Although segments B2, C1, C2, and C3
cannot be accessed, they still exist in the database. Therefore they must still be
“searched through” even though they are inaccessible as shown in the following
figure.

In one situation, deleted segments are physically removed from the database. If the
deleted segment is a root, the logical record containing the root is erased, provided
neither the root nor any of its dependents is involved in a logical relationship. The
default is ERASE=YES, and no "mark buffer altered" takes place. Thus a
PROCOPT=G read job will not have to wait for locks after another job has set the
delete byte, and will return a segment not found condition. To be consistent with

Figure 30. The hierarchical segment layout on the database

Figure 31. Accessing a HISAM segment that hierarchically follows deleted segments

Chapter 13. Full-function database types 127

other DB types, use ERASE=NO to cause a wait for physical delete prior to
attempted read. The ERASE parameter is specified on the DBD statement of the
DFSVSMxx PROCLIB member.

After the logical record is removed, its space is available for reuse. However, any
overflow logical record containing dependents of this root is not available for
reuse. Except for this special condition, you must unload and reload a HISAM
database to regain space occupied by deleted segments.
Related concepts:
“Locking to provide program isolation” on page 165

Replacing segments
Replacing segments in a HISAM database is straightforward as long as fixed
length segments are being used. The data in the segment, once changed, is
returned to its original location in storage. The key field in a segment cannot be
changed.

When variable-length segments are used there are other implications to consider.
Related concepts:
“Variable-length segments” on page 373

SHSAM, SHISAM, and GSAM databases
You typically use simple hierarchical sequential access method (SHSAM), simple
hierarchical indexed sequential access method (SHISAM), and generalized
sequential access method (GSAM) databases either when converting a
non-database system to IMS or when passing data from one application program
to another.

When converting from a non-database system to IMS, SHSAM, SHISAM, and
GSAM databases allow existing programs, using z/OS access methods, to remain
usable during the conversion to IMS. This is possible because the format of the
data in these databases is the same as in the z/OS data sets.

When a database (or non-database) application program passes data to a database
(or non-database) application program, it first puts the data in a SHSAM, SHISAM,
or GSAM database. The database (or non-database) application program then
accesses the data from these databases.

If you have application programs that need access to both IMS and z/OS data sets,
you can use SHSAM, SHISAM, or GSAM. Which one you use depends on what
functions you need. The following table compares the characteristics and functions
available for each of the three types of databases.

Table 47. Comparison of SHSAM, SHISAM, and GSAM databases

Characteristics and functions SHSAM SHISAM GSAM

Uses hierarchical structure NO NO NO

Uses segment prefixes NO NO NO

Supports variable-length records NO NO YES

Supports checkpoint/restart NO YES1 YES1

Compatible with non-IMS data sets YES YES YES

128 Database Administration

Table 47. Comparison of SHSAM, SHISAM, and GSAM databases (continued)

Characteristics and functions SHSAM SHISAM GSAM

Supports VSAM as the operating system access
method

NO YES YES

Supports BSAM as the operating system access
method

YES NO YES

Accessible from a batch region YES YES YES

Accessible from a batch message processing
region

YES YES YES

Accessible from a message processing region YES YES NO

Supports logging support NO YES NO

Supports GET calls YES YES YES

Supports ISRT calls YES2 YES YES3

Supports CICS-DBCTL YES YES NO

Supports DCCTL NO NO YES

Note:

1. Using symbolic checkpoints
2. To load database only
3. Allowed only at the end of the data set
Related concepts:
“The segment” on page 15

SHSAM databases
A simple HSAM (SHSAM) database is an HSAM database containing only one
type of segment, a root segment. The segment has no prefix, because no need
exists for a segment code (there is only one segment type) or for a delete byte
(deletes are not allowed).

SHSAM databases can be accessed by z/OS BSAM and QSAM because SHSAM
segments contain user data only (no IMS prefixes). The ISRT, DLET, and REPL calls
cannot be used to update. However, ISRT can be used to load an SHSAM database.
Only GET calls are valid for processing an SHSAM database. These allow retrieval
only of segments from the database. To update an SHSAM database, it must be
reloaded. The situations in which SHSAM is typically used are explained in the
introduction to this topic. Before deciding to use SHSAM, read the topic on GSAM
databases, because GSAM has many of the same functions as SHSAM. Unlike
SHSAM, however, GSAM files cannot be accessed from a message processing
region. GSAM does allow you to take checkpoints and perform restart, though.

Although SHSAM databases can use the field-level sensitivity option, they cannot
use any of the following options:
v Logical relationships
v Secondary indexing
v Multiple data set groups
v Variable-length segments
v Segment edit/compression exit routine
v Data Capture exit routines

Chapter 13. Full-function database types 129

v Logging, recovery, or reorganization

SHISAM databases
A simple HISAM (SHISAM) database is a HISAM database containing only one
type of segment, a root segment.

The segment has no prefix, because no need exists for a segment code (there is
only one segment type) or for a delete byte (deletes are done using a VSAM erase
operation). SHISAM databases must be KSDSs; they are accessed through VSAM.
Because SHISAM segments contain user data only (no IMS prefixes), they can be
accessed by VSAM macros and DL/I calls. All the DL/I calls can be issued against
SHISAM databases.

SHISAM IMS symbolic checkpoint call
SHISAM is also useful if you need an application program that accesses z/OS data
sets to use the IMS symbolic checkpoint call.

The IMS symbolic checkpoint call makes restart easier than the z/OS basic
checkpoint call. If the z/OS data set the application program is using is converted
to a SHISAM database data set, the symbolic checkpoint call can be used. This
allows application programs to take checkpoints during processing and then restart
their programs from a checkpoint. The primary advantage of this is that, if the
system fails, application programs can recover from a checkpoint rather than lose
all processing that has been done. One exception applies to this: An application
program for initially loading a database that uses VSAM as the operating system
access method cannot be restarted from a checkpoint. Application programs using
GSAM databases can also issue symbolic checkpoint calls. Application programs
using SHSAM databases cannot.

Before deciding to use SHISAM, you should read the next topic on GSAM
databases. GSAM has many of the same functions as SHISAM. Unlike SHISAM,
however, GSAM files cannot be accessed from a message processing region.

SHISAM databases can use field-level sensitivity and Data Capture exit routines,
but they cannot use any of the following options:
v Logical relationships
v Secondary indexing
v Multiple data set groups
v Variable-length segments
v Segment edit/compression exit routine

GSAM databases
GSAM databases are sequentially organized databases that are designed to be
compatible with z/OS data sets.

GSAM databases have no hierarchy, database records, segments, or keys. GSAM
databases can be in a data set previously created or in one later accessed by the
z/OS access methods VSAM or QSAM/BSAM. GSAM data sets can use
fixed-length or variable-length records when VSAM is used, or fixed-length,
variable-length, or undefined-length records when QSAM/BSAM is used.

If VSAM is used to process a GSAM database, the VSAM data set must be entry
sequenced and on a DASD. If QSAM/BSAM is used, the physical sequential
(DSORG=PS) data set can be placed on a DASD or tape unit. If BSAM is used, the

130 Database Administration

GSAM data sets can be defined as z/OS large format data sets by specifying
DSNTYPE=LARGE on the DD statements.

GSAM supports DFSMS striped extended-format data sets for both VSAM and
BSAM.

GSAM database data sets can be allocated in the extended addressing space (EAS)
of an extended address volume (EAV).

Restriction: GSAM databases cannot be used with CICS applications.

Because GSAM databases are supported in a DCCTL environment, you can use
them when you need to process sequential non-IMS data sets using a BMP
program.

GSAM databases are loaded in the order in which you present records to the load
program. You cannot issue DLET and REPL calls against GSAM databases;
however, you can issue ISRT calls after the database is loaded but only to add
records to the end of the data set. Records are not randomly added to a GSAM
data set.

Although random processing of GSAM and SHSAM databases is possible, random
processing of a GSAM database is done using a GU call qualified with a record
search argument (RSA). This processing is primarily useful for establishing position
in the database before issuing a series of GN calls.

Although SHSAM and SHISAM databases can be processed in any processing
region, GSAM databases can only be processed in a batch or batch message
processing region.

The following IMS options do not apply to GSAM databases:
v Logical relationships
v Secondary indexing
v Segment edit/compression exit routine
v Field-level sensitivity
v Data Capture exit routines
v Logging or reorganization
v Multiple data set groups

For more information about GSAM data sets and access methods, including
information about the GSAM use of striped extended-format data sets, see
“Processing GSAM databases” in IMS Version 13 Application Programming.

For more information about z/OS data sets, see z/OS DFSMS: Using Data Sets, as
well as the z/OS DFSMShsm, DFSMSdss, and DFSMSdfp storage administration
guides and references.
Related concepts:
“Databases supported with DCCTL” on page 107

GSAM IMS symbolic checkpoint call
Among its other uses, GSAM is also useful if you need an application program
that accesses z/OS data sets to use the IMS symbolic checkpoint call.

Chapter 13. Full-function database types 131

|
|

The IMS symbolic checkpoint call makes restart easier than the z/OS basic
checkpoint call. This IMS symbolic checkpoint call allows application programs to
take checkpoints during processing, thereby allowing programs to restart from a
checkpoint. A checkpoint call forces any GSAM buffers with inserted records to be
written as short blocks. The primary advantage of taking checkpoints is that, if the
system fails, the application programs can recover from a checkpoint rather than
lose all your processed data. However, any application program that uses VSAM
as an operating system access method and initially loads the database cannot be
restarted from a checkpoint.

In general, always use DISP=OLD for GSAM data sets when restarting from a
checkpoint even if you used DISP=MOD on the original execution of the job step.
If you use DISP=OLD, the data set is positioned at its beginning. If you use
DISP=MOD, the data set is positioned at its end.

HDAM, PHDAM, HIDAM, and PHIDAM databases
A hierarchical direct (HD) database is a database that maintains the hierarchical
sequence of its segments by having segments point to one another (instead of by
physically storing the segments in the hierarchical sequence).

HD databases are stored on direct-access devices in either a VSAM ESDS or an
OSAM data set.

In most cases, each segment in an HD database has one or more direct-address
pointers in its prefix. When direct-address pointers are used, database records and
segments can be stored anywhere in the database. After segments are inserted into
the database, they remain in their original positions unless the segments are
deleted or until the database is reorganized. During database update activity,
pointers are updated to reflect the hierarchical relationships of the segments.

HD databases also differ from sequentially organized databases because space in
HD databases can be reused. If part or all of a database record is deleted, the
deleted space can be reused when new database records or segments are inserted.

HD databases access the root segments that they contain in one of two ways: by
using a randomizing module or by using a primary index. HD databases that use a
randomizing module are referred to as hierarchical direct access method (HDAM)
databases. HD databases that use a primary index are referred to as hierarchical
indexed direct access method (HIDAM) databases.

HD databases can also be partitioned. A partitioned HD database that uses a
randomizing module to access its root segments is referred to as a partitioned
HDAM (PHDAM) database. A partitioned HD database that uses a primary index
to access its root segments is referred to as a partitioned HIDAM (PHIDAM)
database. PHDAM and PHIDAM databases, along with partitioned secondary index
(PSINDEX) databases, are collectively referred to as High Availability Large Database
(HALDB) type databases.

The storage organization in HD databases that use a randomizing module and in
HD databases that use a primary index is basically the same. The primary
difference is in how their root segments are accessed. In HDAM or PHDAM
databases, the randomizing module examines the root's key to determine the
address of a pointer to the root segment. In HIDAM or PHIDAM databases, each
root segment's storage location is found by searching the index. In HIDAM
databases, the primary index is a database that IMS loads and maintains. In

132 Database Administration

PHIDAM databases, the primary index is a data set that IMS loads and maintains.
The advantage of a randomizing module is that the I/O operations that are
required to search an index are eliminated.

In PHDAM and PHIDAM databases, before IMS uses either the randomizing
module or the primary index, IMS must determine which partition the root
segments are stored in by using a process called partition selection. You can have
IMS perform partition selection by assigning a range of root keys to a partition or
by using a partition selection exit routine.

The following figure compares a logical view of an HDAM database with the
logical view of a PHDAM database.

The following figure compares a logical view of a HIDAM database with the
logical view of a PHIDAM database.

Related concepts:
“HALDB partition selection” on page 173

Maximum sizes of HD databases
The maximum possible size of HDAM, PHDAM, HIDAM, and PHIDAM databases
is based on the number of data sets the database can hold and the size of the data

1

PHDAM

database

HDAM

database

Partition 1 Partition 2 Partition 3

Partition

N
10

10

ILDS ILDS

10 10

1

1

1 1
data set

data set

data set data set

ILDS

Figure 32. A comparison of the logical views of HDAM and PHDAM databases

1

PHIDAM

database

HIDAM

database

Partition 1 Partition 2 Partition 3

Partition

N

10

10

ILDS ILDS

10 10

1

1

1 1
Data set

Data set

Index

IndexIndexIndex

Data set Data set

ILDS

Figure 33. A comparison of the logical views of HIDAM and PHIDAM databases

Chapter 13. Full-function database types 133

sets. The maximum possible size of a data set differs depending on whether VSAM
or OSAM is used and whether the database is partitioned.

The following table lists the maximum data set size, maximum number of data
sets, and maximum database size for HDAM, PHDAM, HIDAM, and PHIDAM
databases.

Table 48. Maximum sizes for HDAM, HIDAM, PHDAM, and PHIDAM databases

Data set type
Maximum data set
size

Maximum number of
data sets

Maximum database
size

OSAM HDAM or
HIDAM Database

8 GB 10 data sets 80 GB

VSAM HDAM or
HIDAM Database

4 GB 10 data sets 40 GB

OSAM PHDAM or
PHIDAM Database

4 or 8 GB1 10 010 data sets (10
data sets per
partition; 1001
partitions per
database)

40 040 or 80 080 GB

VSAM PHDAM or
PHIDAM Database

4 GB 10 010 data sets (10
data sets per
partition; 1001
partitions per
database)

40 040 GB

Note:

1. The maximum size depends on how the HALDB is registered with DBRC. By
default, the maximum size of the OSAM data sets is 4 GB.

Related concepts:
“Using OSAM as the access method” on page 537

DL/I calls that can be issued against HD databases
All DL/I calls can be issued against HD databases.

In addition, the following options are available:
v Multiple data set groups
v Logical relationships
v Secondary indexing
v Variable-length segments
v Segment edit/compression exit routine
v Data Capture exit routines
v Field-level sensitivity
v Logging, recovery, and offline reorganization
v Online reorganization for HALDB partitions
Related concepts:
Chapter 26, “Database backup and recovery,” on page 559

Logging (System Administration)
“HALDB online reorganization” on page 642

134 Database Administration

|
|
||
|
|
|
|

|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_intro/ims_logging_over.htm#ims_logging_over

When to use HDAM and PHDAM
HDAM and PHDAM databases are typically used for direct access to database
records.

The randomizing module provides fast access to the root segment (and therefore
the database record). HDAM and PHDAM databases also give you fast access to
paths of segments as specified in the DBD in a database record. For example, in
the following figure, if physical child pointers are used, they can be followed to
reach segments B, C, D, or E. A hierarchical search of segments in the database
record is bypassed. Segment B does not need to be accessed to get to segments C,
D, or E. And segment D does not need to be accessed to get to segment E. Only
segment A must be accessed to get to segment B or C. And only segments A and C
must be accessed to get to segments D or E.

When to use HIDAM and PHIDAM
HIDAM and PHIDAM databases are typically used when you need both random
and sequential access to database records and random access to paths of segment
in a database record.

Access to root segments (and therefore database records) is not as fast as with
HDAM (or PHDAM), because the HIDAM (or PHIDAM) index database has to be
searched for a root segment's address. However, because the index keeps the
address of root segments stored in key sequence, database records can be
processed sequentially.

Pointers in HD databases
Before looking in detail at how HD databases are stored and processed, you need
to become familiar with the pointers that are used in HD databases.

Root A

Dependent B Dependent C

Dependent D Dependent E

Figure 34. Example database record

Chapter 13. Full-function database types 135

Types of pointers you can specify
In the HD access methods, segments in a database record are kept in hierarchical
sequence using direct-address pointers.

Except for a few special cases, each prefix in an HD segment contains one or more
pointers. Each pointer is 4 bytes long and consists of the relative byte address of
the segment to which it points. Relative, in this case, means relative to the
beginning of the data set.

Several different types of direct-address pointers exist, and you will see how each
works in the topics that follow in this section. However, there are three basic types:
v Hierarchical pointers, which point from one segment to the next in either

forward or forward and backward hierarchical sequence
v Physical child pointers, which point from a parent to each of its first or first and

last children, for each child segment type
v Physical twin pointers, which point forward or forward and backward from one

segment occurrence of a segment type to the next, under the same parent

When segments in a database record are typically processed in hierarchical
sequence, use hierarchical pointers. When segments in a database record are
typically processed randomly, use a combination of physical child and physical
twin pointers. One thing to keep in mind while reading about pointers is that the
different types, subject to some rules, can be mixed within a database record.
However, because pointers are specified by segment type, all occurrences of the
same segment type have the same type of pointer.

Each type of pointer is examined separately in this topic. In the subtopics in this
topic, each type of pointer is illustrated, and the database record on which each
illustration is based is shown in the following figure.

Related concepts:

Figure 35. Example database record for illustrating pointers

136 Database Administration

“Mixing pointers” on page 144
Chapter 31, “Converting database types,” on page 797
“Physical child first pointers” on page 139
“Physical child first and last pointers” on page 140
Related tasks:
“Converting a database from HIDAM to HDAM” on page 800

Hierarchical forward pointers
With hierarchical forward (HF) pointers, each segment in a database record points
to the segment that follows it in the hierarchy.

The following figure shows hierarchical forward pointers:

When an application program issues a call for a segment, HF pointers are followed
until the specified segment is found. In this sense, the use of HF pointers in an HD
database is similar to using a sequentially organized database. In both, to reach a
dependent segment all segments that hierarchically precede it in the database
record must be examined. HF pointers should be used when segments in a
database record are typically processed in hierarchical sequence and processing
does not require a significant number of delete operations. If there are a lot of
delete operations, hierarchical forward and backward pointers (explained next)
might be a better choice.

Four bytes are needed in each dependent segment's prefix for the HF pointer. Eight
bytes are needed in the root segment. More bytes are needed in the root segment
because the root points to both the next root segment and first dependent segment
in the database record.

HF pointers are specified by coding PTR=H in the SEGM statement in the DBD.

Restriction: HALDB databases do not support HF pointers.

Figure 36. Hierarchical forward pointers

Chapter 13. Full-function database types 137

Hierarchical forward and backward pointers
With hierarchical forward and backward pointers (HF and HB), each segment in a
database record points to both the segment that follows and the one that precedes
it in the hierarchy (except dependent segments do not point back to root
segments).

HF and HB pointers must be used together, since you cannot use HB pointers
alone. The following figure shows how HF and HB pointers work.

HF pointers work in the same way as the HF pointers that are described in
“Hierarchical forward pointers” on page 137.

HB pointers point from a segment to one immediately preceding it in the
hierarchy. In most cases, HB pointers are not required for delete processing. IMS
saves the location of the previous segment retrieved on the chain and uses this
information for delete processing. The backward pointers are useful for delete
processing if the previous segment on the chain has not been accessed. This
happens when the segment to be deleted is entered by a logical relationship.

The backward pointers are useful only when all of the following are true:
v Direct pointers from logical relationships or secondary indexes point to the

segment being deleted or one of its dependent segments.
v These pointers are used to access the segment.
v The segment is deleted.

Eight bytes are needed in each dependent segment's prefix to contain HF and HB
pointers. Twelve bytes are needed in the root segment. More bytes are needed in
the root segment because the root points:
v Forward to a dependent segment
v Forward to the next root segment in the database
v Backward to the preceding root segment in the database

Figure 37. Hierarchical forward and backward pointers

138 Database Administration

HF and HB pointers are specified by coding PTR=HB in the SEGM statement in
the DBD.

Restriction: HALDB databases do not support HF and HB pointers.

Physical child first pointers
With physical child first (PCF) pointers, each parent segment in a database record
points to the first occurrence of each of its immediately dependent child segment
types.

The following figure shows PCF pointers:

With PCF pointers, the hierarchy is only partly connected. No pointers exist to
connect occurrences of the same segment type under a parent. Physical twin
pointers can be used to form this connection. Use PCF pointers when segments in
a database record are typically processed randomly and either sequence fields are
defined for the segment type, or if not defined, the insert rule is FIRST or HERE. If
sequence fields are not defined and new segments are inserted at the end of
existing segment occurrences, the combination of PCF and physical child last (PCL)
pointers (explained next) can be a better choice.

Four bytes are needed in each parent segment for each PCF pointer.

PCF pointers are specified by coding PARENT=((name,SNGL)) in the SEGM
statement in the DBD. This is the SEGM statement for the child being pointed to,
not the SEGM statement for the parent. Note, however, that the pointer is stored in
the parent segment.
Related concepts:
“Types of pointers you can specify” on page 136

How logical relationships affect your programming (Application
Programming)
Related reference:

ISRT call (Application Programming APIs)

Figure 38. Physical child first pointers

Chapter 13. Full-function database types 139

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_logicalrelationshipsaffects.htm#ims_logicalrelationshipsaffects
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_logicalrelationshipsaffects.htm#ims_logicalrelationshipsaffects
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apr/ims_isrtcall.htm#ims_isrtcall

SEGM statements (System Utilities)
Related information:

Physical child first and last pointers
With physical child first and last pointers (PCF and PCL), each parent segment in a
database record points to both the first and last occurrence of its immediately
dependent child segment types.

PCF and PCL pointers must be used together, since you cannot use PCL pointers
alone. The following figure shows PCF and PCL pointers:

Note that if only one physical child of a particular parent segment exists, the PCF
and PCL pointers both point to the same segment. As with PCF pointers, PCF and
PCL pointers leave the hierarchy only partly connected, and no pointers exist to
connect occurrences of the same segment type under a parent. Physical twin
pointers can be used to form this connection.

PCF and PCL pointers (as opposed to just PCF pointers) are typically used when:
v No sequence field is defined for the segment type.
v New segment occurrences of a segment type are inserted at the end of all

existing segment occurrences.

On insert operations, if the ISRT rule of LAST has been specified, segments are
inserted at the end of all existing segment occurrences for that segment type. When
PCL pointers are used, fast access to the place where the segment will be inserted
is possible. This is because there is no need to search forward through all segment
occurrences stored before the last occurrence. PCL pointers also give application
programs fast retrieval of the last segment in a chain of segment occurrences.
Application programs can issue calls to retrieve the last segment by using an
unqualified SSA with the command code L. When a PCL pointer is followed to get
the last segment occurrence, any further movement in the database is forward.

Figure 39. Physical child first and last pointers

140 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_segmstmt.htm#ims_segmstmt

A PCL pointer does not enable you to search from the last to the first occurrence of
a series of dependent child segment occurrences.

Four bytes are needed in each parent segment for each PCF and PCL pointer.

PCF and PCL pointers are specified by coding the PARENT= operand in the SEGM
statement in the DBD as PARENT=((name,DBLE)). This is the SEGM statement for
the child being pointed to, not the SEGM statement for the parent. Note, however,
that the pointers are stored in the parent segment.

A parent segment can have SNGL specified on one immediately dependent child
segment type and DBLE specified on another.

The following example DBD statement specifies PCF and PCL pointers.
DBD
SEGM A
SEGM B PARENT=((name.SNGL)) (specifies PCF pointer only)
SEGM C PARENT=((name.DBLE)) (specifies PCF and PCL pointers)

The following figure shows the result of specifying PCF and PCL pointers in a
database definition.

Related concepts:
“Types of pointers you can specify” on page 136

How logical relationships affect your programming (Application
Programming)
Related reference:

ISRT call (Application Programming APIs)

SEGM statements (System Utilities)
Related information:

Physical twin forward pointers
With physical twin forward (PTF) pointers, each segment occurrence of a given
segment type under the same parent points forward to the next segment
occurrence.

Note that, except in PHIDAM databases, PTF pointers can be specified for root
segments. When this is done in an HDAM or PHDAM database, the root segment

Figure 40. Specifying PCF and PCL pointers

Chapter 13. Full-function database types 141

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_logicalrelationshipsaffects.htm#ims_logicalrelationshipsaffects
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_logicalrelationshipsaffects.htm#ims_logicalrelationshipsaffects
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apr/ims_isrtcall.htm#ims_isrtcall
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_segmstmt.htm#ims_segmstmt

points to the next root in the database chained off the same root anchor points
(RAP). If no more root segments are chained from this RAP, the PTF pointer is
zero.

When PTF pointers are specified for root segments in a HIDAM database, the root
segment does not point to the next root in the database.

If you specify PTF pointers on a root segment in a HIDAM database, the HIDAM
index must be used for all sequential processing of root segments. Using only PTF
pointers increases access time. You can eliminate this overhead by specifying PTF
and physical twin backward (PTB) pointers.

You cannot use PTF pointers for root segments in a PHIDAM database. PHIDAM
databases only support PTF pointers for dependent segments.

With PTF pointers, the hierarchy is only partly connected. No pointers exist to
connect parent and child segments. Physical child pointers can be used to form this
connection. PTF pointers should be used when segments in a database record are
typically processed randomly, and you do not need sequential processing of
database records.

Four bytes are needed for the PTF pointer in each segment occurrence of a given
segment type.

PTF pointers are specified by coding PTR=T in the SEGM statement in the DBD.
This is the SEGM statement for the segment containing the pointer.

The following figure show PTF pointers:

Related concepts:
“Use of RAPs in a HIDAM database” on page 156
“Physical twin forward and backward pointers” on page 143
“General format of HD databases and use of special fields” on page 146

Figure 41. Physical twin forward pointers

142 Database Administration

Physical twin forward and backward pointers
With physical twin forward and backward (PTF and PTB) pointers, each segment
occurrence of a given segment type under the same parent points both forward to
the next segment occurrence and backward to the previous segment occurrence.

PTF and PTB pointers must be used together, since you cannot use PTB pointers
alone. The following figure illustrates how PTF and PTB pointers work.

Note that PTF and PTB pointers can be specified for root segments. When this is
done, the root segment points to both the next and the previous root segment in
the database. As with PTF pointers, PTF and PTB pointers leave the hierarchy only
partly connected. No pointers exist to connect parent and child segments. Physical
child pointers (explained previously) can be used to form this connection.

PTF and PTB pointers (as opposed to just PTF pointers) should be used on the root
segment of a HIDAM or a PHIDAM database when you need fast sequential
processing of database records. By using PTB pointers in root segments, an
application program can sequentially process database records without IMS having
to refer to the HIDAM or PHIDAM index. For HIDAM databases, PTB pointers
improve performance when deleting a segment in a twin chain accessed by a
virtually paired logical relationship. Such twin-chain access occurs when a delete
from the logical access path causes DASD space to be released.

Eight bytes are needed for the PTF and PTB pointers in each segment occurrence
of a given segment type.

PTF and PTB pointers are specified by coding PTR=TB in the SEGM statement in
the DBD.
Related concepts:
“Physical twin forward pointers” on page 141

Figure 42. Physical twin forward and backward pointers

Chapter 13. Full-function database types 143

Mixing pointers
Because pointers are specified by segment type, the various types of pointers can
be mixed within a database record. However, only hierarchical or physical, but not
both, can be specified for a given segment type.

The types of pointers that can be specified for a segment type are:

HF Hierarchical forward

HF and HB
Hierarchical forward and backward

PCF Physical child first

PCF and PCL
Physical child first and last

PTF Physical twin forward

PTF and PTB
Physical twin forward and backward

The figure below shows a database record in which pointers have been mixed.
Note that, in some cases, for example, dependent segment B, many pointers exist
even though only one type of pointer is or can be specified. Also note that if a
segment is the last segment in a chain, its last pointer field is set to zero (the case
for segment E1, for instance). One exception is noted in the rules for mixing
pointers. The figure has a legend that explains what specification in the PTR= or
PARENT= operand causes a particular pointer to be generated.

The rules for mixing pointers are:
v If PTR=H is specified for a segment, no PCF pointers can exist from that

segment to its children. For a segment to have PCF pointers to its children, you
must specify PTR=T or TB for the segment.

v If PTR=H or PTR=HB is specified for the root segment, the first child will
determine if an H or HB pointer is used. All other children must be of the same
type.

v If PTR=H is specified for a segment other than the root, PTR=TB and PTR=HB
cannot be specified for any of its children. If PTR=HB is specified for a segment
other than the root, PTR=T and PTR=H cannot be specified for any of its
children.
That is, the child of a segment that uses hierarchical pointers must contain the
same number of pointers (twin or hierarchical) as the parent segment.

v If PTR=T or TB is specified for a segment whose immediate parent used PTR=H
or PTR=HB, the last segment in the chain of twins does not contain a zero.
Instead, it points to the first occurrence of the segment type to its right on the
same level in the hierarchy of the database record. This is true even if no twin
chain yet exists, just a single segment for which PTR=T or TB is specified
(dependent segment B and E2 in the figure illustrate this rule).

v If PTR=H or HB is specified for a segment whose immediate parent used PTR=T
or TB, the last segment in the chain of twins contains a zero (dependent segment
C2 in the figure illustrates this rule).

The following figure shows an example of mixing pointers in a database record.

144 Database Administration

Notes for Figure:

1. These pointers are generated when you specify PTR=H on the root segment.
2. If you specify PTR=H, usage is hierarchical (H); otherwise usage is twin (T).
3. These pointers are generated when you specify PTR=T on segment type C and

PARENT=SNGL on segment type D
4. These pointers are generated when you specify PTR=T on segment type C and

PARENT=DBLE on segment type E
5. These pointers are generated when you specify PTR=T on this segment type
Related concepts:
“Types of pointers you can specify” on page 136
Related tasks:
“Determining segment size” on page 530

Sequence of pointers in a segment's prefix
When a segment contains more than one type of pointer, pointers are put in the
segment's prefix in a specific sequence.

The pointers are put in the segment's prefix in the following sequence:
1. HF

Root A2Usage of the twin forward
pointer position

Segments pointed to

Notes below

PTR=T

PTR=T

PTR=T
Parent=DBLE

PTR=H
Parent=SNGL

PTR=H

PTR=H

PTR=H

PTR=T

H

F1

2

H

C2

PCF

E1

PCF

D1

PCL

E2

2 3 4 4

H

B2

2

H

F2

2

H

Dependent B2

G1

2

H

C1

2

T

0

Dependent H2

2

T PCF

H2 I1

2 5

H

0

2

H

D2

2

H

0

2

H

E2

2

HT

B1A2

11

PCFH

H10

52

H

0

2

Root A1

Dependent B1 Dependent G1

Dependent H1

Dependent F1Dependent C1

Dependent D1

Dependent I1

Dependent F2

Dependent E2Dependent D2

Dependent C2

Dependent E1

Figure 43. Mixing pointers

Chapter 13. Full-function database types 145

2. HB

Or:
1. PTF
2. PTB
3. PCF
4. PCL

General format of HD databases and use of special fields
The way in which an HD database is organized is not particularly complex, but
some of the special fields in the database used for things like managing space
make HD databases seem quite different from sequentially organized databases.

The databases referred to here are the HDAM or PHDAM and the HIDAM or
PHIDAM databases. HIDAM and PHIDAM each have an additional database, the
primary index database, for which you must allocate a data set. For HIDAM
databases, the primary index requires its own set of DBD statements. For PHIDAM
databases, the primary index does not require its own set of DBD statements. For
both, IMS™ maintains the index. This topic examines the index database when
dealing with the storage of HIDAM records. The following figure shows the
general format of an HD database and some of the special fields used in it.

HD databases use a single data set, that is either a VSAM ESDS or an OSAM data
set. The data set contains one or more CIs (VSAM ESDS) or blocks (OSAM).
Database records in the data set are in unblocked format. Logical record length is
the same as the block size when OSAM is used. When VSAM is used, logical
record length is slightly less than CI size. (VSAM requires some extra control
information in the CI.)

You can either specify logical record length yourself or have it done by the
Database Description Generation (DBDGEN) utility. The utility generates logical
record lengths equal to a quarter, third, half, or full track block.

All segments in HD Databases begin on a halfword boundary. If a segment's total
length is an odd number, the space used in an HD database will be one byte
longer than the segment. The extra byte is called a “slack byte”.

VSAM ESDS or OSAM

FSEAP Anchor point area Bitmap

FSEAP Anchor point area Segments FSE Free space

FSEAP Anchor point area Segments FSE Free spaceFSE Free space

FSEAP Anchor point area Segments FSE Free space Segments

Blocks
or Cls

Figure 44. Format of an HD database and special fields in it

146 Database Administration

Note that the database in the figure above contains areas of free space. This free
space could be the result of delete or replace operations done on segments in the
data set. Remember, space can be reused in HD databases. Or it could be free
space you set aside when loading the database. HD databases allow you to set
aside free space by specifying that periodic blocks or CIs be left free or by
specifying that a percentage of space in each block or CI be left free.

Examine the four fields illustrated in the above figure. Three of the fields are used
to manage space in the database. The remaining one, the anchor point area,
contains the addresses of root segments. The fields are:
v Bitmap
v Free space element anchor point
v Free space element
v Anchor point area
Related concepts:
“Physical twin forward pointers” on page 141
Related tasks:
“Step 5. Determine the amount of space needed for bitmaps” on page 536

Bitmaps
Bitmaps contain a string of bits. Each bit describes whether enough space is
available in a particular CI or block to hold an occurrence of the longest segment
defined in the data set group.

The first bit says whether the CI or block that the bitmap is in has free space. Each
consecutive bit says whether the next consecutive CI or block has free space. When
the bit value is one, it means the CI or block has enough space to store an
occurrence of the longest segment type you have defined in the data set group.
When the bit value is zero, not enough space is available.

The first bitmap in an OSAM data set is in the first block of the first extent of the
data set. In VSAM data sets, the second CI is used for the bitmap and the first CI
is reserved. The first bitmap in a data set contains n bits that describe space
availability in the next n-1 consecutive CIs or blocks in the data set. After the first
bitmap, another bitmap is stored at every nth CI or block to describe whether
space is available in the next group of CIs or blocks in the data set.

For a HALDB partition, the first bitmap block stores the partition ID (2 bytes) and
the reorganization number (2 bytes). These are stored before the FSEAP at the
beginning of the block.

An example bitmap is shown in the following figure.

Chapter 13. Full-function database types 147

Free space element anchor point (FSEAP)
Free space element anchor points (FSEAP) are made up of two 2-byte fields.

The first field contains the offset, in bytes, to the first free space element (FSE) in
the CI or block. FSEs describe areas of free space in a block or CI. The second field
identifies whether this block or CI contains a bitmap. If the block or CI does not
contain a bitmap, the field is zeros. One FSEAP exists at the beginning of every CI
or block in the data set. IMS automatically generates and maintains FSEAPs.

An FSEAP is shown in the following figure.

The FSEAP in the first bitmap block in an OSAM data set has a special use. It is
used to contain the DBRC usage indicator for the database. The DBRC usage
indicator is used at database open time for update processing to verify usage of
the correct DBRC RECON data set.

Free space element (FSE)
An FSE describes each area of free space in a CI or block that is 8 or more bytes in
length.

IMS automatically generates and maintains FSEs. FSEs occupy the first 8 bytes of
the area that is free space. FSEs consist of three fields:

Figure 45. Bitmap for HD databases

Figure 46. An FSEAP

148 Database Administration

v Free space chain pointer (CP) field. This field contains, in bytes, the offset from
the beginning of this CI or block to the next FSE in the CI or block. This field is
2 bytes long. The CP field is set to zero if this is the last FSE in the block or CI.

v Available length (AL) field. This field contains, in bytes, the length of the free
space identified by this FSE. The value in this field includes the length of the
FSE itself. The AL field is 2 bytes long.

v Task ID (ID) field. This field contains the task ID of the program that freed the
space identified by the FSE. The task ID allows a given program to free and
reuse the same space during a given scheduling without contending for that
space with other programs. The ID field is 4 bytes long.

An FSE is shown in the following figure.

Anchor point area
The anchor point area is made up of one or more 4-byte root anchor points (RAPs).

Each RAP contains the address of a root segment. For HDAM, you specify the
number of RAPs you need on the RMNAME parameter in the DBD statement. For
PHDAM, you specify the number of RAPs you need on the RMNAME parameter
in the DBD statement, or by using the HALDB Partition Definition utility, or on the
DBRC INIT.PART command. For HIDAM (but not PHIDAM), you specify whether
RAPs exist by specifying PTR=T or PTR=H for a root segment type. Only one RAP
per block or CI is generated. How RAPs are used in HDAM, PHDAM, and
HIDAM differs.

An anchor point area in an HDAM or PHDAM database is shown in the following
figure.

Figure 47. An FSE

Chapter 13. Full-function database types 149

Related concepts:
“How HDAM and PHDAM records are stored”
“How HIDAM and PHIDAM records are stored” on page 154

How HDAM and PHDAM records are stored
HDAM or PHDAM databases consist of two parts: a root addressable area and an
overflow area.

The root addressable area contains root segments and is the primary storage area
for dependent segments in a database record. The overflow area is for the storage
of segments that do not fit in the root addressable area. You specify the size of the
root addressable area in the relative block number (RBN) operand of the
RMNAME parameter in the DBD statement. For PHDAM, you can also use the
HALDB Partition Definition utility to specify the size of the root addressable area.
You also specify the maximum number of bytes of a database record to be stored
in the root addressable area by using the BYTES operand of the RMNAME
parameter in the DBD statement. For PHDAM databases, you can use the HALDB
Partition Definition utility to specify the maximum number of bytes in the root
addressable area.

The following figure shows example SKILL database records.

Anchor point area containing, in this case, two RAPs

4 4

RAP RAP

Bytes

Figure 48. An HDAM or PHDAM anchor point area

150 Database Administration

The following figure shows how these records are stored in a HDAM or HIDAM
database.

Figure 49. Two example SKILL records in an HD database

Chapter 13. Full-function database types 151

When the database is initially loaded, the root and each dependent segment are
put in the root addressable area until the next segment to be stored will cause the
total space used to exceed the amount of space you specified in the BYTES
operand. At this point, all remaining dependent segments in the database record
are stored in the overflow area.

In an HDAM or a PHDAM database, the order in which you load database records
does not matter. The user randomizing module determines where each root is
stored. However, as with all types of databases, when the database is loaded, all
dependents of a root must be loaded in hierarchical sequence following the root.

To store an HDAM or a PHDAM database record, the randomizing module takes
the root's key and, by hashing or some other arithmetic technique, computes an
RBN or CI number and a RAP number within the block or CI. The module gives
these numbers to IMS, and IMS determines where in the root addressable area to
store the root. The RBN or CI tells IMS in which CI or block (relative to the
beginning of the data set) the RAP will be stored. The RAP number tells which
RAP in the CI or block will contain the address of the root. During load, IMS
stores the root and as many of its dependent segments that will fit (based on the
bytes operand) in the root addressable area.

When the database is initially loaded, it puts the root and segments in the first
available space in the specified CI or block, if this is possible. IMS then puts the

Prefix Data

Segment

code

Delete

byte
HF pointer

VSAM ESDS or OSAM

Free space
Root
addressable
area

Overflow
area

RAP RAP SKILL3 NAME4 EDUC4 EDUC5 EDUC6 Free space

RAP RAP

RAP RAP SKILL1 NAME1 EXPR1 EDUC1 NAME2 Free space

EXPR2 EXPR4EXPR3 NAME3 EDUC2 EDUC3 Free space

Figure 50. HDAM or PHDAM database records in storage

152 Database Administration

4-byte address of the root in the RAP of the CI or block designated by the
randomizing module. RAPs only exist in the root addressable area. If space is not
available in the root addressable area for a root, it is put in the overflow area. The
root, however, is chained from a RAP in the root addressable area.
Related concepts:
“When not enough root storage room exists”
“Anchor point area” on page 149
“Inserting root segments into an HDAM or PHDAM database” on page 158

When not enough root storage room exists
If the CI or block specified by the randomizing module does not contain enough
room to store the root, IMS uses the HD space search algorithm to find space.

When insufficient space exists in the specified CI or block to store the root, the
algorithm finds the closest available space to the specified CI or block. When space
is found, the address of the root is still stored in the specified RAP in the original
block or CI generated by the randomizing module.

If the randomizing module generates the same relative block and RAP number for
more than one root, the RAP points to a single root and all additional roots with
the same relative block and RAP number are chained to each other using physical
twin pointers. Roots are always chained in ascending key sequence. If non-unique
keys exist, the ISRT rules of FIRST, LAST, and HERE determine the sequence in
which roots are chained. All roots chained like this from a single anchor point area
are called synonyms.

“How HDAM and PHDAM records are stored” on page 150 shows two HDAM or
PHDAM database records and how they appear in storage after initial load. In this
example, enough space exists in the specified block or CI to store the roots, and the
unique relative block and RAP numbers for each root generated by the
randomizing module. The bytes parameter specifies enough space for five
segments of the database record to fit in the root addressable area. All remaining
segments are put in the overflow area. When HDAM or PHDAM database records
are initially loaded, dependent segments that cannot fit in the root addressable area
are simply put in the first available space in the overflow area.

Note how segments in the database record are chained together. In this case,
hierarchical pointers are used instead of the combination of physical child/physical
twin pointers. Each segment points to the next segment in hierarchical sequence.
Also note that two RAPs were specified per CI or block and each of the roots
loaded is pointed to by a RAP. For simplicity, “How HDAM and PHDAM records
are stored” on page 150 does not show the various space management fields.

An HDAM or PHDAM segment in storage consists of a prefix followed by user
data. The first byte of the prefix is the segment code, which identifies the segment
type to IMS. This number can be from 1 to 255. The segment code is assigned to
the segment type by IMS in ascending sequence, starting with the root segment
and continuing through all dependents in hierarchical sequence. The second byte
of the prefix is the delete byte. The third field in the prefix contains the one or
more addresses of segments to which this segment is pointing. In this example,
hierarchical forward pointers are used. Therefore, the EXPR4 segment contains
only one address, the address of the NAME3 segment.
Related concepts:
“How the HD space search algorithm works” on page 163

Chapter 13. Full-function database types 153

“How HDAM and PHDAM records are stored” on page 150
Related reference:

ISRT call (Application Programming APIs)

How HIDAM and PHIDAM records are stored
A HIDAM database is actually composed of two databases. One database contains
the database records and the other database contains the HIDAM index. HIDAM
uses the index to get to a specific root segment rather than the root anchor points
that HDAM and PHDAM use.
Related concepts:
“Anchor point area” on page 149

How a HIDAM or PHIDAM database is loaded
Root segments in a HIDAM or PHIDAM database must have a unique key field,
because an index entry exists for each root segment based on the root's key.

When initially loading a HIDAM or a PHIDAM database, you should present all
root segments to the load program in ascending key sequence, with all dependents
of a root following in hierarchical sequence. The figure below shows how the two
Skills database records shown in Figure 49 on page 151 appear in storage after
initial load. Note that HIDAM and PHIDAM, unlike HDAM and PHDAM, have
no root addressable or overflow area, just a series of blocks or CIs.

Restriction: Load programs for PHIDAM databases must run in a DLI region type.
Load programs for HIDAM databases do not have this restriction.

When database records are initially loaded, they are simply loaded one after
another in the order in which they are presented to the load program. The space in
the following figure at the end of each block or CI is free space specified when the
database was loaded. In this example, 30% free space per block or CI was
specified.

154 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apr/ims_isrtcall.htm#ims_isrtcall

Note how segments in a database record are chained together. In this case,
hierarchical pointers were used instead of the combination of physical
child/physical twin pointers. Each segment points to the next segment in
hierarchical sequence. No RAPs exist in the figure above. Although HIDAM
databases can have RAPs, you probably do not need to use them.

In storage, a HIDAM or PHIDAM segment consists of a prefix followed by user
data. The first byte of the prefix is the segment code, which identifies the segment
type to IMS. This number can be from 1 to 255. The segment code is assigned to
the segment by IMS in ascending sequence, starting with the root segment and
continuing through all dependents in hierarchical sequence. The second byte of the
prefix is the delete byte. The third field in the prefix contains the one or more
addresses of segments to which this segment is pointing. In this example,
hierarchical forward pointers are used. The EDUC6 segment contains only one
address, the address of the root segment of the next database record (not shown
here) in the database.
Related concepts:
“Use of RAPs in a HIDAM database” on page 156

Creating an index segment
As each root is stored in a HIDAM or PHIDAM database, IMS creates an index
segment for the root and stores it in the index database or data set.

The index database consists of a VSAM KSDS. The KSDS contains an index
segment for each root in the database or HALDB partition. When initially loading
a HIDAM or PHIDAM database, IMS will insert a root segment with a key of all
X'FF's as the last root in the database or partition.

The format of an index segment is shown in the following figure.

VSAM ESDS or OSAM

SKILL1 NAME1 EXPR1 EDUC1 NAME2 Free space

EXPR2 EXPR3 EXPR4 NAME3 EDUC2 Free space

EDUC3 SKILL3 NAME4 EDUC4 EDUC5 Free space

EDUC6 Free space

Delete byteSegment code HF pointer

Prefix Data

Figure 51. HIDAM database records in storage

Chapter 13. Full-function database types 155

The prefix portion of the index segment contains the delete byte and the root's
address. The data portion of the index segment contains the key field of the root
being indexed. This key field identifies which root segment the index segment is
for and remains the reason why root segments in a HIDAM or PHIDAM database
must have unique sequence fields. Each index segment is a separate logical record.
The following figure shows the index database that IMS would generate when the
two database records in Figure 49 on page 151 were loaded.

Use of RAPs in a HIDAM database
RAPs are used differently in HIDAM databases than they are in HDAM or
PHDAM databases.

In HDAM or PHDAM, RAPs exist to point to root segments. When the
randomizing module generates roots with the same relative block and RAP
number (synonyms), the RAP points to one root and synonyms are chained
together off that root.

In HIDAM databases, RAPs are generated only if you specify PTR=T or PTR=H for
a root segment. When either of these is specified, one RAP is put at the beginning
of each CI or block, and root segments within the CI or block are chained from the
RAP in reverse order based on the time they were inserted. By this method, the

Figure 52. Format of an index segment

VSAM ESDS

VSAM KSDS

SKILL1 NAME1 EXPR1 EDUC1 NAME2 Free space

EXPR2 EXPR3 EXPR4 NAME3 EDUC2 Free space

EXPR3 SKILL3 NAME4 EDUC4 EDUC5 Free space

EDUC6

SKILL1 SKILL3Key Key

Free space

Figure 53. HIDAM or PHIDAM index databases

156 Database Administration

RAP points to the last root inserted into the block or CI, and the hierarchical or
twin forward pointer in the first root inserted into the block or CI is set to zero.
The hierarchical or twin forward pointer in each of the other root segments in the
block points to the previous root inserted in the block.

The figure below shows what happens if you specify PTR=T or PTR=H for root
segments in a HIDAM database. The figure uses the following abbreviations:

FSE Free space element

RAP Root anchor point

SC Segment code

DB Delete byte

TF Twin forward

H Hierarchical forward

Note that if you specify PTR=H for a HIDAM root, you get an additional
hierarchical pointer to the first dependent in the hierarchy. In the preceding figure,
a “1” indicates where this additional hierarchical pointer would appear.

The implication of using PTR=T or PTR=H is that the pointer from one root to the
next cannot be used to process roots sequentially. Instead, the HIDAM index must
be used for all sequential root processing, and this increases access time. Specify
PTR=TB or PTR=HB for root segments in a HIDAM database. Then no RAP is
generated, and GN calls against root segments proceed along the normal physical
twin forward chain. If no pointers are specified for HIDAM root segments, the
default is PTR=T.
Related concepts:
“How a HIDAM or PHIDAM database is loaded” on page 154
“Physical twin forward pointers” on page 141

Accessing segments
The way in which a segment in an HD database is accessed depends on whether
the DL/I call for the segment is qualified or unqualified.

Qualified calls
When a call is issued for a root segment and the call is qualified on the root
segment's key, the way in which the database record containing the segment is
found depends on whether the database is HDAM, PHDAM, HIDAM, or
PHIDAM.

Pointed in from second root segment inserted

Root
segment

Root
segment

Last root segment inserted in
block or CI

First root segment inserted in
block or CI

1 1

POINTER=0 POINTER=0

FSE RAP SC DB TF or H Data SC DB TF or H Data

Figure 54. Specifying PTR=T or PTR=H for root segments in a HIDAM database

Chapter 13. Full-function database types 157

In an HDAM or a PHDAM database, the randomizing module generates the root
segment's (and therefore the database record's) location. In a HIDAM or a
PHIDAM database, the HIDAM or PHIDAM index is searched until the index
segment containing the root's key is found.

Once the root segment is found, if the qualified call is for a dependent segment,
IMS searches for the dependent by following the pointers in each dependent
segment's prefix. The exact way in which the search proceeds depends on the type
of pointers you are using. The following figure shows how a dependent segment is
found when PCF and PTF pointers are used.

Unqualified calls
When an unqualified call is issued for a segment, the way in which the search
proceeds depends several different factors.

The factors include:
v Whether the database is HDAM, PHDAM, HIDAM, or PHIDAM
v Whether a root or dependent segment is being accessed
v Where position in the database is currently established
v What type of pointers are being used
v Where parentage is set (if the call is a GNP)

Because of the many variables, it is not practical to generalize on how a segment is
accessed.

Inserting root segments
The way in which a root segment is inserted into an HD database depends on
whether the database is HDAM, PHDAM, HIDAM, or PHIDAM.

For PHDAM or PHIDAM databases, partition selection is first performed based on
the key of the root segment.

Inserting root segments into an HDAM or PHDAM database
After initial load, root segments are inserted into an HDAM or PHDAM database
in exactly the same way they are inserted during initial load.
Related concepts:
“How HDAM and PHDAM records are stored” on page 150

A1

B2

B1

C3

C2

C1

PCFPCF

PTF

PTF

PTF

Figure 55. How dependent segments are found using PCF and PTF pointers

158 Database Administration

Inserting root segments into a HIDAM or PHIDAM database
Root segments are inserted into HIDAM and PHIDAM databases in ascending root
sequence.

After initial load, root segments are inserted into a HIDAM or PHIDAM database
as follows:
1. The HIDAM or PHIDAM index is searched for an index segment with a root

key greater than the key of the root to be inserted.
2. The new index segment is inserted in ascending root sequence.
3. Once the index segment is created, the root segment is stored in the database at

the location specified by the HD space search algorithm.

The following figure shows the insertion of a root segment, SKILL2, into the
database first shown in Figure 53 on page 156.

Related concepts:
“How the HD space search algorithm works” on page 163

Updating the space management fields when a root segment is
inserted
When a root segment is inserted into an HD database, the space management
fields need to be updated.

The following figure illustrates this process. The figure makes several assumptions
so real values could be put in the space management fields. These assumptions
are:
v The database is HDAM or PHDAM (and therefore has a root addressable area).

Figure 56. Inserting a root segment into a HIDAM or PHIDAM database

Chapter 13. Full-function database types 159

v VSAM is the access method; therefore there are CIs (not blocks) in the database.
Because VSAM is used, each logical record has 7 bytes of control information.

v Logical records are 512 bytes long.
v One RAP exists in each CI.
v The root segment to be inserted (SKILL1) is 32 bytes long.

The “before” picture shows the CI containing the bitmap (in VSAM, the bitmap is
always in the second CI in the database). The second bit in the bitmap is set to 1,
which says there is free space in the next CI. In the next CI (CI #3):
v The FSEAP says there is an FSE (which describes an area of free space) 8 bytes

from the beginning of this CI.
v The anchor point area (which has one RAP in this case) contains zeros because

no root segments are currently stored in this CI.
v The FSE AL field says there is 497 bytes of free space available starting at the

beginning of this FSE.

The SKILL1 root segment to be inserted is only 32 bytes long; therefore CI #3 has
plenty of space to store SKILL1.

The “after” picture shows how the space management fields in CI #3 are updated
when SKILL1 is inserted.
v The FSEAP now says there is an FSE 40 bytes from the beginning of this CI.
v The RAP points to SKILL1. The pointer value in the RAP is derived using the

following formula:
Pointer value = (CI size)*(CI number - 1) + Offset within the CI to the root segment

In this case, the pointer value is 1032 (pointer value = 512 x 2 + 8).
v The FSE has been “moved” to the beginning of the remaining area of free space.

The FSE AL field says there is 465 bytes (497 - 32) of free space available,
starting at the beginning of this FSE.

160 Database Administration

Related concepts:
“Deleting segments” on page 162
“Inserting dependent segments”

Inserting dependent segments
After initial load, dependent segments are inserted into HD databases using the
HD space search algorithm.

As with the insertion of root segments into an HD database, the various space
management fields in the database need to be updated.
Related concepts:

Figure 57. Updating the space management fields in an HDAM or PHDAM database

Chapter 13. Full-function database types 161

“How the HD space search algorithm works” on page 163
“Updating the space management fields when a root segment is inserted” on page
159

Deleting segments
When a segment is deleted in an HD database, it is physically removed from the
database. The space it occupied can be reused when new segments are inserted.

As with the insertion of segments into an HD database, the various space
management fields need to be updated.
v The bitmap needs to be updated if the block or CI from which the segment is

deleted now contains enough space for a segment to be inserted. (Remember, the
bitmap says whether enough space exists in the block or CI to hold a segment of
the longest type defined. Thus, if the deleted segment did not free up enough
space for the longest segment type defined, the bitmap is not changed.)

v The FSEAP needs to be updated to show where the first FSE in the block or CI
is now located.

v When a segment is deleted, a new FSE might be created or the AL field value in
the FSE that immediately precedes the deleted segment might need to be
updated.

v If the deleted segment is a root segment in an HDAM or a PHDAM database,
the value in its PTF pointer is put in the RAP or in the PTF pointer that pointed
to it. This maintains the chain off the RAP and removes the deleted segment
from the chain.

If a deleted segment is next to an already available area of space, the two areas are
combined into one unless they are created by an online task that has not yet
reached a sync point.
Related concepts:
“Updating the space management fields when a root segment is inserted” on page
159

Replacing segments
Replacing segments in HD databases is straightforward as long as fixed-length
segments are used.

The segment data, once changed, is simply returned to its original location in
storage. The key field in a segment cannot be replaced.

Provided sufficient adjacent space is available, the segment data is returned to its
original location when a variable-length segment is replaced with a longer
segment. If adjacent space is unavailable, space is obtained from the overflow area
for the lengthened data portion of the segment. This segment is referred to as a
“separated data segment.” It has a 2-byte prefix consisting of a 1-byte segment
code and a 1-byte delete flag, followed by the segment data. The delete byte of the
separated data segment is set to X'FF', indicating that this is a separated data
segment. A pointer is built immediately following the original segment to point to
the separated data. Bit 4 of the delete byte of the original segment is set ON to
indicate that the data for this segment is separated. The unused remaining space in
the original segment is available for reuse.

162 Database Administration

How the HD space search algorithm works
The general rule for inserting a segment into an HD database is to store the
segment (whether root or dependent) in the most desirable block or CI.
Related concepts:
“When not enough root storage room exists” on page 153
“Inserting dependent segments” on page 161
“Inserting root segments into a HIDAM or PHIDAM database” on page 159
Related tasks:
“Specifying free space (HDAM, PHDAM, HIDAM, and PHIDAM only)” on page
429

Root segment
The most desirable block depends on the access method.

For HDAM or PHDAM roots, the most desirable block is the one containing either
the RAP or root segment that will point to the root being inserted. For HIDAM or
PHIDAM roots, if the root does not have a twin backward pointer, the most
desirable block is the one containing the root with the next higher key. If the root
has a twin backward pointer, the most desirable block is the root with the next
lower key.

Dependent segment
The most desirable block is the one containing the segment that points to the
inserted segment.

If both physical child and physical twin pointers are used, the most desirable block
is the one containing either the parent or the immediately-preceding twin. If
hierarchical pointers are used, the most desirable block is the one containing the
immediately-preceding segment in the hierarchy.

Second-most desirable block
When it is not possible to store one or more segments in the most desirable block
because, for example, space is not available, the HD space search algorithm
searches for the second-most desirable block or CI.

This search is done only if the block is in the buffer pool or contains free space
according to the bitmap. The second-most desirable block or CI is a block or CI
that was left free when the database was loaded or reorganized.

You can specify that every nth block or CI be left free. If you do not specify that
every nth block or CI be left free, the HD space search algorithm does not search
for the second-most desirable block or CI.

For HDAM or HIDAM databases, you can enter your free space specifications by
using the FRSPC= keyword in the DATASET macro of the DBDGEN utility.

For PHDAM or PHIDAM databases, you can enter your free space specifications
for each partition separately in the DBRC RECON data set by using either the
HALDB Partition Definition utility or the FBFF(value) and FSPF(value) parameters
of the DBRC batch commands INIT.PART or CHANGE.PART.

All search ranges defined in the HD space search algorithm, excluding steps 9 and
10, are limited to the physical extent that includes the most desirable block. When

Chapter 13. Full-function database types 163

the most desirable block is in the overflow area, the search ranges, excluding steps
9 and 10, are restricted to the overflow area.

The steps in the HD space search algorithm follow. They are arranged in the
sequence in which they are performed. The first time any one of the steps in the
list results in available space, the search is ended and the segment is stored.

The HD space search algorithm looks for space in the following order:
1. In the most desirable block (this block or CI is in the buffer pool).
2. In the second-most desirable block or CI.
3. In any block or CI in the buffer pool on the same cylinder.
4. In any block or CI on the same track, as determined by consulting the bitmap.

(The bitmap says whether space is available for the longest segment type
defined.)

5. In any block or CI on the same cylinder, as determined by consulting the
bitmap.

6. In any block or CI in the buffer pool within plus or minus n cylinders. Specify
n in the SCAN= keyword in the DATASET statement in the DBD.
For HALDB databases, the value of the SCAN= keyword is always 0.

7. In any block or CI plus or minus n cylinders, as determined by consulting the
bitmap.

8. In any block or CI in the buffer pool at the end of the data set.
9. In any block or CI at the end of the data set, as determined by consulting the

bitmap. The data sets will be extended as far as possible before going to the
next step.

10. In any block or CI in the data set where space exists, as determined by
consulting the bitmap. (This step is not used when a HIDAM or PHIDAM
database is loaded.)

Some of the above steps are skipped in load mode processing.

If the dependent segment being inserted is at the highest level in a secondary data
set group, the place and the way in which space is found differ:
v First, if the segment has no twins, steps 1 through 8 in the HD space search

algorithm are skipped.
v Second, if the segment has a twin that precedes it in the twin chain, the most

desirable block is the one containing that twin.
v Third, if the segment has only twins that follow it in the twin chain, the most

desirable block is the one containing the twin to which the new segment is
chained.

Locking protocols
IMS uses locks to isolate the database changes made by concurrently executing
programs.

Locking is accomplished by using either the Program Isolation (PI) lock manager
or the IRLM. The PI lock manager provides only four locking levels and the IRLM
supports eleven lock states.

The IRLM also provides support for “feedback only” and “test” locking required,
and it supplies feedback on lock requests compatible with feedback supplied by
the PI lock manager.

164 Database Administration

Locking to provide program isolation
For all database organizations, the basic item locked is the database record.

The database record is locked when position is first obtained in it. The item locked
is the root segment, or for HDAM or PHDAM, the anchor point. Therefore, for
HDAM or PHDAM, all database records chained from the anchor are locked. The
processing option of the PCB determines whether or not two programs can
concurrently access the same database record. If the processing option permits
updates, then no other program can concurrently access the database record. The
database record is locked until position is changed to a different database record or
until the program reaches a commit point.

When a program updates a segment with an INSERT, DELETE, or REPLACE call,
the segment, not the database record, is locked. On an INSERT or DELETE call, at
least one other segment is altered and locked.

Because data is always accessed hierarchically, when a lock on a root (or anchor) is
obtained, IMS determines if any programs hold locks on dependent segments. If no
program holds locks on dependent segments, it is not necessary to lock dependent
segments when they are accessed.

The following locking protocol allows IMS to make this determination. If a root
segment is updated, the root lock is held at update level until commit. If a
dependent segment is updated, it is locked at update level. When exiting the
database record, the root segment is demoted to read level. When a program enters
the database record and obtains the lock at either read or update level, the lock
manager provides feedback indicating whether or not another program has the
lock at read level. This determines if dependent segments will be locked when they
are accessed. For HISAM, the primary logical record is treated as the root, and the
overflow logical records are treated as dependent segments.

These lock protocols apply when the PI lock manager is used; however, if the
IRLM is used, no lock is obtained when a dependent segment is updated. Instead,
the root lock is held at single update level when exiting the database record.
Therefore, no additional locks are required if a dependent segment is inserted,
deleted, or replaced.
Related concepts:
“Deleting segments” on page 126

Locking for Q command codes
When a Q command code is issued for a root or dependent segment, a Q
command code lock at share level is obtained for the segment. This lock is not
released until a DEQ call with the same class is issued, or until commit time.

If a root segment is returned in hold status, the root lock obtained when entering
the database record prevents another user with update capability from entering the
database record. If a dependent segment is returned in hold status, a Q command
code test lock is required. An indicator is turned on whenever a Q command code
lock is issued for a database. This indicator is reset whenever the only application
scheduled against the database ends. If the indicator is not set, then no Q
command code locks are outstanding and no test lock is required to return a
dependent segment in hold status.

Chapter 13. Full-function database types 165

Resource locking considerations with block level sharing
Resource locking can occur either locally in a non-sysplex environment or globally
in a sysplex environment.

In a non-sysplex environment, local locks can be granted in one of three ways:
v Immediately because of one of the following reasons:

IMS was able to get the required IRLM locks, and there is no other interest
on this resource.
The request is compatible with other holders or waiters.

v Asynchronously because the request could not get the required IRLM latches
and was suspended. (This can also occur in a sysplex environment.) The lock is
granted when latches become available and one of three conditions exist:

No other holders exist.
The request is compatible with other holders or waiters.
The request is not compatible with the holders or waiters and was granted
after their interest was released. (This could also occur in a sysplex
environment.)

In a sysplex environment, global locks can be granted in one of three ways:
v Locally by the IRLM because of one of the following reasons:

There is no other interest for this resource.
This IRLM has the only interest, this request is compatible with the holders
or waiters on this system, and XES already knows about the resource.

v Synchronously on the XES CALL because of one of the following reasons:
XES shows no other interest for this resource.
XES shows only SHARE interest for the hash class.

v Asynchronously on the XES CALL because of one of three conditions:
Either XES shows EXCLUSIVE interest on the hash class by an IRLM, but the
resource names do not match (FALSE CONTENTION by RMF™).
Or XES shows EXCLUSIVE interest on the hash class by an IRLM and the
resource names match, but the IRLM CONTENTION EXIT grants it anyway
because the STATES are compatible (IRLM FALSE CONTENTION).
Or the request is incompatible with the other HOLDERs and is granted by
the CONTENTION Exit after their interest is released (IRLM REAL
CONTENTION).

Data sharing impact on locking
When you use block-level data sharing, the IRLM must obtain the concurrence of
the sharing system before granting global locks.

Root locks are global locks, and dependent segment locks are not. When you use
block-level data sharing, locks prevent the sharing systems from concurrently
updating the same buffer. The buffer is locked before making the update, and the
lock is held until after the buffer is written during commit processing. No buffer
locks are obtained when a buffer is read.

If a Q command code is issued on any segment, the buffer is locked. This prevents
the sharing system from updating the buffer until the Q command code lock is
released.

166 Database Administration

Locking in HDAM, PHDAM, HIDAM, and PHIDAM databases
If you access a HIDAM or PHIDAM root through the index, a lock is obtained on
the index, using the RBA of the root segment as the resource name. Consequently,
a single lock request locks both the index and the root.

When NOTWIN pointers are specified on a PHIDAM root, a lock on the next
higher non-deleted root is required to provide data integrity. IMS obtains the
additional lock by reading the index until a non-deleted index entry is found and
then locking the RBA of the root segment as the resource name.

When you access an HDAM or a PHDAM database, the anchor of the desired root
segment is locked as long as position exists on any root chained from that anchor.
Therefore, if an update PCB has position on an HDAM or PHDAM root, no other
user can access that anchor. When a segment has been updated and the IRLM is
used, no other user can access the anchor until the user that is updating commits.
If the PI lock manager is used and an uncommitted unit of work holds the anchor,
locks are needed to access all root and dependent segments chained from the
anchor until the user that is updating commits.

Locking for secondary indexes
When a secondary index is inserted, deleted or replaced, it is locked with a root
segment lock.

When the secondary index is used to access the target of the secondary index,
depending on what the index points to, it might be necessary to lock the secondary
index.

Backup and recovery of HIDAM and PHIDAM primary indexes
The backup and recovery of HD primary indexes differs depending on whether the
database is a HIDAM or a PHIDAM database.

You back up and recover HIDAM primary indexes in the same way as you do
most other database data sets: by using image copies and database change records
from the logs. Create image copies of the primary index data sets as often as you
create image copies of the database data sets of the indexed HIDAM database.
During recovery, after you restore the primary index from image copies, you apply
the database change records from the logs by using the Database Recovery utility
(DFSURDB0). If you do not create image copies of the primary index, your only
recovery alternative is to rebuild the HIDAM primary index by using a separately
priced index builder tool, such as the IBM IMS Index Builder for z/OS.

You do not back up or recover PHIDAM primary indexes. PHIDAM primary
indexes are rebuilt after the recovery of the indexed database data sets by using
the HALDB Index/ILDS Rebuild utility (DFSPREC0).
Related concepts:
Chapter 26, “Database backup and recovery,” on page 559
Related reference:

Backup utilities (Database Utilities)

Recovery utilities (Database Utilities)

Chapter 13. Full-function database types 167

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dur03.htm#ims_dur-gen2
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dur04.htm#ims_dur-gen3

Partitions in PHDAM, PHIDAM, and PSINDEX databases
You can view a HALDB database, whether it is a PHDAM, PHIDAM, or a
PSINDEX database, as a single database whose records are divided into
manageable sections called partitions.

A partition is a subset of a HALDB database. The maximum size of a partition
depends on the maximum number of data sets per partition and the maximum
size of the data sets.

In many cases, each partition can be administered independently from the other
partitions in the database. The division of records across partitions in a HALDB
database is transparent to application programs, unless you choose to process
partitions selectively.

HALDB partitions include unique features that allow IMS to manage them and
that make them easier for you to use, as well. The HALDB partition structure also
offers unique functions that are unavailable with non-partitioned databases, such
as selective partition processing.

HALDB partition names and numbers
Each HALDB partition has a name, an ID number, a change version number, and a
reorganization number. You define the partition name and IMS assigns and
manages the numbers.

The partition ID numbers, change version numbers, and reorganization numbers
are critical to the management of HALDB partitions by IMS and to the integrity of
the data that the partitions contain.

In addition to being stored in each partition record in the RECON data set, these
numbers are also stored in the HALDB master database record. IMS uses the
numbers in the HALDB master database record to help manage the partitions and
to access the data that the partitions contain.

If you delete a HALDB master database record, the partition numbers it contains
are lost and the partitions associated with the deleted HALDB master database
record can no longer be accessed. The partition numbers cannot be reproduced by
redefining the HALDB master database record.

Deleting a HALDB master database record can also result in the loss of access to
data in logically related HALDB databases, because the extended pointer set (EPS)
of the logically related segments becomes invalid when the partition ID and
reorganization number of the target segments are lost.

For these reasons, never delete a HALDB master database record from the RECON
data set unless you are permanently deleting the HALDB database and all of its
data, as well as all references to the HALDB database being deleted that are in any
logically related or secondary index databases.
Related concepts:
“Partition definition control blocks and partition definitions in the RECON data
set” on page 771

HALDB partition names
The HALDB partition name is a unique, 7-character alphanumeric identifier that
you define and control.

168 Database Administration

|
|
|

Unless you delete the HALDB master database or the partition, the partition name
does not change. The partition name does not necessarily correspond to the records
that the partition contains.

Tip: If you want the partition names in a HALDB database to reflect the record
keys that each partition contains, and if you want to keep the partition names in
sequence over the life of the database, assign names to your partitions that provide
room for new partitions to be added to the database without breaking the naming
sequence.

For example, you could define the following partition names: ABC100, ABC200,
ABC300, ABC400, ABC500, and so forth, to conform to the key range sequence of
the records they contain. If partition ABC300 later becomes too large and you need
to split its records by adding a new partition, you can name the new partition
ABC250 without breaking the naming sequence.

You can specify a partition name instead of a master database name in many
commands to restrict the command to the specified partition.

HALDB partition ID numbers
IMS assigns a partition ID number to each new partition when you define the
partition.

IMS generates each new partition ID number by incrementing by one the last
partition ID number assigned. Because you do not have control over the partition
ID numbers, you cannot assume that the partition IDs in a database will stay in
order.

For example, if you defined the partitions ABC100, ABC200, ABC300 in order,
partition ABC100 would have partition ID number 1 and partition ABC300 would
have partition ID number 3. Later, if you define a new partition ABC250, IMS
assigns to it partition ID number 4.

HALDB change version numbers
IMS assigns a change version number to each partition and to the HALDB master
database.

IMS uses the change version number to ensure that internal partition definition
control blocks match the HALDB definitions that are stored in the RECON data
set.

You do not have control over the change version numbers, although they are
displayed in some reports that are generated by the DBRC LIST command. Every
time you change the definitions of a HALDB partition, DBRC increments the
change version numbers that are stored in the RECON data set for both the
partition and the HALDB master database. When IMS detects that DBRC has
incremented the number, IMS updates the control blocks of the HALDB database
to reflect the new changes.

HALDB partition reorganization numbers
IMS assigns and maintains a reorganization number for each partition to ensure the
integrity of data across database reorganizations.

IMS also uses the reorganization number in the HALDB self-healing pointer
process after reorganizations of HALDB partitions that use either logical
relationships or secondary indexes.

Chapter 13. Full-function database types 169

The reorganization number is stored in the following places in each partition:
v In the first block of the first database data set in each partition
v In the indirect list key (ILK) included in every segment in the partition
v In the extended pointer set (EPS) of each secondary index entry and each logical

child segment
v In each indirect list entry (ILE) in the ILDS for each secondary index target

segment and each logical parent segment

Attention: If the reorganization number of a partition becomes corrupted, future
reorganizations or modifications of the partitions in the HALDB database might
produce duplicate segment ILKs and data will be lost.

Reorganization numbers can become corrupt if the HALDB reorganization number
verification function is not enabled and either a reorganization fails to increment
the reorganization number of a partition correctly or a segment that has a low
reorganization number in its EPS is moved into a partition and lowers the
reorganization number of the destination partition.

A corrupt reorganization number is difficult to detect. If you do not use logical
relationships or secondary indexes, a corrupt reorganization number does not
cause any immediate problems. However, if you later add either logical
relationships or secondary indexes to a HALDB database that has a corrupt
reorganization number, you are likely to lose data.

To ensure the consistency of partition reorganization numbers, enable the HALDB
reorganization number verification function. The HALDB reorganization number
verification function records the reorganization number of each partition in the
RECON data set and ensures that reorganization numbers are always incremented
properly. When enabled, the HALDB reorganization number verification function
applies to all HALDB databases that are recorded in the RECON data set.

To enable the HALDB reorganization number verification function:
v Issue either of the DBRC commands INIT.RECON REORGV or CHANGE.RECON REORGV

or either of the type-1 commands /RMINIT DBRC=’RECON REORGV’ or /RMCHANGE
DBRC=’RECON REORGV’.

v Run a program that updates at least one record in each partition in each HALDB
database that is registered in the RECON data set.

When you enable the HALDB reorganization number verification function, the
reorganization numbers for all HALDB partitions in the RECON data set are reset
to zero. Accessing a record in each partition updates the RECON data set with the
current reorganization number that is stored in each partition.
Related concepts:
“Record distribution and high key partitioning” on page 769
“The HALDB self-healing pointer process” on page 664

Initializing and maintaining the RECON data sets (System Administration)
Related tasks:
“Changing the high key of a partition” on page 775
Related reference:

/RMxxxxxx commands (Commands)

DBRC commands (Commands)

170 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/dbrc_admin/ims_recon_int_maint.htm#ims_recon_int_maint
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_rmxxxxx.htm#ims_cr2rmxxxxx
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_dbrccmds.htm#ims_cr3_gen3

HALDB partition initialization
After you define a partition and allocate its data sets, you must initialize the
partition.

The initialization process makes a partition usable, but does not place any database
segments in the partition. After the initialization process, a partition is empty.

To initialize HALDB partitions, you can use either the HALDB Partition Data Set
Initialization utility (DFSUPNT0) or the Database Prereorganization utility
(DFSURPR0).

Partition initialization writes the partition ID number and the initial reorganization
number in PHDAM and PHIDAM partitions. The initial reorganization number is
set to one, unless HALDB reorganization number verification is enabled, in which
case the reorganization number is incremented by one from the existing
reorganization number that is stored in the RECON data set.

The partition ID number and the reorganization numbers are written in the first 4
bytes of the first block of the first data set. This first block is called the bitmap block.

For PHDAM partitions, partition initialization writes and deletes a dummy record.

For PHIDAM partitions, partition initialization writes a high key record of all
X'FF's in each partition.

For PSINDEX partitions, partition initialization writes and deletes a dummy
record, which makes the high-used-RBA non-zero.

HALDB partition data sets
HALDB databases, regardless of type, can contain 1 to 1 001 partitions; however,
the number of data sets per partition depends on the type of HALDB database and
whether or not the integrated HALDB Online Reorganization function is used.

HALDB partitions contain the following types of data sets:

Database data sets
The database data sets contain the segment data for PHDAM and
PHIDAM databases. Database data sets can be OSAM or VSAM entry
sequenced data sets (ESDS).

Index data sets
Index data sets can be a primary index in a PHIDAM database or a
secondary index data set in a PSINDEX partition. Index data sets are
VSAM key sequenced data sets (KSDS).

Indirect list data set (ILDS)
ILDSs contain indirect list entries (ILE) that are used to manage pointers
when logical relationships and PSINDEXes are used. ILDSs are VSAM
KSDSs.

Number of data sets in a HALDB partition
The minimum and maximum number of data sets a HALDB partition can contain
depends on the type of HALDB database and whether or not you use the
integrated HALDB Online Reorganization function.

For the integrated HALDB Online Reorganization function, IMS creates an
additional data set for each database data set and PHIDAM primary index data set

Chapter 13. Full-function database types 171

in the partition being reorganized. The additional data sets are used by the
reorganization process and might or might not be active, or even present,
depending on whether an online reorganization is currently in progress and, if a
reorganization is not in progress, whether the inactive data sets were deleted after
the last online reorganization completed.

The following table lists the minimum and maximum number of data sets a
HALDB partition can contain.

Table 49. Minimum and maximum number of data sets for each HALDB partitions

HALDB
type Minimum number of data sets Maximum number of data sets

PHDAM Two or three: an OSAM or VSAM ESDS
for the database data set, a KSDS for the
ILDS, and, if the integrated HALDB
Online Reorganization function is used,
a second OSAM or VSAM ESDS.

Eleven or twenty one: ten OSAM or
VSAM ESDSs for the database data
sets, one KSDS for the ILDS, and, if
the integrated HALDB Online
Reorganization function is used, ten
additional OSAM or VSAM ESDSs.

PHIDAM Three or five: an OSAM or VSAM ESDS
for the database data sets, a KSDS for
the ILDS, a KSDS for the primary index,
and, if the integrated HALDB Online
Reorganization function is used, a
second OSAM or VSAM ESDS and a
second KSDS for the primary index.

Twelve or twenty three: ten OSAM or
VSAM ESDSs for the database data
sets, one KSDS for the ILDS, one
KSDS for the primary index, and, if
the integrated HALDB Online
Reorganization function is used, ten
additional OSAM or VSAM ESDSs
and a second KSDS for the primary
index.

PSINDEX One: a KSDS One: a KSDS

Indirect list data sets and HALDB partitions
Every HALDB PHDAM and PHIDAM partition that uses a secondary index or
logical relationships must have an indirect list data set (ILDS) allocated to it.

The HALDB self-healing pointer process uses the ILDS to update secondary index
pointers and logical relationship pointers after database reorganizations.

In a batch environment, even the partitions in a PHDAM or PHIDAM database
that do not use secondary indexes or logical relationships must have an ILDS
allocated.

In an online environment, IMS does not need to allocate an ILDS for partitions that
do not use a secondary index or logical relationships.

Like all data sets in HALDB databases, the maximum size of an ILDS is 4 GB.
Each ILE in an ILDS is 50 bytes. Consequently, an ILDS cannot support more that
85 000 000 logical parent segments or secondary index target segments in a single
partition. It is very unlikely that you might reach the ILE limit, but if you do, you
can split the single partition into two or more partitions.

When you convert a database to HALDB, reorganize the database data sets in a
partition, or perform a recovery of the database data sets in a partition, the ILDS is
updated or rebuilt to reflect the changes to the physical location of the target
segments of the ILEs in the ILDS. The IMS utilities that can update or rebuild the
ILDS are:
v The HD Reorganization Reload utility (DFSURGL0)

172 Database Administration

v The HALDB Index/ILDS Rebuild utility (DFSPREC0)

Both of these utilities provide options for rebuilding the ILDS by using either
VSAM update mode or VSAM load mode. VSAM load mode, which adds the free
space called for in the VSAM DEFINE statement that defines the ILDS, can
improve the performance of both the current execution of the utility and of
subsequent reorganizations and recoveries.

HALDB partition data sets and recovery
The recovery of HALDB databases is performed by recovering each partition. You
recover the database data sets in each partition the same way you recover the
database data sets in a non-HALDB database.

After the database data sets in the partition are recovered, you can then rebuild the
primary index, if it exists, and the ILDS. HALDB primary indexes and ILDSs are
not backed up or recovered.

To rebuild HALDB primary indexes and ILDSs, use the HALDB Index/ILDS
Rebuild utility, which provides options for building the ILDS by using either
VSAM update mode or VSAM load mode. VSAM load mode, which includes the
free space called for in the VSAM KSDS DD statement that defines the ILDS, can
improve the performance of both the current execution of the utility and of
subsequent reorganizations and recoveries.
Related concepts:
Chapter 26, “Database backup and recovery,” on page 559

HALDB partition selection
IMS must select the correct HALDB partition whenever it accesses a database
record. The selection process is called partition selection.

Partition selection determines the partitions in which the root segments are placed
and the order in which partitions are processed.

IMS performs partition selection by using either key range partitioning, which is
based on the high root keys of the partitions, or by using a partition selection exit
routine, which uses selection criteria that you define.

IMS assigns database records to partitions based on the key of the root segment.

For batch, BMP, and JBP programs, a PCB can be restricted to access one or more
partitions.
Related concepts:
“HDAM, PHDAM, HIDAM, and PHIDAM databases” on page 132

Partition selection using high keys
If you use high-key partitioning, high keys define the partition boundaries and
determine how the records are distributed across your partitions.

IMS performs partition selection based on the high key that is defined for each
partition. The high key of a partition also defines the range of keys that the
partition contains. IMS assigns a root segment to the partition with the lowest high
key that is greater than or equal to the key of the root segment. For example,
suppose that there are three partitions with high keys of 1000, 2000, and 3000. Root
segment keys of 1001 through 2000 are in the partition with a high key of 2000.

Chapter 13. Full-function database types 173

The high keys of the partitions also define the order of the partitions within the
HALDB database.

High-key partitioning is the simpler method to implement because you do not
have to write an exit routine. You only need to assign a high key to each partition.

In PHIDAM and PSINDEX databases that use high-key partitioning, the records
are in key sequence across the entire database, just as they are in HIDAM and
non-HALDB secondary index databases. In PHIDAM or PSINDEX databases that
use a partition selection exit routine, records are in key sequence within a partition,
but not necessarily across partitions, which makes these databases inconsistent
with HIDAM and non-HALDB secondary index databases. Application programs
that require database records to be in key sequence across partitions do not work
correctly when a partition selection exit routine is used.

Recommendation: When you use high-key partitioning, specify a high key value
of all X'FF's for the partition that has the highest high key in the database. A high
key value of all X'FF's ensures that all keys can be assigned to a partition. If the
last partition (the partition with the highest key specified) has a key value other
than all X'FF's, any attempt to access or insert a database record with a key higher
than the high key specified results in an FM status code for the call. Application
programs written for non-HALDB databases are unlikely to be able to process the
FM status code.

Partition selection using a partition selection exit routine
If you need to select partitions by some criteria other than their high keys, you can
use a partition selection exit routine.

IMS provides a sample HALDB Partition Selection exit routine (DFSPSE00), which
assigns records to partitions based on the key of the root segment. The exit routine
also determines the order in which sequential processing accesses the partitions.
You can also write your own partition selection exit routine.

For a PHIDAM database, a partition selection exit routine can distribute the
records in a key sequence within a partition that is out of sequence with the key
sequences of the other partitions in the database. For example, a partition selection
exit routine that uses the rightmost portion of a key to select the partition can
conform to the characteristics of a HDAM database on data retrieval calls. Partition
PARTA might include records in the following sequence: A001, B001, C001, D001.
Partition PARTB might include records in this sequence: A010, B010, C010, D010.
As in a HDAM database, a sequential retrieval call to find a segment with a key of
C010 fails if partition PARTA is selected.

You can also use a partition selection exit routine to isolate certain database records
by their characteristics. For example, if the sizes of most records in a PHDAM
database are fairly uniform, except for a few records that are very large, the
unusually large records can cause space usage problems within partitions. If the
keys of the large records are known, an exit routine could recognize their keys and
place them in a partition with different space characteristics. The partition might
have many fewer records spread across the same amount of space or have its own
specialized randomization routine.

The IBM IMS HALDB Conversion and Maintenance Aid for z/OS includes the
IHCPSEL0 exit routine, which can perform this type of partition selection. If you

174 Database Administration

use the IHCPSEL0 exit routine, you do not need to write an exit routine. You need
only to specify the part of the key that is to be used and the values for each
partition.

You can find more information about the IBM IMS HALDB Conversion and
Maintenance Aid for z/OS on the IBM DB2 and IMS Tools website at
www.ibm.com/software/data/db2imstools.

How application programs process HALDB partitioned
databases

Unless their processing is restricted, application programs process the data in
partitioned HALDB databases in the same way that they process non-partitioned
full-function databases, without regard to the partitions in which the data is stored.

Application programs that process data sequentially proceed across the partitions
in a HALDB database in partition selection order. Application programs that
process data randomly access the partitions in a HALDB database randomly as
well. Application programs and the PCBs they use to access HALDB databases are
not required to account for the partitions in the HALDB database that they access.

Note: The BMP application can have an unlimited number of databases and
HALDB partitions without committing the changes.

HALDB selective partition processing
You can restrict BMP, JBP, and batch application programs to a single HALDB
partition or a subset of HALDB partitions.

Restricting an application program to a subset of partitions allows multiple
instances of the application program to process HALDB partitions in parallel,
independently from the other application programs. The independent processing of
partitions by application programs is similar to the independent processing of
partitions by utilities.

To restrict processing to a subset of partitions, restrict the database PCB to the
partition by specifying in a DFSHALDB DD statement the partition name and
either the label name of the database PCB or the nth position of the database PCB.

For more information about the DFSHALDB DD statement, see IMS Version 13
System Definition.

Logical relationships and selective partition processing:

BMP, JBP, and batch-processing applications can selectively process a subset of one
or more contiguous partitions that have logical relationships.

If a logical child is in a partition to which an application program's processing has
been restricted and the logical parent is in another partition that the application
does not have access to, the application can process the logical parent anyway.
Because of a logical relationship, an application with restricted access can process a
partition that it does not have direct access to.

Chapter 13. Full-function database types 175

|
|

Secondary indexes and selective partition processing:

You can restrict BMP, JBP, and batch-processing applications programs to a subset
of one or more contiguous partitions of a HALDB partitioned secondary index
(PSINDEX).

To specify selective partitions for processing, specify the name of the PSINDEX
partition in the DFSHALDB statement

You can process the partitions of a PSINDEX selectively regardless of whether your
application program processes your PSINDEX as a standalone database or as an
alternate processing sequence for a PHDAM or PHIDAM database.

The partitions in a PSINDEX do not correspond to the partitions in the PHDAM or
PHIDAM database that the PSINDEX indexes. Consequently, when you specify
selective partition processing for a PSINDEX, selective partition processing applies
only to the PSINDEX partition, not to the partitions of the PHDAM or PHIDAM
database. The target segments can be in any partition in the indexed PHDAM or
PHIDAM database.

Similarly, if you specify selective partition processing for a PHDAM or PHIDAM
database, the selective partition processing does not restrict access to any of the
partitions in any associated PSINDEXs.

Regardless of whether you are using selective partition processing with a PSINDEX
or with an indexed PHDAM or PHIDAM database, selective partition processing
does not affect the internal updating of a secondary index by IMS when a target
segment is updated. For example, if an application program is restricted to a single
partition of the PSINDEX and inserts a segment into the indexed PHDAM or
PHIDAM database, the corresponding new index entry can be inserted in any
partition of the PSINDEX.

Partition selection when processing is restricted to a single partition:

If you use high key partitioning, IMS selects partitions by using the root key that is
used in the DL/I call and the high key that is defined for the partition. When
access is restricted to a single partition and the root key is outside of the key range
of the partition, IMS returns an FM or GE status code.

If you use a partition selection exit routine to select partitions, the routine is called
when the DL/I call provides a specific root key. The exit routine selects a partition
based on the specified root key. If the partition that is selected is different from the
one that the application has access to, IMS returns an FM or GE status code.

When access is restricted to a single partition, the first partition is always the
partition to which access is restricted, and the next partition does not exist. The
exit routine is not called to select a first partition or the next partition.

Recommendation: When restricting processing to a single partition, include in the
SSA only the root keys that are in the key range of the partition.

Examples of single partition processing:

The following examples illustrate the circumstances in which the FM, GE, and GB
status codes are returned to an application program that is restricted to processing
a single partition.

176 Database Administration

In all of the examples, the DB PCB usage is restricted to a HALDB partition that
contains records with root keys 201 through 400.

GU rootkey=110
The root key 110 is outside the range of root keys for the partition. IMS
returns an FM status code.

GU rootkey=240 GN rootkey=110
The processing moves forward from root key 240 to find a key that is
equal to 110. Because 110 is lower than 240, IMS returns a GE status code.

GU rootkey=240 GN rootkey>=110
The processing moves forward from root key 240 to find a key that is
equal to or greater than 110. If a key is not found before reaching the end
of the partition, IMS returns a GB status code.

GN rootkey>=110
The processing attempts to start the search at key 110. Because the key is
outside of the root key range of the partition, IMS returns an FM status
code.

Examples of single partition processing of a PSINDEX:

The following examples illustrate the circumstances in which the FM, GE, and GB
status codes are returned to an application program that is restricted to processing
a single partition of a HALDB partitioned secondary index (PSINDEX).

In all of the examples, the DB PCB usage is restricted to a partition that contains
records with secondary index keys 201 through 400. Partition 2 of the PSINDEX
references multiple partitions in the indexed HALDB database.

GU xdfldkey=110
The root key 110 is outside the range of root keys for the partition. IMS
returns an FM status code.

GU xdfldkey=240 GN xdfldkey=110
The processing moves forward from root key 240 to find a key that is
equal to 110. Because 110 is lower than 240, IMS returns a GE status code.

GU xdfldkey=240 GN xdfldkey>=110
The processing moves forward from root key 240 to find a key that is
equal to or greater than 110. If the key is not found before reaching the end
of the partition, IMS returns a GB status code.

GN xdfldkey>=110
The processing attempts to start the search at key 110. Because the key is
outside of the root key range of the partition, IMS returns an FM status
code.

Partition selection when processing is restricted to a range of partitions:

A partition is selected by using the root key for the DL/I call and the high key that
is defined for the partition.

When access is restricted to a range of consecutive partitions and the root key is
outside the key range of any of the partitions, status code FM or GE is returned.

If you use a partition selection exit routine, the routine is called when the DL/I call
provides a specific root key. The exit routine selects a partition based on the root

Chapter 13. Full-function database types 177

key given. If the partition selected is not one that the application has access to,
status code FM or GE is returned. The exit routine is not called to select a first
partition or next partition.

When access is restricted to a range of partitions, the first partition is always the
partition named in the DFSHALDB statement and the next partition selected
depends on the partition selection order as defined by either the partition high
keys or the partition selection exit routine.

Recommendation: When you are restricting processing to a range of partitions, the
SSA should include only the root keys that are in the key ranges of the partitions.

Examples of selectively processing a range of partitions:

For the following examples, the DB PCB usage is restricted to a range of three
HALDB partitions: A, B, and C. The DFSHALDB statement specifies partition A
and NUM=3.

The partitions contain the following root key ranges:
v Partition A contains the records with the root keys 201 through 400.
v Partition B contains the records with the root keys 401 through 600.
v Partition C contains the records with the root keys 601 through 800.

GU rootkey=110
The root key 110 is outside of the range of root keys in the partitions. IMS
returns an FM status code.

GU rootkey=240 GN rootkey=110
The processing moves forward from root key 240 to find a key that is
equal to 110. Because 110 is lower than 240, IMS returns a GE status code.

GU rootkey=240 GN rootkey>=110
The processing moves forward from root key 240 to find a key that is
equal to or greater than 110. If a key is not found before reaching the end
of the partition, IMS returns a GB status code.

GN rootkey>=110
The processing attempts to start the search at key 110. Because the key is
outside of the root key range of the partitions, IMS returns an FM status
code.

GU rootkey=810
The root key 810 is outside of the range of root keys for the range of
partitions. IMS returns an FM status code.

GU rootkey=440 GN rootkey>=110
The processing moves forward from root key 440 to find a key that is
equal to or greater than 110. If a key is not found before the end of the
partition is reached, IMS returns a GB status code.

Parallel partition processing:

Using selective partition processing, different instances of your application
programs can process different partitions of a database in parallel in both the batch
environment and the online environment.

178 Database Administration

DBRC authorizes application programs to process individual partitions rather than
the entire HALDB database. Processing partitions in parallel can reduce the time
that is required for the processing.

In the batch environment, batch application programs are authorized to process
individual partitions one at a time, rather than the entire HALDB database. IRLM
is not required.

In the online environment, multiple dependent regions can process records in the
same or in different partitions. Data sharing is not required.

If you use block-level data sharing, you can easily process different partitions in
parallel with multiple subsystems. The subsystems can be online systems or batch
jobs. To use block-level data sharing, you must use IRLM and you must register
the databases in DBRC as allowing block level data sharing. For more information
about block-level data sharing, see the DBRC information and the data sharing
information in IMS Version 13 System Administration.

To enable multiple instances of an application program to process partitions in
parallel, restrict the database PCB of each instance to the partitions by specifying in
a DFSHALDB DD statement the partition name and either the label name of the
database PCB or the nth position of the database PCB.

You might also need to make one or more of the following modifications to the
input, output, or processing logic of the application program:
v Split the application program input to feed multiple instances of the application

program.
v Consolidate the output of multiple instances of the application program.
v Modify the application program to respond correctly to the unavailability of the

partitions it cannot access.

For more information about the DFSHALDB DD statement, see IMS Version 13
System Definition.

IMS utilities supported by HALDB
IMS provides several utilities developed specifically to support HALDB partitioned
databases. HALDB partitioned databases also support many of the same utilities
supported by other full-function database types.

Database Recovery Control (DBRC) is required for execution of any utility
operating on a HALDB database. Each utility checks for the presence of DBRC. If
DBRC is not present, the utility issues an error message and terminates.

Image copy utilities reject any attempt to image copy HALDB ILDSs or PHIDAM
primary index data sets. Recovery utilities reject any attempt to recover HALDB
ILDSs or PHIDAM primary index data sets. Both image copy and recovery utilities
can run only against a particular data set of a HALDB partition.

The following table lists all of the database utilities that can be used with HALDB
databases.

Table 50. Utilities that can run against HALDB databases

Utility Description Comment

DFSMAID0 HALDB Migration Aid

Chapter 13. Full-function database types 179

Table 50. Utilities that can run against HALDB databases (continued)

Utility Description Comment

DFSPREC0 HALDB Index/ILDS Rebuild

DFSUPNT0 HALDB Partition Data Set Initialization

%DFSHALDB HALDB Partition Definition Invocation of the utility by a
c-list. %DFSHALDB is the
TSO invocation of module
DSPXPDDU.

DFSURUL0 HISAM Reorganization Unload

DFSURRL0 HISAM Reorganization Reload

DFSURGU0 HD Reorganization Unload Applies to PHDAM,
PHIDAM, and PSINDEX

DFSURGL0 HD Reorganization Reload Applies to PHDAM,
PHIDAM, and PSINDEX

DFSURPR0 Prereorganization

DFSUDMP0 Image Copy

DFSUICP0 Online Image Copy

DFSUDMT0 Database Image Copy 2

DFSUCUM0 Change Accumulation

DFSURDB0 Database Recovery

DFSBBO00 Batch Backout

Database I/O error management
When a database I/O error occurs, IMS copies the buffer contents of the error
block/control interval (CI) to a virtual buffer. A subsequent DL/I request causes
the error block/CI to be read back into the buffer pool.

The write error information and buffers are maintained across restarts, deferring
recovery to a convenient time. I/O error retry is automatically performed at
database close time. If the retry operation is successful, the error condition no
longer exists and recovery is not needed.

When a database I/O error occurs in a sysplex environment, the local system
maintains the buffer and informs all members of the data-sharing group with
registered interest in the database that the CI is unavailable. Subsequent DL/I
requests for that CI receive a failure return code as long as the I/O error persists.

Although you do not have to register your databases with DBRC in order for error
handling to work, registration is required for HALDB databases and highly
recommended for all other types of full-function databases.

The integrated HALDB Online Reorganization function can help eliminate the
HALDB I/O errors on sharing systems. If an online reorganization is started on the
system that owns the write error EEQE, the online reorganization function can take
the local copy of the buffer and write it out to the output data sets. After the buffer
is written to the output data sets, the updates in the buffer are available to all
sharing systems again.

180 Database Administration

Attention: If an error occurs on a database registered with DBRC and the system
stops, the database could be damaged if the system is restarted and a /DBR
command is not issued prior to accessing the database. The restart causes the error
buffers to be restored as they were when the system stopped. If the same block
had been updated during the batch run, the batch update would be overlaid.

Chapter 13. Full-function database types 181

182 Database Administration

Chapter 14. Fast Path database types

Fast Path databases include data entry databases (DEDBs) and main storage
databases (MSDBs). DEDBs provide efficient storage for and access to large
volumes of data. DEDBs also provide a high level of availability to that data.
MSDBs store and provide access to an installation's most frequently used data.

Both DEDBs and MSDBs use the direct method of storing data. With the direct
method, the hierarchical sequence of segments is maintained by putting
direct-address pointers in each segment's prefix.

Each IMS environment supports Fast Path databases as follows:
v DB/DC supports both DEDBs and MSDBs.
v DBCTL supports DEDBs, but does not support MSDBs.
v DCCTL does not support DEDBs or MSDBs.
Related concepts:
Chapter 12, “Summary of IMS database types and functions,” on page 103

Data entry databases
Data entry databases (DEDBs) provide efficient storage for and access to large
volumes of data. DEDBs also provide a high level of availability of that data.

Several characteristics of DEDBs also make DEDBs useful when you must gather
detailed and summary information. These characteristics include:

Area format
Area data set replication
Record deactivation
Non-recovery option

A DEDB is a hierarchical database that contains up to 127 segment types: a root
segment, an optional sequential dependent segment, and 0 to 126 direct dependent
segments. If an optional sequential dependent segment is defined, you can define
no more than 125 direct dependent segments. A DEDB structure can have as many
as 15 hierarchical levels. Instances of sequential dependent segments for an area
are stored in chronological order, regardless of the root on which they are
dependent. Direct dependent segments are stored hierarchically, which allows for
rapid retrieval.

Recommendation: Because ETO terminals cannot access terminal-related MSDBs,
you should develop any new Fast Path databases as DEDBs instead of as MSDBs.
You should also consider converting any of your existing non-terminal-related
MSDBs with non-terminal-related keys to VSO DEDBs. You can use the
MSDB-to-DEDB Conversion utility to do so.
Related concepts:
Chapter 13, “Full-function database types,” on page 105
“Performance considerations overview” on page 107
“The segment” on page 15
Related reference:

© Copyright IBM Corp. 1974, 2016 183

MSDB-to-DEDB Conversion utility (DBFUCDB0) (Database Utilities)

DEDB functions
DEDBs and MSDBs have many similar functions.

The common functions include:
v Virtual storage
v The field (FLD) call
v Fixed length segments
v MSDB or DEDB commit view

In addition, DEDBs have the following functions and support:
v Full DBRC support
v Block-level sharing of areas available to

– DBCTL
– LU 6.2 applications
– DB/DC applications

v RSR tracking
v HSSP support
v DEDB utilities
v Online database maintenance
v A full hierarchical model, including support of INSERT and DELETE calls
v A randomizer search technique
v Secondary index support

DEDB areas
A DEDB can be organized into one or more data sets called areas. Areas increase
the efficiency, capacity, and flexibility of DEDBs. This topic discusses DEDB areas
and how to work with them.

Areas and the DEDB format
A DEDB can use multiple data sets, called areas, with each area containing the
entire data structure.

The physical format of DEDBs makes the data they contain more readily available.
In a hierarchical IMS database that does not use areas, the logical data structure is
spread across the entire database. If multiple data sets are used, the data structure
is broken up on a segment basis.

Each area in a DEDB is a VSAM data set. A DEDB record (a root and its dependent
segments) does not span areas. A DEDB can be divided into as many as 2048 such
areas. This organization is transparent to the application program.

The maximum size of a DEDB area is 4 GB. The maximum number of areas per
database is 2048, thus the maximum size of a DEDB database is 8 796 093 020 160
bytes (8 TB).

IMS does not enforce a limit on the number of area data sets that can be open at
the same time by multiple DEDB databases. However, the resources available at
your installation and the consumption of those resources by both your IMS

184 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dbfucdb0.htm#ims_dbfucdb0

configuration and the other z/OS® subsystems that your installation might be
running, such as Db2 for z/OS, could potentially limit the number of area data
sets that you can open.

For area data sets, one of the resources that could become constrained with a very
large number of open data sets is storage in the extended common service area
(ECSA) and the extended private storage (EPVT).

The randomizing module is used to determine which records are placed in each
area. Because of the area concept, larger databases can exceed the limitation of 232

bytes for a single VSAM data set. Each area can have its own space management
parameters. You can choose these parameters according to the message volume,
which can vary from area to area. DEDB areas can be allocated on different volume
types.

Initialization, reorganization, and recovery of DEDBs are done on an area basis.
Resource allocation is done at the control interval (CI) level. Multiple programs,
optionally together with one online utility, can access an area concurrently within a
database, as long as they are using different CIs. CI sizes can be 512 bytes, 1 K,
2 K, 4 K, and up to 28 K in 4 K increments. The media manager and Integrated
Catalog Facility catalog of Data Facility Storage Management Subsystem (DFSMS)
are required.
Related concepts:
“Enqueue level of segment CIs” on page 198

Opening and preopening DEDB areas
By default, IMS does not open a DEDB area until an eligible application accesses
the area.

Although this prevents unneeded areas from being opened at startup, the first
application that accesses a DEDB area incurs some additional processing overhead.
Multiple calls to multiple areas immediately following a startup process can
increase this burden significantly.

You can limit the overhead of opening areas by preopening your DEDB areas. You
can also distribute this overhead between the startup process and online operation
by preopening only those areas that applications use the most and by leaving all
other areas closed until an application first accesses them.

You specify the preopen status of an area using the PREOPEN and NOPREO
parameters of the DBRC commands INIT.DBDS or CHANGE.DBDS.

By default IMS preopens all DEDB areas that have been assigned preopen status
during the startup process; however, preopening a large number of DEDB areas
during the startup process can delay data processing. To avoid this delay, you can
have IMS preopen DEDB areas after the startup process and asynchronously to the
execution of your application programs. In this case, if IMS has not preopened a
DEDB area when an application program attempts to access the area, IMS opens
the DEDB area at that time. You can specify this behavior by using the FPOPN=
keyword in the IMS and DBC startup procedures. Specifically, FPOPN=P causes
IMS to preopen DEDB areas after startup and asynchronous to application
program execution.

The FPOPN= keyword determines how IMS reopens DEDB areas for both normal
restarts (/NRE) and emergency restarts (/ERE).

Chapter 14. Fast Path database types 185

DEDB areas can also be opened by issuing either of the following type-2
commands with the OPTION(OPEN) keyword:
v UPDATE AREA NAME(areaname) START(ACCESS) OPTION(OPEN)
v UPDATE DB NAME(dedbname) AREA(*) START(ACCESS) OPTION(OPEN)

Note: The OPTION(OPEN) process is not logged for either the UPDATE AREA
command or the UPDATE DB command. If IMS is restarted after using this option,
IMS does not automatically re-open DEDB areas that were previously opened by
using these UPDATE commands.
Related reference:

Parameter descriptions for IMS procedures (System Definition)

Reopening DEDB areas during an emergency restart:

You can specify how IMS reopens DEDB areas during an emergency restart by
using the FPOPN= keyword in the IMS procedure or DBC procedure.

The following list describes how the FPOPN= keyword affects the reopening of
DEDB areas during an emergency restart:

FPOPN=N
During the startup process, IMS opens only those areas that have preopen
status. This is the default.

FPOPN=P
After the startup process completes and asynchronous to the resumption of
application processing, IMS opens only those areas that have preopen status.

FPOPN=R
After the startup process completes and asynchronous to the resumption of
application processing, IMS opens only those areas that were open prior to the
abnormal termination. All DEDB areas that were closed at the time of the
abnormal termination, including DEDB areas with a preopen status, will
remain closed when you restart IMS.

FPOPN=D
Suppresses the preopen process. DEDB areas that have a preopen status are
not preopened and remain closed until they are first accessed by an application
program or until they are manually opened with a /START AREA command.

FPOPN=D overrides, but does not change, the preopen status of DEDB areas
as set by the PREOPEN parameter of the DBRC commands INIT.DBDS and
CHANGE.DBDS.

Related concepts:
“Emergency restart processing” on page 226
Related reference:

Parameter descriptions for IMS procedures (System Definition)

DBC procedure (System Definition)

IMS procedure (System Definition)

Stopping DEDBs and DEDB areas
You can stop access to a DEDB or stop the scheduling of application programs
against a DEDB at the database level or the area level by issuing the appropriate
command.

186 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_parameter_descriptions_for_procedures.htm#ims_procedure_parm_descriptions
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_parameter_descriptions_for_procedures.htm#ims_procedure_parm_descriptions
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dbc_procedure.htm#ims_dbc_procedure
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_ims_procedure.htm#ims_ims_procedure

The database-level commands include the type-1 commands /STOP DB and
/DBRECOVERY DB and the type-2 command UPDATE DB
STOP(ACCESS|SCHD).

The area-level commands include the type-1 commands /STOP AREA and
/DBRECOVERY AREA and the type-2 command UPDATE AREA
STOP(ACCESS|SCHD).

The type-1 command /STOP DB and the type-2 command UPDATE DB
STOP(SCHD) have an equivalent effect in that they both stop the scheduling of
new application programs against the DEDB. The commands /DBRECOVERY DB
and UPDATE DB STOP(ACCESS) both stop all access to the DEDB. The area-level
type-1 and type-2 commands have similar equivalencies.

Starting DEDBs and DEDB areas
You can start access to a DEDB or start the scheduling of application programs
against a DEDB at the database level or the area level.

The database-level commands include the type-1 command /START DB and the
type-2 command UPDATE DB START(ACCESS).

The area-level commands include the type-1 command /START AREA and the
type-2 command UPDATE AREA START(ACCESS). The /START AREA command
does not open areas unless you have specified them as PREOPEN or PRELOAD areas.

You can start all areas of a DEDB at once by using the AREA(*) parameter of the
type-2 command UPDATE DB START(ACCESS). The AREA(*) parameter is useful
if you have stopped access to a DEDB at the database-level by issuing the type-1
command /DBRECOVERY DB or the type-2 command UPDATE DB
STOP(ACCESS). Note that specifying an area name, for example AREA(area_name),
is invalid.

You can use the AREA(*) parameter with the SET(ACCESS) parameter of the
type-2 command UPDATE DB START(ACCESS) to start all areas at once and to
change the access type for the DEDB at the same time.

You can also open DEDB areas when you start them by specifying the
OPTION(OPEN) keyword on the either of the type-2 commands UPDATE AREA
START(ACCESS) or UPDATE DB START(ACCESS).

Restarting and reopening areas after an IRLM failure
The internal resource lock manager (IRLM) ensures the integrity of databases in a
data sharing environment.

To avoid compromising the integrity of the data in DEDB areas when an IRLM
fails, all DEDB areas under the control of the failed IRLM are stopped. After you
correct the failure and reconnect IRLM to the IMS system, you must restart and
reopen the DEDB areas that the IRLM controls.

You can specify how IMS restarts and reopens DEDB areas after the IRLM
reconnects, by using the FPRLM= keyword in the IMS and DBC procedures.
Related concepts:

Using IRLM with database-level sharing (System Administration)

Recovery involving IRLM (System Administration)

Chapter 14. Fast Path database types 187

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_usingirlm.htm#ims_usingirlm
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_recoveryinvolvingirlm.htm#ims_recoveryinvolvingirlm

Restart after IMS failure (System Administration)

IRLM failures (Operations and Automation)
Related reference:

DBC procedure (System Definition)

Parameter descriptions for IMS procedures (System Definition)

IMS procedure (System Definition)

Read and write errors in DEDB areas
This topic describes how IMS handles read and write errors that occur in DEDB
areas.

Read error:

When a read error is detected in an area, the application program receives an AO
status code.

An Error Queue Element (EQE) is created, but not written to the second CI nor
sent to the sharing system in a data sharing environment. Application programs
can continue to access that area; they are prevented only from accessing the CI in
error. After read errors on four different CIs, the area data set (ADS) is stopped.
The read errors must be consecutive; that is, if there is an intervening write error,
the read EQE count is cleared. This read error processing only applies to a multiple
area data set (MADS) environment.

Write error:

When a write error is detected in an area, an EQE is created and application
programs are allowed access to the area until the EQE count reaches 11.

Even though part of a database might not be available (one or more areas are
stopped), the database is still logically available and transactions using that
database are still scheduled. If multiple data sets make up the area, chances are
that one copy of the data will always be available.

If your DEDB is nonrecoverable, write errors are handled differently, compared to
recoverable DEDBs. When there is a write error in an area, an EQE is created.
When there are 10 EQEs for an area, DBRC marks it "Recovery Needed" and IMS
stops the area. If the area is shared, then all IMS systems in the sharing group are
notified and they also stop the area. When a DEDB is marked “Recovery Needed”,
you must restore it, such as from an image copy. Incorporate this recovery
procedure into your operational procedures.

When a write error occurs to a DEDB using MADS, an EQE is created for the ADS
that had the write error. In this environment, when the maximum of 10 EQEs is
reached, the ADS is stopped.

When a write error to a recoverable DEDB area using a single ADS occurs, IMS
invokes the I/O toleration (IOT) processing. IMS allocates a virtual buffer in ECSA
and copies the control interval in error from the Fast Path common buffer to the
virtual buffer. IMS records the creation of the virtual buffer with an X'26' log
record. If the database is registered with DBRC, an Extended Error Queue Element

188 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_restartafterimsfailure.htm#ims_restartafterimsfailure
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.oag/ims_irlm_failure.htm#ims_irlm_failure
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dbc_procedure.htm#ims_dbc_procedure
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_parameter_descriptions_for_procedures.htm#ims_procedure_parm_descriptions
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_ims_procedure.htm#ims_ims_procedure

(EEQE) is created and registered in DBRC. The EEQE identifies the control interval
in error. In a data sharing environment using IRLM, all sharing partners are
notified of the creation of the EEQE.

The data that is tolerated is available to the IMS system that created the EEQE. The
sharing partner will get an 'AO' status when it requests that CI because the data is
not available. When a request is made for a control interval that is tolerated, the
data is copied from the virtual buffer to a common buffer. When an update is
performed on the data, it is copied back to the virtual buffer. A standard X'5950'
log record is generated for the update.

Every write error is represented by an EEQE on an area basis. The EEQEs are
maintained by DBRC and logged to the IMS log as X'26' log records. There is no
logical limit to the number of EEQEs that can exist for an area. There is a physical
storage limitation in DBRC and ECSA for the number of EEQEs that can be
maintained. This limit is installation dependent. To make sure that we do not
overextend DBRC or ECSA usage, a limited number of EEQEs are allowed for a
DEDB. The limit is 100. After 100 EEQEs are created for an area, the area is
stopped.

During system checkpoint, /STO, and /VUN commands, IMS attempts to write
back the CIs in error. If the write is successful, the EEQE is removed. If the write is
unsuccessful, the EEQE remains.
Related concepts:
“Non-recovery option”

Record deactivation
If an error occurs while an application program is updating a DEDB, it is not
necessary to stop the database or even the area. IMS continues to allow application
programs to access that area.

IMS only prevents the application programs from accessing the control interval in
error by creating an EQE for the error CI. If there are multiple copies of the area,
chances are that one copy of the data will always be available. It is unlikely that
the same control interval will be in error in all copies of the area. IMS
automatically makes an area data set unavailable when a count of 11 errors has
been reached for that data set.

Record deactivation minimizes the effect of database failure and errors to the data
in these ways:
v If multiple copies of an area data set are used, and an error occurs while an

application program is trying to update that area, the error does not need to be
corrected immediately. Other application programs can continue to access the
data in that area through other available copies of that area.

v If a copy of an area has a number of I/O errors, you can create a new copy from
existing copies of the area using the DEDB Area Data Set Create utility. The copy
with the errors can then be destroyed.

Non-recovery option
By specifying a VSO or non-VSO DEDB as nonrecoverable, you can improve online
performance and reduce database change logging of your DEDBs.

IMS does not log any changes from a nonrecoverable DEDB, nor does it keep any
updates in the DBRC RECON data set. All areas are nonrecoverable in a
nonrecoverable DEDB.

Chapter 14. Fast Path database types 189

Unlike full-function nonrecoverable databases, which support backout,
nonrecoverable DEDBs are truly nonrecoverable and cannot REDO during restart
or XRF takeover. IMS writes a single log record, X'5951', once for every area at
each sync point to indicate that nonrecoverable suppression has taken place.

The X'5951' log and DMAC flags determine the integrity of an area during an
emergency restart or XRF takeover. Nonrecoverable DEDB write errors can happen
during restart or XRF takeover. If there are errors found in a nonrecoverable DEDB
during an XRF takeover or an emergency restart, message DFS3711W is issued and
the DEDB is not stopped.

Nonrecoverable DEDBs must register with DBRC. To define a DEDB as
nonrecoverable, use the command INIT.DB DBD() TYPEFP NONRECOV. The default is
RECOVABL for recoverable DEDB.

Before changing the recoverability of a DEDB, issue a /STOP DB, /STO AREA, or /DBR
DB command. To change a recoverable DEDB to a nonrecoverable DEDB, use the
DBRC command CHANGE.DB DBD() NONRECOV. To change nonrecoverable DEDB to a
recoverable DEDB, use the command CHANGE.DB DBD() RECOVABL.

To restore a nonrecoverable DEDB, use the GENJCL.RECOV RESTORE command. The
recovery utility restores the database to the last image copy taken. If the DEDB had
been changed from a recoverable DEDB to a nonrecoverable DEDB, the recovery
utility will apply any updates from the logs up to the point when the change was
made (if no image copy was made after the change to nonrecoverable).
Related concepts:
“Write error” on page 188
“Fast Path log reduction” on page 612

Area data set replication
A data set can be copied, or replicated, up to seven times, increasing the
availability of the data to application programs.

The DEDB Area Data Set Create utility (DBFUMRI0) produces one or more copies
of a data set representing the area without stopping the area. All copies of an area
data set must have identical CI sizes and spaces but can reside on different
devices. The utility uses all the current copies to complete its new data set,
proceeding to another copy if it detects an I/O error for a particular record. In this
way, a clean copy is constructed from the aggregate of the available data. Current
updates to the new data set take effect immediately.

The Create utility can create its new copy on a different device, as specified in its
job control language (JCL). If your installation was migrating data to other storage
devices, then this process could be carried out while the online system was still
executing, and the data would remain current.

To ensure all copies of a DEDB remain identical, IMS updates all copies when a
change is made to only one copy.

If an ADS fails open during normal open processing of a DEDB with multiple data
sets (MADS), none of the copies of the ADS can be allocated, and the area is
stopped. However, when open failure occurs during emergency restart, only the
failed ADS is unallocated and stopped. The other copies of the ADS remain
available for use.

190 Database Administration

DEDBs and data sharing
You can specify different levels of data sharing for DEDBs. The specifications you
make for a DEDB apply to all the areas in the DEDB.

If you specify that a DEDB does not allow data sharing, only one IMS system can
access a DEDB area at a time; however, other IMS systems can still access the other
areas in the DEDB.

If you specify that a DEDB allows data sharing, multiple IMS systems can access
the same DEDB area at the same time. Sharing a single DEDB area is equivalent to
block-level sharing of full-function databases.

You can specify the level of data sharing that a DEDB allows by using the
SHARELVL parameter in the DBRC commands INIT.DB and CHANGE.DB. If any IMS
has already authorized the database, changing the SHARELVL does not modify the
database record. The SHARELVL parameter applies to all areas in a DEDB.

You can share DEDB areas directly from DASD or from a coupling facility
structure using the Virtual Storage Option (VSO).
Related concepts:
“Fast Path Virtual Storage Option” on page 211
“Sharing of VSO DEDB areas” on page 215

Data sharing in IMS environments (System Administration)
Related reference:

DBRC commands (Commands)

Fixed- and variable-length segments in DEDBs
DEDBs support fixed-length segments. Thus you can define fixed-length or
variable-length segments for your DEDBs. This support allows you to use MSDB
applications for your DEDBs.

To define fixed-length segments, specify a single value for the BYTES= parameter
during DBDGEN in the SEGM macro. To define variable-length segments, specify
two values for the BYTES= parameter during DBDGEN in the SEGM macro.

Application programs for fixed-length-segment DEDBs, like MSDBs, do not see the
length (LL) field at the beginning of each segment. Application programs for
variable-length-segment DEDBs do see the length (LL) field at the beginning of
each segment, and must use it to process the segment properly.

Fixed-length-segment application programs using REPL and ISRT calls can omit the
length (LL) field.

Examples of defining segments
The following examples show how to use the BYTES= parameter to define
variable-length or fixed-length segments.

Defining a variable-length segment
ROOTSEG SEGM NAME=ROOTSEG1, C

PARENT=0, C
BYTES=(390,20)

Chapter 14. Fast Path database types 191

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_datasharing.htm#ims_datasharing
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_dbrccmds.htm#ims_cr3_gen3

Defining a fixed-length segment
ROOTSEG SEGM NAME=ROOTSEG1, C

PARENT=0, C
BYTES=(320)

Parts of a DEDB area
A DEDB area consists of three parts.

The parts are:
v Root addressable part
v Independent overflow part
v Sequential dependent part

The following figure shows these parts of a DEDB area.

192 Database Administration

When a DEDB data set is initialized by the DEDB initialization utility
(DBFUMIN0), additional CIs are created for internal use, so the DEDB area will
actually contain more CIs than are shown in the preceding figure. These extra CIs
are referred to as the Reorganization UOW. Although IMS does not use the extra
CIs, DBFUMIN0 creates them for compatibility purposes.

Root addressable part
The root addressable part is divided into units-of-work (UOW), which are the basic
elements of space allocation.

A UOW consists of a user-specified number of CIs located physically contiguous.

Each UOW in the root addressable part is further divided into a base section and
an overflow section. The base section contains CIs of a UOW that are addressed by

Root addressable part
Independent
overflow part

Sequential
dependent part

DEDB

Base
section
of
UOW

Dependent
overflow
section
of UOW

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

CI

One
UOW

Area

Area

Area

Figure 58. Parts of a DEDB area in storage

Chapter 14. Fast Path database types 193

the randomizing module, whereas the overflow section of the UOW is used as a
logical extension of a CI within that UOW.

Root and direct dependent segments are stored in the base section. Both can be
stored in the overflow section if the base section is full.

Independent overflow part
The independent overflow part contains empty CIs that can be used by any UOW
in the area.

When a UOW gets a CI from the independent overflow part, the CI can be used
only by that UOW. A CI in the independent overflow part can be considered an
extension of the overflow section in the root addressable part as soon as it is
allocated to a UOW. The independent overflow CI remains allocated to a specific
UOW unless, after a reorganization, it is no longer required, at which time it is
freed.

Sequential dependent part
The sequential dependent part holds sequential dependent segments from roots in
all UOWs in the area.

Sequential dependent segments are stored in chronological order without regard to
the root or UOW that contains the root. When the sequential dependent part is
full, it is reused from the beginning. However, before the sequential dependent
part can be reused, you must use the DEDB Sequential Dependent Delete utility
(DBFUMDL0) to delete a contiguous portion or all the sequential dependent
segments in that part.

CI and segment formats
The format of DEDB control intervals (CIs) and segments are shown in the
following tables and figures.

This topic contains Diagnosis, Modification, and Tuning information.

The following series of diagrams show the following formats:
v CI format
v Root segment format
v Sequential dependent segment format
v Direct dependent segment format

The tables that follow each figure describe the sections of the CI and segments in
the order that the sections appear in the graphic.

FSE AP CI TYP RAP Segments and FSEs CUSN RBA RDF CIDF

CI prefix CI suffix

Figure 59. CI format

194 Database Administration

Table 51. CI format

CI section
Number of
bytes Explanation

FSE AP 2 bytes Offset to the first free space element. These 2 bytes are unused if
the CI is in the sequential dependent part.

CI TYP 2 bytes Describes the use of this CI and the meaning of the next 4 bytes.

RAP 4 bytes Root anchor point if this CI belongs to the base section of the
root addressable area. All root segments randomizing to this CI
are chained off this RAP in ascending key sequence. Only one
RAP exists per CI.

Attention: In the dependent and independent overflow parts,
these 4 bytes are used by Fast Path control information. No RAP
exists in sequential dependent CIs.

CUSN 2 bytes CI Update Sequence Number (CUSN). A sequence number
maintained in each CI. It is increased with each update of the
particular CI during the synchronization process.

RBA 4 bytes Relative byte address of this CI.

RDF 3 bytes Record definition field (contains VSAM control information).

CIDF 4 bytes CI definition field (contains VSAM control information).

Table 52. Root segment format

Segment
section

Number of
bytes Explanation

SC 1 byte Segment code.

PD 1 byte Prefix descriptor.

PTF 4 bytes Physical twin forward pointer. Contains the RBA of the next
root in key sequence.

SPCF 8 bytes Sequential physical child first pointer. Contains the cycle count
and RBA of the last inserted sequential dependent under this
root. This pointer will not exist if the sequential dependent
segment is not defined.

PCF 4 bytes Physical child first pointer. PCF points to the first occurrence of
a direct dependent segment type. There can be up to 126 PCF
pointers or 125 PCF pointers if there is a sequential dependent
segment. PCF pointers will not exist if direct dependent
segments are not defined.

PCL 4 bytes Physical child last pointer. PCL is an optional pointer that points
to the last physical child of a segment type. This pointer will
not exist if direct dependent segments are not defined.

Figure 60. Root segment format (with sequential and direct dependent segments with subset
pointers)

Chapter 14. Fast Path database types 195

Table 52. Root segment format (continued)

Segment
section

Number of
bytes Explanation

SSP 4 bytes Subset pointer. For each child type of the parent, up to eight
optional subset pointers can exist.

LL 2 bytes Variable length of this segment.

Table 53. Sequential dependent segment format

Segment
section

Number of
bytes Explanation

SC 1 byte Segment code.

UN 1 byte Prefix descriptor.

SPTF 8 bytes Sequential physical twin forward pointer. Contains the cycle
count and the RBA of the immediately preceding sequential
dependent segment under the same root.

LL 2 bytes Variable length of this segment.

Table 54. Direct dependent segment format

Segment
section

Number of
bytes Explanation

SC 1 byte Segment code.

UN 1 byte Unused.

PTF 4 bytes Physical twin forward pointer. Contains the RBA of the next
occurrence of this direct dependent segment type.

Figure 61. Sequential dependent segment format

Figure 62. Direct dependent segment format

196 Database Administration

Table 54. Direct dependent segment format (continued)

Segment
section

Number of
bytes Explanation

PCF 4 bytes Physical child first pointer. PCF points to the first occurrence of
a direct dependent segment type. In a direct dependent
segment there can be up to 125 PCF pointers or 124 PCF
pointers if there is a sequential dependent segment. PCF
pointers will not exist if direct dependent segments are not
defined.

PCL 4 bytes Physical child last pointer. PCL is an optional pointer that
points to the last physical child of a segment type. This pointer
will not exist if direct dependent segments are not defined.

SSP 4 bytes Subset pointer. For each child type of the parent, up to eight
optional subset pointers can exist.

LL 2 bytes Variable length of this segment.

Related concepts:
“DEDB insert algorithm” on page 201

Root segment storage
DEDB root segments are stored as prescribed by the randomizing routine, and are
chained in ascending key sequence from each anchor point.

Each CI in the base section of a UOW in an area has a single anchor point.
Sequential processing using GN calls processes the roots in the following order:
1. Ascending area number
2. Ascending UOW
3. Ascending key in each anchor point chain

Each root segment contains, in ascending key sequence, a PTF pointer containing
the RBA of the next root.
Related reference:

Sample data entry database randomizing routines (DBFHDC40 / DBFHDC20
DBFHDC44 / DBFHDC24 DBFHDC2S) (Exit Routines)

Direct dependent segment storage
The DEDB maintains processing efficiency while supporting a hierarchical physical
structure with direct dependent segment types.

A maximum of 127 segment types are supported (up to 126 direct dependent
segment types, or 125 if a sequential dependent segment is present).

Direct dependent (DDEP) segment types can be efficiently retrieved hierarchically,
and the user has complete online processing control over the segments. Supported
processing options are insert, get, delete, and replace. With the replace function,
users can alter the length of the segment. DEDB space management logic attempts
to store an inserted direct dependent in the same CI that contains its root segment.
If insufficient space is available in that CI, the root addressable overflow and then
the independent overflow portion of the area are searched.

DDEP segments can be defined with or without a unique sequence field, and are
stored in ascending key sequence.

Chapter 14. Fast Path database types 197

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_dbfhdc4044.htm#ims_dbfhdc4044
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_dbfhdc4044.htm#ims_dbfhdc4044

Physical chaining of direct dependent segments consists of a physical child first
(PCF) pointer in the parent for each defined dependent segment type and a
physical twin forward (PTF) pointer in each dependent segment.

DEDBs allow a PCL pointer to be used. This pointer makes it possible to access the
last physical child of a segment type directly from the physical parent. The INSERT
rule LAST avoids the need to follow a potentially long physical child pointer
chain.

Subset pointers are a means of dividing a chain of segment occurrences under the
same parent into two or more groups of subsets. You can define as many as eight
subset pointers for any segment type, dividing the chain into as many as nine
subsets. Each subset pointer points to the start of a new subset.
Related concepts:

Processing Fast Path DEDBs with subset pointer command codes (Application
Programming)

Processing Fast Path DEDBs with subset pointer options (Application
Programming)

Sequential dependent segment storage
DEDB sequential dependent (SDEP) segments are stored in the sequential
dependent part of an area in the order of entry.

SDEP segments chained from different roots in an area are intermixed in the
sequential part of an area without regard to which roots are their parents. SDEP
segments are specifically designed for fast insert capability. However, online
retrieval is not as efficient because increased input operations can result.

If all SDEP dependents were chained from a single root segment, processing with
Get Next in Parent calls would result in a backward sequential order. (Some
applications are able to use this method.) Normally, SDEP segments are retrieved
sequentially only by using the DEDB Sequential Dependent Scan utility
(DBFUMSC0), described in IMS Version 13 Database Utilities. SDEP segments are
then processed by offline jobs.

SDEP segments are used for data collection, journaling, and auditing applications.

Enqueue level of segment CIs
Allocation of CIs involves three different enqueue levels.

The enqueue levels are:
v A NO ENQ level, which is typical of any SDEP CI. SDEP segments can never be

updated; therefore they can be accessed and shared by all regions at the same
time.

v A SHARED level, which means that the CI can be shared between non-update
transactions. A CI at the SHARED level delays requests from any update
transactions.

v An EXCLUSIVE level, which prevents contenders from acquiring the same
resource.

The level of enqueue at which ROOT and SDEP segment CIs are originally
acquired depends on the intent of the transaction. If the intent is update, all

198 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_processingdedbsubsetptrs.htm#ims_processingdedbsubsetptrs
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_processingdedbsubsetptrs.htm#ims_processingdedbsubsetptrs
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_processingdedbswithsubsetptrs.htm#ims_processingdedbswithsubsetptrs
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_processingdedbswithsubsetptrs.htm#ims_processingdedbswithsubsetptrs

acquired CIs (with the exception of SDEP CIs) are held at the EXCLUSIVE level. If
the intent is not update, they are held at the SHARED level, even though there is
the potential for deadlock.

The level of enqueue, just described, is reexamined each time the buffer stealing
facility is invoked. The buffer stealing facility examines each buffer (and CI) that is
already allocated and updates its level of enqueue.

All other enqueued CIs are released and therefore can be allocated by other
regions.

The following figure shows an example of a DEDB structure.

Chapter 14. Fast Path database types 199

Related concepts:
“Fast Path buffer allocation algorithm” on page 477
“Areas and the DEDB format” on page 184

DEDB space search algorithm
The DEDB space search algorithm attempts to store the data in the minimum
amount of CIs rather than scatter database record segments across a greater
number of RAP and overflow CIs.

Figure 63. DEDB structure example

200 Database Administration

This topic contains Diagnosis, Modification, and Tuning information.

The trade-off is improved performance for future database record access versus
optimum space utilization.

The general rule for inserting a segment into a DEDB is the same as it is for an HD
database. The rule is to store the segment (root and direct dependents) into the
most desirable block.

For root segments, the most desirable block is the RAP CI. For direct dependents,
the most desirable block is the root CI. When space for storing either roots or
direct dependents is not available in the most desirable block, the DEDB insert
algorithm (described next) searches for additional space. Space to store a segment
could exist:
v In the dependent overflow
v In an independent overflow CI currently owned by this UOW

Additional independent overflow CIs would be allocated if required.
Related reference:

Sample data entry database randomizing routines (DBFHDC40 / DBFHDC20
DBFHDC44 / DBFHDC24 DBFHDC2S) (Exit Routines)

DEDB insert algorithm
The DEDB insert algorithm searches for additional space when space is not
available in the most desirable block.

This topic contains Diagnosis, Modification, and Tuning information.

For root segments, if the RAP CI does not have sufficient space to hold the entire
record, it contains the root and as many direct dependents as possible. Base CIs
that are not randomizer targets go unused. The algorithm next searches for space
in the first dependent overflow CI for this UOW. From the header of the first
dependent overflow CI, a determination is made whether space exists in that CI.

If the CI pointed to by the current overflow pointer does not have enough space,
the next dependent overflow CI (if one exists) is searched for space. The current
overflow pointer is updated to point to this dependent overflow CI. If no more
dependent overflow CIs are available, then the algorithm searches for space in the
independent overflow part.

When an independent overflow CI has been selected for storing data, it can be
considered a logical extension of the overflow part for the UOW that requested it.

The following figure shows how a UOW is extended into independent overflow.
This UOW, defined as 10 CIs, includes 8 Base CIs and 2 dependent overflow CIs.
Additional space is needed to store the database records that randomize to this
UOW. Two independent overflow CIs have been acquired, extending the size of
this UOW to 12 CIs. The first dependent overflow CI has a pointer to the second
independent overflow CI indicating that CI is the next place to look for space.

Chapter 14. Fast Path database types 201

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_dbfhdc4044.htm#ims_dbfhdc4044
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_dbfhdc4044.htm#ims_dbfhdc4044

Related reference:
“CI and segment formats” on page 194

DEDB control interval (CI) problem assistance aids (Diagnosis)

DEDB free space algorithm
The DEDB free space algorithm is used to free dependent overflow and
independent overflow CIs.

This topic contains Diagnosis, Modification, and Tuning information.

When a dependent overflow CI becomes entirely empty, it becomes the CI pointed
to by the current overflow pointer in the first dependent overflow CI, indicating
that this is the first overflow CI to use for overflow space if the most desirable
block is full. An independent overflow CI is owned by the UOW to which it was
allocated until every segment stored in it has been removed. When the last
segment in an independent overflow CI is deleted, the empty CI is made available
for reuse. When the last segment in a dependent overflow CI is deleted, it can be
reused as described at the beginning of this topic.

A dependent overflow or an independent overflow CI can be freed by
reorganization or by segment deletion.

Reorganization
During online reorganization, the segments within a UOW are read in GN order
and written to the reorganization utility private buffer set. This process inserts
segments into the reorganization utility private buffer set, eliminating embedded
free space.

If all the segments do not fit into the reorganization utility private buffer set (RAP
CI plus dependent overflow CIs), then new independent overflow CIs are allocated

CI 1

CI 3

CI 5

CI 7

CI 2

CI 4

CI 6

CI 8

CI 9 CI 10

CI 11 CI 12

Base
section

Dependent
overflow
section

Independent
overflow
section

Unit
of

work

E
x
te

n
d
e
d

Figure 64. Extending a UOW to use independent overflow

202 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dgr/ims_dedb_control.htm#ims_dedb_control

as needed. When the data in the reorganization utility private buffer set is copied
back to the correct location, then the following events occur:
v The newly acquired independent overflow CIs are retained.
v The old segments are deleted.
v Previously allocated independent overflow CIs are freed.

Segment deletion
A segment is deleted either by an application DLET call or because a segment is
REPLaced with a different length.

Segment REPLace can cause a segment to move. Full Function handles segment
length increases differently from DEDBs. In Full Function, an increased segment
length that does not fit into the available free space is split, and the data is inserted
away from the prefix. For DEDBs, if the replaced segment is changed, it is first
deleted and then reinserted. The insertion process follows the normal space
allocation rules.

The REPL call can cause a dependent overflow or an independent overflow CI to
be freed if the last segment is deleted from the CI.

Managing unusable space with IMS tools
Space in a DEDB should be closely monitored to avoid out-of-space conditions for
an area.

Products such as the IMS High Performance (HP) Pointer Checker, which includes
the Hierarchical Database (HD) Tuning Aid and Space Monitor tools, can identify
the different percentages of free space in the RAP, dependent overflow, and
independent overflow CIs. If a large amount of space exists in the RAP CIs or
dependent overflow CIs, and independent overflow has a high use percentage, a
reorganization can allow the data to be stored in the root addressable part, freeing
up independent overflow CIs for use by other UOWs. The IMS HP Pointer
Checker and the tools it includes can help you determine if the data distribution is
reasonable.
Related concepts:
“Tuning Fast Path systems” on page 685

DL/I calls against a DEDB
DEDB processing uses the same call interface as DL/I processing. Therefore, any
DL/I call or calling sequence executed against a DEDB has the same logical result
as if executed against an HDAM or PHDAM database.

This topic contains Diagnosis, Modification, and Tuning information.

The SSA rules for DEDBs have the following restrictions:
v You cannot use the Q command code with DEDBs.
v IMS ignores command codes used with sequential dependent segments.
v If you use the D command code in a call to a DEDB, the P processing option

need not be specified in the PCB for the program. The P processing option has a
different meaning for DEDBs than for DL/I databases.

Related concepts:

Processing DEDBs (IMS and CICS with DBCTL) (Application Programming)

Chapter 14. Fast Path database types 203

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_processingdedbsdbctl.htm#ims_processingdedbsdbctl

Mixed mode processing
IMS application programs can run as message processing programs (MPPs), batch
message processing programs (BMPs), and Fast Path programs (IFPs).

IFPs can access full function databases. Similarly, MPPs and BMPs can access
DEDBs and MSDBs.

Because of differences in sync point processing, there are differences in the way
database updates are committed. IFPs that request full function resources, or MPPs
(or BMPs) that request DEDB (or MSDB) resources operate in “mixed mode”.
Related concepts:
“Fast Path synchronization points” on page 227

Main storage databases (MSDBs)
The MSDB structure consists of fixed-length root segments only, although the root
segment length can vary between MSDBs.

The maximum length of any segment is 32,000 bytes with a maximum key length
of 240 bytes. Additional prefix data extends the maximum total record size to
32,258 bytes.

The following options are not available for MSDBs:
v Multiple data set groups
v Logical relationships
v Secondary indexing
v Variable-length segments
v Field-level sensitivity

The MSDB family of databases consists of four types:
v Terminal-related fixed database
v Terminal-related dynamic database
v Non-terminal-related database with terminal keys
v Non-terminal-related database without terminal keys

Recommendation: Use DEDBs instead of MSDBs when you develop new Fast
Path databases. Terminal-related MSDBs and non-terminal-related MSDBs with
terminal-related keys are no longer supported. Although non-terminal-related
MSDBs with non-terminal-related-keys are still supported, you should consider
converting any existing MSDBs to DEDBs. You can use the MSDB-to-DEDB
Conversion utility.

An MSDB is defined in the DBD in the same way as any other IMS database, by
coding ACCESS=MSDB in the DBD statement. The REL keyword in the DATASET
statement selects one of the four MSDB types.

Both dynamic and fixed terminal-related MSDBs have the following characteristics:
v The record can be updated only through processing of messages issued from the

LTERM that owns the record. However, the record can be read using messages
from any LTERM.

v The name of the LTERM that owns a segment is the key of the segment. An
LTERM cannot own more than one segment in any one MSDB.

204 Database Administration

v The key does not reside in the stored segment.
v Each segment in a fixed terminal-related MSDB is assigned to and owned by a

different LTERM.

Terminal-related MSDBs cannot be accessed by ETO terminals.

Non-terminal-related MSDBs have the following characteristics:
v No ownership of segments exists.
v No insert or delete calls are allowed.
v The key of segments can be an LTERM name or a field in the segment. As with

a terminal-related MSDB, if the key is an LTERM name, it does not reside in the
segment. If the key is not an LTERM name, it resides in the sequence field of the
segment. If the key resides in the segment, the segments must be loaded in key
sequence because, when a qualified SSA is issued on the key field, a binary
search is initiated.

Related concepts:
Chapter 13, “Full-function database types,” on page 105
“Performance considerations overview” on page 107
“The segment” on page 15

When to use an MSDB
MSDBs store and provide access to an installation's most frequently used data. The
data in an MSDB is stored in segments, and each segment available to one or all
terminals.

MSDBs provide a high degree of parallelism and are suitable for applications in
the banking industry (such as general ledger). To provide fast access and allow
frequent update to this data, MSDBs reside in virtual storage during execution.

One use for a terminal-related fixed MSDB is in an application in which each
segment contains data associated with a logical terminal. In this type of
application, the application program can read the data (possibly for general
reporting purposes) but cannot update it.

Non-terminal-related MSDBs (without terminal-related keys) are typically used in
applications in which a large number of people need to update data at a high
transaction rate. An example of this is a real-time inventory control application, in
which reduction of inventory is noted from many cash registers.

MSDBs storage
The MSDB Maintenance utility (DBFDBMA0) creates the MSDBINIT sequential
data set in physical ascending sequence.

During a cold start, or by operator request during a normal warm start, the
sequential data set MSDBINIT is read and the MSDBs are created in virtual
storage. See the following figure.

Chapter 14. Fast Path database types 205

During a warm start, the control program uses the current checkpoint data set for
initialization. The MSDB Maintenance utility can also modify the contents of an old
MSDBINIT data set. For warm start, the master terminal operator can request use
of the IMS.MSDBINIT, rather than a checkpoint data set.

The following figure shows the MSDBINIT record format. The table following the
figure explains the record parts.

Table 55. MSDBINIT record format

Record part Bytes Explanation

LL 2 Record length (32,258 maximum)

X'00' 2 Always hexadecimal zeros

DBDname 8 DBD name

Count 4 Segment count

Type 1 MSDB type:

v X'11' non-related

v X'31' non-related with terminal keys

v X'33' fixed related

v X'37' dynamic related

KL 1 Key length (240 maximum)

Key varies Key or terminal name

MSDB segment varies MSDB segment (32,000 maximum)

Related tasks:
“Loading an MSDB” on page 554

MSDB4

MSDB3

MSDB2

MSDB1

MSDB1

MSDB2

MSDB3

MSDB4
MSDB headers

Terminal-related
fixed database

Nonterminal-related
database with
terminal keys

Terminal-related
dynamic database

Nonterminal-related
database without
terminal keys

Figure 65. MSDB pointers

Figure 66. MSDBINIT record format

206 Database Administration

MSDB record storage
MSDB records contain no pointers except the forward chain pointer (FCP)
connecting free segment records in the terminal-related dynamic database.

This topic contains Diagnosis, Modification, and Tuning information.

The following figure shows a high-level view of how MSDBs are arranged in
priority sequence.

Saving MSDBs for restart
At system checkpoint, a copy of all MSDBs is written alternately to one of the
MSDB checkpoint data sets—MSDBCP1 or MSDBCP2.

During restart, the MSDBs are reloaded from the most recent copy on MSDBCP1 or
MSDBCP2. During an emergency restart, the log is used to update the MSDB.
During a normal restart, the operator can reload from MSDBINIT using the
MSDBLOAD parameter on the restart command.

On a cold start (including /ERE CHKPT 0), MSDBs are loaded from the
MSDBINIT data set.

DL/I calls against an MSDB
All DL/I database calls, except those that specify “within parent”, are valid with
MSDBs.

Because an MSDB is a root-only database, a “within parent” call is meaningless.
Additionally, the DL/I call, FLD, exists that is applicable to all MSDBs. The FLD
call allows an application program to check and modify a single field in an MSDB
segment.

Rules for using an SSA
MSDB processing imposes the following restrictions on the use of an SSA (segment
search argument).

No boolean operator
No command code

Figure 67. Sequence of the four MSDB organizations

Chapter 14. Fast Path database types 207

Even with the preceding restrictions, the result of a call to the database with no
SSA, an unqualified SSA, or a qualified SSA remains the same as a call to the
full-function database. For example, a retrieval call without an SSA returns the first
record of the MSDB or the full-function database, depending on the environment
in which you are working. The following list shows the type of compare or search
technique used for a qualified SSA.

Type of Compare

v Sequence field: logical
v Non-sequence arithmetic field: arithmetic
v Non-sequence non-arithmetic: logical

Type of Search

v Sequence field: binary if operator is = or >=, otherwise sequential
v Non-sequence arithmetic field: sequential
v Non-sequence non-arithmetic: sequential

Insertion and deletion of segments
The terminal-related dynamic MSDB database accepts ISRT and DLET calls, and
the other MSDB databases do not.

Actual physical insertion and deletion of segments do not occur in the dynamic
database. Rather, a segment is assigned to an LTERM from a pool of free segments
by an ISRT call. The DLET call releases the segment back to the free segment pool.

The figure in “Combination of binary and direct access methods” shows a layout
of the four MSDBs and the control blocks and tables necessary to access them. The
Extended Communications Node Table (ECNT) is located by a pointer from the
Extended System Contents Directory (ESCD), which in turn is located by a pointer
from the System Contents Directory (SCD). The ESCD contains first and last
header pointers to the MSDB header queue. Each of the MSDB headers contains a
pointer to the start of its respective database area.

Combination of binary and direct access methods
A combination access technique works against the MSDB on a DL/I call. The
access technique combines a binary search and the direct access method.

A binary search of the ECNT table attempts to match the table LTERM names to
the LTERM name of the requesting terminal. When a match occurs, the application
program accesses the segment of the desired database using a direct pointer in the
ECNT table. Access to the non-terminal-related database segments without
terminal keys is accomplished by a binary search technique only, without using the
ECNT.

The following figure shows the ECNT and MSDB storage layout.

208 Database Administration

Position in an MSDB
Issuing a DL/I call causes a position pointer to fix on the current segment. The
meaning of “next segment” depends on the key of the MSDB.

The current segment in a non-terminal-related database without LTERM keys is the
physical segment against which a call was issued. The next segment is the
following physically adjacent segment after the current segment. The other three
databases, using LTERM names as keys, have a current pointer fixed on a position
in the ECNT table. Each entry in the table represents one LTERM name and

0

0

0

0

0LTERM29

LTERM4

LTERM3

LTERM2

LTERM1

0 0

ECNT

Terminal -
related
fixed

Non-terminal
related
with terminal
keys

Non-terminal -
related
without terminal
keys

Terminal -
related
dynamic

0

0

0

0

0

0

0

80

80

80

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Data

Data

Free record

Free

Free

Key

Key

Key

Key

ESCD

MSDB headers

SCD1

MSDB1

MSDB3

Key MSDB1 2 3

MSDB2

MSDB4

Figure 68. ECNT and MSDB storage layout

Chapter 14. Fast Path database types 209

segment pointers to every MSDB with which LTERM works. A zero entry indicates
no association between an LTERM and an MSDB segment. If nonzero, the next
segment is the next entry in the table. The zero entries are skipped until a nonzero
entry is found.

The field call
The DL/I FLD call, available to MSDBs and DEDB, allows for the operation on a
field, rather than on an entire segment.

Additionally, the DL/I FLD call allows conditional operation on a field.

Modification is done with the CHANGE form of the FLD call. The value of a field
can be tested with the VERIFY form of the FLD call. These forms of the call allow
an application program to test a field value before applying the change. If a
VERIFY fails, all CHANGE requests in the same FLD call are denied.

If failures occur during processing of the FLD call, IMS reprocesses the call only if
the failures are caused by deadlocks or verification errors. For other types of
failures, abend U0819 is issued.
Related reference:

FLD call (Application Programming APIs)
Related information:

0819 (Messages and Codes)

Call sequence results
The same call sequence against MSDBs and other IMS databases might bring
different results.

For parallel access to MSDB data, updates to MSDB records take place during sync
point processing. Changes are not reflected in those records until the sync point is
completed. For example, the sequence of calls GHU (Get-Hold-Unique), REPL
(Replace), and GU (Get-Unique) for the same database record results in the same
information in the I/O area for the GU call as that returned for the GHU.

The postponement of an updated database record to the point of commitment is
also true of FLD/CHANGE calls, and affects FLD/VERIFY calls. You should watch
for multiple FLD/VERIFY and FLD/CHANGE calls on the same field of the same
segment. Such sequences can decrease performance because reprocessing results.

For terminal-related dynamic MSDBs, the following examples of call sequences do
not have the same results as with other IMS databases or DEDBs:
v A GHU following an ISRT receives a 'segment not found' status code.
v An ISRT after a DLET receives a 'segment already exists' status code.
v No more than one ISRT or DLET is allowed for each MSDB in processing a

transaction.

The preceding differences become more critical when transactions update or refer
to both full function DL/I and MSDB data. Updates to full function DL/I
databases and DEDBs are immediately available while MSDB changes are not. For
example, if you issue a GHU and a REPL for a segment in an MSDB, then you
issue another get call for the same segment in the same commit interval, the
segment IMS returns to you is the “old” value, not the updated one.

210 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apr/ims_fldcall.htm#ims_fldcall
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.msgs/msgs/0819.htm#imsabend0819

If processing is not single mode, this difference can increase. In the case of multiple
mode processing, the sync point processing is not invoked for every transaction.
Your solution might be to ask for single mode processing when MSDB data is to be
updated.

Another consideration for MSDB processing is that terminal-related MSDB
segments can be updated only by transactions originating from the owners of the
segment, the LTERMs. Programs that are non-transaction-driven BMPs can only
update MSDBs that are declared as non-terminal-related.

Fast Path Virtual Storage Option
The Fast Path Virtual Storage Option (VSO) allows you to map data into virtual
storage or a coupling facility structure.

You can map one or more DEDB areas into virtual storage or a coupling facility
structure by defining the DEDB areas as VSO areas.

For high-end performance applications with DEDBs, defining your DEDB areas as
VSO allows you to realize the following performance improvements:
v Reduced read I/O

After an IMS and VSAM control interval (CI) has been brought into virtual
storage, all subsequent I/O read requests read the data from virtual storage
rather than from DASD.

v Decreased locking contention
For VSO DEDBs, locks are released after both of the following:
– Logging is complete for the second phase of an application synchronization

(commit) point
– The data has been moved into virtual storage
For non-VSO DEDBs, locks are held at the VSAM CI-level and are released only
after the updated data has been written to DASD.

v Fewer writes to the area data set
Updated data buffers are not immediately written to DASD; instead they are
kept in the data space and written to DASD at system checkpoint or when a
threshold is reached.

In all other respects, VSO DEDBs are the same as non-VSO DEDBs. Therefore, VSO
DEDB areas are available for IMS DBCTL and LU 6.2 applications, as well as other
IMS DB or IMS TM applications. Use the DBRC commands INIT.DBDS and
CHANGE.DBDS to define VSO DEDB areas.

The virtual storage for VSO DEDB areas is housed differently depending on the
share level assigned to the area. VSO DEDB areas with share levels of 0 and 1 are
loaded into a z/OS data space. VSO DEDB areas with share levels of 2 and 3 are
loaded into a coupling facility cache structure.

Coupling facility cache structures are defined by the system administrator and can
accommodate either a single DEDB area or multiple DEDB areas. Cache structures
that support multiple DEDB areas are called multi-area structures. For more
information on multi-area structures, see IMS Version 13 System Administration.

Recommendation: Terminal-related MSDBs and non-terminal-related MSDBs with
terminal-related keys are not supported. Non-terminal-related MSDBs without

Chapter 14. Fast Path database types 211

terminal-related keys are still supported. Therefore, you should consider converting
all your existing MSDBs to VSO DEDBs or non-VSO DEDBs.
Related concepts:
“DEDBs and data sharing” on page 191

Restrictions for using VSO DEDB areas
VSO DEDB areas have a number of restrictions to their use.

The restrictions include:
v VSO DEDB areas must be registered with DBRC.
v For local VSO DEDB areas, z/OS data spaces impose a 2 GB (2 147 483 648

bytes) maximum size limit, even though the maximum size of a single or
multiple area data set on DASD is 4 GB. If the local VSO DEDB area is more
than 2 GB, the area fails to open.
When Local VSO DEDB areas are opened for preloading, IMS checks to make
sure that the area can fit into the data space. If the area cannot fit, the open fails.
The actual size available in a z/OS data space for a local VSO DEDB area is the
maximum size (2 GB) minus amounts used by z/OS (from 0 to 4 KB) and IMS
Fast Path (approximately 100 KB).
To see the size, usage, and other statistics for a VSO DEDB area, enter the
/DISPLAY FPV command.

v For shared VSO DEDB areas, z/OS coupling facility cache structures do not
place a limit on the maximum size of an area data set. The maximum size of a
coupling facility cache structure is 2 GB. If a shared VSO DEDB area is larger
than 2 GB, IMS loads a maximum of 2 GB of CIs into the coupling facility cache
structure.
IMS does not check to see if a shared VSO DEDB area can fit into a coupling
facility cache structure, regardless of whether the shared VSO DEDB area is
preloaded or loaded only when requested.

v The DEDB Area Data Set Compare utility (DBFUMMH0) does not support VSO
DEDB areas.

Related concepts:
“Accessing a data space” on page 220
Related reference:

/DISPLAY FPV command (Commands)

Defining a VSO DEDB area
All of the Virtual Storage Option (VSO) information for a DEDB is recorded in the
RECON data set.

Use the following parameters of the DBRC INIT.DBDS and CHANGE.DBDS commands
to define your VSO DEDB Areas:

VSO Defines the area as a VSO area.

When a CI is read for the first time, it will be copied into a z/OS data
space or a coupling facility structure. Data is read into a common buffer
and is then copied into the data space or structure. Subsequent access to
the data retrieves it from the data space or structure rather than from
DASD.

CIs that are not read are not copied into the data space or structure.

212 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_displayfpv.htm#ims_cr1displayfpv

All updates to the data are copied back to the data space or structure and
any locks held are released. Updated CIs are periodically written back to
DASD.

NOVSO
Defines the area as a non-VSO area. This is the default.

You can use NOVSO to define a DEDB as non-VSO or to turn off the VSO
option for a given area. If the area is in virtual storage when it is redefined
as NOVSO, the area must be stopped (/STOP AREA or /DBR AREA) or
removed from virtual storage (/VUNLOAD) for the change to take effect.

PRELOAD
For VSO areas, this preloads the area into the data space or coupling
facility structure when the VSO area is opened. This keyword implies the
PREOPEN keyword, thus if PRELOAD is specified, then PREOPEN does
not have to be specified.

The root addressable portion and the independent overflow portion of an
area are loaded into the data space or coupling facility structure at control
region initialization or during /START AREA processing. Data is then read
from the data space or coupling facility structure to a common buffer.
Updates are copied back to the data space or coupling facility structure
and any locks are released. Updated CIs are periodically written back to
DASD.

NOPREL
Defines the area as load-on-demand. For VSO DEDBs areas, as CIs are read
from the data set, they are copied to the data space or coupling facility
structure. This is the default.

To define an area with NOPREL gives you the ability to deactivate the
preload processing. The area is not preloaded into the data space or
coupling facility structure the next time that it is opened.

If you specify NOPREL, and you want the area to be preopened, you must
separately specify PREOPEN for the area.

CFSTR1
Defines the name of the cache structure in the primary coupling facility.
Cache structure names must follow z/OS coupling facility naming
conventions. CFSTR1 uses the name of the DEDB area as its default. This
parameter is valid only for VSO DEDB areas that are defined with
SHARELVL(2|3).

CFSTR2
Defines the secondary coupling facility cache structure name when you use
IMS-managed duplexing of structures. The cache structure name must
follow z/OS coupling facility naming conventions. CFSTR2 does not
provide a default name. This parameter is valid only for VSO areas of
DEDBs that are defined with SHARELVL(2|3) and that are single-area
structures. This parameter cannot be used with multi-area structures,
which use system-managed duplexing.

MAS Defines a VSO DEDB area as using a multi-area structure as opposed to a
single-area structure.

NOMAS
Defines a VSO DEDB area as using a single-area cache structure as
opposed to a multi-area structure. NOMAS is the default.

Chapter 14. Fast Path database types 213

LKASID
NOLKASID

Specifies whether buffer lookaside is to be performed on read requests for
this area.

For VSO DEDB areas that use a single-area structure, you can specify
LKASID or NOLKASID in either the RECON data set or, optionally, in the
DFSVSMxx PROCLIB member. Specifications for LKASID or NOLKASID
made in the RECON data set override any specifications for LKASID or
NOLKASID in the DFSVSMxx PROCLIB member.

For VSO DEDB areas that use a multi-area structure, LKASID or
NOLKASID must be specified by using the DFSVSMxx PROCLIB member.
Specifications in the RECON data set are ignored.

FULLSEG
NOFULLSG

Mutually exclusive, optional keywords that specify whether the full
segment image is logged in the X'5950' log record when the segment is
updated by a Replace (REPL) call. These keywords are valid only for Fast
Path DEDBs.

FULLSEG indicates that the full segment image is to be logged.

NOFULLSG indicates that only the updated portion of a segment is to be
logged.

If neither of these keywords is specified, the default value set in the
database record for the DEDB is used.

Related concepts:
“Coupling facility structure naming convention” on page 218
“Defining a private buffer pool using the DFSVSMxx IMS.PROCLIB member” on
page 219
“Overview of dynamic database buffer pools” on page 674

Sysplex data-sharing concepts and terminology (System Administration)
Related tasks:
“Registering a cache structure name with DBRC” on page 219
Related reference:

INIT.DBDS command (Commands)

CHANGE.DBDS command (Commands)

DBRC commands (Commands)

DFSVSMxx member of the IMS PROCLIB data set (System Definition)

VSO DEDB areas and the PREOPEN and NOPREO keywords
The PREOPEN and NOPREO keywords of DBRC's INIT.DBDS and
CHANGE.DBDS commands apply to both VSO DEDB areas and non-VSO DEDB
areas.

When a NOPREO area is also defined as shared VSO with a share level of 2 or 3,
you can open the area with the /START AREA command. This connects the area to
the VSO structures.

214 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_sysplexdatashar_conceptsandterms.htm#ims_sysplexdatashar_conceptsandterms
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_initdbds.htm#ims_cr3initdbds
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_chgdbds.htm#ims_cr3chgdbds
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_dbrccmds.htm#ims_cr3_gen3
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsvsmxx_proclib.htm#ims_dfsvsmxx_proclib

You can use the DBRC commands to define your VSO DEDB areas at any time; it
is not necessary that IMS be active. The keywords specified on these DBRC
commands go into effect at two different points in Fast Path processing:
v Control region startup

After the initial checkpoint following control region initialization, DBRC
provides a list of areas with any of the VSO options (VSO, NOVSO, PRELOAD,
and NOPREL) or either of the PREOPEN or NOPREO options. The options are
then maintained by IMS Fast Path.

v Command processing
When you use a /START AREA command, DBRC provides the VSO options or
PREOPEN|NOPREO options for the area. If the area needs to be preopened or
preloaded, it is done at this time.
When you use a /STOP AREA command, any necessary VSO processing is
performed.
Related Reading: See IMS Version 13 Commands, Volume 2: IMS Commands N-V
for details on /START and /STOP command processing.

Sharing of VSO DEDB areas
Sharing of VSO DEDB areas allows multiple IMS systems to concurrently read and
update the same VSO DEDB area. The three main participants are the coupling
facility hardware, the coupling facility policy software, and the XES and z/OS
services.

The coupling facility hardware provides high-performance, random-access shared
storage in which IMS systems can share data in a sysplex environment. The shared
storage area in the coupling facility is divided into sections, called structures. For
VSO DEDB data, the structure type used is called a cache structure, as opposed to a
list structure or a lock structure. The cache structure is designed for
high-performance read reference reuse and deferred write of modified data. The
coupling facility and structures are defined in a common z/OS data set, the couple
data set (COUPLExx).

The coupling facility policy software and its cache structure services provide
interfaces and services to z/OS that allow sharing of VSO DEDB data in shared
storage. Shared storage controls VSO DEDB reads and writes:
v A read of a VSO CI brings the CI into the coupling facility from DASD.
v A write of an updated VSO CI copies the CI to the coupling facility from main

storage, and marks it as changed.
v Changed CI data is periodically written back to DASD.

The XES and z/OS services provide a way of manipulating the data within the
cache structures. They provide high performance, data integrity, and data
consistency for multiple IMS systems sharing data.
Related concepts:
“DEDBs and data sharing” on page 191

The coupling facility and shared storage
In the coupling facility shared storage, a cache structure can represent one or
multiple VSO DEDB areas; however, any given VSO DEDB area can be represented
by only one cache structure.

Cache structures are not persistent. That is, they are deleted after the last IMS
system disconnects from the coupling facility.

Chapter 14. Fast Path database types 215

Duplexing structures
Duplexed structures are duplicate structures for the same area.

Duplexing allows you to have dual structure support for your VSO DEDB areas,
which helps to ensure the availability and recoverability of your data.

Structure duplexing can be either IMS-managed or system-managed. With
IMS-managed duplexing, you must define both the primary and the secondary
structures in DBRC and in the z/OS coupling facility resource management
(CFRM) policy. When you use system-managed duplexing, you have to define only
the primary structure. The duplexing operation is transparent to you, except that
you need to request duplex mode in your CFRM policy and allocate additional
resources for a secondary structure instance.

VSO multi-area structures require the use of system-managed duplexing.
Related tasks:

z/OS structure duplexing for CQS (System Administration)

Automatic altering of structure size
z/OS can automatically expand or contract the size of a VSO structure in the
coupling facility if it needs storage space.

Enabling this function for preloaded VSO DEDBs can prevent wasted space;
however, you must be careful with this function when VSO DEDBs are loaded on
demand.

Recommendation: If you preload your shared VSO DEDB areas, do not use the
automatic alter function. The automatic alter function might reclaim any
unchanged data in the cache structure.

To ensure correct sizing and that the automatic alter function is disabled for your
preloaded shared VSO DEDB areas, specify the following parameters in the area's
CFRM policy:

INITSIZE(x)
Specifies the initial amount of space to be allocated for the structure in the
coupling facility. You can estimate this size using the IBM System z® Coupling
Facility Structure Sizer Tool (CFSizer). CFSizer is available for you to use at the
following website: www.ibm.com/servers/eserver/zseries/cfsizer/, or search
for “CFSizer” at the IBM website: www.ibm.com.

SIZE(y)
Specifies the maximum amount of space to be allocated for the structure in the
coupling facility.

ALLOWAUTOALT(NO)
Specifies whether to allow system-initiated alters (automatic alter) for this
structure. For preloaded shared VSO DEDB areas, you should specify
ALLOWAUTOALT(NO).

If the size specified by INITSIZE is too small, IMS will alter the size of the
structure to the needed value as calculated by IXLCSP, up to the size specified in
the SIZE parameter.

Related Reading: For information about the CFRM parameters that enable
automatic altering of structures, see z/OS MVS™ Setting Up a Sysplex

216 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_structureduplexing.htm#ims_structureduplexing

Related concepts:

Data sharing in IMS environments (System Administration)

System-managed rebuild
You can reconfigure a coupling facility while keeping all VSO structures online by
copying the structures to another coupling facility. There is no change to the VSO
definition.
Related concepts:

Sysplex data-sharing concepts and terminology (System Administration)

Private buffer pools
IMS provides special private buffer pools for Shared VSO areas. Each pool can be
associated with an area, a DBD, or a specific group of areas.

These private buffer pools are only used for Shared VSO data. Using these private
buffer pools, the customer can request buffer lookaside for the data. The keywords
LKASID or NOLKASID, when specified on the DBRC commands INIT.DBDS or
CHANGE.DBDS, indicate whether to use this lookaside capability or not.

Authorizing connections to DEDB VSO structures
Manage access to shared DEDB VSO structures by defining security profiles that
grant access to the cache structure to only authorized IMS systems.

If you use RACF, the RACF security administrator defines the security profiles in
the FACILITY class.

Prior to connecting to a DEDB VSO structure, an IMS system issues a RACROUTE
REQUEST=AUTH call that uses the job name of the IMS control region as the user
ID. To access the structure, the user ID must have at least UPDATE authority in
the security profile.

The name of a security profile must use the format VSOSTR.structure_name, where
structure_name is the name of the VSO structure that is to be protected. This
structure name must match the structure name defined in the RECON data sets for
the structure.

The following example shows the RACF commands to that both define a RACF
security profile for a VSO structure and grant update authority to an IMS system.
The name of the protected VSO structure is DB21AR1@STRUCT@1. The IMS system
receiving update authority is VSOB06A1.
ADDUSER VSOB06A1

RDEFINE FACILITY (VSOSTR.DB21AR1@STRUCT@1) UACC(NONE)
PERMIT VSOSTR.DB21AR1@STRUCT@1 CLASS(FACILITY) ID(VSOB06A1)
ACCESS(UPDATE)
SETROPTS CLASSACT(FACILITY)

Related tasks:
“Registering a cache structure name with DBRC” on page 219

Defining a VSO DEDB cache structure name
The system programmer defines all coupling facility structures, including VSO
cache structures, in the CFRM policy definition.

In this policy definition, VSO structures are defined as cache structures, as opposed
to list structures (used by shared queues) or lock structures (used by IRLM).

Chapter 14. Fast Path database types 217

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_datasharing.htm#ims_datasharing
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_sysplexdatashar_conceptsandterms.htm#ims_sysplexdatashar_conceptsandterms

Coupling facility structure naming convention
A coupling facility structure name is 16 characters long, padded on the right with
blanks if necessary.

The name can contain any of the following, but must begin with an uppercase,
alphabetic character:

Uppercase alphabetic characters
Numeric characters
Special characters ($, @, and #)
Underscore (_)

IBM names begin with:
'SYS'
Letters 'A' through 'I' (uppercase)
An IBM component prefix

Related concepts:
“Defining a VSO DEDB area” on page 212

Examples of defining coupling facility structures
The following JCL shows how to define two structures in separate coupling
facilities.
//UPDATE EXEC PGM=IXCL2FDA
//SYSPRINT DD SYSOUT=A
//*
//* THE FOLLOWING SYSIN WILL UPDATE THE POLICY DATA IN THE COUPLE
//* DATASET FOR CFRM (COUPLING FACILITY RESOURCE MANAGEMENT)
//*
//SYSIN DD *
UPDATE DSN(IMS.DSHR.PRIME.FUNC) VOLSER(DSHR03)

DEFINE POLICY(POLICY1)

DEFINE CF(FACIL01)
ND(123456)
SIDE(0)
ID(01)
DUMPSPACE(2000)

DEFINE CF(FACIL02)
ND(123456)
SIDE(1)
ID(02)
DUMPSPACE(2000)

DEFINE STR(LIST01)
SIZE(1000)
PREFLIST(FACIL01,FACIL02)
EXCLLIST(CACHE01)

DEFINE STR(CACHE01)
SIZE(1000)
PREFLIST(FACIL02,FACIL01)
EXCLLIST(LIST01)

/*

In the example, the programmer defined one list structure (LIST01) and one cache
structure (CACHE01).

218 Database Administration

Attention: When defining a cache structure to DBRC, ensure that the name is
identical to the name used in the CFRM policy.
Related tasks:
“Registering a cache structure name with DBRC”

Registering a cache structure name with DBRC
When you define DEDB areas to DBRC, use the same structure names defined in
the CFRM policy to specify the structures that each DEDB area will use.

The DEDB area definitions and the corresponding structure names are then stored
in the RECON data set. The structure names are entered in either the CFSTR1 or
CFSTR2 parameter of the INIT.DBDS or CHANGE.DBDS command.

Restriction: The CFSTR2 parameter is not supported by multi-area structures. If
you specify both CFSTR2 and MAS in INIT.DBDS, or use CHANGE.DBDS to apply
CFSTR2 to DEDB area already defined by MAS, IMS will reject the DBRC
command with either a DSP0141I or DSP0144I error message.

The following example of the INIT.DBDS command registers structure name
TSTDEDBAR1.
Related concepts:
“Defining a VSO DEDB area” on page 212
“Examples of defining coupling facility structures” on page 218
Related tasks:
“Authorizing connections to DEDB VSO structures” on page 217

Defining a private buffer pool using the DFSVSMxx IMS.PROCLIB
member
You define a private buffer pool by specifying the DEDB statement in the
DFSVSMxx member of the IMS.PROCLIB data set.

For example, the following two statements define two private buffer pools:
DEDB=(POOL1,512,400,50,800,LKASID)
DEDB=(POOL2,8196,100,20,400,NOLKASID)

The first statement defines a pool that has a buffer size of 512, with an initial
allocation of 400 buffers, increasing by 50, as needed, to a maximum of 800. This
pool is used as a local cache, and buffer lookaside is performed for areas that share
this pool.

The second statement defines a pool that has a buffer size of 8K, with an initial
allocation of 100 buffers, increasing by 20, as needed, to a maximum of 400. This
pool is used in the same fashion as the common buffer pool. There will be no
lookaside performed.

If the customer does not define a private buffer pool, the default parameter values
are described by the following statement:
DEDB=(poolname,XXX,64,16,512)

In the above statement:
v XXX is the CI size of the area to be opened.
v The initial buffer allocation is 64.
v The secondary allocation is 16.

Chapter 14. Fast Path database types 219

v The maximum number of buffers for the pool is 512.
v The LKASID option is specified if it is specified in DBRC for the area.
Related concepts:
“Defining a VSO DEDB area” on page 212
Related reference:

Defining Fast Path DEDB buffer pools for single-area structures (System
Definition)

Defining a private buffer pool for a multi-area structure
You can define private buffer pools for multi-area structure using the DEDBMAS=
keyword in the DFSVSMxx PROCLIB member.

Except for two additional parameters, cisize and strname, the parameters of the
DEDBMAS keyword are the same as those of the DEDB= keyword in the
DFSVSMxx PROCLIB member.

The cisize parameter specifies the size of the control interval of the area. The
strname parameter specifies the name of the primary coupling facility structure.
The structure must be defined in a coupling facility resource management (CFRM)
administrative policy.
Related reference:

Defining Fast Path DEDB buffer pools for multi-area structures (System
Definition)

Acquiring and accessing data spaces for VSO DEDB areas
IMS allocates data spaces to accommodate VSO DEDB areas.

When a VSO DEDB area CI is preloaded or read for the first time, it is copied into
a data space (or a coupling facility structure). Subsequent access to the data
retrieves it from the data space rather than from DASD.

Acquiring a data space
IMS acquires data spaces for VSO areas when the VSO areas first open, but not
before.

The maximum size of any VSO area data space is two gigabytes. Data spaces for
preloaded VSO areas use the z/OS DREF (disabled reference) option. Data spaces
for non-preloaded VSO areas do not use the DREF option.

DREF data spaces use central storage, but no auxiliary storage. Data spaces
without the DREF option use central storage and auxiliary storage, if auxiliary
storage is available.

IMS acquires additional data spaces for VSO areas, both with DREF and without,
as needed.

Accessing a data space
IMS assigns areas to data spaces using a “first fit” algorithm.

The entire root addressable portion of an area (including independent overflow)
resides in the data space. The sequential dependent portion does not reside in the
data space.

220 Database Administration

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsvsmxx_proclib_fpdedb.htm#definingfastpathdedbbufferpoolsforsingle-areastructures
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsvsmxx_proclib_fpdedb.htm#definingfastpathdedbbufferpoolsforsingle-areastructures
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsvsmxx_proclib_fpdedb_multi.htm#definingfastpathdedbbufferpoolsformulti-areastructures
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsvsmxx_proclib_fpdedb_multi.htm#definingfastpathdedbbufferpoolsformulti-areastructures

The amount of space needed for an area in a data space is (CI size) × (number of CIs
per UOW) × ((number of UOWs in root addressable portion) + (number of UOWs in
independent overflow portion)) rounded to the next 4 KB.

Expressed in terms of the parameters of the DBDGEN AREA statement, this formula is
(SIZE parameter value) × (UOW parameter value) × (ROOT parameter value) rounded
to the next 4 KB.

The actual amount of space in a data space available for an area (or areas) is two
gigabytes (524,288 blocks, 4 KB each) minus an amount reserved by z/OS (from 0
to 4 KB) minus an amount used by IMS Fast Path (approximately 100 KB). You can
use the /DISPLAY FPVIRTUAL command to determine the actual storage usage of a
particular area.

During IMS control region initialization, IMS calls DBRC to request a list of all the
areas that are defined as VSO. This list includes the PREOPEN or PRELOAD status
of each VSO area. If VSO areas exist, IMS acquires the appropriate data spaces.
Then IMS opens all areas defined with PREOPEN and opens and loads areas
defined with PRELOAD. During a normal or emergency restart, the opening and
loading of areas might occur after control region initialization, if you have changed
the specifications of the FPOPN parameter in the IMS procedure.
Related concepts:
“Restrictions for using VSO DEDB areas” on page 212

Resource control and locking
Using VSO can reduce the number and duration of DEDB resource locking
contentions by managing DEDB resource requests on a segment level and holding
locks only until updated segments are returned to the data space.

Segment-level resource control and locking applies only to Get and Replace calls.

Without VSO, the VSAM CI (physical block) is the smallest available resource for
DEDB resource request management and locking. If there is an update to any part
of the CI, the lock is held until the whole CI is rewritten to DASD. No other
requester is allowed access to any part of the CI until the first requester's lock is
released.

With VSO, the database segment is the smallest available resource for DEDB
resource request management and locking. Segment-level locking is available only
for the root segment of a DEDB with a root-only structure, and when that root
segment is a fixed-length segment. If processing options R or G are specified in the
calling PCB, IMS can manage and control DEDB resource requests and serialize
change at the segment level; for other processing options, IMS maintains VSAM CI
locks. Segment locks are held only until the segment updates are applied to the CI
in the data space. Other requesters for different segments in the same CI are
allowed concurrent access.

A VSO DEDB resource request for a segment causes the entire CI to be copied into
a common buffer. VSO manages the segment request at a level of control consistent
with the request and its access intent. VSO also manages access to the CI that
contains the segment but at the share level in all cases. A different user's
subsequent request for a segment in the same CI accesses the image of the CI
already in the buffer.

Chapter 14. Fast Path database types 221

Updates to the data are applied directly to the CI in the buffer at the time of the
update. Segment-level resource control and serialization provide integrity among
multiple requesters. After an updated segment is committed and applied to the
copy of the CI in the data space, other requesters are allowed access to the
updated segment from the copy of the CI in the buffer.

If after a segment change the requester's updates are not committed for any reason,
VSO copies the unchanged image of the segment from the data space to the CI in
the buffer. VSO does not allow other requesters to access the segment until VSO
completes the process of removing the uncommitted and canceled updates.
Locking at the segment level is not supported for shared VSO areas. Only CI
locking is supported.

When a compression routine is defined on the root segment of a DEDB with a
root-only structure, and when that root segment is a fixed-length segment, its
length becomes variable after being compressed. Replacing a compressed segment
then requires a delete and an insert. In this case, segment level control and locking
is not available.

Preopen areas and VSO areas in a data sharing environment
A VSO can be registered with different share levels.

A VSO can be registered with any of the following share levels:

SHARELVL(0)
Exclusive access: in a data sharing environment, any SHARELVL(0) area
with the PREOPEN option (including VSO PREOPEN and VSO
PRELOAD) is opened by the first IMS system to complete its control
region initialization. IMS will not attempt to preopen the area for any other
IMS.

SHARELVL(1)
One updater, many readers: in a data sharing environment, a
SHARELVL(1) area with the PREOPEN option is preopened by all sharing
IMS systems. The first IMS system to complete its control region
initialization has update authorization; all others have read authorization.

If the SHARELVL(1) area is a VSO area, it is allocated to a data space by
any IMS that opens the area. If the area is defined as VSO PREOPEN or
VSO PRELOAD, it is allocated to a data space by all sharing IMS systems.

If the area is defined as VSO NOPREO NOPREL, it is allocated to a data
space by all IMS systems, as each opens the area. The first IMS to access
the area has update authorization; all others have read authorization.

SHARELVL(2)
Block-level sharing: a SHARELVL(2) area with at least one coupling facility
structure name (CFSTR1) defined is shared at the block or control interval
(CI) level within the scope of a single IRLM. Multiple IMS systems can be
authorized for update or read processing if they are using the same IRLM.

SHARELVL(3)
Block-level sharing: a SHARELVL(3) area with at least one coupling facility
structure name (CFSTR1) defined is shared at the block or control interval
(CI) level within the scope of multiple IRLMs. Multiple IMS systems can be
authorized for nonexclusive access.

222 Database Administration

Attention: Be careful when registering a VSO area as SHARELVL(1). Those
systems that receive read-only authorization never see the updates made by the
read/write system because all reads come from the data space (not from DASD,
where updates are eventually written).

Input and output processing with VSO
The way IMS uses buffers, data spaces, and DASD in response to read and update
requests when the Virtual Storage Option (VSO) is used might be different than
when VSO is not used.

The following topics provide more information.

Input processing
When an application program issues a read request to a VSO area, IMS checks to
see if the data is in the data space.

If the data is in the data space, it is copied from the data space into a common
buffer and passed back to the application. If the data is not in the data space, IMS
reads the CI from the area data set on DASD into a common buffer, copies the data
into the data space, and passes the data back to the application.

For SHARELVL(2|3) VSO areas, Fast Path uses private buffer pools. Buffer
lookaside is an option for these buffer pools. When a read request is issued against
a SHARELVL(2|3) VSO area using a lookaside pool, a check is made to see if the
requested data is in the pool. If the data is in the pool, a validity check to XES is
made. If the data is valid, it is passed back to the application from the local buffer.
If the data is not found in the local buffer pool or XES indicates that the data in
the pool is not valid, the data is read from the coupling facility structure and
passed to the application. When the buffer pool specifies the no-lookaside option,
every request for data goes to the coupling facility.

For those areas that are defined as load-on-demand (using the VSO and NOPREL
options), the first access to the CI is from DASD. The data is copied to the data
space and then subsequent reads for this CI retrieve the data from the data space
rather than from DASD. For those areas that are defined using the VSO and PRELOAD
options, all access to CIs comes from the data space.

Whether the data comes from DASD or from the data space is transparent to the
processing done by application programs.

Output processing
During phase 1 of synchronization point processing, VSO data is treated the same
as non-VSO data. The use of VSO is transparent to logging.

During phase 2 of the synchronization point processing, VSO and non-VSO data
are treated differently. For VSO data, the updated data is copied to the data space,
the lock is released and the buffer is returned to the available queue. The relative
byte address (RBA) of the updated CI is maintained in a bitmap. If the RBA is
already in the bitmap from a previous update, only one copy of the RBA is kept.
At interval timer, the updated CIs are written to DASD. This batching of updates
reduces the amount of output processing for CIs that are frequently updated.
While the updates are being written to DASD, they are still available for
application programs to read or update because copies of the data are made within
the data space just before it is written.

Chapter 14. Fast Path database types 223

For SHARELVL(2|3) VSO areas, the output thread process is used to write
updated CIs to the coupling facility structures. When the write is complete, the
lock is released. XES maintains the updated status of the data in the directory
entry for the CI.

The PRELOAD option
The loading of one area takes place asynchronously with the loading of any others.
The loading of an area is (or can be) concurrent with an application program's
accesses to that area.

If the CI requested by the application program has been loaded into the data
space, it is retrieved from the data space. If the requested CI has not yet been
loaded into the data space, it is obtained from DASD and UOW locking is used to
maintain data integrity.

The preload process for SHARELVL(2|3) VSO areas is similar to that of
SHARELVL(0|1). Multiple preloads can be run concurrently, and also concurrent
with application processing. The locking, however, is different. SHARELVL(2|3)
Areas that are loaded into coupling facility structures use CI locking instead of
UOW locking. The load process into the coupling facility is done one CI at a time.

If a read error occurs during preloading, an error message flags the error, but the
preload process continues. If a subsequent application program call accesses a CI
that was not loaded into the data space due to a read error, the CI request goes out
to DASD. If the read error occurs again, the application program receives an “A0”
status code, just as with non-VSO applications. If instead the access to DASD is
successful this time, the CI is loaded into the data space.
Related concepts:
“Read errors”

I/O error processing
Using VSO increases the availability of data when write errors occur.

When a CI for a VSO area has been put into a data space, the CI is available from
that data space as long as IMS is active, even if a write error occurs when an
update to the CI is being written to DASD.

Write errors:

When a write error occurs, IMS creates an error queue element (EQE) for the CI in
error.

For VSO areas, all read requests are satisfied by reading the data from the data
space. Therefore, as long as the area continues to reside in the data space, the CI
that had the write error continues to be available. When the area is removed from
the data space, the CI is no longer available and any request for the CI receives an
“AO” status code.

Read errors:

For VSO areas, the first access to a CI causes it to be read from DASD and copied
into the data space. From then on, all read requests are satisfied from the data
space. If there is a read error from the data space, z/OS abends.

224 Database Administration

For VSO areas that have been defined with the PRELOAD option, the data is
preloaded into the data space; therefore, all read requests are satisfied from the
data space.

To provide for additional availability, SHARELVL(2|3) VSO areas support multiple
structures per area. If a read error occurs from one of the structures, the read is
attempted from the second structure. If there is only one structure defined and a
read error occurs, an AO status code is returned to the application.

There is a maximum of three read errors allowed from a structure. When the
maximum is reached and there is only one structure defined, the area is stopped
and the structure is disconnected.

When the maximum is reached and there are two structures defined, the structure
in error is disconnected. The one remaining structure is used. If a write error to a
structure occurs, the CI in error is deleted from the structure and written to DASD.
The delete of the CI is done from the sharing partners. If none of the sharers can
delete the CI from the structure, an EQE is generated and the CI is deactivated. A
maximum of three write errors are allowed to a structure. If there are two
structures defined and one of them reaches the maximum allowed, it is
disconnected.
Related concepts:
“The PRELOAD option” on page 224

Castout thresholds for CIs in VSO areas
The castout thresholds for CIs in VSO areas are timers. When the timer expires, a
CI is cast out of the VSO area.

The castout threshold for CIs in VSO areas is a timer after which a CI is castout of
VSO areas. You can configure the thresholds for VSO areas with different number
of CIs by specifying the following parameters in the DFSDFxxx member of the IMS
PROCLIB data set under the <SECTION=FASTPATH> section:

VSO1THLD=
Specifies the castout threshold time in seconds for a VSO area with less than or
equal to 800 control intervals (CIs). The valid range is 1 - 300. The default
value is 300.

VSO2THLD=
Specifies the castout threshold time in seconds for a VSO area with 801 - 3500
CIs. The valid range is 1 - 300. The default value is 240.

VSO3THLD=
Specifies the castout threshold time in seconds for a VSO area with greater
than 3500 CIs. The valid range is 1 - 300. The default value is 180.

Related reference:

FASTPATH section of the DFSDFxxx member (System Definition)

Checkpoint processing
During a system checkpoint, all of the VSO area updates that are in the data space
are written to DASD. All of the updated CIs in the CF structures are also written
to DASD.

Only CIs that have been updated are written. Also, all updates that are in progress
are allowed to complete before checkpoint processing continues.

Chapter 14. Fast Path database types 225

|

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsdfxxx_proclib_fastpath.htm#ims_dfsdfxxx_proclib_fastpath

VSO options across IMS restart
For all types of IMS restart except XRF takeover (cold start, warm start, emergency
restart, COLDBASE, COLDCOMM and COLDSYS emergency restart), the VSO
options in effect after restart are those defined to DBRC.

In the case of the XRF takeover, the VSO options in effect after the takeover are the
same as those in effect for the active IMS prior to the failure that caused the XRF
takeover.

Emergency restart processing
Recovery of VSO areas across IMS or z/OS failures is similar to recovery of
non-VSO areas. IMS examines the log records, from a previous system checkpoint
to the end of the log, to determine if there are any committed updates that were
not written to DASD before the failure.

If any such committed updates are found, IMS will REDO them (apply the update
to the CI and write the updated CI to DASD). Because VSO updates are batched
together during normal processing, VSO areas are likely to require more REDO
processing than non-VSO areas.

During emergency restart log processing, IMS tracks VSO area updates differently
depending on the share level of the VSO area. For share levels 0 and 1, IMS uses
data spaces to track VSO area updates. For share levels 2 and 3, IMS uses a buffer
in memory to track VSO area updates.

IMS also obtains a single non-DREF data space which it releases at the end of
restart. If restart log processing is unable to get the data space or main storage
resources it needs to perform VSO REDO processing, the area is stopped and
marked as “recovery needed”.

By default, at the end of emergency restart, IMS opens areas defined with the
PREOPEN or PRELOAD options. IMS then loads areas with the PRELOAD option into a
data space or coupling facility structure. You can alter this behavior by using the
FPOPN keyword of the IMS procedure to have IMS restore all VSO DEDB areas to
their open or closed state at the time of the failure.

VSO areas without the PREOPEN or PRELOAD options are assigned to a data space
during the first access following emergency restart.

After an emergency restart, the VSO options and PREOPEN|NOPREO options in
effect for an area are those that are defined to DBRC, which may not match those
in effect at the time of the failure. For example, a non-shared VSO area removed
from virtual storage by the /VUNLOAD command before the failure, is restored to the
data space after the emergency restart. For shared VSO areas, the area remains
unloaded until the next /STA AREA command is issued for it.
Related concepts:
“Reopening DEDB areas during an emergency restart” on page 186
“VSO options with XRF”

VSO options with XRF
During the tracking and takeover phases on the alternate IMS, log records are
processed in the same manner as during active IMS emergency restart (from a
previous active system checkpoint to the end of the log).

226 Database Administration

The alternate IMS uses the log records to determine which areas have committed
updates that were not written to DASD before the failure of the active IMS. If any
such committed updates are found, the alternate will REDO them, following the
same process as for active IMS emergency restart.

During tracking, the alternate uses data spaces to track VSO area updates: in
addition to the data space resources used for VSO areas, the alternate obtains a
single non-DREF data space which it releases at the end of takeover. If XRF
tracking or takeover is unable to get the data space or main storage resources it
needs to perform VSO REDO processing, the area is stopped and marked
“recovery needed”.

Following an XRF takeover, areas that were open or in the data space remain open
or in the data space. The VSO options and PREOPEN|NOPREO options that were
in effect for the active IMS before the takeover remain in effect on the alternate (the
new active) after the takeover. Note that these options may not match those
defined to DBRC. For example, a VSO area removed from virtual storage by the
/VUNLOAD command before the takeover is not restored to the data space after
the takeover.

VSO areas defined with the preload option are preloaded at the end of the XRF
takeover. In most cases, dependent regions can access the area before preloading
begins, but until preloading completes, some area read requests may have to be
retrieved from DASD.
Related concepts:
“Emergency restart processing” on page 226

Fast Path synchronization points
MSDBs and DEDBs are not updated during application program processing, but
the updates are kept in buffers until a sync point. Output messages are not sent
until the message response is logged.

The Fast Path sync point is defined as the next GU call for a message-driven
program, or a SYNC or CHKP call for a BMP using Fast Path facilities.

Sync point processing occurs in two phases.
Related concepts:
“Mixed mode processing” on page 204

Phase 1 - build log record
DEDB updates and verified MSDB records are written in system log records. All
DEDB updates for the current sync point are chained together as a series of log
records. Resource contentions, deadlocks, out-of-space conditions, and MSDB
verify failures are discovered here.

Phase 2 - write record to system log
Database and message records are written to the IMS system log. After logging,
MSDB records are updated, the DEDB updates begin, and messages are sent to the
terminals.

DEDB updates are applied with a type of asynchronous processing called an
output thread. Until the DEDB changes are made, any program that tries to access
unwritten segments is put in a wait state.

Chapter 14. Fast Path database types 227

If, during application processing, a Fast Path program issues a call to a database
other than MSDB or DEDB, or to an alternate PCB, the processing is serialized
with full function events. This can affect the performance of the Fast Path program.
In the case of a BMP or MPP making a call to a Fast Path database, the Fast Path
resources are held, and the throughput for Fast Path programs needing these
resources can be affected.

Managing I/O errors and long wait times
When a database write I/O error occurs in single area data sets (ADS), IMS copies
the buffer contents of the error control interval (CI) to a virtual buffer. A
subsequent DL/I request causes the error CI to be read back into the buffer pool.

The write error information and buffers are maintained across restarts, allowing
recovery to be deferred to a convenient time. I/O error retry is automatically
performed at database close time and at system checkpoint. If the retry is
successful, the error condition no longer exists and recovery is not needed.

When a database read I/O error occurs, IMS creates a non-permanent EQE
associated with the area data set (ADS) recording the RBA of the error. If there are
other ADSs available, IMS retries the read using a different ADS. If there is only a
single ADS, or if the read fails on all ADSs, the application program receives an
'AO' status code. The presence of the EQE prevents subsequent access to the same
CI in this ADS. Any attempt to access the CI receives an immediate I/O error
indication.

For MADS, the I/O is attempted against a different ADS. Up to three distinct I/O
errors can be recorded per ADS. On the fourth error, IMS internally stops the ADS.
If this is the only ADS for the area, the area is stopped.

EQEs are temporary and do not persist across IMS restarts or the opening and
closing of an area. EQEs are not recorded in DBRC or in the DMAC on DASD. A
write error eliminates the read EQEs and resets the counter.

The process to create the read EQE also reads the DMAC (second CI) from DASD.
If the DMAC read fails, which it might if the failure is device level, IMS internally
stops the ADS. ADS stop processing involves a physical close of the area, which
involves a DMAC (second CI) write. If this process fails, and the ADS being closed
is the only ADS for the area, the area is stopped and flagged in DBRC as 'recovery
needed'.

Multiple Area Data Sets I/O Timing (MADSIOT) helps you avoid the excessively
long wait times (also known as a long busy) that can occur while a RAMAC disk
array performs internal recovery processing.

Restriction: MADSIOT applies only to multiple area data sets (MADS). For single
area data sets (ADS), IMS treats the long busy condition as a permanent I/O error
handled by the Fast Path I/O toleration function. The MADSIOT function works
only on a system that supports the long busy state.

To invoke MADSIOT, you must define the MADSIOT keyword on the DFSVSMxx
PROCLIB member. The /STA MADSIOT and /DIS AREA MADSIOT commands
serve to start and monitor the MADSIOT function.

Additionally, MADSIOT requires the use of a Coupling Facility (CFLEVEL=1 or
later) list structure in a sysplex environment. MADSIOT uses this Coupling Facility

228 Database Administration

to store information required for DB recovery. You must use the CFRM policy to
define the list structure name, size, attributes, and location.

The following table shows the required CFRM list structure storage sizes when
CFLEVEL=12 and the number of changed CIs is 1 000, 5 000, 20 000, and 30 000.
The storage sizes differ at different CFLEVELs.

Table 56. Required CFRM list structure storage sizes for CFLEVEL=12

Altered number of CIs
(entrynum)

Required storage size (listheadernum=50)

1 000 1 792 KB

5 000 3 584 KB

20 000 11 008 KB

30 000 15 616 KB

You can estimate CFRM list structure storage sizes tailored to your installation
using an online tool: the IBM System z Coupling Facility Structure Sizer Tool
(CFSizer). CFSizer is available for you to use at the following website:
www.ibm.com/servers/eserver/zseries/cfsizer/, or search for “CFSizer” at the
IBM website: www.ibm.com.
Related tasks:

Defining the CFRM policy (System Administration)
Related reference:

/START MADSIOT command (Commands)

/DISPLAY AREA command (Commands)

DFSVSMxx member of the IMS PROCLIB data set (System Definition)

Registering Fast Path databases in DBRC
Although Fast Path databases are not required to be registered in DBRC in order
for the error handling to work, registration is highly recommended. In some
situations, registration is required.

If an error occurs on a database that is not registered and the system stops, the
database could be damaged if the system is restarted and a /DBR command is not
issued before accessing the database. The restart causes the error buffers to be
restored as they were when the system stopped.

In the following situations, Fast Path databases must be registered to DBRC:
v Virtual Storage Option (VSO)
v Preopening DEDB areas
v Preloading a VSO DEDB area control interval (CI)
v High speed sequential processing (HSSP) image copy (IC)
v Multiple area data set (MADS)
v Full segment logging
v Database quiesce
v Data sharing
v Shared Virtual Storage Option (SVSO) areas that reside on a z/OS coupling

facility structure

Chapter 14. Fast Path database types 229

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_definingcfrmpolicy.htm#ims_definingcfrmpolicy
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_startmadsiot.htm#ims_cr2smadsiot
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_displayarea.htm#ims_cr1displayarea
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsvsmxx_proclib.htm#ims_dfsvsmxx_proclib

230 Database Administration

Chapter 15. Creating logical relationships

Logical relationships resolve conflicts in the way application programs need to
view segments in the database.

With logical relationships, application programs can access:
v Segment types in an order other than the one defined by the hierarchy
v A data structure that contains segments from more than one physical database.

An alternative to using logical relationships to resolve the different needs of
applications is to create separate databases or carry duplicate data in a single
database. However, in both cases this creates duplicate data. Avoid duplicate data
because:
v Extra maintenance is required when duplicate data exists because both sets of

data must be kept up to date. In addition, updates must be done simultaneously
to maintain data consistency.

v Extra space is required on DASD to hold duplicate data.

By establishing a path between two segment types, logical relationships eliminate
the need to store duplicate data.

To establish a logical relationship, three segment types are always defined:
A physical parent
A logical parent
A logical child

The following database types support logical relationships:
v HISAM
v HDAM
v PHDAM
v HIDAM
v PHIDAM

Two databases, one for orders that a customer has placed and one for items that
can be ordered, are called ORDER and ITEM. The ORDER database contains
information about customers, orders, and delivery. The ITEM database contains
information about inventory.

If an application program needs data from both databases, this can be done by
defining a logical relationship between the two databases. As shown in the
following figure, a path can be established between the ORDER and ITEM
databases using a segment type, called a logical child segment, that points into the
ITEM database. The following figure shows a simple implementation of a logical
relationship. In this case, ORDER is the physical parent of ORDITEM. ORDITEM is
the physical child of ORDER and the logical child of ITEM.

In a logical relationship, there is a logical parent segment type and it is the
segment type pointed to by the logical child. In this example, ITEM is the logical
parent of ORDITEM. ORDITEM establishes the path or connection between the
two segment types. If an application program now enters the ORDER database, it

© Copyright IBM Corp. 1974, 2016 231

can access data in the ITEM database by following the pointer in the logical child
segment from the ORDER to the ITEM database.

The physical parent and logical parent are the two segment types between which
the path is established. The logical child is the segment type that establishes the
path. The path established by the logical child is created using pointers.
Related concepts:
“Adding logical relationships” on page 701

Secondary indexes versus logical relationships
Both secondary indexes and logical relationships provide logical data structures,
which are hierarchical data structures that are different from the data structure
represented by the physical DBD. The decision about which type to use is based
primarily on how application programs need to process the data. Fast Path
supports only secondary indexes.

When to use a secondary index

In analyzing application requirements, if more than one candidate exists for the
sequence field of a segment, use a secondary index. Choose one sequence field to
be defined in the physical DBD. Then set up a secondary index to allow processing
of the same segment in another sequence. For the example shown in the following
figure, access the customer segment that follows in both customer number
(CUSTNO) and customer name (CUSTNAME) sequence. To do this, define
CUSTNO as the sequence field in the physical DBD and then define a secondary
index that processes CUSTOMER segments in CUSTNAME sequence.

ORDER
database

ORDER

123

ORDITEM

BOLT

ITEM
database

ITEM

BOLT

Physical parent
of ORDITEM

Physical child of
ORDER and
logical child of
ITEM

Logical parent
of ORDITEM

Figure 69. A simple logical relationship

Figure 70. Fields in the CUSTOMER segment

232 Database Administration

When to use a logical relationship

If you have applications such as a bill-of-materials using a recursive structure, use
a logical relationship. A recursive structure exists when there is a many-to-many
association between two segments in the same physical hierarchy. For example, in
the segments shown in the following figure, the assembly “car” is composed of
many parts, one of which is an engine. However, the engine is itself an assembly
composed of many parts.

Finally, you can have application requirements that result in a segment that
appears to have two parents. In the example shown in the following figure, the
customer database keeps track of orders (CUSTORDN). Each order can have one or
more line items (ORDLINE), with each line item specifying one product (PROD)
and model (MODEL). In the product database, many outstanding line item
requests can exist for a given model. This type of relationship is called a
many-to-many relationship and is handled in IMS through a logical relationship.

Related concepts:
“Recursive structures: same database logical relationships” on page 254

Figure 71. Assembly and parts as examples to demonstrate segments logical relationship

Figure 72. Example of a segment that appears to have two parents

Chapter 15. Creating logical relationships 233

Logical relationship types
Three types of logical relationships are discussed in this topic.

The three types of logical relationships are:
Unidirectional logical relationships
Bidirectional physically paired logical relationships
Bidirectional virtually paired logical relationships

Unidirectional logical relationships

A unidirectional relationship links two segment types, a logical child and its logical
parent, in one direction. A one-way path is established using a pointer in the
logical child. The following figure shows a unidirectional relationship that has been
established between the ORDER and ITEM databases. A unidirectional relationship
can be established between two segment types in the same or different databases.
Typically, however, a unidirectional relationship is created between two segment
types in different databases. In the figure, the logical relationship can be used to
cross from the ORDER to the ITEM database. It cannot be used to cross from the
ITEM to the ORDER database, because the ITEM segment does not point to the
ORDER database.

It is possible to establish two unidirectional relationships, as shown in the
following figure. Then either physical database can be entered and the logical child
in either can be used to cross to the other physical database. However, IMS treats

ORDER
database

ITEM
database

ORDER

578

ORDITEM

CLIPS

Physical parent
of ORDITEM

Physical children
of ORDER and
logical children
of ITEM

ORDITEM

NAILS

ORDITEM

SCREWS

ITEM

CLIPS

ITEM

NAILS

ITEM

SCREWS

Logical parents
of ORDITEM

Figure 73. Unidirectional logical relationship

234 Database Administration

each unidirectional relationship as a one-way path. It does not maintain data on
both paths. If data in one database is inserted, deleted, or replaced, the
corresponding data in the other database is not updated. If, for example, DL/I
replaces ORDITEM-SCREWS under ORDER-578, ITEMORD-578 under
ITEM-SCREWS is not replaced. This maintenance problem does not exist in both
bidirectional physically paired-logical and bidirectional virtually paired-logical
relationships. Both relationship types are discussed next. IMS allows either physical
database to be entered and updated and automatically updates the corresponding
data in the other database.

Bidirectional physically paired logical relationship

A bidirectional physically paired relationship links two segment types, a logical
child and its logical parent, in two directions. A two-way path is established using
pointers in the logical child segments. The following figure shows a bidirectional

ORDER
database

Physical parents
of ORDITEM
and logical parent
of ITEMORD

Physical children
of ORDER and
logical children
of ITEM

ORDER

578

ORDITEM

SCREWS

ORDITEM

NAILS

ORDER

200

ORDITEM

NAILS

ITEM

NAILS

ITEMORD

200

ITEMORD

578

ITEM
database

Physical parents of
ITEMORD and
logical parent
of ORDITEM

Physical children of
ITEM and
logical children
of ORDER

ITEMORD

578

ITEM

SCREWS

Figure 74. Two unidirectional logical relationships

Chapter 15. Creating logical relationships 235

physically paired logical relationship that has been established between the
ORDER and ITEM databases.

Like the other types of logical relationships, a physically paired relationship can be
established between two segment types in the same or different databases. The
relationship shown in the figure above allows either the ORDER or the ITEM
database to be entered. When either database is entered, a path exists using the
logical child to cross from one database to the other.

In a physically paired relationship, a logical child is stored in both databases.
However, if the logical child has dependents, they are only stored in one database.
For example, IMS maintains data in both paths in physically paired relationships.
In the figure above, if ORDER 123 is deleted from the ORDER database, IMS
deletes from the ITEM database all ITEMORD segments that point to the ORDER
123 segment. If data is changed in a logical child segment, IMS changes the data in

ORDER
database

Physical parents
of ORDITEM
and logical parents
of ITEMORD

Physical children
of ORDER and
logical children
of ITEM

ORDER

123

ORDITEM

BOLT

ORDITEM

WASHER

ITEM

BOLT

ITEMORD

123

ITEM

WASHER

ITEMORD

123

ITEM
database

Physical parents of
ITEMORD and
logical parents
of ORDITEM

Physical children of
ITEM and
logical children
of ORDER

Figure 75. Bidirectional physically paired logical relationship

236 Database Administration

its paired logical child segment. Or if a logical child segment is inserted into one
database, IMS inserts a paired logical child segment into the other database.

With physical pairing, the logical child is duplicate data, so there is some increase
in storage requirements. In addition, there is some extra maintenance required
because IMS maintains data on two paths. In the next type of logical relationship
examined, this extra space and maintenance do not exist; however, IMS still allows
you to enter either database. IMS also performs the maintenance for you.

Bidirectional virtually paired logical relationship

A bidirectional virtually paired relationship is like a bidirectional physically paired
relationship in that:
v It links two segment types, a logical child and its logical parent, in two

directions, establishing a two-way path.
v It can be established between two segment types in the same or different

databases.

The figure below shows a bidirectional virtually paired relationship between the
ORDER and ITEM databases. Note that although there is a two-way path, a logical
child segment exists only in the ORDER database. Going from the ORDER to the
ITEM database, IMS uses the pointer in the logical child segment. Going from the
ITEM to the ORDER database, IMS uses the pointer in the logical parent, as well as
the pointer in the logical child segment.

ORDER
database

Physical parent
of ORDITEM

Physical children
of ORDER and
logical children
of ITEM

ORDER

123

ORDITEM

BOLT

ORDITEM

WASHER

ITEM

BOLT

ITEM

WASHER

ITEM
database

Logical parents
of ORDITEM

Figure 76. Bidirectionally virtually paired logical relationship

Chapter 15. Creating logical relationships 237

To define a virtually paired relationship, two logical child segment types are
defined in the physical databases involved in the logical relationship. Only one
logical child is actually placed in storage. The logical child defined and put in
storage is called the real logical child. The logical child defined but not put in
storage is called the virtual logical child.

IMS maintains data in both paths in a virtually paired relationship. However,
because there is only one logical child segment, maintenance is simpler than it is in
a physically paired relationship. When, for instance, a new ORDER segment is
inserted, only one logical child segment has to be inserted. For a replace, the data
only has to be changed in one segment. For a delete, the logical child segment is
deleted from both paths.

Note the trade-off between physical and virtual pairing. With virtual pairing, there
is no duplicate logical child and maintenance of paired logical children. However,
virtual pairing requires the use and maintenance of additional pointers, called
logical twin pointers.
Related reference:
“LCHILD segment type format” on page 73

Logical relationship pointer types
In all logical relationships the logical child establishes a path between two segment
types. The path is established by use of pointers.

For HALDB databases, consider the following:
v Logical relationships are not allowed between HALDB databases and

non-HALDB databases.
v Direct pointers and indirect pointers are used.
v Unidirectional relationships and bidirectional, physically paired relationships are

supported for HALDB databases.
v Physical parent pointers are always present in PHDAM and PHIDAM segments.

Logical parent pointer

The pointer from the logical child to its logical parent is called a logical parent (LP)
pointer. This pointer must be a symbolic pointer when it is pointing into a HISAM
database. It can be either a direct or a symbolic pointer when it is pointing into an
HDAM or a HIDAM database. PHDAM or PHIDAM databases require direct
pointers.

A direct pointer consists of the direct address of the segment being pointed to, and
it can only be used to point into a database where a segment, once stored, is not
moved. This means the logical parent segment must be in an HD (HDAM,
PHDAM, HIDAM, or PHIDAM) database, since the logical child points to the
logical parent segment. The logical child segment, which contains the pointer, can
be in a HISAM or an HD database except in the case of HALDB. In the HALDB
case, the logical child segment must be in an HD (PHDAM or PHIDAM) database.
A direct LP pointer is stored in the logical child's prefix, along with any other
pointers, and is four bytes long. The following figure shows the use of a direct LP
pointer. In a HISAM database, pointers are not required between segments because
they are stored physically adjacent to each other in hierarchical sequence.
Therefore, the only time direct pointers will exist in a HISAM database is when

238 Database Administration

there is a logical relationship using direct pointers pointing into an HD database.

In the preceding figure, the direct LP pointer points from the logical child
ORDITEM to the logical parent ITEM. Because it is direct, the LP pointer can only
point to an HD database. However, the LP pointer can “exist” in a HISAM or an
HD database. The LP pointer is in the prefix of the logical child and consists of the
4-byte direct address of the logical parent.

A symbolic LP pointer, which consists of the logical parent's concatenated key
(LPCK), can be used to point into a HISAM or HD database. The following figure
illustrates how to use a symbolic LP pointer. The logical child ORDITEM points to
the ITEM segment for BOLT. BOLT is therefore stored in ORDITEM in the LPCK. A
symbolic LP pointer is stored in the first part of the data portion in the logical
child segment.

ORDITEM

ITEM

ORDER
123

Physical parent
of ORDITEM

Logical parent
of ORDITEM

Logical child

ORDER database

ITEM database

Prefix Data

LP

Figure 77. Direct logical parent (LP) pointer

Chapter 15. Creating logical relationships 239

Note: The LPCK part of the logical child segment is considered non-replaceable
and is not checked to see whether the I/O area is changed. When the LPCK is
virtual, checking for a change in the I/O area causes a performance problem.
Changing the LPCK in the I/O area does not cause the REPL call to fail. However,
the LPCK is not changed in the logical child segment.

With symbolic pointers, if the database the logical parent is in is HISAM or
HIDAM, IMS uses the symbolic pointer to access the index to find the correct
logical parent segment. If the database containing the logical parent is HDAM, the
symbolic pointer must be changed by the randomizing module into a block and
RAP address to find the logical parent segment. IMS accesses a logical parent faster
when direct pointing is used.

Although the figures show the LP pointer in a unidirectional relationship, it works
exactly the same way in all three types of logical relationships.

The following figure shows an example of a symbolic logical parent pointer.

240 Database Administration

In the preceding figure, the symbolic LP pointer points from the logical child
ORDITEM to the logical parent ITEM. With symbolic pointing, the ORDER and
ITEM databases can be either HISAM or HD. The LPCK, which is in the first part
of the data portion of the logical child, functions as a pointer from the logical child
to the logical parent, and is the pointer used in the logical child.

Logical child pointer

Logical child pointers are only used in logical relationships with virtual pairing.
When virtual pairing is used, there is only one logical child on DASD, called the
real logical child. This logical child has an LP pointer. The LP pointer can be
symbolic or direct. In the ORDER and ITEM databases you have seen, the LP
pointer allows you to go from the database containing the logical child to the
database containing the logical parent. To enter either database and cross to the
other with virtual pairing, you use a logical child pointer in the logical parent. Two
types of logical child pointers can be used:

ORDITEM

ITEM

ORDER
123

Physical parent
of ORDITEM

Logical parent
of ORDITEM

Logical child

ORDER database

ITEM database

Prefix Data

LPCK

BOLT

Index or
randomizing

module

Figure 78. Symbolic logical parent (LP) pointer

Chapter 15. Creating logical relationships 241

v Logical child first (LCF) pointers, or
v The combination of logical child first (LCF) and logical child last (LCL) pointers

The LCF pointer points from a logical parent to the first occurrence of each of its
logical child types. The LCL pointer points to the last occurrence of the logical
child segment type for which it is specified. A LCL pointer can only be specified in
conjunction with a LCF pointer. The following figure shows the use of the LCF
pointer. These pointers allow you to cross from the ITEM database to the logical
child ORDITEM in the ORDER database. However, although you are able to cross
databases using the logical child pointer, you have only gone from ITEM to the
logical child ORDITEM. To go to the ORDER segment, use the physical parent
pointer.

LCF and LCL pointers are direct pointers. They contain the 4-byte direct address of
the segment to which they point. This means the logical child segment, the
segment being pointed to, must be in an HD database. The logical parent can be in
a HISAM or HD database. If the logical parent is in a HISAM database, the logical
child segment must point to it using a symbolic pointer. LCF and LCL pointers are
stored in the logical parent's prefix, along with any other pointers. The following
figure shows an LCF pointer.

242 Database Administration

In the preceding figure, the LCF pointer points from the logical parent ITEM to the
logical child ORDITEM. Because it is a direct pointer, it can only point to an HD
database, although, it can exist in a HISAM or an HD database. The LCF pointer is
in the prefix of the logical parent and consists of the 4-byte RBA of the logical
child.

Physical parent pointer

Physical parent (PP) pointers point from a segment to its physical parent. They are
generated automatically by IMS for all HD databases involved in logical
relationships. PP pointers are put in the prefix of all logical child and logical parent
segments. They are also put in the prefix of all segments on which a logical child

ORDITEM

123

Physical parent
of ORDITEM

Logical parent
of ORDITEM

ORDER database

ITEM Database

Prefix Data

LP

Real logical
child

Prefix Data

LCF

ORDER
123

ITEM

Figure 79. Logical child first (LCF) pointer (used in virtual pairing only)

Chapter 15. Creating logical relationships 243

or logical parent segment is dependent in its physical database. This creates a path
from a logical child or its logical parent back up to the root segment on which it is
dependent. Because all segments on which a logical child or logical parent is
dependent are chained together with PP pointers to a root, access to these
segments is possible in reverse of the usual order.

In the preceding figure, you saw that you could cross from the ITEM to the
ORDER database when virtual pairing was used, and this was done using logical
child pointers. However, the logical child pointer only got you from ITEM to the
logical child ORDITEM. The following figure shows how to get to ORDER. The PP
pointer in ORDITEM points to its physical parent ORDER. If ORDER and ITEM
are in an HD database but are not root segments, they (and all other segments in
the path of the root) would also contain PP pointers to their physical parents.

PP pointers are direct pointers. They contain the 4-byte direct address of the
segment to which they point. PP pointers are stored in a logical child or logical
parent's prefix, along with any other pointers.

In the preceding figure, the PP pointer points from the logical child ORDITEM to
its physical parent ORDER. It is generated automatically by IMS for all logical
child and logical parent segments in HD databases. In addition, it is in the prefix
of the segment that contains it and consists of the 4-byte direct address of its
physical parent. PP pointers are generated in all segments from the logical child or
logical parent back up to the root.

Logical twin pointer

Logical twin pointers are used only in logical relationships with virtual pairing.
Logical twins are multiple logical child segments that point to the same occurrence
of a logical parent. Two types of logical twin pointers can be used:
v Logical twin forward (LTF) pointers, or
v The combination of logical twin forward (LTF) and logical twin backward (LTB)

pointers

An LTF pointer points from a specific logical twin to the logical twin stored after
it. An LTB pointer can only be specified in conjunction with an LTF pointer. When

ORDER

ORDER database ITEM database

Logical

parent

Physical

parent

Real logical

child

LCF

Prefix Data

ITEM

PP LP ORDITEM

Prefix Data

Figure 80. Physical parent (PP) pointer

244 Database Administration

specified, an LTB points from a given logical twin to the logical twin stored before
it. Logical twin pointers work in a similar way to the physical twin pointers used
in HD databases. As with physical twin backward pointers, LTB pointers improve
performance on delete operations. They do this when the delete that causes DASD
space release is a delete from the physical access path. Similarly, PTB pointers
improve performance when the delete that causes DASD space release is a delete
from the logical access path.

The following figure shows use of the LTF pointer. In this example, ORDER 123
has two items: bolt and washer. The ITEMORD segments beneath the two ITEM
segments use LTF pointers. If the ORDER database is entered, it can be crossed to
the ITEMORD segment for bolts in the ITEM database. Then, to retrieve all items
for ORDER 123, the LTF pointers in the ITEMORD segment can be followed. In the
following figure only one other ITEMORD segment exists, and it is for washers.
The LTF pointer in this segment, because it is the last twin in the chain, contains
zeros.

LTB pointers on dependent segments improve performance when deleting a real
logical child in a virtually paired logical relationship. This improvement occurs
when the delete is along the physical path.

LTF and LTB pointers are direct pointers. They contain the 4-byte direct address of
the segment to which they point. This means LTF and LTB pointers can only exist
in HD databases. The following figure shows a LTF pointer.

Chapter 15. Creating logical relationships 245

In the preceding figure, the LTF pointer points from a specific logical twin to the
logical twin stored after it. In this example, it points from the ITEMORD segment
for bolts to the ITEMORD segment for washers. Because it is a direct pointer, the
LTF pointer can only point to an HD database. The LTF pointer is in the prefix of a
logical child segment and consists of the 4-byte RBA of the logical twin stored after
it.

Indirect pointers

HALDB databases (PHDAM, PHIDAM, and PSINDEX databases) use direct and
indirect pointers for pointing from one database record to another database record.
The following figure shows how indirect pointers are used.

ITEM

PP LTF LP ITEMORD

ORDER database

ITEM database

Logical

parent

Physical

parent 1

Real logical

child 1

LCF ORDER
123

Bolt

ITEM
Physical

parent 2Washer

PP LTF LP ITEMORD Real logical

child 2

00

Figure 81. Logical twin forward (LTF) pointer (used in virtual pairing only)

246 Database Administration

The use of indirect pointers prevents the problem of misdirected pointers that
would otherwise occur when a database is reorganized.

The repository for the indirect pointers is the indirect list data set. The misdirected
pointers after reorganization are self-healing using indirect pointers.
Related concepts:
“The HALDB self-healing pointer process” on page 664

Paths in logical relationships
The relationship between physical parent and logical child in a physical database
and the LP pointer in each logical child creates a physical parent to logical parent
path.

To define use of the path, the logical child and logical parent are defined as a
concatenated segment type that is a physical child of the physical parent, as shown
in the following figure. Definition of the path and the concatenated segment type
is done in what is called a logical database.

EPS

Partition ID

Reorg # = 3

RBA

ILK

...

ILE

ILK

Segment code

Partition ID

Current reorg # = 3

Current RBA

ILDS

KSDS

Segment B

Segment A

EPS

ILE

Current reorg #
= 3

Figure 82. Self-healing pointers

Chapter 15. Creating logical relationships 247

In addition, when LC pointers are used in the logical parent and logical twin and
PP pointers are used in the logical child, a logical parent to physical parent path is
created. To define use of the path, the logical child and physical parent are defined
as one concatenated segment type that is a physical child of the logical parent, as
shown in the following figure. Again, definition of the path is done in a logical
database.

When use of a physical parent to logical parent path is defined, the physical parent
is the parent of the concatenated segment type. When an application program

Figure 83. Defining a physical parent to logical parent path in a logical database

Figure 84. Defining a logical parent to physical parent path in a logical database

248 Database Administration

retrieves an occurrence of the concatenated segment type from a physical parent,
the logical child and its logical parent are concatenated and presented to the
application program as one segment. When use of a logical parent to physical
parent path is defined, the logical parent is the parent of the concatenated segment
type. When an application program retrieves an occurrence of the concatenated
segment type from a logical parent, an occurrence of the logical child and its
physical parent are concatenated and presented to the application program as one
segment.

In both cases, the physical parent or logical parent segment included in the
concatenated segment is called the destination parent. For a physical parent to
logical parent path, the logical parent is the destination parent in the concatenated
segment. For a logical parent to physical parent path, the physical parent is the
destination parent in the concatenated segment.
Related tasks:
“Specifying logical relationships in the logical DBD” on page 263

The logical child segment
When defining a logical child in its physical database, the length specified for it
must be large enough to contain the concatenated key of the logical parent.

Any length greater than that required for the concatenated key of the logical parent
can be used to store intersection data, a type of data that is unique to a particular
logical relationship.

To identify which logical parent is pointed to by a logical child, the concatenated
key of the logical parent must be present. Each logical child segment must be
present in the application program's I/O area when the logical child is initially
presented for loading into the database. However, if the logical parent is in an HD
database, its concatenated key might not be written to storage when the logical
child is loaded. If the logical parent is in a HISAM database, a logical child in
storage must contain the concatenated key of its logical parent.

For logical child segments, you can define a special operand on the PARENT=
parameter of the SEGM statement. This operand determines whether a symbolic
pointer to the logical parent is stored as part of the logical child segment on the
storage device. If PHYSICAL is specified, the concatenated key of the logical parent
is stored with each logical child segment. If VIRTUAL is specified, only the
intersection data portion of each logical child segment is stored.

When a concatenated segment is retrieved through a logical database, it contains
the logical child segment, which consists of the concatenated key of the destination
parent, followed by any intersection data. In turn, this is followed by data in the
destination parent. The following figure shows the format of a retrieved
concatenated segment in the I/O area. The concatenated key of the destination
parent is returned with each concatenated segment to identify which destination
parent was retrieved. IMS gets the concatenated key from the logical child in the
concatenated segment or by constructing the concatenated key. If the destination
parent is the logical parent and its concatenated key has not been stored with the
logical child, IMS constructs the concatenated key and presents it to the application
program. If the destination parent is the physical parent, IMS must always
construct its concatenated key.

Chapter 15. Creating logical relationships 249

Related concepts:
“Intersection data” on page 251
Related reference:
“LCHILD segment type format” on page 73

Segment prefix information for logical relationships
You should be aware of two things regarding the prefix of a segment involved in a
logical relationship.

First, IMS places pointers in the prefix in a specific sequence and, second, IMS
places a counter in the prefix for logical parents that do not have logical child
pointers.

Sequence of pointers in a segment's prefix

When a segment contains more than one type of pointer and is involved in a
logical relationship, pointers are put in the segment's prefix in the following
sequence:
1. HF
2. HB
3. PP
4. LTF
5. LTB
6. LP

Or:
1. TF
2. TB
3. PP
4. LTF
5. LTB
6. LP
7. PCF
8. PCL

Or:
1. TF
2. TB
3. PP

Destination parent segmentLogical child segment

Destination parent

concatenated key

Intersection

data

Destination

parent segment

Figure 85. Format of a concatenated segment returned to user I/O area

250 Database Administration

4. PCF
5. PCL
6. EPS

Multiple PCF and PCL pointers can exist in a segment type; however, more than
one of the other types of pointers can not.

Counter used in logical relationships

IMS puts a 4-byte counter in all logical parents that do not have logical child
pointers. The counter is stored in the logical parent's prefix and contains a count of
the number of logical children pointing to this logical parent. The counter is
maintained by IMS and is used to handle delete operations properly. If the count is
greater than zero, the logical parent cannot be deleted from the database because
there are still logical children pointing to it.

Intersection data
When two segments are logically related, data can exist that is unique to only that
relationship.

In the following figure, for example, one of the items ordered in ORDER 123 is
5000 bolts. The quantity 5000 is specific to this order (ORDER 123) and this item
(bolts). It does not belong to either the order or item on its own. Similarly, in
ORDER 123, 6000 washers are ordered. Again, this data is concerned only with
that particular order and item combination.

This type of data is called intersection data, since it has meaning only for the
specific logical relationship. The quantity of an item could not be stored in the
ORDER 123 segment, because different quantities are ordered for each item in
ORDER 123. Nor could it be stored in the ITEM segment, because for each item
there can be several orders, each requesting a different quantity. Because the logical
child segment links the ORDER and ITEM segments together, data that is unique
to the relationship between the two segments can be stored in the logical child.

The two types of intersection data are: fixed intersection data and variable
intersection data.

Fixed intersection data

Data stored in the logical child is called fixed intersection data. When symbolic
pointing is used, it is stored in the data part of the logical child after the LPCK.
When direct pointing is used, it is the only data in the logical child segment.
Because symbolic pointing is used in the following figure, BOLT and WASHER are
the LPCK, and the 5000 and 6000 are the fixed intersection data. The fixed
intersection data can consist of several fields, all of them residing in the logical
child segment.

Chapter 15. Creating logical relationships 251

Variable intersection data

Variable intersection data is used when you have data that is unique to a
relationship, but several occurrences of it exist. For example, suppose you cannot
supply in one shipment the total quantity of an item required for an order. You
need to store delivery data showing the quantity delivered on a specified date. The
delivery date is not dependent on either the order or item alone. It is dependent on
a specific order-item combination. Therefore, it is stored as a dependent of the
logical child segment. The data in this dependent of the logical child is called
variable intersection data. For each logical child occurrence, there can be as many
occurrences of dependent segments containing intersection data as you need.

The following figure shows variable intersection data. In the ORDER 123 segment
for the item BOLT, 3000 were delivered on March 2 and 1000 were delivered on
April 2. Because of this, two occurrences of the DELIVERY segment exist. Multiple
segment types can contain intersection data for a single logical child segment. In
addition to the DELIVERY segment shown in the figure, note the SCHEDULE
segment type. This segment type shows the planned shipping date and the number
of items to be shipped. Segment types containing variable intersection data can all
exist at the same level in the hierarchy as shown in the figure, or they can be
dependents of each other.

ORDITEM

Washer QTY-ORDER

6000

ITEM

ORDITEM

ORDER database ITEM database

Bolt

ORDER

123

ITEM

Washer

Bolt QTY-ORDER

5000

LPCK Fixed intersection data

Figure 86. Fixed intersection data

252 Database Administration

Fixed intersection data, variable intersection data, and physical
pairing

In the previous figures, intersection data has been stored in a unidirectional logical
relationship. It works exactly the same way in the two bidirectional logical
relationships. However, when physical pairing is used, variable intersection data
can only be stored on one side of the relationship. It does not matter on which side
it is stored. An application program can access it using either the ORDER or ITEM
database. Fixed intersection data must be stored on both sides of the relationship
when physical pairing is used. IMS automatically maintains the fixed intersection
data on both sides of the relationship when it is changed on one side. However,
extra time is required for maintenance, and extra space is required on DASD for
fixed intersection data in a physically paired relationship.
Related concepts:
“The logical child segment” on page 249

ITEM

ORDITEM

ORDER Database ITEM Database

Bolt

ORDER

123

Bolt 5000

LPCK Fixed intersection data

DELIVERY

DELDAT

040210

DELQTY

1000

Variable intersection data

Variable intersection data

SCHEDULE

SCHEDAT

060710

SCHEQTY

500

DELIVERY

DELDAT

030210

DELQTY

3000

Figure 87. Variable intersection data

Chapter 15. Creating logical relationships 253

Recursive structures: same database logical relationships
Logical relationships can be established between segments in two or more physical
databases. Logical relationships can also be established between segments in the
same database. The logical data structure that results is called a recursive structure.

Most often, recursive structures are defined in manufacturing for bill-of-materials
type applications. Suppose, for example, a company manufactures bicycles. The
first model the manufacturer makes is Model 1, which is a boy's bicycle. The
following table lists the parts needed to manufacture this bicycle and the number
of each part needed to manufacture one Model 1 bicycle.

Table 57. Parts list for the Model 1 bicycle example

Part Number needed

21-inch boy's frame 1

Handlebar 1

Seat 1

Chain 1

Front fender 1

Rear fender 1

Pedal 2

Crank 1

Front sprocket 1

26-inch tube and tire 2

26-inch rim 2

26-inch spoke 72

Front hub 1

Housing 1

Brake 1

Rear sprocket 1

In manufacturing, it is necessary to know the steps that must be executed to
manufacture the end product. For each step, the parts needed must be available
and any subassemblies used in a step must have been assembled in previous steps.
The following figure shows the steps required to manufacture the Model 1 bicycle.
A housing, brake, and rear sprocket are needed to make the rear hub assembly in
step 2. Only then can the part of step 3 that involves building the rear wheel
assembly be executed. This part of step 3 also requires availability of a 26-inch tire,
a rim, and 36 spokes.

254 Database Administration

The same company manufactures a Model 2 bicycle, which is for girls. The parts
and assembly steps for this bicycle are exactly the same, except that the bicycle
frame is a girl's frame.

If the manufacturer stored all parts and subassemblies for both models as separate
segments in the database, a great deal of duplicate data would exist. The preceding
figure shows the segments that must be stored just for the Model 1 bicycle. A
similar set of segments must be stored for the Model 2 bicycle, except that it has a
girl's bicycle frame. As you can see, this leads to duplicate data and the associated
maintenance problems. The solution to this problem is to create a recursive
structure. The following figure shows how this is done using the data for the
Model 1 bicycle.

Brake

Housing

Rear sprocket

Front hub

Rim 26"

Spoke 26"

Rear hub
assembly

Rim 26"

Spoke 26"

Tube/tire 26"

Front sprocket

Crank

Rear wheel
assembly

Front wheel
assembly

Pedal
assembly

21" boy's
frame

Front fender

Seat

Chain

Handlebar

Step 3

Step 2

Step 1

Tube/tire 26"Pedals

Rear fender

Model 1

Figure 88. Model 1 components and subassemblies

Chapter 15. Creating logical relationships 255

In the above figure, two types of segments exist: PART and COMPONENT
segments. A unidirectional logical relationship has been established between them.
The PART segment for Model 1 is a root segment. Beneath it are nine occurrences
of COMPONENT segments. Each of these is a logical child that points to another
PART root segment. (Only two of the pointers are actually shown to keep the
figure simple.) However, the other PART root segments show the parts required to
build the component.

For example, the pedal assembly component points to the PART root segment for
assembling the pedal. Stored beneath this segment are the following parts that
must be assembled: one front sprocket, one crank, and two pedals. With this
structure, much of the duplicate data otherwise stored for the Model 2 bicycle can
be eliminated.

The following figure shows the segments, in addition to those in the preceding
figure, that must be stored in the database record for the Model 2 bicycle. The
logical children in the figure, except the one for the unique component, a 21" girl's
frame, can point to the same PART segments as are shown in the preceding figure.
A separate PART segment for the pedal assembly, for example, need not exist. The
database record for both Model 1 and 2 have the same pedal assembly, and by
using the logical child, it can point to the same PART segment for the pedal
assembly.

Front sprocket

Pedals

Crank

Rear wheel
assembly

PART segments

Front wheel
assembly

Pedal
assembly

21" boy's
frame

21" boy's
frame

Front fender

Seat

Chain

Handlebar

COMPONENT segment

Rear fender

Model 1

Pedal
assembly

Figure 89. Database records for the Model 1 bicycle

256 Database Administration

One thing to note about recursive structures is that the physical parent and the
logical parent of the logical child are the same segment type. For example, in
Figure 89 on page 256, the PART segment for Model 1 is the physical parent of the
COMPONENT segment for pedal assembly. The PART segment for pedal assembly
is the logical parent of the COMPONENT segment for pedal assembly.
Related concepts:
“Secondary indexes versus logical relationships” on page 232

Defining sequence fields for logical relationships
When you use logical relationships, certain rules and recommendations should be
followed when defining sequence fields.

Logical parent sequence fields

To avoid potential problems in processing databases using logical relationships,
unique sequence fields should be defined in all logical parent segments and in all
segments a logical parent is dependent on in its physical database. When unique
sequence fields are not defined in all segments on the path to and including a
logical parent, multiple logical parents in a database can have the same
concatenated key. When this happens, problems can arise during and after initial
database load when symbolic logical parent pointers in logical child segments are
used to establish position on a logical parent segment.

At initial database load time, if logical parents with non-unique concatenated keys
exist in a database, the resolution utilities attach all logical children with the same
concatenated key to the first logical parent in the database with that concatenated
key.

Rear wheel
assembly

PART segments

Front wheel
assembly

Pedal
assembly

21" girl’s
frame

21" girl’s
frame

Front fender

Seat

Chain

Handlebar

COMPONENT segment

Rear fender

Model 2

Figure 90. Extra database records required for the Model 2 bicycle

Chapter 15. Creating logical relationships 257

When inserting or deleting a concatenated segment and position for the logical
parent, part of the concatenated segment is determined by the logical parent's
concatenated key. Positioning for the logical parent starts at the root and stops on
the first segment at each level of the logical parent's database that satisfies the key
equal condition for that level. If a segment is missing on the path to the logical
parent being inserted, a GE status code is returned to the application program
when using this method to establish position in the logical parent's database.

Real logical children sequence fields

If the sequence field of a real logical child consists of any part of the logical
parent's concatenated key, PHYSICAL must be specified on the PARENT=
parameter in the SEGM statement for the logical child. This will cause the
concatenated key of the logical parent to be stored with the logical child segment.

Virtual logical children sequence fields

As a general rule, a segment can have only one sequence field. However, in the
case of virtual pairing, multiple FIELD statements can be used to define a logical
sequence field for the virtual logical child.

A sequence field must be specified for a virtual logical child if, when accessing it
from its logical parent, you need real logical child segments retrieved in an order
determined by data in a field of the virtual logical child as it could be seen in the
application program I/O area. This sequence field can include any part of the
segment as it appears when viewed from the logical parent (that is, the
concatenated key of the real logical child's physical parent followed by any
intersection data). Because it can be necessary to describe the sequence field of a
logical child as accessed from its logical parent in non-contiguous pieces, multiple
FIELD statements with the SEQ parameter present are permitted. Each statement
must contain a unique fldname1 parameter.
Related concepts:
“Altering IMS logical relationships” on page 714
Related reference:

Database Prefix Resolution utility (DFSURG10) (Database Utilities)

Database Prefix Update utility (DFSURGP0) (Database Utilities)

Database Prereorganization utility (DFSURPR0) (Database Utilities)

PSBs, PCBs, and DBDs in logical relationships
When a logical relationship is used, you must define the physical databases
involved in the relationship to IMS by using a physical DBD. In addition, many
times you must define the logical structure of the databases to IMS because this is
the structure that the application program perceives. This is done using a logical
DBD.

A logical DBD is needed because the application program's PCB references a DBD,
and the physical DBD does not reflect the logical data structure the application
program needs to access. Finally, the application program needs a PSB, consisting
of one or more PCBs. The PCB that is used when processing with a logical
relationship points to the logical DBD when one has been defined. This PCB

258 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dfsurg10.htm#ims_dfsurg10
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dfsurgp0.htm#ims_dfsurgp0
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dfsurpr0.htm#ims_dfsurpr0

indicates which segments in the logical database the application program can
process. It also indicates what type of processing the application program can
perform on each segment.

Internally, the PSB and PCBs, the logical DBD, and the physical DBD are
represented to IMS as control blocks. The following figure shows the relationship
between these three control blocks. It assumes that the logical relationship is
established between two physical databases.

Related tasks:
“Specifying logical relationships in the physical DBD”
“Specifying logical relationships in the logical DBD” on page 263

Specifying logical relationships in the physical DBD
For each of the databases involved in a logical relationship, you must code a
physical DBD.

All statements in the physical DBD are coded with the same format used when a
logical relationship is not defined, except for the SEGM and LCHILD statements.
The SEGM statement, which describes a segment and its length and position in the
database hierarchy, is expanded to include the new types of pointers. The LCHILD
statement is added to define the logical relationship between the two segment
types.

In the SEGM statements of the examples associated with the following figures,
only the pointers required with logical relationships are shown. No pointers
required for use with HD databases are shown. When actually coding a DBD, you
must ask for these pointers in the PTR= parameter. Otherwise, IMS will not
generate them once another type of pointer is specified.

The following figure shows the layout of segments.

Figure 91. Relationship of control blocks when a logical relationship is used

Chapter 15. Creating logical relationships 259

This is the hierarchical structure of the two databases involved in the logical
relationship. In this example, we are defining a unidirectional relationship using
symbolic pointing. ORDITEM has an LPCK and fixed intersection data, and
DELIVERY and SCHEDULE are variable intersection data.

The following figure shows physical DBDs for unidirectional relationships.

Figure 92. Layouts of segments used in the examples

260 Database Administration

The following DBD is for the ORDER database:
DBD NAME=ORDDB
SEGM NAME=ORDER,BYTES=50,FREQ=28000,PARENT=0
FIELD NAME=(ORDKEY,SEQ),BYTES=10,START=1,TYPE=C
FIELD NAME=ORDATE,BYTES=6,START=41,TYPE=C
SEGM NAME=ORDITEM,BYTES=17,PARENT=((ORDER),(ITEM,P,ITEMDB))
FIELD NAME=(ITEMNO,SEQ),BYTES=8,START=1,TYPE=C
FIELD NAME=ORDITQTY,BYTES=9,START=9,TYPE=C
SEGM NAME=DELIVERY,BYTES=50,PARENT=ORDITEM
FIELD NAME=(DELDAT,SEQ),BYTES=6,START=1,TYPE=C
SEGM NAME=SCHEDULE,BYTES=50,PARENT=ORDITEM
FIELD NAME=(SCHEDAT,SEQ),BYTES=6,START=1,TYPE=C
DBDGEN
FINISH
END

The following DBD is for the ITEM database:
DBD NAME=ITEMDB
SEGM NAME=ITEM,BYTES=60,FREQ=50000,PARENT=0
FIELD NAME=(ITEMKEY,SEQ),BYTES=8,START=1,TYPE=C
LCHILD NAME=(ORDITEM,ORDDB)
DBDGEN
FINISH
END

In the ORDER database, the DBD coding that differs from normal DBD coding is
that for the logical child ORDITEM.

In the SEGM statement for ORDITEM:
1. The BYTES= parameter is 17. The length specified is the length of the LPCK,

plus the length of the fixed intersection data. The LPCK is the key of the ITEM
segment, which is 8 bytes long. The length of the fixed intersection data is 9
bytes.

2. The PARENT= parameter has two parents specified. Two parents are specified
because ORDITEM is a logical child and therefore has both a physical and
logical parent. The physical parent is ORDER. The logical parent is ITEM,
specified after ORDER. Because ITEM exists in a different physical database

ORDER database ITEM database

Logical

parent

Physical

parent

Logical

child

ORDER

ORDITEM

LPCK FID

DELIVERY

VID

SCHEDULE

VID

ITEMCTR

Figure 93. Physical DBDs for unidirectional relationship using symbolic pointing

Chapter 15. Creating logical relationships 261

from ORDITEM, the name of its physical database, ITEMDB, must be specified.
Between the segment name ITEM and the database name ITEMDB is the letter
P. The letter P stands for physical. The letter P specifies that the LPCK is to be
stored on DASD as part of the logical child segment.

In the FIELD statements for ORDITEM:
1. ITEMNO is the sequence field of the ORDITEM segment and is 8 bytes long.

ITEMNO is the LPCK. The logical parent is ITEM, and if you look at the FIELD
statement for ITEM in the ITEM database, you will see ITEM's sequence field is
ITEMKEY, which is 8 bytes long. Because ITEM is a root segment, the LPCK is
8 bytes long.

2. ORDITQTY is the fixed intersection data and is coded normally.

In the ITEM database, the DBD coding that differs from normal DBD coding is that
an LCHILD statement has been added. This statement names the logical child
ORDITEM. Because the ORDITEM segment exists in a different physical database
from ITEM, the name of its physical database, ORDDB, must be specified.
Related concepts:
“PSBs, PCBs, and DBDs in logical relationships” on page 258

Specifying bidirectional logical relationships
When defining a bidirectional relationship with physical pairing, you need to
include an LCHILD statement under both logical parents and, in addition to other
pointers, the PAIRED operand on the POINTER= parameter of the SEGM
statements for both logical children.

When defining a bidirectional relationship with virtual pairing, you need to code
an LCHILD statement only for the real logical child. On the LCHILD statement,
you code POINTER=SNGL or DBLE to get logical child pointers. You code the
PAIR= operand to indicate the virtual logical child that is paired with the real
logical child. When you define the SEGM statement for the real logical child, the
PARENT= parameter identifies both the physical and logical parents. You should
specify logical twin pointers (in addition to any other pointers) on the POINTER=
parameter. Also, you should define a SEGM statement for the virtual logical child
even though it does not exist. On this SEGM statement, you specify PAIRED on
the POINTER= parameter. In addition, you specify a SOURCE= parameter. On the
SOURCE= parameter, you specify the SEGM name and DBD name of the real
logical child. DATA must always be specified when defining SOURCE= on a
virtual logical child SEGM statement.
Related reference:

DBD statements (System Utilities)

Checklist of rules for defining logical relationships in physical
databases

You must follow certain rules when defining logical relationships in physical
databases.

In the following subtopics, all references are to segment types, not occurrences.

Logical child rules
Several rules govern the definition of the logical child segment type in a physical
database.
v A logical child must have a physical and a logical parent.

262 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdstmt.htm#ims_dbdstmt

v A logical child can have only one physical and one logical parent.
v A logical child is defined as a physical child in the physical database of its

physical parent.
v A logical child is always a dependent segment in a physical database, and can,

therefore, be defined at any level except the first level of a database.
v A logical child in its physical database cannot have a physical child defined at

the next lower level in the database that is also a logical child.
v A logical child can have a physical child. However, if a logical child is physically

paired with another logical child, only one of the paired segments can have
physical children.

Logical parent rules
Several rules govern the definition of the logical parent segment type in a physical
database.
v A logical parent can be defined at any level in a physical database, including the

root level.
v A logical parent can have one or more logical children. Each logical child related

to the same logical parent defines a logical relationship.
v A segment in a physical database cannot be defined as both a logical parent and

a logical child.
v A logical parent can be defined in the same physical database as its logical child,

or in a different physical database.

Physical parent rules
The only rule for defining a physical parent segment type in a physical database is
that a physical parent of a logical child cannot also be a logical child.

Specifying logical relationships in the logical DBD
To identify which segment types are used in a logical data structure, you must
code a logical DBD.

The following figure shows an example of how the logical DBD is coded. The
example is a logical DBD for the same physical databases defined in “Specifying
logical relationships in the physical DBD” on page 259.

When defining a segment in a logical database, you can specify whether the
segment is returned to the program's I/O area by using the KEY or DATA operand
on the SOURCE= parameter of the SEGM statement. DATA returns both the key
and data portions of the segment to the I/O area. KEY returns only the key
portion, and not the data portion of the segment to the I/O area.

When the SOURCE= parameter is used on the SEGM statement of a concatenated
segment, the KEY and DATA parameters control which of the two segments, or
both, is put in the I/O area on retrieval calls. In other words, you define the
SOURCE= parameter twice for a concatenated segment type, once for the logical
child portion and once for the destination parent portion.

The following figure illustrates the logical data structure you need to create in the
application program. It is implemented with a unidirectional logical relationship
using symbolic pointing. The root segment is ORDER from the ORDER database.
Dependent on ORDER is ORDITEM, the logical child, concatenated with its logical
parent ITEM. The application program receives both segments in its I/O area when
a single call is issued for ORDIT. DELIVERY and SCHEDULE are variable

Chapter 15. Creating logical relationships 263

intersection data.

The following logical DBD is for the logical data structure shown in the above
figure:
DBD NAME=ORDLOG,ACCESS=LOGICAL
DATASET LOGICAL
SEGM NAME=ORDER,SOURCE=((ORDER,DATA,ORDDB))
SEGM NAME=ORDIT,PARENT=ORDER, X

SOURCE=((ORDITEM,DATA,ORDDB),(ITEM,DATA,ITEMDB))
SEGM NAME=DELIVERY,PARENT=ORDIT,SOURCE=((DELIVERY,DATA,ORDDB))
SEGM NAME=SCHEDULE,PARENT=ORDIT,SOURCE=((SCHEDULE,DATA,ORDDB))
DBDGEN
FINISH
END

Notes to the preceding figure:

1. The DBD statement has the name of the logical DBD, in this example
ORDLOG. As with physical DBDs, this name must be unique and must be the
same name as specified in the MBR operand of the DBDGEN procedure.
ACCESS=LOGICAL simply says this is a logical DBD.

2. The DATASET statement always says LOGICAL, meaning a logical DBD. No
other parameters can be specified on this statement; however, ddnames for data
sets are all specified in the DATASET statements in the physical DBDs.

3. The SEGM statements show which segments are to be included in the logical
database. The only operands allowed on the SEGM statements for a logical
DBD are NAME=, PARENT=, and SOURCE=. All other information about the
segment is defined in the physical DBD.
v The first SEGM statement defines the root segment ORDER.

The NAME= operand specifies the name used in the PCB to refer to this
segment. This name is used by application programmers when coding SSAs.
In this example, the segment name is the same as the name used in the
physical DBD - ORDER. However, the segment could have a different name
from that specified in its physical DBD.
The SOURCE= operand tells IMS where the data for this segment is to come
from. First the name of the segment type appears in its physical database,
which is ORDER. DATA says that the data in this segment needs to be put in

Figure 94. Logical data structure for a unidirectional relationship using symbolic pointing

264 Database Administration

the application program's I/O area. ORDDB is the name of the physical
database in which the ORDER segment exists.
No FIELD statements are coded in the logical DBD. IMS picks the statements
up from the physical DBD, so when accessing the ORDER segment in this
logical data structure, the application program could have SSAs referring to
ORDKEY or ORDATE. These fields were defined for the ORDER segments in
its physical DBD, as shown in Figure 93 on page 261.

v The second SEGM statement is for the ORDIT segment. The ORDIT segment
is made up of the logical child ORDITEM, concatenated with its logical
parent ITEM. As you can see, the SOURCE= operand identifies both the
ORDITEM and ITEM segments in their different physical databases.

v The third and fourth SEGM statements are for the variable intersection data
DELIVERY and SCHEDULE. These SEGM statements must be placed in the
logical DBD in the same relative order they appear in the physical DBD. In
the physical DBD, DELIVERY is to the left of SCHEDULE.

Related concepts:
“PSBs, PCBs, and DBDs in logical relationships” on page 258
“Paths in logical relationships” on page 247

Checklist of rules for defining logical databases
Logical relationships can become very complex. To help you to you properly define
databases that use logical relationships, you must understand and follow the rules
that govern logical relationships.

Before the rules for defining logical databases can be described, you need to know
the following definitions:
v Crossing a logical relationship
v The first and additional logical relationships crossed

Also, a logical DBD is needed only when an application program needs access to a
concatenated segment or needs to cross a logical relationship.

Definition of crossing a logical relationship

A logical relationship is considered crossed when it is used in a logical database to
access a segment that is:
v A physical parent of a destination parent in the destination parent's database
v A physical dependent of a destination parent in the destination parent's physical

database

If a logical relationship is used in a logical database to access a destination parent
only, the logical relationship is not considered crossed.

In the following figure, DBD1 and DBD2 are two physical databases with a logical
relationship defined between them. DBD3 through DBD6 are four logical databases
that can be defined from the logical relationship between DBD1 and DBD2. With
DBD3, no logical relationship is crossed, because no physical parent or physical
dependent of a destination parent is included in DBD3. With DBD4 through DBD6,
a logical relationship is crossed in each case, because each contains a physical
parent or physical dependent of the destination parent.

Chapter 15. Creating logical relationships 265

Definition of first and additional logical relationships crossed

More than one logical relationship can be crossed in a hierarchical path in a logical
database. The following figure shows three physical databases (DBD1, DBD2 and
DBD3) in which logical relationships have been defined. Also in the figure are two
(of many) logical databases (DBD4 and DBD5) that can be defined from the logical
relationships in the physical databases. In DBD4, the two concatenated segments
BF and DI allow access to all segments in the hierarchical paths of their destination
parents. If either logical relationship or both is crossed, each is considered the first
logical relationship crossed. This is because each concatenated segment type is
reached by following the physical hierarchy of segment types in DBD1.

Physical databases

No logical

relationship is crossed

DBD1 DBD2

A

B

X

C

D

Logical databases

DBD3

A

DBD4

A

DBD5 DBD6

X

A

D

A

X D

Logical

relationship is crossed

B C

B C B CB C

Figure 95. Definition of crossing a logical relationship

266 Database Administration

In DBD5 in the preceding figure, an additional concatenated segment type GI, is
defined that was not included in DBD4. GI allows access to segments in the
hierarchical path of the destination parent if crossed. When the logical relationship
made possible by concatenated segment GI is crossed, this is an additional logical
relationship crossed. This is because, from the root of the logical database, the
logical relationship made possible by concatenated segment type BF must be
crossed to allow access to concatenated segment GI.

When the first logical relationship is crossed in a hierarchical path of a logical
database, access to all segments in the hierarchical path of the destination parent is
made possible as follows:

Physical databases

DBD1 DBD2

E

F

G

Logical databases

DBD3

A

DBD4

A

B

C

D

H

I

J

E G C

H J

A

DBD5

E C

H J

H J

B F

D I

B F

G I

D I

Figure 96. The first logical relationship crossed in a hierarchical path of a logical database

Chapter 15. Creating logical relationships 267

v Parent segments of the destination parent are included in the logical database as
dependents of the destination parent in reverse order, as shown in the following
figure.

v Dependent segments of the destination parent are included in the logical
database as dependents of the destination parent without their order changed, as
shown in the following figure.

When an additional logical relationship is crossed in a logical database, access to
all segments in the hierarchical path of the destination parent is made possible, just
as in the first crossing.

268 Database Administration

Rules for defining logical databases
v The root segment in a logical database must be the root segment in a physical

database.
v A logical database must use only those segments and physical and logical

relationship paths defined in the physical DBD referenced by the logical DBD.
v The path used to connect a parent and child in a logical database must be

defined as a physical relationship path or a logical relationship path in the
physical DBD referenced by the logical DBD.

Resulting order in the

hierarchic path of a logical database

Hierarchic path of a

physical database

A

B

C

Destination

parent

E F

Destination

parent

C FE

B

A

Figure 97. Logical database hierarchy enabled by crossing the first logical relationship

Chapter 15. Creating logical relationships 269

v Physical and logical relationship paths can be mixed in a hierarchical segment
path in a logical database.

v Additional physical relationship paths, logical relationship paths, or both paths
can be included after a logical relationship is crossed in a hierarchical path in a
logical database. These paths are included by going in upward directions,
downward directions, or both directions, from the destination parent. When
proceeding downward along a physical relationship path from the destination
parent, direction cannot be changed except by crossing a logical relationship.
When proceeding upward along a physical relationship path from the
destination parent, direction can be changed.

v Dependents in a logical database must be in the same relative order as they are
under their parent in the physical database. If a segment in a logical database is
a concatenated segment, the physical children of the logical child and children of
the destination parent can be in any order. The relative order of the children or
the logical child and the relative order of the children of the destination parent
must remain unchanged.

v The same concatenated segment type can be defined multiple times with
different combinations of key and data sensitivity. Each must have a distinct
name for that view of the concatenated segment. Only one of the views can have
dependent segments. The following figure shows the four views of the same
concatenated segment that can be defined in a logical database. A PCB for the
logical database can be sensitive to only one of the views of the concatenated
segment type.

LC Logical child segment type

DP Destination parent segment type

K KEY sensitivity specified for the segment type

D DATA sensitivity specified for the segment type

Choosing replace, insert, and delete rules for logical relationships
You must establish insert, delete, and replace rules when a segment is involved in
a logical relationship, because such segments can be updated from two paths: a
physical path and a logical path.

The following figure and Figure 100 on page 272 show example insert, delete, and
replace rules. Consider the following questions:

Physical parent
segment type

LC LC LC LC

K K D DK D K D

DP DP DP DP

Figure 98. Single concatenated segment type defined multiple times with different
combinations of key and data sensitivity

270 Database Administration

1. Should the CUSTOMER segment in the following figure be able to be inserted
by both its physical and logical paths?

2. Should the BORROW segment be replaceable using only the physical path, or
using both the physical and logical paths?

3. If the LOANS segment is deleted using its physical path, should it be erased
from the database? Or should it be marked as physically deleted but remain
accessible using its logical path?

4. If the logical child segment BORROW or the concatenated segment
BORROW/LOANS is deleted from the physical path, should the logical path
CUST/CUSTOMER also be automatically deleted? Or should the logical path
remain?

Abbreviation
Explanation

PP Physical parent segment type

LC Logical child segment type

LP Logical parent segment type

VLC Virtual logical child segment type

Figure 99. Example of the replace, insert, and delete rules

Chapter 15. Creating logical relationships 271

The answer to these questions depends on the application. The enforcement of the
answer depends on your choosing the correct insert, delete, and replace rules for
the logical child, logical parent, and physical parent segments. You must first
determine your application processing requirements and then the rules that
support those requirements.

For example, the answer to question 1 depends on whether the application
requires that a CUSTOMER segment be inserted into the database before accepting
the loan. An insert rule of physical (P) on the CUSTOMER segment prohibits
insertion of the CUSTOMER segment except by the physical path. An insert rule of
virtual (V) allows insertion of the CUSTOMER segment by either the physical or
logical path. It probably makes sense for a customer to be checked (past credit,
time on current job, and so on.) and the CUSTOMER segment inserted before
approving the loan and inserting the BORROW segment. Thus, the insert rule for
the CUSTOMER segment should be P to prevent the segment from being inserted
logically. (Using the insert rule in this example provides better control of the
application.)

Or consider question 3. If it is possible for this loan institution to cancel a type of
loan (cancel 10% car loans, for instance, and create 12% car loans) before everyone
with a 10% loan has fully paid it, then it is possible for the LOANS segment to be
physically deleted and still be accessible from the logical path. This can be done by
specifying the delete rule for LOANS as either logical (L) or V, but not as P.

The P delete rule prohibits physically deleting a logical parent segment before all
its logical children have been physically deleted. This means the logical path to the
logical parent is deleted first.

You need to examine all your application requirements and decide who can insert,
delete, and replace segments involved in logical relationships and how those
updates should be made (physical path only, or physical and logical path). The
insert, delete, and replace rules in the physical DBD and the PROCOPT=
parameter in the PCB are the means of control.
Related concepts:
“Insert, delete, and replace rules for logical relationships” on page 273

Figure 100. Example of the replace, insert, and delete rules: before and after

272 Database Administration

Insert, delete, and replace rules for logical relationships
You need to examine all your application requirements and decide who can insert,
delete, and replace segments involved in logical relationships and how those
updates are to be made (physical path only or physical and logical path).

The insert, delete, and replace rules in the physical DBD determine how updates
apply across logical relationships.

This topic contains General-use Programming Interface information.

Related concepts:
“Choosing replace, insert, and delete rules for logical relationships” on page 270
“Utilization of available real storage” on page 690
Related reference:
“Bits in the prefix descriptor byte” on page 312

Specifying rules in the physical DBD
Insert, delete, and replace rules are specified using the RULES= keyword of a
SEGM statement in the DBD for logical relationships.

The following figure contains a diagram of the RULES= keyword and its
parameters.

The valid parameter values for the insert replace and delete rules are:

B Specifies a bidirectional virtual delete rule. It is not a valid value for either the
first or last positional parameter of the RULES= keyword.

L Specifies a logical insert, delete, or replace rule.

P Specifies a physical insert, delete, or replace rule.

V Specifies a virtual insert, delete, or replace rule.

The first three values that the RULES= keyword accepts are positional parameters:
v The first positional parameter sets the insert rule
v The second positional parameter sets the delete rule
v The third positional parameter sets the replace rule

►► SEGM ►

►
,RULES=(LLL,LAST)

Other parameters
LLL ,LAST

,RULES=()
L L L ,FIRST
P P P ,HERE
V V V

B

►◄

Figure 101. Insert, delete, and replace rules in the DBD

Chapter 15. Creating logical relationships 273

For example, RULES=(PLV) says the insert rule is physical, the delete rule is
logical, and the replace rule is virtual. The B rule is only applicable for delete. In
general, the P rule is the most restrictive, the V rule is least restrictive, and the L
rule is somewhere in between.

The RULES= parameter is applicable only to segments involved in logical paths,
that is, the logical child, logical parent, and physical parent segments. The RULES=
parameter is not coded for the virtual logical child.

Insert rules
The insert rules apply to the destination parent segments, but not to the logical
child segment.

A destination parent can be a logical or physical parent. The insert rule has no
meaning for the logical child segment except to satisfy the RULES= macro's coding
scheme. Therefore, any insert rule (P, L, V) can be coded for a logical child. A
logical child can be inserted provided:
v The insert rule of the destination parent is not violated
v The logical child being inserted does not already exist (it cannot be a duplicate)

A description of how the insert rules work for the destination parent is a follows:
v When RULES=P is specified, the destination parent can be inserted only using

the physical path. This means the destination parent must exist before inserting
a logical path. A concatenated segment is not needed, and the logical child is
inserted by itself.

v When RULES=L is specified, the destination parent can be inserted either using
the physical path or concatenated with the logical child and using the logical
path. When a logical child/destination parent concatenated segment is inserted,
the destination parent is inserted if it does not already exist and the I/O area
key check does not fail. If the destination parent does exist, it will remain
unchanged and the logical child will be connected to it.

v When RULES=V is specified, the destination parent can be inserted either using
the physical path or concatenated with the logical child and using the logical
path. When a logical child/destination parent concatenated segment is inserted,
the destination parent is replaced if it already exists. If it does not already exist,
the destination parent is inserted.

Related concepts:
“Status codes that can be issued after an ISRT call” on page 275

The logical child insert call
To insert the logical child segment, the I/O area in an application program must
contain either the logical child or the logical child/destination parent concatenated
segment in accordance with the destination parent's insert rule

For all DL/I calls, either an error is detected and an error status code returned (in
which case no data is changed), or the required changes are made to all segments
effected by the call. Therefore, if the required function cannot be performed for
both parts of the concatenated segment, an error status code is returned, and no
change is made to either the logical child or the destination parent.

The insert operation is not affected by KEY or DATA sensitivity as specified in a
logical DBD or a PCB. This means that if a program is other than DATA sensitive
to both the logical child and destination parent of a concatenated segment, and if
the insert rules is L or V, the program must still supply both of them in the I/O

274 Database Administration

area when inserting using a logical path. Because of this, maintenance programs
that insert concatenated segments should be DATA sensitive to both segments in
the concatenation.

Status codes that can be issued after an ISRT call
The nonblank status codes that can be returned to an application program after an
ISRT call are as follows.
v AM—An insert was attempted and the value of PROCOPT is not “I”
v GE—The parent of the destination parent or logical child was not found
v II—An attempt was made to insert a duplicate segment
v IX—The rule specified was P, but the destination parent was not found

One reason for getting an IX status code is that the I/O area key check failed.
Concatenated segments must contain the destination parent's key twice—once as
part of the logical child's LPCK and once as a field in the parent. These keys
must be equal.

The following two figures show a physical insert rule example.

Figure 102. Physical insert rule example

Chapter 15. Creating logical relationships 275

The following two figures show a logical insert rule example.

The IX status code shown in the preceding figure is the result of omitting the
concatenated segment CUST/CUSTOMER in the second call. IMS checked for the
key of the CUSTOMER segment (in the I/O area) and failed to find it. With the L
insert rule, the concatenated segment must be inserted to create a logical path.

Figure 103. Paths for physical insert rule example

ISRT ’CUSTOMER’ STATUS CODE=’ ’
ISRT ’BORROW’ STATUS CODE=’ ’ (’IX’ if LOANS does not exist)

Figure 104. ISRT and status codes for physical insert rule example

Figure 105. Logical insert rule example

ISRT ’LOANS’ STATUS CODE=’ ’
ISRT ’CUST’ STATUS CODE=’IX’

Figure 106. ISRT and status codes for logical insert rule example

276 Database Administration

The following two figures show a virtual insert rule example.

The code above replaces the LOANS segment if present, and insert the LOANS
segment if not. The V insert rule is a powerful option.

Insert rules summary
The following summarizes the insert rules P, L, and V.

Specifying the insert rule as P prevents inserting the destination parent as part of a
concatenated segment. A destination parent can only be inserted using the physical
path. If the insert creates a logical path, only the logical child needs to be inserted.

Specifying the insert rule as L on the logical and physical parent allows insertion
using either the physical path or the logical path as part of a concatenated
segment. When inserting a concatenated segment, if the destination parent already
exists it remains unchanged and the logical child is connected to it. If the
destination parent does not exist, it is inserted. In either case, the logical child is
inserted if it is not a duplicate, and the destination parent's insert rule is not
violated.

The V insert rule is the most powerful of the three rules. The V insert rule is the
most powerful because it will insert the destination parent (inserted as a
concatenated segment using the logical path) if the parent did not previously exist,
or otherwise replace the existing destination parent with the inserted destination
parent.

Replace rules
The replace rules are applicable to the physical parent, logical parent, and logical
child segments of a logical path.

Figure 107. Virtual insert rule example

ISRT ’CUSTOMER’ STATUS CODE=’ ’
ISRT ’BORROW/LOANS’ STATUS CODE=’ ’

Figure 108. ISRT and status codes for virtual insert rule example

Chapter 15. Creating logical relationships 277

The following is a description of how the replace rules work:
v When RULES=P is specified, the segment can only be replaced when retrieved

using a physical path. If this rule is violated, no data is replaced and an RX
status code is returned.

v When RULE=L is specified, the segment can only be replaced when retrieved
using a physical path. If this rule is violated, no data is replaced. However, no
RX status code is returned, and a blank status code is returned.

v When RULES=V is specified, the segment can be replaced when retrieved by
either a physical or logical path.

Related concepts:
“Replace rule status codes”

The replace call
A replace operation can be done only on that portion of a concatenated segment to
which an application program is data sensitive.

If no data is changed in a segment, no data is replaced. Therefore, no replace rule
is violated. The replace rule is not checked for a segment that is part of a
concatenated segment but is not retrieved.

For all DL/I calls, either an error is detected and an error status code returned (in
which case no data is changed), or the required changes are made to all segments
affected by the call. Therefore, if the required function cannot be performed for
both parts of the concatenated segment, an error status code is returned, and no
change is made to either the logical child or the destination parent.

Replace rule status codes
The status code returned to an application program indicates the first violation of
the replace rule that was detected.

These status codes are as follows:
v AM—a replace was attempted and the value of PROCOPT is not “R”
v DA—the key field of a segment or a non-replaceable field was changed
v RX—the replace rule was violated

Replace rules summary
The tables below summarize the replace rules.

Specifying the replace rule as P, on any segment in a logical relationship, prevents
replacing that segment except when it is retrieved using its physical path. When
the replace rule for the logical parent is specified as L, IMS returns a blank status
code without replacing any data when the logical parent is accessed concatenated
with the logical child. Because the logical child has been accessed by its physical
path, its replace rule can be any of the three. So, using the replace rule allows the
selective replacement of the logical child half of the concatenation and a blank
status code. Specifying a replace rule of V, on any segment of a logical relationship,
allows replacing that segment by either its physical or logical path.

The tables that follow the figures below show all of the possible combinations of
replace rules that can be specified. They show what actions take place for each
combination when a call is issued to replace a concatenated segment in a logical
database. The tables are based on the databases and logical views shown in the
following figures.

278 Database Administration

Replace rules for logical view 1

Table 58. Replace rules for logical view 1.

Replace rule specified
Segment attempting to

replace Status code Data replaced?

B C B C B C

P P X Y

P P X RX N

P P X X RX N N

P L X Y

P L X N

P L X X Y N

P V X Y

P V X Y

P V X X Y Y

L P X Y

L P X RX N

L P X X RX N N

L L X Y

L L X N

L L X X Y N

Physical
database 1

Physical
database 2

C
LP

B

A
PP

B
LC

Figure 109. Physical databases for replace rules tables

CA

Logical
view 1

Logical
view 2

B C B A

Figure 110. Logical views for replace rules table

Chapter 15. Creating logical relationships 279

Table 58. Replace rules for logical view 1 (continued).

Replace rule specified
Segment attempting to

replace Status code Data replaced?

B C B C B C

L V X Y

L V X Y

L V X X Y Y

V P X Y

V P X RX N

V P X X RX N N

V L X Y

V L X N

V L X X Y N

V V X Y

V V X Y

V V X X Y Y

Replace rules for logical view 2

Table 59. Replace rules for logical view 2.

Replace rule specified
Segment attempting to

replace Status code Data replaced?

B A B A B A

P P X RX N

P P X RX N

P P X X RX N N

P L X RX N

P L X N

P L X X RX N N

P V X RX N

P V X Y

P V X X RX N N

L P X N

L P X RX N

L P X X RX N N

L L X N

L L X N

L L X X N N

L V X N

L V X Y

L V X X N Y

V P X Y

V P X RX N

280 Database Administration

Table 59. Replace rules for logical view 2 (continued).

Replace rule specified
Segment attempting to

replace Status code Data replaced?

B A B A B A

V P X X RX N N

V L X Y

V L X N

V L X X Y N

V V X Y

V V X Y

V V X X Y Y

Physical replace rule example
The following figure and the code that follows the figure show a physical replace
rule example.

The P replace rule prevents replacing the LOANS segment as part of a
concatenated segment. Replacement must be done using the segment's physical
path.
Related concepts:
“Logical replace rule example” on page 282
“Virtual replace rule example” on page 282

Figure 111. Physical replace rule example

GHU ’CUSTOMER’ STATUS CODE=’ ’
REPL STATUS CODE=’ ’
GHN ’BORROW/LOANS’ STATUS CODE=’ ’
REPL STATUS CODE=’RX’

Figure 112. Calls and status codes for physical replace rule example

Chapter 15. Creating logical relationships 281

Logical replace rule example
The following figure and the code that follows the figure show a logical replace
rule example.

As shown in the preceding figure, the L replace rule prevents replacing the
LOANS segment as part of a concatenated segment. Replacement must be done
using the segment's physical path. However, the status code returned is blank. The
BORROW segment, accessed by its physical path, is replaced. Because the logical
child is accessed by its physical path, it does not matter which replace rule is
selected.

The L replace rule allows replacing only the logical child half of the concatenation,
and the return of a blank status code.
Related concepts:
“Physical replace rule example” on page 281
“Virtual replace rule example”

Virtual replace rule example
The following figure and the code that follows the figure show a virtual replace
rule example.

Figure 113. Logical replace rule example

GHU ’CUSTOMER’
’BORROW/LOANS’ STATUS CODE=’ ’

REPL STATUS CODE=’ ’

Figure 114. Calls and status codes for logical replace rule example

282 Database Administration

As shown in the code above, the V replace rule allows replacing the CUSTOMER
segment using its logical path as part of a concatenated segment.
Related concepts:
“Logical replace rule example” on page 282
“Physical replace rule example” on page 281

Delete rules
The following topics provide a description of how the delete values work for the
logical parent, physical parent, and logical child.

Logical parent delete rules
The following list describes what happens when a logical parent is deleted when
RULES=P, RULES=L, or RULES=V is specified.
v When RULES=P is specified, the logical parent must be logically deleted before a

DLET call is effective against it or any of its physical parents. Otherwise, the call
results in a DX status code, and no segments are deleted. However, if a delete
request is made against a segment as a result of propagation across a logical
relationship, then the P rule acts like the L rule that follows.

v When RULES=L is specified, either physical or logical deletion can occur first.
When the logical parent is processed by a DLET call, all logical children are
logically deleted, but the logical parent remains accessible from its logical
children.

v When RULES=V is specified, a logical parent is deleted along its physical path
explicitly when deleted by a DLET call. All of its logical children are logically
deleted, although the logical parent remains accessible from these logical
children.

Figure 115. Virtual replace rule example

GHU ’LOANS’
’CUST/CUSTOMER’ STATUS CODE=’ ’

REPL STATUS CODE=’ ’

Figure 116. Calls and status codes for virtual replace rule example

Chapter 15. Creating logical relationships 283

A logical parent is deleted along its physical path implicitly when it is no longer
involved in a logical relationship. A logical parent is no longer involved in a
logical relationship when:
– It has no logical children pointing to it (its logical child counter is zero, if it

has any)
– It points to no logical children (all of its logical child pointers are zero, if it

has any)
– It has no physical children that are also real logical children

Physical parent (virtual pairing only) delete rules
The following list describes the delete rules for a physical parent with virtual
pairing only.
v PHYSICAL/LOGICAL/VIRTUAL is meaningless.
v BIDIRECTIONAL VIRTUAL means a physical parent is automatically deleted

along its physical path when it is no longer involved in a logical relationship. A
physical parent is no longer involved in a logical relationship when:
– It has no logical children pointing to it (its logical child counter is zero, if it

has one)
– It points to no logical children (all of its logical child pointers are zero, if it

has any)
– It has no physical children that are also real logical children

Logical child delete rules
The following list describes what happens when a logical child is deleted when
RULES=P, RULES=L, or RULES=V is specified.
v When RULES=P is specified, the logical child segment must be logically deleted

first and physically deleted second. If physical deletion is attempted first, the
DLET call issued against the segment or any of its physical parents results in a
DX status code, and no segments are deleted. If a delete request is made against
the segment as a result of propagation across a logical relationship, or if the
segment is one of a physically paired set, then the rule acts like the L rule that
follows.

v When RULES=L is specified, deletion of a logical child is effective for the path
for which the delete was requested. Physical and logical deletion of the logical
child can be performed in any order. The logical child and any physical
dependents remain accessible from the non-deleted path.

v When RULES=V is specified, a logical child is both logically and physically
deleted when it is deleted through either its logical or physical path (setting
either the PD or LD bits sets both bits). If this rule is coded on only one logical
child segment of a physically paired set, it acts like the L rule.

Note: For logical children involved in unidirectional logical relationships, the
meaning of all three rules is the same, so any of the three rules can be specified.

Examples using the delete rules
The following series of figures shows the use of the delete rules for each of the
segment types for which the delete rule can be coded (logical and physical parents
and their logical children).

Only the rule pertinent to the example is shown in each figure. The explanation
accompanying the example applies only to the specific example.

284 Database Administration

The physical delete rule requires that all logical children be previously physically
deleted. Physical dependents of the logical parent are physically deleted.

The DLET status code will be 'DX' if all of the logical children were not previously
physically deleted. All logical children are logically deleted. The LD bit is set on in
the physical logical child BORROW.

Figure 117. Logical parent, virtual pairing—physical delete rule example

Figure 118. Logical parent, physical pairing—physical delete rule example: before and after

GHU ’LOANS’ STATUS=’ ’
DLET STATUS=’ ’

Figure 119. Logical parent, physical pairing—physical delete rule example: database calls

Chapter 15. Creating logical relationships 285

The physical delete rule requires that:
v All logical children be previously physically deleted.
v Physical children paired to the logical child be previously deleted.

Figure 120. Logical parent, physical pairing—physical delete rule example

Figure 121. Logical Parent, physical pairing—physical delete rule example: before and after

GHU ’CUSTOMER’ STATUS=’ ’
DLET STATUS=’ ’

Figure 122. Logical parent, physical pairing—physical delete rule example: calls and status
codes

286 Database Administration

CUSTOMER, the logical parent, has been physically deleted. Both the logical child
and its pair had previously been physically deleted. (The PD and LD bits are set
on the before figure of the BORROW/LOANS.)

The logical delete rule allows either physical or logical deletion first; neither causes
the other. Physical dependents of the logical parent are physically deleted.

The logical parent LOANS remains accessible from its logical children. All logical
children are logically deleted. The LD bit is set on in the physical child BORROW.

Figure 123. Logical parent, virtual pairing—logical delete rule example

Figure 124. Logical parent, virtual pairing—logical delete rule example: before and after

GHU ’LOANS’ STATUS=’ ’
DLET STATUS=’ ’

Figure 125. Logical parent, virtual pairing—logical delete rule example: calls and status codes

Chapter 15. Creating logical relationships 287

The processing and results shown in Figure 123 on page 287 would be the same if
the logical parent LOANS delete rule were virtual instead of logical. The example
that follows is an additional one to explain the logical delete rule.

The logical delete rule allows either physical or logical deletion first; neither causes
the other. Physical dependents of the logical parent are physically deleted.

Figure 126. Logical parent, physical pairing—logical delete rule example

Figure 127. Logical parent, physical pairing—logical delete rule example: before and after

GHU ’LOANS’ STATUS=’ ’
DLET STATUS=’ ’

Figure 128. Logical parent, physical pairing—logical delete rule example: calls and status
codes

288 Database Administration

The logical parent LOANS remains accessible from its logical children. All physical
children are physically deleted. Paired logical children are logically deleted.

The processing and results shown in Figure 126 on page 288 would be the same if
the logical parent LOANS delete rule were virtual instead of logical. An additional
example to explain the virtual delete rule follows in the following figure.

Figure 129. Logical parent, virtual pairing—virtual delete rule example

Figure 130. Logical parent, virtual pairing—virtual delete rule example: before and after

GHU ’CUSTOMER’
’BORROW/LOANS’ STATUS=’ ’

DLET STATUS=’ ’

Figure 131. Logical parent, virtual pairing—virtual delete rule example: calls and status codes

Chapter 15. Creating logical relationships 289

The virtual delete rule allows explicit and implicit deletion. Explicit deletion is the
same as using the logical rule. Implicit deletion causes the logical parent to be
physically deleted when the last logical child is physically deleted.

Physical dependents of the logical child are physically deleted. The logical parent
is physically deleted. Physical dependents of the logical parent are physically
deleted. The LD bit is set on in the physical logical child BORROW.

Figure 132. Logical parent, physical pairing—virtual delete rule example

Figure 133. Logical parent, physical pairing—virtual delete rule example: before and after

GHU ’CUSTOMER’
’BORROW/LOANS’ STATUS=’ ’

DLET STATUS=’ ’

Figure 134. Logical parent, physical pairing—virtual delete rule example: calls and status

290 Database Administration

The virtual delete rule allows explicit and implicit deletion. Explicit deletion is the
same as using the logical rule. Implicit deletion causes the logical parent to be
physically deleted when the last logical child is physically and logically deleted.

The logical parent is physically deleted. Any physical dependents of the logical
parent are physically deleted.

Note: The CUST segment must be physically deleted before the DLET call is
issued. The LD bit is set on in the BORROW segment.

Figure 135. Physical parent, virtual pairing—bidirectional virtual example

Figure 136. Physical parent, virtual pairing—bidirectional virtual example: before and after

Chapter 15. Creating logical relationships 291

The bidirectional virtual rule for the physical parent has the same effect as the
virtual rule for the logical parent.

When the last logical child is logically deleted, the physical parent is physically
deleted. The logical child (as a dependent of the physical parent) is physically
deleted. All physical dependents of the physical parent are physically deleted. That
is, ACCOUNTS (not shown), BORROW, and PAYMENT are physically deleted.

The physical delete rule requires that the logical child be logically deleted first. The
LD bit is now set in the BORROW segment.

The logical child can be physically deleted only after being logically deleted. After
the second delete, the LD and PD bits are both set. The physical delete of the
logical child also physically deleted the physical dependents of the logical child.
The PD bit is set.

GHU ’LOANS’
’CUSTOMER’ STATUS=’ ’

DLET STATUS=’ ’

Figure 137. Deleting last logical child deletes physical parent

Figure 138. Logical child, virtual pairing—physical delete rule example

GHU ’LOANS’ STATUS=’ ’
’CUST/CUSTOMER’

DLET STATUS=’ ’

GHU ’CUSTOMER’ STATUS=’ ’
’BORROW/LOANS’

DLET STATUS=’ ’

Figure 139. Logical child, virtual pairing—physical delete rule example: deleting the logical
child

292 Database Administration

Figure 140. Logical child, virtual pairing—physical delete rule example: before and after

Figure 141. Logical child, virtual pairing—logical delete rule example

Chapter 15. Creating logical relationships 293

The logical delete rule allows the logical child to be deleted physically or logically
first. Physical dependents of the logical child are physically deleted, but they
remain accessible from the logical path that is not logically deleted.

The delete of the virtual logical child sets the LD bit on in the physical logical
child BORROW (BORROW is logically deleted).

GHU ’CUSTOMER STATUS=’ ’
’BORROW/LOANS’

DLET STATUS=’ ’

GHU ’LOANS’ STATUS=’ ’
’CUST/CUSTOMER’

DLET STATUS=’ ’

Figure 142. Logical child, virtual pairing—logical delete rule example: calls and status

Figure 143. Logical child, virtual pairing—logical delete rule example: before and after

294 Database Administration

With the physical or logical delete rule, each logical child must be deleted from its
physical path. Physical dependents of the logical child are physically deleted, but
they remain accessible from the paired logical child that is not deleted.

Physically deleting BORROW sets the LD bit on in CUST. Physically deleting
CUST sets the LC bit on in the BORROW segment.

Figure 144. Logical child, physical pairing—physical or logical delete rule example

GHU ’CUSTOMER STATUS=’ ’
’BORROW/LOANS’

DLET STATUS=’ ’

GHU ’LOANS’ STATUS=’ ’
’CUST/CUSTOMER’

DLET STATUS=’ ’

Figure 145. Logical child, physical pairing—physical or logical delete rule example: calls and
status

Chapter 15. Creating logical relationships 295

Figure 146. Logical child, physical pairing—physical or logical delete rule example: before
and after

Figure 147. Logical child, virtual pairing—virtual delete rule example

296 Database Administration

The virtual delete rule allows the logical child to be deleted physically and
logically. Deleting either path deletes both parts. Physical dependents of the logical
child are physically deleted.

The previous delete deleted both paths because the delete rule is virtual. Deleting
either path deletes both.

GHU ’CUSTOMER STATUS=’ ’
’BORROW/LOANS’

DLET STATUS=’ ’

GHU ’LOANS’ STATUS=’GE’
’CUST/CUSTOMER’

Figure 148. Logical child, virtual pairing—virtual delete rule example: calls and status

Figure 149. Logical child, virtual pairing—virtual delete rule example: before and after

Chapter 15. Creating logical relationships 297

With the virtual delete rule, deleting either logical child deletes both paired logical
children. (Notice the PD and LD bit is set on in both.) Physical dependents of the
logical child are physically deleted.

Physical dependents of the logical child are physically deleted.

Figure 150. Logical child, physical pairing—virtual delete rule example

GHU ’CUSTOMER STATUS=’ ’
DLET STATUS=’ ’

GHU ’LOANS’ STATUS=’GE’
’CUST/CUSTOMER’

Figure 151. Logical child, physical pairing—virtual delete rule example: calls and status

298 Database Administration

Accessibility of deleted segments
Segments that are either physically deleted or logically deleted remains accessible
under certain circumstances.

A physically deleted segment remains accessible under the following
circumstances:
v A physical dependent of the deleted segment is a logical parent accessible from

its logical children.
v A physical dependent of the deleted segment is a logical child accessible from its

logical parent.
v A physical parent of the deleted segment is a logical child accessible from its

logical parent. The deleted segment in this case is variable intersection data in a
bidirectional logical relationship.

A logically deleted logical child cannot be accessed from its logical parent.

Neither physical or logical deletion prevents access to a segment from its physical
or logical children. Because logical relationships provide for inversion of the
physical structure, a segment can be physically or logically deleted or both, and
still be accessible from a dependent segment because of an active logical
relationship. A physically deleted root segment can be accessed when it is defined
as a dependent segment in a logical DBD. The logical DBD defines the inversion of
the physical DBD. The following figure shows the accessibility of deleted segments.

Figure 152. Logical child, physical pairing—virtual delete rule example: before and after

Chapter 15. Creating logical relationships 299

When the physical dependent of a deleted segment is a logical parent with logical
children that are not physically deleted, the logical parent and its physical parents
are accessible from those logical children.

The physical structure in preceding figure shows that SEG3, SEG4, SEG5, and
SEG6 have been physically deleted, probably by issuing a DLET call for SEG3. This
resulted in all of SEG3's dependents being physically deleted. (SEG6's delete rule is
not P, or a 'DX' status code would be issued.)

SEG3, SEG4, SEG5, and SEG6 remain accessible from SEG2, the logical child of
SEG6. This is because SEG2 is not physically deleted. However, physical
dependents of SEG6 cannot be accessible, and their DASD space is released unless
an active logical relationship prohibits

When the physical dependent of a deleted segment is a logical child whose logical
parent is not physically deleted, the logical child, its physical parents, and its
physical dependents are accessible from the logical parent.

The logical child segment SEG4 remains accessible from its logical parent SEG7
(SEG7 is not physically deleted). Also accessible are SEG5 and SEG6, which are
variable intersection data. The physical parent of the logical child (SEG3) is also
accessible from the logical child (SEG4).

A physically and logically deleted logical child can be accessed from its physical
dependents. See the following figure.

Figure 153. (Part 1 of 5). Example of deleted segments accessibility

300 Database Administration

The physical structure in the preceding figure shows that logical child SEG4 is both
physically and logically deleted.

From a previous example (part 1 of 4), we know SEG6 (a logical parent) is
accessible from SEG2, if that segment (its logical child) is not physically deleted.
We also know that once we've accessed SEG6, its physical parents (SEG5, SEG4,
SEG3) are accessible. It does not matter that the logical child is logically deleted
(which is the only difference between this example and that of part 1 of 4).

The third path cannot be blocked because no delete bit exists for this path.
Therefore, the logical child SEG4 is accessible from its dependents even though it is
been physically and logically deleted.

When a segment accessed by its third path is deleted, it is physically deleted in its
physical data base, but it remains accessible from its third path. See the following
figure and code.

Figure 154. (Part 2 of 5). Example of deleted segments accessibility

Chapter 15. Creating logical relationships 301

SEG5 is physically deleted by the DLET call, and SEG 6 is physically deleted by
propagation. SEG2/SEG6 has unidirectional pointers, so SEG2 was considered
logically deleted before the DLET call was issued. The LD bit is only assumed to
be set on. See the following figure.

The results are interesting. SEG5 is inaccessible from its physical parent path (from
SEG4) unless SEG4 is accessed by its logical parent SEG7 (SEG5 and SEG6 are
accessible as variable intersection data). SEG5 is still accessible from its third path

Figure 155. (Part 3 of 5). Example of deleted segments accessibility

GHU ’SEG5’ STATUS=’ ’
DLET STATUS=’ ’

Figure 156. (Part 4 of 5). Example of deleted segments accessibility: database calls

Figure 157. (Part 5 of 5). Example of deleted segments accessibility

302 Database Administration

(from SEG6) because SEG6 is still accessible from its logical child. Thus, a segment
can be physically deleted by an application program and still be accessible to that
application program, using the same PCB used to delete the segment.

Possibility of abnormal termination
If a logical parent is physically and logically deleted, its DASD space is released.
For this to occur, all of its logical children must be physically and logically deleted.
However, the DASD space for these logical children cannot be released if the
logical children have physical dependents with active logical relationships.

Accessing such a logical child from its physical dependents (both the logical child
and logical parent have been physically and logically deleted) can result in a user
850 through 859 abnormal termination if one of the following occurs:
v The LPCK is not stored in the logical child
v The concatenation definition is data sensitive to the logical parent

The following figure shows an example of abnormal termination.

The logical parent SEG7 has been physically and logically deleted (the LD bit is
never really set, but is assumed to be set. It is shown only for the purpose of
illustration.) All of the logical children of the logical parent have also been
physically and logically deleted. However, the logical parent has had its segment
space released, whereas the logical child (SEG4) still exists. The logical child still
exists because it has a physical dependent that has an active logical relationship
that precludes releasing its space.

If an application program accesses SEG4 from its dependents (SEG1 to SEG2/SEG6
to SEG5), IMS must build the logical parent's concatenated key if that key is not
stored in the logical child. When IMS attempts to access logical parent SEG7,
abnormal termination will occur. The 850 through 859 abnormal termination codes
are issued when a pointer is followed that does not lead to the expected segment.
Related concepts:

Figure 158. Example of abnormal termination

Chapter 15. Creating logical relationships 303

“The third access path” on page 309

Avoiding abnormal termination
You must avoid creating a physically deleted logical child that can be accessed
from below in the physical structure (using its third path). A logical child can be
accessed from below if any of its physical dependents are accessible through
logical paths.

Two methods exist in avoiding this situation.
v Method 1 The first method requires that logical paths to dependents be broken

before the logical child is physically deleted. Breaking the logical path with
method 1 is done using a P rule for the dependents as long as no physical
deletes are propagated into the database. Therefore, no V rules on logical
children can be allowed at or above the logical child, because, with the V rule, a
propagated logical delete causes a physical delete without a P rule violation
check. The L rule also causes propagation, if the PD bit is already set on, but the
dependent's P rule will prevent that case. Similarly, no V rule can be allowed on
any logical parent above the logical child, because the logical delete condition
would cause the physical delete.

v Method 2 The second method requires breaking the logical path whenever the
logical child is physically deleted. Breaking the logical path with this method is
done for subordinate logical child segments using the V delete rule. Subordinate
logical parent segments need to have bidirectional logical children with the V
rule (must be able to reach the logical children) or physically paired logical
children with the V rule. This method will not work with subordinate logical
parents pointed to by unidirectional logical children.

Related concepts:
“Detecting physical delete rule violations”

Detecting physical delete rule violations
When a DLET call is issued, the delete routine scans the physical structure
containing the segment to be deleted.

The delete routine scans the physical structure to determine if any segment in it
uses the physical delete rule and whether that rule is being violated. The following
figure and code sample show an example of violating the physical delete rule.

304 Database Administration

SEG7 (the logical child of SEG2) uses the physical delete rule and has not been
logically deleted (the LD bit has not been set on). Therefore, the physical delete
rule is violated. A 'DX' status code is returned to the application program, and no
segments are deleted.
Related tasks:
“Avoiding abnormal termination” on page 304

Treating the physical delete rule as logical
If the delete routine determines that neither the segment specified in the DLET call
nor any physical dependent of that segment in the physical structure uses the
physical delete rule, any physical rule encountered later (logical deletion
propagated to logical child or logical parent causing physical deletion—V rule—in
another database) is treated as a logical delete rule.

The following figure and code show an example of treating the physical delete rule
as logical.

Figure 159. Example of violation of the physical delete rule

GHU ’SEG4’ STATUS=’ ’
DLET STATUS=’DX’

Figure 160. Example of violation of the physical delete rule: database calls

Chapter 15. Creating logical relationships 305

SEG8 and SEG9 are both physically deleted, and SEG9 is logically deleted (V rule).
SEG5 is physically and logically deleted because it is the physical pair to SEG9
(with physical pairing setting the LD bit in one set, the PID bit in the other, and
vice versa). Physically deleting SEG5 causes propagation of the physical delete to
SEG5's physical dependents; therefore, SEG6 and SEG7 are physically deleted.

Note that the physical deletion of SEG7 is prevented if the physical deletion started
by issuing a DLET call for SEG4. But the physical rule of SEG7 is treated as logical
in this case.

Inserting physically and logically deleted segments
When a segment is inserted, a replace operation is performed (space is reused),
and existing dependents of the inserted segment remain if certain conditions are
met.

A replace operation is performed (space is reused) and existing dependents of an
inserted segment remain when a segment is inserted if:
v The segment to be inserted already exists (same segment type and same key

field value for both the physical and logical sequencing)
v The delete bit is set on for that segment along the path of insertion

For HDAM and HIDAM databases, the logical twin chain is established as
required, and existing dependents of the inserted segment remain.

Figure 161. Example of treating the physical delete rule as logical

GHU ’SEG8’ STATUS=’ ’
DLET STATUS=’ ’

Figure 162. Example of treating the physical delete rule as logical: database calls

306 Database Administration

For HISAM databases, if the root segment is physically and logically deleted before
the insert is done, then the first logical record for that root in primary and
secondary data set groups is reused. Remaining logical records on any OSAM
chain are dropped.

Delete rules summary
The following list provides a summary of the delete rules.

The DLET Call
A DLET call issued against a concatenated segment (SOURCE=DATA/DATA,
DATA/KEY, KEY/DATA) is a DLET call against the logical child only.

A DLET call against a logical child that has been accessed from its logical
parent is a request that the logical child be logically deleted.

In all other cases, a DLET call issued against a segment is a request for that
segment to be physically deleted.

Physical Deletion
A physically deleted segment cannot be accessed from its physical path,
however, one exception exists: If one of the physical parents of the physically
deleted segment is a logical child that can be accessed from its logical parent,
then the physically deleted segment is accessible from that logical child. The
physically deleted segments is accessible because the physical dependents of
the logical child are variable intersection data.

Logical Deletion
By definition, a logically deleted logical child cannot be accessed from its
logical parent. Unidirectional logical child segments are assumed to be logically
deleted.

By definition, a logical parent is considered logically deleted when all its
logical children are physically deleted and all its physical children that are part
of a physically paired set are physically deleted.

Access Paths
Neither physical nor logical deletion of a segment prevents access to the
segment from its physical or logical children, or from the segment to its
physical or logical parents. A physically deleted root segment can be accessed
only from its physical or logical children.

Propagation of Delete
In bidirectional physical pairing, physical deletion of one of the pair of logical
children causes logical deletion of its paired segment. Likewise, logical deletion
of one causes physical deletion of the other.

Physical deletion of a segment propagates logical deletion requests to its
bidirectional logical children. Physical deletion of a segment propagates
physical deletion requests to its physical children and to any index pointer
segments for which it is the source segment.

Delete Rules
Further delete operations are governed by the following delete rules:

Logical Parent
When RULES=P is specified, if the segment is not already logically deleted,
a DLET call against the segment or any of its physical parents results in a
DX status code. No segments are deleted. If a request is made against the
segment as a result of propagation across a logical relationship, then the P
rule works like the L rule.

Chapter 15. Creating logical relationships 307

When RULES=L is specified, either physical or logical deletion can occur
first, and neither causes the other to occur.

When RULES=V is specified, either physical or logical deletion can occur
first. If the segment is logically deleted as the result of a DLET call, then it
is physically deleted also.

Physical Parent of a Virtually Paired Logical Child
RULES=P, L, or V is meaningless.

When RULES=B is specified and all physical children that are virtually
paired logical children are logically deleted, the physical parent segment is
physically deleted.

Logical Child
When RULES=P is specified, if the segment is not already logically deleted,
then a DLET call requesting physical deletion of the segment or any of its
physical parents results in a DX status code. No segments are deleted. If a
delete request is made against the segment as a result of propagation
across a logical relationship or if the segment is one of a physically paired
set, then the rule works like the L rule.

When RULES=L is specified, either physical or logical deletion can occur
first, and neither causes the other to occur.

When RULES=V is specified, either physical or logical deletion can occur
first and either causes the other to occur. If this rule is used on only one
segment of a physically paired set, it works like the L rule.

Space Release
Depending on the database organization, DASD space can or cannot be
reused when it is released. DASD space for a segment is released when the
following conditions are met:
v Space has been released for all physical dependents of the segment.
v The segment is physically deleted.
v If the segment is a logical child or a logical parent, then it is physically

and logically deleted.
v If the segment is a dependent of a logical child (variable intersection

data) and the DLET call was issued against a physical parent of the
logical child, then the logical child is both physically and logically
deleted.

v If the segment is a primary index pointer segment, the space is released
for its target segment.

Using the DLET call
The DLET call is a request to delete a path of segments, not a request to release the
DASD space used by a segment.

Delete rules are needed when a segment is involved in a logical relationship,
because that segment belongs to two paths: a physical and a logical path. The
selection of the delete rules for the logical child and its logical and physical parent
(or two logical parents if physical pairing is used) determines whether one or two
DLET calls are necessary to delete the two access paths.

Physical and logical deletion
Physically deleting a segment prevents further access to that segment using its
physical parents.

308 Database Administration

Physically deleting a segment also physically deletes its physical dependents,
however one exception to this exists: If one of the physical parents of the
physically deleted segment is a logical child that has been accessed from its logical
parent, then the physically deleted segment is accessible from that logical child.
The deleted segment is accessible from that logical child because the physical
dependents of a logical child are variable intersection data.

Logically deleting a logical child prevents further access to the logical child using
its logical parent. Unidirectional logical child segments are assumed to be logically
deleted. A logical parent is considered logically deleted when all its logical children
are physically deleted. For physically paired logical relationships, the physical
child paired to the logical child must also be physically deleted before the logical
parent is considered logically deleted.

Deleting concatenated segments
The following application program can be sensitive to either the concatenated
segment—SOURCE=(DATA/DATA), (DATA/KEY), (KEY/DATA)—or the logical
child, because it is the logical child that is either physically or logically deleted
(depending on the path accessed) in all cases.

The concatenated segment relationships are shown in the following figure.

Related reference:

DFSVSMxx member of the IMS PROCLIB data set (System Definition)

The third access path
In the figure below, three paths to the logical child segment SEG4 exist.

The three paths to the logical child segment SEG4 are:
v The physical path from its physical parent SEG3
v The logical path from its logical parent SEG7
v A third path from SEG4's physical dependents (SEG5 and SEG6) (because

segment SEG6 is a logical parent accessible from its logical child SEG2)

These paths are called “full-duplex” paths, which means accessibility to segments
in the paths is in two directions (up and down). Two delete bits that control access
along the paths exist, but they are “half-duplex,” which means they only block half
of each respective path. No bit that blocks the third path exists. If SEG4 were both

Figure 163. Concatenated segment relationships

Chapter 15. Creating logical relationships 309

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsvsmxx_proclib.htm#ims_dfsvsmxx_proclib

physically and logically deleted (in which case the PD and LD bits in SEG4 would
be set), SEG4 would still be accessible from the third path, and so would both of
its parents.

Neither physical nor logical deletion prevents access to a segment from its physical
or logical children. Logically deleting SEG4 prevents access to SEG4 from its logical
parent SEG7, and it does not prevent access from SEG4 to SEG7. Physically
deleting SEG4 prevents access to SEG4 from its physical parent SEG3, but it does
not prevent access from SEG4 to SEG3.

Related concepts:
“Possibility of abnormal termination” on page 303

Issuing the delete call
A DLET call can be issued against a segment defined in either a physical or logical
DBD. The call can be issued against either a physical segment or a concatenated
segment.

A DLET call issued against a concatenated segment requests deletion of the logical
child in the path that is accessed. If a concatenated segment or a logical child is
accessed from its logical parent, the DLET call requests logical deletion. In all other
cases, a delete call requests physical deletion.

Physical deletion of a segment generates a request for logical deletion of all the
segment's logical children and generates a request for physical deletion of all the
segment's physical children. Physical deletion of a segment also generates a request
to delete any index pointer segments for which the physically deleted segment is
the source segment.

Delete sensitivity must be specified in the PCB for each segment against which a
delete call can be issued. The call does not need to be specified for the physical
dependents of those segments. Delete operations are not affected by KEY or DATA
sensitivity as specified in either the PCB or logical DBD.

Status codes
The nonblank status codes that can be returned to an application program after a
DLET call are as follows.

Figure 164. Third access path example

310 Database Administration

v DX—A delete rule was violated
v DA—The key was changed in the I/O area
v AM—The call function was not compatible with the processing option or

segment sensitivity

DASD space release
The DLET call is not a request for release of DASD space. Depending on the
database organization, DASD space can or cannot be reused when it is released.

DASD space for a segment is released when the following conditions are met:
v Space has been released for all physical dependents of the segment.
v The segment is physically deleted (PD bit is set or being set on).
v If the segment is a logical child or logical parent, then it must be physically and

logically deleted (PD bit is set or being set on and LD bit is set or assumed set).
v If the segment is a dependent of a logical child (and is variable intersection data)

and the DLET call was issued against a physical parent of the logical child, the
logical child must be both physically and logically deleted.

v If the segment is a secondary index pointer segment, the space has been released
for its target segment.

The segment delete byte
The delete byte is used by IMS to maintain the delete status of segments within a
database.

The bits in the delete byte are only meaningful for logical child segments and their
logical parents. For segments involved in a logical relationship, the PD and LD bits
are set or assumed set as follows:
v If a segment is physically deleted (thereby preventing further access to it from

its physical parent), then delete processing scans downward from the deleted
segment through its dependents, turns upward, and either releases each
segment's DASD space or sets the PD bit. HISAM is the one exception to this
process. In HISAM, the delete bit is set in the segment specified by the DLET
call and processing terminates.

v If the PD bit is set in a logical parent, the LD bit is set in all logical children that
can be reached from that logical parent.

v When physical pairing is used, if the PD bit is set in one of a pair of logical
children, the LD bit is set in its paired segment.

v When a virtually paired logical child is logically deleted (thereby preventing
further access to it from its logical parent), the LD bit is set in the logical child.

v The LD bit is assumed set in all logical children in unidirectional logical
relationships.

v If physical pairing is used, the LD bit is assumed set in a parent if all the paired
segments that are physical children of the parent have the PD bit set on.

Bits in the delete byte
The meaning of the delete byte is determined by which bits within the byte are
turned on.

This topic contains Diagnosis, Modification, and Tuning information.

The meaning of each bit in the delete byte, when turned on, is as follows:

Bit Meaning When Delete Byte is Turned On

Chapter 15. Creating logical relationships 311

0 Segment has been marked for deletion. This bit is used for segments in a
HISAM or secondary index database or segments in primary index.

1 Database record has been marked for deletion. This bit is used for
segments in a HISAM or secondary index database or segments in a
primary index.

2 Segment has been processed by the delete routine.

3 This bit is reserved.

4 Prefix and data portion of the segment are separated in storage. (The delete
byte preceding the separated data portion of the segment has all bits
turned on.)

5 Segment has been marked for deletion from a physical path. This bit is
called the PD (physical delete) bit.

6 Segment has been marked for deletion from a logical path. This bit is
called the LD (logical delete) bit.

7 Segment has been marked for removal from its logical twin chain. This bit
should only be set on if bits 5 and 6 are also on).

Related concepts:
“Delete byte” on page 16

Bits in the prefix descriptor byte
The delete byte is also used for the root segment of a DEDB, only there it is called
a prefix descriptor byte.

This topic contains Diagnosis, Modification, and Tuning information.

The meaning of each bit, when turned on, is as follows:

Bit Meaning When Root Segment Prefix Descriptor is Turned On

0 Sequential dependent segment is defined.

1-3 These bits are reserved.

4-7 If the number of defined segments is 8 or less, bits 4 through 7 contain the
highest defined segment code. Otherwise, the bits are set to 000.

Related concepts:
“Insert, delete, and replace rules for logical relationships” on page 273

Insert, delete, and replace rules summary
The following figure summarizes insert, delete, and replace rules by stating a
desired result and then indicating the rule that can be used to obtain that result.

312 Database Administration

The following table lists the insert, delete, and replace rules and how to specify
them.

Table 60. Specifying insert, delete, and replace rules

Rule RULES= specification

physical insert rule RULES= (P,_,_)

logical insert rule RULES= (L,_,_)

virtual insert rule RULES= (V,_,_)

physical delete rule RULES= (_,P,_)

logical delete rule RULES= (_,L,_)

bidirectional virtual delete rule RULES= (_,B,_)

virtual delete rule RULES= (_,V,_)

physical replace rule RULES= (_,_,P)

logical replace rule RULES= (_,_,L)

virtual replace rule RULES= (_,_,V)

Insert rules for physical parent segment A
The insert rules for physical parent (PP) segment A control the insert of PP A using
the logical path to PP A.

The rules are as follows:
v To disallow the insert of PP A on its logical path, use the physical insert rule.
v To allow the insert of PP A on its logical path (concatenated with virtual logical

child segment A), use either the logical or virtual rule.
Where PP A is already present, a logical connection is established to the existing
PP A segment. The existing PP A can either be replaced or remain unchanged:
– If PP A is to remain unchanged by the insert call, use the logical insert rule.
– If PP A is to be replaced by the insert call, use the virtual insert rule.

Figure 165. Insert, delete, and replace rules summary

Chapter 15. Creating logical relationships 313

Delete rules for physical parent segment A
The delete rules for PP segment A control the deletion of PP A using the logical
path to PP A.

The rules are as follows:
v To cause PP segment A to be deleted automatically when the last logical

connection (through real logical child segment B to PP segment A) is broken, use
the bidirectional virtual delete rule.

v The other delete rules for PP A are not meaningful.

Replace rules for physical parent segment A
The replace rules for PP segment A control the replacement of PP A using the
logical path to PP A.

The rules are as follows:
v To disallow the replacement of PP A on its logical path and receive an 'RX'

status code if the rule is violated by an attempt to replace PP A, use the physical
replace rule.

v To disregard the replacement of PP A on its logical path, use the logical replace
rule.

v To allow the replacement of PP A on its logical path, use the virtual replace rule.

Insert rules for logical parent segment B
The insert rules for logical parent (LP) segment B control the insert of LP B using
the logical path to LP B.

Note: These rules are identical to the insert rules for PP segment A.

The rules are as follows:
v To disallow the insert of LP B on its logical path, use the physical insert rule.
v To allow the insert of LP B on its logical path (concatenated with virtual

segment RLC B) use either the logical or virtual rule.
Where LP B is already present, a logical connection is established to the existing
LP B segment. The existing LP B can either be replaced or remain unchanged:
– If LP B is to remain unchanged by the insert call, use the logical insert rule.
– If LP B is to be replaced by the insert call, use the virtual insert rule.

Delete rules for logical parent segment B
The delete rules for segment LP B control the deletion of LP B on its physical path.
A delete call for a concatenated segment is interpreted as a delete of the logical
child only.

The rules are as follows:
v To ensure that LP B remains accessible until the last logical relationship path to

that occurrence has been deleted, choose the physical delete rule. If an attempt
to delete LP B is made while there are occurrences of real logical child (RLC) B
pointing to LP B, a 'DX' status code is returned and no segment is deleted.

v To allow segment LP B to be deleted on its physical path, choose the logical
delete rule. When LP B is deleted, it is no longer accessible on its physical path.
It is still possible to access LP B from PP A through RLC B as long as RLC B
exists.

314 Database Administration

v Use the virtual delete rule to physically delete LP B when it has been explicitly
deleted by a delete call or implicitly deleted when all RLC Bs pointing to it have
been physically deleted.

Replace rules for logical parent segment B
The replace rules for LP segment B control the replacement of LP B using the
logical path to LP B.

Note: These rules are identical to the replace rules for PP segment A.

The rules are as follows:
v Use the physical replace rule to disallow the replacement of LP B on its logical

path and receive an 'RX' status code if the rule is violated by an attempt to
replace LP B.

v Use the logical replace rule to disregard the replacement of LP B on its logical
path.

v Use the virtual replace rule to allow the replacement of LP B on its logical path.

Insert rules for real logical child segment B
The insert rules do not apply to a logical child.

Delete rules for real logical child segment B
The delete rules for RLC segment B apply to delete calls using its logical or
physical path.

The rules are as follows:
v Use the physical delete rule to control the sequence in which RLC B is deleted

on its logical and physical paths. The physical delete rule requires that it be
logically deleted before it is physically deleted. A violation results in a 'DX'
status code.

v Use the logical delete rule to allow either physical or logical deletes to be first.
v Use the virtual delete rule to use a single delete call from either the logical or

physical path to both logically and physically delete RLC B.

Replace rules for real logical child segment B
The replace rules for LP B control the replacement of RLC B using the logical path
to RLC B.

Note: These rules are identical to the replace rules for PP segment A.

The rules are as follows:
v Use the physical replace rule to disallow the replacement of RLC B on its logical

path and receive an 'RX' status code if the rule is violated by an attempt to
replace RLC B.

v To disregard an attempt to replace RLC B on its logical path, use the logical
replace rule.

v To allow the replacement of RLC B on its logical path, use the virtual replace
rule.

Logical relationships and HALDB databases
HALDB databases support logical relationships in the same manner that
non-HALDB DL/I databases do, with a single exception: bidirectional logical
relationships in a HALDB database must be implemented with physical pairing.

Chapter 15. Creating logical relationships 315

When you load a new partitioned database that contains logical relationships, the
logical child segments cannot be loaded as part of the load step. IMS adds the
logical children by normal update processing after the database has been loaded.

HALDB databases use an indirect list data set (ILDS) to maintain logical
relationship pointers when logically related databases are reorganized.
Related concepts:
“The HALDB self-healing pointer process” on page 664

Performance considerations for logical relationships
If you are implementing a logical relationship, you make several choices that affect
the resources needed to process logically related segments.

Logical parent pointers

The logical child segment on DASD has a pointer to its logical parent. You choose
how this pointer is physically stored on external storage. Your choices are:
v Direct pointing (specified by coding POINTER=LPARNT in the SEGM statement

for the logical child)
v Symbolic pointing (specified by coding the PHYSICAL operand for the

PARENT= keyword in the SEGM statement for the logical child)
v Both direct and symbolic pointing

The advantages of direct pointers are:
v Because direct pointers are only 4 bytes long, they are usually shorter than

symbolic pointers. Therefore, less DASD space is generally required to store
direct pointers.

v Direct pointers usually give faster access to logical parent segments, except
possibly HDAM or PHDAM logical parent segments, which are roots. Symbolic
pointers require extra resources to search an index for a HIDAM database. Also,
with symbolic pointers, DL/I has to navigate from the root to the logical parent
if the logical parent is not a root segment.

The advantages of symbolic pointers are:
v Symbolic pointers are stored as part of the logical child segment on DASD.

Having the symbolic key stored on DASD can save the resources required to
format a logical child segment in the user's I/O area. Remember, the symbolic
key always appears in the I/O area as part of the logical child. When retrieving
a logical child, IMS has to construct the symbolic key if it is not stored on
DASD.

v Logical parent databases can be reorganized without the logical child database
having to be reorganized. This applies to unidirectional and bidirectional
physically paired relationships (when symbolic pointing is used).

Symbolic pointing must be used:
v When pointing to a HISAM logical parent database
v If you need to sequence logical child segments (except virtual logical children)

on any part of the symbolic key

316 Database Administration

KEY/DATA considerations

When you include a concatenated segment as part of a logical DBD, you control
how the concatenated segment appears in the user's I/O area. You do this by
specifying either KEY or DATA on the SOURCE= keyword of the SEGM statement
for the concatenated segment. A concatenated segment consists of a logical child
followed by a logical (or destination) parent. You specify KEY or DATA for both
parts. For example, you can access a concatenated segment and ask to see the
following segment parts in the I/O area:
v The logical child part only
v The logical (or destination) parent part only
v Both parts

By carefully choosing KEY or DATA, you can retrieve a concatenated segment with
fewer processing and I/O resources. For example:
v Assume you have the unidirectional logical relationship shown in the following

figure.

v Assume you have the logical structure shown in the following figure.

Figure 166. Example of a unidirectional logical relationship

Chapter 15. Creating logical relationships 317

v Finally, assume you only need to see the data for the LINEITEM part of the
concatenated segment.

You can avoid the extra processing and I/O required to access the MODEL part of
the concatenated segment if you:
v Code the SOURCE keyword of the concatenated segment's SEGM statement as:

SOURCE=(lcsegname,DATA,lcdbname),(lpsegname,KEY,lpdbname)

v Store a symbolic logical parent pointer in LINEITEM. If you do not store the
symbolic pointer, DL/I must access MODEL and PRODUCT to construct it.

To summarize, do not automatically choose DATA sensitivity for both the logical
child and logical parent parts of a concatenated segment. If you do not need to see
the logical parent part, code KEY sensitivity for the logical parent and store the
symbolic logical parent pointer on DASD.

Sequencing logical twin chains

With virtual pairing, it is possible to sequence the real logical child on physical
twin chains and the virtual logical child on logical twin chains. If possible, avoid
operations requiring that you sequence logical twins. When a logical twin chain is
followed, DL/I usually has to access multiple database records. Accessing multiple
database records increases the resources required to process the call.

This problem of increased resource requirements to process calls is especially
severe when you sequence the logical twin chain on all or part of the symbolic
logical parent pointer. Because a virtual logical child is not stored, it is necessary to
construct the symbolic logical parent pointer to determine if a virtual logical child
satisfies the sequencing operation. DL/I must follow physical parent pointers to
construct the symbolic pointers. This process takes place for each virtual logical
child in the logical twin chain until the correct position is found for the sequencing
operation.

Figure 167. Example of a logical structure

318 Database Administration

Placement of the real logical child in a virtually paired
relationship

In placing the real logical child in a virtually paired relationship, here are some
considerations:
v If you need the logical child sequenced in only one of the logically related

databases, put the real logical child in that database.
v If you must sequence the logical child in both logically related databases, put the

real logical child in the database from which it is most often retrieved.
v Try to place the real logical child so logical twin chains are as short as possible.

This placement decreases the number of database records that must be examined
to follow a logical twin chain.

Note: You cannot store a real logical child in a HISAM database, because you
cannot have logical child pointers (which are direct pointers) in a HISAM database.

Chapter 15. Creating logical relationships 319

320 Database Administration

Chapter 16. Creating secondary indexes

Secondary indexes are indexes that process a segment type in a sequence other
than the one that is defined by the segment's key. A secondary index can also
process a segment type based on a qualification in a dependent segment.

The following database types support secondary indexes:
v HISAM
v HDAM
v PHDAM
v HIDAM
v PHIDAM
v DEDB
Related concepts:
Chapter 11, “IMS catalog secondary index,” on page 99
Related tasks:
“Altering IMS indexes” on page 720
“Dropping an index” on page 723
Related reference:
“XDFLD segment type format” on page 84

The purpose of secondary indexes
Secondary indexing provides a way to meet the different processing requirements
of various applications. Secondary indexing allows you to have an index based on
any field in the database, not just the key field in the root segment.

When you design your database records, you design them to meet the processing
requirements of many applications. You decide what segments will be in a
database record and what fields will be in a segment. You decide the order of
segments in a database record and fields within a segment. You also decide which
field in the root segment will be the key field, and whether the key field will be
unique. All these decisions are based on what works best for all of the processing
requirements of your applications. However, the choices you make might suit the
processing requirements of some applications better than others.

Example: A database record in an educational database is shown in the following
figure.

© Copyright IBM Corp. 1974, 2016 321

The following figure shows the root segment, COURSE, and the fields it contains.
The course number field is a unique key field.

You chose COURSE as the root and course number as a unique key field partly
because most applications requested information based on course numbers. For
these applications, access to the information needed from the database record is
fast. For a few of your applications, however, the organization of the database
record does not provide such fast access. One application, for example, would be
to access the database by student name and then get a list of courses a student is
taking. Given the order in which the database record is now organized, access to
the courses a student is taking requires a sequential scan of the entire database.
Each database record has to be checked for an occurrence of the STUDENT
segment. When a database record for the specific student is found, then the
COURSE segment has to be referenced to get the name of the course the student is
taking. This type of access is relatively slow. In this situation, you can use a
secondary index that has a set of pointer segments for each student to all COURSE
segments for that student.

Another application would be to access COURSE segments by course name. In this
situation, you can use a secondary index that allows access to the database in
course name sequence (rather than by course number, which is the key field).

Figure 168. Database record in educational database

Figure 169. Example of a database record unique key field

322 Database Administration

Characteristics of secondary indexes
Secondary indexes can be used with HISAM, HDAM, PHDAM, HIDAM, DEDB,
and PHIDAM databases.

A secondary index is in its own a separate database and must use VSAM as its
access method. Because a secondary index is in its own a database, it can be
processed as a separate database.

Secondary indexes for full-function databases are invisible to the application
program. When an application program needs to access a full-function database
using the secondary index, this fact is communicated to IMS by coding the
PROCSEQ= parameter in the PCB. If an application program needs to do
processing using the regular processing sequence, PROCSEQ= is not coded. If the
application program needs to do processing using both the regular processing
sequence and the secondary index, the PSB for the application program must
contain two PCBs, one with PROCSEQ= coded and one without.

Secondary indexes for Fast Path databases are also invisible to the application
program. When a DEDB database needs to be accessed using its Fast Path
secondary index, the PROCSEQD= parameter in the PCB is used to specify the
name of the Fast Path secondary index database to use to access the primary
DEDB database. The PROCSEQD= parameter has the same function as the
full-function PROCSEQ= parameter. The PROCSEQD= parameter stands for
PROCSEQ for DEDB databases.

When two PCBs are used, it enables an application program to use two paths into
the database and two sequence fields. One path and sequence field is provided by
the regular processing sequence, and one is provided by the secondary index. The
secondary index gives an application program both an alternative way to enter the
database and an alternative way to sequentially process database records.

If a PSB contains only a Fast Path secondary index PCB to access the Fast Path
secondary index database as a separate database, the associated DEDB PCB must
be included in the PSB. The minimal DEDB PCB requires a SENSEG statement for
the root segment of the associated DEDB database.

A final characteristic of full-function secondary indexes is that there can be 32
secondary indexes for a segment type and a total of 1000 secondary indexes for a
single full-function database.

Fast Path secondary index databases can be HISAM or SHISAM databases.

Fast Path secondary indexes have the following capabilities that are not available
with full-function secondary indexes:

User data partitioning
A single Fast Path secondary index can span multiple physical databases,
each of which is considered a partition. Each partition can contain a range
of keys. Index keys are assigned to a partition by a user partition selection
exit routine. The index databases can be accessed individually or as one
logical separate database.

The partitions for a Fast Path secondary index are created using the DBD
generation utility. When user partitioning for a Fast Path HISAM
secondary index database or a Fast Path SHISAM secondary index
database is requested:

Chapter 16. Creating secondary indexes 323

v The PROCSEQD= parameter specifies the name of the first partition
database in the user partition group.

v The PSELRTN= parameter specifies the DEDB partition selection exit
routine that is used to determine the actual partition. The sample that is
shipped with IMS is the Data Entry Database Partition Selection exit
routine (DBFPSE00).

When the DEDB Partition Selection exit routine is not called, the
PSELOPT=MULT|SNGL parameter can be used to indicate how many
partition databases are processed before a GB status code is returned to an
application to indicate the end of the database. PSELOPT= can be specified
in both XDFLD statement or PCB with PROCSEQD= statement. If both are
specified, the one in the PCB statement takes precedence.

Each Fast Path secondary index database can have a maximum of 101 user
partition databases. Two or more user partition databases, separated by
commas and enclosed in parentheses can be specified after the secondary
index segment name in the NAME= parameter on the LCHILD statement
in the primary DEDB database.

User data partitioning can be used with multiple secondary index
segments. The following figure illustrates the concept of partitioning Fast
Path secondary indexes.

Fast Path secondary index database

INDXDB1 INDXDB2 INDXDB3 INDXDB4 INDXDB5

DEDB

Multiple secondary index segments
You can create multiple index entries from different fields in the same
source segment.

This is done by defining two or more LCHILD/XDFLD statement pairs
under the SEGM statement of a target segment and specifying the
MULTISEG=YES on the LCHILD statement.

A final characteristic of Fast Path secondary indexes is that there can be a
maximum of 32 secondary indexes per segment and 255 secondary indexes per
DEDB. Each multiple LCHILD/XDFLD statement pair counts towards the 32
secondary indexes per segment limit. When a Fast Path secondary index consists of
partition databases, only the Fast Path secondary index database itself (not the
partitions) is counted toward the 255 secondary indexes per DEDB limit.

324 Database Administration

Related reference:

Database Description (DBD) Generation utility (System Utilities)

Segments used for secondary indexes
To set up a secondary index, three types of segments must be defined to IMS:
pointer, target, and source segments.

The following figure illustrates the segments used for a secondary index.

Pointer Segment
The pointer segment is contained in the secondary index database and is
the only type of segment in the secondary index database. Its format is
shown in the following figure.

Same segment
type as the
target segment
type or,
as shown,
a dependent
of the
target segment
type

A root or
dependent
segment type

The content
of specified
fields in each
source segment
is duplicated in
the respective
pointer segment.

Physical or
logical database

Secondary
index database

Pointer
segment

Target
segment

Source
segment

Figure 170. Segments used for secondary indexes

Chapter 16. Creating secondary indexes 325

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdgen.htm#ims_dbdgen

The first field in the prefix is the delete byte. The second field is the
address of the segment the application program retrieves from the regular
database. This field is not present if the secondary index uses symbolic
pointing. Symbolic pointing is pointing to a segment using its concatenated
key. HIDAM and HDAM can use symbolic pointing; however, HISAM
must use symbolic pointing. Symbolic pointing is not supported for
PHDAM and PHIDAM databases.

For a HALDB PSINDEX database, the segment prefix of pointer segments
is slightly different. The “RBA of the segment to be retrieved field” is part
of an Extended Pointer Set (EPS), which is longer than 4 bytes. Within the
prefix, the EPS is followed by the key of the target's root.

For a DEDB database, the pointer segments must be symbolic.

Target Segment
The target segment is in the regular database, and it is the segment the
application program needs to retrieve. A target segment is the segment to
which the pointer segment points. The target segment can be at any one of
the 15 levels in the database, and it is accessed directly using the RBA or
symbolic pointer stored in the pointer segment. Physical parents of the
target segment are not examined to retrieve the target segment, except in
one special case discussed in “Symbolic pointer field” on page 335.

Source Segment
The source segment is also in the regular database. The source segment
contains the field (or fields) that the pointer segment has as its key field.
Data is copied from the source segment and put in the pointer segment's
key field. The source and the target segment can be the same segment, or
the source segment can be a dependent of the target segment. The optional
fields are also copied from the source segment with one exception, which
is discussed later in this topic.

Restriction: A DEDB database with sequential dependent (SDEP) segments can
have a secondary index database. However, SDEP segments cannot be used as
target or source segments for a Fast Path secondary index.

In the full-function education database shown in the following figure, three
segments work together. The education database is a HIDAM database that uses
RBAs rather than symbolic pointers. Suppose an application program needs to
access the education database by student name and then list all courses the student
is taking:
v The segment the application is trying to retrieve is the COURSE segment,

because the segment contains the names of courses (COURSENM field).
Therefore, COURSE is the target segment, and needs retrieval.

v In this example, the application program is going to use the student's name in
its DL/I call to retrieve the COURSE segment. The DL/I call is qualified using

1

RBA of the
segment to
be retrieved

Key
field

Optional
fields

Delete
byte

Symbolic pointer
to the segment
to be retrieved

Varies VariesBytes

Prefix Data

4

Figure 171. Format of pointer segments contained in the secondary index database

326 Database Administration

student name as its qualifier. The source segment contains the fields used to
sequence the pointer segments in the secondary index. In this example, the
pointer segments must be sequenced by student name. The STUDENT segment
becomes the source segment. It is the fields in this segment that are copied into
the data portion of the pointer segment as the key field.

v The call from the application program starts a search for a pointer segment with
a key field that matches the student name. After the correct pointer segment in
the index is found, it contains the address of the COURSE segment the
application program is trying to retrieve.

The following figure shows how the pointer, target, and source segments work
together.

Figure 172. Education database record

Figure 173. How a segment is accessed using a secondary index

Chapter 16. Creating secondary indexes 327

The call that the application program issues when a secondary index is used is GU
COURSE (XNAME = BAKER ...).

XNAME is from the NAME parameter in the XDFLD statement.

COURSE is the target segment that the application program is trying to retrieve.

STUDENT is the source segment containing one or more fields that the application
program uses as a qualifier in its call and that the data portion of a pointer
segment contains as a key.

The BAKER segment in the secondary index is the pointer segment, whose prefix
contains the address of the segment to be retrieved and whose data fields contain
the key the application program uses as a qualifier in its call.

How secondary indexes restructure the hierarchy of databases
When an application program accesses a database through a secondary index, the
database records are processed in an alternative sequence.

These topics provide the details of how full-function database and DEDB database
processing is impacted by secondary indexing
Related tasks:
“Altering IMS indexes” on page 720

How secondary indexes restructure the hierarchy of
full-function databases

When the PROCSEQ= parameter in the PCB is coded to specify that the
application program needs to do processing using the secondary index, the way in
which the application program perceives the database record changes.

If the target segment is the root segment in the database record, the structure that
the application program perceives does not differ from the one it can access using
the regular processing sequence. However, if the target segment is not the root
segment, the hierarchy in the database record is conceptually restructured. The
following figures illustrate this concept.

The target segment (as shown in Figure 174 on page 329) is segment G. Target
segment G becomes the root segment in the restructured hierarchy (as shown in
Figure 175 on page 329). All dependents of the target segment (segments H, J, and
I) remain dependents of the target segment. However, all segments on which the
target is dependent (segments D and A) and their subordinates become dependents
of the target and are put in the leftmost positions of the restructured hierarchy.
Their position in the restructured hierarchy is the order of immediate dependency.
D becomes an immediate dependent of G, and A becomes an immediate
dependent of D.

328 Database Administration

Figure 174. Physical database structure with target segment G

Figure 175. Secondary index structure indexed in secondary index on segment G

Chapter 16. Creating secondary indexes 329

This new structure is called a secondary data structure. A processing restriction exists
when using a secondary data structure, and the target segment and the segments
on which it was dependent (its physical parents, segments D and A) cannot be
inserted or deleted.

Secondary processing sequence

The restructuring of the hierarchy in the database record changes the way in which
the application program accesses segments. The new sequence in which segments
are accessed is called the secondary processing sequence. Figure 175 on page 329
shows how the application program perceives the database record.

If the same segment is referenced more than once (as shown in Figure 175 on page
329), you must use the DBDGEN utility to generate a logical DBD that assigns
alternate names to the additional segment references. If you do not generate the
logical DBD, the PSBGEN utility issues the message SEG150 for the duplicate
SENSEG names.

How secondary indexes restructure the hierarchy of DEDB
databases

When a primary DEDB database is accessed through its secondary index using the
PCB with the PROCSEQD= parameter, the primary DEDB database is processed in
an alternate sequence.

When the PROCSEQD= parameter in the PCB is coded, the way in which the
application program perceives the database record changes. If the target segment is
a root segment in the primary DEDB database, the inverted structure in the
primary DEDB database that is using the secondary index is the same as the
physical structure of the primary DEDB database. Subsequent unqualified DL/I
GNP or GN calls after the GU of the target segment return segments in the
primary DEDB database in the physical structure order.

If the target segment is not a root segment in the primary DEDB database, the
hierarchy in the database record is conceptually restructured as an inverted
structure. The DEDB inverted structure access is limited to a subset of segments.
For DEDB inverted structure access, the target segment, its direct parent segments
from the target segment to the root segment, and all its child segments from the
target segments are accessible.

For a target segment that is not a root segment, the direct parent segments from
the target segment to the root segment must have a unique key FIELD statement
defined for each direct parent segment and the target segment. If there is no
unique key in a FIELD statement for a direct parent segment, the DBDGEN utility
terminates with an MNOTE 8 and message DGEN332.

Subsequent unqualified DL/I GNP or GN calls after the GU of the target segment
return segments in the primary DEDB database in the conceptually reconstructed
DEDB inverted structure order:
1. Transverse vertically up from the target segment through its direct parent

segments to the root segment.
2. The target's direct parent segments to the root segment are returned.
3. Transverse vertically down from the target segment to all its child segments.
4. One or more of the target's child segments are returned if requested; specify

SENSEG statements for the target's child segments.

330 Database Administration

The following two figures illustrate how the inverted structure is conceptually
restructured when the PROCSEQD= parameter is coded in the PCB to indicate
alternate sequence processing using the secondary index database for a primary
DEDB database.

The following figure illustrates a physical structure of a database record with root
A and target segment of G.

The following figure illustrates a DEDB inverted database structure with a target
segment of G.

The target segment (as shown in the figures) is segment G. Target segment G
becomes the root segment in the restructured hierarchy. All dependents of the
target segment (segments H, I, J) remain dependents of the target segment.
However, all segments on which the target is a direct dependent (segments D and
A) are put in the leftmost positions of the restructured hierarchy. Their position in
the restructured hierarchy is the order of immediate dependency. D becomes an
immediate dependent of G, and A becomes an immediate dependent of D.

A

B D

GC E

HF

I

K

J

Target

Figure 176. Physical database structure with target segment of G

G

D

A I

JH

Figure 177. DEDB inverted database structure from target segment of G

Chapter 16. Creating secondary indexes 331

The new inverted structure is called a DEDB secondary data structure. A processing
restriction exists when using a secondary data structure, and the target segment
and the segments on which it was dependent (its physical parents, segments D and
A) cannot be inserted or deleted.

The following steps describe the DL/I call sequence using the PCB with the
PROCSEQD= parameter:
1. A qualified GU call returns target segment G.
2. A subsequent unqualified GNP or GN calls return segments D, A, H, I, J.
3. For unqualified GNP calls, a GE status code is returned after segment J.
4. For unqualified GN calls, a GN call returns the next nth segment after segment

G in the secondary index database.
5. For unqualified GN calls, repeat steps 2 and 4. A GB status code is returned

when there are no more segments in the secondary index database.
Related tasks:
“Adding a secondary index to a DEDB” on page 722

How a secondary index is stored
Secondary index databases contain root segments only.

They are stored in a single VSAM KSDS if the key in the pointer segment is
unique. If keys are not unique, an additional data set must be used (an ESDS) to
store segments containing duplicate keys. (KSDS data sets do not allow duplicate
keys.) Duplicate keys exist when, for example, a secondary index is used to
retrieve courses based on student name. As shown in the following figure, several
source segments could exist for each student.

Each pointer segment in a secondary index is stored in one logical record. A logical
record containing a pointer segment is shown in the following figure.

Figure 178. Examples of source segments for each student

332 Database Administration

A HALDB secondary index record is shown in the following figure.

The format of the logical record is the same in both a KSDS and ESDS data set.
The pointer field at the beginning of the logical record exists only when the key in
the data portion of the segment is not unique. If keys are not unique, some pointer
segments will contain duplicate keys. These pointer segments must be chained
together, and this is done using the pointer field at the beginning of the logical
record.

Pointer segments containing duplicate keys are stored in the ESDS in LIFO (last in,
first out) sequence. When the first duplicate key segment is inserted, it is written to
the ESDS, and the KSDS logical record containing the segment it is a duplicate of
points to it. When the second duplicate is inserted, it is inserted into the ESDS in
the next available location. The KSDS logical record is updated to point to the
second duplicate. The effect of inserting duplicate pointer segments into the ESDS
in LIFO sequence is that the original pointer segment (the one in the KSDS) is
retrieved last. This retrieval sequence should not be a problem, because duplicates,
by definition, have no special sequence.

Format and use of fields in a pointer segment
Like all segments, the pointer segment has a prefix and data portion.

This topic contains Diagnosis, Modification, and Tuning information.

The prefix portion has a delete byte, and when direct rather than symbolic
pointing is used, it has the address of the target segment (4 bytes). The data
portion has a series of fields, and some of them are optional. All fields in the data
portion of a pointer segment contain data taken from the source segment (with the
exception of user data). These fields are the constant field (optional), the search
field, the subsequence field (optional), the duplicate data field (optional), the
concatenated key field (optional except for HISAM), and then the data (optional).

The following figure shows the fields in a pointer segment.

Figure 179. Example of a logical record containing a pointer segment

Figure 180. Secondary index entry for HALDB

Chapter 16. Creating secondary indexes 333

Delete byte

The delete byte is used by IMS to determine whether a segment has been deleted
from the database.

Pointer field

This field, when present, contains the RBA of the target segment. The pointer field
exists when direct pointing is specified for an index pointing to an HD database.
Direct pointing is simply pointing to a segment using its actual address.

The other type of pointing that can be specified is symbolic pointing. Symbolic
pointing, which is explained under “Symbolic pointer field,” can be used to point
to HD databases and must be used to point to HISAM databases. If symbolic
pointing is used, this field does not exist.

Constant field

This field, when present, contains a 1-byte constant. The constant is used when
more than one index is put in an index database. The constant identifies all pointer
segments for a specific index in the shared index database. The value in the
constant field becomes part of the key.

The Constant field is not present in Fast Path secondary index pointer segments.

Search field

The data in the search field is the key of the pointer segment. All data in the
search field comes from data in the source segment. As many as five fields from
the source segment can be put in the search field. These fields do not need to be
contiguous fields in the source segment. When the fields are stored in the pointer
segment, they can be stored in any order. When stored, the fields are concatenated.
The data in the search field (the key) can be unique or non-unique.

IMS automatically maintains the search field in the pointer segment whenever a
source segment is modified.

Subsequence field

The subsequence field, like the search field, contains from one to five fields of data
from the source segment. Subsequence fields are optional, and can be used if you
have non-unique keys. The subsequence field can make non-unique keys unique.
Making non-unique keys unique is desirable because of the many disadvantages of

Prefix

Delete
byte

Pointer
field
(RBA)

Constant
field
(optional)

Search
field

Sub-
sequence
field
(optional)

Duplicate
data field
(optional)

Symbolic
pointer
(optional
except for
HISAM)

User
data
(optional)

Data

VariesBytes 1 4 1

Figure 181. Fields of a pointer segment in a secondary index

334 Database Administration

non-unique keys. For example, non-unique keys require you to use an additional
data set, an ESDS, to store all index segments with duplicate keys. An ESDS
requires additional space. More important, the search for specific occurrences of
duplicates requires additional I/O operations that can decrease performance.

When a subsequence field is used, the subsequence data is concatenated with the
data in the search field. These concatenated fields become the key of the pointer
segment. If properly chosen, the concatenated fields form a unique key. It is not
always possible to form a unique key using source data in the subsequence field.
Therefore, you can use system related fields to form unique keys.

One important thing to note about using subsequence fields is that if you use
them, the way in which an SSA is coded does not need to change. The SSA can
still specify what is in the search field, but it cannot specify what is in the search
plus the subsequence field. Subsequence fields are not seen by the application
program unless it is processing the secondary index as a separate database.

Up to five fields from the source segment can be put in the subsequence field.
These fields do not need to be contiguous fields in the source segment. When the
fields are stored in the pointer segment, they can be stored in any order. When
stored, they are concatenated.

IMS automatically maintains the subsequence field in the pointer segment
whenever a source segment is modified.

Duplicate data field

The duplicate data field, like the search field, contains from one to five fields of
data from the source segment. Duplicate data fields are optional. Use duplicate
data fields when you have applications that process the secondary index as a
separate database. Like the subsequence field, the duplicate data field is not seen
by an application program unless it is processing the secondary index as a separate
database.

As many as five fields from the source segment can be put in the duplicate data
field. These fields do not need to be contiguous fields in the source segment. When
the fields are stored in the pointer segment, they can be stored in any order. When
stored, they are concatenated.

IMS automatically maintains the duplicate data field in the pointer segment
whenever a source segment is modified.

Symbolic pointer field

This field, when present, contains the concatenated key of the target segment. This
field exists when the pointer segment points to the target segment symbolically,
rather than directly. Direct pointing is simply pointing to a segment using its actual
address. Symbolic pointing is pointing to a segment by a means other than its
actual address. In a secondary index, the concatenated key of the target segment is
used as a symbolic pointer.

Segments in an HDAM or a HIDAM database being accessed using a secondary
index can be accessed using a symbolic pointer. Segments in a HISAM database
must be accessed using a symbolic pointer because segments in a HISAM database
can “move around,” and the maintenance of direct-address pointers could be a
large task. One of the implications of using symbolic pointers is that the physical

Chapter 16. Creating secondary indexes 335

parents of the target segment must be accessed to get to the target segment.
Because of this extra access, retrieval of target segments using symbolic pointing is
not as fast as retrieval using direct pointing. Also, symbolic pointers generally
require more space in the pointer segment. When symbolic pointers are used, the
pointer field (4 bytes long) in the prefix is not present, but the fully concatenated
key of the target segment is generally more than 4 bytes long.

IMS automatically generates the concatenated key field when symbolic pointing is
specified.

One situation exists in which symbolic pointing is specified and IMS does not
automatically generate the concatenated key field. This situation is caused by
specifying the system-related field /CK as a subsequence or duplicate data field in
such a way that the concatenated key is fully contained. In this situation, the
symbolic pointer portion of either the subsequence field or the duplicate data field
is used.

User data in pointer segments

You can include any user data in the data portion of a pointer segment by
specifying a segment length long enough to hold it. You need user data when
applications process the secondary index as a separate database. Like data in the
subsequence and duplicate data fields, user data is never seen by an application
program unless it is processing the secondary index as a separate database.

You must initially load user data. You must also maintain it. During reorganization
of a database that uses secondary indexes, the secondary index database is rebuilt
by IMS. During this process, all user data in the pointer segment is lost.
Related concepts:
“Sharing secondary index databases” on page 345
Related tasks:
“Processing a secondary index as a separate database” on page 344

Fields in the HISAM secondary index pointer
Fields in a HISAM secondary index database support both unique and non-unique
keys.

This topic contains Diagnosis, Modification, and Tuning information.

A HISAM secondary index database supports both unique and non-unique keys.
Non-unique keys are stored and retrieved in last-in first-out (LIFO) order. Both
KSDS and ESDS data sets are required when the secondary index database
supports non-unique keys. The first inserted non-unique key is stored in the KSDS
data set and the remaining non-unique keys are stored in the ESDS data set in
LIFO order.

A HISAM secondary index database supports subsequence field, duplicate data
field, user data field, and the /CK operand. The subsequence field, and the /CK
operand can be used to make the secondary index key unique.

A HISAM secondary index database contains fixed-length segments, provides data
partitioning using a partition selection exit routine, and supports the Segment
edit/compression exit routine (DFSCMPX0).

336 Database Administration

Fields in the HISAM secondary index pointer with a unique key

The following figure shows the fields in a HISAM secondary index pointer with a
unique key.

Logical record
A secondary index pointer segment is stored in a logical record.

Pointer segment
A secondary index pointer segment contains prefix and data fields.

Prefix Delete byte: one byte

Data fields

Search field
Variable-length bytes, made up of up to 5 fields from the source.

Subsequence field
Variable-length bytes, made up of up to 5 fields from the source or
IMS-generated values (optional). It is used to make the secondary
index key unique. It can be used to order segments in a secondary
index database. The search field and the subsequence field together
make up the key of the secondary index.

Duplicate data field
Variable-length bytes, made up of up to 5 fields from the source
(optional). It is only used when processing the secondary index as
a database.

Symbolic pointer field
Variable-length bytes. It is the concatenated key to the target.

User data
Variable-length bytes, made up of any user data fields (optional). It
is only used when processing the secondary index as a database.

Delete
byte

Search
field

(optional)

Subsequence Duplicate data Symbolic pointer User
data

Variable

Data

Pointer segment

Logical record

Prefix

Bytes1

(optional) (optional)

Figure 182. Example of a HISAM secondary index pointer with a unique key

Chapter 16. Creating secondary indexes 337

Fields in the HISAM secondary index pointer with a non-unique
key

Logical record
A secondary index pointer segment is stored in a logical record.

Duplicate key pointer
Four byte pointer for HISAM secondary index when the secondary
index key is non-unique. If the keys are not unique, some pointer
segments will contain duplicate keys. These pointer segments must
be chained together, and this is done using the duplicate key
pointer field at the beginning of the logical record. The duplicate
key pointer exists when the OVFLW= operand on the DATASET
statement is defined.

Pointer segment
A secondary index pointer segment contains prefix and data fields.

Prefix Delete byte: one byte

Data fields

Search field
Variable-length bytes, made up of up to 5 fields from the source.

Subsequence field
Variable-length bytes, made up of up to 5 fields from the source or
IMS-generated values (optional). It is used to make the secondary
index key unique. It can be used to order segments in a secondary
index database. The search field and the subsequence field together
make up the key of the secondary index.

Duplicate data field
Variable-length bytes, made up of up to 5 fields from the source
(optional). It is only used when processing the secondary index as
a database.

Symbolic pointer field
Variable-length bytes. It is the concatenated key to the target.

User data field
Variable-length bytes, made up of any user data fields (optional). It
is only used when processing the secondary index as a database.

Related tasks:

Delete
byte

Duplicate
key
pointer

Search

(optional)

Subsequence Duplicate
data

Symbolic
pointer

User
data

Variable

Data

Pointer segment

Logical record

Prefix

Bytes 4 1

(optional) (optional)

Figure 183. Example of a HISAM secondary index pointer with a non-unique key

338 Database Administration

“Processing a secondary index as a separate database” on page 344

Fields in the SHISAM secondary index pointer
SHISAM secondary index databases are not required to register to DBRC. A
SHISAM secondary index database supports only unique keys because a SHISAM
database supports only KSDSs, not ESDSs.

A SHISAM secondary index database supports the subsequence field, the duplicate
data field, the user data field, and the /CK operand. The subsequence field and
the /CK operand can be used to make the secondary index key unique.

A SHISAM secondary index database contains fixed-length segments, provides
data partitioning using the DEDB Partition Selection exit routine, and supports the
Segment edit/compression exit routine.

Logical record
A secondary index pointer segment is stored in a logical record.

Pointer segment
A secondary index pointer segment contains prefix and data fields. Because
SHISAM secondary index segments do not have a prefix field, a secondary
index pointer segment contains only data fields.

Data fields

Search field
Variable-length bytes, including up to 5 fields from the source. The
search field is the key of the secondary index.

Subsequence field (optional)
Variable-length bytes, including up to 5 fields from the source or
IMS-generated values. The subsequence field makes the secondary
index key unique, and can be used to order segments in a
secondary index database. Subsequence length is used to determine
the concatenated key length.

Duplicate data field (optional)
Variable-length bytes, including up to 5 fields from the source. The
field is used only when processing the secondary index as a
database.

Search

(optional)

Subsequence Duplicate
data

Symbolic
pointer
concatenated
key

User
data

Variable

Data

Pointer segment

Logical record

(optional) (optional)

Figure 184. Example of a SHISAM secondary index pointer

Chapter 16. Creating secondary indexes 339

Symbolic pointer concatenated key field
Variable-length bytes. The field is the concatenated key to the
target.

User data field (optional)
Variable-length bytes, including any user data fields. The field is
used only when processing the secondary index as a database.

Related tasks:
“Processing a secondary index as a separate database” on page 344

Making keys unique using system related fields
If creating unique keys by keeping additional information from the source segment
in the subsequence field of the pointer segment does not work for you, there are
two other ways to force unique keys, both of which use an operand in the FIELD
statement of the source segment in the DBD.

The FIELD statement defines fields within a segment type.

Using the /SX operand

For HD databases, you can code a FIELD statement with a NAME field that starts
with /SX. The /SX can be followed by any additional characters (up to five) that
you need. When you use this operand, the system generates (during segment
insertion) the RBA, or an 8-byte ILK for PHDAM or PHIDAM, of the source
segment. The system also puts the RBA or ILK in the subsequent field in the
pointer segment, thus ensuring that the key is unique. The FIELD statement in
which /SX is coded is the FIELD statement defining fields in the source segment.
The /SX value is not, however, put in the source segment. It is put in the pointer
segment.

When you use the /SX operand, the XDFLD statement in the DBD must also
specify /SX (plus any of the additional characters added to the /SX operand). The
XDFLD statement, among other things, identifies fields from the source segment
that are to be put in the pointer segment. The /SX operand is specified in the
SUBSEQ= operand in the XDFLD statement.

Using the /CK operand

The other way to force unique keys is to code a FIELD statement with a NAME
parameter that starts with /CK. When used as a subsequence field, /CK ensures
unique keys for pointer segments. You can use this operand for HISAM, HDAM,
PHDAM, HIDAM, or PHIDAM databases. The /CK can be followed by up to five
additional characters. The /CK operand works like the /SX operand except that
the concatenated key, rather than the RBA, of the source segment is used. Another
difference is that the concatenated key is put in the subsequence or duplicate data
field in the pointer segment. Where the concatenated key is put depends on where
you specify the /CK.

When using /CK, you can use a portion of the concatenated key of the source
segment (if some portion will make the key unique) or all of the concatenated key.
You use the BYTES= and START= operands in the FIELD statement to specify
what you need.

340 Database Administration

For example, suppose you are using the database record shown in the following
figure.

The concatenated key of the STUDENT segment is shown in the following figure.

If you specify on the FIELD statement whose name begins with /CK BYTES=21,
START=1, the entire concatenated key of the source segment will be put in the
pointer segment. If you specify BYTES=6, START=16, only the last six bytes of the
concatenated key (CLASSNO and SEQ) will be put in the pointer segment. The
BYTES= operand tells the system how many bytes are to be taken from the
concatenated key of the source segment in the PCB key feedback area. The
START= operand tells the system the beginning position (relative to the beginning
of the concatenated key) of the information that needs to be taken. As with the
/SX operand, the XDFLD statement in the DBD must also specify /CK.

To summarize: /SX and /CK fields can be included on the SUBSEQ= parameter of
the XDFLD statement to make key fields unique. Making key fields unique avoids
the overhead of using an ESDS to hold duplicate keys. The /CK field can also be
specified on the DDATA= parameter of the XDFLD statement but the field will not
become part of the key field.

When making keys unique, unique sequence fields must be defined in the target
segment type, if symbolic pointing is used. Also, unique sequence fields must be
defined in all segment types on which the target segment type is dependent (in the
physical rather than restructured hierarchy in the database).

Figure 185. Database record showing the source and target for secondary indexes

Figure 186. Concatenated key of the STUDENT segment

Chapter 16. Creating secondary indexes 341

How sparse indexing suppresses index entries
When a source segment is loaded, inserted, or replaced in the database, DL/I
automatically creates or maintains the pointer segment in the index. This happens
automatically unless you have specified that you do not need certain pointer
segments built.

For example, suppose you have a secondary index for an education database.
STUDENT is the source segment, and COURSE is the target segment. You might
need to create pointer segments for students only if they are associated with a
certain customer number. This could be done using sparse indexing, a performance
enhancement of secondary indexing.

HALDB partitioned secondary indexes (PSINDEXes) support sparse indexing;
however, the sparse indexing of the segments in a PSINDEX does not reduce the
number of indirect list entries (ILEs) in the indirect list data set (ILDS) that
manages pointers between the indexed database and the PSINDEX. The number of
ILEs in an ILDS matches the number of target segments in the indexed database
rather than the number of segments in the PSINDEX.

Advantages of sparse indexing

Sparse indexing allows you to specify the conditions under which a pointer
segment is suppressed, not generated, and put in the index database. Sparse
indexing has two advantages. The primary one is that it reduces the size of the
index, saving space and decreasing maintenance of the index. By decreasing the
size of the index, performance is improved. The second advantage is that you do
not need to generate unnecessary index entries.

Suppressing index maintenance for BMP regions

When a DEDB database has secondary index defined, IMS automatically performs
index maintenance when the source statement is inserted, updated, or deleted. The
index suppression option provides the capability for updating a DEDB database
with one or more secondary index defined without index maintenance. If an
application has many updates to the primary DEDB database that would result in
significant index maintenance to its associated secondary index database, you can
suppress the index maintenance for the application. Then synchronize your
primary DEDB database and its secondary index databases at a later time using an
in-house application or vendor tool product.

To suppress index maintenance, specify the //DFSCTL DD statement in the JCL of
the IMS BMP region.
//DFSCTL DD *
SETI PSB=psbname

The SETI PSB=psbname parameter suppresses index maintenance for any DEDB
database with secondary index defined for the BMP application for PSB of
psbname.

If psbname in the PSB=psbname parameter in the SETI statement does not match the
PSB name for the BMP application, or the PSB= parameter is not specified in the
SETI statement, message DFS0510E is issued and the application is terminated with
an ABENDU1060. You will need to correct the SETI statement and rerun the BMP
application.

342 Database Administration

Specifying a sparse index
Sparse indexing can be specified in two ways.

First, you can code a value in the NULLVAL= operand on the XDFLD statement in
the DBD that equals the condition under which you do not need a pointer segment
put in the index. You can put BLANK, ZERO, or any 1-byte value (for example,
X'10', C'Z', 5, or B'00101101') in the NULLVAL= operand.
v BLANK is the same as C ' ' or X'40'
v ZERO is the same as X'00' but not C'0'

When using the NULLVAL= operand, a pointer segment is suppressed if every
byte of the source field has the value you used in the operand.

Second, if the values you are allowed to code in the NULLVAL= operand do not
work for you, you can create an index maintenance exit routine that determines
the condition under which you do not need a pointer segment put in the index. If
you create your own index maintenance exit routine, you code its name in the
EXTRTN= operand on the XDFLD statement in the DBD. You can only have one
index maintenance exit routine for each secondary index. This exit routine,
however, can be a general purpose one that is used by more than one secondary
index.

The exit routine must be consistent in determining whether a particular pointer
segment needs to be put in the index. The exit routine cannot examine the same
pointer segment at two different times but only mark it for suppression once. Also,
user data cannot be used by your exit routine to determine whether a pointer
segment is to be put in the index. When a pointer segment needs to be inserted
into the index, your exit routine only sees the actual pointer segment just before
insertion. When a pointer segment is being replaced or deleted, only a prototype of
the pointer segment is seen by your exit routine. The prototype contains the
contents of the constant, search, subsequence, and duplicate data fields, plus the
symbolic pointer if there is one.

The information needed to code a secondary index maintenance exit routine is in
IMS Version 13 Exit Routines.

How the secondary index is maintained
When a source segment is inserted, deleted, or replaced in the database, IMS keeps
the index current regardless whether the application program performing the
update uses the secondary index.

The way in which IMS maintains the index depends on the operation being
performed. Regardless of the operation, IMS always begins index maintenance by
building a pointer segment from information in the source segment that is being
inserted, deleted, or replaced. (This pointer segment is built but not yet put in the
secondary index database.)

Inserting a source segment

When a source segment is inserted, DL/I determines whether the pointer segment
needs to be suppressed. If the pointer segment needs to be suppressed, it is not
put in the secondary index. If the pointer segment does not need to be suppressed,
it is put in the secondary index.

Chapter 16. Creating secondary indexes 343

Deleting a source segment

When a source segment is deleted, IMS determines whether the pointer segment is
one that was suppressed. If so, IMS does not do any index maintenance. If the
segment is one that was suppressed, there should not be a corresponding pointer
segment in the index to delete. If the pointer segment is not one that was
suppressed, IMS finds the matching pointer segment in the index and deletes it.
Unless the segment contains a pointer to the ESDS data set, which can occur with
a non-unique secondary index, the logical record containing the deleted pointer
segment in a KSDS data set is erased.

Replacing a source segment

When a source segment is replaced, the pointer segment in the index might or
might not be affected. The pointer segment in the index might need to be replaced
or deleted, or the pointer segment might need no changes. After replacement or
deletion, a new pointer segment is inserted. IMS determines what needs to be done
by comparing the pointer segment it built (the new one) with the matching pointer
segment in the secondary index (the old one).
v If both the new and the old pointer segments need to be suppressed, IMS does

not do anything (no pointer segment exists in the index).
v If the new pointer segment needs to be suppressed but the old one does not,

then the old pointer segment is deleted from the index.
v If the new pointer segment does not need to be suppressed but the old pointer

segment is suppressed, then the new pointer segment is inserted into the
secondary index.

v If neither the new or the old segment needs to be suppressed and:
– If there is no change to the old pointer segment, IMS does not do anything.
– If the non-key data portion in the new pointer segment is different from the

old one, the old pointer segment is replaced. User data in the index pointer
segment is preserved when the pointer segment is replaced.

– If the key portion in the new pointer segment is different from the old one,
the old pointer segment is deleted and the new pointer segment is inserted.
User data is not preserved when the index pointer segment is deleted and a
new one inserted.

If you reorganize your secondary index and it contains non-unique keys, the
resulting pointer segment order can be unpredictable.

Processing a secondary index as a separate database
Because they are actual databases, secondary indexes can be processed
independently.

A number of reasons exist why an application program might process a secondary
index as an independent database. For example, an application program can use
the secondary index to retrieve a small piece of data from the database. If you put
this piece of data in the pointer segment, the application program can retrieve it
without an I/O operation to the regular database. You could put the piece of data
in the duplicate data field in the pointer segment if the data was in the source
segment. Otherwise, you must carry the data as user data in the pointer segment.
(If you carry the data as user data, it is lost when the primary database is
reorganized and the secondary index is recreated.)

344 Database Administration

Another reason for processing a secondary index as a separate database is to
maintain it. You could, for example, scan the subsequence or duplicate data fields
to do logical comparisons or data reduction between two or more indexes. Or you
can add to or change the user data portion of the pointer segment. The only way
an application program can see user data or the contents of the duplicate data field
is by processing the secondary index as a separate database.

In processing a secondary index as a separate database, several processing
restrictions designed primarily to protect the secondary index database exist. The
restrictions are as follows:
v Segments cannot be inserted.
v Segments can be deleted. Note, however, that deleted segments can make your

secondary index invalid for use as an index.
v The key field in the pointer segment (which consists of the search field, and if

they exist, the constant and subsequence fields) cannot be replaced.

In addition to the restrictions imposed by the system to protect the secondary
index database, you can further protect it using the PROT operand in the DBD
statement. When PROT is specified, an application program can only replace user
data in a pointer segment. However, pointer segments can still be deleted when
PROT is specified. When a pointer segment is deleted, the source segment that
caused the pointer segment to be created is not deleted. Note the implication of
this: IMS might try to do maintenance on a pointer segment that has been deleted.
When it finds no pointer segment for an existing source segment, it will return an
NE status code. When NOPROT is specified, an application program can replace
all fields in a pointer segment except the constant, search, and subsequence fields.
PROT is the default for this parameter.

For an application program to process a secondary index as a separate database,
you merely code a PCB for the application program. This PCB must reference the
DBD for the secondary index. When an application program uses qualified SSAs to
process a secondary index database, the SSAs must use the complete key of the
pointer segment as the qualifier. The complete key consists of the search field and
the subsequence and constant fields (if these last two fields exist). The PCB key
feedback area in the application program will contain the entire key field.

If you are using a shared secondary index, calls issued by an application program
(for example, a series of GN calls) will not violate the boundaries of the secondary
index they are against. Each secondary index in a shared database has a unique
DBD name and root segment name.
Related concepts:
“Format and use of fields in a pointer segment” on page 333

Sharing secondary index databases
An index database can contain up to 16 secondary indexes. When a database
contains more than one secondary index, the database is called a shared index
database. HALDBs and DEDBs do not support shared secondary indexes.

Although using a shared index database can save some main storage, the
disadvantages of using a shared index database generally outweigh the small
amount of space that is saved by its use.

Chapter 16. Creating secondary indexes 345

The original advantage of a shared index database was that it saved a significant
amount of main storage for buffers and some control blocks. However, when
VSAM was enhanced with shared resources, the savings in storage became less
significant.

For example, performance can decrease when more than one application program
simultaneously uses the shared index database. (Search time is increased because
the arm must move back and forth between more than one secondary index.) In
addition, maintenance, recovery, and reorganization of the shared index database
can decrease performance because all secondary indexes are, to some extent,
affected if one is. For example, when a database that is accessed using a secondary
index is reorganized, IMS automatically builds a new secondary index. This means
all other indexes in the shared database must be copied to the new shared index.

If you are using a shared index database, you need to know the following
information:
v A shared index database is created, accessed, and maintained just like an index

database with a single secondary index.
v The various secondary indexes in the shared index database do not need to

index the same database.
v One shared index database could contain all secondary indexes for your

installation (if the number of secondary indexes does not exceed 16).

In a shared index database:
v All index segments must be the same length.
v All keys must be the same length.
v The offset from the beginning of all segments to the search field must be the

same. This means all keys must be either unique or non-unique. With
non-unique keys, a pointer field exists in the target segment. With unique keys,
it does not. So the offset to the key field, if unique and non-unique keys were
mixed, would differ by 4 bytes.
If the search fields in your secondary indexes are not the same length, you
might be able to force key fields of equal length by using the subsequence field.
You can put the number of bytes you need to make each key field an equal
length in the subsequence field.

v Each shared secondary index requires a constant specified for it, a constant that
uniquely identifies it from other indexes in the secondary index database. IMS
puts this identifier in the constant field of each pointer segment in the secondary
index database. For shared indexes, the key is the constant, search, and (if used)
the subsequence field.

Shared secondary index database commands

Commands sometimes operate differently depending on whether they are issued
for the first of the secondary indexes or for subsequent secondary indexes. The first
secondary index is the first database name specified in the DBDUMP statement of
the shared secondary index DBDGEN. This first database is the real database.
Other secondary index databases are physically part of the real database but they
are logically distinct.

The first column in the following table lists the issuing command, the second
column lists where the command is issued, the third column lists the affects of the
command that was issued, and the fourth column provides additional comments.

346 Database Administration

Table 61. The effects of issuing shared secondary index database commands

Issuing the Commands... On the... Affects... Comments

/STOP
/LOCK
UPDATE DB STOP(SCHD)
UPDATE DB SET(LOCK(ON))

First secondary index Only the named
database

If no applications are scheduled
on any shared secondary
indexes that cause the
authorization of the real
database by DBRC, the
commands have the same effect
as the /DBRECOVERY or UPD DB
STOP(ACCESS)command on the
first secondary index.

When a /DISPLAY DB or QUERY
DB command is issued on the
shared secondary index
database, the subsequent
secondary indexes are shown as
stopped or locked only if the
/STOP, UPD DB STOP(SCHD),
/LOCK, UPD DB SET(LOCK(ON)),
UPD DB STOP(ACCESS), or
/DBRECOVERY command was
issued.

To undo the /STOP, UPD DB
STOP(SCHD), UPD DB
SET(LOCK(ON)), or /LOCK
command, issue a /START, UPD
DB START(ACCESS), UPD DB SET
lOCK(OFF)), or /UNLOCK
command on the first secondary
index.

/STOP
UPD DB STOP(SCHD)
/LOCK
UPD DB SET(LOCK(ON))

Subsequent secondary
indexes

Only the named
database

To undo the /STOP, UPD DB
STOP(SCHD), UPD DB
SET(LOCK(ON)), or /LOCK
command, issue a /START, UPD
DB START(ACCESS), UPD DB
SET(LOCK(OFF)), or /UNLOCK
command on the named
database.

/DBDUMP
UPD DB STOP(UPDATES)

First secondary index All databases
sharing the
secondary index
data set

The /DBDUMP or UPD DB
STOP(UPDATES) command
quiesces activity on all the
indexes in the shared database.
The database is then closed and
reopened for input only.

To undo the /DBDUMP or UPD DB
STOP(UPDATES) command, issue
a /START or UPD DB
START(ACCESS) command on the
first secondary index.

Chapter 16. Creating secondary indexes 347

Table 61. The effects of issuing shared secondary index database commands (continued)

Issuing the Commands... On the... Affects... Comments

/DBDUMP
UPD DB STOP(UPDATES)

Subsequent secondary
indexes

Only the named
database

The secondary index is available
for read only.

To undo the /DBDUMP or UPD DB
STOP(UPDATES) command, issue
a /START or UPD DB
START(ACCESS)command on the
named database.

/DBRECOVERY
UPD DB STOP(ACCESS)

First secondary index All databases
sharing the
secondary index
data set

The /DBRECOVERY and UPD DB
STOP(ACCESS) command quiesces
activity on all the indexes in the
shared database. The database is
then closed and stopped.

When the /DISPLAY command is
issued on the shared secondary
index database, the subsequent
secondary indexes are shown as
stopped or locked only if the
/STOP, UPD DB STOP(SCHD),
/LOCK, UPD DB SET(LOCK(ON)),
/DBRECOVERY, or UPD DB
STOP(ACCESS) command was
issued.

To undo the /DBRECOVERY or UPD
DB STOP(ACCESS) command,
issue a /START or UPD DB
START(ACCESS) command on the
first secondary index.

/DBRECOVERY
UPD DB STOP(ACCESS)

Subsequent secondary
indexes

Only the named
database

This command is the same as
the /STOP and UPD DB
STOP(SCHD) command for the
named database. However, the
/DBRECOVERY and UPD DB
STOP(ACCESS) command works
immediately, but the /STOP and
UPD DB STOP(SCHD) command
allows current work to quiesce.

To undo the /DBRECOVERY or UPD
DB STOP(ACCESS) command,
issue a /START or UPD DB
START(ACCESS) command on the
named database.

Related concepts:
“Format and use of fields in a pointer segment” on page 333

INDICES= parameter
You can specify an INDICES= parameter on the PCB in the SENSEG statement, to
specify a secondary index that contains search fields used to qualify SSAs for an
indexed segment type.

348 Database Administration

The use of the INDICES= parameter does not alter the processing sequence
selected for the PCB by the presence or absence of the PROCSEQ= parameter.

The INDICES= parameter is not supported if the primary database is a DEDB. The
INDICES= parameter is not supported by Fast Path secondary index.

The following figure and code examples illustrate the use of the
INDICES=parameter.

When the preceding GU call is used, IMS gets the COURSE segment with a
number 12345. Then IMS gets a secondary index entry, one in which XSTUNM is
equal to JONES. IMS checks to see if the pointer in the secondary index points to
the COURSE segment with course number 12345. If it does, IMS returns the
COURSE segment to the application program's I/O area. If the secondary index
pointer does not point to the COURSE segment with course number equal to
12345, IMS checks for other secondary index entries with XSTUNM equal to
JONES and repeats the compare.

If all secondary index entries with XSTUNM equal to JONES result in invalid
compares, no segment is returned to the application program. By doing this, IMS
need not search the STUDENT segments for a student with NAME equal to
JONES. This technique involving use of the INDICES= parameter is useful when
source and target segments are different.

The following figure shows the databases for the second example of the INDICES
parameter.

Figure 187. Databases for first example of the INDICES= parameter

PCB
SENSEG NAME=COURSE, INDICES=SIDBD1
SENSEG NAME=STUDENT

Figure 188. PCB for the first example of the INDICES= parameter

GU COURSE COURSENM=12345&.XSTUNM=JONES

Figure 189. Application program call issued for the first example of the INDICES= parameter

Chapter 16. Creating secondary indexes 349

The following code shows the example PCB.

The following code shows the example application programming call.

Compare process and performance

Excluding COURSENM=12345 in the preceding GU call would impact
performance. IMS retrieves the first COURSE segment in the COURSE database,
and then a secondary index entry in which XSTUNM is equal to JONES. IMS
checks to see if the pointer in the secondary index points to the COURSE segment
just retrieved. If it does, IMS returns the COURSE segment to the application

Source

COURSE database

Secondary index
database

NAME=SIDBD1
NAME=XSTUNM

DBD
XDFLD

Retrieves COURSE
segments in student
name sequence

Secondary index
database

DBD
XDFLD

NAME=SIDBD2
NAME=SCRSNM

Retrieves
COURSE
segments in
course name
sequence

Target

Source
and

target

Secondary
index

Secondary
index

STUDENT

COURSE

Figure 190. Databases for second example of the INDICES= parameter

PCB PROCSEQ=SIDBD2
SENSEG NAME=COURSE, INDICES=SIDBD1
SENSEG NAME=STUDENT

Figure 191. PCB for the second example of the INDICES= parameter

GU COURSE SCRSNM=MATH&XSTUNM=JONES

Figure 192. Application program call issued for the second example of the INDICES=
parameter

350 Database Administration

program's I/O area. If the secondary index pointer does not point to this COURSE
segment, IMS checks for other secondary index entries with XSTUNM equal to
JONES and repeats the compare. If all secondary index entries with XSTUNM
equal to JONES result in invalid compares, IMS retrieves the next COURSE
segment and the secondary index entries as before, then repeats the compare. If all
the COURSE segments result in invalid compares, no segment is returned to the
application program.

The INDICES= parameter can also be used to reference more than one secondary
index in the source call. The GU call shown in Figure 190 on page 350 shows
another example of the INDICES=parameter.

In the figure shown in Figure 192 on page 350, IMS uses the SIDBD2 secondary
index to get the COURSE segment for MATH. IMS then gets a COURSE segment
using the SIDBD1. IMS can then compare to see if the two course segments are the
same. If they are, IMS returns the COURSE segment to the application program's
I/O area. If the compare is not equal, IMS looks for other SIDBD1 pointers to
COURSE segments and repeats the compare operations. If there are still no equal
compares, IMS checks for other SIDBD2 pointers to COURSE segments and looks
for equal compares to SIDBD1 pointers. If all possible compares result in unequal
compares, no segment is returned to the application program.

Note: This compare process can severely degrade performance.
Related concepts:
“Using secondary indexes with logical relationships”

Using secondary indexes with logical relationships
You can use secondary indexes, except for Fast Path secondary indexes, with
logical relationships.

When creating or using a secondary index for a database that has logical
relationships, the following restrictions exist:
v A logical child segment or a dependent of a logical child cannot be a target

segment.
v A logical child cannot be used as a source segment; however, a dependent of a

logical child can.
v A concatenated segment or a dependent of a concatenated segment in a logical

database cannot be a target segment.
v When using logical relationships, no qualification on indexed fields is allowed in

the SSA for a concatenated segment. However, an SSA for any dependent of a
concatenated segment can be qualified on an indexed field.

Related concepts:
“INDICES= parameter” on page 348

Using secondary indexes with variable-length segments
If a variable-length segment is a source segment, when an occurrence of it is
inserted that does not have fields specified for use in the search, subsequence, or
duplicate data fields of the pointer segment, the following events can occur.
v If the missing source segment data is used in the search field of the pointer

segment, no pointer segment is put in the index.

Chapter 16. Creating secondary indexes 351

v If the missing source segment data is used in the subsequence or duplicate data
fields of the pointer segment, the pointer segment is put in the index. However,
the subsequence or duplicate data field will contain one of the three following
representations of zero:

P = X'0F'
X = X'00'
C = C'0'

Which of these is used is determined by what is specified on the FIELD
statements in the DBD that defined the source segment field.

Considerations when using secondary indexing
When you use secondary indexes with your databases, you should be aware of a
number of considerations.

The secondary index considerations that you should be aware of include:
v When a source segment is inserted into or deleted from a database, an index

pointer segment is inserted into or deleted from the secondary index. This
maintenance always occurs regardless of whether the application program doing
the updating is using the secondary index.

v When an index pointer segment is deleted by a REPL or DLET call, position is
lost for all calls within the database record for which a PCB position was
established using the deleted index pointer segment.

v When replacing data in a source segment, if the data is used in the search,
subsequence, or duplicate data fields of a secondary index, the index is updated
to reflect the change as follows:
– If data used in the duplicate data field of the pointer segment is replaced in

the source segment, the pointer segment is updated with the new data.
– If data used in the search or subsequence fields of the pointer segment is

replaced in the source segment, the pointer segment is updated with the new
data. In addition, the position of the pointer segment in the index is changed,
because a change to the search or subsequence field of a pointer segment
changes the key of the pointer segment. The index is updated by deleting the
pointer segment from the position that was determined by the old key. The
pointer segment is then inserted in the position determined by the new key.

v The use of secondary indexes increases storage requirements for all calls made
within a specific PCB when the processing option allows the source segment to
be updated. Additional storage requirements for each secondary index database
range from 6K to 10K bytes. Part of this additional storage is fixed in real
storage by VSAM.

v You should always compare the use of secondary indexing with other ways of
achieving the same result. For example, to produce a report from an HDAM or
PHDAM database in root key sequence, you can use a secondary index.
However, in many cases, access to each root sequentially is a random operation.
It would be very time-consuming to fully scan a large database when access to
each root is random. It might be more efficient to scan the database in physical
sequence (using GN calls and no secondary index) and then sort the results by
root key to produce a final report in root key sequence.

v When calls for a target segment are qualified on the search field of a secondary
index, and the indexed database is not being processed using the secondary
index, additional I/O operations are required. Additional I/O operations are
required because the index must be accessed each time an occurrence of the
target segment is inspected. Because the data in the search field of a secondary

352 Database Administration

index is a duplication of data in a source segment, you should decide whether
an inspection of source segments might yield the same result faster.

v When using a secondary data structure, the target segment and the segments on
which it was dependent (its physical parents) cannot be inserted or deleted.

Example of defining secondary indexes
The secondary index in this example is used to retrieve COURSE segments based
on student names.

The example is for a full-function database and uses direct, rather than symbolic,
pointers.

For additional examples, including examples of defining secondary indexes for
Fast Path DEDB databases, see Examples with secondary indexes (System Utilities).

Figure 193 on page 354 shows the EDUC database and its secondary index. The
code samples that follow show the two DBDs required for the databases.

The pointer segment in the secondary index contains a student name in the search
field and a system related field in the subsequence field. Both of these fields are
defined in the STUDENT segment. The STUDENT segment is the source segment.
The COURSE segment is the target segment.

The DBDs in the code samples highlight the statements and parameters coded
when a secondary index is used. (Wherever statements or parameters are omitted
the parameter in the DBD is coded the same regardless of whether secondary
indexing is used.)

DBD for the EDUC database

An LCHILD and XDFLD statement are used to define the secondary index. These
statements are coded after the SEGM statement for the target segment.
v LCHILD statement. The LCHILD statement specifies the name of the secondary

index SEGM statement and the name of the secondary index database in the
NAME= parameter. The PTR= parameter is always PTR=INDX when a
secondary index is used.

v XDFLD statement. The XDFLD statement defines the contents of the pointer
segment and the options used in the secondary index. It must appear in the
DBD input deck after the LCHILD statement that references the pointer segment.

In the example, shown in Figure 193 on page 354, a system-related field (/SX1) is
used on the SUBSEQ parameter. System-related fields must also be coded on
FIELD statements after the SEGM for the source segment.

Chapter 16. Creating secondary indexes 353

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_secindexexam.htm#ims_secindexexam

The following code shows the EDUC DBD for the example in Figure 193.
DBD NAME=EDUC,ACCESS=HDAM,...
SEGM NAME=COURSE,...
FIELD NAME=(COURSECD,...
LCHILD NAME=(XSEG,SINDX),PTR=INDX
XDFLD NAME=XSTUDENT,SEGMENT=STUDENT,SRCH=STUDNM,SUBSEQ=/SX1
SEGM NAME=CLASS,...
FIELD NAME=(EDCTR,...
SEGM NAME=INSTR,...
FILED NAME=(INSTNO,...
SEGM NAME=STUDENT,...
FIELD NAME=SEQ,...
FIELD NAME=STUDNM,BYTES=20,START=1
FIELD NAME=/SX1

DBDGEN
FINISH
END

The following code shows the SINDX DBD for the example in Figure 193.
DBD NAME=SINDX,ACCESS=INDEX
SEGM NAME=XSEG,...
FIELD NAME=(XSEG,SEQ,U),BYTES=24,START=1
LCHILD NAME=(COURSE,EDUC),INDEX=XSTUDENT,PTR=SNGL

DBDGEN
FINISH
END

EDUC

A subsequence field is used because
a student’s name might not be unique.

COURSE

SINDX

RBADB STUDNM

Prefix Data SRCH

/SX1

SUBSEQ

CLASS

INSTR STUDENT

XSEG

Figure 193. Databases for secondary indexing example

354 Database Administration

DBD for the SINDX database

DBD statement
The DBD statement specifies the name of the secondary index database in
the NAME= parameter. The ACCESS= parameter is always
ACCESS=INDEX for the secondary index DBD.

SEGM statement
You choose what is used in the NAME= parameter. This value is used
when processing the secondary index as a separate database.

FIELD statement
The NAME= parameter specifies the sequence field of the secondary index.
In this case, the sequence field is composed of both the search and
subsequence field data, the student name, and the system-related field
/SX1. You specify what is chosen by NAME=parameter.

LCHILD statement
The LCHILD statement specifies the name of the target, SEGM, and the
name of the target database in the NAME= parameter. The INDEX=
parameter has the name on the XDFLD statement in the target database. If
the pointer segment contains a direct-address pointer to the target segment,
the PTR= parameter is PTR=SNGL. The PTR= parameter is PTR=SYMB if
the pointer segment contains a symbolic pointer to the target segment.

Related tasks:
“Adding a secondary index to a full-function database” on page 720
“Making keys unique using system related fields” on page 340
Related reference:

Examples with secondary indexes (System Utilities)

DBDGEN statements (System Utilities)

DEDB partitioned secondary indexes
DEDB partitioned secondary indexes allow a DEDB secondary index to be spread
across multiple physical databases. A maximum of 101 user partition databases per
Fast Path secondary index database are supported.

A very large secondary index can be partitioned into multiple physical HISAM or
SHISAM databases. A user partition selection routine determines which partition
an index key is assigned to. The first partition name is used in the PCB definition
to represent the whole user partition group.

The following figure illustrates five index databases, each with a user-specified
range of pointers that all point to one DEDB.

Chapter 16. Creating secondary indexes 355

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_secindexexam.htm#ims_secindexexam
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdgenstmt.htm#ims_dbdgenstmt

Each index database contains a range of keys. Index keys are assigned to an index
database by a user partition selection exit routine.

Either HISAM or SHISAM can be used, but all partition databases in a user
partition group must be defined as either all HISAM or all SHISAM. Each of the
databases in an index must have the same structure and attributes. They can have
different sizes to accommodate the number of entries that could exist in the
different key ranges.

If user partitioning is requested for a HISAM secondary index or a SHISAM
secondary index, two or more HISAM or SHISAM secondary index databases,
respectively, can be specified in the NAME= parameter on the LCHILD statement
of a primary DEDB database DBD.

Because a HISAM secondary index supports unique or non-unique keys with fixed
length secondary index segments, and a SHISAM secondary index only supports
unique keys with fixed length secondary index segments, user partitioning for
HISAM secondary indexes cannot to have any SHISAM secondary index databases
in the same user partition group. User partitioning for SHISAM secondary indexes
cannot have any HISAM secondary index databases in the same user partition
group. All partition databases in a user partition group must have the same access
type defined in the secondary index DBD definitions for the partition databases:
v ACCESS=(INDEX,VSAM) for a HISAM secondary index database
v ACCESS=(INDEX,SHISAM) for a SHISAM secondary index database

When HISAM and SHISAM secondary index databases are included in the same
user partition group in the NAME= parameter on a LCHILD statement, the
ACBGEN utility detects the inconsistency and issues message DFS2293E. The
primary DEDB database and its secondary index databases are deleted in the
ACBLIB.

All HISAM secondary index partition databases in a user partition group must be
defined as KSDS data set only for unique key support, or must be defined as both
KSDS and ESDS data sets for non-unique key support.

Fast Path secondary index database

INDXDB1 INDXDB2 INDXDB3 INDXDB4 INDXDB5

DEDB

Figure 194. Secondary index that spans multiple physical databases

356 Database Administration

When a HISAM secondary index user partition group includes both unique key
and non-unique key HISAM secondary index databases, the ACBGEN utility
detects the inconsistency and issues message DFS2294E. The primary DEDB
database and its secondary index databases are deleted in the ACBLIB.

Single or multiple partition databases for a HISAM or SHISAM
index

When you specify the PSELRTN= parameter on a XDFLD statement to request user
partitioning, you can also control the number of partition databases to be
processed using the PCB with the PROCSEQD= parameter before IMS returns a
GB status code to indicate the end of the database.

In addition to the PSELRTN= parameter, the PSELOPT=MULT|SNGL parameter
can be used to indicate how many partition databases in a logical HISAM
secondary index database or a logical SHISAM secondary index database are
processed before a GB status code is returned to an application to indicate the end
of the database when the DEDB Partition Selection exit routine is not called.

For qualified GU calls with SSA that has equal-to or greater-than-or-equal-to
relational operator, the DEDB Partition Selection exit routine is called to determine
the partition database to be selected based on the search key in the SSA or other
user defined partition selection criteria.

For qualified GU/GN calls with an SSA that has equal-to or greater-than-or-equal-
to relational operator, the DEDB Partition Selection exit routine is not called.
Instead, the segment is searched from the beginning of the first user partition
database in the user partition group.

For unqualified GN calls or qualified GN calls with no SSA, the DEDB Partition
Selection exit routine is not called.

For qualified GN calls with an SSA that has an equal-to or greater-than-or-equal-to
relational operator, the DEDB Partition Selection exit routine is called when the
position is not established yet. If the position is already established, the DEDB
Partition Selection exit routine is not called.

The following table summarizes the conditions of DL/I GU and GN calls on
whether or not the DEDB Partition Selection exit routine is called:

Table 62. Conditions of DL/I GU and GN calls

Call type Action

Qualified GU with equal-to relational
operator
GU COURSE(NAMEINDX =CHEMISTRY)

Call the DEDB Partition Selection exit routine
to select the user partition database.

Qualified GU with greater-than-or-equal-to
relational operator
GU COURSE(NAMEINDX>=CHEMISTRY)

Call the DEDB Partition Selection exit routine
to select the user partition database.

Qualified GU with less-than-or-equal-to
relational operator
GU COURSE(NAMEINDX<=CHEMISTRY)

Do not call the DEDB Partition Selection exit
routine. Search the segment from the
beginning of the first user partition database.

Unqualified GN
GN

Do not call the DEDB Partition Selection exit
routine.

Qualified GN with no SSA
GN COURSE

Do not call the DEDB Partition Selection exit
routine.

Chapter 16. Creating secondary indexes 357

Table 62. Conditions of DL/I GU and GN calls (continued)

Call type Action

Qualified GN with equal-to relational
operator
GN COURSE(NAMEINDX=CHEMISTRY)

If the current position is not established yet,
call the DEDB Partition Selection exit routine
to select the user partition database. If the
current position is already established, search
the segment after the position.

Qualified GN with greater-than-or-equal-to
relational operator
GN COURSE(NAMEINDX >=CHEMISTRY)

If the current position is not established yet,
call the DEDB Partition Selection exit routine
to select the user partition database. If the
current position is already established, search
the segment after the position.

Qualified GN with less-than-or-equal-to
relational operator

GN COURSE(NAMEINDX<=CHEMISTRY

Do not call the DEDB Partition Selection exit
routine. Search the segment from the
beginning of the first user partition database.

The PSELOPT=MULT|SNGL is defaulted on an XDFLD statement when user
partitioning is requested. However, the PSELOPT= MULT|SNGL must be explicitly
specified on a PCB statement with the PROCSEQD= parameter. There is no default
for the PSELOPT= parameter on the PCB statement with the PROCSEQD=
parameter because the value on the PCB statement overrides those specified in the
XDFLD statement. The PSELOPT= parameter on the PCB statement with the
PROCSEQD= parameter cannot default to PSELOPT=MULT, which is the default
value on the XDFLD statement, because its value overrides those values that are
explicitly specified or implicitly defaulted on XDFLD statements in the primary
DEDB DBD.

The PSELOPT=MULT|SNGL parameter can be specified in two places:
v On the PSELOPT=MULT|SNGL on a PCB statement with the PROCSEQD=

parameter in a PSB
v On a XDFLD statement for the primary DEDB DBD with a HISAM or a

SHISAM secondary index defined

If the PSELOPT= parameter is specified both places, the parameter that is specified
on the PCB statement overrides the parameter that is specified on the XDFLD
statement.

When PSELOPT=MULT is defined on a PCB statement with the PROCSEQD=
parameter or on a XDFLD statement, it means that multiple user partition
databases in the user partition group are processed starting from the user partition
database selected by the DEDB Partition Selection exit routine and continues to the
last user partition database sequentially as defined in the NAME= parameter on
the LCHILD statement of a primary DEDB database DBD. A GB status code is
returned when it reaches the end of database on the last user partition as defined
in the NAME= parameter on the LCHILD statement of the primary DEDB DBD.
When PSELOPT=MULT is specified, one or more user partition databases are
processed.

When PSELOPT=SNGL is defined on a PCB statement with the PROCSEQD=
parameter or on a XDFLD statement, it means that only a single user partition
database is processed in a user partition group as selected by the DEDB Partition
Selection exit routine. A GB status code is returned when the end of data is
reached on the selected user partition database. When PSELOPT=SNGL is
specified, only one user partition database is processed.

358 Database Administration

Restrictions:

The following restrictions apply to DEDB partitioned secondary indexes:
v If the PSELOPT= parameter is specified on a XLFLD statement and only one

secondary index database is specified on its corresponding LCHILD statement,
the DBDGEN utility terminates with MNOTE 8 and message XDFLD233.

v If the PSELOPT= parameter specified on a XDFLD statement is not PSELOPT=
MULT or PSELOPT= SNGL, the DBDGEN utility terminates with MNOTE 8 and
message XDFLD234.

Example of user partition with PSELOPT=MULT

The following example illustrates a user partition group with four secondary index
databases and PSELOPT=MULT.
LCHILD NAME=(NAMEXSEG,(NAMSXDB1,NAMSXDB2,NAMSXDB3,NAMSXDB4)),PTR=SYMB
XDFLD NAME=NAMEINDX,SRCH=COURNAME,PSELRTN=DBFPSE00,PSELOPT=MULT

In this example, four secondary index databases are defined in a user partition
group. The DEDB Partition Selection exit routine is DBFPSE00. The user partition
selection option is defined as PSELOPT=MULT.

The DEDB Partition Selection exit routine selects user partition database
NAMSXDB2 on a qualified GU call. Subsequent qualified GN calls with no SSA
process user partition databases NAMSXDB2, NAMSXDB3, and NAMSXDB4 until
the end of data is reached.

With PSELOPT=MULT and the starting user partition database used as
NAMSXDB2, IMS treats NAMSXDB2, NAMSXDB3, and NAMSXDB4 as one logical
database. IMS returns a GB status code to an application on qualified GN calls
with no SSA processing when the end of data is reached on the last user partition
in the logical database: NAMSXDB4.

Example of user partition with PSELOPT=SNGL

The following example illustrates a user partition group with four secondary index
databases and PSELOPT=SNGL.
LCHILD NAME=(NAMEXSEG,(NAMSXDB1,NAMSXDB2,NAMSXDB3,NAMSXDB4)),PTR=SYMB
XDFLD NAME=NAMEINDX,SRCH=COURNAME,PSELRTN=DBFPSE00,PSELOPT=SNGL

In this example, four secondary index databases are defined in a user partition
group. The DEDB Partition Selection exit routine is DBFPSE00. The user partition
selection option is defined as PSELOPT=SNGL.

When a DEDB Partition Selection exit routine returns user partition database
NAMSXDB2 and PSELOPT=SNGL defined, IMS processes the second user
partition database only. IMS returns a GB status code to an application on qualified
GN calls with no SSA when the end of data is reached on user partition database
NAMSXDB2.
Related reference:

Data Entry Database Partition Selection exit routine (DBFPSE00) (Exit
Routines)

Chapter 16. Creating secondary indexes 359

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_dedbpartselectexit.htm#ims_dedbpartselectexit
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_dedbpartselectexit.htm#ims_dedbpartselectexit

Multiple index entries for Fast Path secondary indexes
You can create multiple Fast Path secondary index entries from different fields in
the same source segment.

More than one search field can be defined for a secondary index from fields in the
same source segment. Each search field (or set of search fields) is used to create an
entry in the secondary index. These search fields (or sets of search fields) must
each be the same size.

To create multiple index entries from a single source segment, define two or more
LCHILD/XDFLD statement pairs under the SEGM statement of a target segment
and specify the MULTISEG=YES on the LCHILD statement.

In the following DEDB, there are three fields for telephone numbers in the
OWNER segment.
DBD NAME=ACCTDB,ACCESS=DEDB,RMNAME=RMD4
AREA DD1=ACCT1,SIZE=1024,UOW=(100,10),
ROOT=(236,36)
SEGM NAME=ACCT,PARENT=0,BYTES=100
FIELD NAME=(ACCTNO,SEQ,U),BYTES=12,START=1
LCHILD NAME=(PHONKEY,PHONINDX),PTR=SYMB,MULTISEG=YES
XDFLD NAME=XPHON,SEGMENT=OWNER,SRCH=HOMEPHN
LCHILD NAME=(PHONKEY,PHONINDX),PTR=SYMB,MULTISEG=YES
XDFLD NAME=XPHON,SEGMENT=OWNER,SRCH=WORKPHN
LCHILD NAME=(PHONKEY,PHONINDX),PTR=SYMB,MULTISEG=YES
XDFLD NAME=XPHON,SEGMENT=OWNER,SRCH=CELLPHN
SEGM NAME=OWNER,BYTES=300,PARENT=ACCT
FIELD NAME=OWNNAME,BYTES=40,START=1
FIELD NAME=HOMEPHN,BYTES=10,START=41
FIELD NAME=WORKPHN,BYTES=10,START=51
FIELD NAME=CELLPHN,BYTES=10,START=61
DBDGEN

The secondary index DBD for this example is:
DBDSX DBD NAME=PHONINDX,ACCESS=(INDEX,VSAM),FPINDEX=YES
DATASET DD1=PHONKSDS,OVFLW=PHONOVFL
SEGM NAME=PHONSEG,PARENT=0,BYTES=22
FIELD NAME=(PHONEKEY,SEQ,U),BYTES=10,START=1
LCHILD NAME=(OWNER,ACCTDB),INDEX=XPHON,PTR=SYMB
DBDGEN

Considerations for HALDB partitioned secondary indexes
A secondary index of a HALDB database must be a HALDB partitioned secondary
index (PSINDEX).

A PSINDEX can have one or more partitions. The key ranges for the partitions of a
secondary index are not likely to match the key ranges of its target database.
Partition selection for the secondary index is based on its key; partition selection
for the target database is based on its key. Usually, these keys are unrelated. In
some cases, you can use a partition selection exit routine to partition the secondary
index along the same boundaries of the main database. An appropriate key is
required, because the selection of a partition always depends on the root key. The
partition selection exit routine uses the parts of the root key that you specify to
select the correct partition.

To initialize partitions in a PSINDEX, use the HALDB Partition Data Set
Initialization utility (DFSUPNT0). DFSUPNT0 automatically generates recovery

360 Database Administration

points for the PSINDEX. Recovery points are not created if you delete and redefine
your PSINDEX partitions and then turn off their PINIT flags.

Additionally, there are other restrictions and requirements for HALDB partitioned
secondary indexes:
v Symbolic pointing is not supported.
v Shared secondary indexes are not supported.
v Secondary indexes must have unique keys.
v /SX and /CK fields can be used to provide uniqueness.
v The reorganization of a target database does not require the rebuilding of its

secondary indexes. HALDB databases use an indirect list data set (ILDS) to
maintain pointers between the PSINDEX and the target segments.

Related concepts:
“The HALDB self-healing pointer process” on page 664

Chapter 16. Creating secondary indexes 361

362 Database Administration

Chapter 17. Database versioning

When database versioning and the IMS catalog are enabled in an IMS system, you
can maintain multiple different versions of a database. Application programs can
access the older versions of the database without being changed, while the newer
versions of the database can be changed to support new application program
requirements.

Database versioning overview
To create a new version of a database, database versioning must be enabled by
specifying DBVERSION=Y in the DFSDFxxx PROCLIB member.

After database versioning is enabled, you create a new version of a database by
updating the database definition (DBD) of the database with a version number and
the structural changes you are introducing with the new version. The version
number is specified on the DBVER keyword and must increase incrementally by
one in each new version.

After the DBD and ACB members for the new version are generated and the ACB
members are activated in the ACB library, the older versions of the database exist
only in the DBD record of the database in the IMS catalog. When an application
program requests data from a version of the database that is not the active version
in the ACB library, IMS retrieves the requested version from the IMS catalog.

Attention: If a DBD record in the IMS catalog contains multiple instances of a
version of the DBD, IMS uses the most recent instance to return the data, as
determined by the ACB generation timestamp.

The database version that an application program requires can be specified on the
DBVER= parameter in the PCB or at runtime by issuing the INIT DL/I call with
the VERSION subfunction.

By default, when no version number is specified for an application program, IMS
returns data that conforms to the DBD that is currently active in the ACB library.
Usually, the version that is active in the ACB library reflects the current physical
structure of the database on DASD.

If version 0 of a DBD still exists in the IMS catalog, you can change the default so
that IMS returns data by using version 0 of the DBD. Version 0 of a DBD is the
most recent instance of the DBD in the IMS catalog that does not contain the
DBVER parameter. If version 0 of a DBD no longer exists in the IMS catalog, only
the active version of the DBD can be used as the default version of the DBD.

The default can be set at the system level and at the program specification block
(PSB) level. The PSB level default overrides the system level default.

The system level default is set by the DBLEVEL= keyword in the DFSDFxxx
member. The PSB level default is set by the DBLEVEL= keyword on the PSBGEN
statement of the PSB definition.

If an application program requests a database version that does not exist in the
IMS catalog, IMS returns a status code to the application program.

© Copyright IBM Corp. 1974, 2016 363

|

|

|
|
|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|

When database versioning is not enabled, IMS ignores any specified version
numbers in PSB or DBD macros and returns data only in the format that is defined
by the physical database structure. If an application program specifies a version
number on the DBVER= parameter of a PCB when database versioning is not
enabled, IMS either terminates the application program with a 3303 abend or
returns a BA DL/I status code to the application program, depending on how your
application program is designed.

Recommendation: As soon as you create a new version of a database, confirm that
application programs can still access the prior versions of the database. Database
versioning supports only certain changes to the structure of a database. The only
way to validate that new changes are supported by database versioning is to
schedule an application program to access a prior version of the database. Because
the most recent version of the database does not require the data to be reformatted
before returning it to an application program, accessing the most recent version
does not detect unsupported changes.

Database versioning supports the following changes to a database definition:
v An increase to the length of a segment.
v The addition of new fields to existing undefined space at the end of a segment.

Attention: Before you add new fields to a segment in existing space that is
undefined to IMS, you must make sure that your existing application programs do
not initialize, modify, or otherwise use the free space.

The following database types support database versioning:
v DEDB
v HDAM
v HIDAM
v PHDAM
v PHIDAM

IMS database versioning supports both databases that have logical relationships
and databases that have secondary indexes. However, segments that are involved
in the relationship between the two databases, or that are paired with another
segment in the same database, cannot change in new versions of the DBD. Only
the segments in the databases that are not involved in a relationship can change.
Related concepts:
Chapter 5, “Overview of the IMS catalog,” on page 41
Related reference:

DFSDFxxx member of the IMS PROCLIB data set (System Definition)

Database Description (DBD) Generation utility (System Utilities)

Program Specification Block (PSB) Generation utility (System Utilities)

IMS catalog support for database versioning
The IMS catalog is required for database versioning.

Except for the version of the DBD that is designated in the IMS catalog as the
active DBD, all prior versions of the DBD of a database exist only in the IMS
catalog in the DBD record of the database.

364 Database Administration

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|

|

|
|
|

|

|

|

|

|

|

|
|
|
|
|

|

|

|

|

|

|

|
|

|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdgen.htm#ims_dbdgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_psbgen.htm#ims_psbgen

When an application program makes a database call that requires a prior version
of the DBD, IMS transforms the data that is retrieved from the database by using
both the prior version of the DBD and the active DBD. When an application
program makes a database call that does not require a prior version of the DBD,
IMS uses only the active DBD to return the data.

Attention: If a prior version of a DBD is deleted from the catalog, that definition
of the database is lost and application programs that use that version of the DBD
can no longer access the database. Moreover, if the entire IMS catalog becomes
unavailable, IMS can no longer provide access to any prior version of the database;
only the application programs that use the version of the DBD that is active in the
IMS catalog can access the database.

Back up and recover the IMS catalog by using the same backup and recovery
procedures that are used for other databases. However, when database versioning
is used, recovering the IMS catalog is more complex and can take longer because
of the multiple DBD versions, PSBs, and ACB members that are involved.
Related concepts:
Chapter 5, “Overview of the IMS catalog,” on page 41

Database modifications supported by database versioning
When you maintain multiple versions of a database, you can make only certain
structural changes to the new versions of the database.

Database versioning supports the following changes to a database definition:
v An increase to the length of a segment.
v The addition of new fields to existing undefined space at the end of a segment.

Attention: Before you add new fields to a segment in existing space that is
undefined to IMS, you must make sure that your existing application programs do
not initialize, modify, or otherwise use the free space.

Database versioning does not support the following changes:
v An increase to the length of a variable-length segment
v A change in the starting position of an existing field
v A change in the length of an existing field

The following series of segment definitions provide examples of the types of
changes that are supported by database versioning.

For the purpose of these examples, assume that the following segment is defined
in an existing database before versioning is enabled. This is version 0 of the
database.

| FLD1 | FLD2 | space |

After database versioning is enabled, the definition of the database is changed to
increase the length of the segment, resulting in more undefined space at the end of
the segment in version 1 of the database.

| FLD1 | FLD2 | space | space |

Chapter 17. Database versioning 365

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|

|

|
|

|
|

|

|

|

|
|
|

|

|

|

|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

In version 2 of the database, a new field, FLD3, is defined in the extra space at the
end of the segment, resulting in the following segment.

Attention: Before you make a change like the one shown in the following
example, you must confirm with your applications group that none of your
existing application programs do anything with the free space, such as initialize it
during REPL calls or use it in any way. If they do, extend the length of the
segment and add your new field after the existing space, like fields FLD4 and
FLD5 in the example for version 3, which is shown after the following example.

| FLD1 | FLD2 | space | FLD3 |

In version 3 of the database, the length of the segment is increased further and
more fields, FLD4 and FLD5, and undefined space are added after FLD3.
--
| FLD1 | FLD2 | space | FLD3 | FLD4 | FLD5 | space |
--

Related reference:

Database Description (DBD) Generation utility (System Utilities)

Database versioning, existing free space, and new fields
In the IMS definition of a segment, any bytes in the length of the segment that are
not used by the fields that are defined in the segment are considered free space.

Although free space appears unused to IMS, application programs can use or
otherwise alter that free space without IMS knowing. In fact, the free space in a
segment might be used for fields and data that are mapped by application
program code, such as a COBOL copybook.

While database versioning supports the addition of new fields in the existing free
space at the end of a segment, before you define any new fields for that free space,
you must make sure that it is not used by any existing application programs.

The following examples illustrate the possible conflict that can occur between
existing application programs and new fields that are added to existing free space.

If the free space is used by any application programs, you can either increase the
length of the segment and add the new field after the existing free space, or you
can modify the existing application programs so that they do not use the free
space.

The following examples illustrate the potential problem and how you can avoid it.

How existing application programs can conflict with new fields in
existing free space

In the following example, the base version of a database contains a 40-byte
segment that has 10 bytes of free space at the end, which is seen by an existing
application program, PGMA:
10 bytes 20 bytes 10-byte undefined space at the end
--
| 123 | Maple Ave. | |
--

366 Database Administration

|
|

|
|
|
|
|
|

|
|
|

|
|

|
|
|

|

|

|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|
|

|

|
|

|
|
|

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdgen.htm#ims_dbdgen

In version 1 of the same database, the segment size is increased to 50 bytes and a
new 20-byte field is defined at the end of the segment. A change like this is
supported by database versioning; however, if the existing application program
contains code that initializes the 10-byte space at the end of the segment, the
existing application program can corrupt any data that is inserted into the new
field in version 1 of the database.

The following example shows how the segment looks in version 1 of the database
after the segment is extended by 10-bytes, a new 20-byte field is defined, and an
application program, PGMB, updates the segment with data:
10 bytes 20 bytes 20 bytes

| 123 | Maple Ave. | San Francisco |

Then, PGMA makes a REPL call and, because PGMA includes code that initializes
the 10 bytes of free space at the end of the segment, overwrites the data added by
PGMB, as shown in the following example.
10 bytes 20 bytes 20 bytes

| 456 | Orchard Ave. | cisco |

Given how PGMA is coded, a new field should not be coded in the existing space
unless PGMA is modified. As an alternative to modifying PGMA, the length of the
segment can be increased and the new field can be added after the existing free
space in the new DBD version..

Example of defining a new field in new space after the existing
free space

The following is an address segment as seen by PGMA:
10 bytes 20 bytes 10-byte undefined space at the end

| 123 | Maple Ave. | |

The segment is extended by 20 bytes and a new 20-byte field is defined. PGMB
updates the segment with data, while the original 10-bytes of free space are
untouched:
10 bytes 20 bytes 10 bytes 20 bytes

| 123 | Maple Ave. | | San Francisco |

PGMA makes a REPL call, which initializes the 10 bytes of free space; however, the
new 20-byte field is untouched.
10 bytes 20 bytes 10 bytes 20 bytes

| 789 | Walnut Ave. | | San Francisco |

Chapter 17. Database versioning 367

|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|

System default for database versioning
When an application program does not specify a specific version of a versioned
database, by default IMS returns data to the application program by using the
version of the database definition (DBD) that is currently active in the IMS catalog.
You can change the default so that IMS returns data by using version 0 of the DBD
instead.

The IMS system default for which DBD version IMS uses is controlled by the
DBLEVEL= parameter in the database section of the DFSDFxxx member of the IMS
PROCLIB data set.

The IMS system default that is specified in the DFSDFxxx member can be
overridden by specifying a DBLEVEL value in the definition of a program
specification block (PSB) or by specifying a specific version number either in the
definition of a program communication block (PCB) or in a DL/I INIT VERSION
call that is issued by the application program.

Specify DBLEVEL=BASE to avoid changing existing application
programs

If you have a significant number of application programs that will continue to use
version 0 when a new version of a database is introduced, change the system
default to return version 0 of the DBD by specifying DBLEVEL=BASE in the
DFSDFxxx member. Unless the system default is changed to DBLEVEL=BASE,
application programs that use a version other than the current active version will
require a change to either:
v Their PSB to specify DBLEVEL=BASE to override the system default
v Their PCB to specify the version that they need on the DBVER parameter
v Their code to issue the INIT VERSION call at run time

Implications of DBLEVEL=BASE

When DBLEVEL=BASE is specified at the system level, the version 0 instance of
the DBD for each versioned database must exist in the DBD record in the IMS
catalog. If DBLEVEL=BASE is specified and an application program for which a
version is not specified attempts to access a database that no longer has a version
0, the application program abends.

If application programs, tools, or products require the current structure of a
physical IMS database when DBLEVEL=BASE is specified, override the system
default by specifying DBLEVEL=CURR in the PSBs that the application programs,
tools, or products use to access IMS databases.

Specify DBLEVEL=CURR if most of your application programs
use the currently active database

Use DBLEVEL=CURR when most application programs are modified to use the
current database structure, but a few application programs continue to require the
structure of an older database version. For application programs that require the
older version of a database, the required database version number can be specified
on the DBVER= parameter of the PCB.

368 Database Administration

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

|

|

|

|

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|

Data transformation processing for prior versions

Any time application programs requires data in a format defined by a DBD version
other than the current, active DBD version, IMS must transform the data from the
current format to the format required by the application program. Consequently, if
you run with DBLEVEL=BASE or you have a significant number of application
programs that use versions of the database other than the current, active version of
the DBD, it could increase CPU usage.

When application programs use the current active version of a DBD, IMS does not
perform any data transformation, because the data is returned to the application
programs in the format in which it is stored on DASD.
Related tasks:
“Implementing database versioning”
Related reference:

DFSDFxxx member of the IMS PROCLIB data set (System Definition)

Program Specification Block (PSB) Generation utility (System Utilities)

Implementing database versioning
To maintain and access multiple versions of a database, you must enable database
versioning, define the new version of the database, and generate the necessary
DBD, PSB, and ACB members.

Prerequisite: The IMS catalog must be enabled in your IMS system to support
database versioning. See IMS catalog definition and tailoring (System Definition).

To enable and implement database versioning, perform the following steps.
1. Enable database versioning by specifying DBVERSION=Y in the database

section of the DFSDFxxx member in the IMS.PROCLIB data set.
2. Optional: On the DBLEVEL= parameter in the DFSDFxxx member, set the

system default for which version of the database IMS uses when application
programs do not specify a version. Valid values are CURR and BASE. CURR
returns data by using the version that is currently active in the IMS catalog.
This is the default. BASE returns data by using version 0 of the database.
Version 0 is the version of a database that existed prior to implementing
versioning for the database.

3. Code the changes to the database in the input macros to the DBD Generation
utility:
a. Specify the new version number on the DBVER keyword of the DBD

statement Version numbers are integers that must increase in value by one
when you define a new version.

b. If you are changing the length of any segments, code the new length on
the BYTES keyword of the SEGM statement.

c. If you are defining new fields, code the FIELD statements. The starting
offsets and lengths of existing fields cannot be changed.

4. Code the versions that the application programs require in the input macros
to the PSB Generation utility.

Note: If multiple database PCBs in a PSB reference the same database, all of
the PCBs must specify the same version of the DBD.

Chapter 17. Database versioning 369

|

|
|
|
|
|
|

|
|
|

|

|

|

|

|

|
|

|
|
|

|
|

|

|
|

|
|
|
|
|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_psbgen.htm#ims_psbgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_catalog_definition.htm#ims_catalog_definition

a. Optionally, specify a default version level to return to application
programs on the DBLEVEL keyword in one or more PSB statements.

b. As necessary, specify specific versions to return to application programs on
the DBVER keyword in the PCB statements.

c. Generate the PCBs by running the PSB Generation utility.
5. If you are not using an online alter function to apply the database changes to

the online database, unload the database offline by using the DBD member for
the existing database structure.

6. Generate the DBD member for the new database structure by running the
DBD Generation utility.

7. If you are not using an online alter function to apply the database changes to
the online database, reload the database by using the DBD member for the
new database structure.

8. Generate the ACB members for the new database version and update the IMS
catalog by running the ACB Generation and Catalog Populate utility
(DFS3UACB).
If the database that you are altering has secondary indexes or is logically
related to another database, in addition to specifying a BUILD DBD statement
for the altered database, you must also specify a BUILD DBD statement for
each secondary index database and each logically related database in the ACB
Maintenance utility control statements.

9. If you are using an online alter function to apply the database changes to an
online database, start the alter function.

10. Activate the ACB members for the new database structure and the application
programs that use the database. In online systems use the Online Change
(OLC) function.

11. Start the database.
12. Important: Confirm that changes you have made to the database are

supported for database versioning by running an application program that
accesses a prior version of the database. IMS does not detect unsupported
database changes until the first application program that requires an older
version is scheduled to run.

Related concepts:
“System default for database versioning” on page 368
Related reference:

DFSDFxxx member of the IMS PROCLIB data set (System Definition)

Database Description (DBD) Generation utility (System Utilities)

Program Specification Block (PSB) Generation utility (System Utilities)

Application Control Blocks Maintenance utility (System Utilities)

Logical relationships, secondary indexes, and database versioning
IMS database versioning supports both databases that have logical relationships
and databases that have secondary indexes, as long as the segments that are
involved in the relationship between the two databases, or that are paired with
another segment in the same database, do not change in new versions of the DBD.

Only the segments in the databases that are not involved in a relationship can
change.

370 Database Administration

|
|

|
|

|

|
|
|

|
|

|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|

|

|
|
|
|
|

|

|

|

|

|

|

|

|
|

|
|
|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdgen.htm#ims_dbdgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_psbgen.htm#ims_psbgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_acbgen.htm#ims_acbgen

Databases that have a secondary index are supported by database versioning, but
only when the base version of the DBD of the indexed database defines the
secondary index relationships and those relationships do not change in later
versions of the database. The segment and field relationships of a secondary index
are defined in the DBD of the indexed database by XDFLD statements. Both the
XDFLD statements and the fields in the indexed database that are referenced by
the XDFLD statements must remain unchanged in later versions of the indexed
database.

When you create a new version of a database that has a direct logical relationship
with another database, you must generate new ACB members for both databases at
the same time.

The database definitions (DBDs) for both databases must be explicitly specified on
the BUILD statement of the ACB Maintenance utility.

DBDs for databases that are only indirectly related to the database that is being
modified do not need to be included on the BUILD statement.

For example, if a new version of database A is being created, and database A is
related to database B, which in turn is related to database C, only DBDs for
databases A and B need to be specified on the BUILD statement.

As another example, if the a new version is being created for database B from the
previous scenario, the DBDs for all three databases, A, B, and C, need to be
specified on the BUILD statement.
Related concepts:
Chapter 5, “Overview of the IMS catalog,” on page 41
Related reference:

Application Control Blocks Maintenance utility (System Utilities)

Chapter 17. Database versioning 371

|
|
|
|
|
|
|
|

|
|
|

|
|

|
|

|
|
|

|
|
|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_acbgen.htm#ims_acbgen

372 Database Administration

Chapter 18. Optional database functions

In addition to logical relationships and secondary indexes, which are described in
separate topics, IMS databases support a variety of optional functions that you can
choose to implement depending on the database type you are using and the needs
of your installation.

The optional functions described in this topic do not apply to GSAM, MSDB,
HSAM, and SHSAM databases. Only the variable-length segment function, the
Segment Edit/Compression exit routine, and the Data Capture exit routine apply
to DEDBs.
Related concepts:
“Design review 3” on page 31
“Overview of optional database functions” on page 18
“How SB buffers data” on page 445

Variable-length segments
Variable-length segments are simply segments whose length can vary in occurrence
of some segment types.

A database can contain both variable-length segment and fixed-length segment
types.

Database types that support variable-length segments:
v HISAM
v HDAM
v PHIDAM
v HIDAM
v PHDAM
v DEDB
Related concepts:
“Replacing segments” on page 128
Related tasks:
“Adding or converting to variable-length segments” on page 699

How to specify variable-length segments
It is the data portion of a variable-length segment whose length varies. The data
portion varies between a minimum and a maximum number of bytes.

As shown in the following figure, you specify minimum and maximum size in the
BYTES= keyword in the SEGM statement in the DBD. Because IMS needs to know
the length of the data portion of a variable-length segment, you include a 2-byte
size field in each segment when loading it. The size field is in the data portion of
the segment. The length of the data portion you specify must include the two bytes
used for the size field. If the segment type has a sequence field, the minimum
length specified in the size field must equal at least the size field and all data to
the end of the sequence field.

© Copyright IBM Corp. 1974, 2016 373

How variable-length segments are stored and processed
When a variable-length segment is initially loaded, the space used to store its data
portion is the length specified in the MINBYTES operand or the length specified in
the size field, whichever is larger.

If the space in the MINBYTES operand is larger, more space is allocated for the
segment than is required. The additional space can be used when existing data in
the segment is replaced with data that is longer.

The prefix and data portion of HDAM, PHDAM, HIDAM, and PHIDAM
variable-length segments can be separated in storage when updates occur. When
this happens, the first four bytes following the prefix point to the separated data
portion of the segment.

The following figure shows the format of a HISAM variable-length segment. It is
also the format of an HDAM, PHDAM, HIDAM, or PHIDAM variable-length
segment when the prefix and data portion of the segment have not been separated
in storage.

The following figure shows the format of an HDAM, PHDAM, HIDAM, or
PHIDAM variable-length segment when the prefix and data portion of the segment
have been separated in storage.

Figure 195. How variable-length segments are specified

Figure 196. Format of HISAM variable-length segments

374 Database Administration

After a variable-length segment is loaded, replace operations can cause the size of
data in it to be either increased or decreased. When the length of data in an
existing HISAM segment is increased, the logical record containing the segment is
rewritten to acquire the additional space. Any segments displaced by the rewrite
are put in overflow storage. Displacement of segments to overflow storage can
affect performance. When the length of data in an existing HISAM segment is
decreased, the logical record is rewritten so all segments in it are physically
adjacent.

When a replace operation causes the length of data in an existing HDAM,
PHDAM, HIDAM, or PHIDAM segment to be increased, one of two things can
happen:
v If the space allocated for the existing segment is long enough for the new data,

the new data is simply placed in the segment. This is true regardless of whether
the prefix and data portions of the segment were previously separated in the
data set.

v If the space allocated for the existing segment is not long enough for the new
data, the prefix and data portions of the segment are separated in storage. IMS
puts the data portion of the segment as close to the prefix as possible. Once the
segment is separated, a pointer is placed in the first four bytes following the
prefix to point to the data portion of the segment. This separation increases the
amount of space needed for the segment, because, in addition to the pointer
kept with the prefix, a 1-byte segment code and 1-byte delete code are added to
the data portion of the segment (see Figure 196 on page 374). In addition, if
separation of the segment causes its two parts to be stored in different blocks,
two read operations will be required to access the segment.

When a replace operation causes the length of data in an existing HDAM,
PHDAM, HIDAM, or PHIDAM segment to be decreased, one of three things can
happen:
v If prefix and data are not separated, the data in the existing segment is replaced

with the new, shorter data followed by free space.
v If prefix and data are separated but sufficient space is not available immediately

following the original prefix to recombine the segment, the data in the separated
data portion of the segment is replaced with the new, shorter data followed by
free space.

v If prefix and data are separated and sufficient space is available immediately
following the original prefix to recombine the segment, the new data is placed in

Figure 197. Format of HDAM, PHDAM, HIDAM or PHIDAM variable-length segments

Chapter 18. Optional database functions 375

the original space, overlaying the data pointer. The old separated data portion of
the segment is then available as free space in HD databases.

When to use variable-length segments
Use variable-length segments when the length of data in your segment varies, for
example, with descriptive data.

By using variable-length segments, you do not need to make the data portion of
your segment type as long as the longest piece of descriptive data you have. This
saves storage space. Note, however, that if you are using HDAM, PHDAM,
HIDAM, or PHIDAM databases and your segment data characteristically grows in
size over time, segments will split. If a segment split causes the two parts of a
segment to be put in different blocks, two read operations will be required to
access the segment until the database is reorganized. So variable-length segments
work well if segment size varies but is stable (as in an address segment).
Variable-length segments might not work well if segment size typically grows (as
in a segment type containing a cumulative list of sales commissions).

What application programmers need to know about
variable-length segments

If you are using variable-length segments in your database, you need to let
application programmers who will be using the database know this.

They need to know which of the segment types they have access to are variable in
length and the maximum size of each of these variable-length segment types. In
calculating the size of their I/O area, application programmers must use the
maximum size of a variable-length segment. In addition, they need to know that
the first two bytes of the data portion of a variable-length segment contain the
length of the data portion including the size field.

Working with the application programmer, you should devise a scheme for
accessing data in variable-length segments.

Segment Edit/Compression exit routine
The Segment Edit/Compression exit routine allows you to encode, edit, or
compress the data portion of a segment.

You can use this facility on segment data in full function databases and Fast Path
DEDBs. You write the routine (your edit routine) that actually manipulates the data
in the segment. The IMS code gives your edit routine information about the
segment's location and assists in moving the segment back and forth between the
buffer pool and the application program's I/O area.

The following database types support the Segment Edit/Compression exit routine:
v HISAM
v HDAM
v PHDAM
v HIDAM
v PHIDAM
v DEDB

376 Database Administration

Detailed information on how the Segment Edit/Compression exit routine works
and how you use it is in IMS Version 13 Exit Routines.

The Segment Edit/Compression exit routine lets you:
v Encode data for security purposes. Encoding data consists of “scrambling”

segment data when it is on the device so only programs with access to the edit
routine can see it in decoded form.

v Edit data. Editing data allows application programs to receive data in a format
other than the one in which it is stored. For example, an application program
might receive segment fields in an order other than the one in which they are
stored; an application program might require all blank space be removed from
descriptive data.

v Compress data. This allows better use of DASD storage because segments can
be compressed when written to the device and then expanded when passed
back to the application program. Segment data might be compressed, for
example, by removing all blanks and zeros.

v Expand Data. The DEDB Sequential Dependent Scan utility invokes the Segment
Edit/Compression exit routine (DFSCMPX0) to expand compressed SDEP
segments when you specify both SDEP segment compression in the DBD and
the DEDB Scan utility keyword, EXPANDSEG.
Related Reading: EXPANDSEG and the DEDB Scan utility are described in IMS
Version 13 Database Utilities. The segment compression exit is described in IMS
Version 13 Exit Routines.

Two types of segment manipulation are possible using the Segment
Edit/Compression exit routine:
v Data compression— movement or compression of data within a segment in a

manner that does not alter the content or position of the key field. Typically, this
involves compression of data from the end of the key field to the end of the
segment. When a fixed-length segment is compressed, a 2-byte field must be
added to the beginning of the data portion of the segment by the user data
compression routine. This field is used by IMS to determine secondary storage
requirements and is the only time that the location of the key field can be
altered. The segment size field of a variable-length segment cannot be
compressed but must be updated to reflect the length of the compressed
segment.

v Key compression— movement or compression of any data within a segment in
a manner that can change the relative position, value, or length of the key field
and any other fields except the size field. The segment size field of a
variable-length segment must be updated by the compression routine to reflect
the length of the compressed segment.

You specify the use of the Segment Edit/Compression exit routine when you
define a segment type. Any segment type can be edited or compressed (using
either data or key compression) as long as the segment is:
v Not a logical child
v Not in an HSAM, SHISAM, or index database

The use of the segment edit/compression exit routine is defined in physical
database DBDs. This exit routine's use cannot be defined in a logical database
DBD.

Data compression is allowed but key compression is not allowed when the
segment is:

Chapter 18. Optional database functions 377

v A root segment in a HISAM database
v A segment in a DEDB database
Related tasks:
“Converting to the Segment Edit/Compression exit routine” on page 730
“Method 2. Converting segments or a database” on page 700
“Encrypting your database” on page 37
“Exit routine modifications and HALDB databases” on page 792

Considerations for using the Segment Edit/Compression exit
routine

Before using a Segment Edit/Compression exit routine, you should be aware
several points.

The points you should be aware of include:
v Because your edit routine is executed as part of a DL/I call, if it abnormally

terminates so does the entire IMS region.
v Your routine cannot use the operating system macros LOAD, GETMAIN, SPIE

or STAE.
v The name of the Segment Edit/Compression exit routine must not be the same

as the DBDNAME.
v Editing and compressing of each segment on its way to or from an application

program requires additional processor time.

Depending on the options you select, search time to locate a specific segment can
increase. If you are fully compressing the segment using key compression, every
segment type that is a candidate to satisfy either a fully qualified key or data field
request must be expanded or divided. IMS then examines the appropriate field.
For key field qualification, only those fields from the start of the segment through
the sequence field are expanded during the search. For data field qualification, the
total segment is expanded. In the case of data compression and a key field request,
little more processing is required to locate the segment than that of
non-compressed segments. Only the segment sequence field is used to determine if
this segment occurrence satisfies the qualification.

Other considerations can affect total system performance, especially in an online
environment. For example, being able to load an algorithm table into storage gives
the compression routine a large amount of flexibility. However, this can place the
entire IMS control region into a wait state until the requested member is present in
storage. It is suggested that all alternatives be explored to lessen the impact of
situations such as this.
Related reference:

Segment edit/compression exit routines (Exit Routines)

Preventing split segments from impacting performance
Split segments can negatively affect performance by requiring additional reads to
retrieve both parts of the segments.

When segments are split, their prefixes remain in their existing location, but their
data parts are stored in a new location, possibly in another block or CI. Replace
calls can split the segments when segments in a full-function database grow larger
than the size of their current location.

378 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_dfscmpx0.htm#ims_dfscmpx0

To prevent IMS from splitting compressed segments, you can specify a minimum
size for the segments that includes extra padded space. This gives the compressed
segment room to grow and decreases the chance that IMS will split the segment.

You specify the minimum size for fixed-length full-function segments differently
than you do for variable-length full-function segments:
v For fixed-length segments, specify the minimum size using both the fourth and

fifth subparameters on the COMPRTN= parameter of the SEGM statement. The
fourth subparameter, size, only defines the minimum size if you also specify the
fifth subparameter, PAD.

v For variable-length segments, specify the minimum size using the second
subparameter, min_bytes, of the BYTES= parameter of the SEGM statement.

DEDB segments are never split by replace calls. If a DEDB segment grows beyond
the size of its current location, the entire segment, including its prefix, is moved to
a new location. For this reason, it is not necessary to pad compressed DEDB
segments.
Related reference:

SEGM statements (System Utilities)

Specifying the Segment Edit/Compression exit routine
To specify the use of the Segment Edit/Compression exit routine for a segment,
use the COMPRTN= keyword of the SEGM statement in the DBD.
Related reference:

SEGM statements (System Utilities)

Data Capture exit routines
Data Capture exit routines capture segment-level data from a DL/I database for
propagation to Db2 for z/OS databases. Installations running IMS and Db2 for
z/OS databases can use Data Capture exit routines to exchange data across the two
database types.

The Data Capture exit routine is an installation-written exit routine. Data Capture
exit routines promote and enhance database coexistence.

The following database types support data capture exit routines:
v HISAM
v SHISAM
v HDAM
v PHDAM
v HIDAM
v PHIDAM
v DEDB

Data Capture exit routines can be written in assembler language, C, COBOL, or
PL/I.

Data Capture exit routines are supported by IMS Transaction Manager and
Database Manager. DBCTL support is for BMPs only.

Chapter 18. Optional database functions 379

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_segmstmt.htm#ims_segmstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_segmstmt.htm#ims_segmstmt

Data Capture exit routines do not support segments in secondary indexes.

A Data Capture exit routine is called based on segment-level specifications in the
DBD. When a Data Capture exit routine is specified on a database segment, it is
invoked by all application program activity on that segment, regardless of which
PSB is active. Therefore, Data Capture exit routines are global. Using a Data
Capture exit routine can have a performance impact across the entire database
system.
Related tasks:
“Converting databases for Data Capture exit routines and Asynchronous Data
Capture” on page 730
“Exit routine modifications and HALDB databases” on page 792
Related reference:

Data Capture exit routine (Exit Routines)

DBD parameters for Data Capture exit routines
Using Data Capture exit routines requires specification of one or two DBD
parameters and subsequent DBDGEN.

This topic contains Product-sensitive Programming Interface information.

The EXIT= parameter identifies which Data Capture exit routines will run against
segments in a database. The VERSION= parameter records important information
about the DBD for use by Data Capture exit routines.

The EXIT= parameter

To use the Data Capture exit routine, you must use the optional EXIT= parameter
in the DBD statement or SEGM statement. You specify EXIT= on either the DBD or
SEGM statements of physical database definitions.

Specifying EXIT= on the DBD statement applies a Data Capture exit routine to all
segments within a database structure. Specifying EXIT= on the SEGM statement
applies a Data Capture exit routine to only that segment type.

You can override Data Capture exit routines specified on the DBD statement by
specifying EXIT= on a SEGM statement. EXIT=NONE on a SEGM statement
cancels all Data Capture exit routines specified on the DBD statement for that
segment type. A physical child does not inherit an EXIT= parameter specified on
the SEGM statement of its physical parent.

You can specify multiple Data Capture exit routines on a single DBD or SEGM
statement. For example, you might code a DBD statement as:
DBD EXIT=((EXIT1A),(EXIT1B))

The name of the Data Capture exit routine that you intend to use is the only
required operand for the EXIT= parameter. Exit names can have a maximum of
eight alphanumeric characters. For example, if you specify a Data Capture exit
routine with the name EXITA on a SEGM statement in a database, the EXIT=
parameter is coded as follows:
SEGM EXIT=(EXITA,KEY,DATA,NOPATH,DLET,BEFORE,(CASCADE,KEY,DATA,NOPATH,DLET,BEFORE))

380 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_db2cdcex.htm#ims_db2cdcex

KEY, DATA, NOPATH, DLET, BEFORE, CASCADE, KEY, DATA, NOPATH, DLET,
and BEFORE are default operands. These defaults define what data is captured by
the exit routine when a segment is updated by an application program.

The VERSION= parameter

VERSION= is an optional parameter that supports Data Capture exit routines.
VERSION= is specified on the DBD statement as:
VERSION=’character string’

The maximum length of the character string is 255 bytes. You can use VERSION=
to create a naming convention that denotes the database characteristics that affect
the proper functioning of Data Capture exit routines. You might use VERSION= to
flag DBDs containing logical relationships, or to indicate which data capture exit
routines are defined on the DBD or SEGM statements. VERSION= might be coded
as:
DBD VERSION=’DAL-&SYSDATE-&SYSTIME’

DAL, in this statement, tells you that Data Capture exit routine A is specified on
the DBD statement (D), and that the database contains logical relationships (L).
&SYSDATE and &SYSTIME tell you the date and time the DBD was generated.

If you do not specify a VERSION= parameter, DBDGEN generates a default
13-character date-time stamp. The default consists of an 8-byte date stamp and a
5-byte time stamp with the following format:
MM/DD/YYHH.MM

The default date-time stamp on VERSION= is identical to the DBDGEN date-time
stamp.

VERSION= is passed as a variable length character string with a 2-byte length of
the VERSION=, which does not include the length of the LL.
Related reference:

DBD statements (System Utilities)

SEGM statements (System Utilities)
“CAPXSEGM segment type format” on page 56
“CAPXDBD segment type format” on page 55

Call sequence of Data Capture exit routines
A Data Capture exit routine is invoked once per segment update for each segment
for which the Data Capture exit routine is specified. Data Capture exit routines are
invoked multiple times for a single call under certain conditions.

This topic contains Product-sensitive Programming Interface information.

The conditions in which a Data Capture exit routine is invoked multiple times for
a single call include:
v Path updates.
v Cascade deletes when multiple segment types or multiple segment occurrences

are deleted.
v Updates on logical children.
v Updates on logical parents.

Chapter 18. Optional database functions 381

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdstmt.htm#ims_dbdstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_segmstmt.htm#ims_segmstmt

v Updates on a single segment when multiple Data Capture exit routines are
specified against that segment. Each exit is invoked once, in the order it is listed
on the DBD or SEGM statements.

When multiple segments are updated in a single application program call, Data
Capture exit routines are invoked in the same order in which IMS physically
updates the segments:
1. Path inserts are executed “top-down” in DL/I. Therefore, a Data Capture exit

routine for a parent segment is called before a Data Capture exit routine for
that parent's dependent.

2. Cascade deletes are executed “bottom-up”. All dependent segments' exits are
called before their respective parents' exits on cascade deletes. IMS physically
deletes dependent segments on cascade deletes only after it has validated the
delete rules by following the hierarchy to the lowest level segment. After delete
rules are validated, IMS deletes segments starting with the lowest level
segment in a dependent chain and continuing up the chain, deleting the
highest level parent segment in the hierarchy last. Data Capture exit routines
specified for segments in a cascade delete are called in reverse hierarchical
order.

3. Path replaces are performed “top-down” in IMS. In Data Capture exit routines
defined against segments in path replaces, parent segments are replaced first.
All of their descendents are then replaced in descending hierarchical order.

When an application program does a cascade delete on logically related segments,
Data Capture exit routines defined on the logical child are always called before
Data Capture exit routines defined on the logical parent. Data Capture exit routines
are called even if the logical child is higher in the physical hierarchy, except in
recursive structures where the delete results in the deletion of a parent of the
deleted segment.

Data passed to and captured by the Data Capture exit routine
Data is passed to Data Capture exit routines when an application program updates
IMS with a DL/I insert, delete, or replace call. If the SSPCMD keyword is
specified, this data will also include subset pointer command code (M, S, W, Z)
updates as well the R command code (DEDB only).

This topic contains Product-sensitive Programming Interface information.

If the SSPCMD keyword is specified, data will also be captured for Get-type calls
that update subset pointers. The R command code will be captured, too, if
specified. Similarly, data is captured for non-updated segments of the specified
path in insert or replace calls that update subset pointers.

If the INPOS keyword is specified and a non-unique segment is inserted with an
ISRT rule of HERE, segment data is captured for the following twin, if it exists.

Segment data passed to Data Capture exit routines is always physical data. When
the update involves logical children, the data passed is physical data and the
concatenated key of the logical parent segment. For segments that use the Segment
Edit/Compression exit routine (DFSCMPX0), the data passed is expanded data.

When an application replaces a segment, both the existing and the replacement
physical data are captured. In general, segment data is captured even if the
application call does not change the data. However, for full-function databases,
IMS compares the before and after data. If the data has not changed, IMS does not

382 Database Administration

|
|
|
|

|
|
|
|

|
|

update the database or log the replace data. Because data is not replaced, Data
Capture exit routines specified for that segment are not called and the data is not
captured.

Data might be captured during replaces even if segment data does not change
when:
1. The application inserts a concatenation of a logical child and logical parent,

IMS replaces the logical parent, and the parent data does not change.
2. The application issues a replace for a segment in a DEDB database.
3. If the SSPCMD keyword is specified, non-updated segments of the specified

path that contain subset pointer updates (DEDB only).

In each case, IMS updates the database without comparing the before and after
data, and therefore the data is captured even though it does not change.

Recommendation: The entire segment, before and after, is passed to Data Capture
exit routines when the application replaces a segment. When the exit routine is
interested in only a few fields, do not issue the SQL update request until after the
before and after replace data for those fields is compared to see if the fields were
changed.

Data Capture call functions
Data Capture exit routines are called when segment data is updated by an
application program insert, replace, or delete call. If subset pointer updates are to
be captured (SSPCMD), get calls will also be captured.

This topic contains Product-sensitive Programming Interface information.

Optionally, Data Capture exit routines are called when DL/I deletes a dependent
segment because the application program deleted its parent segment, a process that
is known as cascade delete. Data Capture exit routines are passed two functions to
identify the following:
1. The action performed by the application program
2. The action performed by IMS

The two functions that are passed to the Data Capture exit routines are:
v Call function. The DL/I call, ISRT, REPL, Gx (get-type), or DLET, that is issued

by the application program for the segment.
v Physical function. The physical action, ISRT, REPL, or DLET, performed by IMS

as a result of the call. Physical function SSPU is set for segments that are not
updated but have subset pointers updates. The physical function is used to
determine the type of SQL request to issue when propagating data.

The call and physical functions passed to the exit routine are always the same for
replace calls. However, the functions passed might differ for delete or insert calls:
v For delete calls resulting in cascade deletes, the call function passed is CASC (to

indicate the cascade delete) and the physical function passed is DLET.
v For insert calls resulting in the insert of a logical child and the replace of a

logical parent (because the logical parent already exists), the call function that is
passed is ISRT and the physical function that is passed is REPL. IMS physically
replaces the logical parent with data inserted by the application program even if

Chapter 18. Optional database functions 383

|
|

|
|
|

|
|

|
|
|
|

the parent data does not change. Both call and physical functions are then used,
based on the data propagation requirements, to determine the SQL request to
issue in the Data Capture exit routine.

Cascade delete when crossing logical relationships
If the EXIT= options specify NOCASCADE, data is not captured for cascade
deletes. However, when a cascade delete crosses a logical relationship into another
physical database to delete dependent segments, a Data Capture exit routine needs
to be called.

This topic contains Product-sensitive Programming Interface information.

The Data Capture exit routine needs to be called in order to issue the SQL delete
for the parent of the physical structure in Db2 for z/OS. Rather than requiring the
EXIT= CASCADE option, IMS always calls the exit routine for a segment when
deleting the parent segment in a physical database record with an exit routine
defined, regardless of the CASCADE/NOCASCADE option specified on the
segment. IMS bypasses the NOCASCADE option only when crossing logical
relationships into another physical database. As with all cascade deletes, the call
function passed is CASC and the physical function passed is DLET.

Data Capture exit routines and logically related databases
Segment data passed to Data Capture exit routines is always physical data.
Consequently, you must place restrictions on delete rules in logically related
databases supporting Data Capture exit routines.

This topic contains Product-sensitive Programming Interface information.

The following table summarizes which delete rules you can and cannot use in
logically related databases with Data Capture exit routines specified on their
segments.

Table 63. Delete rule restrictions for logically related databases using Data Capture exit
routines

Segment type Virtual delete rule Logical delete rule Physical delete rule

Logical Children Yes No No

Logical Parents No Yes Yes

When a logically related database has a delete rule violation on a logical child:
v The logical child cannot have a Data Capture exit routine specified.
v No ancestor of the logical child can have a Data Capture exit routine specified.

When a logically related database has a delete rule violation on a logical parent,
the logical parent cannot have a Data Capture exit routine specified. ACBGEN
validates logical delete rule restrictions and will not allow a PSB that refers to a
database that violates these restrictions to proceed.

Field-level sensitivity
Field-level sensitivity provides a number of benefits related to the
data-independence of application programs, enhanced data security, and increased
flexibility in the formatting of segment types.

384 Database Administration

Field-level sensitivity gives you an increased level of data independence by
isolating application programs from:
v Changes in the arrangement of fields within a segment
v Addition or deletion of data within a segment

In addition, field-level sensitivity enhances data security by limiting an application
program to a subset of fields within a segment, and controlling replace operations
at the field level.

Field-level sensitivity allows you to reformat a segment type. Reformatting a
segment type can be done without changing the application program's view of the
segment data, provided fields have not been removed or altered in length or data
type. Fields can be added to or shifted within a segment in a manner transparent
to the application program. Field-level sensitivity gives applications a segment
organization that always conforms to what is specified in the SENFLD statements.

The following database types support field-level sensitivity:
v HSAM
v HISAM
v SHISAM
v HDAM
v PHDAM
v HIDAM
v PHIDAM

Using field-level sensitivity as a mapping interface

Field-level sensitivity acts as a mapping interface by letting PSBGEN field locations
differ from DBDGEN field locations. Mapping is invoked after the segment edit
routine on input and before the segment edit routine on output. When creating a
sequential data set from database information (or creating database information
from a sequential data set), field-level sensitivity can reduce or eliminate the
amount of formatting an application program must do.

Using field-level sensitivity with variable-length segments

If field-level sensitivity is used with variable-length segments, you can add new
fields to a segment without reorganizing the database. FIELD definitions in a
DBDGEN allow you to enlarge segment types without affecting any previous users
of the segment. The DBDGEN FIELD statement lets you specify a field that does
not yet exist in the physical segment but that will be dynamically created when the
segment is retrieved.

Field-level sensitivity can help in the transition of an application program from a
non-database environment to a database environment. Application programs that
formerly accessed z/OS files might be able to receive the same information in the
same format if the database was designed with conversion in mind.

Field-level sensitivity is not supported for DEDBs and MSDBs.
Related tasks:
“Changing the position of data in a segment” on page 700

Chapter 18. Optional database functions 385

How to specify use of field-level sensitivity in the DBD and
PSB

An application program's view of data is defined through the PSBGEN utility
using SENFLD statements following the SENSEG statement.

In the SENFLD statement, the NAME= parameter identifies a field that was
defined in the segment through the DBDGEN utility. The SENFLD statement is not
supported by Fast Path secondary indexing.

The START= parameter defines the starting location of the field in the application
program's I/O area. In the I/O area, fields do not need to be located in any
particular order, nor must they be contiguous. The end of the segment in the I/O
area is defined by the end of the right most field. All segments using field-level
sensitivity appear fixed in length in the I/O area. The length is determined by the
sum of the lengths of fields on SENFLD statements associated with a SENSEG
statement.

The following figure shows an example of field-level sensitivity. After the figure is
information about coding field-level sensitivity.

Field-level sensitivity is used below to reposition three fields from a physical
segment in the application program's I/O area.

The following code shows the DBD example for field-level sensitivity shown in the
figure above.
SEGM NAME=EMPREC,BYTES=100
FIELD NAME=(EMPNO,SEQ),BYTES=5,START=1,TYPE=C
FIELD NAME=EMPNAME,BYTES=20,START=6,TYPE=C
FIELD NAME=BIRTHD,BYTES=6,START=26,TYPE=C
FIELD NAME=SAL,BYTES=3,START=32,TYPE=P
FIELD NAME=ADDRESS,BYTES=60,START=41,TYPE=C

The following code shows the PSB for the preceding figure.
SENSEG NAME=EMPREC,PROCOPT=A
SENFLD NAME=EMPNAME,START=1,REPL=N
SENFLD NAME=EMPNO,START=25
SENFLD NAME=ADDRESS,START=35,REPL=Y

A SENFLD statement is coded for each field that can appear in the I/O area. A
maximum of 255 SENFLD statements can be coded for each SENSEG statement,
with a limit of 10000 SENFLD statements for a single PSB.

The optional REPL= parameter on the SENFLD statement indicates whether
replace operations are allowed on the field. In the figure, replace is not allowed for

Figure 198. DBD and PSB coding for field-level sensitivity

386 Database Administration

EMPNAME but is allowed for EMPNO and ADDRESS. If REPL= is not coded on a
SENFLD statement, the default is REPL=Y.

The TYPE= parameter on FIELD statements in the DBD is used to determine fill
values on insert operations.

Retrieving segments using field-level sensitivity
When you retrieve segments using field-level sensitivity, you should be aware of
the following information.
v Gaps between fields in the I/O area are set to blanks on a retrieve call.
v If an application program uses a field in an SSA, that field must be coded on a

SENFLD statement. This rule does not apply to sequence fields used in an SSA
on retrieve operations.

The following figure shows an example of a retrieve call based on the DBD and
PSB in “How to specify use of field-level sensitivity in the DBD and PSB” on page
386.

Replacing segments using field-level sensitivity
The SENFLD statement must allow replace operations (REPL=Y) if the application
program is going to replace data in a segment.

In the example shown in “How to specify use of field-level sensitivity in the DBD
and PSB” on page 386, the SENFLD statement for EMPNAME specifies REPL=N.
A “DA” status code would be returned if the application program tried to replace
the EMPNAME field. The following figure shows an example of a REPL call based
on the DBD and PSB in “How to specify use of field-level sensitivity in the DBD
and PSB” on page 386.

Figure 199. Example of a retrieve call

Chapter 18. Optional database functions 387

Inserting segments using field-level sensitivity
The TYPE= parameter on the SEGM statement of the DBD determines the fill value
in the physical segment when an application program is not sensitive to a field on
insert calls.

TYPE= Fill Value

X Binary Zeros

P Packed Decimal Zero

C Blanks

The fill value in the physical segment is binary zeros when:
v Space in a segment is not defined by a FIELD macro in the DBD
v A defined DBD field is not referenced on the insert operation

The following figure shows an example of an insert operation based on the DBD
and PCB in Figure 198 on page 386.

Figure 200. Example of a REPL call

388 Database Administration

Blanks are inserted in the BIRTHD field because its FIELD statement in the DBD
specifies TYPE=C. Packed decimal zero is inserted in the SAL field because its
FIELD statement in the DBD specifies TYPE=P. Binary zeros are inserted in
positions 35 to 40 because no FIELD statement was coded for this space in the
DBD.

Using field-level sensitivity when fields overlap
On the SENFLD statement, you code the starting position of fields as they will
appear in the I/O area.

If fields overlap in the I/O area, here are the rules you must follow:
v Two different bytes of data cannot be moved to the same position in the I/O

area on input.
v The same data can be moved to different positions in the I/O area on retrieve

operations.
v Two bytes from different positions in the I/O area cannot be moved to the same

DBD field on output.

Using field-level sensitivity when path calls are issued
If an application program issues path calls while using field level sensitivity, you
must follow some rules.

Here are the rules you must follow:
v You should not code SENFLD statements so that two fields from different

physical segments are in the same segment in the I/O area.
v PROCOPT=P is required on the PCB statement.

Using field-level sensitivity with logical relationships
You must follow some rules when using field-level sensitivity with segments that
are involved in a logical relationship

Here are the rules you must follow:
v Application programs can not be insert sensitive to a logical child.

Figure 201. Example of an ISRT call

Chapter 18. Optional database functions 389

v The same field can be referenced in more than one SENFLD statement within a
SENSEG. If the duplicate field names are part of a concatenated segment and the
same field name appears in both parts of the concatenation, the first part
references the logical child. The second and all subsequent parts reference the
logical parent. This referencing sequence determines the order in which fields
are moved to the I/O area.

v When using field-level sensitivity with a virtual logical child, the field list of the
paired segment is searched after the field list of the virtual segment and before
the field list of the logical parent.

Using field-level sensitivity with variable-length segments
When field-level sensitivity is used with a variable-length segment, an application
program's view of the segment is fixed in length and does not include the 2-byte
length field.

This topic and its subtopics address special situations when field level sensitivity is
used with variable-length segments. First, however, here is some general
information about using field-level sensitivity with variable-length segments:
v When inserting a variable-length segment, the length used is the minimum

length needed to hold all sensitive fields.
v When replacing a variable-length segment, if the length has to be increased to

contain data an application program has modified, the length used is the
minimum length needed to hold the modified data.

v An application program cannot be sensitive to overlapping fields in a
variable-length segment with get or update sensitivity if the data type of any of
those fields is not character.

v Existing programs processing variable-length segments that use the length field
to determine the presence or absence of a field might need to be modified if
segments are inserted or updated by programs using field-level sensitivity.

When field-level sensitivity is used with variable-length segments, two situations
exist that you should know about. The first is when fields are missing. The second
is when fields are partially present. This topic examines the following information:
v Retrieving Missing Fields
v Replacing Missing Fields
v Inserting Missing Fields
v Retrieving Partially Present Fields
v Replacing Partially Present Fields

Retrieving missing fields
If a field does not exist in the physical variable-length segment at retrieval time,
the corresponding field in the application program's I/O area is filled with a value
based on the data type specified in the DBD.

The figure below is an example of a missing field on a retrieve call based on the
DBD and PSB examples that follow the figure.

390 Database Administration

The following code is an example DBD for field-level sensitivity with
variable-length segments.
DBD

SEGM NAME=EMPREC,BYTES=(102,7)
FIELD NAME=(EMPNO,SEQ),BYTES=5,START=3,TYPE=C
FIELD NAME=EMPNAME,BYTES=20,START=8,TYPE=C
FIELD NAME=BIRTHD,BYTES=6,START=28,TYPE=C
FIELD NAME=ADDRESS,BYTES=60,START=43,TYPE=C

The following code is an example PSB for field-level sensitivity with
variable-length segments.
PSB

SENSEG NAME=EMPREC,PROCOPT=A
SENFLD NAME=EMPNAME,START=1,REPL=N
SENFLD NAME=EMPNO,START=25
SENFLD NAME=ADDRESS,START=35,REPLY=Y

The length field is not present in the I/O area. Also, the address field is filled with
blanks, because TYPE=C is specified on the FIELD statement in the DBD.
Related concepts:
“Replacing missing fields”
“Replacing partially present fields” on page 394

Replacing missing fields
A missing field that is not replaced does not affect the physical variable-length
segment.

The following figure is an example of a missing field on a replace call based on the
DBD and PSB in “Retrieving missing fields” on page 390.

Figure 202. Example of a missing field on a retrieve call

Chapter 18. Optional database functions 391

The length field, maintained by IMS, does not include room for the address field,
because the field was missing and not replaced.

On a replace call, if a field returned to the application program with a fill value is
changed to a non-fill value, the segment length is increased to the minimum size
needed to hold the modified field.
v The 'LL' field is updated to include the full length of the added field and all

fields up to the added field.
v The TYPE= parameter in the DBD determines the fill value for non-sensitive

DBD fields up to the added field.
v Binary zero is the fill value for space up to the added field that is not defined by

a FIELD statement in the DBD.

The following figure is an example of a missing field on a replace call based on the
DBD and PSB in “Retrieving missing fields” on page 390.

Figure 203. First example of a missing field on a replace call

392 Database Administration

The 'LL' field is maintained by IMS to include the full length of the ADDRESS field
and all fields up to the ADDRESS field. BIRTHD is filled with blanks, because
TYPE=C is specified on the FIELD statement in the DBD. Positions 34 to 42 are set
to binary zeros, because the space was not defined by a FIELD statement in the
DBD.
Related concepts:
“Retrieving missing fields” on page 390

Inserting missing fields
When a variable-length segment is inserted into the database, the length field is set
to the value of the minimum size needed to hold all sensitive fields.
v The 'LL' field is updated to include all sensitive fields.
v The TYPE= parameter on the DBD (see the example of a DBD for field-level

sensitivity with variable-length segments) determines the fill value for
non-sensitive DBD fields.

v Binary zero is the fill value for space not defined by a FIELD statement in the
DBD.

The following figure is an example of a missing field on an insert call using the
DBD and PSB in the example of a DBD for field-level sensitivity with
variable-length segments.

Figure 204. Second example of a missing field on a replace call

Chapter 18. Optional database functions 393

The 'LL' field is maintained by IMS to include the full length of all sensitive fields
up to and including the ADDRESS field. BIRTHD is filled with blanks, because
TYPE=C was specified on the FIELD statement in the DBD. Positions 34 to 42 are
set to binary zeros, because the space was not defined in a FIELD statement in the
DBD.

Retrieving partially present fields
If the last field in the physical variable-length segment at retrieval time is only
partially present and if the data type is character (TYPE=C), data is returned to the
application program padded with blanks on the right. Otherwise, the field is
returned with a fill value based on the data type.

The following figure is an example of a partially present field on a retrieval call
based on the DBD and PSB in “Retrieving missing fields” on page 390.

The ADDRESS field in the I/O area is padded with blanks to correspond to the
length defined on the SEGM statement in the DBD.

Replacing partially present fields
When replacing partially present fields be aware of the following points.

Figure 205. Example of a missing field on an insert call

Figure 206. Example of a partially present field on a retrieval call

394 Database Administration

v If segment length is increased on a REPL call, the field returned to the
application program is written to the database if it has not been changed.

v If the data type of the field is character and the field is changed on a REPL call,
the segment length is increased if necessary to include all non-blank characters
in the changed data.

v If the data type is not character and the field is changed on a REPL call, the
segment length is increased to contain the entire field.

The following figure is an example of a partially present field on a REPL call based
on the DBD and PSB in “Retrieving missing fields” on page 390.

The 'LL' field is changed from 50 to 52 by DL/I to accommodate the change in the
field length of ADDRESS.
Related concepts:
“Retrieving missing fields” on page 390

General considerations for using field-level sensitivity
When you use field-level sensitivity, be aware of the following general
considerations.
v Field-level sensitivity is not supported for GSAM, MSDB, or DEDB databases.
v Fields referenced in PSBGEN with SENFLD statements must be defined in

DBDGEN with FIELD statements.
v The same DBD field can be referenced in more than one SENFLD statement.
v When using field-level sensitivity, the application program always sees a fixed

length segment for a given PCB, regardless of whether the segment is fixed or
variable.

v Application programs must be sensitive to any field referenced in an SSA, except
the sequence field.

Figure 207. Example of a partially present field on a REPL call

Chapter 18. Optional database functions 395

v Application programs must be sensitive to the sequence field, if present, for
insert or load.

v Field-level sensitivity and segment level sensitivity can be mixed in the same
PCB.

v Non-referenced, non-defined fields are set to binary zeros as fill characters, when
required, during insert or replace operations.

v Using call/trace with the compare option increases the amount of storage
required in the PSB work pool.

Multiple data set groups
HD databases can be stored on multiple data sets; that is, the HD databases can be
stored on more than the one or two data sets required for database storage.

The following database types support multiple data set groups:
v HDAM
v PHDAM
v HIDAM
v PHIDAM

When storing a database on multiple data sets, the terms primary and secondary
data set group are used to distinguish between the one or more data sets that must
be specified for the database (called the primary data set group) and the one or
more data sets you are allowed to specify for the database (called secondary data
set groups).

In HD databases, a single data set is used for storage rather than a pair of data
sets. The primary data set group therefore consists of the ESDS (if VSAM is being
used) or OSAM data set (if OSAM is being used) on which you must specify
storage for your database. The secondary data set group is an additional ESDS or
OSAM data set on which you are allowed to store your database.

As many as ten data set groups can be used in HD databases, that is, one primary
data set group and a maximum of nine secondary data set groups.
Related tasks:
“Changing the number of data set groups” on page 723

When to use multiple data set groups
When you design database records, you design them to meet the processing
requirements of many applications. You decide what segments will be in a
database record and their hierarchical sequence within a database record.

These decisions are based on what works best for all of your application program's
requirements. However, the way in which you arranged segments in a database
record no doubt suits the processing requirements of some applications better than
others. For example, look at the two database records shown in the following
figure. Both of them contain the same segments, but the hierarchical sequence of
segments is different.

396 Database Administration

The hierarchy on the top favors applications that need to access INSTR and LOC
segments. The hierarchy on the bottom favors applications that need to access
STUDENT and GRADE segments. (Favor, in this context, means that access to the
segments is faster.) If the applications that access the INSTR and LOC segments are
more important than the ones that access the STUDENT and GRADE segments,
you can use the database record on the left. But if both applications are equally
important, you can split the database record into different data set groups. This
will give both types of applications good access to the segments each needs.

To split the database record, you would use two data set groups. As shown in the
following figure, the first data set group contains the COURSE, INSTR, REPORT,
and LOC segments. The second data set group contains the STUDENT and
GRADE segments.

COURSE

COURSE

STUDENT

INSTR

INSTR LOC

LOC

GRADE

GRADE

REPORT

REPORT

1

1

2

2

3

3

4

4

5

5

6

6

STUDENT

Figure 208. Hierarchy of applications that need to access INSTR and LOC segments

Chapter 18. Optional database functions 397

Other uses of multiple data set groups include:
v Separating infrequently-used segments from high-use segments.
v Separating segments that frequently have information added to them from those

that do not. For the former segments, you might specify additional free space so
conditions are optimum for additions.

v Separating segments that are added or deleted frequently from those that are
not. This can keep space from being fragmented in the main database.

v Separating segments whose size varies greatly from the average segment size.
This can improve use of space in the database. Remember, the bitmap in an HD
database indicates whether space is available for the longest segment type
defined in the data set group. It does not keep track of smaller amounts of
space. If you have one or more segment types that are large, available space for
smaller segments will not be utilized, because the bitmap does not track it.

HD databases using multiple data set groups
You can define as many as ten data set groups when you use multiple data set
groups.

The root segment in a database record must be in the primary data set group.

In the database record shown in the following figure, the segments COURSE (1),
INSTR (2), LOC (4), and STUDENT (5) could go in one data set group, while
segments REPORT (3) and GRADE (6) could go in a second data set group.

Figure 209. Database record split into two database groups

398 Database Administration

Examples of how the HD database record shown in the above figure might be
divided into three groups are in the following table.

Table 64. Examples of multiple data set grouping

Data set group 1 Data set group 2 Data set group 3

Segment 1 Segments 2, 5, and 6 Segments 3 and 4

Segments 1, 3, and 6 Segments 2 and 5 Segment 3

Segments 1, 3, and 6 Segments 2 and 5 Segment 4

Segments that are separated into different data set groups must be connected by
physical child first pointers. For example, in the following figure, the INSTR
segment in the primary data set group must point to the first occurrence of its
physical child REPORT in the secondary data set group, and STUDENT must point
to GRADE.

Figure 210. Example of how to divide an HD database record

Chapter 18. Optional database functions 399

How HD records are stored in multiple data set groups
You specify in the DBD statements which segment types are placed in a data set
group. IMS then loads the segments into the correct data set group.

The figure below shows one database record:
v Stored in an HDAM or a PHDAM database using two data set groups
v Stored in a HIDAM or a PHIDAM database using two data set groups

In this example, the user specified that four segment types in the database record
were put in the primary data set group (COURSE, INSTR, LOC, STUDENT) and
two segment types were put in the secondary data set group (REPORT, GRADE).

In the HDAM or PHDAM database, note that only the primary data set group has
a root addressable area. The secondary data set group is additional overflow
storage.

Figure 211. Connecting segments in multiple data set groups using physical child first
pointers

400 Database Administration

Specifying use of multiple data set groups in HD and PHD
databases
You can specify multiple data set groups to IMS in the DBD. For HDAM
databases, use the DATASET statement. For PHDAM databases, use the DSGROUP
parameter in the SEGM statement.

You can group the segments any way, but you still must list the segments in
hierarchical sequence in the DBD.

The following examples use the database record used in “When to use multiple
data set groups” on page 396 and “HD databases using multiple data set groups”
on page 398. The first example, in the following figure, shows two groups: data set
group A contains COURSE and INSTR, data set group B contains all of the other

Figure 212. HD database record in storage when multiple data set groups are used

Chapter 18. Optional database functions 401

segments. The second example shows a different grouping. Note the differences in
DBDs when the groups are not in sequential hierarchical order of the segments.

The following code is the HDAM DBD for the first example. Note that the
segments are grouped by the DATASET statements preceding the SEGM statements
and that the segments are listed in hierarchical order. In each DATASET statement,
the DD1= parameter names the VSAM ESDS or OSAM data set that will be used.
Also, each data set group can have its own characteristics, such as device type.
DBD NAME=HDMDSG,ACCESS=HDAM,RMNAME=(DFSHDC40,8,500)
DSA DATASET DD1=DS1DD
SEGM NAME=COURSE,BYTES=50,PTR=T
FIELD NAME=(CODCOURSE,SEQ),BYTES=10,START=1
SEGM NAME=INSTR,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))
DSB DATASET DD1=DS2DD,DEVICE=2314
SEGM NAME=REPORT,BYTES=50,PTR=T,PARENT=((INSTR,SNGL))
SEGM NAME=LOC,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))
SEGM NAME=STUDENT,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))
SEGM NAME=GRADE,BYTES=50,PTR=T,PARENT=((STUDENT,SNGL))
DBDGEN

The following code shows the DBD for a PHDAM database. Instead of using the
DATASET statement, use the DSGROUP parameter in the SEGM statement. The
first two segments do not have DSGROUP parameters because it is assumed that
they are in the first group.
DBD NAME=HDMDSG,ACCESS=PHDAM,RMNAME=(DFSHDC40,8,500)
SEGM NAME=COURSE,BYTES=50,PTR=T
FIELD NAME=(CODCOURSE,SEQ),BYTES=10,START=1
SEGM NAME=INSTR,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))
SEGM NAME=REPORT,BYTES=50,PTR=T,PARENT=((INSTR,SNGL)),DSGROUP=B

Figure 213. First example of data set groups

402 Database Administration

|
|
|
|
|
|
|
|
|
|
|

SEGM NAME=LOC,BYTES=50,PTR=T,PARENT=((COURSE,SNGL)),DSGROUP=B
SEGM NAME=STUDENT,BYTES=50,PTR=T,PARENT=((COURSE,SNGL)),DSGROUP=B
SEGM NAME=GRADE,BYTES=50,PTR=T,PARENT=((STUDENT,SNGL)),DSGROUP=B
DBDGEN

The second example, in the following figure, differs from the first example in that
the groups do not follow the order of the hierarchical sequence. The segments
must be listed in the DBD in hierarchical sequence, so additional DATASET
statements or DSGROUP parameters are required.

The following code is the DBD for an HDAM database of the second example. It is
similar to the first example, except that because the sixth segment is part of the
first group, you need another DATASET statement before it with the DSA label.
The additional DATASET label groups the sixth segment with the first three.
DBD NAME=HDMDSG,ACCESS=HDAM,RMNAME=(DFSHDC40,8,500)
DSA DATASET DD1=DS1DD
SEGM NAME=COURSE,BYTES=50,PTR=T
FIELD NAME=(CODCOURSE,SEQ),BYTES=10,START=1
SEGM NAME=INSTR,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))
SEGM NAME=REPORT,BYTES=50,PTR=T,PARENT=((INSTR,SNGL))
DSB DATASET DD1=DS2DD,DEVICE=2314
SEGM NAME=LOC,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))
SEGM NAME=STUDENT,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))
DSA DATASET DD1=DS1DD
SEGM NAME=GRADE,BYTES=50,PTR=T,PARENT=((STUDENT,SNGL))
DBDGEN

The following code is the DBD for a PHDAM database of the second example. It is
similar to the first example, except that because the sixth segment is part of the
first group, you must explicitly group it with the first two segments by using the
DSGROUP parameter.

Figure 214. Second example of data set groups

Chapter 18. Optional database functions 403

|
|
|
|
|
|
|
|
|
|
|
|

DBD NAME=HDMDSG,ACCESS=PHDAM,RMNAME=(DFSHDC40,8,500)
SEGM NAME=COURSE,BYTES=50,PTR=T
FIELD NAME=(CODCOURSE,SEQ),BYTES=10,START=1
SEGM NAME=INSTR,BYTES=50,PTR=T,PARENT=((COURSE,SNGL))
SEGM NAME=REPORT,BYTES=50,PTR=T,PARENT=((INSTR,SNGL)),
SEGM NAME=LOC,BYTES=50,PTR=T,PARENT=((COURSE,SNGL)),DSGROUP=B
SEGM NAME=STUDENT,BYTES=50,PTR=T,PARENT=((COURSE,SNGL)),DSGROUP=B
SEGM NAME=GRADE,BYTES=50,PTR=T,PARENT=((STUDENT,SNGL)),DSGROUP=A
DBDGEN

Related tasks:
“Creating HALDB databases with the HALDB Partition Definition utility” on page
511
Related reference:

DATASET statements (System Utilities)

VSAM KSDS CI reclaim for full-function databases
In data-sharing or XRF environments, IMS can reclaim the storage used for empty
VSAM KSDS control intervals (CIs) in full-function databases by using a process
called CI reclaim.

CI reclaim enhances the performance of database GN, GU, and ISRT calls by
reducing the number of empty CIs that VSAM reads on subsequent DL/I calls.

After IMS commits the deletion of the last record in a CI, IMS flags the CI for
reclamation. IMS reclaims the CI the next time the CI is read during a DL/I call
that has update access. On a single DL/I call, IMS reclaims every empty CI flagged
for reclamation that it reads until the DL/I call has been satisfied.

CI reclaim is not a replacement for the routine reorganization of KSDS data sets.

CI reclaim works only under the following circumstances:
v If you are using VSAM subpools, you have specified ERASE=YES, or accepted it

as the default, on the DBD statement of the DFSVSMxx PROCLIB member.
v Your KSDS uses unique keys.
v The application program issuing the GN, GU, or ISRT call has update access to

the database. Using a processing option PROCOPT of "I", "R", "D" or "A"
guarantees the data set is open for update.

Restriction: SHISAM databases do not support CI reclaim. When a large number
of records in a SHISAM database are deleted, particularly a large number of
consecutive records, serious performance degradation can occur. Eliminate empty
CIs and resolve the problem by using VSAM REPRO.

Related Reading: For information about the VSAM REPRO command, see z/OS
DFSMS Access Method Services for Catalogs.
Related concepts:
“Reorganizing the database” on page 615

Data sharing in IMS environments (System Administration)

Extended Recovery Facility Overview (System Administration)

404 Database Administration

|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_datastmt.htm#ims_datastmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_datasharing.htm#ims_datasharing
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_recovery/ims_xrf_bigover.htm#ims_xrf_bigover

Storing XML data in IMS databases
IMS Version 12 is the last release to support the IMS XML DB feature, which
provides for storage and retrieval of XML documents in IMS databases by using
Java application programs. Support for IMS XML DB in IMS Version 13 ends when
IMS Version 12 goes out of service.

For storage and retrieval of XML documents, the XML documents must be valid to
XML schemas generated by the IMS Enterprise SuiteDLIModel utility plug-in. The
XML schemas must match the hierarchical structure of the IMS database.

XML documents can be stored in IMS databases using any combination of two
storage methods to best fit the structure of the XML document:

Decomposed XML storage
The XML tags are removed from the XML document and only the data is
extracted. The extracted data is converted into traditional IMS field types
and inserted into the database. Use this approach in the following
scenarios:
v XML applications and non-XML applications must access the same

database.
v Extensive searching of the database is needed.
v A strict XML schema is available.

Intact XML storage
The XML document is stored, with its XML structure and tags intact, in an
IMS database designed exclusively for storing intact XML documents. In
this case, only Java application programs can access the data in the
database. Because the XML document does not have to be regenerated
when the data is retrieved from the database, the retrieval of the XML data
is typically faster than when it is stored without its XML tagging. Use this
approach in the following scenarios:
v Faster storage and retrieval of XML documents are needed.
v Less searching of the database is required.
v The XML schema requires more flexibility.

Related concepts:
Chapter 19, “XML storage in IMS databases,” on page 407

Chapter 18. Optional database functions 405

406 Database Administration

Chapter 19. XML storage in IMS databases

Because XML and IMS databases are both hierarchical, IMS is an effective database
management system for managing XML documents.

With IMS, you can easily receive and store incoming XML documents and compose
XML documents from existing information that is stored in IMS databases.

For example, you can:
v Compose XML documents from all types of existing IMS databases to support,

for example, business-to-business on demand transactions and
intra-organizational sharing of data.

v Receive incoming XML documents and store them in existing or new IMS
databases.

IMS can stores XML documents in an intact storage mode, in a decomposed storage
mode, or in a combination of the two.

In the decomposed storage mode, IMS parses the XML documents and stores the
element data and attributes in segment fields as normal IMS data. The
decomposed storage mode is appropriate for data-centric documents.

In the intact storage, the incoming document, including its XML tags, is stored
directly in the database and IMS is unaware of its structure. Intact storage is
appropriate for document-centric XML documents.

To store XML in an IMS database or to retrieve XML from IMS, you must first
generate two artifacts: an XML schema and the Java metadata class for IMS. You
can generate the Java metadata class by using the IMS Enterprise Suite Explorer for
Development. You can generate the XML schema either by hand or with the IMS
Enterprise Suite DLIModel utility plug-in. The metadata and schema are used
during the storage and retrieval of XML.

Your applications use the IMS Universal type-4 JDBC driver to store XML in IMS
databases, create XML from IMS data, and retrieve XML documents from IMS
databases. Alternatively, if you are using the IMS classic JDBC drivers, you can use
the user-defined IMS functions storeXML and retrieveXML.

The following figure shows the process for storing and retrieving XML in IMS.

© Copyright IBM Corp. 1974, 2016 407

Related concepts:
“Storing XML data in IMS databases” on page 405

Decomposed storage mode for XML
In decomposed storage mode, all elements and attributes are stored as regular fields in
optionally repeating DL/I segments.

During parsing, all tags and other XML syntactic information is checked for
validity and then discarded. The parsed data is physically stored in the database as
standard IMS data, meaning that each defined field in the segment is an IMS
standard type. Because all XML data is composed of string types (typically
Unicode) with type information in the validating XML schema, each parsed data
element and attribute can be converted to the corresponding IMS standard field
value and stored in the target database.

Inversely, during XML retrieval, DL/I segments are retrieved, fields are converted
to the destination XML encoding, tags and XML syntactic information (stored in
the XML schema) are added, and the XML document is composed.

The following figure shows how XML elements are decomposed and stored in IMS
segments.

JDBC
application

Java class
libraries for
IMS DB

Offline

IMS
database

XML
schemaXML

Java metadata
classesJava

DBD
PDS

PSB
PDS

IMS Enterprise
Suite

DLIModel
utility plug-in

Java

XML
documentXML

Java

Figure 215. Overview of XML storage in IMS

408 Database Administration

Decomposed storage mode is suitable for data-centric XML documents. In
data-centric XML documents, the elements and attributes from the document
typically are either character or numeric items of a known length that are relatively
easy to map to fields in segments. Lengths are short to medium and typically,
though not always, fixed.

The XML document data can start at any segment in the IMS segment hierarchy.
The starting segment is the root element in the XML document. The segments in
the subtree below the starting segment are also included in the XML document.
Elements and attributes of the XML document are stored in the dependent
segments of the root element segment. Any other segments in the hierarchy that
are not dependent segments of that root element segment are not part of the XML
document and, therefore, are not included in the associated XML schema.

When an XML document is stored in the database, the value of all segment fields
is extracted directly from the XML document. Therefore, any unique key fields in
any of the XML segments must exist in the XML document as attributes or simple
elements.

The XML hierarchy is defined by a PCB hierarchy that is based on either a physical
database or a logical database. Logical relationships are supported for retrieval and
composition of XML documents, but not for inserting documents.

For a non-XML database, either the whole database hierarchy, or any subtree of the
hierarchy, can be considered as a decomposed data-centric XML document. The
segments and fields that comprise the decomposed XML data are determined only
by the definition of a mapping (the XML schema) between those segments and
fields and a document.

Figure 216. How XML is decomposed and stored in IMS segments

Chapter 19. XML storage in IMS databases 409

One XML schema is generated for each database PCB. Therefore, multiple
documents can be derived from a physical database hierarchy through different
XML schemas. There are no restrictions on how these multiple documents overlap
and share common segments or fields.

A new database can be designed specifically to store a particular type of
data-centric XML documents in decomposed form.

Intact storage mode for XML
In intact storage mode, all or part of an XML document is stored intact in a field.
The XML tags are not removed, and IMS does not parse the document.

XML documents can be large, so the documents can span the primary intact field,
which contains the XML root element, and fields in overflow segments. The
segments that contain the intact XML documents are standard IMS segments and
can be processed like any other IMS segments. Because they contain unparsed
XML data, the fields cannot be processed as standard IMS fields. However, intact
storage of documents has the following advantages over decomposed storage
mode:
v IMS does not need to compose or decompose the XML during storage and

retrieval. Therefore, you can process intact XML documents faster than
decomposed XML documents.

v You do not need to match the XML document content with IMS field data types
or lengths. Therefore, you can store XML documents with different structures,
content, and length within the same IMS database.

Intact XML storage requires a new IMS database or an extension of an existing
database because the XML document must be stored in segments and fields that
are specifically tailored for storing intact XML.

To store all or part of an XML document intact in an IMS database, the database
must define a base segment, which contains the root element of the intact XML
subtree. The rest of the intact XML subtree is stored in overflow segments, which
are child segments of the base segment.

The base segment contains the root element of the intact XML subtree and any
decomposed or non-XML fields. The following table shows the format of the
primary intact field. This format is defined in the DBD.

Table 65. Primary intact field format

Byte Content

1 0x01

2 Reserved

3–4
Bit 1 Indicates whether there are overflow segments

Bits 2–16
Indicate the length of the XML data in this field

Rest of the
field

XML data

410 Database Administration

The overflow segment contains only the overflow XML data field. The following
table shows the format of the overflow XML data field. This format is defined in
the DBD.

Table 66. Overflow XML data field format

Byte Content

1–2 Key field sequence number

2–4
Bit 1 Indicates whether more overflow segments follow this segment

Bits 2–16
Indicate the length of the XML data in this field

Rest of the
field

Continuation of XML data

DBDs for intact XML storage
The examples in this topic show DBD statements that are used to store intact XML
documents. The first example uses an IMS Universal JDBC driver. The second
example uses an IMS classic JDBC driver.

DBD structure to store intact XML for the IMS Universal JDBC
driver

The following example DBD statement defines a database that stores intact XML.
The database is accessed by application programs that use the IMS Universal JDBC
driver with type-4 connectivity.

DBD NAME=DH41SK01,ACCESS=(HIDAM,OSAM)
DSG01 DATASET DD1=HIDAMD1,DEVICE=3390,BLOCK=1024
*

SEGM NAME=HOSPITAL, C
PARENT=0, C
BYTES=(900), C
RULES=(LLL,HERE)

FIELD NAME=(HOSPCODE,SEQ,U), C
START=3, C
BYTES=12, C
TYPE=C

FIELD NAME=(HOSPNAME), C
START=15, C
BYTES=17, C
TYPE=C

FIELD NAME=(HOSPLL), C
START=1, C
BYTES=2, C
TYPE=X

LCHILD NAME=(INDEX,DX41SK01),PTR=INDX
*
*

* SEGMENT NUMBER 2

SEGM NAME=PAYMENTS, C
PARENT=HOSPITAL, C
BYTES=(900), C
TYPE=DIR, C
RULES=(LLL,LAST)

FIELD NAME=(PATMLL), C
START=1, C
BYTES=2, C
TYPE=X

Chapter 19. XML storage in IMS databases 411

FIELD NAME=(PATNUM), C
START=3, C
BYTES=4, C
TYPE=C

FIELD NAME=(AMOUNT), C
START=7, C
BYTES=8, C
TYPE=C

* SEGMENT NUMBER 3

DSG02 DATASET DD1=HIDAMD2,DEVICE=3380,BLOCK=1024
*

SEGM NAME=WARD, C
PARENT=HOSPITAL, C
BYTES=(900), C
TYPE=DIR, C
RULES=(LLL,LAST)

FIELD NAME=(WARDNO,SEQ,U), C
START=3, C
BYTES=4, C
TYPE=C

FIELD NAME=(WARDINFO), C
START=7, C
BYTES=100, C
TYPE=C

FIELD NAME=(WARDLL), C
START=1, C
BYTES=2, C
TYPE=X

* SEGMENT NUMBER 4

SEGM NAME=OFSEG, C
PARENT=WARD, C
BYTES=(900), C
TYPE=DIR, C
RULES=(LLL,HERE)

FIELD NAME=(SEQNO,SEQ,U), C
START=1, C
BYTES=2, C
TYPE=C

DBDGEN
FINISH
END

DBD structure to store intact XML for the IMS classic JDBC
driver

The following example DBD statement defines a base segment and an overflow
segment. The XML intact field in the base segment contains a 4-byte header, so you
must define the field to be greater than 4 bytes. The XML intact field in the
overflow segment contains a 2-byte header for the length, so you must define the
field to be greater than 2 bytes. The database is accessed by application programs
that use the IMS classic JDBC driver.

DBD NAME=dbdname,ACCESS=(PHDAM,VSAM),RMNAME=(DFSHDC40,1,5,bytes)
*Base segment
SEGM NAME=segname1,PARENT=0,BYTES=seglen1
* XML intact field, which contains a 4-byte header
FIELD NAME=INTDATA,BYTES=length,START=startpos,TYPE=C

Figure 217. DBD for intact XML storage and no secondary indexes

412 Database Administration

* Additional non-intact fields can be specified in segment
*
* Overflow Segment
SEGM NAME=segname2,PARENT=segname1,BYTES=seglen2
FIELD NAME=(SEQNO,SEQ,U),BYTES=2,START=1,TYPE=C
* XML intact field, which contains a 2-byte header for length
FIELD NAME=INTDATA,BYTES=1,START=3,TYPE=C
DBDGEN
FINISH
END

The following example DBD statement defines a base segment, an overflow
segment, and a side segment that is used by two secondary indexes.

DBD NAME=dbdname,ACCESS=(PHDAM,VSAM),RMNAME=(DFSHDC40,1,5,200)
* Base segment
SEGM NAME=segname1,PARENT=0,BYTES=seglen1
* XML intact field, which contains a 4-byte header
FIELD NAME=INTDATA,BYTES=length,START=startpos,TYPE=C
*
LCHILD NAME=(issegname1,isdbd1),POINTER=INDX
XDFLD NAME=issrch1,SRCH=iskey1,SEGMENT=ssegname1
LCHILD NAME=(issegname2,isdbd2),POINTER=INDX
XDFLD NAME=issrch2,SRCH=iskey2,SEGMENT=ssegname2
* Overflow segment
SEGM NAME=segname2,PARENT=segname1,BYTES=seglen2
FIELD NAME=(SEQNO,SEQ,U),BYTES=2,START=1,TYPE=C
* XML intact field, which contains a 2-byte header for length
FIELD NAME=INTDATA,BYTES=1,START=3,TYPE=C
*
* Index side segment 1
SEGM NAME=ssegname1,PARENT=segname1,BYTES=iseglen1
FIELD NAME=(iskey1,SEQ,U),BYTES=islen1,START=1,TYPE=C
*
* Index side segment 2
SEGM NAME=ssegname2,PARENT=segname1,BYTES=iseglen2
FIELD NAME=(iskey2,SEQ,U),BYTES=islen2,START=1,TYPE=C
*
DBDGEN
FINISH
END

The following example DBD statement defines the first secondary index for the
database defined by Figure 218.

DBD NAME=isdbd1,ACCESS=(PSINDEX,VSAM)

SEGM NAME=issegname1,PARENT=0,BYTES=iseglen
FIELD NAME=(isfld1,SEQ,U),BYTES=islen1,START=1,TYPE=C
LCHILD NAME=(ssegname1,dbdname),INDEX=issrch1
DBDGEN
FINISH
END

The following example DBD statement defines the second secondary index for the
database defined by Figure 218.

Figure 218. DBD statement for intact XML storage and two secondary indexes

Figure 219. First secondary index DBD statement for intact XML storage

Chapter 19. XML storage in IMS databases 413

DBD NAME=isdbd2,ACCESS=(PSINDEX,VSAM)

SEGM NAME=issegname2,PARENT=0,BYTES=iseglen
FIELD NAME=(isfld2,SEQ,U),BYTES=islen2,START=1,TYPE=C
LCHILD NAME=(ssegname2,dbdname),INDEX=issrch2
DBDGEN
FINISH
END

Side segments for secondary indexing
IMS cannot search intact XML documents for specific elements within the
document. However, if you are using the IMS classic JDBC driver, you can create a
side segment that contains specific XML element data.

Restriction: The IMS Universal JDBC driver does not support side segments.

When IMS stores an XML document intact, you can decompose a specific piece of
the XML document into a standard IMS segment. This segment can then be
searched by using a secondary index.

The following figure shows a base segment, an overflow segment, and the side
segment for secondary indexing.

Related concepts:
“DBDs for intact XML storage” on page 411

Generating an XML schema
IMS Version 12 is the last release to support the IMS XML DB feature, which
provides for storage and retrieval of XML documents in IMS databases by using
Java application programs. Support for IMS XML DB in IMS Version 13 ends when
IMS Version 12 goes out of service. To retrieve or store XML in IMS, an XML
schema is required. The generated XML schema is an XML document that
describes an IMS database based on a PCB.

Figure 220. Second secondary index DBD statement for intact XML storage

Figure 221. Intact storage of XML with a secondary index

414 Database Administration

IMS uses the XML schema to validate an XML document that is either being stored
in IMS or being retrieved from IMS. The XML schema, not the application
program, determines the structural layout of the XML in the database. The
DLIDatabaseView subclass determines how the data is physically stored in the
database.

At run time, the generated XML schema provides the XML structure of the data
retrieved from the database, or of an incoming XML document being stored in
IMS.

To generate an XML schema:
1. Use the IMS Enterprise Suite DLIModel utility plug-in to generate a schema

based on a PCB.
2. Ensure that the generated XML schema is available at runtime. By default, a

schema is loaded from the HFS root directory based on the PSB and PCB
names. You can override the default location, which is the root file system, by
defining the environment variable http://www.ibm.com/ims/schema-resolver/
file/path with the value of the XML schema locations. For example, if the
XML schemas are in the directory /u/schemas, define an environment variable
to the SDK as follows:
-Dhttp://www.ibm.com/ims/schema-resolver/file/path=/u/schema/

You can also specify the XML schema in the application program by setting the
system property. For example:
System.setProperty("http://www.ibm.com/ims/schema-resolver/file/path", "/u/schema");

XML to JDBC data type mapping
IMS has no inherent type information and stores all of its segments as a simple
array of bytes. Therefore, all application programs that access an IMS segment
must use the same data type mappings for the data stored in that segment.

Specifically, the application programs must agree on three pieces of information:
v A list of fields that are represented within each segment
v What data type each field stores
v How each data type is represented as bytes, including field redefinitions

For IMS to correctly produce XML documents from the database and to breakdown
and store XML documents in the database, it also needs to satisfy these conditions.

In addition to the type of the field, each XML schema document lists every field as
one of the allowed 42 XML types. This information instructs any user of a valid
XML document on how to interpret the information within it, and informs IMS as
to how to generate an outgoing, or decompose an incoming, XML document. XML
documents are validated according to the generated XML schema, and the Java
metadata for IMS is used to determine how to extract element and attribute values
to populate fields and segments.

The following table describes the XML schema data types that are supported by
the IMS JDBC Connectors.

Table 67. XML schema data types supported by IMS JDBC Connectors

JDBC data type XML schema data type

BIGINT xsd:long

Chapter 19. XML storage in IMS databases 415

Table 67. XML schema data types supported by IMS JDBC Connectors (continued)

JDBC data type XML schema data type

BINARY xsd:hexBinary

BIT xsd:boolean

CHAR xsd:string

DATE xsd:gYear (for yyyy-MM) xsd:date (for yyyy)
xsd:gYearMonth (for yyyy-MM-dd)

DOUBLE xsd:double

FLOAT xsd:float

INTEGER xsd:int

PACKEDDECIMAL xsd:decimal

SMALLINT xsd:short

TIME xsd:time

TIMESTAMP xsd:dateTime

TINYINT xsd:byte

VARCHAR xsd:string

ZONEDECIMAL xsd:decimal

JDBC interface for storing and retrieving XML
A Java application program can store XML in IMS and retrieve XML from IMS by
using the IMS Universal JDBC driver with type-4 connectivity.

The Java application program can be running in any of the following
environments:
v IMS dependent region (JMP or JBP)
v WebSphere Application Server for z/OS
v WebSphere Application Server on a non-z/OS platform
v Db2 for z/OS stored procedure
v CICS JCICS region

The IMS classic JDBC driver also supports storage and retrieval of XML.

For more information about the JDBC drivers provided by IMS, see IMS Version 13
Application Programming APIs.

416 Database Administration

Part 4. Database design and implementation

This section discusses the design and implementation of IMS databases, including
analyzing your data requirements, planning, designing, and implementing each
database type.

© Copyright IBM Corp. 1974, 2016 417

418 Database Administration

Chapter 20. Analyzing data requirements

One of the early steps of database design is developing a conceptual data structure
that satisfies your end user's processing requirements.

So, before you can develop a conceptual data structure, familiarize yourself with
your end user's processing and data requirements.

Developing a data structure is a process of combining the data requirements of
each of the tasks to be performed, into one or more data structures that satisfy
those requirements. The method explained here describes how to use the local
views developed for each business process to develop a data structure.

A business process, in an application, is one of the tasks your end user needs done.
For example, in an education application, printing a class roster is a business
process.

A local view describes a conceptual data structure and the relationships between
the pieces of data in the structure for one business process.

To understand the method explained in this topic, you need to be familiar with the
terminology and examples explained in the introductory information on
application design in IMS Version 13 Application Programming, which explains how
to develop local views for the business processes in an application.
Related concepts:
“Design review 3” on page 31
“Design review 4” on page 31

Local view of a business process
Designing a structure that satisfies the data requirements of the business processes
in an application requires an understanding of the requirements for each of those
business processes.

A local view of the business process describes these requirements because the local
view provides:
v A list of all the data elements the process requires and their controlling keys
v The conceptual data structure developed for each process, showing how the data

elements are grouped into data aggregates
v The mappings between the data aggregates in each process

This topic uses a company that provides technical education to its customers as an
example. The education company has one headquarters, called HQ, and several
local education centers, called Ed Centers. HQ develops the courses offered at each
of the Ed Centers. Each Ed Center is responsible for scheduling classes it will offer
and for enrolling students for those classes.

A class is a single offering of a course on a specific date at an Ed Center. There
might be several offerings of one course at different Ed Centers, and each of these
offerings is a separate class.

© Copyright IBM Corp. 1974, 2016 419

The local views used in this topic are for the following business processes in an
education application:

Current Roster
Schedule of Classes
Instructor Skills Report
Instructor Schedules

Notes for local views:
v The asterisks (*) in the data structures for each of the local views indicate the

data elements that identify the data aggregate. This is the data aggregate's key;
some data aggregates require more than one data element to uniquely identify
them.

v The mappings between the data aggregates in each process are given in
mapping notation. A one-to-many mapping means for each A aggregate there
are one or more B aggregates; shown like this: ◄────────►►
A many-to-many relationship means that for each A aggregate there are many B
aggregates, and for each B aggregate, there are many A aggregates; shown as
follows: ◄◄────────►►

Local view 1: current roster

This topic describes the elements, the data structure, the data aggregates, and the
mapping of the relationships between the data aggregates used to satisfy the data
requirements of the Current Roster business process.

List of current roster data elements

The following is a list of the data elements and their descriptions for our technical
education provider example.

Data element
Description

CRSNAME
Course name

CRSCODE
Course code

LENGTH
Length of class

EDCNTR
Ed Center offering class

DATE Date class is offered

CUST Customer that sent student

LOCTN
Location of customer

STUSEQ#
Student's sequence number

STUNAME
Student's name

STATUS
Student's enrollment status

420 Database Administration

ABSENCE
Student's absences

GRADE
Student's grade for class

INSTRS
Instructors for class

The following figure shows the conceptual data structure for the current roster.

Current roster mappings

The mappings for the current roster are:
Course ◄────────►► Class
Class ◄────────►► Student
Class ◄────────►► Instructor
Customer/location◄────────►► Student

Local view 2: schedule of classes

This topic describes the elements, the data structure, the data aggregates, and the
mapping of the relationships between the data aggregates used to satisfy the data
requirements of the Schedule of Classes business process.

List of schedule of classes data elements

Figure 222. Current roster conceptual data structure

Chapter 20. Analyzing data requirements 421

The following is a list of the schedule of classes and their descriptions for our
example.

Data element
Description

CRSCODE
Course code

CRSNAME
Course name

LENGTH
Length of course

PRICE
Price of course

EDCNTR
Ed Center where class is offered

DATE Dates when class is offered at a particular Ed Center

The following figure shows the conceptual data structure for the class schedule.

Schedule of classes mappings

The only mapping for this local view is:
Course ◄────────►► Class

Local view 3: instructor skills report

This topic describes the elements, the data structure, the data aggregates, and the
mapping of the relationships between the data aggregates used to satisfy the data
requirements of the Instructor Skills Report business process.

List of instructor skills report data elements

*CRSCODE

CRSNAME

LENGTH

PRICE

*EDCNTR

*DATE

Class aggregate

Course aggregate

Figure 223. Schedule of classes conceptual data structure

422 Database Administration

The following is a list of the instructor skills report data elements and their
descriptions for our technical education provider example.

Data element
Description

INSTR
Instructor

CRSCODE
Course code

CRSNAME
Course name

The following figure shows the conceptual data structure for the instructor skills
report.

Instructor skills report mappings

The only mapping for this local view is:
Instructor ◄────────►► Course

Local view 4: instructor schedules

This topic describes the elements, the data structure, the data aggregates, and the
mapping of the relationships between the data aggregates used to satisfy the data
requirements of the Instructor Schedules business process.

List of instructor schedules data elements

The following is a list of the instructor schedules data elements and their
descriptions for our example.

Data element
Description

INSTR
Instructor

CRSNAME
Course name

*CRSCODE

CRSNAME

*INSTR

Instructor aggregate

Course aggregate

Figure 224. Instructor skills report conceptual data structure

Chapter 20. Analyzing data requirements 423

CRSCODE
Course code

EDCNTR
Ed Center

DATE Date when class is offered

The following figure shows the conceptual data structure for the instructor
schedules.

Instructor schedules mappings

The mappings for this local view are:
Instructor ◄────────►► Course
Course ◄────────►► Class

Related concepts:

Designing an application: Data and local views (Application Programming)

Designing a conceptual data structure
Analyzing the mappings from all the local views is one of the first steps in
designing a conceptual data structure.

Two kinds of mappings affect the segments: one-to-many and many-to-many.

A one-to-many mapping means that for each segment A there are one or more
segment Bs; shown like this: A ◄────────►► B. For example, in the Current Roster
shown in “Local view of a business process” on page 419, there is a one-to-many
relationship between course and class. For each course, there can be several classes
scheduled, but a class is associated with only one course. A one-to-many
relationship can be represented as a dependent relationship: In the course/class
example, the classes are dependent on a particular course.

*CRSCODE

CRSNAME

*EDCNTR

*DATE

*INSTR

Instructor aggregate

Class aggregate

Course aggregate

Figure 225. Instructor schedules conceptual data structure

424 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_appdesigndatalocalview.htm#ims_appdesigndatalocalview

A many-to-many mapping means that for each segment A there are many segment
Bs, and for each segment B there are many segment As. This is shown like this: A
◄◄────────►► B. A many-to-many relationship is not a dependent relationship,
since it usually occurs between data aggregates in two separate data structures and
indicates a conflict in the way two business processes need to process that data.

When you implement a data structure with DL/I, there are three strategies you can
apply to solve data conflicts:

Defining logical relationships
Establishing secondary indexes
Storing the data in two places (also known as carrying duplicate data).

The first step in designing a conceptual data structure is to combine the mappings
of all the local views. To do this, go through the mappings for each local view and
make a consolidated list of mappings (see the following table). As you review the
mappings:
v Do not record duplicate mappings. At this stage you need to cover each

variation, not each occurrence.
v If two data aggregates in different local views have opposite mappings, use the

more complex mapping. This will include both mappings when they are
combined. For example, if local view #1 has the mapping A ◄────────►► B, and
local view #2 has the mapping A ◄◄────────► B, use a mapping that includes
both these mappings. In this case, this is A ◄◄────────►► B.

Table 68. Combined mappings for local views

Mapping Local view

Course ◄────────►► Class 1, 2, 4

Class ◄────────►► Student 1

Class ◄────────►► Instructor 1

Customer/location ◄────────►► Student 1

Instructor ◄────────►► Course 3, 4

Using the combined mappings, you can construct the data structures shown in the
following figure.

Figure 226. Education data structures

Chapter 20. Analyzing data requirements 425

Two conflicts exist in these data structures. First, STUDENT is dependent on both
CUST and CLASS. Second, there is an opposite mapping between COURSE and
INSTR, and INSTR and COURSE. If you implemented these structures with DL/I,
you could use logical relationships to resolve the conflicts.
Related tasks:
“Analyzing requirements for logical relationships” on page 427
“Resolving data conflicts”

Implementing a data structure with DL/I
When you implement a data structure with DL/I, you implement it as a hierarchy.
A hierarchy is made up of segments.

In a hierarchy, a one-to-many relationship is called a parent/child relationship. In a
hierarchy, each segment can have one or more children, but it can have only one
parent.

When you use DL/I, consider how each of the data elements in the structure you
developed should be grouped into segments. Also, consider how DL/I can solve
any existing data conflicts in the structure.

Assigning data elements to segments
After you determine how data elements are related in a hierarchy, associate each of
the data elements with a segment.

To do this, construct a list of all the keys and their associated data elements. If a
key and its associated data element appear in several local views, only record the
association once.

List the data elements next to their keys, as shown in the following table. The key
and its associated data elements become the segment content.

Table 69. Keys and associated data elements

Data aggregate Key Data elements

COURSE CRSCODE CRSNAME, LENGTH, PRICE

CUSTOMER/LOCATION CUST, LOCTN

CLASS EDCNTR, DATE

STUDENT STUSEQ# STUNAME, ABSENCE, STATUS,
GRADE

INSTRUCTOR INSTR

If a data element is associated with different keys in different local views, then you
must decide which segment will contain the data element. The other thing you can
do is to store duplicate data. To avoid doing this, store the data element with the
key that is highest in the hierarchy. For example, if the keys ALPHA and BETA
were both associated with the data element XYZ (one in local view 1 and one in
local view 2), and ALPHA were higher in the hierarchy, store XYZ with ALPHA to
avoid having to repeat it.

Resolving data conflicts
The data structure you design can fall short of the application's processing
requirements.

426 Database Administration

For example, one business process might need to retrieve a particular segment by a
field other than the one you have chosen as the key field. Another business process
might need to associate segments from two or more different data structures. Once
you have identified these kinds of conflicts in a data structure and are using DL/I,
you can look at two DL/I options that can help you resolve the conflicts:
secondary indexing and logical relationships.
Related tasks:
“Designing a conceptual data structure” on page 424

Analyzing requirements for secondary indexes
Secondary indexing allows a segment to be identified by a field other than its key
field.

Suppose that you are part of our technical education company and need to
determine (from a terminal) whether a particular student is enrolled in a class. If
you are unsure about the student's enrollment status, you probably do not know
the student's sequence number. The key of the STUDENT segment, however, is
STUSEQ#. Let's say you issue a request for a STUDENT segment, and identify the
segment you need by the student's name (STUNAME). Instead of the student's
sequence number (STUSEQ#), IMS searches through all STUDENT segments to
find that one. Assuming the STUDENT segments are stored in order of student
sequence numbers, IMS has no way of knowing where the STUDENT segment is
just by having the STUNAME.

Using a secondary index in this example is like making STUNAME the key field of
the STUDENT segment for this business process. Other business processes can still
process this segment with STUSEQ# as the key.

To do this, you can index the STUDENT segment on STUNAME in the secondary
index. You can index any field in a segment. When you index a field, indicating to
IMS that you are using a secondary index for that segment, IMS processes the
segment as though the indexed field were the key.

Analyzing requirements for logical relationships
When a business process needs to associate segments from different hierarchies,
logical relationships can make that possible.

Defining logical relationships lets you create a hierarchical structure that does not
exist in storage but can be processed as though it does. You can relate segments in
separate hierarchies. The data structure created from these logical relationships is
called a logical structure. To relate segments in separate hierarchies, store the
segment in the path by which it is accessed most frequently. Store a pointer to the
segment in the path where it is accessed less frequently.

In the hierarchy shown in the figure in “Designing a conceptual data structure” on
page 424, two possible parents exist for the STUDENT segment. If the CUST
segment is part of an existing database, you can define a logical relationship
between the CUST segment and the STUDENT segment. You would then have the
hierarchies shown in the following figure. The CUST/STUDENT hierarchy would
be a logical structure.

Chapter 20. Analyzing data requirements 427

This kind of logical relationship is called unidirectional, because the relationship is
“one way.”

The other conflict you can see in the figure in “Designing a conceptual data
structure” on page 424, is the one between COURSE and INSTR. For one course
there are several classes, and for one class there are several instructors (COURSE
◄─────►► CLASS ◄─────►► INSTR), but each instructor can teach several courses
(INSTR ◄─────►► COURSE). You can resolve this conflict by using a bidirectional
logical relationship. You can store the INSTR segment in a separate hierarchy, and
store a pointer to it in the INSTR segment in the course hierarchy. You can also
store the COURSE segment in the course hierarchy, and store a pointer to it in the
COURSE segment in the INSTR hierarchy. This bidirectional logical relationship
would give you the two hierarchies shown in the following figure, eliminating the
need to carry duplicate data.

Related tasks:
“Designing a conceptual data structure” on page 424

COURSE

CLASS

STUDENT INSTRSTUDENT

CUST

Customer
hierarchy

Course
hierarchy

Figure 227. Education hierarchies

COURSE

CLASS COURSE

INSTRSTUDENT

INSTR

Course hierarchy Instructor hierarchy

Figure 228. Bidirectional logical relationships

428 Database Administration

Chapter 21. Designing full-function databases

After you determine the type of database and optional functions that best suit your
application's processing requirements, you need to make a series of decisions about
database design and use of options.

This set of decisions primarily determines how well your database performs and
how well it uses available space. This series of decisions is made based on:
v The type of database and optional functions you have already chosen
v The performance requirements of your applications
v How much storage you have available for use online
Related concepts:
“Design review 3” on page 31
Related tasks:
“Adjusting HDAM and PHDAM options” on page 673

Specifying free space (HDAM, PHDAM, HIDAM, and PHIDAM only)
Dependent segments inserted after an HD database is loaded are put as close as
possible to the segments to which they are related.

However, as the database grows and available space decreases, dependent
segments are increasingly put further from their related segments. When this
happens, performance decreases, a problem that can only be eliminated by
reorganizing the database. (When segments are close to the segments that point to
them, the I/O time needed to retrieve a dependent segment is shorter. The I/O
time is shorter because the seek time and rotational delay time are shorter.)

To minimize the effect of insert operations after the database is loaded, allocate free
space in the database when it is initially loaded. Free space allocation in the
database will reduce the performance impact caused by insert operations, and
therefore, decrease the frequency with which HD databases must be reorganized.

For OSAM data sets and VSAM ESDS, free space is specified in the FRSPC=
keyword of the DATASET statement in the DBD. In the keyword, one or both of
the following operands can be specified:
v Free block frequency factor (fbff). The fbff specifies that every nth block or CI in

a data set group be left as free space when the database is loaded (where
fbff=n). The range of fbff includes all integer values from 0 to 100, except 1.
Avoid specifying fbff for HDAM or PHDAM databases. If you specify fbff for
HDAM or PHDAM databases and if at load time the randomizing module
generates the relative block or CI number of a block or CI marked as free space,
the randomizer must store the root segment in another block.
If you specify fbff, every nth block or CI will be considered a second-most
desirable block or CI by the HD Space Search Algorithm. This is true unless you
specify SEARCHA=1 in the DATASET statement of the DBDGEN utility. By
specifying SEARCHA=1, you are telling IMS not to search for space in the
second-most desirable block or CI.

© Copyright IBM Corp. 1974, 2016 429

v Free space percentage factor (fspf). The fspf specifies the minimum percentage of
each block or CI in a data set group to be left as free space when the database is
loaded. The range of fspf is from 0 to 99.

Note: This free space applies to VSAM ESDS and OSAM data sets. It does not
apply to HIDAM or PHIDAM index databases or to DEDBs.

For VSAM KSDS, free space is specified in the FREESPACE parameter of the
DEFINE CLUSTER command. This VSAM parameter is disregarded for a VSAM ESDS
data set used for HIDAM, PHIDAM, HDAM, or PHDAM. This command is
explained in detail in z/OS DFSMS Access Method Services for Catalogs.
Related concepts:
Chapter 31, “Converting database types,” on page 797
“How the HD space search algorithm works” on page 163
Related tasks:
“Ensuring a well-organized database” on page 672
“Step 4. Determine the number of blocks or CIs needed for free space” on page 536

Related reference:

DATASET statements (System Utilities)

Estimating the size of the root addressable area (HDAM or PHDAM
only)

To estimate the size of the root addressable area, you can use a simple formula.

You can use the following formula to estimate the size of the root addressable area:
(A x B) / C = D

where:

A = the number of bytes of a database record to be stored in the root
addressable area

B = the expected number of database records

C = the number of bytes available for data in each CI or block CI or block size,
minus overhead)

D = the size you will need, in blocks or CIs, for the root addressable area.

If you have specified free space for the database, include it in your calculations for
determining the size of the root addressable area. Use the following formula to
accomplish this step:
(D x E x G) / F = H

where:

D = the size you calculated in the first formula (the necessary size of the root
addressable area in block or CIs)

E = how often you are leaving a block or CI in the database empty for free
space (what you specified in the fbff operand in the DBD)

F = (E-1) (fbff-1)

430 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_datastmt.htm#ims_datastmt

G = 100 100 - fspf The fspf is the minimum percentage of each block or
CI you are leaving as free space (what you specified in the fspf operand in
the DBD)

H = the total size you will need, in blocks or CIs

Specify the number of blocks or CIs you need in the root addressable area in the
RMNAME=rbn keyword in the DBD statement in the DBD.

Determining which randomizing module to use (HDAM and PHDAM
only)

A randomizing module is required to store and access HDAM or PHDAM
database records.

The randomizing module converts the key of a root segment to a relative block
number and RAP number. These numbers are then used to store or access HDAM
or PHDAM root segments. An HDAM database or a PHDAM partition uses only
one randomizing module, but several databases and partitions can share the same
module. Four randomizing modules are supplied with IMS.

Normally, one of the four randomizing modules supplied with the system will
work for your database.

Partition selection is completed prior to invoking the randomizing module on
PHDAM databases. The randomizing module selects locations only within a
partition.

Write your own randomizing module

If, given your root key distribution, none of these randomizing modules works
well for you, write your own randomizing module. If you write your own
randomizing module, one of your goals is to have it distribute root segments so
that, when subsequently accessing them, only one read and one seek operation is
required. When a root key is given to the randomizing module, if the relative block
number the randomizer produces is the block actually containing the root, only
one read and seek operation is required (access is fast). The randomizing module
you write should allow you to vary the number of blocks and RAPs you specify,
so blocks and RAPs can be used for tuning the system. The randomizing module
should also distribute roots randomly, not randomize to bitmap locations, and keep
packing density high.

Assess the effectiveness of the randomizing module

One way to determine the effectiveness of a given randomizing module for your
database is to run the IMS High Performance Pointer Checker (HD Tuning Aid).
This tool produces a report in the form of a map showing how root segments are
stored in the database. It shows you root segment storage based on the number of
blocks or CIs you specified for the root addressable area and the number of RAPs
you specified for each block or CI. By running the HD Tuning Aid against the
various randomizing modules, you can see which module gives you the best
distribution of root keys in your database. In addition, by changing the number of
RAPs and blocks or CIs you specify, you can see (given a specific randomizing
module) which combination of RAPs and blocks or CIs produces the best root
segment distribution.
Related concepts:

Chapter 21. Designing full-function databases 431

Chapter 31, “Converting database types,” on page 797
“Choosing HDAM or PHDAM options”
Related tasks:
“Ensuring a well-organized database” on page 672
“Adjusting HDAM and PHDAM options” on page 673
Related reference:

HDAM and PHDAM randomizing routines (DFSHDC40) (Exit Routines)

Choosing HDAM or PHDAM options
In an HDAM or a PHDAM database, the options that you choose can greatly affect
performance.

The options discussed here are those you specify in the RMNAME keyword in the
DBD statement or when using the HALDB Partition Definition utility. The
following figure shows the format for specifying the RMNAME parameter. The
definition list that follows explains the meaning of mod, anch, rbn, and bytes.
RMNAME=(mod,anch,rbn,bytes)

mod Name of the randomizing module you have chosen

anch Number of RAPs in a block or CI

rbn Number of blocks or CIs in the root addressable area

bytes Maximum number of bytes of a database record to be put in the root
addressable area when segments in the database records are inserted
consecutively (without intervening processing operations)

Minimizing I/O operations

In choosing these HDAM or PHDAM options, your primary goal is to minimize
the number of I/O operations it takes to access a database record or segment. The
fewer I/O operations, the faster the access time. Performance is best when:
v The number of RAPs in a block or CI is equal to the number of roots in the

block or CI (block or CI space is not wasted on unused RAPs).
v Unique block and RAP numbers are generated for most root segments (thereby

eliminating long synonym chains).
v Root segments are stored in key sequence.
v All frequently used dependent segments are in the root addressable area (access

to the root addressable area is faster than access to the overflow area) and in the
same block or CI as the root.

Your choice of a randomizing module determines how many addresses are unique
for each root and whether roots are stored in key sequence. In general, a
randomizing module is considered efficient if roots are distributed evenly in the
root addressable area. You can experiment with different randomizing modules.
Try various combinations of the anch, rbn, and bytes operands to see what effect
they have on distribution of root segments.

Maximizing packing density

A secondary goal in choosing HDAM or PHDAM options is to maximize packing
density without adversely affecting performance. Packing density is the percentage

432 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_dfshdc40.htm#ims_dfshdc40

of space in the root addressable area being used for root segments and the
dependent segments associated with them. Packing density is determined as
follows:
Packing density =
(Number of roots x root bytes) /
(Number of CIs in the root addressable area x Usable space in the CI)

root bytes
The average number of bytes in each root in the root addressable area.

Usable space in the CI
The CI or block size minus (as applicable) space for the FSEAP, RAPs,
VSAM CIDF, VSAM RDF, and free space.

Packing density should be high, but, as the percentage of packing density
increases, the number of dependent segments put into overflow storage can
increase. In addition, performance for processing of dependent segments decreases
when they are in overflow storage. All of the operands you can specify in the
RMNAME= keyword affect packing density. So, to optimize packing density, try
different randomizing modules and various combinations of the anch, rbn, and
bytes operands.
Related concepts:
Chapter 31, “Converting database types,” on page 797
“Determining which randomizing module to use (HDAM and PHDAM only)” on
page 431
Related tasks:
“Adjusting HDAM and PHDAM options” on page 673

Choosing a logical record length for a HISAM database
In a HISAM database, your choice of a logical record length is important because it
can affect both the access time and the use of space in the database.

The relative importance of each depends on your individual situation. To get the
best possible performance and an optimum balance between access time and the
use of space, plot several trial logical record lengths and test them before making a
final choice.

Logical record length considerations

The following should be considered:
v Only complete segments can be stored in a logical record. Therefore, the space

between the last segment that fit in the logical record and the end of the logical
record is unused.

v Each database record starts at the beginning of a logical record. The space
between the end of the database record and the end of the last logical record
containing it is unused. This unused space is relative to the average size of your
database records.

v Very short or very long logical records tend to increase wasted space. If logical
records are short, the number of areas of unused space increases. If logical
records are long, the size of areas of unused space increases. The following
figure shows why short or long logical records increase wasted space.

Choose a logical record length that minimizes the amount of unused space at the
end of logical records.

Chapter 21. Designing full-function databases 433

The database record shown in the following figure is stored on three short logical
records in Figure 230 and in two longer logical records in Figure 231. Note the
three areas of unused space.

In the following figure, note the three areas of unused space. In Figure 231, there
are only two areas of unused space, rather than three, but the total size of the areas
is larger.

Segments in a database record that do not fit in the logical record in the primary
data set are put in one or more logical records in the overflow data set. More read
and seek operations, and therefore longer access time, are required to access logical
records in the overflow data set than in the primary data set. This is especially true
as the database grows in size and chains of overflow records develop. Therefore,
you should try to put the most-used segments in your database record in the
primary data set. When choosing a logical record length the primary data set
should be as close to average database record length as possible. This results in a
minimum of overflow logical records and thereby minimizes performance
problems. When you calculate the average record length, beware of unusually long
or short records that can skew the results.

A read operation reads one CI into the buffer pool. CIs contain one or more logical
records in a database record. Because of this, it takes as many read and seek

Figure 229. Database record for logical record examples

Figure 230. Short logical records

Figure 231. Long logical records

434 Database Administration

operations to access an entire database record as it takes CIs to contain it. In
Figure 233, each CI contains two logical records, and two CIs are required to
contain the database record shown in the following figure. Consequently, it takes
two read operations to get these four logical records into the buffer.

The number of read and seek operations required to access a database record
increases as the size of the logical record decreases. The question to consider is: Do
you often need access to the entire database record? If so, you should try to choose
a logical record size that will usually contain an entire database record. If,
however, you typically access only one or a few segments in a database record,
choice of a logical record size large enough to contain the average database record
is not as important.

Consider what will happen in the following setup example in which you need to
read database records, one after another:
v Your CI or block size is 2048 bytes.

Figure 232. Database record for logical records example

Figure 233. Logical records example with two read operations

Chapter 21. Designing full-function databases 435

v Your Logical record size is 512 bytes.
v Your Average database record size is 500 bytes.
v The range of your database record sizes is 300 to 700 bytes.

Because your logical and average database record sizes are about equal (512 and
500), approximately one of every two database records will be read into the buffer
pool with one read operation. (This assumption is based on the average size of
database records.) If, however, your logical record size were 650, you would access
most database records with a single read operation. An obvious trade-off exists
here, one you must consider in picking a logical record length for HISAM data
sets. If your logical record size were 650, much unused space would exist between
the end of an average database record and the last logical record containing it.

Rules to observe

The following rules must be observed when choosing a logical record length for
HISAM data sets:
v Logical record size in the primary data set must be at least equal to the size of

the root segment, plus its prefix, plus overhead. If variable-length segments are
used, logical record size must be at least equal to the size of the longest root
segment, plus its prefix, plus overhead. Five bytes of overhead is required for
VSAM.

v Logical record size in the overflow data set must be at least equal to the size of
the longest segment in the overflow data set, plus its prefix, plus overhead. Five
bytes of overhead is required for VSAM.

v Logical record lengths in the overflow data set must be equal to or greater than
logical record length in the primary data set.

v The maximum logical record size is 30720 bytes.
v Except for SHISAM databases, logical record lengths must be an even number.

Calculating how many logical records are needed to hold a
database record

Calculate the average size of a database record before plotting various logical
record sizes. By calculating the average size of a database record, given a specific
logical record size, you can see how many logical records it takes to hold a
database record (of average size).

Specifying logical record length

Specify the length of the logical records on the RECORD= parameter in the
DATASET statement of the DBD Generation utility.
Related tasks:
“Estimating the minimum size of the database” on page 529
Related reference:

DATASET statements (System Utilities)

Choosing a logical record length for HD databases
In HD databases, the important choice is not logical record length but CI or block
size.

436 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_datastmt.htm#ims_datastmt

Logical record length is the same as block size when VSAM is used. Logical record
size is equal to CI size, minus 7 bytes of overhead (4 bytes for a CIDF, 3 bytes for
an RDF).

As with HISAM databases, specify the length of the logical records in the
RECORD= operand of the DATASET statement in the DBD.
Related concepts:
“Determining the size of CIs and blocks”
Chapter 31, “Converting database types,” on page 797

Determining the size of CIs and blocks
You can specify the CI size for your database. The DBDGEN utility calculates the
CI size for you, and you must use this size in your DEFINE CLUSTER command
when you use IDCAMS to create the data set.

Based on CI size, VSAM determines the size of physical blocks on a DASD track.
VSAM always uses the largest possible physical block size, because the largest
block size best utilizes space on the track. So your choice of a CI size is an
important one. Your goal in picking it is to keep a high percentage of space on the
track for your data, rather than for device overhead.

Track sizes vary from one device to another, and many different CI sizes you can
specify exist. Because you can specify different CI sizes, the physical block size that
VSAM picks varies and is based on device overhead factors. For information about
using VSAM data sets, refer to z/OS DFSMS Access Method Services for Catalogs.
Related concepts:
Chapter 31, “Converting database types,” on page 797
Related tasks:
“Changing direct-access storage devices” on page 671
“Choosing a logical record length for HD databases” on page 436

Recommendations for specifying sizes for blocks, CIs, and records
The following recommendations can ensure that your databases are using
appropriate block, CI, and record sizes.
v In general, large CI sizes are good for sequential processing, but not for random

processing. For indexes and HISAM databases in which sequential processing is
most important, CI sizes of at least 8 K are typically best.

v For INDEX databases, such as secondary indexes and HIDAM primary indexes,
do not specify the RECORD parameter on the DATASET statement. IMS
calculates the appropriate CI sizes automatically.

v For KSDS data sets used by PSINDEX, INDEX, PHIDAM, HIDAM, and HISAM
databases, to determine the values for the RECORDSIZE parameter in the
IDCAMS DEFINE statements, use the output listing from the DBDGEN process.

v For the data component of KSDS data sets, specify a CI size on the IDCAMS
DEFINE statement. The CI size for the data component determines the number
of logical records stored in the CI. For the index component of KSDS data sets,
do not specify a CI size. By default, DFSMS automatically selects the optimum
CI size for the index component of KSDS data sets.

v For the CI size of VSAM ESDS and KSDS data sets, specify the value of the SIZE
parameter on the DATASET statement by using the value that is specified on the
RECORDSIZE parameter of the IDCAMS DEFINE statement. The CI size for

Chapter 21. Designing full-function databases 437

VSAM ESDS and KSDS data sets is determined by the IDCAMS RECORDSIZE
parameter and not the DBDGEN SIZE parameter. Using the same value for each
parameter can help avoid confusion about which value is in effect.

v For HDAM and HIDAM OSAM data sets, specify the SIZE parameter, but not
the BLOCK parameter in the DATASET statement.

v For HISAM databases, unless your record sizes vary, specify a value for the
RECORD parameter of the DATASET statement large enough to accommodate
the largest record size. If your HISAM database record sizes vary, to avoid
wasting space, you can specify a RECORD size large enough to hold the
majority of database records and specify a record size for the overflow data set
that is large enough to hold the largest record size.

v For OSAM block sizes and VSAM ESDS CI sizes, the block and CI sizes should
be large enough to hold entire database records. When database record sizes are
very large or vary greatly in size, make the block or CI size large enough to hold
the most frequently accessed segments in the database records.

v On SEGM statements, do not specify the FREQ parameter.

Number of open full-function database data sets
IMS does not enforce a limit on the number of full-function database data sets that
can be open at the same time by multiple databases. However, the resources
available at your installation and the consumption of those resources by both your
IMS configuration and the other z/OS subsystems that your installation might be
running, such as Db2 for z/OS, could potentially limit the number of data sets that
you can open.

For full-function databases, one of the resources that could become constrained
with a large number of open data sets is the private storage of the DL/I separate
address space (DLISAS), which requires storage both above and below the 16 MB
line.

Buffering options
Database buffers are defined areas in virtual storage. When an application program
processes a segment in the database, the entire block or CI containing the segment
is read from the database into a buffer. The application program processes the
segment while it is in the buffer.

If the processing involves modifying any segments in the buffer, the contents of the
buffer must eventually be written back to the database so the database is current.

You need to choose the size and number of buffers that give you the maximum
performance benefit. If your database uses OSAM, you might also decide to use
OSAM sequential buffering. The subtopics in this topic can help you with these
decisions.
Related tasks:
“Requesting SB with SB control statements” on page 448

Multiple buffers in virtual storage
You can specify both the number of buffers needed in virtual storage and their
size. You can specify multiple buffers with different sizes.

Because a complete block or CI is read into a buffer, the buffer must be at least as
large as the block or CI that is read into it. For best performance, use multiple

438 Database Administration

buffers in virtual storage. To understand why, you need to understand the concept
of buffers and how they are used in virtual storage.

When the data an application program needs is already in a buffer, the data can be
used immediately. The application program is not forced to wait for the data to be
read from the database to the buffer. Because the application program does not
wait, performance is better. By having multiple buffers in virtual storage and by
making a buffer large enough to contain all the segments of a CI or block, you
increase the chance that the data needed by application programs is already in
virtual storage. Thus, the reason for having multiple buffers in virtual storage is to
eliminate some of an application program's wait time.

In virtual storage, all buffers are put in a buffer pool. Separate buffer pools exist
for VSAM and OSAM. A buffer pool is divided into subpools. Each subpool is
defined with a subpool definition statement. Each subpool consists of a specified
number of buffers of the same size. With OSAM and VSAM you can specify
multiple subpools with buffers of the same size.

Subpool buffer use chain
In the subpool, buffers are chained together in the order in which they have been
used. This organization is called a use chain.

The most recently used buffers are at the top of the use chain and the least recently
used buffers are at the bottom.

The buffer handler
When a buffer is needed, an internal component called the buffer handler selects
the buffer at the bottom of the use chain, because buffers that are least recently
used are less likely to contain data an application program needs to use again.

If a selected buffer contains data an application program has modified, the
contents of the buffer are written back to the database before the buffer is used.
This causes the application program wait time discussed earlier.

Background write option
If you use VSAM, you can reduce or eliminate wait time by using the background
write option.

Otherwise, you control and reduce wait time by carefully choosing of the number
and size of buffers.
Related tasks:
“VSAM options” on page 451

Shared resource pools
You can define multiple VSAM local shared resource pools. Multiple local shared
resource pools allow you to specify multiple VSAM subpools of the same size.

You create multiple shared resource pools and then place in each one a VSAM
subpool that is the same size as other VSAM subpools in other local shared
resource pools. You can then assign a specific database data set to a specific
subpool by assigning the data set to a shared resource pool. The data set is
directed to a specific subpool within the assigned shared resource pool based on
the data set's control interval size.

Chapter 21. Designing full-function databases 439

Using separate subpools
If you have many VSAM data sets with similar or equal control interval sizes, you
might get a performance advantage by replacing a single large subpool with
separate subpools of identically sized buffers. Creating separate subpools of the
same size for VSAM data sets offers benefits similar to OSAM multiple subpool
support.

You can also create separate subpools for VSAM KSDS index and data components
within a VSAM local shared resource pool. Creating separate subpools can be
advantageous because index and data components do not need to share buffers or
compete for buffers in the same subpool.

Hiperspace buffering
Multiple VSAM local shared resource pools enhance the benefits provided by
Hiperspace™ buffering.

Hiperspace buffering allows you to extend the buffering of 4K and multiples of 4K
buffers to include buffers allocated in expanded storage in addition to the buffers
allocated in virtual storage. Using multiple local shared resource pools and
Hiperspace buffering allows data sets with certain reference patterns (for example,
a primary index data set) to be isolated to a subpool backed by Hiperspace, which
reduces the VSAM read I/O activity needed for database processing.

Hiperspace buffering is activated at IMS initialization. In batch systems, you place
the necessary control statements in the DFSVSAMP data set. In online systems, you
place the control statements in the IMS.PROCLIB data set with the member name
DFSVSMnn. Hiperspace buffering is specified for VSAM buffers through one or
two optional parameters applied to the VSRBF subpool definition statement.

The total space that you can allocate to a Hiperspace buffer pool is limited to 2 GB.
If the number of buffers multiplied by the buffer size exceeds 2 GB, IMS sets the
pool size at 2 GB and issues a warning message.
Related concepts:
“Hiperspace buffering parameters” on page 677

Buffer size
Pick buffer sizes that are equal to or larger than the size of the CIs and blocks that
are read into the buffer.

A variety of valid buffer sizes exist. If you pick buffers larger than your CI or
block sizes, virtual storage is wasted.

For example, suppose your CI size is 1536 bytes. The smallest valid buffer size that
can hold your CI is 2048 bytes. This wastes 512 bytes (2048 - 1536) and is not a
good choice of CI and buffer size.

Number of buffers
Pick an appropriate number of buffers of each size so buffers are available for use
when they are needed, an optimum amount of data is kept in virtual storage
during application program processing, and application program wait time is
minimized.

440 Database Administration

The trade-off in picking a number of buffers is that each buffer uses up virtual
storage.

When you initially choose buffer sizes and the number of buffers, you are making
a scientific guess based on what you know about the design of your database and
the processing requirements of your applications. After you choose and implement
buffer size and numbers, various monitoring tools are available to help you
determine how well your scientific guess worked.

Buffer size and number of buffers are specified when the system is initialized. Both
can be changed (tuned) for optimum performance at any time.
Related concepts:
Chapter 28, “Monitoring databases,” on page 609
Chapter 29, “Tuning databases,” on page 615
Chapter 31, “Converting database types,” on page 797

VSAM buffer sizes
The buffer sizes (in bytes) that you can choose when using VSAM as the access
method are.

512
1024
2048
4096
8192
12288
16384
20480
24576
28672
32768

In order not to waste buffer space, choose a buffer size that is the same as a valid
CI size. Valid CI sizes for VSAM data clusters are:
v For data components up to 8192 bytes (or 8K bytes), the CI size must be a

multiple of 512.
v For data components over 8192 bytes (or 8K bytes), the CI size must be a

multiple of 2048 (up to a maximum of 32768 bytes).

Valid CI sizes (in bytes) for VSAM index clusters using VSAM catalogs are:
512
1024
2048
4096

Valid CI sizes for VSAM index clusters using integrated catalog facility catalogs
are:
v For index components up to 8192 bytes (or 8K bytes), the CI size must be a

multiple of 512.
v For index components over 8192 bytes (or 8K bytes), the CI size must be a

multiple of 2048 (up to a maximum of 32768 bytes).

Chapter 21. Designing full-function databases 441

OSAM buffer sizes
For OSAM data sets, choose a buffer size that is the same as a valid block size so
that buffer space is not wasted. Valid block sizes for OSAM data sets are any size
from 18 to 32768 bytes.

The buffer sizes (in bytes) that you can choose when using OSAM as the access
method are:

512
1024
2048
Any multiple of 2048 up to a maximum of 32768

Restriction: When using sequential buffering and the coupling facility for OSAM
data caching, the OSAM database block size must be defined in multiples of 256
bytes (decimal). Failure to define the block size accordingly can result in
ABENDS0DB from the coupling facility. This condition exists even if the IMS
system is accessing the database in read-only mode.

Specifying buffers
Specify the number of buffers and their size when the system is initialized.

Your specifications, which are given to the system in the form of control
statements, are put in the:
v DFSVSAMP data set in batch, utility.
v IMS.PROCLIB data set with the member name DFSVSMnn in IMS DCCTL and

DBCTL environments.

The following example shows the necessary control statements specifications:
v Four 2048-byte buffers for OSAM
v Four 2048-byte buffers and fifteen 1024-byte buffers for VSAM

//DFSVSAMP DD *

...
VSRBF=2048,4
VSRBF=1024,15
IOBF=(2048,4)
/*

z/OS DFSMS calculates the optimum size for the CIs of the index component of
VSAM data sets. If DFSMS determines that the CI size needs to be increased,
DFSMS overrides the CI size specified in the IDCAMS DEFINE statement. If
DFSMS increases the size of the CI beyond the size specified for the associate
buffer pool, the database cannot open and IMS issues message DFS0730I with a
determination code of O,DC. In the event that the CI size is increased beyond the
buffer pool size, you must increase the buffer pool size to match the CI size.

OSAM buffers can be fixed in storage using the IOBF= parameter. In VSAM,
buffers are fixed using the VSAMFIX= parameter in the OPTIONS statement.
Performance is generally improved if buffers are fixed in storage, then page faults
do not occur. A page fault occurs when an instruction needs a page (a specific
piece of storage) and the page is not in storage.

With OSAM, you can fix the buffers and their buffer prefixes, or the buffer prefixes
and the subpool header, in storage. In addition, you can selectively fix buffer

442 Database Administration

subpools, that is, you can choose to fix some buffer subpools and not others. Buffer
subpools are fixed using the IOBF= parameter.

Using the IOBF= parameter you can specify:
v The size of buffers in a subpool.
v The number of buffers in a subpool. If three or fewer are specified, IMS gives

you three; otherwise, it gives you the number specified. If you do not specify a
sufficient number of buffers, your application program calls could waste time
waiting for buffer space.

v Whether the buffers and buffer prefixes in this subpool need to be fixed.
v Whether the buffer prefixes in this subpool and the subpool header need to be

fixed.
v An identifier to be assigned to the subpool. The identifier is used in conjunction

with the DBD statement to assign a specific subpool to a given data set. This
DBD statement is not the DBD statement used in a DBD generation but one
specified during execution. The identifier allows you to have more than one
subpool with the same buffer size. You can use it to:
– Get better distribution of activity among subpools
– Direct new database applications to “private” subpools
– Control the contention between a BMP and MPPs for subpools

Related concepts:

IMS buffer pools (System Definition)

OSAM subpool definition (System Definition)
Related tasks:
“VSAM options” on page 451
Related reference:

DFSDFxxx member of the IMS PROCLIB data set (System Definition)

Defining OSAM subpools (System Definition)

DD statements for IMS procedures (System Definition)

OSAM sequential buffering
Sequential Buffering (SB) is an extension of the normal buffering technique used
for OSAM database data sets.

When SB is active, multiple consecutive blocks can be read from your database
with a single I/O operation. (SB does not enhance OSAM write operations.) This
technique can help reduce the elapsed time of many programs and utilities that
sequentially process your databases.
Related tasks:
“Unloading the existing database” on page 806

Sequential buffering introduction
OSAM sequential buffering performs a sequential read of ten consecutive blocks
with a single I/O operation, while the normal OSAM buffering method performs a
random read of only one block with each I/O operation.

Without SB, IMS must issue a random read each time your program processes a
block that is not already in the OSAM buffer pool. For programs that process your

Chapter 21. Designing full-function databases 443

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_i2hsbsz.htm#i2hsbsz
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_i2hodef.htm#i2hodef
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsvsmxx_proclib_osam_subpools.htm#definingosamsubpools
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dd_statements.htm#ims_dd_statements

databases sequentially, random reads can be time-consuming because the DASD
must rotate one revolution or more between each read.

SB reduces the time needed for I/O read operations in three ways:
v By reading 10 consecutive blocks with a single I/O operation, sequential reads

reduce the number of I/O operations necessary to sequentially process a
database data set.
When a sequential read is issued, the block containing the segment your
program requested plus nine adjacent blocks are read from the database into an
SB buffer pool in virtual storage. When your program processes segments in any
of the other nine blocks, no I/O operations are required because the blocks are
already in the SB buffer pool.

Example: If your program sequentially processes an OSAM data set containing
100,000 consecutive blocks, 100,000 I/O operations are required using the normal
OSAM buffering method. SB can take as few as 10,000 I/O operations to process
the same data set.

v By monitoring the database I/O reference pattern and deciding if it is more
efficient to satisfy a particular I/O request with a sequential read or a random
read. This decision is made for each I/O request processed by SB.

v By overlapping sequential read I/O operations with CPC processing and other
I/O operations of the same application. When overlapped sequential reads are
used, SB anticipates future requests for blocks and reads those blocks into SB
buffers before they are actually needed by your application. (Overlapped I/O is
supported only for batch and BMP regions.)

Benefits of sequential buffering
By using OSAM sequential buffering (SB), any application program or utility that
sequentially processes OSAM data sets can run faster.

Because many other factors affect the elapsed time of a job, the time savings is
difficult to predict. You need to experiment with SB to determine actual time
savings.

Programs that can benefit from SB

Some of the programs, utilities, and functions that might benefit from the use of SB
are:
v IMS batch programs that sequentially process your databases.
v BMPs that sequentially process your databases.
v Any long-running MPP, Fast Path, and CICS programs that sequentially process

your databases.

Note: SB is possible but not recommended for short-running MPP, IFP, and
CICS programs. SB is not recommended for the short-running programs, because
SB has a high initialization overhead each time such online programs are run.

v IMS utilities, including:
– Online Database Image Copy
– HD Reorganization Unload
– Partial Database Reorganization
– Surveyor
– Database Scan

444 Database Administration

– Database Prefix Update
– Batch Backout

v HALDB Online Reorganization function

Typical productivity benefits of SB

By using SB for programs and utilities that sequentially process your databases,
you might be able to:
v Run existing sequential application programs within decreasing “batch window

times.” For example, if the time you set aside to run batch application programs
is reduced by one hour, you might still be able to run all the programs you
normally run within this reduced time period.

v Run additional sequential application programs within the same time period.
v Run some sequential application programs more often.
v Make online image copies much faster.
v Reduce the time needed to reorganize your databases.

Flexibility of SB use
IMS provides several methods for requesting SB.

You can request the use of SB for specific programs and utilities during PSBGEN
or by using SB control statements. You can also request the use of SB for all or
some batch and BMP programs by using an SB Initialization Exit Routine.

IMS also allows a system programmer or master terminal operator (MTO) to
override requests for the use of SB by disallowing its use. This is done by issuing
an SB MTO command or using an SB Initialization Exit Routine. The use of SB can
be disallowed during certain times of the day to avoid virtual or real storage
constraint problems.
Related tasks:
“How to request the use of SB” on page 447

How SB buffers data
The following sections describe what sequential buffering (SB) does, including
what SB buffers, how and when SB is activated, and what happens to the data that
SB buffers.

What SB buffers

HD databases can consist of multiple data set groups. A database PCB can
therefore refer to several data set groups. A database PCB can also refer to several
data set groups when the database referenced by the PCB is involved in logical
relationships. A particular database, and therefore a particular data set group, can
be referenced by multiple database PCBs. A specific data set group that is
referenced by a specific database PCB is referred to in the following sections as a
DB-PCB/DSG pair.

When SB is activated, it buffers data from the OSAM data set associated with a
specific DB-PCB/DSG pair. SB can be active for several DB-PCB/DSG pairs at the
same time, but each pair requires a separate activation.

If you use OSAM SB with a HALDB database, because each database can have
multiple partitions, HALDB DB-PCB/DSG pairs are further qualified by partition

Chapter 21. Designing full-function databases 445

IDs. The SB blocks that are created for a HALDB partition cannot be shared among
application program PSTs.

Periodic evaluation and conditional activation of SB

IMS does not immediately activate SB when you request it. Instead, when SB is
requested for a program, IMS begins monitoring the I/O reference pattern and
activity rate for each DB-PCB/DSG pair that is used by the program. After awhile,
IMS performs the first of a series of periodic evaluations of the buffering process.
IMS performs periodic evaluations for each DB-PCB/DSB pair and determines if
the use of SB would be beneficial for the DB-PCB/DSG pair. If the use of SB is
beneficial, IMS activates SB for the DB-PCB/DSG pair. This activation of SB is
known as conditional activation.

After SB is activated, IMS continues to periodically evaluate the I/O reference
pattern and activity rate. Based on these evaluations, IMS can take either of the
following actions:
v Temporarily deactivate SB and continue to monitor the I/O reference pattern

and activity rate. Temporary deactivation is implemented to unfix and
page-release the SB buffers.

v Temporarily deactivate monitoring of the I/O reference pattern and activity rate.
This form of temporary deactivation is implemented only if SB is deactivated
and IMS concludes from subsequent evaluations that use of SB would still not
be beneficial.

When SB is temporarily deactivated, it can be reactivated later based on the results
of subsequent evaluations.

Individual periodic evaluations are performed for each DB-PCB/DSG pair.
Therefore, IMS can deactivate SB for one DB-PCB/DSG pair while SB remains
active for other DB-PCB/DSG pairs.

Role of the SB buffer handler

When SB is activated for a DB-PCB/DSG pair, a pool of SB buffers is allocated to
the pair. Each SB buffer pool consists of n buffer sets (the default is four) and each
buffer set contains 10 buffers. These buffers are used by an internal component that
is called the SB buffer handler to hold the sets of 10 consecutive blocks that are
read with sequential reads.

While SB is active, all requests for database blocks not found in the OSAM buffer
pool are sent to the SB buffer handler. The SB buffer handler responds to these
requests in the following way:
v If the requested block is already in an SB buffer, a copy of the block is put into

an OSAM buffer.
v If the requested block is not in an SB buffer, the SB buffer handler analyzes a

record of previous I/O requests and decides whether to issue a sequential read
or a random read. If it decides to issue a random read, the requested block is
read directly into an OSAM buffer. If it decides to issue a sequential read, the
requested block and nine adjacent blocks are read into an SB buffer set. When
the sequential read is complete, a copy of the requested block is put into an
OSAM buffer.

v The SB buffer handler also decides when to initiate overlapped sequential reads.

446 Database Administration

Note: When the SB buffer handler is processing a request from an online program,
the SB buffer handler only searches the SB buffer pools allocated to that online
program.
Related concepts:
Chapter 18, “Optional database functions,” on page 373
“Virtual storage considerations for SB”

Sysplex data-sharing concepts and terminology (System Administration)

Virtual storage considerations for SB
Each DB-PCB/DSG pair buffered by SB has its own SB buffer pool.

By default, each SB buffer pool contains four buffer sets (although IMS lets you
change this value). Ten buffers exist in each buffer set. Each buffer is large enough
to hold one OSAM data set block.

The total size of each SB buffer pool is:
4 * 10 * block size

The SB buffers are page-fixed in storage to eliminate page faults, reduce the path
length of I/O operations, and increase performance. SB buffers are page-unfixed
and page-released when a periodic evaluation temporarily deactivates SB.

You must ensure that the batch, online or DBCTL region has enough virtual
storage to accommodate the SB buffer pools. This storage requirement can be
considerable, depending upon the block size and the number of programs using
SB.

SB is not recommended in real storage-constrained environments such as batch and
DB/TM.

Some systems are storage-constrained only during certain periods of time, such as
during online peak times. You can use an SB Initialization Exit Routine to control
the use of SB according to specific criteria (the time) of day.
Related concepts:
“How SB buffers data” on page 445
Related tasks:
“Requesting SB with SB control statements” on page 448
Related reference:

Sequential Buffering Initialization exit routine (DFSSBUX0) (Exit Routines)

How to request the use of SB
IMS provides two methods for specifying which of your programs and databases
use OSAM sequential buffering (SB).
v You can explicitly specify which programs and utilities should use SB during

PSB generation or by using SB control statements.
v You can specify that by default all or a subset of your batch and BMP programs

and utilities should use SB by coding an SB exit routine or by using a sample SB
exit routine provided with IMS.

Determine which method you will use. Using the second method is easier because
you do not need to know which BMP and batch programs use sequential

Chapter 21. Designing full-function databases 447

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_sysplexdatashar_conceptsandterms.htm#ims_sysplexdatashar_conceptsandterms
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_dfssbux0.htm#ims_dfssbux0

processing. However, using SB by default can lead to an uncontrolled increase in
real and virtual storage use, which can impact system performance. Generally, if
you are running IMS in a storage-constrained z/OS environment, use the first
method. If you are running IMS in a non-storage-constrained z/OS environment,
use the second method.
Related concepts:
“Flexibility of SB use” on page 445

Requesting SB during PSB generation
To request SB during PSB generation, specify SB=COND in the PCB macro
instruction of your application's PSB.

You code this keyword for each database PCB buffered with SB. (This is not
possible for IMS utilities that do not use a PSB during execution.)

The following diagram shows the syntax of the SB keyword in the PCB statement.

►► PCB TYPE=DB, Other parameters
NO

SB= COND

►◄

COND
Specifies that SB should be conditionally activated for this PCB.

NO Specifies that SB should not be used for this PCB.

If you do not include the SB keyword in your PCB, IMS defaults to NO
unless specified otherwise in the SB exit routine.

The SB keyword value can be overridden by SB control statements.

The following example shows a PCB statement coded to request conditional
activation of SB:
SKILLA PCB TYPE=DB,DBDNAME=SKILLDB,KEYLEN=100,

PROCOPT=GR,SB=COND

Related tasks:
“Requesting SB with SB control statements”
Related reference:

Program Specification Block (PSB) Generation utility (System Utilities)

Requesting SB with SB control statements
You can put SBPARM control statements in the optional //DFSCTL file. This file is
defined by a //DFSCTL DD statement in the JCL of your batch, dependent, or
online region.

You can use the SBPARM control statement to:
v Specify which database PCBs (and which data sets referenced by the database

PCB) should use SB
v Override the default number of buffer sets

This control statement allows you to override PSB specifications without requiring
you to regenerate the PSB.

448 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_psbgen.htm#ims_psbgen

You can specify keywords that request use of SB for all or specific DBD names, DD
names, PSB names, and PCB labels. You can also combine these keywords to
further restrict when SB is used.

By using the BUFSETS keyword of the SBPARM control statement, you can change
the number of buffer sets allocated to SB buffer pools. The default number of
buffer sets is four. Badly organized databases can require six or more buffer sets
for efficient sequential processing. Well-organized databases require as few as two
buffer sets. An indicator of how well-organized your database is can be found in
the optional //DFSSTAT reports.

The example below shows the SBPARM control statement necessary to request
conditional activation of SB for all DBD names, DD names, PSB names, and PCBs.
SBPARM ACTIV=COND

The next example shows the parameters necessary to:
v Request conditional activation of SB for all PCBs that were coded with

'DBDNAME=SKILLDB' during PSB generation
v Set the number of buffer sets to 6
SBPARM ACTIV=COND,DB=SKILLDB,BUFSETS=6

Related concepts:
“Virtual storage considerations for SB” on page 447
“Adjusting buffers” on page 674
“Buffering options” on page 438

//DFSSTAT reports (System Administration)
Related tasks:
“Requesting SB during PSB generation” on page 448
Related reference:

Sequential buffering control statements (System Definition)

Requesting SB with an SB Initialization exit routine
An SB exit routine allows you to dynamically control the use of SB at application
scheduling time.

You can use an SB Initialization exit routine to:
v Request conditional activation of SB for all or some batch and BMP programs
v Allow or disallow the use of SB
v Change the default number of buffer sets

You can do this by writing your own SB exit routine or by selecting a sample SB
exit routine and copying it under the name DFSSBUX0 into IMS.SDFSRESL.

IMS supplies five sample SB exit routines in IMS.SDFSSRC and IMS.SDFSRESL.
Three of the sample routines request SB for various subsets of application
programs and utilities. One sample routine requests SB during certain times of the
day and another routine disallows use of SB. You can use these sample routines as
written or modify them to fit your needs.

Detailed instructions for the SB Initialization Exit Routine are in IMS Version 13
Exit Routines.

Chapter 21. Designing full-function databases 449

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/ims_reports/ims_dfsstat_reports.htm#ims_dfsstat_reports
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_sequential_buffering.htm#ims_sequential_buffering

SB options or parameters provided by several sources
If you provide the same SB option or parameter in more than one place, IMS
determines which option to enforce by following a set order of precedence.

If you provide the same SB option or parameter in more than one place, the
following priority list applies (item 1 having the highest priority):
1. SB control statement specifications (the nth control statement overrides the mth

control statement, where n > m)
2. PSB specifications
3. Defaults changed by the SB Initialization Exit Routine
4. IMS defaults

Using SB in an online system
To allow the use of SB in an online IMS or DBCTL environment, an IMS system
programmer must explicitly request that IMS load the SB modules. This is done by
putting an SBONLINE control statement in the DFSVSMxx member.

By default, IMS does not load SB modules in an online environment. This helps
avoid a noticeable increase in virtual storage requirements.

The two forms of the SBONLINE control statement are:
SBONLINE

or

SBONLINE,MAXSB=nnnnn

where nnnnn is the maximum storage (in kilobytes) that can be used for SB
buffers.

When the MAXSB limit is reached, IMS stops allocating SB buffers to online
applications until terminating online programs release SB buffer space. By default,
if you do not specify the MAXSB= keyword, the maximum storage for SB buffers
is unlimited.

Detailed instructions for coding the SBONLINE control statement are contained in
IMS Version 13 System Definition.

Disallowing the use of SB
An IMS system programmer or MTO can disallow the use of SB.

When the use of SB has been disallowed, a request for conditional activation of SB
is ignored.

There are three ways to disallow the use of SB. The following list describes the
three methods:
1. An SB Initialization Exit Routine can be written (or a sample exit routine

adapted) that can dynamically disallow and allow use of SB. This method can
be used if you are using SB in an IMS batch, online, or DBCTL environment.

2. The MTO commands /STOP SB and /START SB can be issued to dynamically
disallow and allow use of SB within an IMS online subsystem

3. The SBONLINE control statement can be omitted from the DFSVSMxx member.
This will keep IMS from loading the SB modules into the online subsystem. No
program in the online subsystem will be able to use SB.

450 Database Administration

Related reference:

/STOP SB command (Commands)

/START SB command (Commands)

VSAM options
Several types of options can be chosen for databases that use VSAM.

Specifying options such as free space for the ESDS data set, logical record size, and
CI size are discussed in the preceding topics in this chapter. This topic describes
these optional functions:
v Functions specified in the OPTIONS control statement when IMS is initialized.
v Functions specified in the POOLID, VSRBF, and DBD control statements when

IMS is initialized.
v Functions specified in the Access Method Services DEFINE CLUSTER command

when a data set is defined.

Optional functions specified in the OPTIONS control statement

Several options exist that can be chosen during IMS system initialization for
databases using VSAM. These options are specified in the OPTIONS control
statement. In a batch system, the options you specify are put in the data set with
the DDNAME DFSVSAMP. In an online system, they are put in the IMS.PROCLIB
data set with the member name DFSVSMnn. Your choice of VSAM options can
affect performance, use of space in the database, and recovery. This topic describes
each option and the implications of using it.

Using background write (BGWRT parameter)

When an application program issues a call requiring that data be read from the
database, the data is read into a buffer. If the buffer the data is to be read into
contains altered data, the altered data must be written back to the database before
the buffer can be used. If the data was not written back to the database, the data
would be lost (overlaid) when new data was read into the buffer. Then there
would be no way to update the database.

For these reasons, when an application program needs data read into a buffer and
the buffer contains altered data, the application program waits while the buffer is
written to the database. This waiting time decreases performance. The application
program is ready to do processing, but the buffer is not available for use.
Background write is a function you can choose in the OPTIONS statement that
reduces the amount of wait time lost for this reason.

To understand how background write works, you need to know something about
how buffers are used in a subpool. You specify the number of buffers and their
size. All buffers of the same size are in the same subpool. Buffers in a subpool are
on a use chain, that is, they are chained together in the order in which they have
been most or least recently used. The most recently used buffers are at the top of
the use chain; least recently used buffers are at the bottom.

When a buffer is needed, the VSAM buffer manager selects the buffer at the
bottom of the use chain. The buffer at the bottom of the use chain is selected,
because buffers that have not been used recently are less likely to contain data that
will be used again. If the buffer the VSAM buffer handler picks contains altered

Chapter 21. Designing full-function databases 451

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_stopsb.htm#ims_cr2stsb
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_startsb.htm#ims_cr2ssb

data, the data is written to the database before the buffer is used. It is during this
step that the application program is waiting.

Background write solves the following problem: when the VSAM buffer manager
gets a buffer in any subpool, it looks (when background write is used) at the next
buffer on the use chain. The next buffer on the use chain will be used next. If the
buffer contains altered data, IMS is notified so background write will be invoked.
Background write has VSAM write data to the database from some percentage of
the buffers at the bottom of the use chain. VSAM does this for all subpools. The
data that is written to the database still remains in the buffers so the application
program can still use any data in the buffers.

Background write is a very useful function when processing is done sequentially,
but it is not as important to use in online systems as in batch. This is because, in
online environments, IMS automatically writes buffers to the database at sync
points.

To use background write, specify BGWRT=YES,n on the OPTIONS statement,
where n is the percentage of buffers in each subpool to be written to the database.
If you do not code the BGWRT= parameter, the default is BGWRT=YES and the
default percentage is 34%. If an application program continually uses buffers but
does not reexamine the data in them, you can make n 99%. Then, a buffer will
normally be available when it is needed.

CICS does not support this function.

Choosing an insert strategy (INSERT parameter)

Get free space in a CI in a KSDS is by specifying it in the DEFINE CLUSTER
command. Free space for a KSDS cannot be specified using the FRSPC= keyword
in the DBD.

To specify free space in the DEFINE CLUSTER command, you must decide:
v Whether free space you have specified is preserved or used when more than one

root segment is inserted at the same time into the KSDS.
v Whether to split the CI at the point where the root is inserted, or midway in the

CI, when a root that causes a CI split is inserted.

These choices are specified in the INSERT= parameter in the OPTIONS statement.
INSERT=SEQ preserves the free space and splits the CI at the point where the root
is inserted. INSERT=SKP does not preserve the free space and splits the CI
midway in the CI. In most cases, specify INSERT=SEQ so free space will be
available in the future when you insert root segments. Your application determines
which choice gives the best performance.

If you do not specify the INSERT= parameter, the default is INSERT=SKP.

Using the IMS trace parameters

The IMS trace parameters trace information that has proven valuable in solving
problems in the specific area of the trace. All traces share sequencing numbers so
that a general picture of the IMS environment can be obtained by looking at all the
traces.

452 Database Administration

IMS DL/I, LOCK and retrieve traces are on by default, except in batch regions,
where they are off by default. All other trace types are off by default.

The traces can be turned on at IMS initialization time. They can also be started or
stopped by the /TRACE command during IMS execution. Output from long-running
traces can be saved on the system log if requested.

Determining which dump option to use (DUMP parameter)

The dump option is a serviceability aid that has no impact on performance. It
merely describes the type of abend to take place if an abend occurs in the buffer
handler (an internal component). If DUMP=YES is specified, the control region will
abend when there is an abend in the buffer handler.

Deciding whether to fix VSAM database buffers and IOBs in storage (VSAMFIX
parameter)

Each VSAM subpool contains buffers and input/output control blocks (IOBs).
Performance is generally improved if these buffers and IOBs are fixed in storage.
Then, page faults do not occur. A page fault occurs when an instruction references
a page (a specific piece of storage) that is not in real storage.

You can specify whether buffers and IOBs are fixed in storage in the VSAMFIX=
parameter of the OPTIONS statement. If you have buffers or IOBs fixed, they are
fixed in all subpools. If you do not code the VSAMFIX= parameter, the default is
that buffers and IOBs are not fixed.

This parameter can be used in a CICS environment if the buffers were specified by
IMS.

Using local shared resources (VSAMPLS parameter)

Specifying VSAMPLS=LOCL in the OPTIONS statement is for local shared
resources (LSR). When you specify VSAMPLS=LOCL, VSAM control blocks and
subpools are put in the IMS control region. VSAMPLS=LOCL is the only valid
operand and the default.
Related concepts:
“Background write option” on page 439
“Adjusting VSAM options” on page 682
Related tasks:
“Specifying buffers” on page 442
“Specifying free space for a KSDS (FREESPACE parameter)” on page 454
Related reference:

DFSVSMxx member of the IMS PROCLIB data set (System Definition)

Optional functions specified in the POOLID, DBD, and VSRBF
control statements

Options chosen during IMS initialization determine the size and structure of
VSAM local shared resource pools.

In a batch environment, you specify these options in a data set with the DDNAME
DFSVSAMP. In online systems, you specify these options in the IMS.PROCLIB data
set with the member name DFSVSMnn.

Chapter 21. Designing full-function databases 453

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsvsmxx_proclib.htm#ims_dfsvsmxx_proclib

With these options, you can enhance IMS performance by:
v Defining multiple local shared resource pools
v Dedicating subpools to a specific data set
v Defining separate subpools for index and data components of VSAM data sets
Related concepts:

Specifying VSAM and OSAM subpools (System Definition)
Related reference:

DFSVSMxx member of the IMS PROCLIB data set (System Definition)

Optional functions specified in the Access Method Services
DEFINE CLUSTER command

You can choose several optional functions that affect performance when you define
your VSAM data sets.

These functions are specified in the Access Method Services DEFINE CLUSTER
command. HALDB databases require that the REUSE parameter be specified on
the DEFINE CLUSTER command. IMS Online Recovery Services takes advantage
of the REUSE parameter, if it is specified.

Related Reading: This command and all its parameters are described in detail in
z/OS DFSMS Access Method Services for Catalogs.

Specifying that 'fuzzy' image copies can be taken with the
database image copy 2 utility (DFSUDMT0)
To establish that 'fuzzy' image copies of KSDSs can be taken with the Database
Image Copy 2 utility (DFSUDMT0), the KSDS must be SMS-managed and you
must specify the BWO(TYPEIMS) parameter on the AMS DEFINE or ALTER
command.

Specifying free space for a KSDS (FREESPACE parameter)
To include free space in a CI in a KSDS, use the FREESPACE parameter in the
DEFINE CLUSTER command.

Free space for a KSDS cannot be specified using the FRSPC= keyword in the DBD.

You specify free space in the FREESPACE parameter as a percentage. The format of
the parameter is FREESPACE(x,y) where:

x is the percentage of space in a CI left free when the database is loaded or
when a CI split occurs after initial load

y is the percentage of space in a control area (CA) left free when the
database is loaded or when a CA split occurs after initial load.

Free space is preserved when a CI or CA is split by coding INSERT=SEQ in the
OPTIONS control statement.

If you do not specify the FREESPACE parameter, the default is that no free space is
reserved in the KSDS data set when the database is loaded.
Related tasks:
“VSAM options” on page 451

454 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_sdr73.htm#sdr73
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsvsmxx_proclib.htm#ims_dfsvsmxx_proclib

Specifying whether data set space is pre-formatted for initial
load
When initially loading a VSAM data set, you can specify whether you need the
data set pre-formatted in the SPEED | RECOVERY parameter.

When SPEED is specified, it says the data set should not be pre-formatted. An
advantage of pre-formatting a data set is; if initial load fails, you can recover and
continue loading database records after the last correctly-written record. However,
IMS does not support the RECOVERY option (except by use of the Utility Control
Facility). So, although you can specify it, you cannot perform recovery. Because
you cannot take advantage of recovery when you specify the RECOVERY
parameter, you should specify SPEED to improve performance during initial load.

To be able to recover your data set during load, you should load it under control
of the Utility Control Facility. This utility is described in IMS Version 13 Database
Utilities.

RECOVERY is the default for this parameter.

OSAM options
Two types of options are available for databases using OSAM.

Two types of options are:
1. Options specified in the DBD (free space, logical record size, CI size).

These options are covered in preceding sections in this chapter.
2. Options specified in the OPTIONS control statement when IMS is initialized.

In a batch system, the options are put in the data set with the DDNAME
DFSVSAMP. In an online system, they are put in the IMS.PROCLIB data set
with the member name DFSVSMnn. Your choice of OSAM options can affect
performance, recovery, and the use of space in the database.
The OPTIONS statement is described in detail in IMS Version 13 System
Definition. The statement and all its parameters are optional.

Dump option (DUMP parameter)
The dump option is a serviceability aid that has no impact on performance.

It describes the type of abnormal termination to take place when abnormal
termination occurs in the buffer handler (an internal component).

Planning for maintenance
In designing your database, remember to plan for maintenance. If your
applications require, for instance, that the database be available 16 hours a day,
you do not design a database that takes 10 hours to unload and reload.

No guideline we can give you for planning for maintenance exists, because all
such plans are application dependent. However, remember to plan for it.

A possible solution to the problem just described is to make three separate
databases and put them on different volumes. If the separate databases have
different key ranges, then application programs could include logic to determine
which database to process against. This solution would allow you to reorganize the

Chapter 21. Designing full-function databases 455

three databases at separate times, eliminating the need for a single 10-hour
reorganization. Another solution to the problem if your database uses HDAM or
HIDAM might be to do a partial reorganization using the Partial Database
Reorganization utility.

In the online environment, the Image Copy utilities allow you to do some
maintenance without taking the database offline. These utilities let you take image
copies of databases or partitions while they are allocated to and being used by an
online IMS system.

HALDB provides greatly improved availability for large databases. By partitioning
large databases, you can perform offline maintenance on a single partition, while
the remaining partitions remain available.

You can also reorganize HALDB databases online, which improves the
performance of your HALDB without disrupting access to its data. If you plan to
reorganize your HALDB online, make sure that there is enough DASD space to
accommodate the reorganization process.
Related concepts:
“Partial Database Reorganization utility (DFSPRCT1)” on page 632
“HALDB online reorganization” on page 642

456 Database Administration

Chapter 22. Designing Fast Path databases

After you determine the type of database and optional functions that best suit your
application's processing requirements, you need to make a series of decisions about
database design and the use of options.

This set of decisions primarily determines how well your database performs and
how well it uses available space. These decisions are based on:

The type of database and optional functions you have already chosen
The performance requirements of your applications
How much storage you have available for use online

Design guidelines for DEDBs
To define a data entry database (DEDB), you must determine the size of the CI and
UOW, and follow design guidelines.
Related concepts:

Data sharing in IMS environments (System Administration)

DEDB design guidelines
The following list describes guidelines for designing DEDBs.
v Except for the relationship between a parent and its children, the logical

structure (defined by the PCB) does not need to follow the hierarchical order of
segment types defined by the DBD.
For example, SENSEG statements for DDEP segments can precede the SENSEG
statement for the SDEP segment. This implementation prevents unqualified GN
processing from retrieving all SDEP segments before accessing the first DDEP
segments.

v Most of the time, SDEP segments are retrieved all at once, using the DEDB
Sequential Dependent Scan utility. If you later must relate SDEP segments to
their roots, you must plan for root identification as part of the SDEP segment
data.

v A journal can be implemented by collecting data across transactions using a
DEDB. To minimize contention, you should plan for an area with more than one
root segment. For example, a root segment can be dedicated to a
transaction/region or to each terminal. To further control resource contention,
you should assign different CIs to these root segments, because the CI is the
basic unit of DEDB allocation.

v Following is a condition you might be confronted with and a way you might
resolve it. Assume that transactions against a DEDB record are recorded in a
journal using SDEP segments and that a requirement exists to interrogate the
last 20 or so of them.
SDEP segments have a fast insert capability, but on the average, one I/O
operation is needed for each retrieved segment. The additional I/O operations
could be avoided by inserting the journal data as both a SDEP segment and a
DDEP segment and by limiting the twin chain of DDEP segments to 20
occurrences. The replace or insert calls for DDEP segments does not necessarily
cause additional I/O, since they can fit in the root CI. The root CI is always
accessed even if the only call to the database is an insert of an SDEP segment.

© Copyright IBM Corp. 1974, 2016 457

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_datasharing.htm#ims_datasharing

The online retrieve requests for the journal items can then be responded to by
the DDEP segments instead of the SDEP segments.

v As physical DDEP twin chains build up, I/O activity increases. The SDEP
segment type can be of some help if the application allows it.
The design calls for DDEP segments of one type to be batched and inserted as a
single segment whenever their number reaches a certain limit. An identifier
helps differentiate them from the regular journal segments. This design prevents
updates after the data has been converted into SDEP segments.

DEDB area design guidelines
When designing a DEDB, be aware of the considerations and guidelines related to
the DEDB area.

The following considerations for DEDB area design also help explain why DEDBs
are divided into areas:
v DEDBs should be divided into areas in a way that makes sense for the

application programs.
For example, a service bureau organization makes a set of applications available
to its customers. The design calls for a common database to be used by all users
of this set of applications. The area concept fits this design because the
randomizing routine and record keys can be set so that data requests are
directed to the user's area only. Furthermore, on the operational side, users can
be given specific time slots. Their areas are allocated and deallocated
dynamically without interrupting other services currently using the same DEDB.
National or international companies with business locations spanning multiple
time zones might take advantage of the partitioned database concept. Because
not all areas must be online all the time, data can be spread across areas by time
zone.
Preferential treatment for specific records (specific accounts, specific clients, and
so on.) can be implemented without using a new database, for example, by
keeping more sequential dependent segments online for certain records. By
putting together those records in one area, you can define a larger sequential
dependent segment part and control the retention period accordingly.

v The impact of permanent I/O errors and severe errors can be reduced using a
DEDB. DL/I requires that all database data sets, except for HALDB databases,
be available all the time. With a DEDB, the data not available is limited only to
the area affected by the failure. Because the DEDB utilities run at the level of the
area, the recovery of the failing area can be done while the rest of the database
is accessible to online processing. The currently allocated log volume must be
freed by a /DBR AREA command and used in the recovery operation. Track
recovery is also supported. The recovered area can then be dynamically allocated
back to the operational environment.
Make multiple copies of DEDB area data sets to make data more available to
application programs.

v Space management parameters can vary from one area to another. This includes:
CI size, UOW size, root addressable part, overflow part, and sequential
dependent part. Also, the device type can vary from one area to the other.

v It is feasible to define an area on more than one volume and have one volume
dedicated to the sequential dependent part. This implementation might save
some seek time as sequential dependent segments are continuously added at the
end of the sequential dependent part. The savings depends on the current size of

458 Database Administration

the sequential dependent part and the blocking factor used for sequential
dependent segments. If an area spans more than one volume, volumes must be
of the same type.

v Only the independent overflow part of a DEDB is extendable. Sufficient space
should be provided for all parts when DEDBs are designed.
The /DISPLAY command and the POS call can help monitor the usage of
auxiliary space. Unused space in the root addressable and independent overflow
parts can be reclaimed through reorganization. It should be noted that, in the
overflow area, space is not automatically reused by ISRT calls. To be reused at
call time, the space must amount to an entire CI, which is then made available
to the ISRT space management algorithm. Local out-of-space conditions can
occur, although some available space exists in the database.

v Adding or removing an area from a DEDB requires a DBDGEN and an
ACBGEN. Database reload is required if areas are added or deleted in the
middle of existing areas. Areas added other than at the end changes the area
sequence number assigned to the areas. The subsequent log records written
reflect this number, which is then used for recovery purposes. If areas are added
between existing areas, prior log records will be invalid. Therefore, an image
copy must be made following the unload/reload. Be aware that the sequence of
the AREA statements in the DBD determines the sequence of the MRMB entries
passed on entry to the randomizing routine. An area does not need to be
mounted if the processing does not require it, so a DBDGEN/ACBGEN is not
necessary to logically remove an area from processing.

v Careful monitoring of the retention period of each log allows you to make an
image copy of one area at a time. Also, because the High-Speed DEDB Direct
Reorganization utility logs changes, you do not need to make an image copy
following a reorganization.

v The area concept allows randomizing at the area level, instead of randomizing
throughout the entire DEDB. This means the key might need to carry some
information to direct the randomizing routine to a specific area.

Related tasks:
“Multiple copies of an area data set” on page 463
“Extending DEDB independent overflow online” on page 763

Determining the size of the CI
The choice of a CI size depends on several factors.

The factors include:
v CI sizes of 512, 1 KB, 2 KB, 4 KB, and up to 28 KB in 4 KB increments are

supported.
v Only one RAP exists per CI. The average record length has to be considered. In

the base section of the root addressable part, a CI can be shared only by the
roots that randomize to its RAP and their DDEP segments.

v Track utilization according to the device type.
v SDEP segment writes. A larger CI requires a fewer number of I/Os to write the

same amount of SDEP segments.
v The maximum segment size, which is 28,552 bytes if using a 28 KB CI size.

Determining the size of the UOW
The UOW is the unit of space allocation in which you specify the size of the root
addressable and independent overflow parts.

Chapter 22. Designing Fast Path databases 459

Three factors might affect the size of the UOW:
1. The High-Speed DEDB Direct Reorganization utility (DBFUHDR0) runs on a

UOW basis. Therefore, while the UOW is being reorganized, none of the CIs
and data they contain are available to other processing.
A large UOW can cause resource contention, resulting in increased response
time if the utility is run during the online period. A minor side effect of a large
UOW is the space reserved on DASD for the “reorganization UOW,” which is
no longer used, but retained for compatibility purposes.
A UOW that is too small can cause some overhead during reorganization as the
utility switches from one UOW to the next with very little useful work each
time. However, this might not matter so much if reorganization time is not
critical.

2. The use of processing option P. This consideration pertains to sequential
processing using BMP regions. If the application program is coded to take
advantage of the 'GC' status code, this status code must be returned frequently
enough to fit in the planned sync interval.
Assume every root CI needs to be modified and that, for resource control
reasons, each sync interval is allowed to process sequentially no more than 20
CIs of data. The size of the UOW should not be set to more than 20 CIs.
Otherwise, the expected 'GC' status code would not be returned in time for the
application program to trigger a sync point, release the resources, and not lose
position in the database.
A UOW that is too small, such as the minimum of two CIs, can cause too many
‘unsuccessful database call' conditions each time a UOW is crossed. On a 'GC'
status code, no segment is returned and the call must be reissued after an
optional SYNC or CHKP call.

3. The dependent overflow (DASD space) usage is more efficient with a large
UOW than a small UOW.

Related concepts:
“Processing option P (PROCOPT=P)” on page 461
“SDEP CI preallocation and reporting”

SDEP CI preallocation and reporting
Because of data sharing, SDEP CIs cannot be allocated one at a time. Also, each
data sharing system requires its own current CI. Therefore, a set of SDEP CIs are
preallocated to each IMS on an allocation call.

The number of CIs obtained by an IMS is a function of the system's insert rate. The
insert process obtains the current CI, not the area open process.

Because the insert process obtains the current CI, space use and reporting is
complex. If a preallocation attempt cannot obtain the number of CIs requested, the
ISRT or sync point call receives status FS, even if there is enough space for that
particular call. The FS processing marks the area as full, and any subsequent
smaller inserts also fail.

When there are few available SDEP CIs in an area, the number that can actually be
used for SDEP inserts varies depending on the system's insert rate. Also, the
command /DIS AREA calculates the number of SDEP CIs free as those available
for preallocation and any unused CIs preallocated to the IMS issuing the
command. Area close processing discards CIs preallocated to the IMS, and the
unused CIs are lost until the SDEP Delete utility is run. Therefore, the number of

460 Database Administration

unused CIs reported by the /DIS AREA command after area close processing is
smaller because the preallocated CIs are no longer available.

Additionally, preallocated CIs become unavailable if either the DEDB Sequential
Dependent Delete utility (DBFUMDL0) or the DEDB Sequential Dependent Scan
utility (DBFUMSC0) requests to discard them during execution. The DBFUMDL0
and DBFUMSC0 utilities request to discard preallocated CIs if the QUITCI option
is specified either by the SDEPQCI parameter of the DFSVSMxx PROCLIB member
or the QUITCI control statement in the utility SYSIN data set. The SDEPQCI
parameter sets the default QUITCI behavior for either the DBFUMDL0 utility, the
DBFUMSC0 utility, or both. When SDEPQCI is specified for a utility, you do not
need to include the QUITCI control statement when you run that utility.
Related concepts:
“Determining the size of the UOW” on page 459

Processing option P (PROCOPT=P)
The PROCOPT=P option is specified during the PCB generation in the PCB
statement or in the SENSEG statement for the root segment.

The option takes effect only if the region type is a BMP. If specified, it offers the
following advantage:

Whenever an attempt is made to retrieve or insert a DEDB segment that causes a
UOW boundary to be crossed, a 'GC' status code is set in the PCB but no segment
is returned or inserted. The only calls for which this takes place are: G(H)U,
G(H)N, POS, and ISRT.

Although crossing the UOW boundary has no particular significance for most
applications, the 'GC' status code that is returned indicates this could be a
convenient time to invoke sync point processing. This is because a UOW boundary
is also a CI boundary. As explained for sequential processing, a CI boundary is a
convenient place to request a sync point.

The sync point is invoked by either a SYNC or a CHKP call, but this normally
causes position on all currently accessed databases to be lost. The application
program then has to resume processing by reestablishing position first. This
situation is not always easy to solve, particularly for unqualified G(H)N
processing.

An additional advantage with this processing option is, if a SYNC or CHKP call is
issued after a 'GC' status code, database position is kept. Database position is such
that an unqualified G(H)N call issued after a 'GC' status code returns the first root
segment of the next UOW. When a 'GC' status code is returned, no data is
presented or inserted. Therefore, the application program should, optionally,
request a sync point, reissue the database call that caused the 'GC' status code, and
proceed. The application program can ignore the 'GC' status code, and the next
database call will work as usual.

Database recovery and change accumulation processing must buffer all log records
written between sync points. Sync points must be taken at frequent intervals to
avoid exhausting available storage. If not, database recovery might not be possible.
Related concepts:
“Determining the size of the UOW” on page 459
“The NBA/FPB limit and sync point in a DBCTL environment” on page 485

Chapter 22. Designing Fast Path databases 461

“The NBA limit and sync point” on page 479

DEDB randomizing routine design
A DEDB randomizing module is required for placing root segments in a DEDB and
for retrieving root segments from a DEDB.

One or more such modules can be used with an IMS system. Only one
randomizing module can be associated with each DEDB.

The purpose of the randomizing module is the same as in HDAM processing. A
root search argument key field value is supplied by the application program and
converted into a relative root anchor point number. Because the entry and exit
interfaces are different, DEDB and HDAM randomizing routines are not object
code compatible. The main line randomizing logic of HDAM should not need
modification if randomizing through the whole DEDB.

Some additional differences between DEDB and HDAM randomizing routines are
as follows:
v The ISRT algorithm attempts to put the entire database record close to the root

segment (with the exception of SDEP segments). No BYTES parameter exists to
limit the size of the record portion to be inserted in the root addressable part.

v With the DEDB, only one RAP can be defined in each root addressable CI.
v CIs that are not randomized to are left empty.

The standard randomizer randomly distributes database records across the entire
database. A two-stage randomizer is defined with the RMNAME parameter. The
two-stage randomizer selects the specific area and the RAP within that area as the
target for that database record. Use the two-stage randomizer to change the UOW
or RAP parameters for a specific area using online change, and without affecting
other areas in the DEDB. To alter a DEDB database or area by using the DEDB
Alter utility, a two-stage randomizing routine is required.

Recommendation: Use a two-stage randomizing routine.

Because of the area concept, some applications might randomize in a particular
area rather than through all the DEDBs, as in HDAM processing. Therefore, the
expected output of such a randomizing module is made up of a relative root
anchor point number in an area and the address of the control block (DMAC)
representing the area selected.

Keys that randomize to the same RAP are chained in ascending key sequence.

DEDB logic runs in parallel, so DEDB randomizing routines must be reentrant. The
randomizing routines operate out of the common storage area (CSA). If they use
operating system services like LOAD, DELETE, GETMAIN, and FREEMAIN, the
routines must follow the same rules as described in IMS Version 13 Exit Routines.

DEDB randomizing routines are stored in ECSA storage and are usually unloaded
from storage when access to the DEDB is stopped by issuing either the type-1
command /DBRECOVERY DB or the type-2 command UPDATE DB STOP(ACCESS). You
can stop access to the DEDB without unloading the DEDB randomizer by using
the NORAND parameter of the type-2 command UPDATE DB STOP(ACCESS).
Related reference:

462 Database Administration

|
|
|
|
|
|
|

Sample data entry database randomizing routines (DBFHDC40 / DBFHDC20
DBFHDC44 / DBFHDC24 DBFHDC2S) (Exit Routines)

Multiple copies of an area data set
The data in an area is in a VSAM data set called the area data set (ADS).
Installations can create as many as seven copies of each ADS, making the data
more available to application programs.

When multiple copies of an area data set are used, the ADS is referred to as a
multiple area data set (MADS).

Each copy of a MADS contains exactly the same user data. Fast Path maintains
data integrity by keeping identical data in the copies during application
processing. When an application program updates data in an area, Fast Path
updates that data in each copy of the MADS.

When an application program reads data from an area, IMS always attempts to
read from the first ADS shown in the RECON list. If the first ADS is not available
or if it is in a long busy state, IMS attempts to read from each subsequent ADS in
the list until an available ADS is found. If all of the ADSs are in a long busy state,
IMS uses the first ADS in the list.

All copies of a MADS must have the same definition but can reside on different
devices and on different device types.

If your MADS copies reside on different devices, place the first ADS registered in
the RECON data set on your fastest DASD for the best read performance.
Subsequent copies of the ADS can reside on slower DASD without affecting overall
read performance.

Using MADS can also be helpful in DASD migration; for example, from a 3380
device to a 3390 device.

To create a copy of an area data set, issue the DBRC command INIT.ADS. In the
AREA(name) parameter, specify the name of the original ADS as it is recorded in the
RECON data set. Issue the INIT.ADS command for each additional copy. For more
information about creating MADS, see the INIT.ADS command in IMS Version 13
Commands, Volume 3: IMS Component and z/OS Commands.

If an ADS fails to open during normal open processing of a DEDB, none of the
copies of the ADS can be allocated, and the area is stopped. However, when open
failure occurs during emergency restart, only the failed ADS is deallocated and
stopped. The other copies of the ADS remain available for use.
Related concepts:
“DEDB area design guidelines” on page 458

Record deactivation
If an error occurs while an application program is updating a DEDB, it is not
necessary to stop the database or the area.

IMS continues to allow application programs to access that area, and it only
prevents them from accessing the control interval in error. If multiple copies of the
ADS exist, one copy of the data is always available. (It is unlikely that the same

Chapter 22. Designing Fast Path databases 463

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_dbfhdc4044.htm#ims_dbfhdc4044
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_dbfhdc4044.htm#ims_dbfhdc4044

control interval is in error in seven copies of the ADS.) IMS automatically
deactivates a record when a count of 10 errors is reached.

Record deactivation minimizes the effect of database failures and errors to the data
in these ways:
v If multiple copies of an area data set are used, and an error occurs while an

application program is trying to update that area, the error does not need
immediate correction. Other application programs can continue to access the
data in that area through other available copies of that area.

v If a copy of an area has errors, you can create a new copy from existing copies
of the ADS using the DEDB Data Set Create utility. The copy with the errors can
then be destroyed.

Physical child last pointers
The PCL pointer makes it possible to access the last physical child of a segment
type directly from the physical parent. Using the INSERT rule LAST avoids the
need to follow a potentially long physical child pointer chain.

Subset pointers
Subset pointers help you avoid unproductive get calls when you need to access the
last part of a long segment chain.

These pointers divide a chain of segment occurrences under the same parent into
two or more groups, or subsets. You can define as many as eight subset pointers
for any segment type, dividing the chain into as many as nine subsets. Each subset
pointer points to the start of a new subset.

Restrictions: When you unload and reload a DEDB containing subset pointers,
IMS does not automatically retain the position of the subset pointers. When
unloading the DEDB, you must note the position of the subset pointers, storing the
information in a permanent place. (For example, you could append a field to each
segment, indicating which subset pointer, if any, points to that segment.) Or, if a
segment in a twin chain can be uniquely identified, identify the segment a subset
pointer is pointing to and add a temporary indication to the segment for reload.
When reloading the DEDB, you must redefine the subset pointers, setting them to
the segments to which they were previously set.
Related concepts:

Processing Fast Path DEDBs with subset pointer command codes (Application
Programming)

Designing a main storage database (MSDB)
This topic describes the choices you might need to make in designing an MSDB
and proposes guidelines to help you make these choices.

Consider the following list of questions when designing an MSDB database:
v How are virtual storage requirements for the database calculated?
v How are virtual storage requirements for the Fast Path buffer pool calculated?
v What are the storage requirements for the I/O area?
v Should FLD calls or other DL/I calls be used for improved MSDB and DEDB

performance?

464 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_processingdedbsubsetptrs.htm#ims_processingdedbsubsetptrs
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_processingdedbsubsetptrs.htm#ims_processingdedbsubsetptrs

v How can the difference in resource allocation between an MSDB and a DL/I
database be a key to good performance?

v What are the requirements in designing for minimum resource contention in a
mixed-mode environment?

v How is the number of MSDB segments loaded into virtual storage controlled?
v What are the auxiliary storage requirements for an MSDB?
v How can an MSDB be checkpointed?

Calculating virtual storage requirements for an MSDB
You can calculate the storage requirements for an MSDB by using a formula.

The formula for calculating the storage requirements for an MSDB is as follows:
(L + 4)S + C + 14F + X

where:

S = the number of segments in the MSDB as specified by the
member DBFMSDBx in the IMS.PROCLIB

L = the segment length as specified in the DBD member

C = 80 for non-related MSDBs without a terminal-related key, or
94 for the other types of MSDB

F = the number of fields defined in the DBD member

X = 2 if C + 14F is not a multiple of 4, OR
0 if C + 14F is a multiple of 4

MSDBs reside in the z/OS extended common storage area (ECSA).

Considerations for MSDB buffers
When calculating buffer requirements for an MSDB database, you should be aware
of a few considerations.

The following considerations apply during execution:
v Fast Path buffer requirements vary with the type of call to the MSDB.
v With a GHx/REPL call sequence, an entire segment is kept in the Fast Path

buffer until a sync point is reached. If the total size of a series of segments
exceeds the NBA (normal buffer allocation), the NBA parameter needs to be
adjusted rather than using the OBA (overflow buffer) on a regular basis. You
should accommodate the total number of segments used between sync points.

v When using a FLD call, the VERIFY and CHANGE logic reside in the Fast Path
buffer.

Related concepts:
“Designing a DEDB or MSDB buffer pool” on page 474

Calculating the storage for an application I/O area
A GHx/REPL call requires an I/O area large enough to accommodate the largest
segment to be processed. The FLD call requires storage to accommodate the total
field search argument (FSA) requirements.

Understanding resource allocation, a key to performance
The MSDB resource allocation scheme is different from that of DL/I.

Chapter 22. Designing Fast Path databases 465

For performance reasons, the understanding of resource allocation for MSDBs is
important.

An MSDB record can be shared by multiple users or be owned exclusively by one
user. The same record can have both statuses (shared and exclusive) at the same
time.

Updates to MSDBs are applied during sync point processing. The resource is
always owned in exclusive mode for the duration of sync point processing.

The different enqueue levels of an MSDB record, when a record is enqueued, and
the duration are summarized in the following table.

Table 70. Levels of enqueue of an MSDB record

Enqueue level When Duration

READ GH with no update intent From call time until sync point
(phase 1)¹

VERIFY/get calls Call processing

HOLD GH with update intent From call time until sync point
(phase 1)¹

At sync point, to reapply VERIFYs Phase 1 of sync point processing,
then released

UPDATE² At sync point, to apply the results of
CHANGE, REPL, DLET, or ISRT
calls

Sync point processing, then
released

Notes:

1. If there was no FLD/VERIFY call against this resource or if this resource is not
going to be updated, it is released. Otherwise, if only FLD/VERIFY logic has to
be reapplied, the MSDB record is enqueued at the HOLD level. If the same
record is involved in an update operation, it is enqueued at the UPDATE level
as shown in the table above.

2. At DLET/REPL call time, no enqueue activity takes place because it is the prior
GH call that set up the enqueue level.

The following table shows that the status of an MSDB record depends on the
enqueue level of each program involved. Therefore, it is possible for an MSDB
record to be enqueued with the shared and exclusive statuses at the same time. For
example, such a record can be shared between program A (GH call for update) and
program B (GU call), but cannot be shared at the same time with a third program,
C, which is entering sync point with update on the record.

Table 71. Example of MSDB record status: Shared (S) or Owned Exclusively (E).

Enqueue level in
program B

Enqueue level in program A

READ HOLD UPDATE

READ Shared Shared Exclusive

HOLD Shared Exclusive Exclusive

UPDATE Exclusive Exclusive Exclusive

466 Database Administration

The FLD/CHANGE call does not participate in any allocation; therefore,
FLD/CHANGE calls can be executed even though the same database record is
being updated during sync point processing.

If FLD/CHANGE and FLD/VERIFY calls are mixed in the same FLD call, when
the first FLD/VERIFY call is encountered, the level of enqueue is set to READ for
the remainder of the FLD call.

Designing to minimize resource contention
One reason to use an MSDB is its fast access to data and high availability for
processing.

To maintain high availability, you should design to avoid the contention for
resources that is likely to happen in a high transaction rate environment.

The following is a list of performance-related considerations. Some of the
considerations do not apply exclusively to MSDBs, but they are listed to give a
better understanding of the operational environment.
v Access by Fast Path transactions to DL/I databases and use of the alternate PCB

should be kept to a minimum. Use of the alternate PCB should be kept to a
minimum because FP transactions must contend for resources with IMS
transactions (some of which could be long running). Also, common sync point
processing is invoked and entirely serialized in the IMS control region.

v To avoid resource contention when sharing MSDBs between Fast Path and DL/I
transactions, You should try to make commit processing often and to avoid
long-running scans.

v GH for read/update delays any sync point processing that intends to update the
same MSDB resource. Therefore, GH logic should be used only when you
assume the referenced segments will not be altered until completion of the
transaction. If the resource is being updated, release is at the completion of sync
point. Otherwise, the release is at entry to sync point.

v The following consideration deals with deadlock prevention. Deadlock can occur
if transactions attempt to acquire (GH calls) multiple MSDB resources.
Whenever a request for an MSDB resource exists that is already allocated and
the levels involved are HOLD or UPDATE, control is passed to IMS to detect a
potential deadlock situation. Increase in path length and response time results.
The latter can be significant if a deadlock occurs, thus requiring the pseudo
abend of the transaction.
In order to reduce the likelihood of deadlocks caused by resource contention,
sync point processing enqueues (UPDATE level) MSDB resources in a defined
sequence. This sequence is in ascending order of segment addresses. MSDB
segments are acquired in ascending order of keys within ascending order of
MSDB names, first the page-fixed ones then the pageable MSDBs.
The application programmer can eliminate potential deadlock situations at call
time by also acquiring (GH calls) MSDB resources using the same sequence.

v From the resource allocation scheme discussed earlier, you probably realize that
FLD logic should be used whenever possible instead of GH/REPL logic.
– The FLD/VERIFY call results in an enqueue at the READ level, and if no

other levels are involved, then control is not passed to IMS. This occurrence
results in a shorter path length.

– The FLD/CHANGE call, when not issued in connection with VERIFY logic
does not result in any enqueue within either Fast Path or IMS.

Chapter 22. Designing Fast Path databases 467

– FLD logic has a shorter path length through the Program Request Handler,
since only one call to process exists instead of two needed for GH/REPL
logic.

– The FLD/CHANGE call never waits for any resource, even if that same
resource is being updated in sync point processing.

– The FLD/VERIFY call waits only for sync point processing during which the
same resource is being updated.

– With FLD logic, the resource is held in exclusive mode only during sync point
processing.

In summary, programming with FLD logic can contribute to higher transaction
rates and shorter response times.

The following examples show how the MSDB record is held in exclusive mode:

The following notes are for the preceding figure:
1. MSDB record R1 is held in exclusive mode against:
v Any MSDB calls except CHANGE calls
v Any other sync point processing that intends to update the same record

2. MSDB record R1 is held in exclusive mode against:
v Any other GH for update
v Any other sync point processing that intends to update the same record

The following notes are for the preceding figure.
1. MSDB record R1 is held in exclusive mode against:
v Any MSDB calls except CHANGE calls
v Any other sync point processing that intends to update the same record

2. MSDB record is held in exclusive mode for the duration of the FLD call against
any other sync point processing that intends to update the same resource

Figure 234. First example MSDB record held in exclusive mode

Figure 235. Second example MSDB record held in exclusive mode

468 Database Administration

Choosing MSDBs to load and page-fix
Deciding which MSDBs to load and page-fix involves a trade-off between desired
application performance and the amount of real storage available. This decision is
made with total Fast Path application requirements in mind.

IMS system initialization requires additional information before MSDBs can be
loaded and page fixed. This information is specified in member DBFMSDBx of
IMS.PROCLIB. This member is called by executing the control region startup
procedure IMS. The suffix 'x' matches the parameter supplied in the MSDB
keyword of the EXEC statement in procedure IMS.

The control information that loads and page fixes MSDBs is in 80-character record
format in member DBFMSDBx. Either you supply this information or it can be
supplied by the output of the MSDB maintenance utility. When the /NRE command
requests MSDBLOAD, the definition of the databases to be loaded is found in the
DBFMSDBx procedure.

The definition in DBFMSDBx can represent a subset of the MSDBs currently on the
sequential data set identified by DD statement MSDBINIT. Explicitly state each
MSDB that you want IMS to load. If each MSDB is not explicitly stated, IMS
abends.

The format for DBFMSDBx is as follows:

►► DBD=dbd_name, NBSEGS=nnnnnnnn
,F

►◄

dbd_name
The DBD name as specified during DBDGEN.

nnnnnnnn
The number you specify of expected database segments for this MSDB.
This number must be equal to or great than the number of MSDB
segments loaded during restart.

The NBRSEGS parameter is also used to reserve space for terminal-related
dynamic MSDBs for which no data has to be initially loaded.

F The optional page-fix indicator for this MSDB.

If the MSDBs are so critical to your Fast Path applications that IMS should not run
without them, place a first card image at the beginning of the DBFMSDBx member.
For each card image, the characters “MSDBABND=n” must be typed without
blanks, and all characters must be within columns 1 and 72 of the card image.
Four possible card images exist, and each contains one of the following sets of
characters:

MSDBABND=Y
This card image causes the IMS control region to abend if an error occurs
while loading the MSDBs during system initialization. Errors include:
v Open failure on the MSDBINIT data set
v Error in the MSDB definition
v I/O error on the MSDBINIT data set

Chapter 22. Designing Fast Path databases 469

MSDBABND=C
This card image causes the IMS control region to abend if an error occurs
while writing the MSDBs to the MSDBCP1 or MSDBCP2 data set in the initial
checkpoint after IMS startup.

MSDBABND=I
This card image causes the IMS control region to abend if an error occurs
during the initial load of the MSDBs from the MSDBINIT data set, making one
or more of the MSDBs unusable. These errors include data errors in the
MSDBINIT data set, no segments in the MSDBINIT data set for a defined
MSDB, and those errors described under “MSDBABND=Y.”

MSDBABND=A
This card image causes the IMS control region to abend if an error occurs
during the writing of the MSDBs to the MSDBCPn data set (described in
“MSDBABND=C”), or during the initial load of the MSDBs from the
MSDBINIT data set (described in “MSDBABND=I”).

MSDBABND=B
This card image causes the IMS control region to abend if an error occurs
during the writing of the MSDBs to the MSDBCPn data set (described in
“MSDBABND=C”), or during the loading of the MSDBs in system initialization
(described in “MSDBABND=Y”).

Auxiliary storage requirements for an MSDB
DASD space is needed to keep image copies of MSDBs when they are dumped at
system and shutdown checkpoints. The data sets involved are the MSDBCP1 and
MSDBCP2 data sets.

The same calculations apply to the MSDBDUMP data set, which contains a copy of
the MSDBs following a /DBDUMP DATABASE MSDB command.

The data sets just discussed are written in 2K-byte blocks. Because only the first
extent is used, the allocation of space must be on cylinder boundaries and be
contiguous.

Space allocation is calculated like this:
SPACE=(2048,(R),,CONTIG,ROUND)

The calculation of the number of records (R) to be allocated can be derived from
the formula:

(E + P + 2047)/2048

where:

E = main storage required, in bytes, for the Fast Path extension of the
CNTs (ECNTs)

P = main storage required for all MSDBs as defined by
the PROCLIB member DBFMSDBx

E is determined by the following formula:

E = (20 + 4D)T

where:

470 Database Administration

D = number of MSDBs using logical terminal names as keys

T = total number of logical terminal names defined
in the system

High-speed sequential processing (HSSP)
High-Speed Sequential Processing (HSSP) is a function of Fast Path that handles
sequential processing of DEDBs.

Benefits of the HSSP function
The high-speed sequential processing (HSSP) function provides a number of
benefits.

Some of the benefits of the HSSP function include:
v HSSP generally has a faster response time than regular batch processing.
v HSSP optimizes sequential processing of DEDBs.
v HSSP reduces program execution time.
v HSSP typically produces less output than regular batch processing.
v HSSP reduces DEDB updates and image copy operation times.
v HSSP image copies can assist in database recovery.
v HSSP locks at UOW level to ease “bottle-necking” of cross IRLM

communication.
v HSSP uses private buffer pools, which reduces the impact on NBA/OBA buffers.
v HSSP allows for execution in both a mixed mode environment, concurrently

with other programs, and in an IRLM-using global sharing environment.
v HSSP optimizes database maintenance by allowing the use of the image-copy

option for an updated database.
Related concepts:
“Limitations and restrictions when using HSSP”
“HSSP processing option H (PROCOPT=H)” on page 472
Related tasks:
“Using HSSP” on page 472

Limitations and restrictions when using HSSP
Though HSSP can execute in a mixed-mode environment as well as concurrently
with other programs, and in an environment with global sharing using IRLM; a
program using HSSP can only execute as a non-message-driven BMP.

Other restrictions and limitations of HSSP include:
v Only one HSSP process can be active on an area at any given time. The /DIS

AREA command identifies the IMSID of any HSSP job processing an area.
v HSSP processing and online utilities cannot process on the same area

concurrently.
v Non-forward referencing while using HSSP is not allowed.
v Programs using HSSP must properly process the 'GC' status code by following it

with a commit process.

Restrictions and limitations involving image copies include:

Chapter 22. Designing Fast Path databases 471

v The image copy option is available only for HSSP processing.
v HSSP image copying is allowed only if PROCOPT = H.
v The image copy process can only be done if a database is registered with DBRC.

In addition, image copy data sets must be initialized in DBRC.

The following restrictions and limitations apply for PROCOPT=H:
v PROCOPT=H is allowed only for DEDBs.
v PROCOPT=H is not allowed on the segment level, only on the PCB level.
v Backward referencing while using HSSP is not allowed. You cannot use an HSSP

PCB to refer to a prior UOW in a DEDB.
v Only one PROCOPT=H PCB per database per PSB is allowed.
v A maximum of four PROCOPTs can be specified, including H.
v PROCOPT=H must be used with other Fast Path processing options, such as GH

and IH.
v When a GC status code is returned, the program must cause a commit process

before any other call can be made to that PCB.
v An ACBGEN must be done to activate the PROCOPT=H.
v H is compatible with all other PROCOPTs except for PROCOPT=O.
Related concepts:
“Benefits of the HSSP function” on page 471
“HSSP processing option H (PROCOPT=H)”

Using HSSP
To use HSSP, you must specify PROCOPT=H during PSBGEN.

Additionally, you need to make sure that the programs using HSSP properly
process the 'GC' status code by following it with a commit process.

HSSP functions similarly to utilities, is subject to the same requirements as utilities,
and uses utility private buffers in addition to common buffers.

HSSP includes the image-copy option and the ability to set area ranges. To use
these functions, you need one or more of the following:
v The SETR statement
v The SETO statement
v A DFSCTL data set for the dependent regions
v DBRC
v PROCOPT=H
Related concepts:
“Benefits of the HSSP function” on page 471
Related reference:

High-speed sequential processing control statements (System Definition)

HSSP processing option H (PROCOPT=H)
PROCOPT=H is a PSBGEN OPTION. It allows you to define whether processing,
with respect to a PCB, should be treated as an HSSP process.

472 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_hssp_control_statements.htm#ims_hssp_control_statements

The use of PROCOPT=H provides HSSP capability for the application program
using this PSB. Following is an example of macros and keywords for a PSBGEN
using PROCOPT=H:
Label PCB TYPE = DB

,DBDNAME = name
,PROCOPT = AH

Label is an optional parameter of the PCB macro. It can be up to 8 characters long
and is identical to the label on the associated SETO or SETR statements. H is
compatible with any other Fast Path PROCOPT, except for PROCOPT=O, and
PROCOPT=H can be used in one or more PCBs.

Each PCB that includes a specification of PROCOPT=H uses additional space in
the EPCB pool in ECSA storage. To help size the EPCB pool, the output of the ACB
Maintenance utility includes message DFS0943I, which lists the minimum and
maximum amount of storage that the associated PSB requires in the EPCB pool.
Until the PSB is scheduled, however, the exact amount of additional storage that
the PSB requires cannot be predicted.
Related concepts:
“Benefits of the HSSP function” on page 471
“Limitations and restrictions when using HSSP” on page 471
Related reference:

High-speed sequential processing control statements (System Definition)

Image-copy option
Selecting the image-copy option with HSSP reduces the total elapsed times of
DEDB updates and subsequent image-copy operations.

As database administrator, you decide whether to make an image copy of a
database using HSSP. If you specify image copying, HSSP creates an asynchronous
copy that is similar to a concurrent image copy.

The image copy process can only be done if a database is registered with DBRC. In
addition, image copy data sets must be initialized in DBRC.

HSSP image copies can also be used for database recovery. However, the Database
Recovery Utility must know that an HSSP image copy is supplied.
Related concepts:
Chapter 26, “Database backup and recovery,” on page 559

HSSP image copy (System Administration)

IMS failure recovery (Operations and Automation)

UOW locking
In a globally shared environment, data is shared not only between IMS
subsystems, but also across central processor complexes (CPC).

In such an environment, communication between two IRLMs could potentially
“bottleneck” and become impeded. To ease this problem, HSSP locks at a UOW
level in update mode, reducing the locking overhead. Non-HSSP or DEDB online
processing locks at a UOW level in a shared mode. Otherwise, the locking for
DEDB online processing is at the CI level. For information on UOW locking, refer
to IMS Version 13 System Administration.

Chapter 22. Designing Fast Path databases 473

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_hssp_control_statements.htm#ims_hssp_control_statements
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/dbrc_admin/ims_hsspic.htm#ims_hsspic
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.oag/ims_imsfailure_recovery.htm#ims_imsfailure_recovery

Private buffer pools

HSSP dynamically allocates up to three times the number of CIs per area in one
UOW, with each buffer being a CI in size.

HSSP uses the private buffers for reading RAP CIs and the common buffers for
reading IOVF CIs. An FW status code may be received during the run of an HSSP
job when NBA has been exceeded just as in a non-HSSP job.

The private buffer pools are located in 31-bit extended common storage (ECSA).
The common buffers are in located in ECSA or, if the Fast Path 64-bit buffer
manager is enabled, in 64-bit storage.

Designing a DEDB or MSDB buffer pool
Buffers needed to fulfill requests resulting from database calls are obtained from a
global pool called the Fast Path buffer pool.

If you are using the Fast Path 64-bit buffer manager, IMS creates and manages the
Fast Path buffer pools for you and places DEDB buffers in 64-bit storage. When the
Fast Path 64-bit buffer manager is enabled, you do not need to design DEDB or
MSDB buffer pools or specify the DBBF, DBFX, and BSIZ parameters that define
Fast Path buffer pools.

You can enable the Fast Path 64-bit buffer manager by specifying FPBP64=Y and
FPBP64M in the DFSDFxxx PROCLIB member. When the Fast Path 64-bit buffer
manager is enabled, IMS ignores the DBBF, DBFX, and BSIZ parameters, if
specified.

If you are not using the Fast Path 64-bit buffer manager, you must specify the
characteristics of the pool yourself during IMS system definition and during IMS
startup.

When specifying the characteristics yourself, three parameters characterize the Fast
Path buffer pool:

DBBF
Total number of buffers.

The buffer pool is allocated at IMS startup in the ECSA or, if FPBUFF=LOCAL
is specified in DFSFDRxx, in the FDBR private region. During emergency
restart processing, the entire buffer pool can be briefly page-fixed. Consider the
amount of available real storage when setting the DBBF value. IMS writes the
total number of buffers to the X'5937' log.

For more information about page-fixing IMS resources, see IMS Version 13
System Administration.

DBFX
System buffer allocation.

This is a set of buffers that are page fixed during IMS initialization. The value
should approximate the maximum number of buffers that are expected to be
active in output thread processing at any one time. If the value is too small,
dependent regions might have to wait for buffers.

BSIZ
Buffer size.

474 Database Administration

The size must be larger than or equal to the size of the largest CI of any DEDB
to be processed. The buffer size can be up to 28 KB.

Related concepts:
“Considerations for MSDB buffers” on page 465

Fast Path buffer uses
Fast Path buffers are used to hold various types of Fast Path data.

Fast Path buffers are used to hold:
v Update information such as:

– MSDB FLD/VERIFY call logic
– MSDB FLD/CHANGE call logic
– MSDB updates (results of REPL, ISRT, and DLET calls)
– Inserted SDEP segments

v Referenced DEDB CIs from the root addressable part and the sequential
dependent part.

v Updated DEDB CIs from the root addressable part.
v SDEP segments that have gone through sync point. The SDEP segments are

collected in the current SDEP segment buffer. One such buffer allocated for each
area defined with the SDEP segment type exists. This allocation takes place at
area open time.

Fast Path 64-bit buffer manager
The Fast Path 64-bit buffer manager autonomically controls the number and size of
Fast Path buffer pools, including buffer pools for data entry databases (DEDB),
main storage databases (MSDB), and Fast Path system services. The Fast Path
64-bit buffer manager eliminates the need for system programmers to manually set
buffer pool specifications during system definition.

The Fast Path 64-bit buffer manager also places the DEDB buffer pools above the
bar in 64-bit control region private storage, which reduces the usage of ECSA
storage.

When the Fast Path 64-bit buffer manager is used, the following items continue to
be managed in ECSA storage:
v Fast Path buffer for MSDB databases
v Buffers for inserting sequential dependent (SDEP) segments
v Buffers for system services
v Buffer headers
v Internal IMS work areas for FLD calls and MSDBs

When the Fast Path 64-bit buffer manager is not used, the number and size of Fast
Path buffer pools must be set during system definition by using the DBBF, DBFX,
and BSIZ execution parameters, all Fast Path buffer pools are placed in 32-bit
ECSA storage, dependent region access to overflow buffers is serialized, and, after
IMS is started, the number and size of the Fast Path buffer pools cannot be
changed without stopping and restarting IMS.

The Fast Path 64-bit buffer manager is enabled by one parameter, FPBP64, in the
Fast Path section (SECTION=FASTPATH) of the DFSDFxxx PROCLIB member. When
enabled, the Fast Path 64-bit buffer manager allocates additional buffer subpools

Chapter 22. Designing Fast Path databases 475

when needed. Also, if a database is added to the online IMS system and none of
the active buffer subpools can accommodate the CI size of the database, the Fast
Path 64-bit buffer manager allocates a new buffer subpool of the appropriate size.

Requirements: The Fast Path 64-bit buffer manager requires:
v A minimum of 2.1 gigabytes of 64-bit storage.
v If the Fast Path 64-bit buffer manager is used on systems that are being tracked

by a Fast Database Recovery (FDBR) address space, the DFSDF= keyword must
be specified on the FDR procedure.

Because the Fast Path 64-bit buffer manager places the DEDB buffer pools in 64-bit
storage, more buffer pools can be allotted to each dependent region that issues
calls against a DEDB. For each additional buffer pool, the usage of ECSA storage
increases only by the amount needed for the buffer header. The more buffers that a
dependent region has available, the more work an application program can
perform between checkpoints.

The Fast Path 64-bit buffer manager also enables multiple dependent regions to
access overflow buffers in parallel, eliminating contention among dependent
regions for overflow buffers.

The maximum number of buffers that can be allocated to a dependent region, both
normal and overflow buffers combined, is determined by the NBA and OBA
parameters in the dependent region definition and is not limited by the Fast Path
64-bit buffer manager.

When the Fast Path 64-bit buffer manager is enabled:
v You can change database CI sizes without having to adjust the buffer sizes to

match. If no active buffer subpools can accommodate a new or changed CI size,
the Fast Path 64-bit buffer manager automatically allocates a buffer subpool with
the correct CI size.

v You can display statistics for Fast Path buffers by issuing the IMS type-2
command QUERY POOL TYPE(FPBP64).

v You can capture usage statistics for the Fast Path 64-bit buffers by issuing the
command UPDATE IMS SET(LCLPARM(FPBP64STAT(Y))). IMS captures the
usage statistics for each unit of work in a dependent region and writes the
statistics to the online log data set as X'5945' log records, which are mapped by
macros DBFL5945 and DBFBPND6.

v You can see if the logging of Fast Path 64-bit buffer usage statistics is enabled in
an IMS system by using the QUERY IMS SHOW (ALL | LOCAL) command.

Related concepts:
“Designing a DEDB buffer pool in the DBCTL environment” on page 480

Normal buffer allocation (NBA)
Fast Path regions and IMS regions accessing Fast Path resources require that the
number of buffers to be allocated as normal buffers be specified in the region
startup procedure by using the NBA startup parameter.

Because buffers allocated as normal buffers are used first, the number of normal
buffers allocated must accommodate most of the transaction requirements.

The number of buffers a transaction or a sync interval is allowed to use must be
specified for each region if Fast Path resources are likely to be accessed.

476 Database Administration

The combined value of the NBA and OBA parameters define the maximum
number of buffers that IMS can allocate to the region.

If you use the Fast Path 64-bit buffer manager, the number of normal buffers
specified by the NBA parameter are page fixed in the Fast Path buffer pool when
the buffers are allocated. If you do not use the Fast Path 64-bit buffer manager, the
number of normal buffers specified by the NBA parameter are page fixed in the
Fast Path buffer pool at the start of the region.

Overflow buffer allocation (OBA)
The overflow buffer allocation (OBA) is optional and is used for exceptional buffer
requirements when the normal buffer allocation (NBA) has been exhausted.

If you use the Fast Path 64-bit buffer manager, access to the overflow buffers is
multi-threaded and multiple regions can use overflow buffers at the same time.

If you do not use the Fast Path 64-bit buffer manager, the access to the overflow
buffers by a region is dependent on obtaining a latch that serializes all regions
currently in an overflow buffer state. If the latch is not available, the region has to
wait until it is available. After the latch has been obtained, the NBA value is
increased by the OBA value and normal processing resumes. The overflow buffer
latch is released during sync point processing. At any point in time, only the
largest OBA request among all the active regions is page fixed in the Fast Path
buffer pool.

When the Fast Path 64-bit buffer manager is used, the combined value of the NBA
and OBA parameters specified for a dependent region define the maximum
number of buffers that the Fast Path 64-bit buffer manager can allocate to that
region.

Fast Path buffer allocation algorithm
Fast Path buffers are allocated on demand up to a limit specified by the NBA
parameter for each dependent region. Buffers so specified are called NBA to be
used by one sync point interval.

Before satisfying any request from the NBA allocation, an attempt is made to reuse
any already allocated buffer containing an SDEP CI. This process goes on until the
NBA limit is reached. From that point on, a warning in the form of an FW status
code returned to Fast Path database calls is sent to BMP regions. MD and MPP
regions do not get this warning.

The next request for an additional buffer causes the buffer stealing facility to be
invoked and then the algorithm examines each buffer and CI already allocated. As
a result, buffers containing CIs being released are sent to a local queue (SDEP
buffer chain) to be reused by this sync interval.

If, after invoking the buffer stealing facility, no available buffer is found, a request
for the overflow buffer latch is issued. The overflow buffer latch governs the use of
an additional buffer allocation called overflow buffer allocation (OBA). The OBA
allocation is also specified as a parameter at region start time. From that point on,
any time a request cannot be satisfied locally, a buffer is acquired from the OBA
allocation until the OBA limit is reached. At that time, MD and BMP regions have
their FW status code replaced by an FR status code after an internal ROLB call is
performed. In MD and MPP regions, the transaction is abended and stopped.
Related concepts:

Chapter 22. Designing Fast Path databases 477

“Enqueue level of segment CIs” on page 198

Fast Path buffer allocation when the DBFX parameter is used
From the total number of Fast Path buffers specified by the DBBF parameter, IMS
set asides a number of the buffers to use for DEDB writes. The number of buffers
that IMS sets aside is specified by the DBFX parameter.

The result of one transaction or sync interval is written back by one output thread.
These output threads run from the control region in SRB mode. Buffers allocated to
an output thread are therefore not available to dependent regions until after the CI
they contain is written back.

If the Fast Path buffer pool is defined exactly as the sum of all NBAs, dependent
regions must wait for the buffers to come back to the global pool. Fast Path regions
can process the next transaction as soon as the sync point completes. Sync point
processing does not wait for the output thread to complete. The allocation of
buffers is page fixed at the start of the first region specifying an NBA request.

If you use the Fast Path 64-bit buffer manager, IMS manages the Fast Path buffers
for you and you do not specify need to specify the DBFX, DBBF, or BSIZ
parameters. The allocation of buffers is page fixed when the buffers are allocated.

Determining the Fast Path buffer pool size
If you are not using the Fast Path 64-bit buffer manager, you can calculate the
number of buffers a Fast Path buffer pool must contain by using the formula DBBF
≥ A + N + OBA + DBFX.

The terms in the formula above are described as follows:

DBBF Fast Path buffer pool size as specified

A Number of active areas that have SDEP segments

NBA Normal buffer allocation of each active region

N Total of all NBAs

OBA Largest overflow buffer allocation

DBFX System buffer allocation

Fast Path buffer performance considerations
The performance considerations for Fast Path buffers differ depending on whether
you are using the Fast Path 64-bit buffer manager.

If you are using the Fast Path 64-bit buffer manager to create and manage your
Fast Path buffer pools, IMS optimizes many aspects of the buffer pool performance
for you.

If you are not using the Fast Path 64-bit buffer manager, you might need to modify
the buffer pool specifications yourself to maintain optimum performance of the
buffer pools.

The following considerations apply to both buffers managed by the Fast Path
64-bit buffer manager and Fast Path buffers that are not managed by the Fast Path
64-bit buffer manager.

478 Database Administration

v An NBA value that is too large can increase the probability of contention (and
delays) for other transactions. All CIs can be acquired at the exclusive level and
be kept at that level until the buffer stealing facility is invoked. This occurrence
happens after the NBA limit is reached. Therefore, an NBA that is too large can
increase resource contention.

v A (NBA + OBA) value that is too small might result in more frequent
unsuccessful processing. This means an 'FR' status code condition for BMP
regions, or transaction abend for MD and MPP regions.

v Inquiry-only programs do not make use of an OBA specification, as buffers
already allocated are reused when the NBA limit is reached.

v IMS logs information about buffers and their use to the X'5937' log. This
information can be helpful in determining how efficiently the Fast Path buffers
are being used.

The following considerations apply only when Fast Path buffers are not managed
by the Fast Path 64-bit buffer manager.
v An incorrect specification of DBBF (too small) can result in the rejection of an

area open or a region initialization. The system calculates the size of the buffer
pool and rejects the open or initialization if the actual DBBF value is smaller.

v A DBFX value that is too small is likely to cause region waits and increase
response time.

v An NBA value that is too small might cause the region processing to be
serialized through the overflow buffer latch and again cause delays.

Related tasks:
“Determining the Fast Path buffer pool size” on page 478

The NBA limit and sync point
In BMP regions, when the NBA limit is reached, an 'FW' status code is returned.
This status code is presented to every subsequent Fast Path database call until the
OBA limit condition is reached.

The first occurrence of the 'FW' status code indicates no more NBA buffers exist.
This occurrence is a convenient point at which to request a sync point. Fast Path
resources (and others) would be released and the next sync point interval would
be authorized to use a new set of NBA buffers. The overflow buffer latch serializes
all the regions in an overflow buffer state and therefore causes delays in their
processing.

If processing is primarily sequential, the sync point should be invoked on a UOW
boundary crossing.
Related concepts:
“Processing option P (PROCOPT=P)” on page 461

The DBFX value and the low activity environment
If the IMS or Fast Path activity in the system is relatively low, log buffers are
written less often, and therefore output threads are scheduled or dispatched less
frequently. This situation is likely to result in many buffers waiting to be written
and therefore could cause wait-for-buffer conditions.

To alleviate or avoid wait-for-buffer conditions you can enable the Fast Path 64-bit
buffer manager, which manages Fast Path buffers for you dynamically. When the

Chapter 22. Designing Fast Path databases 479

Fast Path 64-bit buffer manager is enabled, IMS tracks buffer usage, adds or
removes buffers as needed, and ignores the DBBF, DBFX, and BSIZ parameters, if
they are specified.

If you are not using the Fast Path 64-bit buffer manager, specify a larger DBFX
value.

When the Fast Path 64-bit buffer manager is not used, a special case to be
considered is the BMP region loading or processing a DEDB and being the only
activity in the system. For example, assume an NBA of 20 buffers exists. To avoid a
wait-for-buffer condition, the DBFX value must be specified as between one or two
times the NBA value. This can result in a DBBF specification of three times the
NBA number, which gives 60 buffers to the Fast Path buffer pool.

Except for the following case, there is no buffer look-aside capability across
transactions or sync intervals (global buffer look-aside).

Assume that a region requests a DEDB CI resource that is currently being written
or is owned by another region that ends up being written (output thread
processing). Then, this CI and the buffer are passed to the requestor after the write
(no read required) completes successfully. Any other regions must read it from
disk.

Designing a DEDB buffer pool in the DBCTL environment
In a DBCTL environment, buffers needed to fulfill requests from database calls are
obtained from a global pool called the Fast Path buffer pool.

If you are using the Fast Path 64-bit buffer manager, IMS creates and manages the
Fast Path buffer pools for you and places DEDB buffers in 64-bit storage. When the
Fast Path 64-bit buffer manager is enabled, you do not need to design DEDB or
MSDB buffer pools or specify the DBBF, DBFX, and BSIZ parameters that define
Fast Path buffer pools.

You can enable the Fast Path 64-bit buffer manager by specifying FPBP64=Y in the
DFSDFxxx PROCLIB member. When the Fast Path 64-bit buffer manager is
enabled, IMS ignores the DBBF, DBFX, and BSIZ parameters, if specified.

If you are not using the Fast Path 64-bit buffer manager, you must specify the
characteristics of the pool yourself during IMS system definition and during IMS
startup.

When specifying the characteristics yourself, three parameters characterize the Fast
Path buffer pool:

DBBF
Total number of buffers.

The buffer pool is allocated at IMS startup in the ECSA or, if FPBUFF=LOCAL
is specified in DFSFDRxx, in the FDBR private region. IMS writes the total
number of buffers to the X'5937' log.

DBFX
System buffer allocation.

This is a set of buffers in the Fast Path buffer pool that is page fixed at startup
of the first region with access to Fast Path resources.

480 Database Administration

BSIZ
Buffer size.

The size must be larger than or equal to the size of the largest CI of any DEDB
to be processed. The buffer size can be up to 28 KB.

Related concepts:
“Fast Path 64-bit buffer manager” on page 475

Fast Path buffer uses in a DBCTL environment
Fast Path buffers are used to hold various types of Fast Path data.

Fast Path buffers are used to hold:
v Update information such as inserted SDEP segments.
v Referenced DEDB CIs from the root addressable part and the sequential

dependent part.
v Updated DEDB CIs from the root addressable part.
v SDEP segments that have gone through sync point. The segments are collected

in the current SDEP segment buffer. One buffer allocated for each area defined
with the SDEP segment type exists. This allocation takes place at area open time.

Normal buffer allocation for BMPs in a DBCTL environment
BMP regions accessing Fast Path resources require that the number of buffers to be
allocated as normal buffers be specified in the region startup procedure by using
the NBA startup parameter.

Because buffers allocated as normal buffers are used first, the number of normal
buffers allocated must accommodate most of the transaction requirements.

The number of buffers a transaction or a sync interval is allowed to use must be
specified for each region if Fast Path resources are likely to be accessed.

The combined value of the NBA and OBA parameters define the maximum
number of buffers that IMS can allocate to the region.

If you use the Fast Path 64-bit buffer manager, the number of normal buffers
specified by the NBA parameter are page fixed in the Fast Path buffer pool when
the buffers are allocated. If you do not use the Fast Path 64-bit buffer manager, the
number of normal buffers specified by the NBA parameter are page fixed in the
Fast Path buffer pool at the start of the region.

Normal buffer allocation for CCTL regions and threads
You must specify the normal buffer allocation for both CCTL regions and CCTL
threads when CCTL (coordinator control) regions require fast path resources.

To specify the normal buffer allocation, use the following parameters specified in
the database resource adapter (DRA) startup table:

CNBA
Specifies the normal buffer allocation of each active CCTL region

FPB
Specifies the normal buffer allocation for CCTL threads

Chapter 22. Designing Fast Path databases 481

When the CCTL connects to DBCTL, the number of CNBA buffers is page fixed in
the fast path buffer pool. However, if CNBA buffers are not available, the connect
fails.

Each CCTL thread that requires DEDB buffers is assigned its fast path buffers
(FPB) out of the total number of CNBA buffers.

For more information about the CCTLNBA parameter, refer to IMS Version 13
System Administration.

Overflow buffer allocation for BMPs
Overflow buffer allocation for BMPs is optional and is used for exceptional buffer
requirements when the normal buffer allocation has been exhausted.

If you use the Fast Path 64-bit buffer manager, access to the overflow buffers is
multi-threaded and multiple BMP regions and CCTL threads can use overflow
buffers at the same time.

If you do not use the Fast Path 64-bit buffer manager, the access to the overflow
buffers by a BMP region or CCTL thread is dependent on obtaining a latch that
serializes all BMPs and CCTL threads currently in an overflow buffer state. If the
latch is not available, the region has to wait until it is available. After the latch has
been obtained, the NBA value is increased by the OBA value and normal
processing resumes. The overflow buffer latch is released during sync point
processing. At any point in time, only the largest OBA request among all the active
BMPs and CCTL threads is page fixed in the Fast Path buffer pool.

The combined value of the NBA and OBA parameters specified for a dependent
region define the maximum number of buffers that Fast Path can allocate to the
region.

Overflow buffer allocation for CCTL threads
OBA for CCTL threads is similar to that for BMPs. The OBA value used for each
thread is set with the FPOB parameter in the startup table.

This buffer allocation is optional and is used for exceptional buffer requirements
when the FPB has been exhausted. Its use is dependent on obtaining a latch that
serializes all BMPs and CCTL threads currently in an overflow buffer state. If the
latch is not obtained, the FPB value is increased by the FPOB value, and normal
processing resumes. The overflow buffer latch is released during sync point
processing. At any point in time, only the largest OBA/FPOB request among all
the active BMPs and CCTL threads is page fixed in the fast path buffer pool.

Fast Path buffer allocation algorithm for BMPs
FPBs are allocated on demand up to a limit specified at the start of the region.
Buffers specified as NBAs are used by one sync point interval.

Before satisfying any request from the NBA allocation, an attempt is made to reuse
any already allocated buffer containing an SDEP CI. This process goes on until the
NBA limit is reached. From that point on, a warning in the form of an 'FW' status
code returned to Fast Path database calls is sent to BMP regions.

The next request for an additional buffer causes the buffer stealing facility to be
invoked and then the algorithm examines each buffer and CI already allocated. As

482 Database Administration

a result, buffers containing CIs being released are sent to a local queue (SDEP
buffer chain) to be reused by this sync interval.

If, after invoking the buffer stealing facility, no available buffer is found, a request
for the overflow buffer latch is issued. The overflow buffer latch governs the use of
an additional buffer allocation, OBA. This allocation is also specified as a
parameter at region start time. From that point on, any time a request cannot be
satisfied locally, a buffer is acquired from the OBA allocation until the OBA limit is
reached. At that time, BMP regions have their 'FW' status code replaced by an 'FR'
status code after an internal ROLB call is performed.

Fast Path buffer allocation algorithm for CCTL threads
When a CCTL thread issues a schedule request using FPB, buffers are allocated out
of the CNBA total.

Unless CNBA=0 is specified or you are using the Fast Path 64-bit buffer manager,
if FPB cannot be satisfied out of CNBA, the schedule request fails. When either
CNBA=0 or the Fast Path 64-bit buffer manager is used, if FPB cannot be satisfied
out of CNBA, IMS acquires additional buffers to allow the thread to schedule.

Before satisfying any request from the FPB allocation, an attempt is made to reuse
any already allocated buffer containing an SDEP CI. This process goes on until the
FPB limit is reached. From that point on, a warning in the form of an 'FW' status
code returned to Fast Path database calls is sent to the CCTL threads.

The next request for an additional buffer causes the buffer stealing facility to be
invoked, and then the algorithm examines each buffer and CI already allocated. As
a result, buffers containing CIs being released are sent to a local queue (SDEP
buffer chain) to be reused by this sync interval.

If, after invoking the buffer stealing facility, no available buffer is found, a request
for the overflow buffer latch is issued. The overflow buffer latch governs the use of
an additional buffer allocation, OBA (FPOB). From that point on, any time a
request cannot be satisfied locally, a buffer is acquired from the FPOB allocation
until the FPOB limit is reached. At that time, CCTL threads have their 'FW' status
code replaced by an 'FR' status code after an internal ROLB call is performed.

Fast Path buffer allocation in DBCTL environments
IMS allocates Fast Path buffers because DEDB writes are deferred until after sync
point processing.

The result of one sync interval is written back by one output thread. These output
threads run from the control region in SRB mode. Buffers allocated to an output
thread are therefore not available to BMPs and CCTL threads until after the CI
they contain is written back.

If you use the Fast Path 64-bit buffer manager, IMS manages the allocation of Fast
Path buffers for you. The allocation of buffers is page fixed when the buffers are
allocated.

If you do not use the Fast Path 64-bit buffer manager, you specify the number of
buffers that IMS allocates by using the DBFX parameter. If the Fast Path buffer
pool is defined exactly as the sum of all NBAs, BMPs and CCTL threads must wait
for the buffers to come back to the global pool. BMPs and CCTL threads can
process the next transaction as soon as the sync point completes. Sync point

Chapter 22. Designing Fast Path databases 483

processing does not wait for the output thread to complete. The allocation of
buffers is page fixed at the start of the first region specifying an NBA or FPB
request.

Determining the size of the Fast Path buffer pool for DBCTL
If you are not using the Fast Path 64-bit buffer manager, you can calculate the
number of buffers a Fast Path buffer pool must contain in a DBCTL environment
by using the formula DBBF ≥ A + N + LO + DBFX + CN.

The terms in the formula above are described as follows:

DBBF Fast Path buffer pool size as specified

A Number of active areas that have SDEP segments

N Total of all NBAs

LO Largest overflow buffer allocation among active BMPs and CCTL threads

DBFX System buffer allocation

CN Total of all CNBAs

Fast Path buffer performance considerations for DBCTL
The performance considerations for Fast Path buffers differ depending on whether
you are using the Fast Path 64-bit buffer manager.

If you are using the Fast Path 64-bit buffer manager to create and manage your
Fast Path buffer pools, IMS optimizes many aspects of the buffer pool performance
for you.

If you are not using the Fast Path 64-bit buffer manager, you might need to modify
the buffer pool specifications yourself to maintain optimum performance of the
buffer pools.

The following considerations apply to both buffers managed by the Fast Path
64-bit buffer manager and Fast Path buffers that are not managed by the Fast Path
64-bit buffer manager.

An NBA/FPB value that is too large can increase the probability of contention (and
delays) for other BMPs and CCTL threads. All CIs can be acquired at the exclusive
level and be kept at that level until the buffer stealing facility is invoked. This
happens after the NBA limit is reached. Therefore, an NBA/FPB that is too large
can increase resource contention. Also, an FPB value that is too large indicates that
fewer CCTL threads can concurrently schedule fast path PSBs.

A (NBA + OBA) value that is too small might result in more frequent unsuccessful
processing. This means an 'FR' status code condition for BMP regions and CCTL
threads.

Inquiry-only BMP or CCTL programs do not make use of the overflow buffer
specification logic, as buffers already allocated are reused when the NBA/FPB limit
is reached.

IMS logs information about buffers and their use to the X'5937' log. This
information can be helpful in determining how efficiently the Fast Path buffers are
being used.

484 Database Administration

The following considerations apply only when Fast Path buffers are not managed
by the Fast Path 64-bit buffer manager.

An incorrect specification of DBBF (too small) can result in the rejection of an area
open or a region initialization. The system calculates the size of the buffer pool and
rejects the open or initialization if the actual DBBF value is smaller.

A DBFX value that is too small is likely to cause region waits and increase
response time.

An NBA/FPB value that is too small might cause the region processing to be
serialized through the overflow buffer latch and again cause delays.
Related tasks:
“Determining the size of the Fast Path buffer pool for DBCTL” on page 484

The NBA/FPB limit and sync point in a DBCTL environment
In BMP regions and CCTL threads, when the NBA/FPB limit is reached, an 'FW'
status code is returned. This status code is presented to every subsequent Fast Path
database call until the OBA/FPOB limit condition is reached.

The first occurrence of the 'FW' status code indicates no more NBA/FPB buffers
exist. This occurrence is a convenient point at which to request a sync point. Fast
Path resources (and others) would be released and the next sync point interval
would be authorized to use a new set of NBA/FPB buffers. The overflow buffer
latch serializes all the regions in an overflow buffer state and therefore causes
delays in their processing.
Related concepts:
“Processing option P (PROCOPT=P)” on page 461

Low activity and the DBFX value in a DBCTL environment
If the IMS or Fast Path activity in the system is relatively low, log buffers are
written less often and therefore output threads are scheduled or dispatched less
frequently. This situation is likely to result in many buffers waiting to be written
and therefore could cause wait-for-buffer conditions.

To alleviate or avoid wait-for-buffer conditions you can enable the Fast Path 64-bit
buffer manager, which manages Fast Path buffers for you dynamically. When the
Fast Path 64-bit buffer manager is enabled, IMS tracks buffer usage, adds or
removes buffers as needed, and ignores the DBBF, DBFX, and BSIZ parameters, if
they are specified.

If you are not using the Fast Path 64-bit buffer manager, specify a larger DBFX
value.

When the Fast Path 64-bit buffer manager is not used, a special case to be
considered is the BMP region loading or processing a DEDB and being the only
activity in the system. For example, assume that an NBA of 20 buffers exists. To
avoid a wait-for-buffer condition, the DBFX value must be between once or twice
the NBA value. This can result in a DBBF specification of three times the NBA
number, giving 60 buffers to the Fast Path buffer pool.

Except for the following case, there is no buffer look-aside capability across BMP
regions and CCTL threads or sync intervals (global buffer look-aside).

Chapter 22. Designing Fast Path databases 485

Assume that a region requests a DEDB CI resource that is currently being written
or is owned by another region that ends up being written (output thread
processing). Then, this CI and the buffer are passed to the requestor after the
successful completion of the write (no read required). Any other BMP regions and
CCTL threads must read it from disk.

Fast Path buffer allocation in IMS regions
IMS regions that access Fast Path resources must have the NBA and OBA
parameters specified in their startup procedures.

With MODE=MULT, these allocations must be large enough to accommodate all
buffer requirements for transactions processed between sync points.

With MODE=SNGL, transaction classes should be set up so transactions with
similar buffer requirements are run in the same region.

486 Database Administration

Chapter 23. Implementing database design

After you design your databases and application programs you must describe their
characteristics to IMS before you can use them.

You must describe the physical and logical characteristics of your databases to IMS
by coding and generating a database descriptor (DBD) for each database.

Before an application program can use the database, you must tell IMS the
application program's characteristics and use of data and terminals. You tell IMS
the application program characteristics by coding and generating a program
specification block (PSB).

Finally, before an application program can be scheduled for execution, IMS needs
the PSB and DBD information for the application program available in a special
internal format that is called an application control block (ACB). The following
diagram depicts how the information is gathered from a PSB and DBD.

Related concepts:
“Who attends code inspection 1” on page 32
Chapter 21, “Designing full-function databases,” on page 429
Chapter 22, “Designing Fast Path databases,” on page 457

DRDA
protocol

over
TCP/IPIMS JDBC

driver

IMS Explorer
for Development IM

S
C

o
n

n
e

c
t

Distributed environment z/OS environment

IMS

IMS
catalog

Open Database
Manager
(ODBM)

Native SQL

DBDLIB

ACBLIB

PSB
source

DBD
source

PSBLIB

Figure 236. Distributed and z/OS environments

© Copyright IBM Corp. 1974, 2016 487

Coding database descriptions as input for the DBDGEN utility
A database descriptor (DBD) is defined by a series of macro instructions that
describes such things as a database's organization and access method, the segments
and fields in a database record, and the relationships between types of segments.

After you have coded the DBD macro instructions, they are used as input to the
DBDGEN utility. This utility is a macro assembler that generates a DBD control
block and stores it in the IMS.DBDLIB library for subsequent use during database
processing.

If an IMS catalog is enabled, the information you code in the DBD macro
instructions also provides much of the database and application program metadata
that is stored in the IMS catalog. This metadata includes such things as field data
types, application program data structures, date and time formats, and more. The
metadata is read into the catalog primarily from the IMS.ACBLIB data set after the
ACB members are generated, but in some cases is also read directly from the
IMS.DBDLIB data set.

The following figure illustrates the DBD generation process.

The following JCL shows an example of the input to the DBDGEN utility. Separate
input is required for each database being defined.
//DBDGEN JOB MSGLEVEL=1
// EXEC DBDGEN,MBR=APPLPGM1
//C.SYSIN DD *

DBD required for each DBD generation
data set(or AREA) required for each data set group

(or AREA in a Fast Path DEDB)
SEGM required for each segment type
FIELD required for each DBD generation
LCHILD required for each secondary index or

logical relationship

Figure 237. The DBD generation process

488 Database Administration

XDFLD required for each secondary index relationship
.
.
.

DBDGEN required for each DBD generation
END required for each DBD generation

/*

In addition to the statements shown in the preceding example, the input to the
DBDGEN utility can also include the following macro statements:
v DFSMARSH, which defines data marshalling properties for individual fields
v DFSMAP and DFSCASE, which define alternative fields maps for a segment
Related tasks:
“Creating HALDB databases with the HALDB Partition Definition utility” on page
511
Related reference:

Database Description (DBD) Generation utility (System Utilities)

DBD statement overview
In the input, the DBD statement names the database being described and specifies
various attributes including its organization and its exit routines, if any.

Code only one DBD statement in the input deck.
Related reference:

DBD statements (System Utilities)

DATASET statement overview
The DATASET statement defines the physical characteristics of the data sets to be
used for the database.

At least one DATASET statement is required for each data set group in the
database. Depending on the type of database, up to 10 data set groups can be
defined. Each DATASET statement is followed by the SEGM statements for all
segments to be placed in that data set group.

The DATASET statement is not allowed for HALDB databases. Use either the
HALDB Partition Definition utility to define HALDB partitions or the DBRC
commands INIT.DB and INIT.PART

If the database is a DEDB, the AREA statement is used instead of the DATASET
statement.
Related reference:

DATASET statements (System Utilities)

AREA statement (System Utilities)

AREA statement overview
The AREA statement defines an area of a Fast Path data entry database (DEDB).

At least one AREA statement is required, but as many as 2,048 AREA statements
can be used to define multiple areas.

Chapter 23. Implementing database design 489

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdgen.htm#ims_dbdgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdstmt.htm#ims_dbdstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_datastmt.htm#ims_datastmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_areastmt.htm#ims_areastmt

All AREA statements must be put between the DBD statement and the first SEGM
statement.

The AREA statement is used for Fast Path DEDB database types only. Full-function
databases use the DATASET statement instead.
Related reference:
“AREA segment type format” on page 53

AREA statement (System Utilities)

DATASET statements (System Utilities)

SEGM statement overview
The SEGM statement defines a segment type in the database, the position of the
segment in the hierarchy, the physical characteristics of the segment, and the
relationship of the segment to other segments.

SEGM statements are put in the input deck in hierarchical sequence, and a
maximum of 15 hierarchical levels can be defined. The number of database
statements allowed depends on the type of database. SEGM statements must
immediately follow the data set or AREA statements to which they are related.
Related reference:

SEGM statements (System Utilities)
“SEGM segment type format” on page 80

FIELD statement overview
The FIELD statement defines a field within a segment type.

A FIELD statement is required for the following types of fields:
v Sequence field in a segment
v Fields that an application program refers to by name in a segment search

argument (SSA) of a DL/I call
v Fields referenced in a SENFLD statement in a PSB
v Fields referenced in an XDFLD statement

In the FIELD statements for each of the preceding field types, you must specify the
NAME parameter. When the NAME parameter is specified, the field name is
stored in the database data management block (DMB). To save storage in the DMB,
specify the EXTERNALNAME parameter only, unless the NAME parameter is
required.

You can also code FIELD statements to define data fields and structures to IMS
that would otherwise be defined only in application source code or copy books.
The advantage to coding these optional FIELD statements is that, when the IMS
catalog is enabled, application developers and others can query the IMS catalog for
metadata about these data fields and structures, instead of having to locate the
application source code or generate the metadata by using IMS Enterprise Suite
Explorer for Development. For these types of optional FIELD statements, if you
code the EXTERNALNAME parameter, the NAME parameter is not required.

FIELD statements can be put in the input deck in any order, except in the
following cases:

490 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_areastmt.htm#ims_areastmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_datastmt.htm#ims_datastmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_segmstmt.htm#ims_segmstmt

v FIELD statements must immediately follow the SEGM statement to which they
are related.

v A sequence field, if one is defined, must always be first
v If a FIELD statement specifies the CASENAME parameter, the FIELD statement

must follow the DFSCASE statement that is specified on the CASENAME
parameter

v If a FIELD statement specifies the DEPENDSON parameter, the FIELD statement
must follow the FIELD statement that is specified on the DEPENDSON
parameter

v If a FIELD statement specifies the REDEFINES parameter, the FIELD statement
must follow the FIELD statement that is specified on the REDEFINES parameter

v If a FIELD statement specifies the STARTAFTER parameter, the FIELD statement
must follow the FIELD statement that is specified on the STARTAFTER
parameter

v If a FIELD statement specifies the PARENT parameter, the FIELD statement
must follow the FIELD statement that is specified on the PARENT parameter

You can define up to 1,000 fields in a database.

Within each segment type, you can include up to 255 FIELD statements that
specify the NAME parameter. The NAME parameter enables a field for SSA
searches. If you omit the NAME parameter, there is no limit to the number of
FIELD statements that you can define for a segment, as long as the number of
fields defined does not exceed the maximum of 1000 fields for the database.
However, fields defined without the NAME parameter cannot be specified on an
SSA and are not searchable by IMS.

The definition of fields within a segment can overlap. For example, a date “field”
within a segment can be defined as three 2-byte fields and also as one 6-byte field
as shown in the following figure.

The technique of overlapping field definitions allows application programs to
access the same piece of data in various ways. To access the same piece of data in

Figure 238. Example of a date field within a segment defined as three 2–byte fields and one
6–byte field

Chapter 23. Implementing database design 491

various ways, you code a separate FIELD statement for each field. For the example
shown, you would code four FIELD statements, one for the total 6-byte date and
three for each 2-byte field in the date.
Related reference:

FIELD statements (System Utilities)

DFSMARSH statement overview
The DFSMARSH statement defines marshalling attributes for field data.

You can use the DFSMARSH statement to specify the following data marshalling
attributes for the data contained in a field:
v You can specify the code page or character encoding that defines the character

data in a field on the ENCODING parameter. The default is the EBCDIC code
page Cp1047.

v You can specify a data-conversion routine for IMS to use when converting field
data from the data type that IMS uses to physically store data to a data type
expected by an application program. You can specify an IMS-provided routine
on the INTERNALTYPECONVERTER parameter or a user-provided routine on
the USERTYPECONVERTER parameter.

v You can specify whether a decimal data type is signed or not on the ISSIGNED
parameter.

v The pattern to use for dates and times can be specified on the PATTERN
parameter.

v You can specify the properties that are used by a user-provided data-conversion
routine on the PROPERTIES parameter.

In the input to the DBD Generation utility, the DFSMARSH statement must
immediately follow the FIELD statement to which it applies.
Related reference:

DFSMARSH statements (System Utilities)

LCHILD statement overview
The LCHILD statement defines a secondary index or logical relationship between
two segment types, or the relationship between a HIDAM (or PHIDAM) index
database and the root segment type in the HIDAM (or PHIDAM) database.

LCHILD statements immediately follow the SEGM, FIELD, or XDFLD statement of
the segment involved in the relationship. Up to 255 LCHILD statements can be
defined for each database.

Restriction: The LCHILD statement cannot be specified for the primary index of a
PHIDAM database because the primary index is automatically generated.
Related reference:

LCHILD statements (System Utilities)

XDFLD statement overview
The XDFLD statement is used only when a secondary index exists.

It is associated with the target segment and specifies:
v The name of an indexed field.

492 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_fieldstmt.htm#ims_fieldstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dfsmarshstmt.htm#ims_marshalstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_lchildstmt.htm#ims_lchildstmt

v The name of the source segment. The source segment can be the same as the
target segment or a dependent of the target segment.

v The field in the source segment that contains the data that is used in the
secondary index.

Up to 32 XDFLD statements can be defined per segment. However, the number of
XDFLD and FIELD statements combined cannot exceed 255 per segment or 1000
per database.

Restriction: The CONST parameter is not allowed for a HALDB database. Shared
secondary indexes are not supported.
Related reference:

XDFLD statements (System Utilities)

DFSMAP statement overview
The DFSMAP statement defines a map that references a control field for a set of
map cases.

Each map case in a set references the map by the name defined on the NAME
parameter in the DFSMAP statement.

The map references the control field by the external name of the field on the
DEPENDINGON parameter of the DFSMAP statement.
Related tasks:
“Defining alternative field maps for a segment” on page 507
Related reference:

DFSMAP statements (System Utilities)

DFSCASE statement overview
The DFSCASE statement defines a map case, a conditional mapping of a set of
fields in a segment.

A map case has a name and an ID.

The fields that make up a map case specify the name of the map case that they
belong to on the CASENAME parameter in the FIELD statement.

The ID of a map case is specified on the CASEID parameter. In a segment instance,
the ID is inserted in a control field to indicate which map case is in use.

A map case ID can be either Cp1047 character data or hexadecimal data. The data
type of the ID is specified on the CASEIDTYPE parameter. The length of the
control field must be compatible with the data type selected for the map case ID.

Each map case belongs to a map, which is defined by the DFSMAP statement. The
map references the control field that determines which map case to use in a given
segment instance. The map case specifies the map that it belongs to on the
MAPNAME parameter.
Related reference:

DFSCASE statements (System Utilities)

Chapter 23. Implementing database design 493

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_xdfldstmt.htm#ims_xdfldstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dfsmapstmt.htm#ims_dfsmapstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dfscasestmt.htm#ims_dfscasestmt

DBDGEN and END statements overview
One DBDGEN statement and one END statement is put at the end of each DBD
generation input deck.

These statements specify:
v The end of the statements used to define the DBD (DBDGEN)
v The end of input statements to the assembler (END)
Related reference:

DBDGEN statements (System Utilities)

Coding program specification blocks as input to the PSBGEN utility
A PSB is a series of macro instructions that describes an application program's
characteristics, its use of segments and fields within a database, and its use of
logical terminals.

A PSB consists of one or more PCBs (program communication blocks). Of the two
types of PCBs, one is used for alternate message destinations, the other, for
application access and operation definitions.

After you code the PSB macro instructions, they are used as input to the PSBGEN
utility. This utility is a macro assembler that generates a PSB control block then
stores it in the IMS.PSBLIB library for subsequent use during database processing.

The following figure shows the PSB generation process.

The following JCL shows the structure of the deck used as input to the PSBGEN
utility.

Figure 239. The PSB generation process

494 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdgenstmt.htm#ims_dbdgenstmt

//PSBGEN JOB MSGLEVEL=1
// EXEC PSBGEN,MBR=APPLPGM1
//C.SYSIN DD *

PCB TYPE=TP required for output message destinations
PCB TYPE=DB required for each database the application program

can access
SENSEG required for each segment in the database the

application program can access
SENFLD required for each field in a segment that

the application program can access,
when field-level sensitivity is specified

PCB TYPE=GSAM

...
PSBGEN required for each PSB generation
END required for each PSB generation

/*

Related reference:
“PSB segment type format” on page 92
“PCB segment type format” on page 89

The alternate PCB statement
Two types of PCB statements can be placed in the input deck: the alternate PCB
statement and the database PCB statement.

The alternate PCB statement describes where a message can be sent when the
message's destination differs from the place where it was entered. Alternate PCB
statements must be put at the beginning of the input deck. More information on
alternate PCBs is contained in IMS Version 13 System Administration.

The database PCB statement
The database PCB statement defines the DBD of the database that the application
program will access.

Database PCB statements also define types of operations (such as get, insert, and
replace) that the application program can perform on segments in the database.
The database can be either physical or logical. A separate database PCB statement
is required for each database that the application program accesses. In each PSB
generation, up to 2500 database PCBs can be defined, minus the number of
alternate PCBs defined in the input deck. The other forms of statements that apply
to PSBs are SENSEG, SENFLD, PSBGEN, and END.

Attention: If the PROCOPT values allow a BMP application to insert, replace, or
delete segments in databases, ensure that the BMP application does not update a
combined total of more than 300 databases and HALDB partitions without
committing the changes.

All full-function database types, including logically related databases and
secondary indexes, that have uncommitted updates count against the limit of 300.
When designing HALDB databases, you should use particular caution because the
number of partitions in HALDB databases is the most common reason for
approaching the 300 database limit for uncommitted updates.

Chapter 23. Implementing database design 495

The SENSEG statement
The SENSEG statement defines a segment type in the database to which the
application program is sensitive.

A separate SENSEG statement must exist for each segment type. The segments can
physically exist in one database or be derived from several physical databases. If
an application program is sensitive to a segment beneath the root segment, it must
also be sensitive to all segments in the path from the root segment to the sensitive
segment. For example, in the following figure if D is defined as a sensitive
segment for an application program, B and A must also be defined as sensitive
segments.

An application program must be sensitive to all segments in the path to the
segment that you actually want to be sensitive. However, you can make the
application program sensitive to only the segment key in these other segments.
With this option, the application program does not have any access to the
segments other than the keys it needs to get to the sensitive segment. To make an
application sensitive to only the segment key of a segment, code PROCOPT=K in
the SENSEG statement. The application program will not be able to access any
other field in the segment other than the segment key. In the previous example, the
application program would be sensitive to the key of segment A and B but not
sensitive to A and B's data.

SENSEG statements must immediately follow the PCB statement to which they are
related. Up to 30000 SENSEG statements can be defined for each PSB generation.
Related reference:
“SS segment type format” on page 96

The SENFLD statement
The SENFLD statement is used only in parallel with field-level sensitivity and
defines the fields in a segment type to which the application program is sensitive.

The SENFLD statement, in conjunction with the SENSEG statement, helps you
secure your data. Each SENFLD statement must follow the SENSEG statement to
which it is related. Up to 255 sensitive fields can be defined for a given segment
type, and a maximum of 10000 can be defined for each PSB generation.

Figure 240. Example of a SENSEG relationship

496 Database Administration

The PSBGEN statement
This statement names the PSB and specifies various characteristics of the
application program, such as the language it is written in and the size of the
largest I/O area it can use. The input deck can contain only one PSBGEN
statement.

The END statement
One END statement is placed at the end of each PSB generation input deck.

The END statement specifies the end of input statements to the assembler.

Detailed instructions for coding PSB statements and examples of PSBs are
contained in of IMS Version 13 System Utilities.

Building the application control blocks (ACBGEN)
You can create application control blocks (ACBs) for each DBD and each PSB that is
used in your system by running either the ACB Maintenance utility or the ACB
Generation and Catalog Populate utility (DFS3UACB).

The utilities generate the ACBs from the database definitions (DBDs) and program
specification blocks (PSBs) in the IMS.DBDLIB and IMS.PSBLIB data sets that the
utility reads as input. Each generated ACB is stored as an ACB library member in
the IMS.ACBLIB data set.

Depending on which utility you use to generate the ACBs and whether the IMS
catalog is enabled, the IMS catalog can be populated either during the ACB
generation process or afterward.

The DFS3UACB utility generates the ACB and populates the IMS catalog in the
same job step, which ensures that the IMS catalog stays current with the ACB
library. If you use the ACB Maintenance utility, which only generates the ACB
members, the IMS catalog can be populated later by using the IMS Catalog
Populate utility (DFS3PU00). However, if you populate the IMS catalog later, you
risk running IMS with an IMS catalog that is not current to the ACB library.

Recommendation: If the IMS catalog is enabled in your system, use the
DFS3UACB utility to build your ACB members and populate the IMS catalog in a
single job step.

Chapter 23. Implementing database design 497

ACBs are loaded into storage for online use from the IMS.ACBLIB data set either
when the IMS control region is initialized or when an application program that
requires the ACB is scheduled, depending on whether the ACB is resident or
non-resident.

In online storage, the ACBs for PSBs and the ACBs for DBDs are stored separately
in a PSB pool and DMB pool, respectively. The storage for these pools must be
allocated by using sizes based on the number and size of each type of ACB
member.

If the program or database from which an ACB is built is defined as resident
during system definition, IMS loads the ACB into 31-bit storage during the
initialization of the IMS control region. Resident ACB members persist in storage
until IMS is shut down.

If the program or database from which an ACB is built is not defined as resident
during system definition, IMS loads the non-resident ACB into 31-bit storage only
when an application program that requires it is scheduled. Non-resident ACB
members persist in storage only until the storage allocated for the non-resident
ACBs is exhausted, at which time IMS frees storage by removing the ACBs that are
unused for the longest period.

Non-resident ACB members can also be cached in a 64-bit storage pool to
potentially improve the performance of program scheduling and reduce the usage
of 31-bit storage. When 64-bit caching is enabled, when a non-resident ACB is first
loaded into the 31-bit storage pool, it is also cached in the 64-bit storage pool.
Later, if any non-resident ACBs that were removed from online storage are
required by a scheduled application program, the ACBs are retrieved from 64-bit
storage instead of from the IMS.ACBLIB data set on DASD.

Input Output

DBDsPSBs

ACB
generation

IMS.DBDLIBIMS.PSBLIB
IMS.ACBLIB

IMS catalog

ACBs

Records
Control

statements

JCL

Figure 241. The ACB generation process

498 Database Administration

Caching ACBs in the 64-bit storage is enabled by specifying the ACBIN64
parameter on the DFSDFxxx PROCLIB member. You can display information about
the ACBs cached in 64-bit storage by using the type-2 command QUERY POOL
TYPE(ACBIN64).

The sizes of the PSB pools and DMB pools are determined by the number and size
of the ACB library members. Because PSBs and DMBs are stored together in 64-bit
storage pools, the size of a 64-bit storage pool must be large enough to contain all
of the non-resident PSBs and DMBs combined. The size of an ACB member is
reported by the Application Control Blocks (ACB) Maintenance utility when the
ACB members are built.

For execution in a batch environment, IMS can build ACBs dynamically or IMS can
use prebuilt ACBs. To build ACBs dynamically, DLI must be specified on the
PARM parameter of the batch startup procedure. To use prebuilt ACBs, DBB must
be specified on the PARM parameter of the batch startup procedure. Prebuilt ACBs
are stored in the IMS.ACBLIB data set pointed to by the IMSACBx DD statement
in the startup procedure. IMS provides the DLIBATCH procedure to run a batch
job that uses dynamically built ACBs and the DBBATCH procedure to run a batch
job that uses prebuilt ACBs. For information about these procedures, see IMS
Version 13 System Definition.

For batch application programs, IMS does not support 64-bit caching of ACBs.

For online application programs, ACBs must be prebuilt.

For GSAM DBDs, ACBs cannot be prebuilt. However, ACBs can be prebuilt for
PSBs that reference GSAM databases.

You can prebuild ACBs for all PSBs in IMS.PSBLIB, for a specific PSB, or for all
PSBs that reference a particular DBD. Prebuilt ACBs are kept in the IMS.ACBLIB
library. The IMS.ACBLIB library is not used if ACBs are not prebuilt. When ACBs
are prebuilt and an application program is scheduled, the application program's
ACB is read from IMS.ACBLIB directly into storage. This means that less time is
required to schedule an application program. In addition, less storage is used if
prebuilt ACBs are used.

When the ACBs are prebuilt by a utility, the utility checks for errors in the names
that are used in the PSB and the DBDs that are associated with the PSB. If
erroneous cross-references are found, the utility prints appropriate error messages.

IMS.ACBLIB must be used exclusively. Because of this, the utility that generates
the ACBs can be run only using an IMS.ACBLIB that is not currently allocated to
an active IMS system. Also, because IMS.ACBLIB is modified, it cannot be used for
any other purpose during execution of the utility that is generating the ACBs.

You can change ACBs or add ACBs in an “inactive” copy of ACBLIB and then
make the changed or new members available to an active IMS online system by
using the online change function.

Additional information about creating and sizing DMB pools, PSB pools, and 64-bit
non-resident ACB storage pools can be found in:
v IMS Version 13 System Administration

v IMS Version 13 System Definition

Related concepts:

Chapter 23. Implementing database design 499

Allocating ACBLIB data sets (System Definition)
Related tasks:
“Steps for altering an online HALDB database” on page 732
“Activating database changes by using the online change function” on page 751
Related reference:

Application Control Blocks Maintenance utility (System Utilities)

Database Description (DBD) Generation utility (System Utilities)

Program Specification Block (PSB) Generation utility (System Utilities)

ACB Generation and Catalog Populate utility (DFS3UACB) (System Utilities)

Defining DBD and PSB metadata to the generation utilities
When the IMS catalog is used, it stores metadata about data types, data structures,
access methods, and much more. This metadata is derived from the database
descriptors (DBDs) and program specification blocks (PSBs) that you create when
you define your databases and application programs views to IMS.

Some of the metadata is database metadata, which describes the physical database.
Other metadata is application program metadata, which describes how the application
program views or uses the data in the database. Much of the application program
metadata that you code in the DBD comes from the requirements of your
application programs and artifacts like COBOL copybooks.

The following elements are examples of things that you can code in a DBD that are
described by application program metadata:
v External names for segments and fields, which are specified on the

EXTERNALNAME parameter when you define a segment or field
v Complex data elements such as arrays and structures
v Field data types and data marshalling characteristics
v Character encoding
v Alternative field maps for segments

Coding the elements described by application program metadata in a DBD
consolidates the data requirements of your application programs in a single,
trusted location: the IMS catalog. When the IMS catalog is enabled, the metadata in
the IMS catalog can be queried and analyzed as you develop new application
programs or assess the impact of changes to existing databases and application
programs.

You define the metadata to IMS either by coding parameters in the DBD and PSB
generation macro statements or by using a tool such as the IMS Enterprise Suite
Explorer for Development.
Related reference:

Database Description (DBD) Generation utility (System Utilities)

Program Specification Block (PSB) Generation utility (System Utilities)

500 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_allocatingacblibdatasets.htm#allocatingacblibdatasets
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_acbgen.htm#ims_acbgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdgen.htm#ims_dbdgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_psbgen.htm#ims_psbgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_catalog_dfs3uacb.htm#ims_catalog_dfs3uacb
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdgen.htm#ims_dbdgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_psbgen.htm#ims_psbgen

Specifying data types for application programs
You can specify the data type that an application program expects in a given field
by specifying the DATATYPE parameter in the FIELD statement that defines the
field to the DBD Generation utility.

When the DATATYPE keyword is specified, a data type converter transforms the
field data returned by IMS from the binary data type that IMS stores the physical
data in to the data type specified on the DATATYPE parameter.

For each DATATYPE specification, IMS automatically selects a compatible
IMS-provided data-type converter. If the data-type converter selected by IMS does
not fit your needs exactly, you can select the data-type converter yourself, or you
can provide your own custom data-type converter. Specify the IMS-provided
data-type converters on the INTERNALTYPECONVERTER parameter or a custom
data-type converter on the USERTYPECONVERTER parameter. Both parameters
are specified in the DFSMARSH statement.

When specifying a data type, you must ensure that the byte length of the field
supports the data type. Some data types require a specific field length. For
example, if you specify DATATYPE=LONG, you must define the length of the field
as eight bytes by specifying BYTES=8.

If no data type is specified, the default data type returned to an application
program is determined by the value of the TYPE parameter. If TYPE=C is specified
or defaulted to, the default application data type is CHAR. For all other
specifications of the TYPE parameter, the default application data type is BINARY.

You can define additional characteristics of your data type selections, such as the
character encoding, date and time formats, and decimal types, by specifying
additional parameters on the DFSMARSH statement.

Examples of the DFSMARSH statement

The following series of examples show some possible uses of the DFSMARSH
statement for various DATATYPE and type converter specifications.

DATATYPE=DATE:
FIELD EXTERNALNAME=XDATE,

BYTES=8,
START=84,
DATATYPE=DATE

DFSMARSH ENCODING=Cp1047,
INTERNALTYPECONVERTER=CHAR,
PATTERN=’MMddyyyy’

DATATYPE=TIME:
FIELD EXTERNALNAME=XTIME,

BYTES=6,
START=92,
DATATYPE=TIME

DFSMARSH ENCODING=Cp1047,
INTERNALTYPECONVERTER=CHAR,
PATTERN=’HHmmss’

DATATYPE=TIMESTAMP:

Chapter 23. Implementing database design 501

FIELD EXTERNALNAME=XTIMESTAMP,
BYTES=16,
START=84,
DATATYPE=TIMESTAMP

DFSMARSH ENCODING=Cp1047,
INTERNALTYPECONVERTER=CHAR,
PATTERN=’MMddyyyyHHmmssff’

DATATYPE=ZONEDDECIMAL:
FIELD NAME=ORDPRICE,

BYTES=10,
START=21,
DATATYPE=DECIMAL(10,2)

DFSMARSH INTERNALTYPECONVERTER=ZONEDDECIMAL,
ISSIGNED=Y

DATATYPE=PACKEDDECIMAL:
FIELD EXTERNALNAME=XPACKEDDEC1,

BYTES=4,
START=60,
DATATYPE=DECIMAL(7,2)

DFSMARSH INTERNALTYPECONVERTER=PACKEDDECIMAL,
ISSIGNED=Y

USERTYPECONVERTER=:
FIELD EXTERNALNAME=PACKEDDATEFIELD,

BYTES=5,
START=40,
DATATYPE=DATE

DFSMARSH USERTYPECONVERTER=class://com.ibm.ims.dli.types.PackedDateConverter,
PROPERTIES=(ZONE=PACIFIC,DAYLIGHTSAVINGS=TRUE)

Related reference:

FIELD statements (System Utilities)

DFSMARSH statements (System Utilities)

Defining arrays in DBD source statements
You can define to IMS the arrays that are used by your application programs by
coding them in your DBD source statements.

An array is a data structure that contains an element that repeats. You define an
array and its elements by using the FIELD statement of the DBD Generation utility.

An array is defined to IMS as a field that has a data type of ARRAY. The elements
of an array are defined to IMS as a repeating set of fields. All of the fields in an
array element specify the external name of the array field on the PARENT
parameter.

The arrays that you can define to IMS can be static arrays or dynamic arrays. A static
array always contains the same number of elements in every instance of a segment
type. A dynamic array contains a number of elements that can vary from one
instance of a segment type to another. The array type you use is determined by the
requirements of your application programs.

The number of times an array element repeats within an array is determined by
the MINOCCURS parameter, the MAXOCCURS parameter, and, for dynamic
arrays only, a number specified in a separate control field in the segment.

502 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_fieldstmt.htm#ims_fieldstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dfsmarshstmt.htm#ims_marshalstmt

For a static array, the number of array elements is specified on both the
MINOCCURS parameter and the MAXOCCURS parameter. The number specified
on each parameter must be the same.

For a dynamic array, the value specified on the MINOCCURS parameter defines
the minimum possible number of elements that can occur in a given segment
instance. The value specified on the MAXOCCURS parameter defines the
maximum possible number of elements that can occur in any given segment
instance. The actual number of occurrences of the element in a segment instance is
determined by the value specified in the control field that is named on the
DEPENDSON parameter in the FIELD statement of the array.

Fields defined as an array support only an external name. Consequently, they
cannot be specified in an SSA.
Related reference:

FIELD statements (System Utilities)

Defining a static array to IMS
A static array has a fixed number of array elements in every instance of a segment
type.

A static array is defined by coding FIELD statements in the input control
statements of the DBD Generation utility. The following steps assume that the
corresponding SEGM, DBD, and other utility control statements have been coded
correctly:
1. Code the FIELD statement of the static array:

a. Specify the external name of the array on the EXTERNALNAME parameter.
Arrays do not support the NAME parameter.

b. Specify DATATYPE=ARRAY
c. Specify the number of elements in the array on the MINOCCURS and

MAXOCCURS parameters. The value specified on both parameters must be
the same.

d. Specify the byte size of the array on the BYTES parameter. The byte size
specified must be equal to or greater than the sum total of the bytes sizes of
all fields that make up the array and array elements.

2. Code the FIELD statements for each field that makes up the repeating array
element. In the FIELD statement for each field that is a part of the array
element:
a. Specify the external name of the field on the EXTERNALNAME parameter.

Arrays do not support the NAME parameter.
b. Specify the starting byte offset of the field in the array element on the

RELSTART parameter.
c. Specify the external name of the array on the PARENT parameter.
d. Specify the byte size of the field on the BYTES parameter.

The following FIELD statements show an example of a static array definition. In
the example, the first FIELD statement defines the array. The array is named
COURSES and contains 8 instance of a repeated element, as specified on the
MINOCCURS and MAXOCCURS parameters. The repeated array element is
defined by the last three FIELD statements. Because each array element is made up
of three fields that total 64 bytes and the array is made up of 8 array elements, the
array requires a minimum of 512 bytes.

Chapter 23. Implementing database design 503

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_fieldstmt.htm#ims_fieldstmt

The array starts at byte 5 in the segment and the first field in the first array
element starts at byte 1 of the array. The subsequent array elements start at bytes
65, 129, 193, and so on.

FIELD EXTERNALNAME=COURSES,DATATYPE=ARRAY,START=5, X
BYTES=512,MINOCCURS=8,MAXOCCURS=8

FIELD EXTERNALNAME=COURSE_ID,RELSTART=1,BYTES=8,PARENT=COURSES
FIELD EXTERNALNAME=COURSE_TITLE,RELSTART=9,BYTES=48, X

PARENT=COURSES
FIELD EXTERNALNAME=INSTRUCTOR_ID,RELSTART=57,BYTES=8, X

PARENT=COURSES

The preceding array definition is based on the following excerpt of an example
COBOL copy book:
******* COPYBOOK for STUDENT/COURSES (STATIC)01 STUDENT.

20 COURSES OCCURS 8 TIMES.
25 COURSE_ID PIC 9(8).
25 COURSE_TITLE PIC X(48).
25 INSTRUCTOR_ID PIC 9(8).

Related reference:

FIELD statements (System Utilities)

Defining a dynamic array to IMS
A dynamic array is an array in which the number of repeating array elements can
vary from one instance of a segment type to another.

A dynamic array is defined by coding FIELD statements in the input control
statements of the DBD Generation utility. The following steps assume that the
corresponding DBD, DATASET, SEGM, and other utility control statements have
been coded correctly:
1. Define the control field that will contain the number of array elements for the

array in an instance of the segment.
2. Define the array by coding a FIELD statement:

a. Specify the external name of the array on the EXTERNALNAME parameter.
Arrays do not support the NAME parameter.

b. Specify DATATYPE=ARRAY
c. On the MINOCCURS parameter, specify the minimum possible number of

elements that the array can have in a segment instance. The value specified
on the MINOCCURS parameter must be less than the value specified on the
MAXOCCURS parameter.

d. On the MAXOCCURS parameter, specify the maximum possible number of
elements that the array can have in a segment instance. The value specified
on the MAXOCCURS parameter must be greater than the value specified on
the MINOCCURS parameter.

e. Specify the maximum possible byte size of the array on the MAXBYTES
parameter. The byte size specified must be equal to or greater than the sum
total of the bytes sizes of all fields that make up the array with the
maximum number of array elements. The MAXBYTES parameter is
mutually exclusive with the BYTES parameter that is used to define the size
of a static array.

f. Specify the name of the control field on the DEPENDSON parameter.
3. Define the repeating array element by coding the FIELD statements for each

field that is contained in the element. In the FIELD statement for each field that
is a part of the array element:

504 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_fieldstmt.htm#ims_fieldstmt

a. Specify the external name of the field on the EXTERNALNAME parameter.
Array elements do not support the NAME parameter.

b. Specify the starting byte offset of the field in the array element on the
RELSTART parameter.

c. Specify the external name of the array on the PARENT parameter.
d. Specify the byte size of the field on the BYTES parameter. If the field

contains a dynamic array, use the MAXBYTES parameter instead.

The following example shows the FIELD statement definitions for a dynamic array.

In the example, the first FIELD statement defines the control field that will specify
the number of array elements in an instance of the array.

The second FIELD statement defines the array. The array is named BOOKS and
can contains 1 to 5 array elements, as specified on the MINOCCURS and
MAXOCCURS parameters. The field NUMOF_BKS determines the number of array
elements in an instance of the array.

The repeating array element is defined by the last three FIELD statements. Because
the array element is made up of three fields that together total 40 bytes and the
element can repeat up to 5 times, the array must be defined with a MAXBYTES
value of at least 200 bytes.

The array starts at byte 5 in the segment and the first field in the first array
element starts at byte 1 of the array. The subsequent array elements start at bytes
41, 81, and so on, of the array.

FIELD EXTERNALNAME=NUMOF_BKS,DATATYPE=INT,START=1,BYTES=4
FIELD EXTERNALNAME=BOOKS,DATATYPE=ARRAY,START=5,MAXBYTES=200 X

MINOCCURS=1,MAXOCCURS=5,DEPENDSON=NUMOF_BKS
FIELD EXTERNALNAME=ISBN,RELSTART=1,BYTES=10,PARENT=BOOKS
FIELD EXTERNALNAME=BOOK_TITLE,RELSTART=11,BYTES=22,PARENT=BOOKS
FIELD EXTERNALNAME=RETURN_DATE,RELSTART=33,BYTES=8,PARENT=BOOKS

The preceding array definition is based on the following excerpt of an example
COBOL copy book:
******* COPYBOOK for STUDENT/COURSES (DYNAMIC)01 STUDENT.

20 NUMOF-BKS PIC 9(4) COMP.
20 BOOKS OCCURS 1 TO 5 TIMES DEPENDING ON NUMOF-BKS.
30 ISBN PIC X(10).
30 BOOK-TITLE PIC X(22).
30 RETURN-DATE PIC 9(8).

Related reference:

FIELD statements (System Utilities)

Defining a data structure in DBD source statements
Define the data structures that are used by your application programs in your DBD
source statements so that IMS stores the data in the same way that your
application processes it.

A structure is a fixed set of related data elements. Unlike an array, the elements of
a structure do not repeat.

A structure is defined to IMS as a field with a data type of STRUCT. The elements
of a structure are fields that specify the structure as a parent.

Chapter 23. Implementing database design 505

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_fieldstmt.htm#ims_fieldstmt

You can define a name, an external name, or both on a structure. Defining a name
allows you to specify the name of the structure field in an SSA. However, if an
element of the structure is a dynamic array, you can only specify an external name
and not an IMS name. Dynamic arrays and any structures that contain dynamic
arrays are not searchable by IMS and therefore cannot be included in an SSA.
1. Define a structure by coding a FIELD statement that specifies the following

attributes:
a. A field name on the NAME parameter or, if the structure contains a

dynamic array, the EXTERNALNAME parameter.
b. DATATYPE=STRUCT
c. If the structure contains a dynamic array, specify the following:
v The maximum byte size of the structure on the MAXBYTES parameter.

The maximum byte size of the structure must include the MAXBYTES
value of the dynamic array and the byte sizes of all other elements
contains in the structure.

2. Define each element of the structure by coding a FIELD statement that specifies
the name or external name of the structure on the PARENT parameter.

These FIELD statements show an example of a structure definition. In the example,
the first FIELD statement defines the structure. The structure is named
ADDRESS_INFO. The elements of the structure are defined by the following three
FIELD statements that all specify ADDRESS_INFO on the PARENT parameter.
Because the structure contains three fields that together total 45 bytes, the structure
requires a minimum of 45 bytes.

The structure and the first element of the structure start at byte 5 in the segment.
The starting positions of the subsequent elements in the structure are also
calculated relative to the beginning of the segment.
FIELD NAME=ADDRESS_INFO,DATATYPE=STRUCT,START=5,BYTES=45
FIELD NAME=CITY,DATATYPE=CHAR,START=5,BYTES=15,PARENT=ADDRESS_INFO
FIELD NAME=STREET,DATATYPE=CHAR,START=21,BYTES=25,PARENT=ADDRESS_INFO
FIELD NAME=ZIP,DATATYPE=CHAR,START=46,BYTES=5,PARENT=ADDRESS_INFO

The preceding array definition is based on the following excerpt of an example
COBOL copy book:

02 ADDRESS-INFO.
04 CITY PIC X(15).
04 STREET PIC X(25).
04 ZIP PIC X(5).

Related reference:

FIELD statements (System Utilities)

Redefining fields
Some application programming languages, such as COBOL, allow application
programs to redefine fields for various purposes. IMS is unaware of the
redefinition of a field, unless you include corresponding definitions for the
redefined fields in the database description (DBD).

A field can be redefined as one or more fields as long as the total length of the
fields in the redefinition is equal to or less than the length of the field that is being
redefined.

If you are redefining a field as multiple fields, use a structure field to contain the
multiple fields of the redefinition.

506 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_fieldstmt.htm#ims_fieldstmt

You cannot redefine a field that specifies DATATYPE=ARRAY.

The following example shows a one-to-one field redefinition in DBD source
statements. FLD2 redefines FLD1. FLD0 and FLD3 are not a part of the redefinition
example and are included only to show the example in context.

FIELD NAME=FLD0,START=1,BYTES=4
FIELD NAME=FLD1,START=5,BYTES=15
FIELD NAME=FLD2,REDEFINES=FLD1,START=5,BYTES=15
FIELD NAME=FLD3,START=20,BYTES=6

The following is an example of a field that is redefined as multiple fields in the
COBOL programming language. FLD2 redefines FLD1 as two fields, FLD3 and
FLD4. FLD0 and FLD5 are not a part of the redefinition, but are included in the
example only to show the example in context and help illustrate the relative
starting positions of the fields in the redefinition.
* 01 FLD0 PIC X(4).
* 01 FLD1 PIC X(15).
* 01 FLD2 REDEFINES FLD1.
* 01 FLD3 PIC X(7).
* 01 FLD4 PIC X(8).
* 01 FLD5 PIC X(1).

The following example FIELD statements show the FIELD statement definitions in
DBD source that correspond to the preceding copybook. In the example, FLD2
redefines FLD1 and has the same byte length as FLD1. FLD2 specifies
DATATYPE=STRUCT. FLD3 and FLD4 both specify PARENT=FLD2. The sum total
of the BYTES parameter for FLD3 and FLD4 equals the value of BYTES of both
FLD1 and FLD2.

FIELD NAME=FLD0,START=1,BYTES=4
FIELD NAME=FLD1,START=5,BYTES=15
FIELD NAME=FLD2,REDEFINES=FLD1,START=5,BYTES=15,

DATATYPE=STRUCT
FIELD NAME=FLD3,START=5,BYTES=7,PARENT=FLD2
FIELD NAME=FLD4,START=12,BYTES=8,PARENT=FLD2

FIELD NAME=FLD5,START=20,BYTES=1

Related reference:

FIELD statements (System Utilities)

Defining alternative field maps for a segment
You can define multiple alternative field maps for a single sequence of bytes in a
segment definition. When an instance of the segment is created in the database, the
application program selects one of the fields maps to map the data and indicates
the field map that is in effect by inserting the ID of the field map into a control
field.

When an application program accesses a sequence of bytes in a segment instance
that uses field mapping, the application program must evaluate the control field to
determine which field map is in effect.

Each field map, or map case, in a segment definition is defined to IMS by coding a
DFSCASE statement. The fields that make up a field map are defined by FIELD
statements that specify the name of the map case on the CASENAME parameter.

A set of map cases that map the same sequence of bytes in a segment share the
same control field. In the segment definition, a DFSMAP statement links the set of

Chapter 23. Implementing database design 507

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_fieldstmt.htm#ims_fieldstmt

related map cases to the control field. The map case definitions must specify the
name of the DFSMAP statement on the MAPNAME parameter in the DFSCASE
statement.

The FIELD statements for the fields that are contained in a map must follow the
DFSCASE statement that defines the map that they belong to. Each field in the
map must specify the map name on the CASENAME parameter.

To define alternative field maps for a sequence of bytes in a segment definition:
1. Define the control field to contain the case ID that determines which map case

is in effect in a segment instance. Case IDs can be either a character value or a
hexadecimal value. The data type and byte length specified in the control field
definition must accommodate the data type and lengths of the case IDs
specified in the definitions of the map cases.

2. Define a DFSMAP statement that will group the collection of map cases. The
external name of the control field must be specified on the DEPENDINGON
parameter.

3. Define a DFSCASE statements for each map case. The length of the control
field must support the length and data type of the value that you specify on
the CASEID parameter.

4. Define the FIELD statements for the fields that belong to each map case.
Specify the name of the map case that each field belongs to in the CASENAME
parameter.

Mapping example: DFSMAP and DFSCASE

The following example shows how mapping might be used in the DBD source to
define a single segment that is used to store data about three different types of
insurance policy: an auto insurance policy, a home insurance policy, and a boat
insurance policy. Each policy type requires different fields to hold the information
that is unique to that policy type.

In the DBD source, the fields for each policy type are mapped by a different
DFSCASE statement. The three map cases in the example are named AUTOMAP,
HOMEMAP, and BOATMAP. The fields that make up the map defined by a given
DFSCASE statement each specify the name of the DFSCASE statement that they
belong to on the CASENAME parameter in their FIELD statement. The DFSCASE
statements are grouped by the DFSMAP statement POLICYMAPS in the segment
CUSTOMERPOLICY.

The value specified on the CASEID parameter of each map case uniquely identifies
the map case and serves as the control field value. When a segment instance is first
inserted into the database, the ID of the map case that the segment instance uses is
inserted into the control field. In the example, the control field is named
POLICYTYPE. At run time, when an application program retrieves the segment
from the database, the application program must evaluate the control field value to
determine the correct mapping of the fields.

DBD NAME=POLICYDB, C
ENCODING=CP1047, C
ACCESS=(DEDB), C
RMNAME=(RMOD3), C
PASSWD=NO

AREA DD1=PLCYAR01, C
DEVICE=3330, C
SIZE=(2048), C
UOW=(15,10), C

508 Database Administration

ROOT=(10,5), C
REMARKS=’AREA NUMBER 1 FOR POLICYDB DATABASE’

SEGM NAME=CUSTOMER, C
PARENT=0, C
BYTES=(390,20)

FIELD NAME=(CUSTKEY,SEQ,U), C
BYTES=12, C
START=1, C
TYPE=C

SEGM NAME=POLICY, C
EXTERNALNAME=CUSTOMERPOLICY, C
ENCODING=CP1047, C
PARENT=CUSTOMER, C
BYTES=(900), C
TYPE=DIR, C
RULES=(LLL,HERE)

* CONTROL FIELD:

FIELD EXTERNALNAME=POLICYTYPE, C
BYTES=4, C
START=1, C
DATATYPE=CHAR

* DFSMAP STATEMENT:

DFSMAP NAME=POLICYMAPS, C
DEPENDINGON=POLICYTYPE

* DFSCASE STATEMENT 1:

DFSCASE NAME=AUTOMAP, C
CASEID=AUTO, C
CASEIDTYPE=C, C
MAPNAME=POLICYMAPS, C
REMARKS=’DEFINES THE FIELDS OF AN AUTO INSURANCE POLICY’

FIELD EXTERNALNAME=AUTOMAKE, C
CASENAME=AUTOMAP, C
BYTES=15, C
START=5, C
DATATYPE=CHAR

FIELD EXTERNALNAME=MODEL, C
CASENAME=AUTOMAP, C
BYTES=15, C
START=20, C
DATATYPE=CHAR

FIELD EXTERNALNAME=YEAR, C
CASENAME=AUTOMAP, C
BYTES=4, C
START=35, C
DATATYPE=CHAR

* DFSCASE STATEMENT 2:

DFSCASE NAME=HOMEMAP, C
CASEID=HOME, C
CASEIDTYPE=C, C
MAPNAME=POLICYMAPS, C
REMARKS=’DEFINES THE FIELDS OF A HOME INSURANCE POLICY’

FIELD EXTERNALNAME=DWELLING_TYPE, C
CASENAME=HOMEMAP, C
BYTES=20, C
START=5, C
DATATYPE=CHAR

FIELD EXTERNALNAME=ROOMS, C
CASENAME=HOMEMAP, C
BYTES=5, C

Chapter 23. Implementing database design 509

START=25, C
DATATYPE=CHAR

FIELD EXTERNALNAME=SQ_FOOT, C
CASENAME=HOMEMAP, C
BYTES=6, C
START=30, C
DATATYPE=CHAR

* DFSCASE STATEMENT 3:

DFSCASE NAME=BOATMAP, C
CASEID=BOAT, C
CASEIDTYPE=C, C
MAPNAME=POLICYMAPS, C
REMARKS=’DEFINES THE FIELDS OF A BOAT INSURANCE POLICY’

FIELD EXTERNALNAME=CLASS, C
CASENAME=BOATMAP, C
BYTES=10, C
START=5, C
DATATYPE=CHAR

FIELD EXTERNALNAME=LENGTH, C
CASENAME=BOATMAP, C
BYTES=6, C
START=15, C
DATATYPE=CHAR

FIELD EXTERNALNAME=BOATMAKE, C
CASENAME=BOATMAP, C
BYTES=10, C
START=21, C
DATATYPE=CHAR

DBDGEN
FINISH
END

Related concepts:
“DFSMAP statement overview” on page 493
Related reference:

FIELD statements (System Utilities)

DFSMAP statements (System Utilities)

DFSCASE statements (System Utilities)

Implementing HALDB design
To create a HALDB database, you perform a two-stage process: first, you run the
DBDGEN utility and, second, you define the database and its partitions to DBRC.

You can use either DBRC batch commands or the Partition Definition utility to
define HALDB databases and their partitions to DBRC. This topic discusses
defining HALDB databases using the Partition Definition utility, as well as
allocating an indirect list data set (ILDS).
Related concepts:
“Reorganizing HALDB databases” on page 636
Related tasks:
“Modifying HALDB databases” on page 765
Related reference:

HALDB Partition Definition utility (%DFSHALDB) (Database Utilities)

510 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_fieldstmt.htm#ims_fieldstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dfsmapstmt.htm#ims_dfsmapstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dfscasestmt.htm#ims_dfscasestmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dfshaldb.htm#ims_dfshaldb

Creating HALDB databases with the HALDB Partition
Definition utility

The HALDB Partition Definition utility (%DFSHALDB) is an ISPF application that
allows you to manage IMS HALDB partitions.

Prerequisite: Before you can use the HALDB Partition Definition utility to define
the partitions of a HALDB database, you must define the HALDB master database
by using the Database Description Generation (DBDGEN) utility.

Creating HALDB partitions with the Partition Definition utility

When you define the first HALDB partition, you must also register the HALDB
master database in the DBRC RECON data set. You can use either the HALDB
Partition Definition utility or the DBRC INIT.DB and INIT.PART commands to do
this.

The HALDB Partition Definition utility does not impact RECON data set
contention of online IMS subsystems. The RECON data set is reserved only for the
time it takes to process a DBRC request. It is not held for the duration of the utility
execution.

When defining HALDB partitions using the Partition Definition utility, you must
provide information such as the partition name, data set prefix name, and high key
value. Whenever possible, the Partition Definition utility provides default values
for required fields.

Automatic and manual HALDB partition definition

You can choose either automatic or manual partition definition by specifying Yes
or No in the Automatic Definition field in the Processing Options section of the
Partition Default Information panel.

Entering Yes in the Automatic Definition field specifies that the Partition Definition
utility automatically defines your HALDB partitions. You must have previously
created a data set and it must contain your HALDB partition selection strings.
Specify the name of the data set in the Input data set field.

Entering No in the Automatic Definition field specifies that you define your
HALDB partitions manually.

You can still use an input data set when you define HALDB partitions manually.

The steps for defining a new HALDB are as follows:
1. Make the dialog data sets available to the TSO user. You can add the data sets

to a LOGON procedure or use TSO commands to allocate them. You can use
the TSOLIB command to add data sets to the STEPLIB. The following table
shows which file names and data sets need to be allocated. Be sure to use your
own high level qualifiers.

Table 72. File names and data sets to allocate

File name Sample data set names Disposition

STEPLIB IMS.SDFSRESL N/A

SYSPROC IMS.SDFSEXEC SHR

ISPMLIB IMS.SDFSMLIB SHR

Chapter 23. Implementing database design 511

Table 72. File names and data sets to allocate (continued)

File name Sample data set names Disposition

ISPPLIB IMS.SDFSPLIB SHR

ISPTLIB IMS.SDFSTLIB SHR

IMS IMS.DBDLIB SHR

If you use a logon procedure, you must log on again and specify logon with
the new procedure. If you use allocation commands, they must be issued
outside of ISPF. After you allocate the data sets and restart ISPF, restart the
Install/IVP dialog, return to this task description, and continue with the
remaining steps.

2. Start the HALDB Partition Definition utility from the ISPF command line by
issuing the following command: TSO %DFSHALDB

3. Specify the name of the database. Fill in the first partition name as shown in
the following example. Fill in the data set name prefix using the data set name
for your data set instead of the high level qualifier shown in the example. You
should, however, specify the last qualifier as IVPDB1A to match cluster names
previously allocated.

Recommendation: When naming your partitions, use a naming sequence that
allows you to add new names later without disrupting the sequence. For
example, if you name your partitions xxxx010, xxxx020 and xxxx030 and then
later split partition xxxx020 because it has grown too large, you can name the
new partition xxxx025 without disrupting the order of your naming sequence.

512 Database Administration

4. Define your partitions in the Change Partition panel. Make sure that the name
of the partition and the data set name prefix are correct and then define a high
key for the partition.
The high key identifies the highest root key of any record that the partition can
contain and is represented by a hexadecimal value that you enter directly into
the Partition High Key field of the Change Partition panel. Press F5 to accept
the hexadecimal value and display its alphanumeric equivalent in the right
section of the Partition High Key field.
You can enter the partition high key value using alphanumeric characters by
pressing F5 before making any changes in the hexadecimal section of the
Partition High Key field. This displays the ISPF editing panel. The
alphanumeric input you enter in the editing panel displays in both hexadecimal
and alphanumeric formats in the Change Partition Panel when you press F3 to
save and exit the ISPF editor.
The last partition you define for a HALDB database should have a high key
value of X'FF'. This ensures that the keys of all records entered into the HALDB
database will be lower than the highest high key in the HALDB database. The
Partition Definition utility fills all remaining bytes in the Partition High Key
field with hexadecimal X'FF'. If the partition with the highest high key in the
database has a key value other than X'FF's, any attempt to access or insert a
database record with a key higher than the high key specified results in an FM
status code for the call. Application programs written for non-HALDB
databases are unlikely to expect this status code.

Help

Partition Default Information

Type the field values. Then press Enter to continue.

Database Name IVPDB1

Processing Options
Automatic DefinitionNo
Input data set
Use defaults for DS groups .No

Defaults for Partitions
Partition NameIVPDB11
Data set name prefixIXUEXEHQ.IVPDB1A

Free Space
Free block freq. factor . 0
Free space percentage . . 0

Defaults for data set groups
Block Size8192

DBRC options
Max. image copies2
Recovery period0
Recovery utility JCL . . RECOVJCL
Default JCL________
Image Copy JCL ICJCL
Online image copy JCL . .OICJCL
Receive JCLRECVJCL
Reusable?No

To exit the application, press F3

Command = = = >

Figure 242. Partition Default Information

Chapter 23. Implementing database design 513

When you finish defining the partition high key, press enter to create the
partition. The Change Partition panel remains active so that you can create
additional partitions. To create additional partitions, you must change the
partition name and the partition high key.
The following figure shows the Change Partition panel. The Partition High Key
field includes sample input.

5. When you finish defining partitions, press the cancel key (F12) to exit the
Change Partition panel. A list of partitions defined in the current session
displays.
To exit the HALDB Partition Definition utility entirely, press F12 again.

Related concepts:
“Options for offline reorganization of HALDB databases” on page 638
“Coding database descriptions as input for the DBDGEN utility” on page 488

DBRC administration (System Administration)
Related tasks:
“Specifying use of multiple data set groups in HD and PHD databases” on page
401
Related reference:

Database Description (DBD) Generation utility (System Utilities)

Help

Change Partition
Type the field values. Then press Enter.

Database name..........IVPDB1
Partition name.........IVPDB11
Partition ID...........1
Data set name prefix...IXUEXEHQ.IVPDB1A
Partition Status......._______

Partition High Key
+00 57801850 00F7F4F2 40C5A585 99879985 | ...&.742 Evergre |
+10 859540E3 85999981 | en Terra |

Free Space
Free block freq. factor...0
Free space percentage.....0

Attributes for data set group A
Block Size................8192

DBRC options
Max. image copies.........2
Recovery period...........0
Recovery utility JCL......_________
Image copy JCL............ICJCL
Online image copy JCL.....OICJCL
Receive JCL...............RECVJCL
Reusable?.................No

Command = = = >

Figure 243. Change Partition panel

514 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/dbrc_admin/ims_dbrc_administration.htm#ims_dbrc_admin
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdgen.htm#ims_dbdgen

Allocating an ILDS
The ILDS manages pointers for HALDB partitions that include either logical
relationships or a secondary index.

Partitioning a database can complicate the use of pointers between database
records because after a partition has been reorganized the following pointers may
become invalid:
v Pointers from other database records within this partition
v Pointers from other partitions that point to this partition
v Pointers from secondary indexes

The use of indirect pointers eliminates the need to update pointers throughout
other database records when a single partition is reorganized. The Indirect List
data set (ILDS) acts as a repository for the indirect pointers. There is one ILDS per
partition in PHDAM and PHIDAM databases.

The ILDS contains indirect list entries (ILEs). Each ILE in an ILDS has a 9-byte key
that is the indirect list key (ILK) of the target segment appended with the segment
code of the target segment. The ILK is a unique token that is assigned to segments
when the segments are created.

After a reorganization reload or a migration reload of segments involved in
inter-record pointing, the ILE is updated to reflect the changes in location of the
target segment of the ILE. Segments involved in inter-record pointing can be one of
the following types:
v Physically paired logical children
v Logical parents of unidirectional logical children
v Targets of secondary indexes

The following sample command defines an ILDS. Note that the key size is 9 bytes
at offset 0 (zero) into the logical record. Also note that the record size is specified
as 50 bytes, the current length of an ILE.
DEFINE CLUSTER (-

NAME (FFDBPRT1.XABCD01O.L00001) -
TRK(2,1) -
VOL(IMSQAV) -
FREESPACE(80,10) -
REUSE -
SHAREOPTIONS(3,3) -
SPEED) -

DATA (-
NAME(FFDBPRT1.XABCD01O.INDEXD) -
CISZ(8192) -
KEYS(9,0) -
RECSZ(50,50)) -

INDEX (-
NAME(FFDBPRT1.XABCD01O.INDEXS) -
CISZ(2048))

To compute the size of an ILDS, multiply the size of an ILE by the total number of
physically paired logical children, logical parents of unidirectional relationships,
and secondary index targets.

The inclusion of free space in the ILDS can improve the performance of ILDS
processing by reducing CI and CA splits. Both the HD Reorganization Reload
utility (DFSURGL0) and the HALDB Index/ILDS Rebuild utility (DFSPREC0)

Chapter 23. Implementing database design 515

provide a free space option that uses the VSAM load mode to update or rebuild
the ILDS. VSAM load mode adds the free space that is called for by the
FREESPACE parameter of the DEFINE CLUSTER command.
Related concepts:
“The HALDB self-healing pointer process” on page 664

Defining a HALDB indirect list data set (System Definition)
Related reference:

HALDB Index/ILDS Rebuild utility (DFSPREC0) (Database Utilities)

HD Reorganization Reload utility (DFSURGL0) (Database Utilities)

Defining generated program specification blocks for SQL applications
Generated PSBs (GPSB) are a type of PSB that do not require a PSBGEN or
ACBGEN.

A GPSB contains an I/O PCB and a single modifiable alternate PCB. GPSBs are not
defined through a PSBGEN. Instead, they are defined by the system definition
process through the APPLCTN macro. The GPSB parameter indicates the use of a
generated PSB and specifies the name to be associated with it. The LANG
parameter specifies the language format of the GPSB. For more information on
defining GPSBs refer to the APPLCTN macro topic in IMS Version 13 System
Definition.

The I/O PCB can be used by the application program to obtain input messages
and send output to the inputting terminal. The alternate PCB can be used by the
application program to send output to other terminals or programs.

Other than the I/O PCB, an application that makes only Structured Query
Language (SQL) calls does not require any PCBs. It does, however, need to define
the application program name and language type to IMS. A GPSB can be used for
this purpose.

Introducing databases into online systems
Before online IMS systems can recognize databases, the appropriate database
control blocks must be created in the online systems.

Online IMS systems require two types of control blocks for databases, application
control blocks (ACBs) and control block that store certain runtime attributes. The
ACBs for databases are added to an online system by the online change process.
For more information about adding ACBs to online systems see, Making online
changes (System Administration).

Database runtime attribute controls blocks are created in online systems either by
including a DATABASE macro for each online database in the stage 1 system
definition or, in systems that have dynamic resource definition enabled, by issuing
the type-2 command CREATE DB.

Databases can also be introduced into online systems that have dynamic resource
definition enabled by importing the database definition from the resource
definition data set (RDDS) or the IMSRSC repository by using the type-2 command
IMPORT DEFN.

516 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_xf9f8c.htm#xf9f8c
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dfsprec0.htm#ims_dfsprec0
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dfsurgl0.htm#ims_dfsurgl0
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_making_online_changes.htm#ims_making_online_changes
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_making_online_changes.htm#ims_making_online_changes

If IMS is using the IMSRSC repository, databases can be created or updated from
the IMS change list in the repository at the end of IMS warm or emergency restart.

The DATABASE system definition macro, the CREATE DB command, and the
IMPORT DEFN command all create the database directory (DDIR) control block
that is required by IMS to manage databases in the online environment.

To save across cold starts the definitions of databases that are added to online
systems by either the CREATE DB or the IMPORT DEFN commands, the database
definitions must be either exported to the RDDS or the repository or added to the
IMS MODBLKS data set by system definition and then imported during cold start.
Across warm starts and emergency restarts, IMS recovers dynamic resource
definition changes from the logs.

Database definitions can be exported to an RDDS or the repository by using the
EXPORT DEFN command. In addition, IMS can be configured to export the
definitions automatically to an RDDS during system checkpoints. You can enable
automatic export by specifying AUTOEXPORT=AUTO or AUTOEXPORT=RDDS in
the DYNAMIC_RESOURCES section of the DFSDFxxx member in the IMS
PROCLIB data set.
Related concepts:

Resource lists for the IMSRSC repository (System Definition)

Overview of the IMSRSC repository (System Definition)
Related tasks:
“Changing databases dynamically in online systems” on page 748
“Modifying online databases” on page 731

Adding databases dynamically to an online IMS system
In IMS systems that have dynamic resource definition enabled, you can add a
database to the online system by issuing the CREATE DB command.

The function of the CREATE DB command corresponds to the function of the
DATABASE system definition macro. Both declare databases to an online IMS
system by creating a database directory (DDIR) control block in the IMS control
region.

The CREATE DB command defines all of the database attributes that can be defined
by using the DATABASE system definition macro. The attributes include:
v The recognition of the database by the online IMS system
v The access type
v The resident status of the database

You can issue the CREATE DB command either before or after you define the DBD,
PSB, and ACBs for the database; however, if you issue the CREATE DB command
after the ACBGEN process, IMS can take additional action based on the type of
database defined.

If the ACBGEN process is complete and the DMB for the database is in the ACB
library, IMS performs the following additional actions when the CREATE DB
command is issued:

Chapter 23. Implementing database design 517

|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_overview_of_repo_resourcelists.htm#imsrepositoryoverview_resourcelists
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_overview_of_repo.htm#imsrepositoryoverview

v For full-function databases, IMS loads the DMB for the database into the DMB
pool at first schedule and if the resident option is selected, IMS makes the DMB
for the database resident at the next restart of IMS.

v For DEDB databases, IMS chains the DMB into the DEDB DMCB chain.
IMS also checks to see if the CI size for any area in the DMCB is larger than the
size defined for the Fast Path global buffer pool. If a CI size is too large, the
CREATE DB command fails with condition code E3.
Also, if any DEDB area name already exists in the Fast Path area list (FPAL), the
CREATE DB command fails with condition code E4.

If a DMB for the database is not already in the ACB library when a CREATE DB
command is issued, IMS still adds the database to the online system, but the
database has a status of NOTINIT. Before the database can be used, a DMB for the
database must be added to ACB library and started. Unless you are adding an
MSDB database, you can use the online change function for ACB library members
to add the DMB.

In addition to using the CREATE DB command, a database can also be added to
the online system by either of the following methods:
v Importing the stored resource definitions from the resource definition data set

(RDDS) with the automatic import function or the IMPORT command.
v Importing the stored resource definitions from the IMSRSC repository with the

automatic import function or the IMPORT DEFN command.

Adding MSDB databases dynamically to an online IMS system
The procedure for adding an MSDB database to an online IMS system by using
dynamic resource definition is different than the procedure for adding other
database types.
1. Perform the DBDGEN and ACBGEN process for the MSDB database.
2. Copy the ACB staging library to the inactive ACB library.
3. Execute a full ACBLIB online change. The member-level online change function

for the ACB library does not support MSDBs.
4. Insert segments into the MSDBINIT data set by using the MSDB Maintenance

Utility (DBFDBMA0).
5. Issue the CREATE DB command for the MSDB database.

Note that the MSDB database cannot be used until it is loaded into online storage.

To load the MSDB database:
1. Shut down IMS.
2. Warm start IMS with MSDBLOAD keyword. For example, issue the command

/NRE MSDBLOAD .

Provision a Fast Path DEDB database with z/OSMF
You can provision an IMS Fast Path DEDB database by using the IBM z/OS
Management Facility workflow that IMS provides via GitHub.

With the provisioning workflow, IMS also provides a workflow to deprovision a
DEDB database.

A workflow consists of several XML files and a properties file.

518 Database Administration

1. From the IMS-zOSMF-Workflows repository in GitHub, download the
compressed folder (.zip file) that contains the workflows you need and extract
the contents to a local directory.

2. Review the readme that is included in the .zip file for details about the
workflows.

3. Transfer the extracted files to a data set or directory on z/OS where they are
available to your z/OSMF instance.

4. From the z/OSMF welcome page, select Workflows from the navigation pane
on the left.

5. Select Create a workflow and specify the location of the workflow file and
other initial information, such as your user name.

6. After the steps of the workflow are displayed in the z/OSMF interface, you can
begin completing each step by providing the information that each step
requires. Some steps require you to begin by expanding the step and starting
with the substeps.

Related concepts:

z/OS: IBM z/OS Management Facility
Related reference:

IMS-zOSMF-Workflows

Chapter 23. Implementing database design 519

http://www.ibm.com/support/knowledgecenter/search/IBM%20z%2FOS%20Management%20Facility?scope=SSLTBW
http://github.com/zsystems/IMS-zOSMF-Workflows

520 Database Administration

Chapter 24. Developing test databases

Before the application programs accessing your database are transferred to
production status, they must be tested. To avoid damaging a production database,
you need a test database.

IBM provides various programs that can help you develop your test database,
including the DL/I Test Program (DFSDDLT0). For more information on the
available IMS tools, go to www.ibm.com/ims and link to the IBM® DB2 and IMS
Tools website.
Related concepts:
“Who attends code inspection 1” on page 32
“Design review 4” on page 31

Testing an IMS application program (Application Programming)

Testing the system (System Administration)

Test requirements
Depending on your system configuration, user requirements, and the design
characteristics of your database and data communication systems, you should test
DL/I call sequences, application decision paths, and performance.

Test for the following:
v That DL/I call sequences execute and the results are correct.

– This kind of test often requires only a few records, and you can use the DL/I
Test Program, DFSDDLT0, to produce these records.

– If this is part of a unit test, consider extracting records from your existing
database. To extract the necessary records, you can use programs such as the
IMS DataRefresher™.

v That calls execute through all possible application decision paths.
– You might need to approximate your production database. To do this, you

can use programs such as the IMS DataRefresher and other IMS tools.
v How performance compares with that of a model, for system test or regression

tests, for example.
– For this kind of test, you might need a copy of a subset of the production

database. You can use IMS tools to help you.

To test for these capabilities, you need a test database that approximates, as closely
as possible, the production database. To design such a test database, you should
understand the requirements of the database, the sample data, and the application
programs.

To protect your production databases, consider providing the test JCL procedures
to those who test application programs. Providing the test JCL helps ensure that
the correct libraries are used.

© Copyright IBM Corp. 1974, 2016 521

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_appprogramtesting.htm#ims_appprogramtesting
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_tst.htm#ims_tst_

What kind of database?

Often, the test database can be a copy of a subset of the production database, or in
some other way, a replica of it. If you have designed the production database, you
should have firsthand knowledge of this requirement. Your DBDs for the
production database can provide the details. If you have your production database
defined in a data dictionary, that definition gives you much of the information you
need. The topics in this chapter describe some aids available to help you design
and generate your test database.

What kind of sample data?

It is important for the sample data to approximate the real data, because you must
test that the system processes data with the same characteristics, such as the range
of field values. The kind of sample data needed depends on whether you are
testing calls or program logic.
v To test calls, you need values in only those fields that are sequence fields or

which are referenced in SSAs.
v To test program logic, you need data in all fields accessed in the program logic

such as adds or compares.

Again, you might use a copy of a subset of the real database. However, first
determine which fields contain sensitive data and therefore must use fictitious data
in the test database.

What kind of application program?

In order to design a test database that effectively tests the operational application
programs being developed, you should know certain things about those programs.
Much of the information you need is in the application program design
documentation, the descriptors such as the PSBs, your project test plan, and in the
Data Dictionary.

Disabling DBRC security for the RECON data set in test environments
If you copy the RECON data set from your production environment into your test
environment, you can disable DBRC security for the test copy of the RECON data
set.

Disabling DBRC security, which secures the RECON data set against the
unauthorized use of DBRC commands and API requests, can make working with
copies of the production RECON data sets in the test environment easier and can
also be useful during problem determination.

Disabling DBRC security does not disable or otherwise affect the security checking
performed by other security products, such as RACF.

To disable DBRC security checking for a copy of a RECON data set:
1. Specify a 1- to 44-character substring of the data set name of the secured

RECON data set in the rcnqual parameter of the CMDAUTH keyword on either
an INIT.RECON or CHANGE.RECON DBRC command. Because security
checking is still active at this point, you need proper security authorization to
issue the INIT.RECON or CHANGE.RECON command.

2. Define a new data set with a name that does not contain the character string
specified in the rcnqual parameter.

522 Database Administration

3. Copy the secured RECON data set into the new data set. When the text string
in rcnqual parameter does not match any portion of the RECON data set name,
security checking for the copy of the RECON data set is disabled.

Examples

The following commands provide examples of specifying the rcnqual parameter.
v CHANGE.RECON CMDAUTH(SAF,SAFHLQ1,IMSTESTS.DSHR)

v INIT.RECON CMDAUTH(SAF,SAFHLQ1,IMSTESTS.DSHR)

The example below shows the status listing for a RECON data set in which
security has been disabled. The string shown in the RCNQUAL field,
IMSTESTS.DSHR, which could have been set by either one of the command examples
above, does not match exactly any part of the name of the COPY1 RECON data
set, IMSTESTS.COPYDSHR.RECON1.
RECON
RECOVERY CONTROL DATA SET, IMS V13R1
DMB#=7 INIT TOKEN=13122F2233528F
NOFORCER LOG DSN CHECK=CHECK17 STARTNEW=NO
TAPE UNIT=3480 DASD UNIT=SYSDA TRACEOFF SSID=**NULL**
LIST DLOG=NO CA/IC/LOG DATA SETS CATALOGED=NO
MINIMUM VERSION = 11.1 CROSS DBRC SERVICE LEVEL ID= 00001
REORG NUMBER VERIFICATION=NO
LOG RETENTION PERIOD=00.001 00:00:00.0
COMMAND AUTH=SAF HLQ=SAFHLQ1
RCNQUAL = IMSTESTS.DSHR
ACCESS=SERIAL LIST=STATIC
SIZALERT DSNUM=15 VOLNUM=16 PERCENT= 95
LOGALERT DSNUM=3 VOLNUM=16

TIME STAMP INFORMATION:

TIMEZIN = %SYS

OUTPUT FORMAT: DEFAULT = LOCORG NONE PUNC YY
CURRENT = LOCORG NONE PUNC YY

IMSPLEX = ** NONE ** GROUP ID = ** NONE **

-DDNAME- -STATUS- -DATA SET NAME-
RECON1 COPY1 IMSTESTS.COPYDSHR.RECON1
RECON2 COPY2 IMSTESTS.COPYDSHR.RECON2
RECON3 SPARE IMSTESTS.COPYDSHR.RECON3

NUMBER OF REGISTERED DATABASES = 7

The example below shows the status listing for a RECON data set in which
security is active. In this example, the string shown in the RCNQUAL field,
IMSTESTS.DSHR, does match a part of the name of the COPY1 RECON data set,
IMSTESTS.DSHR.RECON1.
RECON
RECOVERY CONTROL DATA SET, IMS V13R1
DMB#=7 INIT TOKEN=13122F2233528F
NOFORCER LOG DSN CHECK=CHECK17 STARTNEW=NO
TAPE UNIT=3480 DASD UNIT=SYSDA TRACEOFF SSID=**NULL**
LIST DLOG=NO CA/IC/LOG DATA SETS CATALOGED=NO
MINIMUM VERSION = 11.1 CROSS DBRC SERVICE LEVEL ID= 00001
REORG NUMBER VERIFICATION=NO
LOG RETENTION PERIOD=00.001 00:00:00.0
COMMAND AUTH=SAF HLQ=SAFHLQ1
RCNQUAL = IMSTESTS.DSHR

Chapter 24. Developing test databases 523

ACCESS=SERIAL LIST=STATIC
SIZALERT DSNUM=15 VOLNUM=16 PERCENT= 95
LOGALERT DSNUM=3 VOLNUM=16

TIME STAMP INFORMATION:

TIMEZIN = %SYS

OUTPUT FORMAT: DEFAULT = LOCORG NONE PUNC YY
CURRENT = LOCORG NONE PUNC YY

IMSPLEX = ** NONE ** GROUP ID = ** NONE **

-DDNAME- -STATUS- -DATA SET NAME-
RECON1 COPY1 IMSTESTS.DSHR.RECON1
RECON2 COPY2 IMSTESTS.DSHR.RECON2
RECON3 SPARE IMSTESTS.DSHR.RECON3

NUMBER OF REGISTERED DATABASES = 7

Designing, creating, and loading a test database
You can develop a test database just as you would develop a production database.

For example, you perform the tasks described throughout the database
administration information, keeping in mind the special requirements for test
databases. If your installation has testing standards and procedures, you should
follow them in developing a test database.

Using testing standards
Testing standards and procedures help you avoid the same kinds of problems for
test database development as your IMS development standards do for production
databases.

Some of the subjects that might be included in your test system standards and that
affect test database design are:
v Objectives of your test system

– What you test for and at what development stages do you test for it
– The kinds of testing—offline, online, integrated DB/DC or isolated

v Description of the test organization and definition of responsibilities of each
group

v Relationship of test and production modes of operation
v How your test system development process deals with:

– DB/TM structures
– Development tools
– DB/TM features
– Backup and recovery

Related concepts:

Testing the system (System Administration)

Testing a CICS application program (Application Programming)

Testing an IMS application program (Application Programming)

524 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_tst.htm#ims_tst_
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_cicsappprogramtest.htm#ims_cicsappprogramtest
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_appprogramtesting.htm#ims_appprogramtesting

Using IBM programs to develop a test database
If you use the same development aids to develop the test database that you use to
develop your production databases, you will benefit from using familiar tools.

Also, you will avoid problems caused by differences between test and production
databases.

IMS Application Development Facility II
The IMS Application Development Facility II (IMSADF II) is designed to increase
the productivity of programmers developing applications for IMS systems.

IMSADF II provides ISPF-based dialogs to work with IMS and Db2 for z/OS to
reduce the time and effort that is required to develop, maintain, and expand IMS
database and data communications applications.

If your installation uses IMSADF II to develop application programs, you can use
it to create a simple test database. The interactive nature of the IMSADF II enables
you to dynamically add segments to a database. By means of SEGM and FIELD
statements, you can define a test database and update it as needed.

Related Reading: For information on how to use the IMS Application
Development Facility II, see the IMS Application Development Facility (ADF) II User's
Guide.

File Manager for z/OS for IMS Data
The IMS component of File Manager (FM/IMS) is an ISPF application with which
you can manipulate data stored in IMS databases.

FM/IMS provides you with a number of flexible ways to connect to your IMS
databases. For example, with BMP mode you can connect to an online multi-user
database and manipulate the data. In DLI mode, you can work with data offline as
a single user or you can share the data with others.

In addition, FM/IMS provides two functions that you can use in batch jobs.
FM/IMS Edit Batch (IEB) runs a REXX procedure that can insert, update, retrieve,
delete or print segments and create views. FM/IMS Batch Print (IPR) can print the
entire database in one of several available display formats, or a selected subset of
the database, based on a view.

Using the DL/I test program, DFSDDLT0
You can, in some cases, use the DL/I test program (DFSDDLT0) to test DL/I call
sequences or insert segments.

For example, if you need a test database with relatively few database records, you
can use DFSDDLT0 to test DL/I call sequences. If you have no machine-readable
database to begin with, you can define a PCB, then use DFSDDLT0 to insert
segments. This step eliminates the need for a load program to generate your test
database.

The DL/I Test Program cannot be used by CICS, but can be used for stand-alone
batch programs. If used for stand-alone batch programs, it is useful to interpret the
database performance as it might be implemented for online or shared database
programs.
Related concepts:

Chapter 24. Developing test databases 525

Testing DL/I call sequences (DFSDDLT0) before testing your IMS program
(Application Programming)

526 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_dlicallsequencetest.htm#ims_dlicallsequencetest
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_dlicallsequencetest.htm#ims_dlicallsequencetest

Part 5. Database administrative tasks

This section discusses the primary tasks associated with administering IMS
databases, including loading databases, backing up and recovering databases,
monitoring databases, tuning databases, and modifying databases.

© Copyright IBM Corp. 1974, 2016 527

528 Database Administration

Chapter 25. Loading databases

After you implement your database design, you are ready to write and load your
database. However, before writing a load program, you must estimate the
minimum size of the database and allocate data sets.
Related concepts:
“Who attends code inspection 1” on page 32
Related tasks:
“Adjusting VSAM options specified in the Access Method Services DEFINE
CLUSTER command” on page 683

Estimating the minimum size of the database
When you estimate the size of your database, you estimate how much space you
need to initially load your data.

Unless you do not plan to insert segments into your database after it is loaded,
allocate more space for your database than you actually estimate for the initial
load.

This topic contains the step-by-step procedure for estimating minimum database
space. To estimate the minimum size needed for your database, you must already
have made certain design decisions about the physical implementation of your
database. Because these decisions are different for each DL/I access method, they
are discussed under the appropriate access method in step 3 of the procedure.

If you plan to reorganize your HALDB partitions online, consider the extra space
reorganization requires. Although online reorganization does not need any
additional space when you first load a HALDB partition, the process does require
additional space at the time of reorganization.
Related concepts:
Chapter 31, “Converting database types,” on page 797
“Choosing a logical record length for a HISAM database” on page 433
“HALDB online reorganization” on page 642
“Adding logical relationships” on page 701
Related tasks:
“Deleting segment types” on page 697
“Changing the amount of space allocated” on page 684
“Changing segment size” on page 698
“Changing the number of data set groups” on page 723
“Adjusting HDAM and PHDAM options” on page 673
“Adjusting VSAM options specified in the Access Method Services DEFINE
CLUSTER command” on page 683
“Unloading and reloading using the reorganization utilities” on page 696

© Copyright IBM Corp. 1974, 2016 529

Step 1. Calculate the size of an average database record
Determine the size, then the average number of occurrences of each segment type
in a database record. By multiplying these two numbers together, you get the size
of an average database record.

Determining segment size
Segment size here is physical segment size, and it includes both the prefix and
data portion of the segment.

You define the size of the data portion. It can include unused space for future use.
The size of the data portion of the segment is the number you specified in the
BYTES= operand in the SEGM statement in the DBD.

The prefix portion of the segment depends on the segment type and on the options
you are using. The following table helps you determine, by segment type, the size
of the prefix. Using the chart, add up the number of bytes required for necessary
prefix information and for extra fields and pointers generated in the prefix for the
options you have chosen. Segments can have more than one 4-byte pointer in their
prefix. You need to factor all extra pointers of this type into your calculations.

Table 73. Required fields and pointers in a segment's prefix

Type of segment Fields and pointers used in the segment's
prefix

Size of the field or
pointer (in bytes)

All types Segment code (not present in a SHSAM,
SHISAM, GSAM, or secondary index pointer
segment)

1

Delete byte (not present in a SHSAM,
SHISAM, or GSAM segment)

1

HDAM, PHDAM,
HIDAM, and
PHIDAM

PCF pointer 4

PCL pointer 4

PP pointer 4

PTF pointer 4

PTB pointer 4

HDAM and HIDAM
only

HF pointer 4

HB pointer 4

DEDB PCF pointer 4

PCL pointer 4

Subset pointer 4

Logical parent (for
HDAM and HIDAM)

LCF pointer 4

LCL pointer 4

Logical child counter 4

Logical parent (for
PHDAM and
PHIDAM)

Logical child counter (only present for
unidirectional logical parents)

4

Logical child LTF pointer 4

LTB pointer 4

LP pointer 4

530 Database Administration

Table 73. Required fields and pointers in a segment's prefix (continued)

Type of segment Fields and pointers used in the segment's
prefix

Size of the field or
pointer (in bytes)

Logical child
(PHDAM and
PHIDAM)

EPS 28

Secondary index Symbolic or direct-address pointer to the
target segment

4

PSINDEX EPS plus the target segment root key 28 + length of the
target-segment root
key

All segments in
PHDAM and
PHIDAM

ILK 8

Related concepts:
“Mixing pointers” on page 144

Determining segment frequency
After you have determined the total size of a segment type, you need to determine
segment frequency.

Segment frequency is the average number of occurrences of a particular segment
type in the database record. To determine segment frequency, first determine the
average number of times a segment occurs under its immediate physical parent.

For example, in the database record in the following figure, the ITEMS segment
occurs an average of 10 times for each DEPOSITS segment. The DEPOSITS
segment occurs an average of four times for each CUSTOMER root segment. The
frequency of a root segment is always one.

To determine the average number of occurrences of a particular segment type in
the database record, multiply together the segment frequencies of each segment in
the path from the given segment back up to the root. For the ITEMS segment type,
the path includes the ITEMS segment and the DEPOSITS segment. The segment
frequency of ITEMS is 10, and the segment frequency of DEPOSITS is 4. Therefore,
the average number of occurrences of the ITEMS segment in the database record is

Figure 244. Segment sizes and average segment occurrences

Chapter 25. Loading databases 531

40 (10 x 4). Another way of expressing this idea is that each customer has an
average of 4 DEPOSITS, and each DEPOSIT has an average of 10 ITEMS.
Therefore, for each customer, an average of 40 (10 x 4) ITEMS exist in the database
record.

Determining average database record size
After you determine segment size and segment frequency, you can determine the
average size of a database record.

To determine average database record size for a HISAM database, multiply
segment size and segment frequency together for each segment type in the
database record, then add the results. For example, for the database record shown
in “Determining segment frequency” on page 531, the average database record size
is calculated as shown in the following table.

Table 74. Calculating the average database record size

Segment type Segment size Average occurrences Total size

CUSTOMER 120 1 120

ADDRESS 30 4 120

CHECKS 30 8 240

DEPOSITS 10 4 40

ITEMS 20 40 (10x4) 800

MISC 10 1 10

REL ACCT 12 .5 6

Record Total 1336

Step 2. Determine overhead needed for CI resources
If you are using VSAM, you need to determine how much overhead is needed for
a CI before you can do the remaining space calculations.

If you are not using VSAM, you can skip this step.

Overhead is space used in a CI for two control fields. VSAM uses the control fields
to manage space in the CI. The control fields and their sizes are shown in the
following table.

Table 75. VSAM control fields

Field Size in bytes

CIDF (Control interval definition field) 4

RDF (Record definition field) 3

If one logical record exists for each CI, CI overhead consists of one CIDF and one
RDF (for a total of 7 bytes). HDAM and HIDAM databases and PHDAM and
PHIDAM partitions use one logical record for each CI.

If more than one logical record exists for each CI, CI overhead consists of one
CIDF and two RDFs (for a total of 10 bytes). HISAM (KSDS and ESDS), HIDAM
and PHIDAM index, and secondary index databases can all use more than one
logical record for each CI.

Step 3 tells you when to factor CI overhead into your space calculations.

532 Database Administration

Step 3. Determine the number of CIs or blocks needed
The calculations in this step are done by database type.

To determine how many CIs or blocks are needed to hold your database records,
go to the topic in this step that applies to the database type you are using. If you
are using VSAM, the first CI in the database is reserved for VSAM.

HISAM: determining the number of CIs or blocks needed

A CI in HISAM can contain one or more logical records. In the primary data set a
logical record can only contain one database record (or part of one database
record). In the overflow data set a logical record can only contain segments of the
same database record, but more than one logical record can be used for the
overflow segments of a single database record.

In HISAM, you should remember how logical records work, because you need to
factor logical record overhead into your calculations before you can determine how
many CIs (control intervals) are needed to hold your database records. Logical
record overhead is a combination of the overhead that is always required for a
logical record and the overhead that exists because of the way in which database
records are stored in logical records (that is, storage of segments almost always
results in residual or unused space).

Because some overhead is associated with each logical record, you need to
calculate the amount of space that is available after factoring in logical record
overhead. Once you know the amount of space in a logical record available for
data, you can determine how many logical records are needed to hold your
database records. If you know how many logical records are required, you can
determine how many CIs or blocks are needed.

For example, assume you need to load 500 database records using VSAM, and to
use a CI size of 2048 bytes for both the KSDS and ESDS. Also, assume you need to
store four logical records in each KSDS CI and two logical records in each ESDS
CI.
1. First factor in CI overhead by subtracting the overhead from the CI size: 2048 -

10 = 2038 bytes for both the KSDS and the ESDS. The 10 bytes of overhead
consists of a 4-byte CIDF and two 3-byte RDFs.

2. Then, calculate logical record size by dividing the available CI space by the
number of logical records per CI: 2038/4 = 509 bytes for the KSDS and 2038/2
= 1019 bytes for the ESDS. Because logical record size in HISAM must be an
even value, use 508 bytes for the KSDS and 1018 bytes for the ESDS.

3. Finally, factor in logical record overhead by subtracting the overhead from
logical record size: 508 - 5 = 503 bytes for the KSDS and 1018 - 5 bytes for the
ESDS. HISAM logical record overhead consists of 5 bytes for VSAM (a 4-byte
RBA pointer for chaining logical records and a 1-byte end-of-data indicator).
This means if you specify a logical record size of 508 bytes for the KSDS, you
have 503 bytes available in it for storing data. If you specify a logical record
size of 1018 bytes for the ESDS, you have 1013 bytes available in it for storing
data.

Refer to the previous example. Because the average size of a database record is
1336 bytes, the space available for data in the KSDS is not large enough to contain
it. It takes the available space in one KSDS logical record plus one ESDS logical
record to hold the average database record (503 + 1013 = 1516 bytes of available

Chapter 25. Loading databases 533

space). This record size is greater than an average database record of 1336 bytes.
Because you need to load 500 database records, you need 500 logical records in
both the KSDS and ESDS.
v To store four logical records per CI in the KSDS, you need a minimum of 500/4

= 125 CIs of 2048 bytes each for the KSDS.
v To store two logical records per CI in the ESDS, you need a minimum of 500/2

= 250 CIs of 2048 bytes each for the ESDS.

HIDAM or PHIDAM: determining the number of CIs or blocks needed

With HIDAM or PHIDAM, one VSAM logical record exists per CI or block. In this
context, logical record is the unit of transfer when invoking an access method
(such as VSAM), to get or put records. Logical record overhead consists of an
FSEAP (4 bytes). If you are using RAPs (HIDAM only), the logical record overhead
consists of one RAP (4 bytes). For example, assume you need to load 500 database
records using VSAM and to use a CI size of 2048 bytes and no RAP (specify
PTR=TB on the root to suppress the RAP for HIDAM).
1. First, determine the size of a logical record by subtracting CI overhead from CI

size: 2048 - 7 = 2041 bytes for the ESDS logical record size. The 7 bytes of
overhead consists of a 4-byte CIDF and a 3-byte RDF.

2. Then, determine the amount of logical record space available for data by
factoring in logical record overhead. In this example, logical record overhead
consists of an FSEAP: 2041 - 4 = 2037 bytes. This means you have 2037 bytes
available to store data in each logical record.

HIDAM or PHIDAM index: calculating the space needed

Calculating space for a HIDAM or PHIDAM index is similar to calculating space
for a HISAM KSDS. The difference is that no logical record overhead exists. One
index record is stored in one logical record, and multiple logical records can be
stored in one CI or block.

HDAM or PHDAM: determining the amount of space needed

Because of the many variables in HDAM or PHDAM, no exact formula exists for
estimating database space requirements. Therefore, you should use a space
calculation aid to help determine the amount of space needed for HDAM or
PHDAM databases.

If you are using VSAM, and you decide to estimate, without use of an aid, the
amount of space to allocate for the database, the first CI in the database is reserved
for VSAM. Because of this, the bitmap is in the second CI.

With HDAM or PHDAM, logical record overhead depends on the database design
options you have selected. You must choose the number of CIs or blocks in the
root addressable area and the number of RAPS for each CI or block. These choices
are based on your knowledge of the database.

A perfect randomizer requires as many RAPs as there are database records.
Because a perfect randomizer does not exist, plan for approximately 20% more
RAPs than you have database records. The extra RAPs reduces the likelihood of
synonym chains. For example, assume you need to store 500 database records.
Then, for the root addressable area, if you use:
v One RAP per CI or block, you need 600 CIs or blocks

534 Database Administration

v Two RAPs per CI or block, you need 300 CIs or blocks
v Three RAPs per CI or block, you need 200 CIs or blocks

Because of the way your randomizer works, you decide 300 CIs or blocks with two
RAPs each works best. Assume you need to store 500 database records using
VSAM, and you have chosen to use 300 CIs in the root addressable area and two
RAPs for each CI. This decision influences your choice of CI size. Because you are
using two RAPs per CI, you expect two database records to be stored in each CI.
You know that a 2048-byte CI is not large enough to hold two database records (2
x 1336 = 2672 bytes). And you know that a 3072-byte CI is too large for two
database records of average size. Therefore, you would probably use 2048-byte CIs
and the byte limit count to ensure that on average you would store two database
records in the CI.

To determine the byte limit count:
1. First, determine the size of a logical record by subtracting CI overhead from CI

size: 2048 - 7 = 2041 bytes for the ESDS logical record size.
2. Then, determine the amount of logical record space available for data by

factoring in logical record overhead. (Remember only one logical record exists
per CI in HDAM or PHDAM.) In this example, logical record overhead consists
of a 4-byte FSEAP and two 4-byte RAPs: 2041 - 4 - (2 x 4) = 2029 bytes. This
means you have 2029 bytes available for storing data in each logical record in
the root addressable area.

3. Finally, determine the available space per RAP by dividing the available logical
record space by the number of RAPs per CI: 2029/2 = 1014 bytes. Therefore,
you must use a byte limit count of about 1000 bytes.

Continuing our example, you know you need 300 CIs of 2048 bytes each in the
root addressable area. Now you need to calculate how many CIs you need in the
overflow area. To do this:
v Determine the average number of bytes that will not fit in the root addressable

area. Assume a byte limit count of 1000 bytes. Subtract the byte limit count from
the average database record size: 1336 - 1000 = 336 bytes. Multiply the average
number of overflow bytes by the number of database records: 500 x 336 =
168000 bytes needed in the non-root addressable area.

v Determine the number of CIs needed in the non-root addressable area by
dividing the number of overflow bytes by the bytes in a CI available for data.
Determine the bytes in a CI available for data by subtracting CI and logical
record overhead from CI size: 2048 - 7 - 4 = 2037 (7 bytes of CI overhead and 4
bytes for the FSEAP). Overflow bytes divided by CI data bytes is 168000/2037 =
83 CIs for the overflow area.

You have estimated you need a minimum of 300 CIs in the root addressable area
and a minimum of 83 CIs in the non-root addressable area.

Secondary index: determining the amount of space needed
Calculating space for a secondary index is similar to calculating space for a HISAM
KSDS. The difference is that no logical record overhead exists in which factor.

One index record is stored in one logical record, and multiple logical records can
be stored in one CI or block.

Chapter 25. Loading databases 535

Step 4. Determine the number of blocks or CIs needed for free
space

In HDAM, HIDAM, PHDAM, and PHIDAM databases, you can allocate free space
when your database is initially loaded.

Free space can only be allocated for an HD VSAM ESDS or OSAM data set. Do not
confuse the free space discussed here with the free space you can allocate for a
VSAM KSDS using the DEFINE CLUSTER command.

To calculate the total number of CIs or blocks you need to allocate in the database,
you can use the following formula:
A = B x (fbff / (fbff - 1)) x (100 / (100 - fspf))

Where the values are:

A The total number of CIs or blocks needed including free space.

B The number of blocks or CIs in your database.

fbff How often you are leaving a block or CI in the database empty for free
space.

For an HDAM or HIDAM database, this is the fbff value that is specified
on the FRSPC= parameter of the DBD.

fspf The minimum percentage of each block or CI you are leaving as free space.

For an HDAM or HIDAM database, this is the fbff value that is specified
on the FRSPC= parameter of the DBD.

Related tasks:
“Specifying free space (HDAM, PHDAM, HIDAM, and PHIDAM only)” on page
429

Step 5. Determine the amount of space needed for bitmaps
In HDAM, HIDAM, PHDAM, and PHIDAM databases, you need to add the
amount of space required for bitmaps to your calculations.

To calculate the number of bytes needed for bitmaps in your database, you can use
the following formula:
A = D / ((B - C) x 8)

Where the values are:

A The number of bitmap blocks or CIs you need for the database.

B The CI or block size you have specified, in bytes, minus 4.

Four is subtracted from the CI or block size because each CI or block has a
4-byte FSEAP.

C The number of RAPs you specified for a CI or block, times 4.

The number of RAPs is multiplied by 4 because each RAP is four bytes
long. (B - C) is multiplied by 8 in the formula to arrive at the total number
of bits that will be available in the CI or block for the bitmap.

D The number of CIs or blocks in your database.

You need to add the number of CIs or blocks needed for bitmaps to your space
calculations.

536 Database Administration

Related concepts:
“General format of HD databases and use of special fields” on page 146

Allocating database data sets
After you have determined how much space you will need for your database, you
can allocate data sets and then load your database.

You can allocate VSAM data sets by using the DEFINE CLUSTER command. You
must specify the REUSE parameter when allocating HALDB data sets. Use of this
command is described in z/OS DFSMS Access Method Services for Catalogs.

Attention: If you use the Database Image Copy 2 utility to take image copies of
your database, the data sets must be allocated on hardware that supports either the
DFSMS concurrent copy function or the DFSMS fast replication function.

When loading databases (excluding HALDB databases) that contain logical
relationships or secondary indexes, DL/I writes a control record to a work file
(DFSURWF1). This work file must also be allocated and in the JCL.

All other data sets are allocated using normal z/OS JCL. You can use the z/OS
program IEFBR14 to preallocate data sets, except when the database is an MSDB.
For MSDBs, you should use the z/OS program IEHPROGM.

For more information about the standard DFSMS methods for allocating data sets
and about data sets in general, see:
v z/OS DFSMS: Using Data Sets

v z/OS DFSMS Access Method Services for Catalogs

Related tasks:
“Changing the number of data set groups” on page 723

Using OSAM as the access method
OSAM is a special access method supplied with IMS.

This topic contains Product-sensitive Programming Interface information.

You need to know the following information about OSAM if your database is
using OSAM as an access method:
v IMS communicates with OSAM using OPEN, CLOSE, READ, and WRITE

macros.
v OSAM communicates with the I/O supervisor using the I/O driver interface.
v An OSAM data set can be read using either the BSAM or QSAM access method.
v You can define sequential OSAM data sets that use the BSAM access method as

z/OS large format data sets by specifying DSNTYPE=LARGE on the DD
statement. Large format data sets can exceed 65,535 tracks.

v The maximum number of extents in an OSAM data set is 60. However, the
maximum number might be less if the length of the z/OS data extent block
(DEB) that is associated with the OSAM data set increases. Additionally, the
maximum number of extents is limited by the length of the sector number table
that is created for rotational position sensing (RPS) devices
With a minimum-sized sector table, the DEB can reflect a maximum of 60 DASD
extents. With a maximum-sized sector table, the DEB can reflect a maximum of
52 DASD extents.

Chapter 25. Loading databases 537

In addition, for each extent area (two double words), OSAM requires a similar
area that contains device geometry data. Each extent requires a total of four
double words. The format and length (expressed in double words) of an OSAM
DEB are shown in the following table.

Table 76. Length and format of an OSAM DEB

Format Length in double words

Appendage sector table 5

Basic DEB 4

Access method dependent section 2

Subroutine name section 1

Standard DEB extents 120 (60 extents)

OSAM extent data 120

Minimum sector table 2

v An OSAM data set can be opened for update in place and extension to the end
through one data control block (DCB). The phrase “extension to the end” means
that records can be added to the end of the data set and that new direct-access
extents can be obtained.

v An OSAM data set does not need to be formatted before use.
v An OSAM data set can use fixed-length blocked or unblocked records.
v The maximum size of an OSAM data set depends on the block size of the data

set and whether it is a HALDB OSAM data set. The size limits for OSAM data
sets are:
– For a non-HALDB database, 4 GB (if the data set has an odd-length block

size) or 8 GB (if the data set has an even-length block size)
– For a HALDB database partition, 4 GB or 8 GB (if the HALDB is registered to

DBRC as supporting 8-GB OSAM data sets)
v File mark definition is always used to define the current end of the data set.

When new blocks are added to the end of the data set, they replace dummy
pre-formatted (by OSAM) blocks that exist on a logical cylinder basis. A file
mark is written at the beginning of the next cylinder, if one exists, during a
format logical cylinder operation. This technique is used as a reliability aid while
the OSAM data set is open.

v OSAM EXCP counts are accumulated during OSAM End of Volume (EOV) and
close processing.

v Migrating OSAM data sets utilizing ADRDSSU and the DFSMSdss component of
z/OS DFSMS: DFSMSdss will migrate the tracks of a data set up to the last
block written value (DS1LSTAR) as specified by the DSCB for the volume being
migrated. If the OSAM data set spans multiple volumes that have not been
pre-allocated, the DS1LSTAR field for each DSCB will be valid and DFSMSdss
can correctly migrate the data.
If the OSAM data set spans multiple volumes that have been pre-allocated, the
DS1LSTAR field in the DSCB for each volume (except the last) can be zero. This
condition will occur during the loading operation of a pre-allocated,
multi-volume data set. The use of pre-allocated volumes precludes EOV
processing when moving from one volume to another, thereby allowing the
DSCBs for these volumes not to be updated. The DSCB for the last volume
loaded is updated during close processing of the data set.

538 Database Administration

||

||

||

||

||

||

||

||

||
|

|
|

DFSMSdss physical DUMP or RESTORE commands with the parameters
ALLEXCP or ALLDATA must be used when migrating OSAM data sets that
span multiple pre-allocated volumes. These parameters will allow DFSMSdss to
correctly migrate OSAM data sets.
Related Reading: For more information on the z/OS DFSMSdss component of
DFSMS and the ALLEXCP and ALLDATA parameters of the DUMP and
RESTORE commands, see the z/OS DFSMS Storage Administration Reference (for
DFSMSdfp, DFSMSdss, and DFSMShsm).

v You can enable OSAM data sets to reside in the extended addressing space of
extended address volumes (EAVs) that are available in z/OS V1.12 or later. To
enable an OSAM data set to reside in the extended addressing space of EAVs,
specify an EAV volume on the VOL=SER= parameter when you allocate the data
set. In addition, specify the attribute EATTR=OPT to indicate that the data set
supports the extended attributes needed for use of the extended addressing area.

Restriction: Data sets with EATTR=OPT specified on them cannot be shared
with an IMS Version 10 or IMS Version 11 system because those IMS versions do
not support extended attributes.

Other z/OS access methods (VSAM and SAM) are used in addition to OSAM for
physical storage of data.
Related concepts:
“Maximum sizes of HD databases” on page 133

OSAM subpool definition (System Definition)
Related reference:

High-speed sequential processing control statements (System Definition)

Allocating OSAM data sets
For databases other than HALDB databases, you should use JCL to allocate OSAM
data sets at the time the data set is loaded. This mode of allocation can be for
single or multiple volumes, using the SPACE parameter.

OSAM also supports large format sequential data sets, which can be used as an
alternative to multi-volume data sets.
Related concepts:
“Recovery and data sets” on page 579

Allocating single-volume OSAM data sets
You can allocate single-volume OSAM data sets by using JCL or z/OS DFSMS
Access Method Services (AMS) IDCAMS.
v To allocate a single-volume OSAM data set by using JCL, you can model your

JCL after the following example JCL.
//ALLOC1 EXEC PGM=IEFBR14
//DD1 DD DSN=HIGHNODE.MIDNODE.LOWNODE,
// DISP=(NEW,CATLG),
// SPACE=(CYLS,(200,100)),
//* add UNIT and VOLSER if needed
//* add SMS parameters if needed
//* do not code DCB parameters
/*

v To allocate a single-volume OSAM data set by using AMS IDCAMS, you can
model your JCL after the following example JCL.

Chapter 25. Loading databases 539

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_i2hodef.htm#i2hodef
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_hssp_control_statements.htm#ims_hssp_control_statements

//ALLOC1 EXEC PGM=IDCAMS,REGION=4096K
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
/* */
/* DELETE OLD DATA SET IF IT EXISTS */
/* */
DELETE ’HIGHNODE.MIDNODE.ENDNODE’

IF LASTCC <= 8 THEN SET MAXCC = 0

/* */
/* ALLOCATE - WITH SMS PARAMETERS */
/* */

ALLOCATE DSN(’HIGHNODE.MIDNODE.ENDNODE’) -
NEW CATALOG -
DATACLAS(DCLAS) -
MGMTCLAS(MCLAS) -
STORCLAS(SCLAS) -
SPACE(200 100) CYLINDERS

/*

v To allocate an OSAM data set capable of residing in the extended addressing
space on an extended address volume on non-SMS managed DASD, you can
model your JCL after the following example JCL.
//OSAMALLO JOB A,OSAMEXAMPLE
//S1 EXEC PGM=IEFBR14
//EAVD DD VOL=SER=EAV001,SPACE=(CYL,(20,5)),UNIT=3390,
// DSN=OSAM.SPACE,DISP=(,KEEP),EATTR=OPT

Allocating multi-volume OSAM data sets
For multi-volume HALDB database data sets, you should preallocate your OSAM
data sets. For single volume HALDB OSAM data sets, the allocation can be done
either before or during the load step, although doing it in the load step is
recommended.

If the installation control of direct-access storage space and volumes require that
the OSAM data sets be preallocated, or if a message queue data set requires more
than one volume, the OSAM data sets might be preallocated.

Observe the following restrictions when you preallocate with any of the accepted
methods:
v DCB parameters should not be specified.
v Secondary allocation must be specified for all volumes if the data set will be

extended beyond the primary allocation.
v Secondary allocation must be specified for all volumes in order to write to

volumes preallocated but not written to by initial load or reload processing.
v Secondary allocation is not allowed for queue data sets because queue data sets

are not extended beyond their initial or preallocated space quantity. However,
queue data sets can have multi-volume allocation.

v The secondary allocation size defined on the first volume will be used for all
secondary allocations on all volumes regardless of the secondary allocation size
specified on the other volumes. All volumes should be defined with the same
secondary allocation size to avoid confusion.

v If the OSAM data set will be cataloged, use IEHPROGM or Access Method
Services to ensure that all volumes are included in the catalog entry.

540 Database Administration

When a multi-volume data set is preallocated, you should allocate extents on all
the volumes to be used. The suggested method of allocation is to have one
IEFBR14 utility step for each volume on which space is desired.

Restriction:

v Do not use IEFBR14 and specify a DD card with a multi-volume data set,
because this allocates an extent on only the first volume.

v Do not use a separate IEFBR14 utility step to allocate extents on each volume, as
described above, if you plan to use the Database Image Copy 2 utility
(DFSUDMT0). Using a separate IEFBR14 step for each volume creates extents
that have the same identifier (volume 1). The Database Image Copy 2 utility
requires that you allocate your multi-volume data sets using the standard
DFSMS methods.

Example of allocating multi-volume OSAM data sets on non-SMS managed
DASD:

The JCL in the following example allocates a multi-volume OSAM data set on a
non-SMS managed direct-access storage device (DASD).

The data sets allocated with this JCL are not compatible with the Database Image
Copy 2 utility.

JCL allocating a multi-volume OSAM data set on non-SMS managed DASD
//OSAMALLO JOB A,OSAMEXAMPLE
//S1 EXEC PGM=IEFBR14
//EXTENT1 DD VOL=SER=AAAAAA,SPACE=(CYL,(20,5)),UNIT=3390,
// DSN=OSAM.SPACE,DISP=(,KEEP)
//S2 EXEC PGM=IEFBR14
//EXTENT2 DD VOL=SER=BBBBBB,SPACE=(CYL,(30,5)),UNIT=3390,
// DSN=OSAM.SPACE,DISP=(,KEEP)

.

.

.
//LAST EXEC PGM=IEFBR14
//EXTENTL DD VOL=SER=LLLLLL,SPACE=(CYL,(30,5)),UNIT=3390,
// DSN=OSAM.SPACE,DISP=(,KEEP)
// EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=*
//DD1 DD UNIT=3390,VOL=SER=AAAAAA,DISP=SHR
//DD2 DD UNIT=3390,VOL=SER=BBBBBB,DISP=SHR

.

.

.
//DDL DD UNIT=3390,VOL=SER=LLLLLL,DISP=SHR
//SYSIN DD *

CATLG DSNAME=OSAM.SPACE,VOL=3390=(AAAAAA,BBBBBB,LLLLLL)
/*

Related concepts:
“Cautions when allocating multi-volume OSAM data sets” on page 542

Example of allocating multi-volume OSAM data sets on SMS-managed DASD:

The following examples show alternate methods for allocating multi-volume
OSAM data sets on SMS-managed DASD.

When allocating data sets using the following JCL, you must specify an SMS
storage class that has been defined by your installation with guaranteed space
(GUARANTEED_SPACE=YES) and specify the volume serial numbers. Without the

Chapter 25. Loading databases 541

guaranteed space attribute and the volume serial numbers, only the first volume
will get a primary extent and the other volumes will get secondary extents.

The following JCL is an example of the JCL that you can use to allocate
multi-volume OSAM data sets. These data sets are compatible with the Database
Image Copy 2 utility. In the example, gtdstcls is a storage class that is defined
with the guaranteed space attribute.
//OSAMALLO JOB A,OSAMEXAMPLE
// EXEC PGM=IEFBR14
//DD123 DD DSN=HIGHNODE.MIDNODE.ENDNODE,
// DISP=(NEW,CATLG),
// SPACE=(CYL,(200,100)),
// UNIT=(3390)
// VOL=SER=(VOL111,VOL222,VOL333),
// STORCLAS=gtdstcls
/*

The following JCL is an example of using the DFSMS Access Method Services
ALLOCATE command to allocate multi-volume OSAM data sets. These data sets
are compatible with the Database Image Copy 2 utility. In the example, gtdstcls is
a storage class that is defined with the guaranteed space attribute.
//OSAMALLO JOB A,OSAMEXAMPLE
// EXEC PGM=IDCAMS,REGION=4096K
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

DELETE ’HIGHNODE.MIDNODE.ENDNODE’

IF LASTCC<=8 THEN SET MAXCC=0

ALLOCATE DSN(’HIGHNODE.MIDNODE.ENDNODE’) -
NEW CATALOG -
SPACE(200,100) CYLINDERS -
UNIT(3390) -
VOL(VOL111,VOL222,VOL333) -
STORCLAS(gtdstcls)

/*

For more information about allocating space for data sets on SMS-managed DASD,
see z/OS DFSMS Storage Administration Reference (for DFSMSdfp, DFSMSdss, and
DFSMShsm).
Related concepts:
“Cautions when allocating multi-volume OSAM data sets”

Cautions when allocating multi-volume OSAM data sets:

Keep in mind the following advisories when allocating multi-volume OSAM data
sets.
1. Preallocating more volumes for OSAM data set extents than are used during

initial load or reload processing might cause an abend if you attempt to extend
the data set beyond the last volume written to at initial load or reload time
under the following circumstances: the initial load or reload step did not result
in the data being written to the last volume of the preallocated data set, and
secondary allocation was not specified during data set preallocation.

2. When loading a database, the volumes of the data sets are loaded in the order
that their volume serial numbers are listed in the CATLG statement.

3. Do not reuse a multivolume OSAM data set without first scratching the data
set and then reallocating the space. This also applies to the output data sets for
the HALDB Online Reorganization function.

542 Database Administration

Failure to scratch and reallocate the data set might cause an invalid EOF mark
to be left in the DSCB of the last volume of the data set when the data set is:
a. First reused by an IMS utility (such as the Unload/Reload utility used in

database reorganization).
b. Then opened by OSAM for normal processing.
For example, a data set might initially be allocated on three volumes, with the
EOF mark on the third volume. However, after the reorganization utility is run,
the data set might need only the first two volumes. Therefore, the new EOF
mark is placed on the second volume. After reorganization, when the data set
is opened by OSAM for normal processing, OSAM checks the last volume's
DSCB for an EOF mark. When OSAM finds the EOF in the third volume, it
inserts new data after the old EOF mark in the third volume instead of
inserting data after the EOF mark created by the reorganization utility in the
second volume.
Subsequent processing by another utility such as the Image Copy utility uses
the EOF mark set by the reorganization utility on the second volume and
ignores new data inserted by OSAM on volume three.

4. If you intend to use the Image Copy 2 utility (DFSUDMT0) to back up and
restore multi-volume databases, they MUST be allocated using the standard
DFSMS techniques.
For more information about the DFSMS methods of data set allocation, see z/OS
DFSMS: Using Data Sets.

Related concepts:
“Example of allocating multi-volume OSAM data sets on non-SMS managed
DASD” on page 541
“Example of allocating multi-volume OSAM data sets on SMS-managed DASD” on
page 541

Allocating an OSAM large format sequential data set
OSAM supports large format sequential data sets. Large format sequential data
sets can exceed 65 535 tracks or 3.4 GB on a single volume.

The following JCL is an example of allocating an OSAM large format sequential
data set. The data sets allocated with this JCL are compatible with the Database
Image Copy 2 utility.
//OSAMALBG JOB A,OSAMEXAMPLE
//S1 EXEC PGM=IEFBR14
//AJOSAMDB DD DSN=IMSTESTL.AJOSAMDB,UNIT=SYSDA,
// DISP=(NEW,CATLG),DSNTYPE=LARGE,
// SPACE=(CYL,(4500,100)),VOL=SER=LRGVS1

The following JCL is an example of allocating an OSAM large format sequential
data set on an extended address volume (EAV). The data sets allocated with this
JCL are compatible with the Database Image Copy 2 utility.
//OSAMALBG JOB A,OSAMEXAMPLE
//S1 EXEC PGM=IEFBR14
//AJOSAMDB DD DSN=IMSTESTL.AJOSAMDB,UNIT=SYSDA,
// DISP=(NEW,CATLG),DSNTYPE=LARGE,
// SPACE=(CYL,(4500,100)),VOL=SER=EAV001,EATTR=OPT

Chapter 25. Loading databases 543

Writing a load program
After you have determined how much space your database requires and allocated
data sets for it, you can load the database.

The load process

Loading the database is done using an initial load program. Initial load programs
must be batch programs, since you cannot load a database with an online
application program. It is your responsibility to write this program.

Basically, an initial load program reads an existing file containing your database
records. Using the DBD, which defines the physical characteristics of the database,
and the load PSBs, the load program builds segments for a database record and
inserts them into the database in hierarchical order.

The following figure shows the load process.

If the data to be loaded into the database already exists in one or more files, merge
and sort the data, if necessary, so that it is presented to the load program in correct
sequence. Also, if you plan to merge existing files containing redundant data into
one database, delete the redundant data, if necessary, and correct any data that is
wrong.

The following figure illustrates loading a database using existing files.

Existing files

Data entry to

build database

records in storage

IMS.PSBLIB

IMS.DBDLIB

or
Initial load

program

Loaded

database

Figure 245. The load process

544 Database Administration

After you have defined the database, you load it by writing an application
program that uses the ISRT call. An initial load program builds each segment in
the program's I/O area, then loads it into the database by issuing an ISRT call for
it. ISRT calls are the only DL/I requests allowed when you specify PROCOPT=L in
the PCB. The only time you use the “L” option is when you initially load a
database. This option is valid only for batch programs.

Restriction: A PSB that includes a PCB statement that specifies PROCOPT=L
cannot contain other PCB statements that specify PROCOPT values of A, D, G, I,
or R.

If the database being loaded is registered with DBRC, DBRC authorization is also
required for all databases that are logically related to the database being loaded. If
DBRC is active when the database is loaded, DBRC sets the image copy status for
this database to IC NEEDED in the DBDS record in the RECON data set.

The FIRST, LAST, and HERE insert rules do not apply when you are loading a
database, unless you are loading an HDAM database. When you are loading a
HDAM database, the rules determine how root segments with non-unique
sequence fields are ordered. If you are loading a database using HSAM, the same
rules apply.

Data Data

Merge

Clean up
and format

Sort

Initial load
program

Database

Initial load
errors

Initial load
report

Figure 246. Loading a database using existing files

Chapter 25. Loading databases 545

Recommendation: Load programs do not need to issue checkpoints.

Most comprehensive databases are loaded in stages by segment type or by groups
of segment types. Because there are usually too many segments to load using only
one application program, you need several programs to do the loading. Each load
program after the first load program is technically an “add” program, not a load
program. Do not specify “L” as the processing option in the PCB for add
programs. You should review any add type of load program written to load a
database to ensure that the program's performance will be acceptable; it usually
takes longer to add a group of segments than to load them.

For HSAM, HISAM, HIDAM, and PHIDAM, the root segments that the application
program inserts must be pre-sorted by the key fields of the root segments. The
dependents of each root segment must follow the root segment in hierarchical
sequence, and must follow key values within segment types. In other words, you
insert the segments in the same sequence in which your program would retrieve
them if it retrieved in hierarchical sequence (children after their parents, database
records in order of their key fields).

If you are loading an HDAM or PHDAM database, you do not need to pre-sort
root segments by their key fields.

When you load a database:
v If a loaded segment has a key, the key value must be in the correct location in

the I/O area.
v When you load a logical child segment, the I/O area must contain the logical

parent's concatenated key, followed by the logical child segment to be inserted.
v After issuing an ISRT call, the current position is just before the next available

space following the last segment successfully loaded. The next segment you load
will be placed in that space.

Recommendation: You should always create an image copy immediately after you
load, reload, or reorganize the database.
Related concepts:
“Adding logical relationships” on page 701

Status codes for load programs
If the ISRT call is successful, DL/I returns a blank status code for the program. If
not, DL/I returns one of several possible status codes.

If an ISRT call is unsuccessful, DL/I returns one of the following status codes:

LB The segment you are trying to load already exists in the database. DL/I
only returns this status code for segments with key fields.

In a call-level program, you should transfer control to an error routine.

LC The segment you are trying to load is out of key sequence.

LD No parent exists for this segment. This status code usually means that the
segment types you are loading are out of sequence.

LE In an ISRT call with multiple SSAs, the segments named in the SSAs are
not in their correct hierarchical sequence.

LF Initial load of PHDAM or PHIDAM attempted ISRT of a logical child
segment.

546 Database Administration

V1 You have supplied a variable-length segment whose length is invalid.

Using SSAs in a load program
When you are loading segments into the database, you do not need to worry about
position, because DL/I inserts one segment after another. The most important part
of loading a database is the order in which you build and insert the segments.

The only SSA you must supply is the unqualified SSA giving the name of the
segment type you are inserting.

Because you do not need to worry about position, you need not use SSAs for the
parents of the segment you are inserting. If you do use them, be sure they contain
only the equal (EQ, =b, or b=) relational operator. You must also use the key field
of the segment as the comparative value.

For HISAM, HIDAM, and PHIDAM, the key X'FFFF' is reserved for IMS. IMS
returns a status code of LB if you try to insert a segment with this key.

Loading a sequence of segments with the D command code
You can load a sequence of segments in one call by concatenating the segments in
the I/O area and supplying DL/I with a list of unqualified SSAs.

You must include the D command code with the first SSA. The sequence that the
SSAs define must lead down the hierarchy, with each segment in the I/O area
being the child of the previous segment.

Two types of initial load program
Two types of initial load programs exist: basic and restartable.

The basic program must be restarted from the beginning if problems occur during
execution. The restartable program can be restarted at the last checkpoint taken
before problems occurred. Restartable load programs must be run under control of
the Utility Control Facility (UCF) and require VSAM as the access method. The
following topics describe both types of load programs:

Basic initial load program
You should write a basic initial load program (one that is not restartable) when the
volume of data you need to load is not so great that you would be seriously set
back if problems occurred during program execution.

If problems do occur, the basic initial load program must be rerun from the
beginning.

Fast Path Data Entry Databases (DEDBs) cannot be loaded in a batch job as can
DL/I databases. DEDBs are first initialized by the DEDB Initialization Utility and
then loaded by a user-written Fast Path application program that executes typically
in a BMP region.

Fast Path Main Storage Databases (MSDBs) are not loaded until the IMS control
region is initialized. These databases are then loaded by the IMS start-up
procedure when the following requirements are met:
v The MSDB= parameter on the EXEC Statement of Member Name IMS specifies a

one-character suffix to DBFMSDB in IMS.PROCLIB.
v The member contains a record for each MSDB to be loaded.

Chapter 25. Loading databases 547

The record contains a record for each MSDB, the number of segments to be
loaded, and an optional “F” which indicates that the MSDB is to be fixed in
storage.

v A sequential data set, part of a generation data group (GDG) with dsname
IMS.MSDBINIT(0), is generated.
This data set can be created by a user-written program or by using the INSERT
function of the MSDB Maintenance utility. Records in the data set are sequenced
by MSDB name, and within MSDBs by key.

The following figure shows the logic for developing a basic initial load program.

The following code is a sample load program that satisfies the basic IMS database
loading requirements. A sample program showing how this can be done with the
Utility Control Facility is also provided.
DLITCBL START

PRINT NOGEN
SAVE (14,12),,LOAD1.PROGRAM SAVE REGISTERS
USING DLITCBL,10 DEFINE BASE REGISTER
LR 10,15 LOAD BASE REGISTER

Figure 247. Basic initial load program logic

548 Database Administration

LA 11,SAVEAREA PERFORM
ST 13,4(11) SAVE
ST 11,8(13) AREA
LR 13,11 MAINT
L 4,0(1) LOAD PCB BASE REGISTER
STCM 4,7,PCBADDR+1 STORE PCB ADDRESS IN CALL LIST
USING DLIPCB,4 DEFINE PCB BASE REGISTER
OPEN (LOAD,(INPUT)) OPEN LOAD DATA SOURCE FILE

LOOP GET LOAD,CARDAREA GET SEGMENT TO BE INSERTED
INSERT CALL CBLTDLI,MF=(E,DLILINK) INSERT THE SEGMENT

AP SEGCOUNT,=P’1’ INCREMENT SEGMENT COUNT
CLC DLISTAT,=CL2’ ’ WAS COMPLETION NORMAL?
BE LOOP YES - KEEP GOING

ABEND ABEND 8,DUMP INVALID STATUS
EOF WTO ’DATABASE 1 LOAD COMPLETED NORMALLY’

UNPK COUNTMSG,SEGCOUNT UNPACK SEGMENT COUNT FOR WTO
OI COUNTMSG+4,X’F0’ MAKE SIGN PRINTABLE
WTO MF=(E,WTOLIST) WRITE SEGMENT COUNT
CLOSE (LOAD) CLOSE INPUT FILE
L 13,4(13) UNCHAIN SAVE AREA
RETURN (14,12),RC=0 RETURN NORMALLY
LTORG

SEGCOUNT DC PL3’0’
DS 0F

WTOLIST DC AL2(LSTLENGT)
DC AL2(0)

COUNTMSG DS CL5
DC C’ SEGMENTS PROCESSED’

LSTLENGT EQU (*-WTOLIST)
DLIFUNC DC CL4’ISRT’ FUNCTION CODE
DLILINK DC A(DLIFUNC) DL/I CALL LIST
PCBADDR DC A(0)

DC A(DATAAREA)
DC X’80’,AL3(SEGNAME)

CARDAREA DS 0CL80 I/O AREA
SEGNAME DS CL9
SEGKEY DS 0CL4
DATAAREA DS CL71
SAVEAREA DC 18F’0’
LOAD DCB DDNAME=LOAD1,DSORG=PS,EODAD=EOF,MACRF=(GM),RECFM=FB
DLIPCB DSECT , DATABASE PCB
DLIDBNAM DS CL8
DLISGLEV DS CL2
DLISTAT DS CL2
DLIPROC DS CL4
DLIRESV DS F
DLISEGFB DS CL8
DLIKEYLN DS CL4
DLINUMSG DS CL4
DLIKEYFB DS CL12

END

Related concepts:

Tailoring the IMS system to your environment (System Definition)
Related reference:

Definition and initialization utilities (Database Utilities)

MSDB Maintenance utility (DBFDBMA0) (Database Utilities)

Restartable initial load program
You should write a restartable initial load program (one that can be restarted from
the last checkpoint taken) when the volume of data you need to load is great
enough that you would be seriously set back if problems occurred during program
execution.

Chapter 25. Loading databases 549

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_i2htail.htm#i2htail
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dur02.htm#ims_dur-gen1
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dbfdbma0.htm#ims_dbfdbma0

If problems occur and your program is not restartable, the entire load program has
to be rerun from the beginning.

Restartable load programs differ from basic load programs in their logic. If you
already have a basic load program, usually only minor changes are required to
make it restartable. The basic program must be modified to recognize when restart
is taking place, when WTOR requests to stop processing have been made, and
when checkpoints have been taken.

To make your initial database load program restartable under UCF, consider the
following points when you are planning and writing the program:
v If a program is being restarted, the PCB status code will contain a UR prior to

the issuance of the first DL/I call. The key feedback area will contain the fully
concatenated key of the last segment inserted prior to the last UCF checkpoint
taken. (If no checkpoints were taken prior to the failure, this area will contain
binary zeros.)

v The UCF does not checkpoint or reposition user files. When restarting, it is the
user's responsibility to reposition all such files.

v When restarting, the first DL/I call issued must be an insert of a root segment.
For HISAM and HIDAM Index databases, the restart will begin with a GN and
a VSAM ERASE sequence to reinsert the higher keys. The resume operation then
takes place. Space in the KSDS is reused (recovered) but not in the ESDS.
For HDAM, the data will be compared if the root sequence field is unique and a
root segment insert is done for a segment that already exists in the database
because of segments inserted after the checkpoint. If the segment data is the
same, the old segment will be overlaid and the dependent segments will be
dropped since they will be reinserted by a subsequent user/reload insert. This
occurs only until a non-duplicate root is found. Once a segment with a new key
or with different data is encountered, LB status codes will be returned for any
subsequent duplicates. Therefore, space is reused for the roots, but lost for the
dependent segments.
For HDAM with non-unique keys, any root segments that were inserted after
the checkpoint at which the restart was made will remain in the database. This
is also true for their dependent segments.

v When the stop request is received, UCF will take a checkpoint just prior to
inserting the next root. If the application program fails to terminate, it will be
presented the same status code at each of the following root inserts until normal
termination of the program.

v For HISAM databases, the RECOVERY option must be specified. For HD
organizations, either RECOVERY or SPEED can be defined to Access Method
Services.

v UCF checkpoints are taken when the checkpoint count (CKPNT=) has expired
and a root insert has been requested. The count refers to the number of root
segments inserted and the checkpoint is taken immediately prior to the insertion
of the root.

The following figure shows the logic for developing a restartable initial load
program.

550 Database Administration

The following lists explains the status codes shown in the preceding figure:

UR Load program being restarted under control of UCF

UC Checkpoint record written to UCF journal data set

US Initial load program prepared to stop processing

UX Checkpoint record was written and processing stopped

The following code is for a sample restartable initial load program:
DLITCBL START

PRINT NOGEN
SAVE (14,12),,LOAD1.PROGRAM SAVE REGISTERS
USING DLITCBL,10 DEFINE BASE REGISTER
LR 10,15 LOAD BASE REGISTER
LA 11,SAVEAREA PERFORM
ST 13,4(11) SAVE
ST 11,8(13) AREA
LR 13,11 MAINT
L 4,0(1) LOAD PCB BASE REGISTER

Figure 248. Restartable initial load program logic

Chapter 25. Loading databases 551

STCM 4,7,PCBADDR+1 STORE PCB ADDRESS IN CALL LIST
USING DLIPCB,4 DEFINE PCB BASE REGISTER
OPEN (LOAD,(INPUT)) OPEN LOAD DATA SOURCE FILE
CLC DLISTAT,=C’UR’ IS THIS A RESTART?
BNE NORMAL NO - BRANCH
CLC DLIKEYFB(4),=X’00000000’ IS KEY FEEDBACK AREA ZERO?
BE NORMAL YES - BRANCH

RESTART WTO ’RESTART LOAD PROCESSING FOR DATABASE 1 IS IN PROCESS’
RLOOP GET LOAD,CARDAREA GET A LOAD RECORD

CLC SEGNAME(8),=CL8’SEGMA’ IS THIS A ROOT SEGMENT RECORD?
BNE RLOOP NO - KEEP LOOKING
CLC DLIKEYFB(4),SEGKEY IS THIS THE LAST ROOT INSERTED?
BNE RLOOP NO - KEEP LOOKING
B INSERT GO DO IT

NORMAL WTO ’INITIAL LOAD PROCESSING FOR DATABASE 1 IS IN PROCESS’
LOOP GET LOAD,CARDAREA GET SEGMENT TO BE INSERTED
INSERT CALL CBLTDLI,MF=(E,DLILINK) INSERT THE SEGMENT

AP SEGCOUNT,=P’1’ INCREMENT SEGMENT COUNT
CLC DLISTAT,=CL2’ ’ WAS COMPLETION NORMAL?
BE LOOP YES - KEEP GOING
CLC DLISTAT,=CL2’UC’ HAS CHECKPOINT BEEN TAKEN?
BNE POINT1 NO - KEEP CHECKING

POINT0 WTO ’UCF CHECKPOINT TAKEN FOR LOAD 1 PROGRAM’
UNPK COUNTMSG,SEGCOUNT UNPACK SEGMENT COUNT FOR WTO
OI COUNTMSG+4,X’F0’ MAKE SIGN PRINTABLE
WTO MF=(E,WTOLIST) WRITE SEGMENT COUNT
B LOOP NO - KEEP GOING

POINT1 CLC DLISTAT,=CL2’US’ HAS OPERATOR REQUESTED STOP?
BNE POINT2 NO - KEEP CHECKING
B LOOP KEEP GOING

POINT2 CLC DLISTAT,=CL2’UX’ COMBINED CHECKPOINT AND STOP?
BNE ABEND NO - GIVE UP
WTO ’LOAD1 PROGRAM STOPPING PER OPERATOR REQUEST’
B RETURN8

ABEND ABEND 8,DUMP INVALID STATUS
EOF WTO ’DATABASE 1 LOAD COMPLETED NORMALLY’

UNPK COUNTMSG,SEGCOUNT UNPACK SEGMENT COUNT FOR WTO
OI COUNTMSG+4,X’F0’ BLAST SIGN
WTO MF=(E,WTOLIST) WRITE SEGMENT COUNT
CLOSE (LOAD) CLOSE INPUT FILE
L 13,4(13) UNCHAIN SAVE AREA
RETURN (14,12),RC=0 RETURN NORMALLY

RETURN8 WTO ’DATABASE 1 LOAD STOPPING FOR RESTART’
UNPK COUNTMSG,SEGCOUNT UNPACK SEGMENT COUNT FOR WTO
OI COUNTMSG+4,X’F0’ BLAST SIGN
WTO MF=(E,WTOLIST) WRITE SEGMENT COUNT
CLOSE (LOAD) CLOSE INPUT FILE
L 13,4(13) UNCHAIN SAVE AREA
RETURN (14,12),RC=8 RETURN AS RESTARTABLE
LTORG

SEGCOUNT DC PL3’0’
DS 0F

WTOLIST DC AL2(LSTLENGT)
DC AL2(0)

COUNTMSG DS CL5
DC C’ SEGMENTS PROCESSED’

LSTLENGT EQU (*-WTOLIST)
DLIFUNC DC CL4’ISRT’ FUNCTION CODE
DLILINK DC A(DLIFUNC) DL/I CALL LIST
PCBADDR DC A(0)

DC A(DATAAREA)
DC X’80’,A13(SEGNAME)

CARDAREA DS 0CL80 I/O AREA
SEGNAME DS CL9
SEGKEY DS 0CL4
DATAAREA DS CL71
SAVEAREA DC 18F’0’

552 Database Administration

STOPNDG DC X’00’
LOAD DCB DDNAME=LOAD1,DSORG=PS,EODAD=EOF,MACRF=(GM),RECFM=FB
DLIPCB DSECT DATABASE PCB
DLIDBNAM DS CL8
DLISGLEV DS CL2
DLISTAT DS CL2
DLIPROC DS CL4
DLIRESV DS F
DLISEGFB DS CL8
DLIKEYLN DS CL4
DLINUMSG DS CL4
DLIKEYFB DS CL12

END

Related reference:

Utility Control Facility (DFSUCF00) (Database Utilities)

JCL for the initial load program
The JCL is an example of the JCL that you use to initially load your database.

The //DFSURWF1 DD statement is present only if a logical relationship or
secondary index exists.

JCL used to initially load a database
// EXEC PGM=DFSRRC00,PARM=’DLI,your initial load program name,
// your PSB name’
//DFSRESLB DD references an authorized library that contains IMS

SVC modules
//STEPLIB DD references library that contains your load program
// DD DSN=IMS.SDFSRESL
//IMS DD DSN=IMS.PSBLIB,DISP=SHR
// DD DSN=IMS.DBDLIB,DISP=SHR
//DFSURWF1 DD DCB=(RECFM=VB,LRECL=300,
// BLKSIZE=(you must specify),
// DSN=WF1,DISP=(MOD,PASS)
//DBNAME DD references the database data set to be

initially loaded or referenced by
the initial load program

//INPUT DD input to your initial load program
//DFSVSAMP DD input for VSAM and OSAM buffers and options...
//*

Loading a HISAM database
Segments in a HISAM database are stored in the order in which you present them
to the load program.

You must present all occurrences of the root segment in ascending key sequence
and all dependent segments of each root in hierarchical sequence. PROCOPT=L
(for load) must be specified in the PCB.

Loading a SHISAM database
Segments in a SHISAM database are stored in the order in which you present them
to the load program.

You must present all occurrences of the root segment in ascending key sequence.
PROCOPT=L (for load) must be specified in the PCB.

Chapter 25. Loading databases 553

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dfsucf00.htm#ims_dfsucf00

Loading a GSAM database
GSAM databases use logical records, not segments or database records. GSAM
logical records are stored in the order in which you present them to the load
program.

Loading an HDAM or a PHDAM database
In an HDAM or a PHDAM database, the user randomizing module determines
where a database record is stored, so the sequence in which root segments are
presented to the load program does not matter.

All dependents of a root should follow the root in hierarchical sequence.
PROCOPT=L (for load) or PROCOPT=LS (for load segments in ascending
sequence) must be specified in the PCB.

Loading a HIDAM or a PHIDAM database
To load a HIDAM or a PHIDAM database, you must present root segments in
ascending key sequence and all dependents of a root should follow the root in
hierarchical sequence.

PROCOPT=LS (for load segments in ascending sequence) must be specified in the
PCB.

Restriction: Load programs for PHIDAM databases must run in a DLI region type.
Load programs for HIDAM databases do not have this restriction.

Loading a database with logical relationships or secondary
indexes

If you are loading a database with logical relationships or secondary indexes, you
will need to run, in addition to your load program, some combination of the
reorganization utilities.

You need to run the reorganization utilities to put the correct pointer information
in each segment's prefix.
Related concepts:
“Reorganization utilities” on page 616

Loading Fast Path databases
This topic describes how to load MSDBs, DEDBs, and sequential dependent
segments.

Loading an MSDB
Because MSDBs reside in main storage they are read from a data set and loaded
during system initialization.

You do not load them as you do other IMS databases, that is, by means of a load
program that you provide. You first build this data set either by using a program
you provide or by running the MSDB Maintenance utility (DBFDBMA0).
Related concepts:
“MSDBs storage” on page 205
Related reference:

554 Database Administration

MSDB Maintenance utility (DBFDBMA0) (Database Utilities)

Loading a DEDB
You load data into a DEDB database with a load program similar to that used for
loading other IMS databases. Unlike other load programs, this program runs as a
batch message program.

The following five steps are necessary to load a DEDB:
1. Calculate space requirements

The following example assures that root and sequential dependent segment
types are loaded in one area.
Assume all root segments are 200 bytes long (198 bytes of data plus 2 bytes for
the length field) and that there are 850 root segments in the area. On the
average, there are 30 SDEP segments per record. Each is 150 bytes long (148
bytes of data and a 2-byte length field). The CI size is 1024 bytes.
A. Calculate the minimum space required to hold root segments:

1024 CI length minus
- 21 CI control fields
____ equals amount of space for root segments
1003 and their prefixes.

1003 / 214 = 4.6 Amount of root and root prefix space
divided by length of one root with its
prefix equals the number of segments
that will fit in one CI.
DEDB segments do not span CIs.
Therefore, only four
roots will fit in a CI.

850 / 4 = 212.5 The minimum amount of space to hold
the defined number of roots to be
inserted in this area (850)
requires 213 CIs.

After choosing a UOW size, you can determine the DBD specifications for the
root addressable and independent overflow parts using the result of the above
calculation as a base.
B. Calculate the minimum space required to hold the sequential dependent
segments:

1024 CI length minus
- 17 CI control fields
____ equals amount of space for sequential
1007 dependents and their prefixes.

1007 / 160 = 6.2 Amount of sequential dependent and
prefix space divided by length of one
sequential dependent plus its prefix
equals the number of segments that
will fit in one CI.
Six SDEP segments will fit in a
CI.

30 / 6 = 5 CIs Minimum amount of space required to
hold 30 sequential dependent

Chapter 25. Loading databases 555

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dbfdbma0.htm#ims_dbfdbma0

segments from one root. For 850
roots, the minimum amount of space
required is 850 * 5 = 4250 CIs.

C. Factor into your calculations additional space to take into account:
v The “reorganization UOW”, which is the same size as a regular UOW
v Two control data CIs allocated at the beginning of the root addressable part
v One control data CI for each 120 CIs in the independent overflow part

Assuming a UOW size of 20 CIs, the minimum amount of space to be
allocated is: 213 + 4250 + 20 + 2 + 1 = 4486 CIs.

2. Set up the DBD specifications according to the above results, and execute the
DBD generation.

3. Allocate the VSAM cluster using VSAM Access Method Services.
The following example shows how to allocate an area that would later be
referred to as AREA1 in a DBDGEN:
DEFINE -

CLUSTER -
(NAME (AREA1) -
VOLUMES (SER123) -
NONINDEXED -
CYLINDERS (22) -
CONTROLINTERVALSIZE (1024) -
RECORDSIZE (1017) -
SPEED) -

DATA -
(NAME(DATA1)) -
CATALOG(USERCATLG)

The following keywords have special significance when defining an area:

NAME
The name supplied for the cluster is the name subsequently referred to
as the area name. The name for the data component is optional.

NONINDEXED
DEDB areas are non-indexed clusters.

CONTROLINTERVALSIZE
The value supplied, because of a VSAM ICIP requirement, must be 512,
1024, 2048, or 4096.

RECORDSIZE
The record size is 7 less than the CI size. These 7 bytes are used for
VSAM control information at the end of each CI.

SPEED
This keyword is recommended for performance reasons.

CATALOG
This optional parameter can be used to specify a user catalog.

4. Run the DEDB initialization utility (DBFUMIN0).
This offline utility must be run to format each area to DBD specifications.
Root-addressable and independent-overflow parts are allocated accordingly.
The space left in the VSAM cluster is reserved for the sequential-dependent
part. Up to 2048 areas can be specified in one utility run; however, the area
initializations are serialized. After the run, check the statistical information
report against the space calculation results.

5. Run the user DEDB load program

556 Database Administration

A BMP program is used to load the DEDB. The randomizing routine used
during the loading of the DEDB might have been tailored to direct specific
ranges of data to specific areas of the DEDB.
If the load operation fails, the area must be scratched, reallocated, and
initialized.

Loading sequential dependent segments
If the order of sequential dependent segments is important, you must consider the
way sequential dependents might be loaded in a DEDB.

The two alternatives are:
v Add a root and its sequential dependents.

All the sequential dependents of a root are physically written together, but their
physical order does not reflect the original data entry sequence. This reflection is
not necessarily the way the application needs to view the dependent segments if
they are being used primarily as a journal of transactions.

v Add all roots and then the sequential dependents.
This technique restores the SDEP segments to their original entry sequence
order. However, it requires a longer process, because the addition of each SDEP
segment causes the root to be accessed.

Loading HALDBs that have secondary indexes
By default, when you perform an initial load of a HALDB database that has a
secondary index, the secondary index is created as a part of the load process.

When source segments are loaded in HALDB databases, their secondary index
entries are inserted in the secondary index partitions. The buffer pools that are
used by the load program must include buffers for the secondary indexes. The
secondary index partitions must be initialized before loading the database.

Initial loads do not create entries in the indirect list data set (ILDS), because all of
the secondary index entries have accurate RBA pointers in their extended pointer
sets (EPSs).

You can prevent secondary indexes from being created during an initial load of a
HALDB database by specifying BLDSNDX=NO on the OPTIONS control statement
in either the DFSVSAMP data set or the DFSVSMxx member of the IMS.PROCLIB
data set. For example:
DFSVSAMP DD *
OPTIONS,BLDSNDX=NO
VSRBF=4096,500
IOBF=(8192,200)
/*

If you specify BLDSNDX=NO, you must build your secondary index by other
means. You can use a tool, such as the IBM IMS Index Builder for z/OS.

When you use BLDSNDX=NO, the secondary index partitions are not authorized
and their data sets are not allocated.

The use of BLDSNDX=NO and an index builder tool can shorten the load and
index creation process, especially if you have many secondary index entries. When
HALDB secondary indexes are created during the load process, the inserts in the
secondary indexes are random, which can lengthen the load process considerably.

Chapter 25. Loading databases 557

Index builder tools like the IMS Index Builder read the loaded database, create
index entries without writing them to the secondary indexes, sort the entries in
secondary index key sequence, and then write them to the secondary indexes in a
sequential process.
Related tasks:
“Adjusting VSAM options specified in the OPTIONS control statement” on page
682
Related reference:

Defining VSAM performance options (System Definition)

558 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsvsmxx_proclib_vsam_performance.htm#definingvsamperformanceoptions

Chapter 26. Database backup and recovery

The successful recovery of a database after a failure depends on the planning and
preparation you do before an error ever occurs. Making database backup copies is
a critical part of that preparation.
Related concepts:
“Backup and recovery of HIDAM and PHIDAM primary indexes” on page 167
“DL/I calls that can be issued against HD databases” on page 134
“Image-copy option” on page 473
“HALDB partition data sets and recovery” on page 173

Database failures
Every time IMS encounters a DL/I I/O error, IMS creates an extended error queue
element (EEQE) that identifies the block or VSAM control interval in error.

IMS issues message DFS0451I or DFS0451A when there is an error in an IMS
database.

When IMS closes a database, it automatically retries read and write errors on DL/I
databases. If successful, forward recovery of the database is not required.
Otherwise, forward recovery is eventually required. It might be possible to defer
recovery to a more convenient time. Deferring recovery does not inhibit scheduling
access or updating.

Using DEDB multiple area data sets also allows application programs to continue
when I/O errors exist. For DEDB I/O errors, IMS issues messages DFS2571,
DFS2572, DFS3712, and DFS3713. If a DEDB area is not available, the application
receives an FH status code.

IMS maintains I/O information and buffer images across restarts. IMS does this by
recording the EEQEs in DBRC, notifying all systems that are using the IRLM, and,
during initialization and checkpoint, logging EEQEs and virtual buffers to the
OLDS.
Related concepts:
“DL/I I/O errors and recovery” on page 595

DFS messages (Messages and Codes)
Related tasks:

DB - Database service aids (Diagnosis)

Database write errors
An IMS application program is unaware of a database write error. IMS does not
pass a return code to the application program after a write operation completes or
fails to complete.

Instead, when a write error occurs, IMS creates an extended error queue element
(EEQE), allocates a buffer for the block or control interval in error, and writes a log
record with information about the buffer.

© Copyright IBM Corp. 1974, 2016 559

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.msgs/dfs/ims_dfsmsgsintro.htm#dfsmsgsintro
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dgr/ims_dbse_service_aids.htm#ims_dbse_service_aids

IMS uses the buffer for all subsequent I/O to the block or CI, including database
updates and read requests. When IMS closes the database, it retries the original
write operation that failed; if it is successful, IMS frees the buffer, removes the
corresponding EEQE from DBRC, and notifies all subsystems to disregard their
corresponding EEQEs.

There is a limit to the number of EEQEs that IMS can create. For Fast Path areas,
an area is stopped after 100 EEQEs. For full-function databases, the limit is 32,767
EEQEs. Before encountering this limit, you would likely encounter virtual storage
limitations for the buffers needed to write that many EEQEs.

You can defer recovery for weeks or longer, but deferring recovery too long can
increase the time that IMS requires to perform the recovery.

IMS notifies DBRC of each EEQE; DBRC records each EEQE in the DBDS record of
the RECON data set.

Database read errors
When a read error occurs, IMS returns an AO status code to the application
program. IMS also creates an EEQE for the data in error but does not create a
buffer for it.

Database quiesce
By quiescing a database, DEDB area, HALDB partition, or a database group, you
can create a recovery point across databases and logs, create clean database image
copies without taking a database offline, and improve the performance of the
Database Change Accumulation utility (DFSUCUM0).

When a database is quiesced, no updates to the database are in progress, all prior
updates have been committed and written to DASD, and application programs
with new updates for the database are held in a wait state until the database is
released from its quiesce state. The database is fully quiesced when the last
in-progress update is committed in the database.

After the quiesced state is reached, DBRC records a deallocation (DEALLOC) time
stamp in the allocation (ALLOC) record for the database, area, or partition in the
RECON data set. The DEALLOC time stamp is used as the recovery point for
recoveries and the recovery utilities, such as the Database Recovery utility
(DFSURDB0) and the DFSUCUM0 utility.

Quiescing a database does not alter the database data sets. The quiesce function
leaves the database data sets in the same state that they were in when the quiesce
function starts.

Unlike other methods for creating recovery points, such as issuing the
/DBRECOVERY command, quiescing a database requires only the issuance of a
single command. IMS automatically places application programs in a wait state
after any in-progress updates are committed and automatically restores access to
the database when the quiesce is released. Creating a recovery point by using the
/DBRECOVERY command requires stopping all database activity, unauthorizing
and taking the database offline, and then restarting everything afterward.

The relative ease and speed of the database quiesce function, as well as its minimal
impact on database availability, makes creating frequent recovery points less

560 Database Administration

expensive. Creating frequent points of recovery shortens the time required for
recoveries and improves the performance of the Database Change Accumulation
utility (DFSUCUM0) by reducing the number of log records the utility must merge.

Database types that support the quiesce function

You can quiesce Fast Path DEDB databases, full-function databases, database
groups, DEDB areas, and HALDB partitions.

Specifically, the following types of databases support the quiesce function:
v DEDB
v HDAM
v HIDAM
v HISAM
v HSAM
v PHDAM
v PHIDAM
v PSINDEX
v SHISAM
v SHSAM

GSAM and MSDB databases do not support the quiesce function.

For DEDB databases, you can quiesce the entire database, which quiesces all of the
areas in the DEDB, or you can quiesce a subset of one or more areas directly.
Similarly, for HALDB PHDAM, PHIDAM, and PSINDEX databases, you can
quiesce the HALDB master database, which quiesces all of the partitions in the
database, or you can quiesce a subset of one or more partitions directly. When
either a DEDB database or a HALDB database is quiesced at the database level, the
quiesce status is maintained in the records for each area or partition rather than in
the database record.

Because DBRC is required to manage access to the database and to record the time
stamp used for recovery, quiescing a database that is not registered, although
technically possible, is not recommended.

Quiesce options

When quiescing a database, you have the following options:
v You can quiesce a database just long enough to create a recovery point.
v You can hold a database in the quiesce state indefinitely to run either an image

copy utility or the Database Change Accumulation utility (DFSUCUM0). To
release a database that is held in the quiesce state, issue the appropriate
UPDATE command with the STOP(QUIESCE) keyword specified.
The UPDATE commands on which you can specify the STOP(QUIESCE)
keyword include:
– UPDATE AREA
– UPDATE DATAGRP
– UPDATE DB

v You can specify a timeout interval for IMS to wait for application programs to
commit their updates before IMS cancels the quiesce process.

Chapter 26. Database backup and recovery 561

When you quiesce a database to create a recovery point, as soon as the database
reaches a point of consistency, IMS immediately releases the database from the
quiesce state and application programs can resume updating the database.

To momentarily quiesce a database, area, partition, or database group, for the
purposes of creating a recovery point, specify the START(QUIESCE) keyword on
the appropriate UPDATE command. For example: UPDATE DB NAME(DBXYZ)
START(QUIESCE).

When you hold a database in the quiesce state, the database is held in the quiesce
state until you release it by issuing the appropriate UPDATE command with the
STOP(QUIESCE) keyword. While databases are held in the quiesce state, you can
create clean image copies without having to take the database offline by running
either an online image copy utility, such as the Database Image Copy 2 utility
(DFSUDMT0), or a batch image copy utility, such as the Database Image Copy
utility (DFSUDMP0).

To quiesce a database and hold it in the quiesce state, specify both the
START(QUIESCE) and OPTION(HOLD) keywords on the appropriate UPDATE
command. For example: UPDATE DB NAME(DBXYZ) START(QUIESCE) OPTION(HOLD)

The timeout interval for the quiesce function defines the amount of time that the
quiesce function waits for application programs to commit any updates to the
database that are in progress when the quiesce function is initiated. If updates
remain in progress when the time interval expires, the quiesce of the database is
canceled and the appropriate UPDATE command must be reissued with the
START(QUIESCE) option to quiesce the database.

The default timeout value for the quiesce function is 30 seconds. You can define a
different timeout value for the quiesce function by using the DBQUIESCETO
parameter in the DFSCGxxx PROCLIB member. You can override the timeout value
when starting the quiesce function by including the SET(TIMEOUT(nnn) parameter
on the appropriate UPDATE command.

Impact of quiescing databases on application programs

While a quiesce of a database, area, or partition is in progress or is being held,
application programs can be scheduled, but can access the database, area, or
partition for reads only. Application programs that need to access the database for
an update are held in a wait state until the quiesce is released.

If an application program is updating the database when a quiesce is initiated, the
quiesce function waits until the application program commits the updates in
progress and the updates are written to DASD. If, after committing the in-progress
updates, the application program has more updates for the database, the
application program is placed in a wait state until the quiesce is released. If the
application program does not commit its updates before the timeout interval
specified for the quiesce function expires, the quiesce of the database is canceled.

Holding a database in a quiesce state can cause the number of application
programs waiting in dependent regions to increase, potentially causing the number
of dependent regions to reach the maximum number allowed by your installation.

To avoid problems associated with a large number of waiting application
programs, hold databases in a quiesce state only during periods of low activity

562 Database Administration

and only for as long as is needed to perform required tasks, such as creating an
image copy.

DBRC, the RECON data set, and the quiesce function

To ensure the coordination of the quiesce function in an IMSplex, the DBRC
instances that belong to the IMS systems participating in the quiesce function must
be in the same DBRC group, as defined by a unique DBRC group ID, and the
DBRC instances must be registered with the Structured Call Interface (SCI) of the
Common Service Layer (CSL).

DBRC records the quiesce status of a database, DEDB area, or HALDB partition in
the RECON data set. When the quiesce function is invoked, DBRC updates the
RECON data set to indicate that a quiesce of a database, area, or partition is in
progress. When a database, area, or partition is quiesced and then held in the
quiesce state, DBRC updates the RECON data set to indicate both that a quiesce of
the database, area, or partition is in progress and that the quiesce state is being
held.

While a database, area, or partition is being quiesced, a listing of its record in the
RECON data set shows QUIESCE IN PROGRESS. While a database, area, or partition
is held in a quiesce state, a listing of the record in the RECON data set shows both
QUIESCE IN PROGRESS and QUIESCE HELD.

While a quiesce of a database, area, or partition is in progress, but the quiesce state
is not being held, DBRC manages authorization and access to the database, area, or
partition as follows:
v Not authorized:

– Utilities that require an access intent of update or exclusive
– Image copy utilities
– Batch application programs with update access

v Authorized, but cannot access the database, area, or partition:
– IMS systems that are not participating in the quiesce
– Online IMS systems that have application programs that have update

privileges
v Authorized and can access the database, area, or partition:

– Batch application programs with read-only intent
– Online IMS systems that have application programs that have read-only

privileges
– Utilities that require read-only intent (excluding image copies)

When a database, area, or partition is being held in the quiesce state, DBRC
manages database, area, and partition authorization and access as follows:
v Not authorized:

– Utilities that require an access intent of update or exclusive
– Batch application programs with update authority

v Authorized, but cannot access the database, area, or partition:
– IMS systems that are not participating in the quiesce
– Online IMS systems that have application programs that have update

authority
v Authorized and can access the database, area, or partition:

Chapter 26. Database backup and recovery 563

– Utilities that require read-only access authority
– Image copy utilities
– Batch application programs with read-only authority, as specified by a value

of G, GO, or GOx on the PROCOPT parameter of the PCB statement for the
application program.

– Online IMS systems that have application programs that have read-only
authority

When the database is quiesced, if the database has open ALLOC records in the
RECON data set, the ALLOC records are closed with a DEALLOC time stamp that
corresponds to the point the quiesce was achieved across the IMSplex. The ALLOC
record indicates that the database was deallocated as a result of being quiesced.
The DEALLOC time stamp in the closed ALLOC record can then be used as a
recovery point for the Database Recovery utility (DFSURDB0) and time stamp
recoveries.

When a new ALLOC record is created for the database, area, or partition, a new
update set ID (USID) and data set sequence number (DSSN) are assigned.

When the quiesce is released, the database can be accessed again by DL/I calls. For
DEDB areas, a new ALLOC record is created in the RECON data set. For
full-function databases, a new ALLOC record is not created until the database is
accessed by the first update.

Requirements and restrictions for the quiesce function

The database quiesce function requires an IMSplex environment with the following
CSL managers enabled.
v Operations Manager (OM)
v Resource Manager (RM), unless the IMSplex environment includes only a single

IMS system and RMENV=N is specified in either the DFSCGxxx PROCLIB
member or the CSL section of the DFSDFxxx PROCLIB member.

v Structured Call Interface (SCI)

The minimum version specified for the RECON data set must be 11.1 or later by
using the MINVERS keyword on the DBRC command CHANGE.RECON.

The quiesce command is not tracked by remote IMS systems in Remote Site
Recovery (RSR) configurations.

A quiesce fails to start in any of the following circumstances:
v A batch application program with update authority is accessing the database

when the quiesce function is started; however, a batch application program that
has read-only authority does not cause the quiesce function to fail.

v The database needs to be recovered or backed out.
v A reorganization intent flag is set in the database, area, or partition record in the

RECON data set.
v The HALDB online reorganization function has been initiated and either the

target HALDB partition is in cursor-active state, or an IMS system owns the
Online Reorganization function for a partition being quiesced.

v A quiesce of the database is already in progress.
v The HALDB partition being quiesced needs to be initialized.

564 Database Administration

|
|

v Any one of the following commands were issued against the database and have
not completed processing.
– /DBD DB
– /DBR AREA
– /DBR DB
– /INIT OLREORG
– INIT OLREORG
– /STA AREA
– /STA DB
– /STO AREA
– /STO DB
– UPDATE AREA
– UPDATE DATAGRP
– UPDATE DB

Related concepts:
“Non-concurrent image copies” on page 568
Related tasks:
“Using database change accumulation input for recovery” on page 580
Related reference:

UPDATE commands (Commands)

Making database backup copies
This topic explains how to make backup copies of your databases. It describes the
utilities and how they affect IMS operations.
Related concepts:

Message queue backup copies (System Administration)

System data set backup copies (System Administration)

Image copies and the IMS image copy utilities
Backup copies of databases are called image copies. You can create image copies by
using one of the image copy utilities provided by IMS. Depending on which utility
you use, you can create image copies while databases are online, offline, or
quiesced.

IMS provides three utilities that you can use to make image copies:
v Database Image Copy utility (DFSUDMP0)
v Online Database Image Copy utility (DFSUICP0)
v Database Image Copy 2 utility (DFSUDMT0)

Restriction: You cannot run these utilities against a HALDB partition that is being
reorganized by HALDB Online Reorganization (OLR).

These utilities create image copies of recoverable and nonrecoverable databases.
The image copy utilities operate on data sets.

The frequency of creating image copies is determined by your recovery
requirements. The minimum requirement is that an image copy be created

Chapter 26. Database backup and recovery 565

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_updatecmds.htm#ims_cr2updatecmds
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_intro/ims_msgque_backups.htm#ims_msgque_backups
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_intro/ims_sysdataset_backups.htm#ims_sysdataset_backups

immediately after a database is reorganized, reloaded, or initially loaded. Because
database recovery is done on a physical replacement basis, a reloaded data set is
not physically the same as it was before unload.

With the Database Image Copy utility (DFSUDMP0) and the Online Database
Image Copy utility (DFSUICP0), if a database includes multiple data sets or areas,
you must supply the utility with multiple specifications. With the Database Image
Copy 2 utility, however, you can copy multiple database data sets in one execution
of the utility. You can specify a group name to represent the collection of database
data sets that are to be copied in a single execution.

Use the DBRC commands INIT.DB and CHANGE.DB to identify recoverable
databases to DBRC. DBRC works similarly with all of the image copy utilities.

The output data sets from the Database Image Copy utility (DFSUDMP0) and the
Online Database Image Copy utility (DFSUICP0) have the same format. The rules
for predefinition and reuse of image copy data sets apply to the data sets that are
used by both of these utilities.

If you use the Database Image Copy 2 utility, the format of the output data sets
depends on which image copy option you use. Image copies that are produced by
using the concurrent copy function of the Database Image Copy 2 utility are in
DFSMSdss dump format. Image copies that are produced by using the fast
replication function of the Database Image Copy 2 utility are exact copies of the
original data set.

If you use the Database Image Copy 2 utility, the DBRC rules for predefinition and
reuse of image copy data sets apply only to the data sets that are used for the
concurrent copy function. The fast replication function of the Database Image Copy
2 utility does not support the predefinition and reuse of image copy data sets.

All of these utilities call DBRC to verify the input (DBRC allows them to run only
if the input is valid), and they call DBRC to record information in the RECON data
set about the image copy data sets that they create. An image copy record in the
RECON data set has the same format regardless of which utility created its
corresponding image copy data set. The Online Database Image Copy utility,
however, has its own PDS member of skeletal JCL, and you use a separate DBRC
command, GENJCL.OIC, to generate the job for the Online Database Image Copy
utility.

Recommendation: Copy all data sets or areas for a database at the same time.
When you recover a database to a prior state, you must recover all data sets that
belong to the database, as well as all logically related databases (including those
related by application processing) to the same point to avoid data integrity
problems.

When using the image copy utilities, you have the option of creating one or more
output image copies, unless you are using the fast replication function of
DFSUDMT0. Advantages of making two or more copies are:
v If an I/O error occurs on one copy, the utility continues to completion on the

others.
v If one copy cannot be read, you can perform recovery using another.

566 Database Administration

The trade-off in deciding whether to make more than one copy is that the
performance of the image copy utility is degraded by the time required to write
the other copies.

If you are using the fast replication option of the Database Image Copy 2 utility,
the utility can make only a single output image copy of each source database data
set during each execution of the utility.

The utilities enforce a minimum output record length of 64 bytes; thus, it is
possible that an image copy of a database with a very short logical record length
can require more space than the original database.

Recommendation: Take an image copy immediately after running batch jobs that
update the database without IMS logging. Even when pool sizes are identical and
your system uses VSAM background write, updates made by batch jobs are not
bit-for-bit repeatable. Taking an image copy allows you to maintain the integrity of
your database if a recovery is required.

If you recover using log tapes up to the start of a batch job, and then reprocess the
batch job, the resulting database might not be bit-for-bit identical to the database
after the previous batch run, although it is logically identical. If the database is not
bit-by-bit identical, log tapes created after the previous execution of the batch jobs
would not be valid after the reprocessing. Therefore, do not attempt a recovery by
starting with an image copy, applying log tapes, reprocessing unlogged batch
executions, and then applying more log tapes.

Image copies that are not created by one of the IMS image copy utilities are called
nonstandard image copies or user image copies.
Related tasks:
“Nonstandard image copy data sets” on page 574

Concurrent image copies
IMS allows you to create image copies of databases that are registered with DBRC
while the database is being updated.

An image copy taken while a database is being updated is called a concurrent image
copy or, because the copy represents the state of the database over a period of time
rather than at an instant in time, a fuzzy image copy. When you create a concurrent
image copy, your final copy might include some, all, or none of the updates made
to a database during the copy process.

The IMS Database Image Copy 2 utility (DFSUDMT0) provides a concurrent copy
option, which you should not confuse with a concurrent image copy. The
concurrent copy option of the DFSUDMT0 utility can create either concurrent
image copies or clean image copies. The concurrent copy option of the DFSUDMT0
utility takes its name from the CONCURRENT keyword of the z/OS DFSMSdss
DUMP command and does not refer to the type of image copy the option creates.
DFSMS and the Concurrent Copy feature of 3990 hardware can make copies of a
data set while the data set is offline or online.

The fast replication option of the DFSUDMT0 utility can also create either
concurrent or clean image copies.

Restrictions:

Chapter 26. Database backup and recovery 567

v The IMS image copy utilities can make a concurrent image copies only of
databases that are registered with DBRC.

v You can make copies of nonrecoverable databases, but they must be stopped
before you run the utility to make the image copies. You cannot take concurrent
image copies of nonrecoverable databases while they are online because IMS
does not log changes to them. The database itself becomes fuzzy if a fuzzy
image copy of a nonrecoverable database is used to recover the database.

v Using the Database Image Copy utility (DFSUDMP0), you can only make
concurrent image copies for OSAM and VSAM Entry Sequenced Data Set (ESDS)
DBDSs; VSAM Key Sequenced Data Set (KSDS) DBDSs are not supported for
concurrent image copy. If you use either of the other two image copy utilities,
you can create image copies of ESDSs or KSDSs.

Related tasks:
“Concurrent image copy recovery” on page 595

Non-concurrent image copies
Non-concurrent image copies are image copies that are taken while no updates are
being made to the database.

Non-concurrent image copies are also referred to as batch image copies, because
they are often created when the database is offline, or clean image copies because
they do not contain any fuzzy data. All of the data reflected in the image copy has
been committed and the image copy by itself can be used as the starting point for
recovery. Only log records for updates to the data set that occur after the image
copy is made are needed to recover the data set.

You can create non-concurrent image copies in two ways:
v By quiescing the database, area, or partition with the quiesce and hold option

specified and running one of the image copy utilities. Databases, areas, and
partitions are held in the quiesce state by issuing the appropriate UPDATE
command with the START(QUIESCE) OPTION(HOLD) keywords. If a batch
image copy utility is used, the DD statement for the database must specify
DISP=SHR. After the image copy is complete, the quiesce must be released with
another UPDATE command with the STOP(QUIESCE) keyword specified.

v By taking the database offline and running a batch image copy utility. This
method requires stopping access to the database, deallocating it, and
unauthorizing it with DBRC by issuing the appropriate UPDATE command with
the STOP(ACCESS) keyword specified.

Of the two methods for creating non-concurrent image copies, using the quiesce
function is the easier and faster method; however, because application programs
are held in their dependent regions in a wait state, databases should be held in the
quiesce state only during periods of low database activity.
Related concepts:
“Database quiesce” on page 560

Fast replication image copies
You can create fast replication image copies by using the fast replication option of
the Database Image Copy 2 utility (DFSUDMT0).

The DFSUDMT0 utility uses the z/OS DFSMSdss COPY command with the
FASTREPLICATION keyword.

568 Database Administration

By using the fast replication option of the DFSUDMT0 utility, you can create image
copies more quickly than other image copy methods. You can create clean or
concurrent fast replication image copies and register them with DBRC for use by
the Database Recovery utility (DFSURDB0) during recovery procedures.

Fast replication image copies are exact copies of the input data sets and are not
formatted like image copies taken by the Image Copy 2 utility using the DFSMSdss
DUMP command with the CONCURRENT keyword.

DFSMSdss fast replication requires hardware support of either the FlashCopy®

feature of the IBM Enterprise Storage Server® (ESS) or the SnapShot feature of the
IBM RAMAC Virtual Array (RVA) storage system.

The Image Copy 2 utility is the only IMS image copy utility that supports fast
replication image copies.
Related reference:

Database Image Copy 2 utility (DFSUDMT0) (Database Utilities)

Recovery after image copy
The Database Image Copy utility (DFSUDMP0) and the Database Image Copy 2
utility (DFSUDMT0) copy data sets for HISAM, HIDAM, HDAM, PHDAM,
PHIDAM databases, and areas for DEDBs.

When you perform a subsequent recovery, what you need as input to the recovery
depends on whether the copies are concurrent or not:
v For non-concurrent copies, you need only the image copy and those logs created

after the database is restored to the online system.
v For concurrent copies, you need the image copy and logs created before and

after the database is restored to the online system. DBRC helps you decide
which logs you need.

Recommendation: When you run the Database Image Copy utility (DFSUDMP0)
for databases and areas (without specifying the CIC on the EXEC statement for the
utility), no other subsystem should update the databases. You can prevent updates
to full function databases by issuing the /DBDUMP DB or UPDATE DB
STOP(ACCESS) command. You can prevent updates to DEDB areas by issuing
either the /STOP AREA or UPDATE AREA STOP(SCHD) command.

The Online Database Image Copy utility (DFSUICP0) runs as a BMP program. You
can use it for HISAM, HIDAM, and HDAM databases only. If IMS updates these
databases while the utility is running, IMS requires all logs for any subsequent
recovery, including the log in use when you started the utility. IMS requires the
logs because the image copy is not an image of the database at any one time.

HSSP image copies
If you use the image copy option of HSSP, IMS creates image copies of DEDB areas
for you.

The image copy contains the “after images” of the HSSP PCB, and is a fuzzy copy.
IMS logs all other PCB database changes as usual. During database recovery, you
must apply any concurrent updates since the start of the image copy process. A
fuzzy image copy can be created if a non-HSSP region updated the same DEDB
area during the image copy process.

Chapter 26. Database backup and recovery 569

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dfsudmt0.htm#ims_dfsudmt0

Definition: Fuzzy means that there might have been concurrent updates during the
image copy process.

If, however, the image copy process does not complete successfully, this data set is
simply returned to the set of available HSSP image copy data sets.

IMS uses the QSAM access method to create HSSP image copies. The primary
allocation of image copy data sets must be larger than (or equal to) the DEDB area
data set size.

IMS treats HSSP image copies like concurrent image copies, so you can use the
Database Recovery utility (DFSURDB0) without telling it that the image copy is an
HSSP image copy.

Restriction: You can only make an HSSP image copy if a database is registered
with DBRC. Furthermore, you must initialize the image copy data sets using the
INIT.IC command.
Related tasks:
“HSSP image copy recovery” on page 595

Creating image copy data sets for future use
You can allocate image copy data sets before you need them.

IMS automatically selects these data sets for use as output data sets when you use
either of the DBRC commands GENJCL.IC or GENJCL.OIC to generate a job for
the Database Image Copy utility or Online Database Image Copy utility.

Restriction: The fast replication function of the Database Image Copy 2 utility
(DFSUDMT0) does not support the REUSE parameter of the INIT.DBDS command.
Therefore, you cannot create data sets for the fast replication function of the
Database Image Copy 2 utility before you need them.

When you use the DBRC command INIT.DBDS to identify a DBDS or area in the
RECON data set, you can specify any of the following keywords for that DBDS or
area:

GENMAX
Use this keyword to specify how many image copy data sets you want DBRC
to maintain information about for the DBDS or area.

You can maintain a certain number of image copy data sets for physical
recovery. DBRC keeps a record of a specified number of the most recent image
copy data sets. This number is the value you specify for the GENMAX keyword
for this DBDS; duplicate image copy data sets are not included in this number.

RECOVPD
Use this keyword to maintain data for a certain period.

REUSE
Use this keyword to inform DBRC that you want to define image copy data
sets and record them in the RECON data set for future use. DBRC records
these available image copy data sets, with their names, unit types, and volume
serial information, in the RECON data set, selects them during the processing
of a GENJCL.IC command, and uses this information in the appropriate DD
name of the job for the Database Image Copy utility.

570 Database Administration

NOREUSE
Use this keyword to inform DBRC that you do not want to use an existing
data set, and that you want to provide the data set name for the output image
copy data set that the Database Image Copy utility is to use. Specify the data
set name in either the JCL partitioned data set (PDS) member that the DBRC
uses to process the GENJCL.IC command or in the job you produce. When you
specify NOREUSE, DBRC dynamically sets the unit type of the output image
copy data set to the default unit type for the device (as specified in the
INIT.RECON and CHANGE.RECON commands).

When the Database Image Copy utility uses an available image copy data set,
DBRC adds a current time stamp to its record in the RECON data set.
Related tasks:
“Recovery period of image copy data sets”

Recovery period of image copy data sets
The recovery period is the amount of time before the current date for which DBRC
maintains recovery information in the RECON data set.

For example, if the recovery period of a DBDS or area is 14 days, DBRC maintains
sufficient recovery-generation information for at least 14 days.

You specify the recovery period using the GENMAX and RECOVPD keywords of
the INIT.DBDS and CHANGE.DBDS commands. The examples in these topics
describe the effects of various DBRC keywords on the recovery period.
Related tasks:
“Creating image copy data sets for future use” on page 570

Example 1: recovery period of image copy data sets
Example 1 describes what happens when the recovery period specified by the
RECOVPD parameter has not been exceeded, but the number of image copy data
sets has reached the GENMAX value, and REUSE=Y.

The following table shows the DBRC keywords and their values for this example:

REUSE GENMAX RECOVPD

Y Reached Not Exceeded

If there are available image copies:
v IMS uses an available image copy.
v IMS issues message DSP0065I, indicating that the predefined image copy has

been used.

If the number of predefined data sets equals the maximum number of generations:
v IMS cannot reuse the oldest image copy.
v IMS issues message DSP0063I, indicating that the image copy within the recovery

period cannot be reused.
v IMS stops processing.

Example 2: recovery period of image copy data sets
Example 2 describes what happens when the recovery period specified by the
RECOVPD parameter has been exceeded, the number of image copy data sets is
under the GENMAX value, and REUSE=Y.

Chapter 26. Database backup and recovery 571

The following table shows the DBRC keywords and their values for this example:

REUSE GENMAX RECOVPD

Y Not Reached Exceeded

Processing continues as described in “Reusing image copy data sets” on page 573,
except that IMS uses the available image copy data set.

Example 3: recovery period of image copy data sets
Example 3 describes what happens when the recovery period specified by the
RECOVPD parameter has been exceeded, the number of image copy data sets has
reached the GENMAX value, and REUSE=N.

The following table shows the DBRC keywords and their values for this example:

REUSE GENMAX RECOVPD

N Reached Exceeded

IMS deletes the oldest image copy data set record that exceeds the RECOVPD value.

Example 4: recovery period of image copy data sets
Example 4 describes what happens when the recovery period specified by the
RECOVPD parameter has not been exceeded, the number of image copy data sets
has reached the GENMAX value, and REUSE=N.

The following table shows the DBRC keywords and their values for this example:

REUSE GENMAX RECOVPD

N Reached Not Exceeded

If the number of image copy data sets used has reached the GENMAX value, IMS
cannot delete the oldest image copy data sets within the recovery period. In this
case:
v IMS issues message DSP0064I, indicating that an image copy data set within the

recovery period cannot be deleted.
v Processing continues and DBRC records a new image copy data set in the

RECON data set.

Example 5: recovery period of image copy data sets
Example 5 describes what happens when the recovery period specified by the
RECOVPD parameter has been exceeded, the number of image copy data sets is
under the GENMAX value, and REUSE=N.

The following table shows the DBRC keywords and their values for this example:

REUSE GENMAX RECOVPD

N Not Reached Exceeded

DBRC records a new image copy data set in the RECON data set. Even though the
oldest image copy is beyond the recovery period, it will not be deleted because the
GENMAX has not been reached.

572 Database Administration

Other recovery period considerations
If you issue a CHANGE.DBDS command and specify a new value for GENMAX
that is smaller than the existing value, IMS will record the value, regardless of
whether the oldest image copies cannot be deleted because they are within the
recovery period (RECOVPD).

When you issue the DELETE.IC command, IMS deletes any specified image copy
data sets, regardless of whether the RECOVPD value has been exceeded.

Reusing image copy data sets
DBRC allows you to reuse old image copy data sets.

The REUSE keyword of the INIT.DBDS command, in addition to allowing you to
define image copy data sets for future use, allows DBRC to reuse image copy data
sets. To reuse the image copy data set means that DBRC uses the same name,
volume, physical space, and record in the RECON data set for the new image copy
data set as for the old one.

Restriction: You cannot use the REUSE keyword for data sets that will be copied
using the fast replication function of the Database Image Copy 2 utility. The fast
replication function does not support the reuse of data sets.

When you run one of the image copy utilities, IMS automatically reuses the oldest
image copy data set for a DBDS or area, if it can, when both of the following
conditions are met:
v The RECON data set has records for a number of image copy data sets equal to

the current GENMAX value. To see the current GENMAX value, use the
LIST.DBDS command.

v The oldest image copy is beyond the recovery period.

When you use the GENJCL.IC command to generate the job for the Database
Image Copy utility or Database Image Copy 2 utility, IMS automatically selects the
image copy data set to be reused. If the number of image copy data sets is less
than the GENMAX value, and all image copy data sets have been used, you must
define more image copy data sets for the DBDS or area before running the
Database Image Copy utility or Database Image Copy 2 utility. The number of
image copy data sets should be greater than the GENMAX value if you want to
use a recovery period.

If you do not allow IMS to reuse image copy data sets, but the GENMAX value
has been reached and the RECOVPD has been exceeded, when you run the
Database Image Copy utility or Database Image Copy 2 utility, DBRC selects a new
image copy data set and deletes the record in the RECON data set with the oldest
time stamp. IMS does not scratch the image copy data set itself. You must scratch
the data set yourself or keep track of it, because DBRC is no longer aware of its
existence.

HISAM copies (DFSURUL0 and DFSURRL0)
The HISAM Reorganization Unload utility (DFSURUL0) can make backup copies
of an entire HISAM database while it reorganizes the database, all in one pass.

Because the unload utility (DFSURUL0) reorganizes the database, you must, before
resuming normal online operations, reload the data set using the HISAM
Reorganization Reload utility (DFSURRL0), as shown in the following figure. If

Chapter 26. Database backup and recovery 573

you do not reload the data set, the logging done after unload but before reload
reflects the old organization of the data set. Therefore, if you need to use that log
to recover the data set in the future, the organizations will not match, and the data
set's integrity will be destroyed.

When using the HISAM utility to make a backup copy, you must reload
immediately, or the actual database will not match the backup database. The reload
utility (DFSURRL0) uses the output of its reorganization step as input to the reload
step as if it were an image copy data set. After reorganizing a database, you must
make an image copy of it before you can authorize the DBDS.

Before reorganizing a shared database, you must prevent other subsystems from
being authorized during the reorganization process by:
v Issuing a global /DBRECOVERY DB or UPDATE DB STOP(ACCESS) command

for the database to be reorganized. The /DBRECOVERY DB GLOBAL command
prevents further authorizations except for reorganization and recovery utilities.

v Issuing the CHANGE.DB command with the NOAUTH keyword to manually
update the RECON data set. This command prevents future authorizations
except for the reorganization and recovery utilities. After the reorganization is
complete, manually update the RECON data set by issuing the CHANGE.DB
command with the AUTH keyword for the database that was just reorganized.

Recommendation: Ensure that recovery utilities do not run during the
reorganization.

Nonstandard image copy data sets
Image copy data sets that are not created by using one of the IMS image copy
utilities are referred to as nonstandard image copy data sets or user image copy data
sets.

For example, you can use the IBM Device Support Facilities (ICKDSF) product to
make a copy of the volume on which a DBDS resides.

If you do not use one of the IMS utilities to make image copies, you must keep
track of the data set names of the image copies and the tools that are used to make
the copies because IMS does not track this information about nonstandard image
copies.

Failure to copy the data set correctly can result in the failure of the database
recovery process. For a KSDS, any utility which preserves the KSDS data content
can be used to create the copy (IMS accesses a KSDS by key, and therefore has no
dependency upon RBA sequence within the KSDS). For all other data set types, the
physical sequence of the content of the data set must be preserved. Be sure to use
only utilities that copy the data set correctly, or use the IMS provided Image Copy
utilities to create a standard image copy.

Database Backup
copy

HISAM Reorganization
Unload utility

Figure 249. Making a backup copy with HISAM unload

574 Database Administration

DBRC does not automatically record the existence of nonstandard image copy data
sets in the RECON data set; you must do so by using the NOTIFY.UIC command.
If you do not record this information in the RECON data set, DBRC might
misinterpret subsequent information about changes to the DBDS. The NOTIFY.UIC
command supports both batch and concurrent nonstandard image copies.

Restriction: When you use the NOTIFY.UIC command, you cannot specify the
REUSE keyword of the INIT.DBDS command.

Before you recover a DBDS or DEDB area by using a nonstandard clean image
copy data set, you must restore the DBDS or DEDB area from the nonstandard
image copy data set. However, the process for completing recovery varies
depending on whether the nonstandard image copy is a batch image copy or a
concurrent image copy.
Related concepts:
“Image copies and the IMS image copy utilities” on page 565

Recovery from a batch nonstandard image copy
If you are using a batch nonstandard user image copy, before you can run the
Database Recovery utility, but after you restore the DBDS or DEDB area from the
image copy, you must issue the NOTIFY.RECOV command to notify DBRC that
you restored the data set or area.

If the time stamp of the nonstandard image copy is within the range of an existing
time stamp recovery, the NOTIFY.RECOV command fails. If the NOTIFY.RECOV
command is successful, you can then run the Database Recovery utility to add
changes that occurred since the time stamp of the nonstandard image copy data
set. DBRC provides and verifies JCL only for the sources of change records to be
applied to the already-restored DBDS or DEDB area.

If you are using a batch nonstandard image copy and you use the
GENJCL.RECOV command to generate the recovery JCL, include the USEDBDS
parameter to indicate that no image copy data set is to be included in the
generated JCL.

Recovery from a concurrent nonstandard image copy
Before you recover the DBDS or DEDB area with a concurrent nonstandard image
copy data set, issue the CHANGE.DBDS command with the RECOV parameter to
set 'recovery needed' status to indicate that the DBDS or DEDB area is unavailable
for use.

After the DBDS or DEDB area has been restored from the image copy, run the
Database Recovery utility to add the changes that occurred since the time stamp of
the nonstandard image copy data set. DBRC provides and verifies JCL only for the
sources of change records to be applied to the already-restored DBDS or DEDB
area.

If you are using a concurrent nonstandard image copy and you use the
GENJCL.RECOV command to generate the recovery JCL, do not include the
USEDBDS parameter; in this case, a flag in the DBRC RECON data set indicates
that the image copy data set is to not to be included in the generated JCL.

When you recover the database data set, you must indicate the runtime when the
nonstandard concurrent image copy was taken. You can do this by specifying
either the USERIC(time_stamp) keyword or the LASTUIC keyword of the
GENJCL.RECOV command, which generates a JCL stream for the Database

Chapter 26. Database backup and recovery 575

Recovery utility that adds the changes since the nonstandard concurrent image
copy data set was created. DBRC generates and verifies JCL only for the sources of
change records to be applied to the already-restored DBDS or DEDB area.

Because the Database Recovery utility does not use an image copy for processing
the change records, DBRC does not allow the Database Recovery utility to process
any log that contains changes outside the recovery range. The recovery range is
defined by the time-stamp recovery record's RECOV TO (image copy time) and
RUNTIME values.

Recommendation: Close the database by using the /DBRECOVERY command
(without the NOFEOV keyword) or the UPDATE DB STOP(ACCESS)
OPTION(FEOV) command before running the image copy utility.

Frequency and retention for backup copies
When developing a backup strategy for your databases you need to consider how
frequently to make new copies and how long to keep old, back-level copies.

There are no precise answers to these questions. Generally, the more frequently
you copy, the less time recovery takes. The farther back in time your old copies go,
the farther back in time you can recover; remember that program logic errors are
sometimes not discovered for weeks. However, making each new copy requires
work, and each old copy you save uses additional resources.

The only firm guidelines are these:
v If you do an initial load of a database, immediately make a backup copy of it.
v If a database is composed of several data sets, be sure to copy all data sets at the

same time.
v If you reorganize a database, immediately make a new backup copy of it.

Exception: It is not necessary to make backup copies after DEDB online
reorganizations.

You can reduce the amount of work required to create non-concurrent image
copies by taking the image copies while databases are quiesced instead of while
databases are offline. Quiescing a database leaves the database online, allocated,
and authorized with DBRC. Application programs are placed in a wait state.
Because quiescing databases requires less work, it is possible that you can increase
the frequency with which you create image copies.

If you take databases offline to create non-concurrent image copies, the databases
are taken offline, deallocated, and unauthorized with DBRC. Application programs
encounter an unavailable database.
Related tasks:
“Planning your database recovery strategy” on page 580

Image copies in an RSR environment
Remote Site Recovery (RSR) environments have special requirements for the
creation and handling of image copies across the active site and the tracking site.

There are three cases in which you must send database image copies to the
tracking site: before database tracking begins, after a time-stamp (partial) recovery
for a tracked database at the active site, and after a database reorganization at the
active site.

576 Database Administration

After performing a database reorganization at the active site, you must send an
image copy of each reorganized database to the tracking site. It is important that
you send these image copies as soon after the database reorganization as possible.
If an unplanned takeover should occur before one of these image copies arrives at
the tracking site, there will be a delay in getting that database, and all logically
related databases, back into production.

If you determine that the image copy for any one of a set of logically related
databases will not be available after a remote takeover, all of the logically related
databases must be set back to the point before the database reorganization. This
requires time-stamp recoveries for any databases that had already had the images
copies applied. Thus, all the updates to those databases made at the old active site
after the reorganization are discarded.

Some databases are not connected to others by an explicit logical relationship but
are related implicitly by the processing done by a particular application. These
databases need to be managed manually after a remote takeover, especially if you
are applying image copies of them at the tracking site, because RSR does not know
about their implicit interrelationships.

Other image copies (not resulting from one of the database reorganization utilities
or from time-stamp recovery) should also be sent to the tracking site as soon as
possible so that database recoveries can be as efficient as possible. But these image
copies are not as important for RSR as the ones created by database
reorganizations and time-stamp recoveries.
Related tasks:
“Recovering a database with a nonstandard image copy in an RSR environment”
on page 600

Recovery of databases
If a database is physically lost or damaged in such a way that records in it become
inaccessible, you can reconstruct the database from the information you have been
keeping: image copies, logs, and so forth. This type of recovery is known as
forward recovery.

Definition: Forward recovery involves reconstructing information and reapplying it
to a backup copy of the database. It is based on the notion that if you knew what
the data was like at one time and you know what changes have been made to it
since then, you can process the data to return the database to the state it was in
just before it was lost.

The following figure illustrates this concept. You know what the database was like
at one time, because you made a backup copy of it. You know what changes
(additions, deletions, alterations) have been made to the database since the backup
copy was made, because IMS has been recording these changes on the log.
Therefore, you only need to combine the two, and create a new data set to replace
the database you have lost.

Chapter 26. Database backup and recovery 577

IMS provides the Database Recovery utility (DFSURDB0) to perform forward
recovery. The following figure illustrates how the utility works.

Additionally, if you have the IBM IMS Database Recovery Facility for z/OS
product installed, IMS provides the /RECOVER command to invoke the tool from
within IMS.

Restriction: DBRC is unable to generate JCL for recovering databases that are not
registered with DBRC. You can use the LIST.LOG command (or DSPAPI FUNC=QUERY
API request) to produce a listing of current OLDSs, RLDSs, and SLDSs. Using this
command lets you check manually that the JCL you are using for change

Figure 250. Database reconstruction (forward recovery)

SLDS (possibly accumulated),
RLDS (possibly accumulated), and/or
DSLOG (DBRC use only)

Control
statement

DBD
library

RECON
data set

Database
Recovery

utility

Most recent
image copy

Recovered
data set

Figure 251. Recovering a database using the IMS Database Recovery utility (DFSURDB0)

578 Database Administration

accumulation or database recovery contains DD statements for all active log data
sets. You can also use the LIST.LOG command (or DSPAPI FUNC=QUERY API request)
when you use DBRC batch log control.

Recommendation: Do not supply logs or change accumulation input when
running the Database Recovery utility for nonrecoverable DBDSs.

The Database Recovery utility and database recovery service perform database
recovery at the data set level. Usually, only a single data set of the database
requires recovery. If more than one data set has been lost or damaged, you need to
recover each one separately if you are using the Database Recovery utility. If you
are using the database recovery service, all the lost or damaged data sets can be
recovered in one recovery operation.

With DEDBs, using multiple area data sets reduces the need for recovery. If one
copy has an I/O error, you can create another copy online and drop the error copy.
Related tasks:
“Recovering HALDB databases when enabling partitions” on page 783

Recovering databases (System Administration)
Related reference:

Database Recovery utility (DFSURDB0) (Database Utilities)

Recovery and data sets
The Database Recovery utility (DFSURDB0) performs database recovery at the data
set level. If more than one data set has been lost or damaged and you are using
the Database Recovery utility, you need to recover each data set separately.

If you are using the IMS Database Recovery Facility for z/OS, all the lost or
damaged data sets can be recovered in one recovery operation.

With DEDBs, using multiple area data sets reduces the need for recovery. If one
copy of the area data set has an I/O error, you can create another copy online and
drop the error copy.

If your database data sets are multi-volume OSAM data sets, make certain you are
using the appropriate allocation specifications to ensure that all volumes get a
primary extent.

In some cases, you do not need to delete and redefine data sets prior to recovering
them. In fact, in cases where the deletion and redefinition of data sets is optional,
doing so unnecessarily slows the recovery process.

You are required to delete and define data sets during the recovery process in the
following cases:
v You are recovering VSAM database data sets by using the Database Recovery

utility.
v You are recovering the output data sets of the integrated HALDB Online

Reorganization function and the data sets are in a cursor active state.
v You are rebuilding a HALDB indirect list data set (ILDS) by using the HALDB

Index/ILDS Rebuild utility.

You are not required to delete and define data sets during the recovery process in
the following cases:

Chapter 26. Database backup and recovery 579

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/dbrc_admin/ims_dbrc_dbrecovbasicsteps.htm#ims_dbrc_dbrecovbasicsteps
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dfsurdb0.htm#ims_dfsurdb0

v You are recovering OSAM database data sets by using the Database Recovery
utility and you include image copies as input to the utility.

v You are rebuilding a HALDB PHIDAM primary index by using the HALDB
Index/ILDS Rebuild utility.

In cases where you are required to delete and redefine the data sets, when you
must execute the delete and define step in the recovery process depends on the
circumstances of the recovery. For example:
v If you are including an image copy as input to the Database recovery utility,

delete and define the data set before you run the utility.
v If you are not including an image copy as input to the Database recovery utility,

such as when you apply an image copy to the database in a prior step, delete
and define the data set before applying the image copy.

v If you are recovering data sets in an RSR tracking site, you must perform the
delete and define step prior to applying the image copies from the RSR active
site.

v If you are executing the recovery JCL automatically when the GENJCL.RECOV
command is issued, delete and define the data set before you issue the
GENJCL.RECOV command.

Related tasks:
“Allocating OSAM data sets” on page 539

Planning your database recovery strategy
You can recover databases in many different ways.

The simplest, although possibly the most time-consuming, approach is to use an
image copy plus all log data sets created since that image copy. You can also:
v Use the database recovery service
v Use the Change Accumulation utility to reduce the amount of log input to the

Database Recovery utility
v Create an RLDS with the Log Archive utility and use the RLDS instead of an

SLDS

The Database Recovery utility always processes log tapes after it processes the
change accumulation data set. If, therefore, you must include log tapes that were
created before the change accumulation data set, you must execute DFSURDB0
twice—once with the image copy and log tapes, and again with the change
accumulation data set.

If you register your databases with DBRC, DBRC ensures the correct input is
provided to the Database Recovery utility, and optionally generates the necessary
JCL. For more detailed information on DBRC, see IMS Version 13 System
Administration.

Some of the advantages and disadvantages of the different recovery techniques are
described in this topic.
Related concepts:
“Frequency and retention for backup copies” on page 576

Using database change accumulation input for recovery
If you use the Database Change Accumulation utility (DFSUCUM0) periodically to
consolidate your old log volumes, you can use these accumulated volumes as
input to the database recovery service and the Database Recovery utility.

580 Database Administration

You must include any log volumes recorded since the last time you ran the
Database Change Accumulation utility as input to the recovery—either in their
current format or after being passed through the Database Change Accumulation
utility.

When you run the Database Change Accumulation utility, you can specify the
DBDSs for which you want to accumulate change records. For each DBDS, you can
either ignore change records or write them to the optional output log data set. By
specifying a subset of the DBDSs (called a change accumulation group), you can
reduce the size of the change accumulation data set, and improve performance of
the Database Recovery utility. However, you also must run the Database Change
Accumulation utility (and pass the log data set) for each change accumulation
group.

If you select only one DBDS each time you run the Database Change Accumulation
utility, you must run the utility (and pass the log data set) once for each DBDS.
With this technique, each output change accumulation file contains only those
records needed for the recovery of a single DBDS.

You might improve the performance of the Database Change Accumulation utility
by performing frequent quiesces of your databases. Quiescing a database creates a
point of consistency across databases and logs which reduces the number of log
records that need to be accumulated. When creating a point of consistency, new
updates are held and all in-progress updates are committed and written to DASD.
After the last in-progress update is written to DASD a deallocation (DEALLOC)
time stamp is added to the database allocation (ALLOC) record in the RECON
data set to create a new recovery point and updates to the database resume.

The following are some common recovery techniques:
v Define a single change accumulation group for all DBDSs.

In this case, the Database Change Accumulation utility reads the log data set
only once, but the Database Recovery utility must read records in the output
change accumulation data set for potentially unnecessary databases. This
technique improves the performance of the Database Change Accumulation
utility, but degrades performance of the database recovery.

v Define several change accumulation groups.
In this case, you divide your databases into groups of several databases, often
by volume or by application. If you take image copies frequently, you can keep
the number of records scanned by the Database Recovery utility to a minimum.

v Define no change accumulation groups. Run the Database Change Accumulation
utility, but not as a regular job.
When you need to recover a database, specify that the utility accumulate
changes for the affected DBDS only. Provide all log data sets created since the
latest image copy of the data set to be recovered. If you use one of the image
copy utilities, you must include the log created when the image copy was made
as input to the Database Change Accumulation utility.
If you are considering this approach, you should make some test runs to see
whether the sum of the execution times of the Database Change Accumulation
and Database Recovery utilities is less than the time needed to run the Database
Recovery utility with unaccumulated log data sets.

Related concepts:
“Database quiesce” on page 560

Chapter 26. Database backup and recovery 581

Using log data sets for recovery
If you decide not to use the Database Change Accumulation utility, consider using
a recovery log data set (RLDS) produced by the Log Archive utility (DFSUARC0).

RLDSs are smaller than SLDSs because they contain only a subset of the
recovery-related log records from the corresponding SLDSs. The Log Archive
utility writes to the RLDS only those records that are needed for recovery. The
frequency of image copies has a major impact on recovery time in this case,
depending on the volume of database updates.

You must submit the log volumes to the recovery utility in chronological sequence:
from the oldest to the most recent.

If you back out a database using the Database Batch Backout utility after making
an image copy of it, you must use both the log created by the Batch Backout utility
and the original log as input to the Database Recovery utility. This is because the
Batch Backout utility backs out some of the changes recorded on the original log.

Supervising recovery using DBRC
Use DBRC to supervise database recovery. By using DBRC, your task of recovery is
greatly simplified.

During daily operations, DBRC keeps track of the activity of the database: backup
copies taken, relevant log volumes recorded, change accumulations made, and so
forth. Thus, DBRC knows what to supply to the recovery utility to recover the
database: image copies and log volumes. DBRC generates the necessary JCL to run
the utility and guarantee the proper input in the proper order.

DBRC supports two types of database recovery for DBDSs and area data sets
(ADSs):
v Full recovery restores a DBDS or ADS to its current state as recorded in the

RECON data set.
v Time-stamp recovery restores a DBDS or ADS to the contents it had at the time

you specify.

Full recovery of a DBDS or ADS is generally a two-step process. You must restore
a copy of the DBDS or ADS, then apply changes made subsequent to that copy.
These changes can be contained in change accumulation data sets and log data
sets. If you make backup copies of your databases, running the Database Recovery
utility can accomplish both steps.

Time-stamp recovery of a DBDS or ADS involves recovering a DBDS or ADS to
some previous point in time, usually when the DBDS or ADS was not being
updated. Generally, you perform time-stamp recoveries to recover from logic
errors, such as bad input data, or an operational error, such as duplicate execution
of a batch job. A time-stamp recovery has the effect of backing out one or more of
the most recent sets of updates.

Recommendation: Perform time-stamp recoveries with great caution. When
recovering one DBDS or ADS, you must perform similar recoveries for all related
DBDSs or ADSs. Examples of such related data sets include not only those
connected through logical relationships, but also indexes and databases containing
multiple data set groups. Because DBRC does not know how DBDSs or ADSs are
related, you must be sure to perform all related time-stamp recoveries.

582 Database Administration

The general strategy for recovering a DEDB is to use the Change Accumulation
utility and then perform forward recovery. To assist in obtaining valid input, you
can use the Log Recovery utility to create a copy of the OLDS that excludes the
incomplete DEDB updates. You can also create a data set with only DEDB recovery
records. Use the DEDB Area Data Set Compare utility to assist in the repair of a
damaged area data set.

Recommendation: For an area that uses the shared VSO option, do not bring the
area back online or restart failed IMS systems that owned the connections until
after you ensure that there are no failed-persistent XES connections to the CF
structure used by the area. You can use the z/OS SETXCF command to delete the
connections.
Related concepts:
“Overview of recovery of databases”

Overview of DBRC (System Administration)
Related tasks:

Recovering databases (System Administration)
Related reference:

Recovery utilities (Database Utilities)

Denial of authorization for recovery utility
If DBRC denies authorization for an IMS recovery utility to run, you might receive
message DFS3710A, which usually indicates that a previous recovery utility abended
while processing and did not release its database authorization.

To recover in this situation, delete the subsystem record in the RECON data set
using either the following command sequence or API request sequence:
v Command sequence:

1. CHANGE.SUBSYS SSID(name) STARTRCV

2. CHANGE.SUBSYS SSID(name) ENDRECOV

3. DELETE.SUBSYS SSID(name)

For more information about the DBRC commands, see IMS Version 13 Commands,
Volume 3: IMS Component and z/OS Commands.

v API request sequence:
1. DSPAPI FUNC=COMMAND COMMAND=CHANGE.SUBSYS SSID(name) STARTRCV

2. DSPAPI FUNC=COMMAND COMMAND=CHANGE.SUBSYS SSID(name) ENDRECOV

3. DSPAPI FUNC=COMMAND COMMAND=DELETE.SUBSYS SSID(name)

For more information about the DBRC API, see IMS Version 13 System
Programming APIs.

Overview of recovery of databases
You perform a forward recovery of a database by restoring a backup copy of the
database and then reapplying all of the logged database changes that occurred
after the backup copy was made.

While these two basic steps are common to all forward recoveries of databases, the
specific steps of a forward recovery can vary depending on the type of database
you are recovering and whether you are operating in a data-sharing environment
or a non-data-sharing environment.

Chapter 26. Database backup and recovery 583

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/dbrc_admin/ims_dbrc_over.htm#ims_dbrc_over
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/dbrc_admin/ims_dbrc_dbrecovbasicsteps.htm#ims_dbrc_dbrecovbasicsteps
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dur04.htm#ims_dur-gen3

A backup copy of an IMS database is usually an image copy of the database.
Image copies are created by one of the IMS image copy utilities or a separate
image copy tool. The IMS image copy utilities automatically register the image
copies they create with the Database Recovery Control facility (DBRC). Image
copies created by some other means, or with DBRC=N specified on the image copy
utility EXEC parameter list, might need to be registered with DBRC before DBRC
and the Database Recovery utility (DFSURDB0) can use them for recovery.

The logs that contain the database changes can be processed before recovery by the
Change Accumulation utility (DFSUCUM0), to consolidate all of the database
change records and optimize them for recovery. In a data-sharing environment,
you are required to use the Change Accumulation utility. In a non-data-sharing
environment, using the Change Accumulation utility is optional, although it can be
beneficial to use for performance reasons.

DBRC manages the forward recovery process and can generate the required JCL
for all of the backup and recovery related utilities, except in cases in which the
database being recovered is not registered with DBRC. The JCL that is generated
by the DBRC command GENJCL.RECOV for the Database Recovery utility
automatically identifies and includes the correct image copies, logs, DBD names,
ddnames and time stamps.

The process for recovering the database data sets, that is, the data sets that contain
the database records, is the same across most database types, including
full-function, HALDB partitioned full-function, and Fast Path DEDB database
types. The same process is used for a primary index of a HIDAM database in the
same way as you recover a database data set: using image copies and logs.

For HALDB databases, however, the PHIDAM primary indexes and indirect list
data sets (ILDSs) are not backed up or recovered; instead, after the database data
sets they support are recovered, HALDB primary indexes and ILDSs are rebuilt by
using the HALDB Index/ILDS Rebuild utility (DFSPREC0).

Another difference about recovering HALDB databases is that the DBRC command
GENJCL.RECOV can generate JCL to recover all of the partitions of the HALDB
database at once or to recover only a single partition. The GENJCL.RECOV
command also provides a similar option for recovering entire Fast Path DEDB
databases or individual DEDB areas.

When rebuilding HALDB primary indexes and ILDSs, consider using the DBRC
command GENJCL.USER to create skeletal JCL members to allocate the necessary
data sets. A separate skeletal JCL member is required for primary index data sets
and ILDSs. When rebuilding the ILDS, use the free space option of the HALDB
Index/ILDS Rebuild utility by specifying either ILEF or BOTHF on the utility
control statement. The free space option uses VSAM load mode, which includes
the free space called for in the VSAM DEFINE CLUSTER command.

Forward recovery in a data-sharing environment requires additional steps to
consolidate the logs of all of the IMS systems sharing the database to be recovered.

A forward recovery can be either a full recovery or a time-stamp recovery. A full
recovery restores a DBDS or area data set to its current state as recorded in the
RECON data set. A time-stamp recovery restores a DBDS or area data set to the
contents it had at the time you specify.

584 Database Administration

The following topics include examples of the steps for performing full forward
recoveries of HIDAM and PHIDAM databases. Because the recovery process for
database data sets is the same across database types, the steps presented for the
recovery of HIDAM and PHIDAM DBDSs also apply to HDAM, PHDAM, and
DEDB database data sets. Similarly, the recovery steps for an ILDS in a PHIDAM
also apply to an ILDS in a PHDAM.
Related concepts:
“Supervising recovery using DBRC” on page 582
Related tasks:
“Example: recovering a HIDAM database in a non-data-sharing environment”
“Recovering a PHIDAM database in a non-data-sharing environment” on page 587

“Example: recovering a single HALDB partition in a non-data-sharing
environment” on page 591
“Example: recovering a HIDAM database in a data-sharing environment” on page
593

Example: recovering a HIDAM database in a non-data-sharing
environment

The following steps are an example of a full forward recovery of a HIDAM
database with a secondary index in a non-data-sharing environment.

The database uses OSAM for its database data sets; however, database data sets
can be OSAM or VSAM. Primary and secondary indexes are always VSAM. The
database is registered to DBRC, operates in an online environment, and does not
participate in data sharing. Because the database does not participate in data
sharing, an accumulation of the database changes recorded in the logs is not
required.

For a HIDAM database, you must back up and recover the primary index data set
separately from the database data sets (DBDSs); however, you can simplify the
backup and recovery process by defining DBRC groups that include the DBD
names of both the database and the primary index. You can then issue GENJCL
commands against the DBRC group to generate the necessary JCL for both DBDs
at the same time.

To recover a HIDAM database:
1. If any OLDS contains database change records that are required for recovery,

issue the DBRC command GENJCL.ARCHIVE to generate the necessary JCL to
run the Log Archive utility (DFSUARC0).

2. Run the Log Archive utility. The Log Archive utility archives the records in the
OLDS to an SLDS.

3. Delete and define both the OSAM database data sets and the VSAM KSDS
primary index data set.

4. Issue the GENJCL.RECOV command to generate all of the required JCL for
recovery of the HIDAM database. The JCL identifies the correct image copies to
use, all of the appropriate logs, all the correct ddnames, and the correct time
stamps.

5. Run the Database Recovery utility (DFSURDB0) on the database by executing
the JCL that is generated by the GENJCL.RECOV command. The Database

Chapter 26. Database backup and recovery 585

Recovery utility recovers the database data sets from the image copies and the
database changes that are recorded in the logs.

6. Issue the GENJCL.RECOV command to generate all of the required JCL for
recovery of the primary index of the HIDAM database. The JCL identifies the
correct image copies to use, all of the appropriate logs, all the correct ddnames,
and the correct time stamps.

7. Run the Database Recovery utility on the primary index by executing the JCL
that is generated by the GENJCL.RECOV command. The Database Recovery
utility recovers the primary index data set from the image copy and updates
the data set with the primary index changes that are recorded in the logs.

8. Delete and define secondary index VSAM KSDS data sets.
9. Recover the secondary indexes by either:
v Using the same forward recovery steps that you use to recover HIDAM

DBDSs.
v Rebuilding the secondary indexes by using a separately sold index builder

tool.

The following JCL is an example of the GENJCL.RECOV commands that generate
the JCL that is required for recovering a HIDAM database that has a secondary
index:
//GENRECVX JOB CLASS=A,REGION=6M,
// MSGCLASS=U,NOTIFY=&SYSUID
//MYLIB JCLLIB ORDER=(IMS.PROCLIB,IMSVS.CMXXX.TEAM01.JCL)
//*
//DELDEF1 EXEC PGM=IDCAMS
//**
//* D E F I N E V S A M D A T A D B S
//**
//SYSPRINT DD SYSOUT=*
//SYSIN DD DSN=IMSVS.CMXXX.TEAM01.UTIL(XSTAP),DISP=SHR
// DD DSN=IMSVS.CMXXX.TEAM01.UTIL(XSTAX),DISP=SHR
// DD DSN=IMSVS.CMXXX.TEAM01.UTIL(XSTAY),DISP=SHR
//*
//* RUN DB RECOVERY
//A EXEC DBRC,
//SYSIN DD *
GENJCL.RECOV DBD(X1STAP) LIST DEFAULTS(T01DFLT) ONEJOB JOB(T01RJOB) -
MEMBER(RECV1JCL)

GENJCL.RECOV DBD(X1STAX) LIST DEFAULTS(T01DFLT) ONEJOB JOB(T01RJOB) –
GENJCL.RECOV DBD(X1STAY) LIST DEFAULTS(T01DFLT) ONEJOB JOB(T01RJOB) –

The following example shows the JCL that is generated by the GENJCL.RECOV
commands to recover a HIDAM database that has a secondary index.
//T01RECOV JOB TIME=1,MSGCLASS=H,REGION=4096K,
// CLASS=A
//RCV1 EXEC PGM=DFSRRC00,REGION=1300K,
// PARM=’UDR,DFSURDB0,X1STAP,,,,,,,,,,,,,,,,,,,’
//*
//* THIS JCL ORIGINATES FROM THE USER’S ’JCLPDS’ LIBRARY.
//* KEYWORDS ARE REPLACED BY THE GENJCL FUNCTION OF
//* THE IMS/VS DATA BASE RECOVERY CONTROL FEATURE.
//*
//* JCL FOR RECOVERY.
//*
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//SYSPRINT DD SYSOUT=A
//IMS DD DSN=IMS.DBDLIB,DISP=SHR
//X1STAP DD DSN=IMSVS.CMXXX.TEAM01.X1STAP,
// DISP=OLD
//DFSUDUMP DD DSN=IMSVS.IMS1.TEAM01.X1STAP.D2006157.T155726,

586 Database Administration

// UNIT=3390,
// VOL=(PRIVATE,,,,SER=(SM4104)),
// LABEL=(1,SL),
// DISP=(OLD,KEEP),DCB=BUFNO=10
//DFSVDUMP DD DUMMY
//DFSUCUM DD DUMMY
//DFSULOG DD DUMMY
//DFSVSAMP DD *
//SYSIN DD *
//*...
//T01RECOV JOB TIME=1,MSGCLASS=H,REGION=4096K,
// CLASS=A
//RCV1 EXEC PGM=DFSRRC00,REGION=1300K,
// PARM=’UDR,DFSURDB0,X1STAX,,,,,,,,,,,,,,,,,,,’
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//SYSPRINT DD SYSOUT=A
//IMS DD DSN=IMS.DBDLIB,DISP=SHR
//X1STAX DD DSN=IMSVS.CMXXX.TEAM01.X1STAX,
// DISP=OLD
//DFSUDUMP DD DSN=IMSVS.IMS1.TEAM01.X1STAX.D2006157.T155727,
// UNIT=3390,
// VOL=(PRIVATE,,,,SER=(SM4106)),
// LABEL=(1,SL),
// DISP=(OLD,KEEP),DCB=BUFNO=10
//DFSVDUMP DD DUMMY
//DFSUCUM DD DUMMY
//DFSULOG DD DUMMY
//DFSVSAMP DD *
//SYSIN DD *
//*...
//T01RECOV JOB TIME=1,MSGCLASS=H,REGION=4096K,
// CLASS=A
//RCV1 EXEC PGM=DFSRRC00,REGION=1300K,
// PARM=’UDR,DFSURDB0,X1STAY,,,,,,,,,,,,,,,,,,,’
//STEPLIB DD DSN=IMS.SDFSRESL,DISP=SHR
//SYSPRINT DD SYSOUT=A
//IMS DD DSN=IMS.DBDLIB,DISP=SHR
//X1STAX DD DSN=IMSVS.CMXXX.TEAM01.X1STAY,
// DISP=OLD
//DFSUDUMP DD DSN=IMSVS.IMS1.TEAM01.X1STAY.D2006157.T155727,
// UNIT=3390,
// VOL=(PRIVATE,,,,SER=(SM4106)),
// LABEL=(1,SL),
// DISP=(OLD,KEEP),DCB=BUFNO=10
//DFSVDUMP DD DUMMY
//DFSUCUM DD DUMMY
//DFSULOG DD DUMMY
//DFSVSAMP DD *
//SYSIN DD *

Related concepts:
“Overview of recovery of databases” on page 583
Related tasks:
“Example: recovering a HIDAM database in a data-sharing environment” on page
593

Recovering a PHIDAM database in a non-data-sharing
environment

The following steps are an example of a full forward recovery of a PHIDAM
database that has two partitions and a partitioned secondary index (PSINDEX).

The database uses OSAM for its database data sets; however, database data sets
can be OSAM or VSAM. Primary and secondary indexes are always VSAM. The

Chapter 26. Database backup and recovery 587

database is registered to DBRC and operates in an online environment. The
database does not participate in data sharing. Because the database does not
participate in data sharing, an accumulation of the database changes recorded in
the logs is not required.

To recover a PHIDAM database:
1. If any OLDS contains database change records that are required for recovery,

issue the DBRC command GENJCL.ARCHIVE to generate the necessary JCL to
run the Log Archive utility (DFSUARC0).
If the DBRC JCLOUT DD statement for the GENJCL output is directed to the
internal reader, the archive jobs are automatically started.

2. If the archive jobs are not started automatically, run the Log Archive utility on
each sharing IMS system that has unarchived records in the OLDS. The Log
Archive utility archives the records in the OLDS to an SLDS.

3. Delete and define the OSAM database data sets.
4. Issue the GENJCL.RECOV command to generate all of the required JCL for

recovery of the PHIDAM database. The JCL identifies the correct image copies
to use, the correct logs, the correct ddnames, and the correct time stamps.

5. Run the Database Recovery utility (DFSURDB0) on the database by executing
the JCL that is generated by the GENJCL.RECOV command. The Database
Recovery utility recovers the database data sets from the image copies and the
database changes that are recorded in the logs.

6. Delete and define both the primary index data set and the ILDS.
7. Run the HALDB Index/ILDS Rebuild utility (DFSPREC0) to rebuild both the

primary index and the ILDS in each partition.
Specify BOTHF to select the free space option of the HALDB Index/ILDS
Rebuild utility. The free space option uses VSAM load mode to include the free
space called for in the FREESPACE parameter of the DEFINE CLUSTER
command.
The HALDB Index/ILDS Rebuild utility rebuilds the primary index data sets
and the ILDS of one partition at a time; however, you can run multiple
instances of the utility on multiple partitions in parallel.

8. Delete and define secondary index VSAM KSDS data sets.
9. Recover the PSINDEXes by either:
v Using the same forward recovery steps that you use to recover PHIDAM

DBDSs.
v Rebuilding the secondary indexes by using a separately sold index builder

tool.

The following code shows an example of the GENJCL.RECOV command that
generates the JCL to recover a PHIDAM database.
//DBRC EXEC PGM=DSPURX00
//STEPLIB DD DISP=SHR,DSN=IMS.SDFSRESL
// DD DISP=SHR,DSN=IMS.MDALIB
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//IMS DD DISP=SHR,DSN=IMS.DBDLIB
//JCLPDS DD DISP=SHR,DSN=IMS.PROCLIB
//JCLOUT DD DISP=SHR,DSN=JOUKO4.HALDB.CNTL(RECOVOUT)
//JCLOUTS DD SYSOUT=*
//SYSIN DD *
GENJCL.RECOV NOJOB DBD(NORDDB) MEMBER(RECOVJCL)
/*

588 Database Administration

|
|
|

|
|

|
|
|

The following code shows the JCL required for recovering a PHIDAM database
that has two partitions:
//RCV1 EXEC PGM=DFSRRC00,
// PARM=’UDR,DFSURDB0,NORDDB,,,,,,,,,,,Y,,,,,,,,’
//STEPLIB DD DISP=SHR,DSN=IMS.SDFSRESL
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//IMS DD DISP=SHR,DSN=IMS.DBDLIB
//NORDDB1A DD DSN=IMSPSA.IM0A.NORDDB.A00001,
// DISP=OLD,
// DCB=BUFNO=10
//DFSUDUMP DD DSN=JOUKO3.IMCOPY2.NORDDB.C01,
// DISP=OLD,DCB=BUFNO=10
//DFSVDUMP DD DUMMY
//DFSUCUM DD DUMMY
//DFSULOG DD DUMMY
//DFSVSAMP DD DISP=SHR,
// DSN=IMS.PROCLIB(DFSVSMDB)
//SYSIN DD *
S NORDDB NORDDB1A
/*
//RCV2 EXEC PGM=DFSRRC00,
// PARM=’UDR,DFSURDB0,NORDDB,,,,,,,,,,,Y,,,,,,,,’
//STEPLIB DD DISP=SHR,DSN=IMS.SDFSRESL
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//IMS DD DISP=SHR,DSN=IMS.DBDLIB
//NORDDB2A DD DSN=IMSPSA.IM0A.NORDDB.A00002,
// DISP=OLD,
// DCB=BUFNO=10
//DFSUDUMP DD DSN=IMSPSA.IMCOPY.NORDDB2,
// DISP=OLD,DCB=BUFNO=10
//DFSVDUMP DD DUMMY
//DFSUCUM DD DUMMY
//DFSULOG DD DUMMY
//DFSVSAMP DD DISP=SHR,
// DSN=IMS.PROCLIB(DFSVSMDB)
//SYSIN DD *
S NORDDB NORDDB2A
/*

The following code shows an example of the GENJCL.RECOV command that
generates the JCL to recover a PSINDEX.
//DBRC EXEC PGM=DSPURX00
//STEPLIB DD DISP=SHR,DSN=IMS.SDFSRESL
// DD DISP=SHR,DSN=IMS.MDALIB
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//IMS DD DISP=SHR,DSN=IMS.DBDLIB
//JCLPDS DD DISP=SHR,DSN=IMS.PROCLIB
//JCLOUT DD DISP=SHR,DSN=JOUKO4.HALDB.CNTL(RECOVOU3)
//JCLOUTS DD SYSOUT=*
//SYSIN DD *
GENJCL.RECOV DBD(CUSTSI) ONEJOB LIST MEMBER(RECOVJCL)

The following code shows the JCL for recovering a PSINDEX that has two
partitions:
//IVPGNJCL JOB (999,POK),
// ’JJ’,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1),
// REGION=64M
/* JOBPARM SYSAFF=SC42
//RCV1 EXEC PGM=DFSRRC00,
// PARM=’UDR,DFSURDB0,CUSTSI,,,,,,,,,,,Y,,,,,,,,’

Chapter 26. Database backup and recovery 589

//STEPLIB DD DISP=SHR,DSN=IMS.SDFSRESL
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//IMS DD DISP=SHR,DSN=IMS.DBDLIB
//CUSTSI1A DD DSN=IMSPSA.IM0A.CUSTSI.A00001,
// DISP=OLD
//DFSUDUMP DD DSN=IMSPSA.IC1.CUSTSI1.CUSTSI1A.D03073.T143654,
// DISP=OLD,DCB=BUFNO=10
//DFSVDUMP DD DUMMY
//DFSUCUM DD DUMMY
//DFSULOG DD DUMMY
//DFSVSAMP DD DISP=SHR,
// DSN=IMS.PROCLIB(DFSVSMDB)
//SYSIN DD *
S CUSTSI CUSTSI1A
/*
//RCV2 EXEC PGM=DFSRRC00,
// PARM=’UDR,DFSURDB0,CUSTSI,,,,,,,,,,,Y,,,,,,,,’
//STEPLIB DD DISP=SHR,DSN=IMS.SDFSRESL
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//IMS DD DISP=SHR,DSN=IMS.DBDLIB
//CUSTSI2A DD DSN=IMSPSA.IM0A.CUSTSI.A00002,
// DISP=OLD
//DFSUDUMP DD DSN=IMSPSA.IC1.CUSTSI2.CUSTSI2A.D03073.T143654,
// DISP=OLD,DCB=BUFNO=10
//DFSVDUMP DD DUMMY
//DFSUCUM DD DUMMY
//DFSULOG DD DUMMY
//DFSVSAMP DD DISP=SHR,
// DSN=IMS.PROCLIB(DFSVSMDB)
//SYSIN DD *
S CUSTSI CUSTSI2A
/*

Related concepts:
“Overview of recovery of databases” on page 583
Related reference:

Generating JCL and user-defined output (Commands)

Recovering a PHIDAM database in a data sharing environment
The following steps are an example of a full forward recovery of a PHIDAM
database that has two partitions and a partitioned secondary index (PSINDEX).
The PHIDAM database is shared by multiple IMS systems.

Image copies of the database data sets must be available.

The PHIDAM database data sets must be registered as members of a DBRC change
accumulation group.

The database uses OSAM for its database data sets; however, database data sets
can be OSAM or VSAM. Primary and secondary indexes are always VSAM. The
database is registered to DBRC and operates in an online environment. The
database is shared by multiple IMS systems. Because the database is shared, an
accumulation of the database changes recorded in the logs is required.

In a full recovery, recovering secondary indexes is not required, so in following
example procedure, the steps for recovering the secondary index are optional.

IMS provides a skeletal JCL member, DSPUPJCL, for rebuilding the index or
indirect list data sets (ILDS) for HALDB partitions.

590 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_genjcl.htm#ims_cr3genjcl

To recover a PHIDAM database:
1. If any OLDS contains database change records that are required for recovery,

issue the DBRC command GENJCL.ARCHIVE to generate the necessary JCL
to run the Log Archive utility (DFSUARC0).
If the DBRC JCLOUT DD statement for the GENJCL output is directed to the
internal reader, the archive jobs are automatically started.

2. If the archive jobs are not automatically started, run the Log Archive utility on
each sharing IMS system that has unarchived records in the OLDS. The Log
Archive utility archives the records in the OLDS to an SLDS.

3. Run the GENJCL.CA command to merge the logs from the IMS systems in to
the latest CA.

4. Delete and define the OSAM database data sets.
5. Issue the GENJCL.RECOV command to generate all of the required JCL for

recovery of the PHIDAM database. The JCL identifies the correct image copies
to use, the correct logs, the correct change accumulation data set, the correct
ddnames, and the correct time stamps.

6. Run the Database Recovery utility (DFSURDB0) on the database by executing
the JCL that is generated by the GENJCL.RECOV command. The Database
Recovery utility recovers the database data sets from the image copies and the
database changes that are recorded in the logs.

7. Delete and define both the primary index data set and the ILDS.
8. Run the HALDB Index/ILDS Rebuild utility (DFSPREC0) to rebuild both the

primary index and the ILDS in each partition.
Specify BOTHF to select the free space option of the HALDB Index/ILDS
Rebuild utility. The free space option uses VSAM load mode to include the
free space called for in the FREESPACE parameter of the DEFINE CLUSTER
command.
The HALDB Index/ILDS Rebuild utility rebuilds the primary index data sets
and the ILDS of one partition at a time; however, you can run multiple
instances of the utility on multiple partitions in parallel.

9. Optionally, delete and define secondary index VSAM KSDS data sets.
10. Optionally, recover the PSINDEXes by either:

v Using the same forward recovery steps that you use to recover PHIDAM
DBDSs.

v Rebuilding the secondary indexes by using a separately sold index builder
tool.

Related concepts:
“Overview of recovery of databases” on page 583

Example: recovering a single HALDB partition in a
non-data-sharing environment

To perform a full forward recovery for a single HALDB partition, specify the
partition name instead of the HALDB master database name in the DBD parameter
of the DBRC command GENJCL.RECOV.

The GENJCL.RECOV command generates the JCL to recover only the specified
partition. After the DBDSs are recovered, you must rebuild the primary index and
the ILDS.

To recover a single partition in a PHIDAM database:

Chapter 26. Database backup and recovery 591

|
|
|

|
|

|
|
|

1. If any OLDS contains database change records that are required for recovery,
issue the DBRC command GENJCL.ARCHIVE to generate the necessary JCL to
run the Log Archive utility (DFSUARC0).

2. Run the Log Archive utility. The Log Archive utility archives the records in the
OLDS to an SLDS.

3. Delete and define the OSAM partition database data sets.
4. Issue the GENJCL.RECOV command, specifying the partition name in the DBD

parameter to generate the required JCL for recovery of the database data sets of
the partition. The JCL identifies the correct image copies to use, the correct logs,
the correct ddnames, and the correct time stamps.

5. Run the Database Recovery utility (DFSURDB0) on the partition by executing
the JCL that is generated by the GENJCL.RECOV command. For the specified
partition, the Database Recovery utility recovers the database data sets from the
image copies and the database changes that are recorded in the logs.

6. Delete and define both the primary index data set and the ILDS.
7. Run the HALDB Index/ILDS Rebuild utility (DFSPREC0) to rebuild both the

primary index and the ILDS in the partition. Specify BOTHF to select the free
space option of the HALDB Index/ILDS Rebuild utility
The free space option uses VSAM load mode to include the free space called
for in the FREESPACE parameter of the DEFINE CLUSTER command.
The HALDB Index/ILDS Rebuild utility rebuilds the primary index data sets
and the ILDS of one partition at a time; however, you can run multiple
instances of the utility on multiple partitions in parallel.

The following code shows an example of the GENJCL.RECOV command that
generates the JCL to recover a single HALDB partition.
//DBRC EXEC PGM=DSPURX00
//STEPLIB DD DISP=SHR,DSN=IMS.SDFSRESL
// DD DISP=SHR,DSN=IMS.MDALIB
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//IMS DD DISP=SHR,DSN=IMS.DBDLIB
//JCLPDS DD DISP=SHR,DSN=IMS.PROCLIB
//JCLOUT DD DISP=SHR,DSN=JOUKO4.HALDB.CNTL(RECOVOUT)
//JCLOUTS DD SYSOUT=*
//SYSIN DD *

GENJCL.RECOV NOJOB DBD(NORDDB1) MEMBER(RECOVJCL)
/*

The following code shows the JCL that is generated by the GENJCL.RECOV
command to recover a single HALDB partition.
//RCV1 EXEC PGM=DFSRRC00,
// PARM=’UDR,DFSURDB0,NORDDB,,,,,,,,,,,Y,,,,,,,,’
//*
//STEPLIB DD DISP=SHR,DSN=IMS.SDFSRESL
// DD DISP=SHR,DSN=IMS.MDALIB
//IMS DD DISP=SHR,DSN=IMS.DBDLIB
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//NORDDB1A DD DSN=IMSPSA.IM0A.NORDDB.A00001,
// DISP=OLD,
// DCB=BUFNO=10
//DFSUDUMP DD DSN=IMSPSA.NORDDB1.IMCOPY,
// DISP=OLD,DCB=BUFNO=10
//DFSVDUMP DD DUMMY
//DFSUCUM DD DUMMY
//DFSULOG DD DUMMY

592 Database Administration

//DFSVSAMP DD DSN=IMS.PROCLIB(DFSVSM0S),DISP=SHR
//SYSIN DD *
S NORDDB NORDDB1A
/*

Related concepts:
“Overview of recovery of databases” on page 583

Example: recovering a HIDAM database in a data-sharing
environment

The following steps perform a full forward recovery a HIDAM database in a
data-sharing environment.

The database uses OSAM for its database data sets; however, database data sets
can be OSAM or VSAM. Primary and secondary indexes are always VSAM. The
database is registered to DBRC and operates in an online environment. Because the
database participates in data sharing, prior to recovering the database, you must
run the Database Change Accumulation utility (DFSUCUM0). The Database
Change Accumulation utility consolidates and sorts the database changes recorded
in the logs of each of the IMS systems that share the database.

Apart from requiring you to accumulate the database changes in the logs, the
recovery steps in a data-sharing environment are the same as those in a
non-data-sharing environment.

For a HIDAM database, the primary index data set must be backed up and
recovered separately from the database data sets (DBDSs); however, you can
simplify the backup and recovery processes by defining a DBRC group that
includes the database names of both the database and the primary index as
defined in their respective database definitions. You can then issue GENJCL
commands against the DBRC group to generate the necessary JCL for both of the
databases at the same time.

To recover a HIDAM database in a data-sharing environment:
1. Ensure that the OLDS in each of the IMS systems that share the database has

been archived by issuing the DBRC command GENJCL.ARCHIVE. The
GENJCL.ARCHIVE command generates the necessary JCL to run the Log Archive
utility (DFSUARC0).

2. Run the Log Archive utility in each of the sharing IMS systems. The Log
Archive utility archives the records in the OLDS to an SLDS.

3. Build the change accumulation JCL by issuing the DBRC command GENJCL.CA.
4. Run the Database Change Accumulation utility to consolidate, sort, and save

the database change log records to a change accumulation data set. The Change
Accumulation utility registers the change accumulation data set with DBRC.

5. Delete and define both the OSAM database data sets and the VSAM KSDS
primary index data set.

6. Issue the GENJCL.RECOV command to generate all of the required JCL for
recovery of the HIDAM database. The JCL identifies the correct image copies to
use, the appropriate logs, the correct ddnames, and the correct time stamps.

7. Run the Database Recovery utility (DFSURDB0) on the database by executing
the JCL that is generated by the GENJCL.RECOV command. The Database
Recovery utility recovers the database data sets from the image copies and the
database changes that are recorded in the logs.

Chapter 26. Database backup and recovery 593

8. Issue the GENJCL.RECOV command to generate all of the required JCL for
recovery of the primary index of the HIDAM database. The JCL identifies the
correct image copies to use, all of the appropriate logs, all the correct ddnames,
and the correct time stamps.

9. Run the Database Recovery utility on the primary index by executing the JCL
that is generated by the GENJCL.RECOV command. The Database Recovery utility
recovers the primary index from the image copies and the primary index
changes that are recorded in the logs.

The following JCL shows an example of the GENJCL.CA command that generates
the JCL that is required to run the Database Change Accumulation utility for a
HIDAM database in a data sharing environment.
//STEP1 EXEC PGM=DSPURX00,REGION=4096K
//STEPLIB DD DISP=SHR,DSN=IMS.SDFSRESL
//IMS DD DSN=IMS.DBDLIB,DISP=SHR
//JCLPDS DD DSN=IMS.JCLLIB,DISP=SHR
//JCLOUT DD SYSOU&JCLOUT
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
GENJCL.CA GRPNAME(NORDDBCA) JOB MEMBER(CAJCLF) LIST JOB(CAJOB)
//*

The following JCL is an example of the JCL that is generated by the GENJCL.CA
command.
//CA1 EXEC PGM=DFSUCUM0,PARM=’CORE=100000,DBRC=Y’
//* JCL FOR CHANGE ACCUMULATION.
//STEPLIB DD DISP=SHR,DSN=IMS.SDFSRESL
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//IMS DD DISP=SHR,DSN=IMS.DBDLIB
//SYSOUT DD SYSOUT=*
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR
//SORTWK01 DD UNIT=SYSALLDA,SPACE=(CYL,(5),,CONTIG)
//SORTWK02 DD UNIT=SYSALLDA,SPACE=(CYL,(5),,CONTIG)
//SORTWK03 DD UNIT=SYSALLDA,SPACE=(CYL,(5),,CONTIG)
//SORTWK04 DD UNIT=SYSALLDA,SPACE=(CYL,(5),,CONTIG)
//SORTWK05 DD UNIT=SYSALLDA,SPACE=(CYL,(5),,CONTIG)
//SORTWK06 DD UNIT=SYSALLDA,SPACE=(CYL,(5),,CONTIG)
//DFSUCUMO DD DUMMY,DCB=BLKSIZE=100
//DFSUCUMN DD DSN=IMS.CA.NORDDBCA.CA172538,
// DISP=(NEW,CATLG),
// UNIT=SYSALLDA,
// VOL=SER=DJX112,
// SPACE=(CYL,(1,1))
//DFSULOG DD DSN=IMS.SLDS.G2170V00,
// DCB=RECFM=VB,
// DISP=OLD
// DD DSN=IMS.SLDS.G2171V00,
// DCB=RECFM=VB,
// DISP=OLD
// DD DSN=IMS.SLDS.G2172V00,
// DCB=RECFM=VB,
// DISP=OLD
// DD DSN=IMS.SLDS.G2173V00,
// DCB=RECFM=VB,
// DISP=OLD
// DD DSN=IMS.SLDS.G2174V00,
// DCB=RECFM=VB,
// DISP=OLD
// DD DSN=IMS.SLDS.G2175V00,
// DCB=RECFM=VB,
// DISP=OLD
//DFSUDD1 DD DUMMY

594 Database Administration

//SYSIN DD *
DB0NORDDB 061392202286+0000 NORDDB1A
DB0NORDDB 061392202304+0000 NORDDB2A
DB0NORDDB 061392202321+0000 NORDDB3A

Related concepts:
“Overview of recovery of databases” on page 583
Related tasks:
“Example: recovering a HIDAM database in a non-data-sharing environment” on
page 585

Concurrent image copy recovery
A concurrent image copy is “fuzzy” because while IMS makes the image copy of
the database, IMS might also be updating the database at the same time.

For example, IMS might could update the database:
v Before the start of the concurrent image copy, and IMS might not have written

those updates to the DBDS yet
v While the concurrent image copy is being taken

After restoring the data set from the concurrent image copy, IMS applies changes
which occurred while the image copy was being taken from the log. Therefore, to
recover a DBDS that has fuzzy image copies, you might need to supply logs to the
recovery job which have time stamps that precede the start of the concurrent
image copy. The DBRC GENJCL.RECOV command generates JCL with the correct logs
listed.

If you use the database recovery service to recover a DBDS that has fuzzy image
copies, the database recovery service automatically processes all the necessary logs
required for the recovery.
Related concepts:
“Concurrent image copies” on page 567

HSSP image copy recovery
An HSSP image copy is usable as a fuzzy image copy whenever the HSSP image
copy completes successfully.

When you use an HSSP image copy for database recovery, you must tell the
Database Recovery utility that you are supplying an HSSP image copy.

If the image copy process fails during the creation of an image copy, IMS returns
the image copy data set to the pool of available image copy data sets.
Related concepts:
“HSSP image copies” on page 569

DL/I I/O errors and recovery
The way IMS handles DL/I I/O errors allows you to delay database recovery until
it is convenient.

If the errors do not recur or can be corrected automatically, recovery might even be
unnecessary. IMS maintains data integrity by reconstructing information about I/O
errors on later warm or emergency restarts.

Chapter 26. Database backup and recovery 595

When an I/O error occurs, IMS issues message DFS0451I and creates an extended
error queue element (EEQE). When IMS successfully forward recovers a DBDS
with an EEQE, DBRC updates the appropriate entries in the RECON data set, and
IMS removes the EEQE.

You can use the /DISPLAY DB command with the BKERR keyword to display
information about the outstanding EEQEs associated with a database.
Related concepts:
“Database failures” on page 559

DEDB full condition
The database-full condition in a DEDB area indicates that one or more portions of
the root-addressable area of the DEDB can no longer accept ISRT calls.

IMS detects the out-of-space condition for DEDB sequential dependent segments
during sync-point processing. Although the application program may receive a
warning status code, some ISRT calls, issued from a Fast Path message-driven
program or from an MPP region, cause the region to abnormally terminate with a
U0844 abend code.

Recommendation: Track space usage within a DEDB area using one of the
following methods:
v The application program can use information given by the position (POS) call
v The master terminal operator can monitor it using the appropriate /DISPLAY

DB or QUERY DB command to show the total allocated and the total used CIs
in both the root-addressable and the sequential-dependent portions of the area.

If a DEDB area does reach the database-full condition, Fast Path provides two
online utilities that may negate the need for using an offline application program
to perform a database unload and reload operation to resolve the problem. The
two utilities are:
v The Sequential Dependent Delete utility, which deletes the sequential-dependent

segments in all or part of the sequential-dependent portion of an area. This
makes the space available for further sequential dependent inserts.

v The Direct Reorganization utility, which removes space fragmentation in an area.
The utility runs against one DEDB area at a time.
Recommendation: Although you can limit the reorganization to the one unit of
work that did not allow inserts, you should reorganize more or all of the area.
Any independent overflow space that is freed from one unit of work becomes
available for use by any other unit of work within that area.

Continued database authorization
IMS performs a number of actions when a write I/O error is encountered on a
DBDS.

If IMS encounters a write I/O error on a DBDS, and the DBDS is registered with
DBRC, IMS:
1. Builds an EEQE for the data that could not be written to the DBDS
2. Calls DBRC

If you register the database with DBRC, DBRC updates the RECON data set for
the DBDS by:
v Flagging the DBDS record to indicate that recovery is needed

596 Database Administration

v Recording the address of the EEQE in the DBDS record
v Incrementing the DB record to count the EEQE

The recovery-needed flag prohibits new authorizations for some IMS utilities such
as the Batch Image Copy utility. Also, if the recovery-needed flag is set and there
are no EEQEs, DBRC denies all authorizations except for the recovery utilities.

If you do not register the database with DBRC, IMS assumes that the EEQEs that it
builds from the log records during warm or emergency restart are correct. IMS
discards EEQE information for nonregistered databases when you stop the
database by using the /DBRECOVERY DB or UPDATE DB STOP(ACCESS)
command.

I/O error retry
When IMS closes a database after updating it, IMS automatically retries EEQEs for
read and write errors.

IMS authorizes attached subsystems to use a database with write errors, but IMS
does not allow them to access blocks or CIs that were not successfully written. If
any application program in one of these subsystems requests data requiring access
to one of these blocks or CIs, IMS gives the program an AO status code, indicating a
read error.

When the I/O-error retry is successful, IMS deletes the EEQE and sends messages
to the MTO and z/OS console. IMS sends message DFS0614I for each error that it
successfully retries, and message DFS0615I when it resolves all outstanding errors.

Correcting bad pointers
Ordinarily, bad pointers should not occur in your database. When they do, the
likely causes are few.

The cause of bad pointers is typically:
v Failure to run database backout
v Failure to perform emergency restart
v Omitting a log during backout or recovery

The normal way to correct a bad pointer is to perform recovery. However, some
cases exist in which a bad pointer can be corrected through reorganization. A
description of the circumstances in which this can or cannot be done is as follows:
v PC/PT pointers. The HD Unload utility issues unqualified GN calls to read a

database. If the bad pointer is a PC or PT pointer, DL/I will follow the bad
pointer and the GN call will fail. Therefore, reorganization cannot be used to
correct PC or PT pointers.

v LP/LT pointers. LP and LT pointers are rebuilt during reorganization. However,
DL/I can follow the LP pointer during unload. If the logical child segment
contains a direct LP pointer and the logical parent's concatenated key is not
physically stored in the logical child segment, DL/I follows the bad LP pointer
to construct the logical parent's concatenated key. This causes an ABEND.

v LP pointer. When DBR= is specified for pre-reorganization and the database has
direct LP pointers, the HD Unload utility saves the old LP pointer. Bad LP
pointers produce an error message (DFS879) saying a logical child that has no
logical parent exists.

Chapter 26. Database backup and recovery 597

v LP pointer. When DBIL= is specified for pre-reorganization of a logical child or
parent database, the utilities that resolve LP pointers use concatenated keys to
match logical parent and logical child segments. New LP pointers are created.

Recovery in an RSR environment
You can use the Database Recovery utility at an RSR tracking site.

Use the GENJCL.RECOV command to generate the JCL, which includes the necessary
image copy and change accumulation data sets.

Once all of the recovery jobs have completed for a group of databases at the RSR
tracking site, issue the /START DATABASE|AREA|DATAGRP command to initiate online
forward recovery (OFR) to prepare the databases for normal tracking.

OFR, which is the process by which RSR brings shadow databases and areas that
are out-of-date back to the current tracking state, is only available on an RSR
database level tracking (DLT) subsystem for databases tracked at the database
readiness level.

If you recover a database to a time-stamp at the active site, create an image copy
of the database before the database is used again and register it with DBRC at the
tracking site by using the DBRC command NOTIFY.IC DBD(name) DDN(name)
RUNTIME(time_stamp). Then perform a full recovery of the database.

For complete information about Remote Site Recovery, see IMS Version 13 System
Administration.

Recovering a database using the DFSURDB0 utility in an RSR
environment
The steps for recovering a database in an RSR environment require recovering the
database at the active site first, and then recovering the database at the tracking
site by using an image copy of the recovered active site database.

The steps for recovering databases in an RSR environment by using the Database
Recovery utility are:
v At the active site:

1. Perform the time-stamp recovery.
2. Take an image copy of the database.
3. Send the image copy to the tracking site.

v At the tracking site:
1. Receive the image copy.
2. Use the NOTIFY.IC command to register the image copy with DBRC.
3. Run the recovery utility to apply the image copy (and possibly any change

accumulation data).
4. Issue the /START DATABASE|AREA|DATAGRP command to make the

database ready for tracking. The /START DATABASE|AREA|DATAGRP
command causes OFR to apply changes from the log and causes normal
tracking to resume.

Database utilities in an RSR environment
In a Remote Site Recovery (RSR) environment, certain information related to the
running of utilities at the active site must be made available to the tracking site.

598 Database Administration

Most of this information is handled automatically by RSR. However, you are
responsible for the following:
v Whenever tracked databases are involved, DBRC must be active when the

following utilities are run: the Batch Backout utility (DFSBBO00), the Database
Change Accumulation utility (DFSUCUM0), the Database Recovery utility
(DFSURDB0), and the database reorganization utilities.
Whenever tracked databases are involved, DBRC and IMS logging must be
active when the Partial Database Reorganization utility (DFSPRCT2) is run.

v It is your responsibility to send image copies from the active site to the tracking
site and to record them in the tracking site RECON data set.

Only these database utilities can be run at the tracking site:
v Database Change Accumulation utility (DFSUCUM0)
v Database Image Copy utility (DFSUDMP0)
v Database Recovery utility (DFSURDB0)
v Database Image Copy 2 utility (DFSUDMT0)

Following an RSR takeover, when what was previously the tracking site becomes
the active site, HALDB databases require that the Index/ILDS Rebuild utility
(DFSPREC0) be at the new active site to recover the ILDS and index data sets.

Database utility verification at the active site

RSR support requires additional verification for IMS database utilities at the active
site. For a tracked database or area, the following restrictions apply:
v Time-stamp recovery of one DBDS of a tracked database requires a

corresponding time-stamp recovery of any other DBDSs of the database.
Subsequent authorization requests for the database (except those from the
Database Recovery utility) will be rejected until all DBDSs have been recovered
to the same point in time.

v The recovery utility supports recovery to USID boundaries rather than to log
volume boundaries. Hence, DBRC is able to relax its requirements for
time-stamp recovery. Specifically, the log volume boundary requirements no
longer apply. Thus, you can use the NOFEOV keyword on the /DBRECOVERY
command when preparing for time-stamp recovery.

Database utility verification at the tracking site

RSR support requires additional verification for IMS database utilities at a tracking
site. For a covered database or area, the following restrictions apply:
v Database Reorganization Utilities

Database reorganization is not allowed at the tracking site. If a database
reorganization utility requests authorization to a tracked database while signed
on to the tracking service group (SG), the authorization is rejected.

v Database Image Copy Utility
Image copying of a tracking DBDS or area is allowed, as long as the database or
area is not authorized to the tracking subsystem when the utility is executed.
You can create a batch image copy by specifying NOCIC in the image copy
parameters, but you cannot create a concurrent image copy (CIC) at a tracking
site.
An image copy data set created at the tracking site is very similar to a
concurrent image copy in that the HALDB master is generally still being

Chapter 26. Database backup and recovery 599

updated while the shadow database is being copied. However, like batch image
copy, the image copy is, in effect, an instantaneous copy of the DBDS or area
because tracking is suspended while the utility is running.
The time stamp (RUNTIME) of an image copy data set created at a tracking site is
not the time that it was created but the time recorded for the database or area in
the active site's RECON. Thus a tracking site image copy has an “effective time”
relating it to the active site database or area, and that time can be earlier than
the last update applied to the database or area. So recovery using the tracking
site image copy might involve some reprocessing of data.

v Database Image Copy 2 Utility
Image copying of a tracking DBDS or area is allowed, as long as the database or
area is not authorized to the tracking subsystem when the utility is executed.
You can create a batch image copy by specifying NOCIC in the image copy
parameters, but you cannot create a concurrent image copy (CIC) at a tracking
site.
An image copy data set created at the tracking site is very similar to a
concurrent image copy in that the HALDB master is generally still being
updated while the shadow database is being copied. However, like batch image
copy, the image copy is, in effect, an instantaneous copy of the DBDS or area
because tracking is suspended while the utility is running.
The time stamp (RUNTIME) of an image copy data set created at a tracking site is
not the time that it was created but the time recorded for the database or area in
the active site's RECON. Thus a tracking site image copy has an “effective time”
relating it to the active site database or area, and that time can be earlier than
the last update applied to the database or area. So recovery using the tracking
site image copy might involve some reprocessing of data.

v Database Recovery Utility
Database recovery of a tracking DBDS or area can be performed as long as the
database or area is not authorized to the tracking subsystem when the utility is
executed.
For block-level data sharing subsystems tracked at the recovery readiness level
(RLT), time-stamp recovery is performed at the active site, and an image copy of
each data set of the database must be sent to the tracking site following the
time-stamp recovery.
For block-level data sharing subsystems tracked at the database readiness level
(DLT), time-stamp recovery can be performed at the tracking site by way of
online forward recovery.

v Batch Backout Utility
Batch backout is not allowed at the tracking site. Batch backout is not allowed to
sign on to a tracking SG.

Recovering a database with a nonstandard image copy in an
RSR environment
In an RSR environment, the procedure for recovering a database with a
nonstandard image copy is slightly different depending on whether the IMS
system is an active subsystem or a tracking subsystem.

However, in either subsystem, the Database Recovery utility (DFSURDB0) does not
accept nonstandard image copies as input. Consequently, if you are using
nonstandard image copies for recovery, you must restore the database data sets
from the image copies by other means before running the DFSURDB0 utility.

To recover a database in an active subsystem:

600 Database Administration

1. Restore the DBDS from the nonstandard image copy.
2. Record the restoration in the RECON data set by issuing the DBRC command

NOTIFY.RECOV with the image copy run time as the RCVTIME keyword.
3. To complete the recovery, apply the changes made since the image copy was

created by issuing the DBRC command GENJCL.RECOV with the USEDBDS
keyword.

To recover a database in a tracking subsystem:
1. Using the last recorded nonstandard image copy, restore the DBDS.
2. Record this restoration in DBRC by entering a NOTIFY.RECOV command with the

image copy run time as the RUNTIME keyword and the USID from the image
copy as the RUNUSID keyword.

3. Issue a /START command for the database. The /START DATABASE|AREA|DATAGRP
command causes online forward recovery (OFR) to apply changes from the log
and causes normal tracking to resume.

Related concepts:

IMS error handling for RSR for the remote site (System Administration)

Recovery of IMS using Remote Site Recovery (RSR) (Operations and
Automation)
Related tasks:
“Image copies in an RSR environment” on page 576

Chapter 26. Database backup and recovery 601

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_recovery/ims_rsr_error_handling_remote.htm#ims_rsr_error_handling_remote
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.oag/ims_recover_rsr.htm#ims_recover_rsr
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.oag/ims_recover_rsr.htm#ims_recover_rsr

602 Database Administration

Chapter 27. Database backout

Backward recovery or backout is one of the two major types of recovery. Using
backout allows you to remove incorrect or unwanted changes from existing
information or work.

Dynamic backout
IMS automatically backs out changes to a database in several different
circumstances.

IMS automatically backs out changes to a database when any of the following
events occur:
v An application program terminates abnormally.
v An application program issues a rollback call (ROLL or ROLB), or ROLS call without

a token.
v An application program tries to access an unavailable database but has not

issued the INIT call.
v A deadlock occurs.

In batch, you can specify (in the JCL) that IMS automatically dynamically back out
changes if a batch application program abends, issues a ROLB call, or issues a ROLS
call without a token. In this case, the log data set must be on DASD.

However, GSAM DB's are not backed out but are repositioned during the BMP's
restart process through the XRST call. The XRST call repositions the dataset
pointers to the checkpoint ID specified in the call. When the application starts-up,
it will pick-up from that point and go forward. The checkpoint ID specified in the
XRST call should be the same one that the non-GSAM DBs would have been
backed out to, through either dynamic or batch backout.

Dynamic backouts and commit points
During dynamic backout, IMS backs out all database changes made by an
application program since its last commit point.

A commit point (or sync point) occurs in a batch or BMP program when the
program issues a CHKP call. Commit points for message-driven application
programs depend on the transaction mode (as specified by the MODE parameter of
the TRANSACT macro).

Frequent commit points decrease performance. However, they also:
v Allow IMS to send output messages (replies) earlier
v Reduce the time required for emergency restart and database recovery
v Help avoid storage shortages for locking
v Help avoid reading SLDSs for backout, which decreases performance

Application programs can be batch oriented (non-message-driven BMPs) and
choose when to commit their database changes using the CHKP call.

The following kinds of programs can issue a rollback (ROLB) call:

© Copyright IBM Corp. 1974, 2016 603

|
|
|
|
|
|

v Message-driven application programs that establish a commit point every time
they attempt to get an input message

v Non-message-driven batch-oriented application programs

If an application program uses Fast Path resources or an external subsystem, IMS
can issue an internal rollback call to back out the data to the last commit point.
The application program receives status code FD as a result of this call.

IMS performs the following processing in response to a ROLB call:
v Backs out and releases locks for all database changes that the program has made

since its most recent sync point
v Cancels all output messages since the program's most recent sync point
v Returns the first segment of the first input message since the most recent commit

point to the application program, if an input message is still in process at this
point, and if the call provides an I/O area

When IMS completes ROLB processing, the application program resumes processing
from its last commit point.

When IMS initiates dynamic backout because of an application program abend, in
many cases IMS stops both the transaction and application program. The MTO can
restart the transaction or the application program. If you restart the application
program before determining the exact cause of the abend, the program can abend
again. However, if you restart the transaction, queuing of transactions continues.

Consider the transaction mode in deciding whether the MTO should restart
transactions:
v If you restart response-mode transactions, and IMS subsequently enqueues new

messages, any terminal entering the transaction is locked because no response is
received.

v If you do not restart response-mode transactions, the terminal operator receives
a message noting that IMS has stopped the transaction, but the originating
terminal is not locked.

v If the transaction is not a response-mode transaction, you can restart it to allow
terminal operators to continue entry. However, establish procedures in this case
to warn terminal operators that they might not receive a response for some time.

When an application program abends, IMS issues message DFS554A to the master
terminal. IMS does not issue this message for MPP regions when a resource
shortage that is not expected to last long (such as short-term locks) occurs. In this
case, IMS backs out the application program and places the input message back on
the queue for rescheduling. When a BMP abends, IMS always issues message
DFS554A because the z/OS operator must restart BMPs.

Message DFS554A identifies:
v The application program (PSB) name
v The transaction name
v The system or user completion codes
v The input logical terminal name
v Whether the program or transaction is stopped

604 Database Administration

IMS also sends message DFS555I to the input terminal or master terminal when the
application program abends while processing an input message. This error
message means that IMS has discarded the last input message the application was
processing.

The DFS555I message contains:
v The system or user completion codes
v Up to the first 78 characters of the input message
v The time and date
Related information:

DFS554A (Messages and Codes)

DFS555I (Messages and Codes)

Dynamic backout in batch
In a batch environment, when the SLDS is on DASD, you can request that IMS
perform dynamic backout if IMS pseudoabends or if the application program
issues a ROLB call by specifying BKO=Y in the JCL.

In this case, IMS performs backout to the last program sync point. Abend U0828
does not occur in batch if you specify BKO=Y.

Database batch backout
You can use the Batch Backout utility (DFSBBO00) to remove database changes
made by IMS batch jobs and online programs.

Because it is possible (in an online IMS subsystem) to have more than one
dependent region using the same PSB, the utility might back out changes from
several dependent regions when you execute batch backout against an online log.

You can use the Batch Backout utility to back out changes to the last checkpoint a
batch job did not complete normally. If the batch region does not use data sharing,
and if it is not a BMP, you can use the CHKPT control statement on the JCL for the
Batch Backout utility to back out changes for the batch region to any valid
checkpoint, whether or not it completed normally. Do not specify the CHKPT control
statement when backing out changes for BMPs; the utility either rejects or ignores
it.

The Batch Backout utility reads the log in the forward direction. Regardless of
whether the backout is to the last checkpoint or to a specified checkpoint, the
utility tries to back out all changes to all databases occurring between that
checkpoint and the end of the log. When backing out BMPs, the utility always
backs them out to the last checkpoint on the log.

In an IMS DBCTL environment, the Batch Backout utility backs out all in-flight
updates, but only backs out in-doubt updates if you specify the COLDSTART option.

If dynamic backout fails or if backout during emergency restart fails, IMS stops the
databases for which backout did not complete, and retries the backouts when you
restart the databases.

Chapter 27. Database backout 605

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.msgs/msgs/dfs554a.htm#dfs554a
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.msgs/msgs/dfs555i.htm#dfs555i

When to use the Batch Backout utility
Use the Batch Backout utility in any of the following circumstances.
v If a batch job fails and you did not request automatic dynamic backout.
v If a batch job fails and you requested dynamic backout, but the failure was not a

pseudo-abend.
v If you perform an emergency restart of IMS specifying the NOBMP option, and

BMPs were active at the time of failure, you must run the utility once for each
BMP. If you run the utility before restart completes, you must use the ACTIVE
control statement.

v If you perform an emergency restart of IMS specifying the COLDBASE option,
you must run batch backout once for each PSB (including MPPs, BMPs, and
mixed mode IFPs) used by an application program that updates a full-function
DL/I database, if the PSB was active at the time of the failure.
You should also run batch backout for each PSB for which there is an in-doubt
unit of recovery (UOR). Doing so puts the full-function databases in the same
state as the Fast Path databases that are not updated until the commit point. If
you choose not to back out an unresolved in-doubt UOR, you must remove it
from the RECON backout record.
If you want to initiate these backouts before restart completes, you must specify
the COLDSTART control statement for the Batch Backout utility. You do not
need to specify the COLDSTART statement for backouts performed after restart.
DBRC protects all registered databases affected by in-flight and in-doubt UORs
from access by other application programs until their backouts complete, even if
the backout does not complete until after a cold start. You must ensure that
programs do not access any unregistered databases before their backouts are
complete.

Before issuing a /ERESTART COLDSYS command, you must run batch backout at
least once using the COLDSTART or ACTIVE control statement. These control
statements provide DBRC with the information necessary to protect registered
databases in need of backout from erroneous access until the backouts are done.

If a failure occurs in one of the online backouts in a DB/DC or DBCTL subsystem
that causes IMS to defer the backout:
1. Resolve the original problem.
2. Issue the /START DB or UPDATE DB START(ACCESS) command.
3. Complete the backout with a partial (restartable) backout.

In some cases, the restartable backout can also fail because the information it
requires has not been saved. In those cases, you must use the Batch Backout utility.
You must also use the utility if IMS defers one of the backout failures past a cold
start.

System failure during backout
If a system failure occurs during backout, execute the Batch Backout utility again.
Save the input logs and the output log from the successful backout run as input to
the Database Change Accumulation or Database Recovery utility.

DL/I I/O errors during backout
IMS handles I/O errors for DL/I databases in the same way for dynamic backout,
batch backout, and emergency restart backout.

606 Database Administration

Errors during dynamic backout
If a database I/O error occurs during backout, IMS issues message, creates an
EEQE to record the event, and calls DBRC to flag the appropriate database entry in
the RECON data set as needing backout.

You should run the Database Backout utility to back out the appropriate database
entries and to inform DBRC to reset the appropriate backout-needed flag and
counter. DBRC does not authorize flagged databases for use until you run the
Database Backout utility.

For write errors, IMS copies the buffer contents of the blocks or control intervals in
error to virtual buffers pointed to by the EEQE. IMS also tries to write each buffer
that has an outstanding error when the database is closed. IMS issues message
DFS0614I for each error buffer that it successfully writes or reads (if the EEQE is
for a read error), and issues message DFS0615I when all outstanding errors have
been resolved.

If a database read error occurs during dynamic backout, IMS issues message
DFS983I, stops only the database in error, and continues dynamic backout of other
databases within the PSB. IMS writes a X'4C01' log record for each database that it
successfully backs out, and a X'4C80' log record for each database that it stops
because of a read error. IMS then allows you to recover any stopped database and
back it out offline.

If dynamic backout fails, you must run batch backout to reconstruct the database.
Related concepts:

IMS failure recovery (Operations and Automation)

Recovering from errors during dynamic backout
Different kinds of failure require different recovery procedures.

Specifically:
v If a database is unavailable during dynamic backout or emergency restart, but

subsequently becomes available (for example, you bring it back online or repair
a physical device), use a /START DB or UPDATE DB START(ACCESS)
command to reschedule dynamic backout to back out the (now available)
database.

v If the database remains unavailable (because, for example, the database has an
error that you must recover), you must run the Database Recovery utility before
you allow further processing against the database in error, and then run the
Batch Backout utility. Batch backout recognizes the X'4C01' log records and does
not try to back out changes for databases that were backed out successfully.

v In the online environment, dynamic backout can fail if the log records are not
available. If the only log records available are from SLDS, the performance of
dynamic backout is poor. Slow dynamic backout can happen in the following
cases:
– The OLDS containing the log record has been archived and reused.

Recommendation: Make sure that you have defined enough OLDS space,
and that programs reach sync points (using GU or CHKP calls) frequently
enough to ensure that records needed for backout are available from OLDSs.

– IMS stops a database during dynamic backout if a nonrecoverable read error
occurs on the logs when single or dual logging is in effect.

Chapter 27. Database backout 607

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.oag/ims_imsfailure_recovery.htm#ims_imsfailure_recovery

In this case, you must run the Log Recovery utility to get a valid log. The
output log must terminate normally; use it as input to the Database Change
Accumulation utility or the Database Recovery utility. After you have
corrected the input error, execute the Batch Backout utility again to correct the
databases.

Errors during batch backout
If an I/O error occurs during batch backout, the Batch Backout utility completes
backout of all databases except for those affected by read errors.

IMS handles these I/O errors in the same way that it handles them when they
occur during dynamic backout.

Before the Batch Backout utility makes any updates, it builds database buffers for
any outstanding I/O errors. It applies updates to these buffers without trying to
write them until the database is closed.

If any I/O errors remain unresolved for a database that has been backed out, you
must eventually do a forward recovery, but you do not need to rerun the Batch
Backout utility if it completed successfully (IMS issues message DFS395I).

Errors on log during batch backout
If an I/O error occurs on the input log, you should execute the Log Recovery
utility to correct the error.

The output log must terminate normally; keep this log as input to the Database
Change Accumulation or Database Recovery utility. After you correct the input
error, execute the Batch Backout utility again.

If the I/O error occurs on the output log, terminate the output log correctly. Then
execute the Batch Backout utility again. Keep both output logs as input to the
Database Change Accumulation or Database Recovery utility.

Errors during emergency restart backout
IMS handles both read errors and failures to open a database during emergency
restart in the same way as it does during dynamic backout.

For read errors, however, other restart backouts for the same database can take
place, even though a database is stopped.

If a nonrecoverable OLDS read error occurs during backout (on both OLDSs if
dual logging is in effect), run the Log Recovery utility and attempt to restart IMS
again.

During restart processing, but before initiating backout, IMS determines if it must
close the OLDS using the WADS. If a nonrecoverable read error occurs on the
WADS, committed log records might be lost. In this case, you must close and
archive the OLDS, and then reconstruct the affected databases by performing
forward recovery and batch backout.

608 Database Administration

Chapter 28. Monitoring databases

You can use a number of IMS tools to monitor the performance of your databases.

Several tools this topic does not discuss, but which you can also use for
monitoring purposes, include:
v IMS Performance Analyzer
v IMS DB Control Suite (On-demand Space Monitor)
v IMS DB Tools Space Monitor Utilities
v DB Integrity Control Facility

Related Reading: For information about these and other IMS tools, go to
www.ibm.com/ims and link to the IBM DB2 and IMS Tools website.
Related concepts:
“Monitoring VSAM buffers” on page 676
“Code inspection 2” on page 32
“Number of buffers” on page 440
“When you should reorganize a database” on page 616

IMS Monitor (System Administration)

Data sharing in IMS environments (System Administration)
Related tasks:
“Changing the amount of space allocated” on page 684

IMS Monitor
The IMS Monitor is a tool that records data about the performance of your DL/I
databases in a batch environment.

The recorded data is produced in a variety of reports. The monitor's usefulness is
twofold. First, when you run the monitor routinely, it gives you performance data
over time. By comparing this data, you can determine whether the performance
trend is acceptable. This helps you make decisions about tuning your database and
determining when it needs to be reorganized.

The second use of the monitor is to assess how the changes you make effect
performance. Once you have accumulated reports describing normal database
processing, you can use them as a profile against which to compare the effect of
your changes. Examples of changes you might make (then test for performance)
include:
v Changes in the structure of your databases
v A change from one DL/I access method to another
v A change in database buffer pool number and size
v Changes in application program logic

In all these cases, your primary goal is probably to minimize the number of I/Os
required to perform an operation. The monitor helps you determine whether you
have met your objective.

© Copyright IBM Corp. 1974, 2016 609

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_monit_imsmonitor.htm#ims_monit_imsmonitor
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_datasharing.htm#ims_datasharing

The following example shows how to use the IMS Monitor: suppose you are
performing a final test on a new or revised application. The monitor reports show
that some DL/I calls in the program, which should have required a single I/O
retrieval, actually required a large database scan involving many I/Os. You might
be able to correct this problem by making changes in the application program
logic.

The monitor itself is actually two programs, as shown in the following figure.
v The IMS Monitor (DFSMNTR0)
v The IMS Monitor Report Print utility (DFSUTR20)

The IMS Monitor collects data from IMS control blocks (when DL/I is operating)
and records the data either on an independent data set or in the IMS log. It collects
data with minimum interference to the system. The monitor runs in the same
address space as the IMS job, and it can be turned on or off with the MON=
parameter in the execution JCL.

The IMS Monitor Report Print utility is an offline program that produces reports
summarizing information collected by the IMS Monitor. It produces the following
reports:
v VSAM Buffer Pool report
v VSAM Statistics report
v Database Buffer Pool report
v Program I/O report
v DL/I Call Summary report
v Distribution Appendix report
v Monitor Overhead report

Many of these reports are also provided by the IMS Monitor.

When the IMS Monitor is on, it remains on until the batch execution ends,
requiring some overhead. It cannot be turned on and off from the system console.
To minimize the monitor's impact, use the IMS Monitor in a single-thread test
environment rather than multi-thread application environments.

Figure 252. How the IMS Monitor works

610 Database Administration

This ensures that the data gathered by the IMS Monitor can be related to a
particular program.
Related concepts:

DB Monitor reports (System Administration)

IMS Monitor reports (System Administration)

Monitoring Fast Path systems
The major emphasis for monitoring IMS online systems that include
message-driven Fast Path applications is the balance between rapid response and
high transaction rates.

With Fast Path, performance data is made part of the system log information.
Because the bulk of the online traffic is expected to be handled by expedited
message handling and not be present on the message queues, the Fast Path Log
Analysis utility (DBFULTA0) is the prime tool for monitoring Fast Path
applications. The IMS Monitor can also be used to monitor Fast Path systems.

Use the Fast Path Log Analysis utility (DBFULTA0) to prepare statistical reports for
Fast Path based on data recorded on the IMS system log. This utility is offline and
produces five reports useful for system installation, tuning, and troubleshooting:
v A detailed listing of exception transactions
v A summary of exception detail by transaction code for MPP (message-processing

program) regions
v A summary by transaction code for MPP regions
v A summary of IFP, BMP, and CCTL transactions by PSB name or transaction

code
v A summary of the log analysis

Do not confuse this utility with the IMS Monitor or the IMS Log Transaction
Analysis utility.

As an administrator in the Fast Path environment, you should perform tasks, like
establishing monitoring strategies, performance profiles, and analysis procedures.
This topic highlights how to use the Analysis utility to do these tasks, and suggests
some Areas where tuning activities might be valuable.
Related concepts:

IMS Monitor (System Administration)

IMS Monitor reports (System Administration)
Related reference:

Fast Path Log Analysis utility (DBFULTA0) (System Utilities)

CCTL exit routines (Exit Routines)

Fast Path log analysis utility
The Fast Path Log Analysis utility gathers statistics of Fast Path exclusive and
potential transactions that are passed to Fast Path dependent regions.

It reports information for other PSBs (including Fast Path PCBs and the programs
that enter the sync point processing) and produces three types of output:
v Formatted summary and detail reports

Chapter 28. Monitoring databases 611

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/ims_reports/ims_dbmon_reports.htm#ims_dbmon_reports
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/ims_reports/ims_imsmonrpt.htm#ims_imsmonrpt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_monit_imsmonitor.htm#ims_monit_imsmonitor
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/ims_reports/ims_imsmonrpt.htm#ims_imsmonrpt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbfulta0.htm#ims_dbfulta0
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_cctlexits.htm#ims_cctlexits

v A data set of fixed format records for the total traffic of Fast Path transactions
extracted from the system logs that form the input to the utility

v A data set of records, in the same format, that are selected based on exception
conditions (such as those transactions that exceed a certain fixed response time)

The latter data sets can be analyzed in more detail by your installation's programs.
They can also be sorted to group critical transactions or events. The details of the
record format and meaning of the fields are given in IMS Version 13 System
Utilities.

Fast Path log reduction
To reduce log volume you can use the LGNR parameter, which is specified on the
DBC, FDR, and IMS startup procedures.

LGNR indicates the maximum number of DEDB buffer alterations that are held
before the entire CI is logged.

Another way to reduce log volume is to designate the DEDB as nonrecoverable.
No changes to the database are logged and no record of database updates is kept
in the DBRC RECON data set.
Related concepts:
“Non-recovery option” on page 189

Fast Path EXEC parameters in DBCTL (System Definition)

Fast Path EXEC parameters in DCCTL or DB/DC (System Definition)
Related reference:

Parameter descriptions for IMS procedures (System Definition)

Fast Path transaction timings
For each Fast Path transaction, four time intervals are separately calculated.

The following figure shows the boundary events and intervals.

The following list describes the four intervals shown in the previous figure:
1. Input queue time: reflects the transaction input queuing within the balancing

group to distribute the work.
2. Process time: records the actual elapsed processing time for the individual

transaction.

Figure 253. Fast Path transaction event timings

612 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_ic0a3c3c1001212.htm#ic0a3c3c1001212
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_ic0a3c3c1000813.htm#ic0a3c3c1000813
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_parameter_descriptions_for_procedures.htm#ims_procedure_parm_descriptions

3. Output queue time: shows the effect of sync point in delaying the output
message release until after logging.

4. Output message time: shows the line and device availability for receiving the
output message. If the transaction originated from a programmable controller,
the output time could reflect a delay in dequeue caused by the output not
being acknowledged until the next input.

The sum of the first three intervals is termed the transit time. This time is slightly
different from a response time, because it excludes the line activity for the
message, message formatting, and the input edit processing up to the time the
message segment leaves the exit routine.

Monitored events for Fast Path
The control program automatically collects Fast Path event data during system
operation.

The following table shows the information that is made part of the system log
records for each Fast Path transaction.

Table 77. Monitor data for Fast Path transactions

Monitored data Message-driven region Other region

Transit and Output Message Times x

LTERM Name x

Routing Code x

Balancing Group Queue Count x

Number of DEDB Calls x x

Number of I/O to DEDB x x

Number of MSDB Calls x x

Number of CI Contentions x x

Number of Buffers Allocated x x

Number of Waits for Buffer x x

Sync Point Failure Reason Code x x

Selecting transactions
The analysis utility lets you select transactions to be reported in detail.

You give the transaction code and a transit time that each transaction is to exceed,
up to a maximum of 65.5 seconds. Several codes can be selected for each utility
run. There is also a way to ask for all transactions that exceed the given transit
time. In this case, the individual exception specification overrides the general one.

When you do not need to print all such occurrences of the exceptions, you can
give a maximum number of detail records to be printed. The default is 1000
individual records, though you can specify up to 9999999 as the maximum
number. When you cut off the number of printed records, the data set for the
exception records contains all transactions that meet the selection criteria.

You can also specify a start time and end time for the transaction reporting
interval. The start time corresponds to the earliest transaction that satisfies the
clock time (format HH:MM:SS) specified by a utility input control statement. End

Chapter 28. Monitoring databases 613

time is set by the latest transaction that enters the sync point processing before the
ending clock time that is specified on an input control statement.

Another selection technique that is available is to select only non-message-driven
transactions for reporting. Use this to look at the activity (occurring against MSDBs
or DEDBs) caused by calls from IMS programs or BMPs.

Interpreting Fast Path analysis reports
The analysis reports show the origin, database activity, and processing events for
each transaction code, although most reported items show average and maximum
values.

The reports produced are:
v Overall summary by transaction

Summarized by transaction code, the transit times and input/output message
lengths are given. The database calls and buffer usage are also included.

v Exception detail
For those transactions selected, the terminal origin and routing code are given
for each individual occurrence of the transaction. The detail also includes the
data appearing in the overall summary.

v Summary of exception detail by transaction code
This report is based on the transactions in the exception report. The items
reported are the same as for the overall summary.

v Summary of transactions by PSB
All programs that are in non-message-driven regions, MPP regions, and BMP
regions that enter the sync point processing are reported. The items reported are
the same as the summary of exception detail.

v Recapitulation of the analysis
This is a documentation aid that gives the grand totals of transactions input to
the analysis, and the I/O for online utilities.

The combination of the interval covered by the system log input to the utility and
the exception criteria you define in the input control statements determines the
content of these reports.

Examples of the reports format and the definition of the items reported can be
found in IMS Version 13 System Utilities, within the description of the Fast Path Log
Analysis utility.

Following are some suggestions for interpreting the reported events:
v Examine the summary reports and investigate the reasons for sync point failure.
v Examine the summary report to see if buffer usage was consistently under the

NBA values. Check all negative differences that indicate the need for overflow
buffers to see that they were unusual occurrences.

v Compare the database call counts to those of the expected profile. Select those
transactions that show unusual patterns for a run to produce a detailed
exception report.

v Examine the balancing group queue counts to see if they are conforming with
the scheduling algorithm expectations.

614 Database Administration

Chapter 29. Tuning databases

Tune your database either to improve performance or to better use database space.

You can tune your database in a variety of ways by using the reorganization
utilities.

Keep in mind that when you tune your database, you are often making more than
a simple change to it. For example, you might need to reorganize your database
and at the same time change operating system access methods. This topic has
procedures to guide you through making each type of change. If you are making
more than one change at a time, you should look at the flowcharts in “Changing
the number of data set groups” on page 723. When used in conjunction with the
individual procedures in this topic, the flowcharts guide you in making some types
of multiple changes to the database.

Also, some of the tuning changes you make can affect the logic in application
programs. You can often use the dictionary to analyze the affect before making
changes. In addition, some changes require that you code new DBDs and PSBs. If
you initialize your changes in the dictionary, you can then use the dictionary to
help create new DBDs and PSBs.
Related concepts:
“Number of buffers” on page 440

Data sharing in IMS environments (System Administration)

Reorganizing the database
Reorganizing a database means changing how the data in the database is
organized to improve performance.

In some cases, reorganizing a database might also refer to modifying the database's
structure or the structure of the records and segments in the database. Although
this topic focuses on changing how data is organized, you can use many of the
reorganization utilities discussed here to make structural changes as well.

Two database types, DEDB and HALDB, support online reorganization in addition
to the offline methods of reorganization discussed here.

For full-function databases, CI reclaim can also improve performance of DL/I calls
to VSAM key sequenced data sets. CI reclaim reduces the number of empty CIs
that are read on DL/I calls.
Related concepts:
“HALDB online reorganization” on page 642
“VSAM KSDS CI reclaim for full-function databases” on page 404
Chapter 30, “Modifying databases,” on page 695
Related tasks:
“Ensuring a well-organized database” on page 672
Related reference:

© Copyright IBM Corp. 1974, 2016 615

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_datasharing.htm#ims_datasharing

High-Speed DEDB Direct Reorganization utility (DBFUHDR0) (Database
Utilities)

When you should reorganize a database
You should reorganize your database in the following circumstances.
v Database performance has deteriorated. This can happen either because

segments in a database record are stored across too many CIs or blocks, or
because you are running out of free space in your database.

v There is too much physical I/O to DASD.
v The database structure has changed. For example, you should reorganize a

HALDB partition after changing its boundaries or high key.
v The HDAM or PHDAM randomizing routine has changed.
v The HALDB Partitions Selection exit routine has changed.

The DB Monitor can aid in monitoring a database to help you determine when it is
time to reorganize your database.
Related concepts:
Chapter 28, “Monitoring databases,” on page 609

Reorganizing databases offline
You perform three basic steps when reorganizing a database offline when you are
not making structural changes to the database.

The steps for reorganizing a database offline are:
1. Unload the existing database.
2. Delete the old database space and defining new database space. (This practice

is always good, but it is only necessary if you have multiple extents or
volumes, or are using VSAM.) For VSAM, database space refers to the clusters
defined to VSAM for database data sets.

3. Reload the database.
Related concepts:
Chapter 30, “Modifying databases,” on page 695

Protecting your database during an offline reorganization
When you reorganize your database offline, you delete it. Therefore, you should
protect it from system or reorganization failure.

You can protect your existing database by renaming the space it occupies and then
defining new database space. You should take an image copy of your database as
soon as it is reloaded and before any application programs are run against it.
Taking an image copy provides you with a backup copy of the database and
establishes a point of recovery with DBRC in case of system failure. You can create
image copies of your database using the Database Image Copy utility or the
Database Image Copy 2 utility, which are described in detail in IMS Version 13
Database Utilities.

Reorganization utilities
You can reorganize your database by using IMS utilities. This topic introduces you
to these utilities and explains how they work together.

You can use the following reorganization utilities with HALDB:

616 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dbfuhdr0.htm#ims_dbfuhdr0
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dbfuhdr0.htm#ims_dbfuhdr0

v HD Reorganization Unload utility (DFSURGU0)
v HD Reorganization Reload utility (DFSURGL0)
v Database Prereorganization utility (DFSURPR0)
v HALDB Partition Data Set Initialization utility (DFSUPNT0)

For HALDB, both the Database Prereorganization utility and the HALDB Partition
Data Set Initialization utility (DFSUPNT0) initialize partitions.

If you are migrating an HDAM or HIDAM database to HALDB, the
Prereorganization utility allows some reuse of your existing JCL by disabling
full-function database utilities, such as Scan, Prefix Resolution and Prefix Update,
in the DFSURCDS data set. After the database is migrated, you can use the
HALDB Partition Data Set Initialization utility, which has additional functions such
as unconditional specific partition initialization.

The utilities cannot be used to reorganize HSAM, SHSAM, or GSAM databases. To
reorganize these databases, you must write a program to read the old database and
then create a new database.

You are not required to use these reorganization utilities to reorganize your
database. You can write your own programs to unload and reload data. You need
to write your own programs only if you are making structural changes to your
database that cannot be done using these utilities.

Several of the reorganization utilities can be used when initially loading a
database. They are not used to load the database but to collect and sort the pointer
information needed in a segment's prefix. Therefore, as you read through the
utilities you will find some described as “used for initial load or reorganization”.

The reorganization utilities can be classified into three groups, based on the type of
reorganization you plan to do:
v Partial reorganization
v Reorganization using UCF
v Reorganization without UCF
Related concepts:
“Loading a database with logical relationships or secondary indexes” on page 554
Chapter 30, “Modifying databases,” on page 695
Related reference:

Reorganization and conversion utilities (Database Utilities)

Partial offline reorganization
If you are reorganizing an HD database, you can reorganize parts of it, rather than
the whole database.

You would need to reorganize parts, rather than all of it, for two reasons:
v Only parts of it need to be reorganized.
v By reorganizing only parts of it, you can break the amount of time it takes to do

a total reorganization into smaller pieces.

The utilities you use to do a partial reorganization are:
v The Database Surveyor utility, which helps you determine which parts of your

database to reorganize

Chapter 29. Tuning databases 617

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dur05.htm#ims_dur-gen4

v The Partial Database Reorganization utility, which does the actual reorganization

HALDB partitions do not support partial offline reorganization.

Offline reorganization using UCF
Reorganization can be done using a single program, called the Utility Control
Facility (UCF), or by using various combinations of utilities.

When UCF is used, it acts as a controller, determining which of the various
reorganization utilities need to be executed and then getting them executed. Using
UCF reduces the number of JCL statements you must create and eliminates the
need to sequence the various utilities for execution. It also reduces the number of
decisions operations people must make.

Offline reorganization by using the reorganization utilities
If you do not use the Utility Control Facility (UCF), reorganization of a database is
done using a combination of utilities. Which utilities you need to use, and how
many, depends on the type of database and whether it uses logical relationships or
secondary indexes.

If your database does not use logical relationships or secondary indexes, you
simply run the appropriate unload and reload utilities, which are as follows:
v For HISAM databases, the HISAM Reorganization Unload utility and the

HISAM Reorganization Reload utility
v For HIDAM index databases (if reorganized separately from the HIDAM

database), the HISAM Reorganization Unload utility and the HISAM
Reorganization Reload utility

v For SHISAM, HDAM, and HIDAM databases, the HD Reorganization Unload
utility and the HD Reorganization Reload utility

If your database does use logical relationships or secondary indexes, you need to
run the HD Reorganization Unload and Reload utilities (even if it is a HISAM
database). In addition, you must run a variety of other utilities to collect, sort, and
restore pointer information from a segment's prefix. Remember, when a database is
reorganized, the location of segments changes. If logical relationships or secondary
indexes are used, update prefixes to reflect new segment locations. The various
utilities involved in updating segment prefixes are:
v Database Prereorganization utility
v Database Scan utility
v Database Prefix Resolution utility
v Database Prefix Update utility

These utilities can also be used to resolve prefix information during initial load of
the database.

In the discussion of the utilities in this section, the four unload and reload utilities
are discussed first. The four utilities used to resolve prefix information are then
discussed. When reading through the utilities for the first time, you need to
understand that, if logical relationships or secondary indexes exist (requiring use of
the latter four utilities), the sequence in which operations is as follows:
1. Unload
2. Collect more prefix information
3. Reload

618 Database Administration

4. Collect more prefix information
5. Updated prefixes

You will find, for instance, that the HD Reorganization Reload utility does not just
reload the database if a secondary index or logical relationship exists. It reloads the
database using one input as a data set containing some of the prefix information
that has been collected. It then produces a data set containing more prefix
information as output from the reload. When the various utilities do their
processing, they use data sets produced by previously executed utilities and
produce data sets for use by subsequently executed utilities. When reading through
the utilities, watch the input and output data set names, to understand what is
happening.

The following figure shows you the sequence in which utilities are executed if
logical relationships or secondary indexes exist.

Chapter 29. Tuning databases 619

The following figure shows the sequence for these utilities when using HALDB
partitions.

Start

Run HD
Unload utility

Run Pre-
reorganization
utility

Logical
relationships?

End

Yes

Yes

Yes

No

No

No

peration?
Scan

o

Run HD
Reload utility

Run Prefix
Resolution
utility

Secondary
indexes?

Run HISAM
Unload utility

8

6

Run Prefix
Update utility

4

5

Run HISAM
Reload utility

7

Run Scan
utility

3

1

2

Figure 254. Steps in reorganizing when logical relationships or secondary indexes exist

620 Database Administration

As an alternative, where above figure calls for the Partition Initialization utility,
you can run the Prereorganization utility.
Related tasks:
“Overview of HALDB offline reorganization” on page 637
“Unloading and reloading using the reorganization utilities” on page 696

HISAM Reorganization Unload utility (DFSURUL0)
You use the HISAM Unload utility to unload a HISAM database or HIDAM index
database.

SHISAM databases are unloaded using the HD Reorganization Unload utility.

If your database uses secondary indexes, you also use the HISAM Unload utility
(later in the reorganization process) to perform a variety of other operations
associated with secondary indexes.

The following figure shows the input to and output from the HISAM
Reorganization Unload utility.

Start

Run HD
Unload utility

Partition
definitions
changed?

Run
partition

initialization

Run HD
Reload utility

End

yes

no

Figure 255. Steps for reorganizing HALDB partitions when logical relationships or secondary
indexes exist

Chapter 29. Tuning databases 621

HISAM Reorganization Reload utility (DFSURRL0)
You use the HISAM reload utility to reload a HISAM database. You also use the
HISAM reload utility to reload the primary index of a HIDAM database.

SHISAM databases are reloaded using the HD Reorganization Reload utility.

If your databases use secondary indexes, you use the HISAM reload utility (later in
the reorganization process) to perform a variety of other operations associated with
secondary indexes.

The following figure shows the input to and output from the HISAM
Reorganization Reload utility.

Input

VSAM or
OSAM

Output
messages
and statistics

IMS.DBDLIB

Input control

statements

you code

Ouput

Unloaded database

or

HISAM

Unload

utility

Figure 256. HISAM Reorganization Unload utility (DFSURUL0)

622 Database Administration

HD Reorganization Unload utility (DFSURGU0)
You use the HD Reorganization Unload utility to unload hierarchic direct (HD)
databases.

You can use the HD Reorganization Unload utility to unload the following types of
databases:
v HDAM, HIDAM, or SHISAM databases
v HISAM databases that use secondary indexes
v HISAM databases that use symbolic pointers in a logical relationship
v HISAM databases without segment/edit compression that are being converted

to HISAM databases with segment/edit compression.
v PHDAM databases or partitions
v PHIDAM databases or partitions
v PSINDEX databases or partitions

The following figure shows the input to and output from the HD Reorganization
Unload utility.

Input

IMS.DBDLIB

Input control

statements

you code

Ouput

or

Output
messages
and statistics

HISAM

reload

utility

Reorganized

HISAM database

Reorganized

primary HIDAM

index database

or

Figure 257. HISAM Reorganization Reload utility (DFSURRL0)

Chapter 29. Tuning databases 623

If you use the HD Reorganization Unload utility to unload a HALDB database (a
PHDAM, PHIDAM, or PSINDEX database), you do not need to include DD
statements for the database data sets. The HD Reorganization Unload utility uses
dynamic allocation for HALDB data sets.

HD Reorganization Reload utility (DFSURGL0)
You use the HD Reorganization Reload utility to reload hierarchic direct (HD)
databases.

You can use the HD Reorganization Reload utility to reload the following types of
databases:
v HDAM, HIDAM, PHDAM, PHIDAM, PSINDEX, or SHISAM databases
v HISAM databases that use logical relationships or secondary indexes
v HISAM databases without segment/edit compression that are being converted

to HISAM databases with segment/edit compression

The following figure shows the input to and output from the HD Reorganization
Reload utility.

Input

VSAM or
OSAM

Output
messages
and statistics

IMS.DBDLIB

Ouput

Unloaded database

or

HD

unload

utility

Figure 258. HD Reorganization Unload utility (DFSURGU0)

624 Database Administration

If logical relationships or secondary indexes exist in the database being reloaded,
the DFSURCDS control data set created by the Prereorganization utility is used as
one input to the HD Reorganization Reload utility. The DFSURCDS control data set
contains information needed to resolve secondary index or logical relationship
pointers.

When logical relationships or secondary indexes exist, the HD Reorganization
Reload utility produces as output the DFSURWF1 work data set. DFSURCDS
identifies the information that is collected on DFSURWF1.

The DFSURWF1 work data set becomes input to the Database Prefix Resolution
utility. In the preceding figure note that, if the database being reloaded has a
primary index, it is reloaded automatically when the main database is reloaded. A
HIDAM index database can also be reorganized as a separate operation using the
HISAM unload and reload utilities.

Exception: DFSURWF1 is not used for HALDB databases.

Database Prereorganization utility (DFSURPR0)
The Database Prereorganization utility (DFSURPR0) runs before you load or
reorganize databases that have secondary indexes or logical relationships.

You use the Database Prereorganization utility when:
v A database to be initially loaded or reorganized has secondary indexes or logical

relationships

Input

Output
messages
and statistics

IMS.DBDLIB

Ouput

DFSURCDS
control
data set

Unloaded database
or partition

or

HD

Reload

utility

Reorganized
SHISAM,
HDAM, HIDAM,
PHDAM or
PHIDAM
database

Figure 259. HD Reorganization Reload utility (DFSURGL0)

Chapter 29. Tuning databases 625

v A database not being initially loaded or reorganized contains segments involved
in logical relationships with databases that are being loaded or reorganized

The following figure shows the input to and output from the Database
Prereorganization utility.

The DFSURPR0 utility produces the DFSURCDS control data set, which contains
information about what pointers need to be resolved later if secondary indexing or
logical relationships exist.

The DFSURCDS control data set produced by the Prereorganization utility is used
as input to the following:
v The Database Scan utility, if that utility needs to be run
v The HD Reorganization Reload utility, if secondary indexing or logical

relationships exist
v The Database Prefix Resolution utility, after the database is loaded or reloaded

The Prereorganization utility also produces a list of which databases not being
initially loaded or reorganized contain segments involved in logical relationships
with the database that is being initially loaded or reorganized.

This utility is always run before the database is loaded (for initial load) or reloaded
(for reorganization).

Database Scan utility (DFSURGS0)
You use the Database Scan utility to scan databases that are not being initially
loaded or reorganized but contain segments involved in logical relationships with
databases that are being initially loaded or reorganized.

Input Ouput

IMS.DBDLIB

Input control

statements

you code

Output
messages

DFSURCDS
control
data set

Scan
control list

Prereorganization

utility

Figure 260. Database Prereorganization utility (DFSURPR0)

626 Database Administration

The following figure shows the input to and output from the Database Scan utility.

For input, the utility uses the DFSURCDS control data set created by the
Prereorganization utility. For output, the utility produces the DFSURWF1 work
data set, which contains prefix information needed to resolve logical relationships.
The DFSURWF1 work data set is used as input to the Database Prefix Resolution
utility.

This utility is always run before the database is loaded (for initial load) or reloaded
(for reorganization).

Database Prefix Resolution utility (DFSURG10)
You use the Prefix Resolution utility to accumulate and sort the information that
has been put on DFSURWF1 work data sets up to this point in the load or reload
process.

The following figure shows the input to and output from the Database Prefix
Resolution utility.

Input

IMS.DBDLIB

Input control

statements

you code

Ouput

Output
messages

Scan

utility

DFSURWF1
work
data set

Databases to
be scanned

DFSURCDS
control
data set

Figure 261. Database Scan utility (DFSURGS0)

Chapter 29. Tuning databases 627

The various work data sets that could be input to the DFSURG10 utility are:
v The DFSURCDS control data set produced by the Prereorganization utility
v The DFSURWF1 work data set produced by the scan utility
v The DFSURWF1 work data set produced by the HD Reorganization Reload

utility

The DFSURWF1 work data sets must be concatenated to form an input data set for
the Prefix Resolution utility. The name of the input data set is SORTIN.

The Prefix Resolution utility uses the z/OS sort/merge programs to sort the
information that has been accumulated. For output, the utility produces the
DFSURWF3 work data set, which contains the sorted prefix information needed to
resolve logical relationships. The DFSURWF3 data set will become input to the
Database Prefix Update utility.

If secondary indexes exist, the utility produces the DFSURIDX work data set,
which contains the information needed to create a new secondary index or update
a shared secondary index database. The DFSURIDX work data set is used as input
to the HISAM unload utility. The HISAM unload utility formats the secondary
index information before the HISAM reload utility creates a secondary index or
updates a shared secondary index database.

This utility is always run after the database is loaded (for initial load) or reloaded
(for reorganization).

Database Prefix Update utility (DFSURGP0)
You use the Prefix Update utility to update the prefix of each segment whose
prefix was affected by the initial loading or reorganization of the database.

The following figure shows the input to and output from the Database Prefix
Update utility.

Input

Prefix

Resolution

utility

Output

Output messages

DFSURWF3

workdataset

DFSURCDS

SORTIN

dataset

Sort/merge

programs

DFSURIDX

secondary index

workdataset

Figure 262. Database Prefix Resolution utility (DFSURG10)

628 Database Administration

The prefix fields that are updated include the logical parent, logical twin, and
logical child pointer fields, and the counter fields for logical parents. The Prefix
Update utility uses as input the DFSURWF3 data set created by the Prefix
Resolution utility.

This utility is always run after the database is loaded (for initial load) or reloaded
(for reorganization) and after the Prefix Resolution utility has been run.

Using HISAM unload and reload utilities for secondary indexing
operations
In addition to unloading and reloading a database, you can also use the HISAM
unload and reload utilities to build secondary indexes and work with secondary
indexes that are a part of a shared secondary index.

Specifically, you can use the HISAM unload and reload utilities to:
v Build a secondary index database
v Merge a secondary index into a shared secondary index database
v Replace a secondary index in a shared secondary index database
v Extract a secondary index from a shared secondary index database

Each of these operations is done separately. That is, none of them can be done in
conjunction with running the HISAM unload and reload utilities to unload or
reload a regular database.

The following figure shows the input to and output from the HISAM unload and
reload utilities when performing the first three operations. The DFSURIDX work
data set used as input to the HISAM unload utility was created by the Prefix
Resolution utility. It contains the information needed to create or update a shared
secondary index database. The HISAM unload utility formats the secondary index
information for use by the HISAM reload utility. Note that the input control
statement to the HISAM unload utility has an X in position 1 when the utility is
used for secondary indexing operations rather than for unloading a regular
database. Position 3 contains one of the following characters:

Figure 263. Database Prefix Update utility (DFSURGP0)

Chapter 29. Tuning databases 629

v M: means the operation is either to build a new secondary index database or
merge a secondary index into a shared secondary index database

v R: means the operation is to replace a secondary index into a shared secondary
index database

The HISAM reload utility uses the output from the HISAM unload utility to create
the new secondary index or merge or replace the secondary index in a shared
secondary index database.

The following figure shows the input to and output from the HISAM unload
utility when an index is being extracted from a set of shared indexes. Note that the
input can be one of the following:

Figure 264. HISAM reorganization unload and reload utilities used for create, merge, or
replace secondary indexing operations

630 Database Administration

v The DFSURIDX work data set created by the Prefix Resolution utility
v The shared secondary index database

Again, position 1 in the input control statement contains an X. Position 3 contains
an E, which means the operation is to extract a secondary index.

Utility Control Facility (DFSUCF00)
The Utility Control Facility is a program that controls the execution of
reorganization and recovery utilities.

Figure 265. HISAM Reorganization Unload utility used for extract secondary indexing
operations

Chapter 29. Tuning databases 631

Control here means that it generates many of the JCL statements you must create
and eliminates the need to sequence the various utilities for execution. The only
reorganization utilities that cannot be run under the control of UCF are the
Database Surveyor utility and the Partial Database Reorganization utility. In
addition to controlling the execution of other utilities, UCF allows you to stop and
then later restart a job.

Database Surveyor utility (DFSPRSUR)
Use the Surveyor utility to scan all or part of an HDAM or a HIDAM database to
determine whether a reorganization is needed.

The following figure shows the input to and output from the Database Surveyor
utility.

The Surveyor utility produces a report describing the physical organization of the
database. The report includes the size and location of areas of free space. When
you do a partial reorganization, you will know where free space exists into which
you can put your reorganized database records.
Related concepts:
“Partial Database Reorganization utility (DFSPRCT1)”

Partial Database Reorganization utility (DFSPRCT1)
You can use the Partial Database Reorganization utility to reorganize parts of your
HD database. It can be used when HD databases use secondary indexes or logical
relationships.

You tell the utility what range of records you need reorganized.

Input Output

DBD

PSB

ACB

Report

Surveyor

utility

or

VSAM OSAM

IMS.DBDLIB

IMS.PSBLIB

IMS.ACBLIB

Figure 266. Database Surveyor utility (DFSPRSUR)

632 Database Administration

v In an HDAM database, a range is a group of database records with continuous
relative block numbers.

v In a HIDAM database, a range is a group of database records with continuous
key values.

Generally, before using the Partial Database Reorganization utility, you would run
the Database Surveyor utility. The Surveyor utility helps you determine whether a
reorganization is needed and find the location and size of areas of free space. You
need to know the location and size of areas of free space so you will know where
to put reorganized database records.

The Partial Database Reorganization utility reorganizes the database in two steps:
1. In the first step, the utility produces control tables for use in Step 2, which is

when the actual reorganization is done. As an option, the utility can produce
PSB source statements for creating a PSB for use in Step 2. The utility also
generates reports that show which logically related segments in logically
related databases must be scanned in Step 2, and which can be optionally
scanned in Step 2. (Some GSAM databases are involved in Step 2 for which a
PSB is needed.)

2. In the second step, the utility does the actual reorganization. The database
records you have specified are unloaded to a data set. The space they occupied
in the database is freed. Then database records are reloaded into the database
in the range of free space you specified. Finally, all pointers to database records
with new locations are changed to point to the new location. A report is
produced at the end of Step 2 to tell you what was done.

The following figure shows the input to and output from the Partial Database
Reorganization utility.

Chapter 29. Tuning databases 633

Related concepts:
“Database Surveyor utility (DFSPRSUR)” on page 632
“Planning for maintenance” on page 455

RSR and the database reorganization utilities
In a Remote Site Recovery (RSR) environment, when tracked databases are
involved in reorganizations that cause new image copies to be required at the
active site, these image copies must be made available at the tracking site.

Control tables
from step 2

OutputInput

PSB

PSB

DBD

or

VSAM OSAM

IMS.PSBLIB

Control tables from step 1

Step 2

Step 1

Partial
Database

Reorganization
utility

Partial
Database

Reorganization
utility

Control
statements

Control
statements

Report

Report

Partially
Reorganized
HD database

IMS.PSBLIB

IMS.DBDLIB

Figure 267. Partial Database Reorganization utility (DFSPRCT1)

634 Database Administration

An information record is written to the log at the next allocation of the database to
let the tracking site know that a new image copy is needed, but it is your
responsibility to send the image copy to the tracking site.

Database reorganization is not allowed at the tracking site. If a database
reorganization utility requests authorization to a tracked database while signed on
to the tracking service group (SG), the authorization is rejected.

You must send image copies from the active site to the tracking site if:
v A database is reloaded with the HISAM Reload utility (DFSURRL0). The unload

data set that was reloaded can be used as the image copy.
v A database is processed by the Prefix Update utility (DFSURGP0), the updates

are logged at the active site and you must apply these updates at the tracking
site during normal tracking. If the Prefix Update utility creates log data, an
image copy taken any time after the reload step is needed at the tracking site. If
the Prefix Update utility does not create a log, an image copy taken after the
prefix update step is needed at the tracking site.

v A database is reloaded with the HD Reload utility (DFSURGL0) and does not
require prefix update.

Use the following procedure after reorganizing a database at the active site to send
a new image copy to the tracking site and install it:
v At the active site:

1. Reorganize the database
2. Make an image copy of the database
3. Send the image copy to the tracking site
4. RSR sends an information log record about the database reorganization to

the tracking site
v At the tracking site:

If the reorganized database is tracked at the recovery readiness level, all you
need to do is to record the image copy in RECON with the NOTIFY.IC
command. The following applies to databases that are tracked at the database
readiness level.
1. RSR uses the reorganization information log record to update the RECON

data set and issues a message indicating that recovery is needed.
This step can occur at any time during the following process. If the database
reorganization information record is processed before the image copy has
been recorded in the RECON data set, RSR automatically stops the database.
If the record is processed after the image copy has been applied, no message
is issued.

2. Make sure the database is not being used when the image copy arrives.
– Issue the /DBRECOVERY DATABASE|AREA command for the database

if it is not currently stopped.
– If a database recovery job is currently running for the database, cancel it.

3. Record the image copy in the RECON data set using the NOTIFY.IC
command.

4. Run the Database Recovery utility to apply the image copy. You can use the
GENJCL.RECOV command to generate the necessary JCL.

5. Issue the /START DATABASE|AREA|DATAGRP command to resume
tracking of the database.

Chapter 29. Tuning databases 635

Reorganizing HISAM, HD, and index databases offline
This topic describes how to reorganize offline HISAM, HDAM, HIDAM, primary
index, and secondary index database types.

Reorganizing a HISAM database (no secondary indexes)
To reorganize a HISAM database when it does not use logical relationships or
secondary indexes perform the following steps.
1. Unload the database using the HISAM Reorganization Unload utility.
2. Any time you unload a data set, you should delete and reallocate the data set

before reloading.
3. Reload the database using the HISAM Reorganization Reload utility.
4. Make an image copy of your database once it is reloaded.

Reorganizing an HDAM or HIDAM database (no logical
relationships or secondary indexes)
To reorganize an HDAM or HIDAM database that does not use logical
relationships or secondary indexes perform the following steps.
1. Unload the database using the HD Reorganization Unload utility.
2. Any time you unload a data set, you should delete and reallocate the data set

before reloading.
3. Reload the database using the HD Reorganization Reload utility.
4. Make an image copy of your database after it is reloaded.

Reorganizing a primary or secondary index
A HIDAM primary index and a secondary index of a HISAM, HDAM, or HIDAM
database are reorganized in the same way.

To reorganize a HIDAM primary index or a HISAM, HDAM, or HIDAM
secondary index perform the following steps.
1. Unload the index database using the HISAM Reorganization Unload utility.
2. Any time you unload a data set, you should delete and reallocate the data set

before reloading.
3. Reload the index database using the HISAM Reorganization Reload utility.

Make an image copy of your database as soon as it is reloaded.

Reorganizing HALDB databases
One of the primary advantages of HALDB is its simplified and shortened
reorganization process and the ability to reorganize HALDB databases online using
the integrated HALDB Online Reorganization function.

Both PHDAM and PHIDAM HALDB databases can be reorganized online or
offline. A PSINDEX HALDB can be reorganized only offline. Whether you are
reorganizing your HALDB online or offline, the reorganization process is different
from the reorganization processes used for other full-function databases.

Reorganizations of HALDB databases with logical relationships and secondary
indexes do not require the execution of utilities to update these pointers. Instead,
HALDB uses a self-healing pointer process to correct these pointers when they are
used.
Related concepts:
“Implementing HALDB design” on page 510

636 Database Administration

HALDB offline reorganization
The offline reorganization processes for a HALDB database and other full-function
IMS databases are similar: they both consist of an unload and reload of the
database.

The HALDB offline reorganization process has advantages over the reorganization
process of other full-function databases, such as:
v You can reorganize one HALDB partition at a time or reorganize multiple

partitions in parallel.
v The self-healing pointer process of HALDB databases eliminates the need to

manually update logical relationships and secondary indexes after reorganizing
a HALDB database.

v You do not need to include DD statements for HALDB data sets when you
reorganize a HALDB database. HALDB data sets are dynamically allocated.

Related tasks:
“Offline Reorganizations after HALDB Online Reorganizations” on page 663

Overview of HALDB offline reorganization
An offline reorganization of a HALDB database can be done with one or more
parallel processes. These processes unload one or more partitions and reload them.

If the database has secondary indexes or logical relationships, additional steps are
not required. The HALDB self-healing process makes updates of pointers during
the reorganization unnecessary. The amount of time required for a reorganization
depends on the sizes of the partitions. Smaller partitions reduce the time. You can
reduce your reorganization time by creating more partitions and reorganizing them
in parallel.

The basic steps involved in reorganizing a HALDB database offline are:
1. Run the HD Reorganization Unload utility (DFSURGU0) to unload the entire

database, a range of partitions, or a single partition.
2. Optionally, initialize the partitions by running either of the following utilities:
v HALDB Partition Data Set Initialization utility (DFSUPNT0)
v Database Prereorganization utility (DFSURPR0)

3. Run the HD Reorganization Reload utility to reload the database or partitions.
4. Make image copies of all reloaded partition data sets.

The following figure shows the offline processes used to reorganize a HALDB
database with logical relationships and secondary indexes. In this case, the
partitions are reorganized by parallel processes. Each partition can be unloaded
and reloaded in less time than unloading and reloading the entire database. This is
much faster than the process for a non-HALDB full-function database.
Additionally, no time is required for updating pointers in the logically related
database or rebuilding secondary indexes. This further shortens the process.

Chapter 29. Tuning databases 637

Related concepts:
“Reorganizing HALDB partitioned secondary index databases” on page 642
Related tasks:
“Offline reorganization by using the reorganization utilities” on page 618

Options for offline reorganization of HALDB databases
You have several options when reorganizing a HALDB database.

Your options for reorganizing a HALDB database include:
v You can reorganize any number of partitions. If you need to reorganize only one

partition, you can unload and reload it without processing other partitions.
v You can reorganize partitions in parallel or you can reorganize the database with

one process. The degree of parallelism is determined by the number of
reorganization jobs you run. Each job can process one or multiple partitions. To
increase the parallelism, you can increase the number of reorganization jobs and
decrease the number of partitions each job processes.

v You can reuse existing database data sets or you can delete them after they are
unloaded and allocate new data sets for the reload.

v You can add partitions, delete partitions, or change partition boundaries.

Database A

Unload Reload

Part 1 Part 1

Unload Reload

Part 2 Part 2

Unload Reload

Part 3 Part 3

Unload Reload

Part 4 Part 4

Part 1

Part 2

Part 3

SI 1

Part 1

Part 2

Part 3

SI 2

Part 1

Part 2

Part 3

SI 3

Secondary indexes

Part 1 Part 2

Database B

Part 3

Logically related database

Related databases not processed
by the reorganization

Figure 268. Offline reorganization of a HALDB database

638 Database Administration

Related tasks:
“Modifying HALDB databases” on page 765
“Creating HALDB databases with the HALDB Partition Definition utility” on page
511

Unloading HALDB partitions and databases for offline
reorganization
HALDB partitions or databases can be unloaded with the HD Reorganization
Unload utility (DFSURGU0).

To unload an entire HALDB database, do not include a SYSIN DD statement. To
unload any other number of partitions, you must include a control statement in
your SYSIN data set. The control statement identifies the name of the first partition
to unload and, if you are unloading more than one partition, the number of
partitions to unload.

Multiple partitions are unloaded consecutively. For key range partitioning,
consecutive partitions are determined by the high keys. If you are using a partition
selection exit routine, consecutive partitions are determined by the order assigned
by the exit routine.

Do not include DD statements for the HALDB database data sets. The HD
Reorganization Unload utility uses dynamic allocation for HALDB data sets. This
is not true for non-HALDB databases.

Requirement: You must supply buffer pools for all data sets in the partitions that
are unloaded. This includes the ILDSs.

Recommendation: Enable OSAM sequential buffering for databases that use
OSAM.

The following code is an example of the HD Reorganization Unload utility control
statement to unload one partition.
SYSIN DD *
PARTITION=PEO02

The following code shows the HD Reorganization Unload utility control statement
to unload three partitions.
SYSIN DD *
PARTITION=PEO04,NUMBER=3

The following JCL shows a sample job that unloads a HALDB partition.
//JOUKO3C JOB (999,POK),JOUKO3,CLASS=A,NOTIFY=&SYSUID,
// MSGLEVEL=(1,1),MSGCLASS=X,REGION=0M
//JOBLIB DD DSN=IMSPSA.IMS0.SDFSRESL,DISP=SHR
// DD DSN=IMSPSA.IM0A.MDALIB,DISP=SHR
//***
//* HD UNLOAD FOR THE PARTITION PEO02 OF PEOPLE DATABASE
//***
//UNLOAD EXEC PGM=DFSRRC00,REGION=1024K,
// PARM=’ULU,DFSURGU0,PEOPLE,,,,,,,,,,,Y,N’
//DFSRESLB DD DSN=IMSPSA.IMS0.SDFSRESL,DISP=SHR
//IMS DD DISP=SHR,DSN=JOUKO3.HALDB.DBDLIB
//DFSURGU1 DD DSN=JOUKO3.UNLOAD.PEO02,UNIT=3390,VOL=SER=TOTIMN,
// SPACE=(CYL,(10,5),RLSE),DISP=(NEW,CATLG)
//DFSVSAMP DD *
IOBF=(4096,50)
VSRBF=8192,50

Chapter 29. Tuning databases 639

/*
//SYSPRINT DD SYSOUT=*
//DFSCTL DD *
SBPARM ACTIV=COND
/*
//SYSIN DD *
PARTITION=PEO02
/*

The IMS High Performance Unload tool is an alternative to the HD Reorganization
Unload utility. You can use the High Performance Unload tool to unload any
number of partitions or the entire database.

Related Reading: For more information on the High Performance Unload tool, see
IMS High Performance Unload for z/OS User's Guide.

Reallocating HALDB database data sets for offline reorganization
You do not have to delete and redefine HALDB database data sets before you
reload them. This applies to both OSAM and VSAM data sets.

VSAM data sets, other than ILDSs, must be specified with the REUSE option.
HALDB supports this option.

If you delete and redefine partition data sets, but do not reload data into them,
you must initialize the partition data sets. If you reload data into the partition data
sets after deleting and redefining them, you do not need to initialize the partition
data sets.

If you delete and redefine VSAM data sets, you receive a z/OS IEC161I system
message when reloading a partition. This is not an error message. It indicates that
a VSAM data set was empty when it was opened. The following example shows
the message for an ILDS.
IEC161I 152-061,JOUKO3D,RELOAD,PEO01L,,,
IEC161I JOUKO3.HALDB.DB.PEOPLE.L00001,
IEC161I JOUKO3.HALDB.DB.PEOPLE.L00001.DATA,CATALOG.TOTICF2.VTOTCAT

Related Reading: For more information on IEC system messages, see z/OS MVS
System Messages, Vol 7 (IEB-IEE).

Reloading HALDB partitions and databases for offline
reorganization
HALDB partitions and databases can be reloaded with the HD Reorganization
Reload utility (DFSURGL0).

The HD Reorganization Reload utility reads the output file from the HD
Reorganization Unload utility. You do not specify the partitions to be reloaded.
They are determined by the records in the input file to the HD Reorganization
Reload utility.

Do not include DD statements for the HALDB database data sets. The HD
Reorganization Reload utility uses dynamic allocation for HALDB data sets. This is
not true for non-HALDB databases.

The data sets allocated for the HD Reorganization Reload utility are always the A–J
data sets, even when the active data sets prior to the offline reorganization were
the M–V data sets as a result of using the HALDB Online Reorganization function
previously.

640 Database Administration

You must supply buffer pools for all data sets in the partitions that are reloaded.
This includes the ILDSs.

The HD Reorganization Reload utility sets the image copy needed flag for data
sets in partitions that it loads. You should image copy them as you would any
database data sets after they have been reloaded.

The following code shows a sample job that reloads HALDB partitions. The
partitions it reloads depend on the records in the input file.
//JOUKO3D JOB (999,POK),JOUKO3,CLASS=A,NOTIFY=&SYSUID,
// MSGLEVEL=(1,1),MSGCLASS=X,REGION=0M
//JOBLIB DD DSN=IMSPSA.IMS0.SDFSRESL,DISP=SHR
// DD DSN=IMSPSA.IM0A.MDALIB,DISP=SHR
//***
//* HD RELOAD FOR THE PEOPLE DATABASE
//***
//RELOAD EXEC PGM=DFSRRC00,REGION=1024K,
// PARM=’ULU,DFSURGL0,PEOPLE,,,,,,,,,,,Y,N’
//DFSRESLB DD DSN=IMSPSA.IMS0.SDFSRESL,DISP=SHR
//IMS DD DISP=SHR,DSN=JOUKO3.HALDB.DBDLIB
//DFSUINPT DD DSN=JOUKO3.UNLOAD.PEOPLE,DISP=OLD
//DFSVSAMP DD *
VSRBF=8192,50
IOBF=(4096,50)
/*
//SYSPRINT DD SYSOUT=*
//DFSSTAT DD SYSOUT=*

ILDS reorganization updates:

The HD Reorganization Reload utility updates the ILDS for partitions that contain
targets of logical relationships or secondary indexes.

The utility has three options for updating an ILDS after a reorganization:
v No control statement
v ILDSINGLE control statement
v NOILDS control statement

If you do not specify a control statement in the SYSIN data for the HD
Reorganization Reload utility, an ILDS entry is updated or created when a target of
a secondary index or logical relationship is inserted in the partition. An entry exists
if a previous reorganization loaded the target segment in the partition. The updates
to the ILDS are done in VSAM update mode. When a CI or CA is filled, it must be
split by VSAM. Free space in the ILDS can help avoid these splits. Updates can be
random or sequential. This depends on the order in which these segments are
inserted and their ILKs. The ILDS keys are based on the ILK that is based on the
location of the target segment when it was created.

You can create free space in the ILDS by specifying the ILDSINGLE control
statement. The ILDSINGLE option provides a number of performance benefits,
including eliminating CI and CA splits, eliminating unused ILEs, and better
performance for subsequent reorganizations and recoveries. The ILDS must be
deleted and redefined prior to running the utility with the ILDSINGLE option.

If you specify the NOILDS control statement in the SYSIN data, the HD
Reorganization Reload utility does not update or create entries in the ILDSs. You
must rebuild the ILDS by using some other means, such as the HALDB
Index/ILDS Rebuild utility (DFSPREC0).

Chapter 29. Tuning databases 641

Using the NOILDS control statement provides the fastest reload, and the HALDB
Index/ILDS Rebuild utility can update the ILDS for each partition in parallel;
however, the HALDB Index/ILDS Rebuild utility reads each partition to update its
ILDS. Optionally, the HALDB Index/ILDS Rebuild utility can rebuild the ILDS in
VSAM load mode, which can improve performance and includes free space in the
ILDS.

The HD Reorganization Reload utility also has an ILDSMULTI control statement;
however, ILDSMULTI applies only to migration reloads. For more information
about ILDSMULTI, see the HD Reorganization Reload utility section of IMS Version
13 Database Utilities.

Reorganizing HALDB partitioned secondary index databases
You might need to reorganize your partitioned secondary index (PSINDEX)
database. Because the reorganization of HALDB databases does not require the
recreation of their secondary indexes, a PSINDEX database can become
disorganized as entries are added to it over time.

The HD Reorganization Unload utility and the HD Reorganization Reload utility
can be used to reorganize PSINDEX databases. The restrictions and
recommendations for reorganizing other HALDB databases also apply to PSINDEX
databases with one exception: HALDB secondary indexes have no ILDSs. The HD
Reorganization Reload utility control statements should not be used with
secondary indexes.

The steps for reorganizing a PSINDEX database are the same as those for
reorganizing other types of HALDB databases offline.
Related tasks:
“Overview of HALDB offline reorganization” on page 637

HALDB online reorganization
The integrated HALDB Online Reorganization function of IMS allows HALDB
partitions to remain online and available for IMS application programs during a
database reorganization.

HALDB Online Reorganization provides reclustering and space distribution
advantages that improve performance.

An online reorganization of a PHDAM or PHIDAM HALDB partition runs
non-disruptively, allowing concurrent IMS updates, including updates by
data-sharing IMS systems. The online reorganization is non-disruptive because IMS
copies small amounts of data from the partition's original data sets (the input data
sets) to separate output data sets. IMS tracks which data has been copied so that
IMS applications can automatically retrieve or update data from the correct set of
data sets.

HALDB Online Reorganization extends the established data definition and data set
naming convention for HALDB databases. The data set groups in a HALDB
database use the characters A-through-J in the DDNAMEs and data set names of
the ten supported data set groups. The primary index for a PHIDAM database
uses the character X in these names. This data definition and data set naming
convention is extended so that IMS uses the characters M-through-V (and Y) for an
alternate set of data sets.

642 Database Administration

The initial load or offline reorganization reload of a HALDB partition always uses
the A-through-J (and X) data sets. Until the first time that you reorganize a
HALDB partition online, only the A-through-J (and X) data sets are used.

There are three phases of online reorganization for a HALDB partition:
1. The initialization phase, during which IMS prepares the output data sets and

updates the RECON data sets.
2. The copying phase, during which IMS performs the actual reorganization by

copying the data from the input data sets to the output data sets.
3. The termination phase, during which IMS closes the input data sets and

updates the RECON data sets.

The HALDB online reorganization function can also be used to make certain
changes to the structure of an online HALDB database. Additional restrictions and
requirements apply when using the alter option of the HALDB online
reorganization function. For more information about the alter option, see “Altering
the definition of an online HALDB database” on page 731.
Related concepts:
“Planning for maintenance” on page 455
“Reorganizing the database” on page 615
“DL/I calls that can be issued against HD databases” on page 134
“Data set naming conventions for HALDB Online Reorganization” on page 650
“Online reorganization processing when the ALTER option is specified” on page
737
Related tasks:
“Estimating the minimum size of the database” on page 529
“Altering the definition of an online HALDB database” on page 731

The initialization phase for HALDB Online Reorganization
You start the online reorganization of a HALDB partition using the INITIATE
OLREORG command.

During the initialization phase, IMS updates the RECON data sets to establish the
ownership of the online reorganization by the IMS system that is performing the
online reorganization. This ownership means that no other IMS system can
perform a reorganization of the HALDB partition until the current online
reorganization is complete or until ownership is transferred to another IMS system.
IMS adds the M-V (and Y) DBDSs to the RECON data sets if those DBDS records
do not already exist. IMS also adds the M-V (and Y) DBDSs to any existing change
accumulation groups and DBDS groups that include the corresponding A-J (and X)
DBDSs.

Before online reorganization begins for a HALDB partition, there is a single set of
active data sets for the HALDB partition. These active data sets are the input data
sets for the copying phase. There might also be a set of inactive data sets from a
prior online reorganization that are not used by IMS application programs.

During the initialization phase, IMS evaluates each of the inactive data sets to
ensure that it meets the requirements for output data sets. If any of the output data
sets does not exist, IMS creates it automatically during this phase.

At the end of the initialization phase, IMS treats the original active set of data sets
as the input set and the inactive data sets as the output set. This use of the input

Chapter 29. Tuning databases 643

|
|
|
|
|

and output sets of data sets is represented by the cursor-active status for the
partition, which is recorded in online reorganization records in the RECON data
sets. A listing of the partition's database record in the RECON data sets shows
OLREORG CURSOR ACTIVE=YES. A listing of the partition also shows that both sets of
DBDSs are active: the first set of DBDSs listed is for the input data set and the
second set of DBDSs is for the output data set, for example, DBDS ACTIVE=A-J and
M-V. While the partition is in the cursor-active status, both sets of data sets must be
available for the partition to be processed by any application.

The following example shows part of a listing of the RECON data sets for a
HALDB partition that has the cursor-active status.

04.174 12:30:54.1 LISTING OF RECON PAGE 0003

DB
DBD=POHIDKA MASTER DB=DBOHIDK5 IRLMID=*NULL CHANGE#=6 TYPE=PART
USID=0000000004 AUTHORIZED USID=0000000004 HARD USID=0000000004
RECEIVE USID=0000000004 RECEIVE NEEDED USID=0000000000
DBRCVGRP=**NULL**
DSN PREFIX=IMSTESTS.DBOHIDK5 PARTITION ID=00001
PREVIOUS PARTITION=**NULL** NEXT PARTITION=POHIDKB
OLRIMSID=IMS1 ACTIVE DBDS=A-J and M-V
REORG#=00004

FREE SPACE:
FREE BLOCK FREQ FACTOR=2 FREE SPACE PERCENTAGE=20

PARTITION HIGH KEY/STRING (CHAR): (LENGTH=5)
K2000

PARTITION HIGH KEY/STRING (HEX):
D2F2F0F0F040

OSAM BLOCK SIZE:
A = 4096
B = 4096

FLAGS: COUNTERS:
BACKOUT NEEDED =OFF RECOVERY NEEDED COUNT =0
READ ONLY =OFF IMAGE COPY NEEDED COUNT =0
PROHIBIT AUTHORIZATION=OFF AUTHORIZED SUBSYSTEMS =1

HELD AUTHORIZATION STATE=6
EEQE COUNT =0

TRACKING SUSPENDED =NO RECEIVE REQUIRED COUNT =0
OFR REQUIRED =NO OLR ACTIVE HARD COUNT =0
PARTITION INIT NEEDED =NO OLR INACTIVE HARD COUNT =0
OLREORG CURSOR ACTIVE =YES
PARTITION DISABLED =NO
ONLINE REORG CAPABLE =YES
REORG INTENT =NO
QUIESCE IN PROGRESS =NO
QUIESCE HELD =NO
ALTER IN PROGRESS =NO
ALTER COMPLETE =NO

ASSOCIATED SUBSYSTEM INFORMATION:
ENCODED B/O NEEDED

-SSID- -ACCESS INTENT- -STATE- -COUNT- -SS ROLE-
IMS1 UPDATE 6 0 ACTIVE

During the initialization phase, various error conditions, such as an unacceptable
preexisting data set or an insufficient amount of disk space for an automatically
created data set, can cause the initialization to fail. However, if an error occurs
during or after the data set creation and validation process, but before IMS records

644 Database Administration

|
|

the cursor-active status in the RECON data sets, any automatically created output
data sets are retained along with any preexisting ones.

Also during the initialization phase of an online reorganization, IMS dynamically
creates a program specification block (PSB) for the reorganization. The PSB name is
the 7-character HALDB partition name prefixed with the single character zero ('0').
For example, a HALDB partition with the name SSN5603 has a dynamic PSB with
the name 0SSN5603 for the reorganization work. This PSB does not exist in the
PSBLIB or the ACBLIB, but the name can appear in a listing of RECON or in
output from utilities.
Related concepts:
“Requirements for existing output data sets” on page 651
Related reference:

INITIATE OLREORG command (Commands)

The copying phase for HALDB Online Reorganization
During the copying phase of a HALDB online reorganization, the HALDB partition
comprises the A-through-J (and X) data sets and the M-through-V (and Y) data sets
and both sets of data sets must be available in order for IMS applications to access
the partition.

While IMS reorganizes a HALDB partition online, IMS applications can make
database updates to the partition. Some of the database updates are made to the
input data sets, while others are made to the output data sets, depending on which
data is updated by the application. Which data sets are updated is transparent to
the application program. The following figure illustrates the relationship between
the input and output data sets at a point during the online reorganization.

The previous figure shows two sets of database data sets for a HALDB partition,
the input data sets that have not been reorganized and the output data sets that
have been (at least partially) reorganized. The figure shows the reorganization as
progressing from left to right, from the input data sets above to the output data
sets below. The data sets in the figure are divided into four areas:

Figure 269. The relationship between input data sets and output data sets during the online
reorganization of a HALDB partition

Chapter 29. Tuning databases 645

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_initiateolreorg.htm#ims_cr1initiateolreorg

1. Data within the input data sets that has been copied to the output data sets.
This area reflects the old data organization (prior to the reorganization), and is
not used again by IMS applications until the data sets are reused as the output
data sets for a later online reorganization.

2. Data within the output data sets that has been copied from the input data sets.
This data in this area has been reorganized, and can be used by IMS
applications during the reorganization.

3. Data within both the input and output data sets that is locked and in the
process of being copied and reorganized from the input data sets to the output
data sets. This area of locked records is called a unit of reorganization. From a
recovery point of view, this unit of reorganization is equivalent to a unit of
recovery.
While IMS processes the current unit of reorganization, IMS applications that
access any of the locked data records must wait until IMS completes the
reorganization for those records. After the copying and reorganization
completes for the unit of reorganization, IMS commits the changes and unlocks
the records, thus making them available again for IMS applications.

4. Data within the input data sets that has not yet been copied to the output data
sets. This data has also not yet been reorganized, and can be used by IMS
applications during the reorganization.

As the online reorganization progresses, IMS uses a kind of pointer called a cursor
to mark the end point of those database records that have already been copied
from the input data sets to the output data sets. As the reorganization and copying
proceeds, this cursor moves through the partition (from left to right in the
preceding figure).

When an IMS application program accesses data from a HALDB partition that is
being reorganized online, IMS retrieves the data record:
v From the output data sets if the database record is located “at or before” the

cursor.
v From the input data sets if the database record is located “after” the cursor.

If the data record happens to fall within the unit of reorganization, IMS retries the
data access after the records are unlocked. An application program does not
receive an error status code for data within a unit of reorganization.

To allow recovery of either an input data set or an output data set, all database
changes are logged during the online reorganization, including the database
records that are copied from the input data set to the output data sets.

The termination phase for HALDB Online Reorganization
The online reorganization of a HALDB partition terminates after the end of the
copying phase, or when IMS encounters an error condition during the
reorganization.

You can also stop the online reorganization of a HALDB partition using the
TERMINATE OLREORG command. If multiple partitions are being reorganized, you can
terminate the reorganization of all of the partitions by specifying an asterisk in the
NAME keyword.

After the copying phase is complete for a HALDB partition, the output data sets
become the active data sets, and the input data sets become the inactive data sets.
The active data sets are used for all data access by IMS application programs. The
inactive data sets are not used by application programs, but can be reused for a

646 Database Administration

subsequent online reorganization. Unless you perform an initial load or a batch
reorganization reload for the partition, successive online reorganizations for the
partition alternate between these two sets of data sets.

IMS updates the partition's database record in the RECON data sets to reset the
cursor-active status for the partition to reflect that there is now just one set of data
sets. A listing of this record from the RECON data sets shows OLREORG CURSOR
ACTIVE=NO and the ACTIVE DBDS field shows the active (newly reorganized) data
sets. IMS also updates the online reorganization records in the RECON data sets
with the time stamp of when the reorganization completed.

If you specified the DEL keyword for the INITIATE OLREORG command (or the
UPDATE OLREORG command), IMS deletes the inactive data sets after resetting the
cursor-active status for the partition. Before deleting the inactive data sets, IMS
notifies all sharing IMS systems, including batch jobs, that the online
reorganization is complete and is recorded in the RECON data sets. The IMS
system that is performing the online reorganization waits until it receives an
acknowledgment from each of these sharing IMS systems that they have closed
and deallocated the now-inactive data sets, and then it deletes these data sets.
However, if the acknowledgments are not received within 4.5 minutes, the owning
IMS system will attempt to delete the inactive data sets anyway. Without the
acknowledgments, the deletion attempt is likely to fail.

Finally, at the end of the termination phase, IMS updates the RECON data sets to
reset the ownership of the online reorganization so that no IMS system has
ownership. This resetting of ownership means that any IMS system can perform a
subsequent reorganization of the HALDB database.

If online reorganization of a HALDB partition terminates prior to completion,
either because of an error or because you issued the TERMINATE OLREORG command,
you must restart the online reorganization or perform an offline reorganization for
the partition.

The following figure shows the normal processing steps of a successful online
reorganization of a HALDB partition. The columns represent the flow of control
through the phases of the online reorganization, from the user to IMS, and the
status of the data sets as the processing events occur.

Chapter 29. Tuning databases 647

Related tasks:
“Stopping alter processing before completion” on page 741
Related reference:

INITIATE OLREORG command (Commands)

TERMINATE commands (Commands)

UPDATE commands (Commands)

Restrictions for HALDB Online Reorganization
The following restrictions apply to HALDB Online Reorganization

The restrictions include:
v You can perform an online reorganization only for a HALDB that is defined in

the RECON data sets as capable of being reorganized online. The OLRCAP
parameter of the INIT.DB command or the CHANGE.DB command defines a
HALDB as being OLRCAP.

v A HALDB that uses 8-GB OSAM data sets cannot be reorganized online. To be
reorganized online, the HALDB must use 4-GB OSAM data sets. The OSAM8G
and NOOSAM8G parameters of the INIT.DB command or the CHANGE.DB

IMS Status of data sets

Invokes INITIATE
OLREORG command

Now two active sets of
data sets exists
OLREORG CURSOR ACTIVE=YES
in RECON listing

Now only one active
set of data sets exists
OLREORG CURSOR ACTIVE=NO
in RECON listing

Initialization phase

Copying phase

Termination phase

Gets ownership
from DBRC

Performs initial steps
(create data sets, etc.)

Tells DBRC about
cursor-active status

Copies data from input
to output data sets

When copying is
complete, tells DBRC
to end cursor-active

status

Possibly deletes
inactive set of

data sets

Relinquishes
ownership through

DBRC

Database records are locked, copied
and then unlocked by UOR

User

Figure 270. Normal processing steps of HALDB Online Reorganization

648 Database Administration

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_initiateolreorg.htm#ims_cr1initiateolreorg
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_term_type2.htm#ims_cr2term_type2
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_updatecmds.htm#ims_cr2updatecmds

command defines the maximum data set capacity. OLRCAP and OSAM8G are
mutually exclusive parameters and flags in the RECON data sets.

v You cannot start an online reorganization for a partition if another IMS system
already owns an online reorganization for that partition. This is the default
behavior. To change the default behavior, specify the RELOLROWNER
parameter in the DATABASE section of the DFSDFxxx member of the
IMS.PROCLIB data set to instruct IMS systems that terminate during an online
reorganization to release ownership of the reorganization. Another IMS system
can then resume the reorganization. You can also use the OPTION(REL)
parameter of the INITIATE OLREORG command to override the default
behavior for a single, specific online reorganization.

v You cannot start an online reorganization of any partition that has a status of
ALTER IN PROGRESS.

v Image copy for a partition is not allowed if the partition is in the cursor-active
status. This restriction applies even if the online reorganization terminated
before the cursor-active status has been reset and the online reorganization for
the partition is not owned by any IMS.

v Image copy for a partition is not allowed if the partition has an ALTER IN
PROGRESS status.

v To backout in-flight work from an online reorganization, you must run a batch
backout using a DL/I region type.

v To use a type-2 command to start an online reorganization for a HALDB
partition, you must have an IMS Common Service Layer that includes the
Operations Manager and the Structured Call Interface.

v HALDB Online Reorganization runs only in a local storage option-subordinate
(LSO=S) environment, in which DL/I runs in a separate address space. IMS
rejects attempts to initiate an online reorganization for a HALDB partition in a
local storage option-yes (LSO=Y) environments.

v You cannot perform an online reorganization for a HALDB partition from an
alternate IMS system in an XRF complex. However, after an XRF takeover, the
new active IMS system will continue a reorganization that was active when the
takeover process began.

v You cannot perform an online reorganization for a HALDB partition from a
tracking IMS system in an RSR complex. However, for HALDBs that are
registered as DBTRACK at the tracking IMS system, IMS tracks the effects of an
online reorganization in the same way it tracks updates to any database.

v You cannot issue the following commands for a HALDB partition while it is
being reorganized online:
– /START DATABASE or UPDATE DATABASE NAME(name) START(ACCESS)
– /DBRECOVERY DATABASE or UPDATE DATABASE NAME(name) STOP(ACCESS)
– /DBDUMP DATABASE or UPDATE DATABASE NAME(name) STOP(UPDATES)
– /STOP DATABASE or UPDATE DATABASE NAME(name) STOP(SCHD)
If you issue any of these commands for a HALDB partition that is actively being
reorganized online, IMS displays error message DFS0488I with return code 58
and does not process the command for the named partition.

v You cannot issue the following commands for a HALDB master while any of its
partitions is being reorganized online:
– /START DATABASE ACCESS UP or UPDATE DATABASE NAME(name) START(ACCESS)
– /DBRECOVERY DATABASE or UPDATE DATABASE NAME(name) STOP(ACCESS)
– /DBDUMP DATABASE or UPDATE DATABASE NAME(name) STOP(UPDATES)

Related concepts:

Chapter 29. Tuning databases 649

|
|

|
|

|
|

“IMS Remote Site Recovery processing for HALDB Online Reorganization” on
page 659

Type-2 command environment (System Administration)

Using a DL/I separate address space (System Definition)
Related reference:

DBRC commands (Commands)

Data set naming conventions for HALDB Online Reorganization
The data sets for HALDB partitions use a specified naming convention. HALDB
Online Reorganization extends this naming convention to include a second set of
data sets.

Data sets for partitions that are involved in HALDB Online Reorganization use the
following naming convention: bbbbbbb.dppppp

bbbbbbb
Represents a data set name prefix of up to 37 characters that you defined
using the HALDB Partition Definition utility or DBRC batch command
(INIT.DB, INIT.PART, CHANGE.DB, or CHANGE.PART). The same data
set base name is used for every data set within a HALDB partition.

d Represents an IMS-assigned data set name type character that uniquely
identifies a specific data set for a HALDB partition. The possible
single-character values are:

A-through-J
“A” corresponds to the first, or possibly only, data set group that is
defined in the DBD, “B” corresponds to the second data set group,
and so on. The use of the characters A-through-J applies generally
to HALDB partitions, regardless of whether they are capable of
being reorganized online.

M-through-V
“M” corresponds to the first, or possibly only, data set group that
is defined in the DBD, “N” corresponds to the second data set
group, and so on. The use of the characters M-through-V applies
only to HALDB partitions that are capable of being reorganized
online.

L The indirect list data set (ILDS). The online reorganization process
does not make a copy of this data set.

X The primary index of a PHIDAM database. This data set is the
index for the A-through-J data sets and is replaced by the Y data
set when the online reorganization process copies the database
records from the A-through-J and X data sets into the M-through-V
and Y data sets. The use of the X character applies generally to
HALDB partitions, regardless of whether they are capable of being
reorganized online.

Y The primary index of a PHIDAM database. This data set is the
index for the M-through-V data sets and it is replaced by the X
data set when the online reorganization process copies the
database records from the M-through-V and Y data sets into the
A-through-J and X data sets. The use of the Y character applies
only to HALDB partitions that are capable of being reorganized
online.

650 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_intro/ims_typ2cmdenvion.htm#ims_typ2cmdenvion
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_using_dli_separate_address_space.htm#using_dli_separate_address_space
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_dbrccmds.htm#ims_cr3_gen3

ppppp
Specifies the five-digit partition ID that is assigned by IMS.

The data set names for the output data sets are identical to the names of the
corresponding input data sets, except for the IMS-assigned data set name type
character (A-through-J, M-through-V, X, or Y). The following table shows example
data set names.

Table 78. Data set name examples for HALDB Online Reorganization

Active data set before
online reorganization

Data set group or
index Partition id Input data set name Output data set name

A-through-J (and X) 1 00003 DH41.A00003 DH41.M00003

A-through-J (and X) Index 00065 ACCT.X00065 ACCT.Y00065

M-through-V (and Y) 2 00005 PAY.MST.N00005 PAY.MST.B00005

M-through-V (and Y) 8 00001 PAY.EMP.T00001 PAY.EMP.H00001

Related concepts:
“Naming conventions for HALDB partitions, ddnames, and data sets” on page 26
“HALDB online reorganization” on page 642

Output data set requirements for HALDB Online Reorganization
During the initialization phase for an online reorganization of a HALDB partition,
IMS creates any output data sets that do not already exist.

For example, when the input data sets are the A-through-J (and X) set, if the M
and P output data sets already exist, but the N and O output data sets do not, IMS
creates the N and O data sets and uses the existing M and P data sets.

Any existing output data sets must conform to the HALDB requirements for
existing output data sets. Any data in the existing output data sets is overwritten
during the copying phase of an online reorganization.

Requirements for existing output data sets:

If an existing output data set does not meet the requirements described in this
section, IMS displays an error message and the online reorganization for the
HALDB partition does not begin.

An OSAM output data set has the following requirements:
v Must be cataloged
v Must be a DASD data set
v Must not be a VSAM data set, except for the primary index data set of a

PHIDAM database
v Must not be a PDS, PDSE, or a member of a PDS or PDSE

A VSAM output data set has the following requirements:
v Must be a VSAM entry-sequenced data set (ESDS), except for the primary index

data set of a PHIDAM database
v Must have the REUSE attribute
v Must have a fixed-length record length that is identical to that of the

corresponding input data set

Chapter 29. Tuning databases 651

v Must have a control interval size that is identical to that of the corresponding
input data set

v Must have a SHAREOPTIONS attribute value that is at least as high as that of
the corresponding input data set if the database is defined to DBRC with a
SHARELVL attribute value of 2 or 3

For both OSAM and VSAM data sets, if you are increasing the block or CI size
when you are altering the structure of the database by using the INIT OLREORG
OPTION(ALTER) command, you cannot use existing data sets from a previous
online reorganization. If you manually allocate the output data sets when the
ALTER option is specified, you must ensure that the new data sets can
accommodate any increase to the block or CI size that you have specified in the
RECON data set for the alter operation.

A primary index data set has the following requirements:
v Must be a VSAM key-sequenced data set (KSDS)
v Must have the same key offset and length as the corresponding input KSDS
v Must have the other required characteristics listed for VSAM output data sets
Related concepts:
“The initialization phase for HALDB Online Reorganization” on page 643
“IMS Remote Site Recovery processing for HALDB Online Reorganization” on
page 659

Attributes of automatically created output data sets:

For those output data sets that do not already exist at the beginning of the
initialization phase of an online reorganization, IMS creates the data sets.

IMS creates the data sets with the following attributes:

Number of Volumes
If a particular input data set is SMS-managed, IMS creates the
corresponding output data set with the same number of volumes.

If the input data set is not SMS-managed, IMS automatically creates the
corresponding output data set only when the input data set resides on a
single volume. For a non-SMS-managed input data set that resides on
multiple volumes, you must create the corresponding output data set
before starting the online reorganization.

Location of SMS-managed output data sets
If a particular input data set is SMS-managed, the corresponding output
data set is also SMS-managed, and uses the same storage class as the input
data set.

Your site's storage administrator must ensure that this storage class refers
to a storage group with sufficient space to hold the output data set, or that
the automatic class selection (ACS) routine selects an appropriate storage
class for the data set.

Location of non-SMS-managed, non-VSAM output data sets
Regardless of the type of DASD on which the input data set resides, IMS
creates the corresponding non-VSAM output data set using the equivalent
of a DD statement UNIT=SYSALLDA parameter.

652 Database Administration

|
|
|
|
|
|
|

When it creates the output data set, IMS does not request any specific
volume serial number, thus allowing the data set to be created on a storage
volume or, if no storage volume is available, on a public volume.

Location of non-SMS-managed, VSAM output data sets
IMS creates a VSAM output data set on the same volume as the
corresponding input data set. This restriction can limit the usefulness of
automatically creating a VSAM data set that is not SMS-managed.

Format of the output data sets (DSNTYPE)
IMS uses the format type of the input data sets for the output data sets. If
the input data sets are defined as OSAM sequential large format data sets
(DSNTYPE=LARGE), IMS automatically defines the output data sets as
large format data sets.

Size of output data sets on a single volume
When the input data set has extents on only one DASD volume, IMS
creates the output data set on a single volume using the equivalent of a
DD statement VOLUME=(,,,1) parameter.

The amount of primary space for the output data set is derived from the
space allocation of the input data set:
v For a non-VSAM data set, the primary space is the total amount of space

in the first five extents on the volume.
v For a VSAM data set, the primary space is the primary space allocation

used when the input data set was created.

If you specified secondary space amount for the input data set, IMS uses
this same secondary amount for the output data set.

To reserve approximately the same amount of space for the output data set
as was reserved for the input data set, regardless of the DASD types
involved, IMS requests the space for the output data set as a number of
OSAM blocks or VSAM records. For input data sets that did not specify a
number of OSAM blocks or VSAM records, IMS converts the cylinder or
track allocation to an equivalent number of blocks or records.

An automatically created output data set could have a considerably
different amount of available DASD space than was used for the input
data set. For example, for an input data set that used secondary allocation,
the automatic creation process reserves the primary space for the output
data set, but there might not be enough space on the volume for secondary
allocation either during the online reorganization or during later database
processing.

Size of output data sets on multiple volumes (SMS-managed only)
IMS automatically creates multiple-volume output data sets only when the
input data set (and, therefore, the output data set) is SMS-managed. You
can determine the storage class by examining the input data set or the
site's ACS routine.

Although it is not strictly a requirement for SMS-managed
multiple-volume output data sets, you should ensure that the storage class
specifies the guaranteed-space attribute. By specifying the
guaranteed-space attribute, you allow VSAM to use the primary-space
allocation for each of the volumes when it creates the output data sets.
Secondary space is used as needed. However, even with the
guaranteed-space attribute, the output data sets might not have the same
amount of space as the input data sets, especially if secondary-space
allocation was used for the input data sets.

Chapter 29. Tuning databases 653

The requested primary and secondary space is based on the input data
set's space allocation on the first DASD volume.

Block or control interval (CI) sizes of output data sets

If you are not altering the structure of a database, each output data set that
IMS creates for an online reorganization has the same block or control
interval size as its corresponding input data set.

If you are altering the structure of a database by using the ALTER option
of the INIT OLREORG command and you specified ALTERSZE values for
one or more data set groups in the RECON data set, IMS creates the
output data sets for which you specified ALTERSZE values with block or
CI sizes that match the ALTERSZE values.

When the ALTER option is used, the online reorganization applies to the
entire HALDB database. For each partition that contains block or CI sizes
that must change, the ALTERSZE values must be set separately before you
issue the INIT OLREORG command.

To set ALTERSZE values prior to a reorganization that alters the structure
of a database, you can use either the DBRC command CHANGE.PART.

For VSAM data sets, if you specify an ALTERSZE value and the output
data set already exists with a CI size that does not match the ALTERSZE
value, the reorganization fails for the partition. If this happens, you must
correct the discrepancy between the ALTERSZE value and the CI size and,
after alter processing is complete for all other partitions in the database,
reissue the INIT OLREORG command with OPTION(ALTER) specified.
One way you can correct a discrepancy between an ALTERSZE value and a
CI size is to delete the existing VSAM data set so that the alter function
can automatically create the data set with the new CI size.

For OSAM data sets, the alter function can change the block sizes even if
the output data sets already exist.

Starting HALDB Online Reorganization
You start a HALDB Online Reorganization by using either version of the INITIATE
OLREORG command.

Before HALDB partitions can be reorganized online, you must enable the HALDB
master database for online reorganizations by issuing either of the DBRC
commands INIT.DB OLRCAP or CHANGE.DB OLRCAP.

The following table describes the tasks and commands for starting or resuming an
online reorganization for a HALDB partition.

Table 79. Mapping startup tasks to commands for HALDB Online Reorganization

Task Type-1 command format Type-2 command format

Begin HALDB Online
Reorganization for one or
more partitions.

/INITIATE OLREORG INITIATE OLREORG

Begin HALDB Online
Reorganization to alter
the structure of a HALDB
database across all
partitions.

Not supported INITIATE OLREORG
OPTION(ALTER)

654 Database Administration

|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

||
|

Table 79. Mapping startup tasks to commands for HALDB Online Reorganization (continued)

Task Type-1 command format Type-2 command format

Resume HALDB Online
Reorganization for one or
more partitions.

/INITIATE OLREORG INITIATE OLREORG

Set the RATE for a
HALDB Online
Reorganization.

/INITIATE OLREORG
SET(RATE(rate))
or
/UPDATE OLREORG
SET(RATE(rate))

INITIATE OLREORG
SET(RATE(rate))
or
UPDATE OLREORG
SET(RATE(rate))

Related reference:

INITIATE OLREORG command (Commands)

Monitoring HALDB Online Reorganization
Several commands allow you to monitor a HALDB Online Reorganization.

The following table describes the tasks and commands for monitoring an online
reorganization for a HALDB partition.

Table 80. Mapping monitoring tasks to commands for HALDB Online Reorganization

Task Command

Display status and rate information
about HALDB Online Reorganizations
that are in progress.

QUERY OLREORG type-2 command

Display status and rate information
about HALDB Online Reorganizations
when the ALTER option is specified.

QUERY OLREORG STATUS(ALTER) type-2
command

Monitor and display the status of the
specified databases or partitions
(including those HALDB Online
Reorganizations that are in progress).

/DISPLAY DB OLR type-1 command

Display HALDB Online Reorganization
status.

QUERY DB type-2 command

List all of the databases for which
HALDB Online Reorganizations are in
progress.

QUERY DB STATUS(OLR) type-2 command

Modifying and tuning HALDB Online Reorganization
Modifying and tuning a HALDB Online Reorganization is performed primarily by
modifying the rate at which the reorganization is performed.

The following table describes the tasks and commands for modifying and tuning
an online reorganization for a HALDB partition.

Table 81. Mapping modifying and tuning tasks to commands for HALDB Online
Reorganization

Task Type-1 command Type-2 command

Change the impact of
HALDB Online
Reorganization on overall
system performance, for one
or more partitions.

/UPDATE OLREORG
SET(RATE(rate))

UPDATE OLREORG
SET(RATE(rate))

Chapter 29. Tuning databases 655

|
|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_initiateolreorg.htm#ims_cr1initiateolreorg

Table 81. Mapping modifying and tuning tasks to commands for HALDB Online
Reorganization (continued)

Task Type-1 command Type-2 command

Specify whether to delete the
inactive data sets after the
copying phase completes.

/UPDATE OLREORG
OPTION(DEL | NODEL)

UPDATE OLREORG
OPTION(DEL | NODEL)

If the database is shared, only the type-2 command can be routed to all IMS
systems that share the database. The type-1 command applies only to the system in
which it is issued.

If the reorganization was started by an INITIATE OLREORG command with
OPTION(ALTER) specified, all of the partitions in the database are reorganized. In
this case, if you need to modify or tune the online reorganization of all partitions
in the database, specify an asterisk in the NAME keyword, for example UPDATE
OLREORG NAME(*) SET(RATE(rate)).
Related reference:

UPDATE commands (Commands)

Stopping HALDB Online Reorganization
You can stop a HALDB online reorganization by issuing the TERMINATE
OLREORG command against one or more partitions.

The command can be issued as either an IMS type-1 command, /TERMINATE
OLREORG, or a type-2 command, TERMINATE OLREORG.

If the database is shared, only the type-2 command can be routed to all IMS
systems that share the database. The type-1 command applies only to the system in
which it is issued.

If the reorganization was started by an INITIATE OLREORG command with
OPTION(ALTER) specified, all of the partitions in the database are reorganized. In
this case, if you need to stop the reorganization across the entire database, specify
an asterisk in the NAME keyword, for example TERMINATE OLREORG NAME(*).

Example: The following figure shows the processing steps for an online
reorganization of a HALDB partition and how it is affected by a TERMINATE
OLREORG command that temporarily stops the reorganization:
v When you issue the TERMINATE OLREORG command, IMS terminates the

reorganization by entering the termination phase.
v Later, when you issue the INITIATE OLREORG command, IMS restarts the

reorganization from the initialization phase, then proceeds to the copying phase.
In the figure, the reorganization then completes successfully through the
termination phase.

Note that there are two sets of data sets for the second initialization phase because
the reorganization is not complete.

In the figure, the columns represent the flow of control through the phases of the
online reorganization, from the user to IMS, and the status of the data sets as the
processing events occur.

656 Database Administration

|
|
|
|
|

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_updatecmds.htm#ims_cr2updatecmds

Related tasks:
“Stopping alter processing before completion” on page 741
Related reference:

TERMINATE commands (Commands)

How a HALDB Online Reorganization impacts IMS logging
The online reorganization of a HALDB partition generates X'50' database change
log records for all of the data in the partition.

Performs initial steps
(create data sets, etc.)

Initialization phase

Gets ownership
from DBRC

Invokes INITIATE
OLREORG command

Tells DBRC about
cursor-active status

Now two active sets of
data sets exists
OLREORG CURSOR ACTIVE=YES
in RECON listing

Elapsed time

Invokes INITIATE
OLREORG command

Still two active sets
of data sets

Gets ownership
from DBRC

Initialization phase

Tells DBRC to
relinquish OLREORG

ownership

Invokes TERMINATE
OLREORG command

Still two active sets of
data sets exist but no
copying is taking place

Termination phase

Relinquishes
ownership through

DBRC

Possibly deletes
inactive set of

data sets

Now only one active
set of data sets exists
OLREORG CURSOR ACTIVE=NO
in RECON listing

When copying is
complete, tells DBRC
to end cursor-active

status

Termination phase

Copies data from input
to output data sets

Copying phase
Database records are locked, copied
and then unlocked by UOR

Resumes copying data
from input to output

data sets (from where
it stopped)

Copying phase

Database records are locked, copied
and then unlocked by UOR

IMSUser Status of data sets

Figure 271. Processing steps for an interrupted online reorganization of a HALDB partition

Chapter 29. Tuning databases 657

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_term_type2.htm#ims_cr2term_type2

IMS also logs other HALDB Online Reorganization information in a small number
of X'29' log records. Thus, the total amount of log data generated by a HALDB
Online Reorganization is considerably greater than the amount of data in the
partition.

Reorganizing partitions online, especially reorganizing multiple partitions in
parallel on the same IMS system, can generate sufficient log data to impact normal
transaction processing. The large number of log records that are generated can also
affect the rate of OLDS switches and log archiving.

Controlling the overall system impact of a HALDB Online
Reorganization
An online reorganization of a HALDB partition can impact the overall system
performance of an IMS system, and likewise, other IMS work can affect the
performance of an online reorganization.

Your options for controlling the impact of an online reorganization on your IMS
system include:
v Specifying a separate buffer subpool for the data set being reorganized by using

the DBD statement in the DFSVSMxx member in the IMS.PROCLIB data set.
v Adjusting the rate at which the online reorganization runs by using the RATE

parameter of the INITIATE OLREORG and UPDATE OLREORG commands.

Specifying a separate buffer subpool for the data set being reorganized can reduce
buffer contention between the online reorganization function and other processes
that also require buffer resources.

Adjusting the value of the RATE parameter can also help minimize the impact of
an online reorganization on the IMS system by introducing an intentional, periodic
delay in the online reorganization process, which allows other IMS work to
proceed.

You specify the RATE value as a percentage, with values less than 100 representing
the addition of the intentionally introduced delay.

The default value for the RATE parameter is 100, which allows the online
reorganization to run as fast as possible, depending on system resources, system
contention, and log contention, with no intentionally introduced delay. However, if
you set the RATE value to 25, for example, IMS adds a delay to the reorganization
processing so that 25% of the total processing time for a unit of reorganization is
spent copying the data, and the remaining 75% is spent in an intentionally
introduced delay. Thus, RATE(25) would cause the online reorganization to take
approximately four times as long to run as it would have run with RATE(100).

You can change the RATE value at any time by issuing the UPDATE OLREORG
command.

IMS restart and XRF processing for HALDB Online
Reorganization
If you shut down IMS while any online reorganizations of HALDB partitions are
running, IMS suspends the reorganizations before completing the shutdown
checkpoint.

After IMS restarts, IMS automatically resumes the online reorganizations. IMS
resumes the online reorganization even if you specified the NOPDBO option in the
DFSVSMxx member.

658 Database Administration

If IMS terminates abnormally while any online reorganizations are running, IMS
dynamically backs out all uncommitted changes for these reorganizations to the
most recent sync point. After IMS restarts, IMS automatically resumes the online
reorganizations.

When an XRF takeover occurs, IMS automatically resumes the online
reorganizations on the new active IMS system.

You can also use the OPTION(REL) parameter of either the INITIATE OLREORG
command or the UPDATE OLREORG command, or code RELOLROWNER=Y in
the DFSDFxxx member of the IMS.PROCLIB data set, to instruct the IMS system to
release ownership if the system terminates (either normally or abnormally) before
completing the reorganization. Using one of these options allows another IMS
system to resume the suspended reorganization.
Related reference:

INITIATE OLREORG command (Commands)

IMS restart and Fast Database Recovery processing for HALDB
Online Reorganization
When an FDBR takeover occurs, IMS backs out all uncommitted changes for these
reorganizations to the most recent sync point, closes the partition, and
unauthorizes the partition.

After the FDBR terminates, the failed IMS system no longer has ownership of the
online reorganization. The online reorganization can be resumed by issuing the
command INITIATE OLREORG on either another IMS system or on the failed IMS
system after it is restarted.

IMS Remote Site Recovery processing for HALDB Online
Reorganization
During Remote Site Recovery (RSR) tracking, IMS updates the tracking site
RECON data sets with information for HALDB Online Reorganization.

For HALDB partitions that are registered as database-level tracking (DBTRACK) at
a Database Level Tracking (DLT) tracking IMS system, IMS performs the following
steps during tracking of the online reorganization:
v Creates the output data sets for the shadow partition, as needed.
v Updates both the input and output data sets for the shadow partition.
v Marks the original input data sets as inactive, and marks the output data sets as

the active data sets at the completion of the tracking of the online
reorganization.

v Deletes the inactive data sets if delete option is in effect. You specify this option
(or accept the default) by using the OPTION keyword of the INITIATE
OLREORG command at the active site.

IMS stops the shadow partition if errors occur during the validation or creation of
the output data sets. The tracked partition at the active site is unaffected by errors
at the tracking site. After you correct the problem that caused the error, restart the
shadow partition on the tracking IMS system to initiate online forward recovery
for the partition and to continue tracking.

If the output data sets for the online reorganization already exist at the tracking
site before tracking begins, ensure that these data sets have same characteristics
(such as block size, record size, and control interval size) as those at the active site.

Chapter 29. Tuning databases 659

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_initiateolreorg.htm#ims_cr1initiateolreorg

If you change output data set characteristics manually at the active site, you must
make the same changes at the tracking site.

After an RSR takeover, IMS stops all HALDB partitions, including those that had
online reorganizations in process. After you rebuild the primary index and indirect
list data sets using the HALDB Index/ILDS Rebuild utility (DFSPREC0) at the new
active site, issue the INITIATE OLREORG command to resume the online
reorganizations, if needed. The online reorganizations are not automatically
restarted after takeover.
Related concepts:
“Requirements for existing output data sets” on page 651
“Restrictions for HALDB Online Reorganization” on page 648

Locking impacts of HALDB Online Reorganization
To maintain partition integrity and recoverability during an online reorganization
of a HALDB partition, HALDB Online Reorganization requests a very large
number of locks for each UOR from the active lock manager, either the program
isolation lock manager or the Internal Resource Lock Manager (IRLM) component.

When IRLM is the lock manager, an online reorganization can incur a significant
number of IRLM lock structure accesses per second, especially if the reorganization
is running with the RATE(100) specification. Also, if the database is shared by
multiple IMS systems when IRLM is used, the online reorganization function
requests global locks, just as application programs do.

Recommendations:

v Use the IBM System z Coupling Facility Structure Sizer Tool (CFSizer) to model
the additional coupling facility activities to ensure that your coupling facility
configuration is capable of handling the extra load introduced by the online
reorganizations:
– For IRLM 2.1 with PC=NO specified, each additional 1000 concurrently held

locks requires 256 KB of ECSA storage.
– For IRLM 2.2, each additional 1000 concurrently held locks requires 540 KB

obtained from IRLM private storage. No increase in ECSA storage is
necessary.

v Review your LOGL latch contention rate, OLDS logging rate, IRLM lock
structure access, and DBBP (for OSAM) latch contention.

CFSizer is available for you to use at the following website: www.ibm.com/
servers/eserver/zseries/cfsizer/, or search for “CFSizer” at the IBM website:
www.ibm.com.

Using IMS utilities with HALDB Online Reorganization
The IMS utilities Batch Backout (DFSBBO00), Database Change Accumulation
(DFSUCUM0), Database Image Copy (DFSUDMP0), Database Recovery
(DFSURDB0), and Primary Index and ILDS Rebuild (DFSPREC0) have special
considerations when used with HALDB Online Reorganization.

Batch Backout (DFSBBO00)
If dynamic backout fails for a unit or reorganization, IMS creates a backout
record in the RECON data sets that contains the dynamic PSB name. Run
the Batch Backout utility (DFSBBO00) for the listed PSB name.

If dynamic backout was not attempted, use the Log Recovery utility
(DFSULTR0) with the PSB option to list those PSBs that require backout. If

660 Database Administration

there is in-flight online reorganization work for a HALDB partition that
requires backout, the Log Recovery utility lists the dynamic PSB name.
Run the Batch Backout utility (DFSBBO00) for each of the listed PSB
names.

Database Change Accumulation (DFSUCUM0)
You can use the Database Change Accumulation utility (DFSUCUM0) to
accumulate changes for HALDB partition A-through-J data sets and for the
M-through-V data sets. You need to specify the DB0 control statement so
that the Database Change Accumulation utility accumulates changes or
purges changes from before the online reorganization started.

The Database Change Accumulation utility might create Database Change
Accumulation header records (type X'25' records) for a corresponding
A-through-J and M-through-V data set if the online reorganization
checkpoint is not complete at the start of the database change
accumulation.

Database Image Copy (DFSUDMP0)
You can use the Database Image Copy utility (DFSUDMP0) to copy the
currently active data set that is recorded in the RECON data sets. The
Database Image Copy utility also determines if it should copy the
M-through-V data sets or the A-through-J data sets. However, if a partition
is in the cursor-active status, you cannot run the Database Image Copy
utility for that partition.

It is not necessary to code a DD statement in the JCL when copying
HALDB partition data sets, because they are dynamically allocated.

Database Recovery (DFSURDB0)
The Database Recovery utility (DFSURDB0) expects the utility output data
sets to exist, and makes no attempt to create them.

Primary Index and ILDS Rebuild (DFSPREC0)
You can use the HALDB Index/ILDS Rebuild utility (DFSPREC0) to
recover the primary index data set for both the input and output data sets.
You can also use the HALDB Index/ILDS Rebuild utility to recover both
the X and Y primary index data sets and the ILDS in a single run. You
cannot specify a particular input or output data set, but if the partition is
in the cursor-active status, the utility allocates and rebuilds all of the
necessary data sets.

Related tasks:
“Recovery for HALDB Online Reorganization”
Related reference:

Database Image Copy 2 utility (DFSUDMT0) (Database Utilities)

Recovery utilities (Database Utilities)

Recovery for HALDB Online Reorganization
After DBRC sets the cursor-active status for the partition in the RECON data sets,
and until the copying phase completes and DBRC resets the cursor-active status,
you can recover any of the input or output data sets using the Database Recovery
utility (DFSURDB0).

To restore the output data sets, the Database Recovery utility uses the database
change records (type X'50' log records) and applies them to empty output data sets.

Chapter 29. Tuning databases 661

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dfsudmt0.htm#ims_dfsudmt0
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dur04.htm#ims_dur-gen3

Recommendation: Make an image copy of the output data sets as soon as possible
after the online reorganization completes. Recovering from this image copy is
faster than recovering from the database change records that are logged during the
online reorganization. However, you cannot make an image copy while the
partition is in cursor-active status.

To recover an output data set before the online reorganization completes, perform
the following tasks:
1. Stop the online reorganization by using the TERMINATE OLREORG command. If the

online reorganization encountered an abend, it is stopped automatically.
2. Issue the /DBR or the UPDATE DB command for the HALDB partition.
3. Run database change accumulation, as necessary. You can create the JCL by

issuing the GENJCL.CA command, or you can run the Database Change
Accumulation utility (DFSUCUM0) from your own JCL. The purge time for the
change accumulation must be equal to the time of the beginning of the online
reorganization to represent restoring from the initial empty state of the data set.

4. Create the output data set to be recovered, either by using a JCL DD statement
or by using Access Method Services, as appropriate.

5. Recover the database changes. You can create the JCL by issuing the
GENJCL.RECOV command. Alternatively, you can run the Database Recovery
utility (DFSURDB0) from your own JCL with the DD statement for
DFSUDUMP specified as DUMMY to indicate that there is no image copy from
which to restore.

6. Run the Batch Backout utility (DFSBBO00), because you might need to back out
uncommitted data.

7. After you have recovered, and possibly backed-out, all of the required data sets
of the HALDB partition, issue the /STA DB or the UPDATE DB command for the
HALDB partition.

8. Issue the INITIATE OLREORG command to resume the online reorganization.

You can also recover an output data set after the online reorganization completes
but before an image copy has been made. Follow the same steps as for recovering
an output data set before the online reorganization completes, except the steps for
stopping and restarting the online reorganization.

In addition, you can recover an output data set from a point other than the
beginning of the online reorganization, such as from a full dump of a DASD
volume, using existing procedures if the online reorganization is either completed
or terminated.

Specifying a purge time for the database change accumulation utility

When you run the Database Change Accumulation utility (DFSUCUM0) for one of
the output data sets, specify a purge time that is equal to the online reorganization
start time.

Specifying this purge time is necessary if change accumulation records (or an input
log) that involve the output data set span the time that a online reorganization was
started. Specifying the purge time eliminates database change records from before
this point in time and is analogous to eliminating database change records from
prior to the start time of an image copy.

Specifying a starting point for the GENJCL.CA and GENJCL.RECOV commands

662 Database Administration

Even if no image copy exists for the output data sets, the RECON data sets reflect
the beginning of the online reorganization as a starting point from which you can
perform forward recovery of one of these data sets, even after the online
reorganization is complete. Until you make an image copy of an output data set,
the GENJCL.CA command treats this starting point as though it were the most recent
image copy and causes changes to the output data set to be accumulated from that
point. Similarly, the GENJCL.RECOV command prepares recovery of an output data
set from this point, even if no physical image copy exists.

Specifying the active data sets for the database image copy utilities

The database image copy utilities always copy from the currently active data sets
that are recorded in the RECON data sets. Regardless of whether the A-through-J
or the M-through-V data sets are active, you do not need to change the JCL or
control statements for these utilities to specify which set of data sets to use.

On the utility control statement for the Database Image Copy utility (DFSUDMP0),
the DDNAME does not need to refer to the currently active data set. Regardless of
whether the A-through-J or the M-through-V data sets are active, the utility
automatically uses currently active data sets.

Example: Assume that the data set for a second data set group defined in the DBD
is to be copied, and that the partition name is PARTNO3. Regardless of which set
of data sets is active, you can code a DDNAME of either PARTNO3B or
PARTNO3N on the control statement. If the A-through-J data sets are active,
whether you specify PARTNO3B or PARTNO3N, the utility copies from
PARTNO3B. Likewise, if the M-through-V data sets are active, the utility copies
from PARTNO3N.

In the JCL statements for the Database Image Copy utility, you should omit the DD
statement that refers to the input data set. Based on whether the A-through-J or the
M-through-V data sets are active, the utility dynamically allocates the appropriate
data set. A DD statement that refers to a specific data set name can cause the
utility job to fail because of a “Data Set Not Found” condition during job-step
initiation. This condition occurs if an inactive data set name is coded in the JCL
and the data set does not exist.

Rebuilding the primary indexes and the ILDS while in the cursor-active state

If the integrated HALDB Online Reorganization function is stopped before
completion and the partition remains in the cursor-active state, you can still use
the HALDB Index/ILDS Rebuild utility (DFSPREC0) to rebuild both the X and the
Y primary index data sets and the ILDS.

When the primary index must be rebuilt, the DFSPREC0 utility rebuilds both the X
and the Y data sets because the records in the partition are split between the input
and output sets of data sets.
Related concepts:
“Using IMS utilities with HALDB Online Reorganization” on page 660

Offline Reorganizations after HALDB Online Reorganizations
HALDB Online Reorganization does not prevent you from performing offline
reorganizations.

If an online reorganization is currently in progress, you can perform an offline
reorganization after stopping the online reorganization by issuing the TERMINATE

Chapter 29. Tuning databases 663

OLREORG command and then stopping access to the partition by issuing either
the /DBRECOVERY command or the UPDATE DB NAME(partition_name)
STOP(ACCESS) command. The HD Reorganization Unload utility (DFSURGU0)
automatically unloads the records from the active portions of both the A–J and
M–V data sets. The HD Reorganization Reload utility (DFSURGL0) loads all
records into the A–J data sets and turns off the cursor-active status of the online
reorganization in the RECON data set.

If an online reorganization is not currently in progress, you can perform an offline
reorganization of a HALDB database without taking any additional special steps.
Related concepts:
“HALDB alter and offline reorganization” on page 738
Related tasks:
“HALDB offline reorganization” on page 637

Activating sequential buffering to improve the performance of
HALDB Online Reorganization
You can use sequential buffering to improve the performance of online
reorganization of OSAM databases by including the SBONLINE statement in the
IMS.PROCLIB data set member DFSVSMxx.

Using the SBONLINE statement causes IMS to load the sequential buffering
modules during initialization so that, whenever you start an online reorganization
for an OSAM partition, IMS activates sequential buffering immediately. If you do
not include the SBONLINE statement, IMS analyzes the DL/I calls to determine
whether sequential buffering is suited for processing the reorganization.

The two forms of the SBONLINE control statement are:
SBONLINE

SBONLINE,MAXSB=nnnnn

where nnnnn is the maximum amount of storage (in kilobytes) that can be
allocated to sequential buffers.

When the maximum amount of storage is reached, IMS stops allocating sequential
buffers to online applications (including HALDB Online Reorganization) until these
applications release sequential buffer space. If you do not specify the MAXSB=
keyword, the maximum amount of storage for sequential buffers is unlimited.
Related concepts:

Specifications for OSAM sequential buffering (System Definition)
Related reference:

Specifying sequential buffering for an online system (System Definition)

The HALDB self-healing pointer process
Reorganizations of HALDB databases with logical relationships and secondary
indexes do not require the execution of utilities to update pointers. Instead,
HALDB uses a self-healing pointer process to correct logical relationship and
secondary index pointers.

This process is implemented by placing a target key and an extended pointer set
(EPS) in the secondary index or logically related database and by using an indirect
list data set (ILDS) in each partition of PHDAM and PHIDAM databases.

664 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_sdr72.htm#sdr72
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsvsmxx_proclib_sequential.htm#specifyingsequentialbufferingforanonlinesystem

Related concepts:
“HALDB partition reorganization numbers” on page 169
“Considerations for HALDB partitioned secondary indexes” on page 360
“Logical relationships and HALDB databases” on page 315
“Logical relationship pointer types” on page 238
“Automatic update of HALDB secondary index and logical relationship pointers”
on page 774
Related tasks:
“Allocating an ILDS” on page 515

How the self-healing pointer process works
The elements of the self-healing pointer process can be seen in the following
figure, which shows the interrelationships between the elements prior to a
database reorganization.

Each secondary index entry and each logical child segment contains the key of its
target record. For secondary indexes, the key of the target's root segment is
included in the prefix. For logical child segments, the concatenated key of the
logical parent is included in the segment data.

Each segment in a PHDAM or PHIDAM database has an indirect list key (ILK).
The ILK is unique for the segment type across the entire database. It is composed
of the relative byte address (RBA), partition ID, and partition reorganization
number of the segment when it was first created, as shown in the following figure.

Secondary INDEX or
logical child segment

EPS KEY

EPS

Partition ID

Reorg #: 5

RBA

ILK

. . .

Secondary INDEX or
logically related database

Current reorg #: 5

ILK

Partition DBDS

Target segment

ILDS

ILE

KSDS

ILE

ILK

Segment code

Partition ID

Current reorg # : 5

Current RBA

. . .

Figure 272. HALDB pointer before a reorganization

Chapter 29. Tuning databases 665

The ILK for a segment never changes. It is maintained across reorganizations.

Each secondary index entry or logical child segment has an extended pointer set
(EPS). The EPS includes the ILK of its target segment. It also contains the RBA,
partition ID, and partition reorganization number for the target segment. These
parts of the EPS might not be accurate. That is, they might not reflect the current
location of the target segment or the current reorganization number of the target
segment's partition. In the preceding figure they are accurate.

The target segment has an indirect list entry (ILE) in the ILDS for a partition. The
ILE contains accurate information about the target segment. This includes its
current RBA, the correct partition ID, and the current reorganization number for
the partition. The key of the ILE is composed of the ILK and the segment code of
the target segment.

The reorganization number for a partition is physically stored in the partition's first
database data set. This number is initialized by partition initialization or load, and
incremented with each reorganization that reloads segments in the partition.

Finding target segments
When IMS accesses the target segment from the secondary index entry or logical
child segment, it must first determine the partition in which the target resides.

IMS uses the key in the secondary index or logical child to determine the partition.
Next it must determine the location in the target partition database data set. It
compares the partition ID and reorganization number of the target partition with
the partition ID and reorganization number stored in the EPS. If they match, IMS
uses the RBA in the EPS to locate the target segment. If they do not match, the
RBA in the EPS cannot be used.

When the RBA in the EPS cannot be used, IMS uses the information in the ILE to
locate the target segment. The ILE key is found by using the ILK from the EPS and
the target's segment code. The ILE is read from the ILDS of the partition
determined from the target's key.

The following figure illustrates a situation in which the RBA in the EPS cannot be
used. In the figure, the target partition has been reorganized three times since the
EPS was accurate. This has moved the target segment and updated the
reorganization number in the partition data set. The EPS still contains a
reorganization number of 5, but the reorganization number in the partition data set
is now 8. The information in the ILE has been updated by the HD Reorganization
Reload utility. IMS uses the ILK from the EPS to find the ILE and uses the RBA in
the ILE to find the target segment.

Initial RBA Reorg.
Number

ILK Prefix

Bytes 4 2 2

Partition
ID

Figure 273. Format of an ILK

666 Database Administration

Even though the retrieval is indirect, often the CI containing the ILE will already
be in an IMS buffer pool.

Recommendation: If possible, avoid the indirect process of locating target
segments. Instead, get the target segment location from the EPS without reading
the ILE. The self-healing process allows IMS to limit the use of ILEs.

Healing pointers
The self-healing process updates or corrects the information in extended pointer
sets.

When the ILE is used, the information about the current location of the segment in
the ILE is moved to the EPS. This allows IMS to avoid the indirect process if the
EPS is used for a later retrieval. This correction to the EPS in the database buffer
pool is always done.

Because of locking considerations, the update might not be written to the database
on DASD. The buffer containing the entry or segment with the updated EPS is
marked as altered if the application program is allowed to update the database.
The call must be done with a PCB allowing updates, and the IMS system must
have an access intent for the partition that allows updates. If updates are not
allowed, the buffer is not marked as altered.

When the application reaches a sync point, it does not write buffers to DASD if
they are not marked as altered. If the updated EPS is not written to DASD, the
next time it is retrieved from DASD and used to find its target, IMS must use the
indirect process. That is, IMS must read the ILE again.

Secondary INDEX or
logical child segment

EPS KEY

EPS

Partition ID

Reorg #: 5

RBA

ILK

. . .

Secondary INDEX or
logically related database

Current reorg #: 8

Partition DBDS

Former
segment location

ILDS

ILE

KSDS

ILE

ILK

Segment code

Partition ID

Current reorg # : 8

Current RBA

. . .

ILK

Target segment

Figure 274. HALDB pointer after a reorganization

Chapter 29. Tuning databases 667

The following figure shows the EPS after it has been healed. The RBA points to the
current location. The partition ID is correct. The partition reorganization number
matches the number stored in the partition database data set.

Performance of the self-healing process
The performance of the self-healing process can be much more efficient than you
might anticipate.

Many pointers can be healed with a small number of ILDS reads. This is due to
the use of IMS database buffering. ILDSs are database data sets. They use database
buffer pools in the same way that other database data sets use them. If a CI is
already in its buffer pool, it does not have to be read from DASD.

Each ILE is 50 bytes. You specify the CI sizes for your ILDSs. An 8 KB ILDS CI
holds up to 163 ILEs and a 16 KB CI holds up to 327 ILEs, so a single CI can hold
many ILEs. After a reorganization, IMS might need to heal many pointers to the
reorganized partitions.

When there are frequent uses of the CIs in an ILDS, they tend to remain in their
buffer pool. One read of an ILDS CI might be sufficient to heal hundreds of
pointers. As with most IMS database tuning, having a large number of buffers for
frequently used data sets can be highly beneficial.

Another benefit of the self-healing process is that it does not waste resources
healing pointers that are not used. In many secondary indexes, only a small
number of entries are actually used. With a non-HALDB database, the entire index

Secondary INDEX or
logical child segment

EPS KEY

EPS

Partition ID

Reorg #: 8

RBA

ILK

. . .

Secondary INDEX or
logically related database

Current reorg #: 8

Partition DBDS

Former
segment location

ILDS

ILE

KSDS

ILE

ILK

Segment code

Partition ID

Current reorg # : 8

Current RBA

. . .

ILK

Target segment

Figure 275. HALDB pointer after the self-healing process

668 Database Administration

is rebuilt every time the indexed database is reorganized. With HALDB, the index
is not rebuilt and only a small number of referenced index entries are updated.
HALDB does not use resources to update pointers that are never used.

When an EPS is updated, an application marks buffers as altered only if the
application is allowed to make updates. If updates are allowed and a block-level
data sharing environment is being used, a block lock is requested for the altered
block. Block level data sharing environments exist when the IRLM is used and the
share level for the database is either 2 or 3. The block locks are held until the
application program commits its unit of work, which could cause a performance
problem.

Optimizing self-healing performance:

Usually application programs with update authority commit frequently. This is
good programming practice.

Occasionally, an application program that is allowed to do updates does not
actually do them. For example, a program with a PCB specifying PROCOPT=A
might only read. In this case, it might not commit frequently. Because it only reads,
it never holds many locks. This could change with the implementation of HALDB.
If the program runs in a block level data sharing environment and invokes the
healing process, it will hold block locks until they are committed. This could cause
two problems. First, it might hold the locks for a long time and cause other
programs to wait before they can update the blocks. Second, it could hold many
locks. This could cause a storage shortage in the IRLM or a lock structure.

If you have a program that holds locks for a long time or that holds many locks
when performing the self-healing pointer process, you have four options:
v If the application program does not make updates, use PROCOPT=G.
v Have your program commit frequently.
v Invoke the pointer healing process before you run application programs that use

PROCOPT=A, but do not do any updates. Run another program or utility before
this type of application program. The HALDB Conversion and Maintenance Aid
tool supplies a pointer healing utility.

v Rebuild secondary indexes with an index builder, such as the IMS Index Builder
for z/OS. The IMS Index Builder for z/OS creates EPSs with accurate RBAs.

This scenario is not common. Most users can let the pointer healing process occur
without taking any special precautions.

Recommendation: Do not rebuild your secondary indexes after a reorganization.
Let the self-healing process of HALDB correct the pointers. This shortens the
outage for reorganizations and tends to minimize the use of resources.

Related Reading:

v For more information about the IMS High Availability Large Database
Conversion and Maintenance Aid, see the IMS High Availability Large Database
Conversion and Maintenance Aid for z/OS User's Guide.

v For more information about the IMS Index Builder, see the IMS Index Builder for
z/OS User's Guide.

Chapter 29. Tuning databases 669

Changing the hierarchical structure of database records
There are two types of tuning changes you might need to make that involve
changes to the structure of your database record.

The first is changing the hierarchical sequence of segment types in your database
record to improve performance. The second is combining segments to maximize
the use of space.
Related concepts:
“Modifying record segments” on page 695

Changing the sequence of segment types
In general, performance is best if frequently used dependent segments are close to
the root segment and infrequently used dependent segments are toward the end of
the database record.

This arrangement maximizes performance because all types of databases (except
HSAM) have direct (therefore, fast) access to root segments. But, after the root is
located, dependent segments are found by one of the following:
v Searching sequentially through the database record (HSAM and HISAM)
v Following pointers from the root segments to a dependent path and then

searching through twin chains until the correct segment is reached (HDAM,
HIDAM, PHDAM, and PHIDAM).

One way to determine whether the order of dependent segment types in your
hierarchy is an efficient one is to examine the IWAITS/CALL field on the DL/I
Call Summary report.

Related Reading: For detailed information about interpreting the DL/I Call
Summary report, see IMS Version 13 System Administration.

The IWAITS/CALL field tells you, by DL/I call against a specific segment, the
average number of times a segment had to wait for I/O operations to finish before
the segment could be processed. A high number (and high, of course, is relative to
the application) indicates that multiple I/O operations were required to process the
segment.

If the database does not need to be reorganized, the high number can mean this is
a frequently used segment type placed too far from the beginning of the database
record. If you determine this is the situation, you can change placement of the
segment type. The change can increase the value in the IWAITS/CALL field for
other segments.

To change the placement of a segment type, you must write a program to unload
segments from the database in the new hierarchical sequence. (The reorganization
utilities cannot be used to make such a change.) Then you need to load the
segments into a new database. Again, you must write a program to reload.

Combining segments
Combining segment types to maximize use of space is the second type of change
you might need to make in the structure of your database record.

For example, having two segment types, a dependent segment for college classes
with a dependent segment for instructors who teach the classes, is an inefficient

670 Database Administration

use of space if typically only one or two instructors teach a class. Rather than
having a separate instructor segment, you can combine the two segment types,
thereby saving space.

Combining segments also requires that you write an unload and reload program.
(The reorganization utilities cannot be used to make such a change.)

Changing the hierarchical structure of a HALDB database
You can change the hierarchical structure of a HALDB database.

To change the hierarchical structure, you need to:
1. Determine whether the change you are making will affect the code in any

application programs. If so, make sure the code gets changed.
2. Unload your database using your unload program and the existing DBD.
3. Code a new DBD.
4. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for those application programs. If you have
the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

6. Reload your database using your load program and the new DBD. Remember
to make an image copy of your database as soon as it is reloaded.

7. If your database uses logical relationships or secondary indexes, you must run
reorganization utilities before and after reloading to resolve prefix information.

Related tasks:
“Offline reorganization by using the reorganization utilities” on page 618

Changing direct-access storage devices
Several situations might warrant tuning your database by changing DASDs
(direct-access storage devices).

First, when application requirements change, you might require a faster or slower
device. Second, you might want to take advantage of new devices offering better
performance. Finally, you might need to change devices to get database data sets
on two different devices, so as to minimize contention for device use.

You can change your database (or part of it) from one device to another using the
reorganization utilities. To change direct-access storage devices:
1. Unload your database using the existing DBD and the appropriate unload

utility.
2. Recalculate CI or block size to maximize use of track space on the new device.
3. Code a new DBD.
4. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

5. Reload your database, using the new DBD and the appropriate reload utility.
Remember to make an image copy of your database as soon as it is reloaded.

Chapter 29. Tuning databases 671

6. If your database uses logical relationships or secondary indexes, you must run
reorganization utilities before and after reloading the database to resolve prefix
information.

Related concepts:
“Determining the size of CIs and blocks” on page 437
Related tasks:
“Offline reorganization by using the reorganization utilities” on page 618

Tuning OSAM sequential buffering
If you are using OSAM Sequential Buffering, you can do two things to help ensure
that it processes your databases efficiently.
v Keep your databases well organized; that is, the logical (database record)

sequence is nearly the same as the physical (DASD block) sequence.
v Select the right number of SB buffer sets.
Related concepts:
“Usage data for OSAM sequential buffering” on page 681

Example of a well-organized database
Keeping your databases well-organized is more important to the processing of
OSAM sequential buffering (SB) than selecting the right number of SB buffer sets.

When the databases SB processes are well organized, you note elapsed time
improvements. This is because your programs process IMS database segments and
records, and they do not process DASD blocks directly. Processing a well-organized
database in logical-record sequence results in an I/O reference pattern that accesses
most DASD blocks in physical sequence. SB can take advantage of these sequential
I/O patterns by issuing many sequential reads. Extensive use of sequential reads
considerably reduces the elapsed time for your job.

Example of a badly organized database
Processing a badly-organized database in logical-record sequence typically results
in an I/O reference pattern that accesses many DASD blocks in a random
sequence.

This happens because many segments were stored in randomly scattered blocks
after the database was loaded or reorganized. When your database is accessed in a
predominantly random pattern, most I/O operations issued by the SB buffer
handler are random reads. SB is not able to issue many sequential reads, and the
elapsed time for your job is not considerably reduced.

You can use the SB buffering statistics in the optional //DFSSTAT reports to see if
your database is well-organized. Your database is likely to be badly organized if a
large percentage of the blocks were read with random reads during sequential
processing. You can monitor this percentage over a period of time to see if it
increases as the database ages.
Related concepts:

//DFSSTAT reports (System Administration)

Ensuring a well-organized database
You can ensure your databases are reasonably well-organized by following a few
common practices.

672 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/ims_reports/ims_dfsstat_reports.htm#ims_dfsstat_reports

To ensure a well-organized database, take the following actions when designing
your database:
v Provide enough embedded free space at database load or reorganization time.

IMS can then use this free space to insert new segments near their related
segments (segments in the same database record).

Tip: Choose the amount of free space based on the growth and performance
characteristics of your database. For new databases, use a value of 25% and
increase or decrease this value as needed. It is a good idea to schedule a
reorganization for the database when the reusable free space is less than 5%.

v Select an appropriate database reorganization frequency.
v Use efficient HDAM and PHDAM randomizing modules and randomizing

parameters.
Related concepts:
“Reorganizing the database” on page 615
“Determining which randomizing module to use (HDAM and PHDAM only)” on
page 431
Related tasks:
“Specifying free space (HDAM, PHDAM, HIDAM, and PHIDAM only)” on page
429

Adjusting HDAM and PHDAM options
You can choose from a number of different HDAM and PHDAM options, each of
which have performance implications.

You can adjust HDAM and PHDAM options using the reorganization utilities:
1. Determine whether the change you are making will affect the code in any

application programs. It should only do so if you are changing to a sequential
randomizing module.

2. Unload your database, using the existing DBD and the appropriate unload
utility.

3. Code a new DBD (for non-PHDAM) using the TSO Partition Definition Utility.
If you changed your CI or block size, you need to allocate buffers for the new
size.

4. If the change you are making affected the code in application programs, make
any necessary changes to the PSBs for those application programs. If you have
the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Determine whether you need to recalculate database space.
6. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

7. Reload your database or partition using the new DBD (if any) and the
appropriate reload utility. Make an image copy of your database as soon as it is
reloaded.

Related concepts:
“Choosing HDAM or PHDAM options” on page 432
Chapter 21, “Designing full-function databases,” on page 429
“Determining which randomizing module to use (HDAM and PHDAM only)” on
page 431

Chapter 29. Tuning databases 673

Related tasks:
“Estimating the minimum size of the database” on page 529

Adjusting buffers
Adjusting buffers can affect performance. Adjust buffers when you see buffer
performance begin to degrade, or if you want to add options to boost performance
in anticipation of increased buffer activity.

This topic also discusses the performance implications of choosing a buffer size
and number.

The size and number of buffers you can choose are described in “Multiple buffers
in virtual storage” on page 438. To improve performance, read that topic and
assess your current buffer settings before you adjust your buffers.
Related tasks:
“Changing operating system access methods” on page 685
“Requesting SB with SB control statements” on page 448

Overview of dynamic database buffer pools
You can dynamically reconfigure OSAM subpools and VSAM shared resource
pools without taking your IMS system offline.

The dynamic database buffer pools function provides an alternative to specifying
the OSAM and VSAM subpool definitions by changing the DFSVSMxx member of
the IMS PROCLIB data set. DFSVSMxx is only processed during IMS initialization
and the subpool definitions cannot be changed dynamically while IMS is online.

The dynamic database buffer pools function provides the ability to quiesce all
activities against a subpool to make subpool definition changes dynamically by
using the UPDATE POOL command. This command initiates the buffer pool
reconfiguration that is defined in the DFSDFxxx member of the IMS PROCLIB data
set while IMS resources are still actively in use.

In a single DFSDFxxx member, you can specify multiple unique OSAMxxx or
VSAMxxx sections that contain different sets of definitions. When you invoke the
UPDATE POOL command, specify the particular OSAMxxx or VSAMxxx section
from which to take the updated definitions.

The dynamic changes are retained across an emergency restart because they are
stored in the restart data set (RDS). However, the changes are lost with a
subsequent cold or warm start. To make the changes permanent, it is necessary to
make the changes in the DFSVSMxx member.

After you run the UPDATE POOL command, you can invoke the QUERY POOL
command to return statistics for the current buffer pools and to confirm that the
updated definitions are implemented as intended.

Types of supported buffer pool definition updates

You can make the following types of changes to your buffer pool definitions:
v Change the number of buffers for an existing OSAM subpool
v Create an OSAM subpool with a new subpool ID
v Add a new set of buffers to an existing OSAM subpool

674 Database Administration

v Delete an OSAM subpool
v Change the number of buffers for an existing VSAM subpool
v Create a subpool for an existing VSAM shared resource pool
v Delete a subpool from an existing VSAM shared resource pool
v Change the size of the buffers in a VSAM subpool
v Create a VSAM shared resource pool
Related concepts:
“Adjusting OSAM and VSAM database buffers” on page 678
“Monitoring VSAM buffers” on page 676
“VSAM buffers”
“Options for improving VSAM buffer performance” on page 676
“Defining a VSO DEDB area” on page 212
Related tasks:
“OSAM buffers” on page 677
“Adjusting OSAM database buffers dynamically” on page 679
“Adjusting VSAM database buffers dynamically” on page 680
Related reference:

DFSDFxxx member of the IMS PROCLIB data set (System Definition)

UPDATE POOL command (Commands)

QUERY POOL command (Commands)

VSAM buffers
IMS builds the VSAM buffer pool based on the number of buffers and the subpool
sizes specified in the DFSVSMxx member of the IMS PROCLIB data set or, in batch
or utility environments, in the DFSVSAMP data set.

You also can the use dynamic database buffer pools function to make changes to
the number of buffers and the subpool sizes without bringing your IMS system
offline.

Defining during system definition

When a DL/I call, such as an ISRT or GU, requires access to a VSAM data set, IMS
makes VSAM PUT and GET calls as needed. The VSAM buffer pool is managed
and manipulated by DFSMS, not by IMS.

Modifying dynamically

You can create new buffer pools and modify existing pools to be changed (or
deleted) without having to bring your IMS system offline. While IMS resources are
still actively in use, specify new VSAM shared resource pool definitions in the
DFSDFxxx member of the IMS PROCLIB data set, and then issue the appropriate
UPDATE POOL TYPE(DBAS) command.
Related concepts:
“Adjusting OSAM and VSAM database buffers” on page 678
Related reference:

DFSVSMxx member of the IMS PROCLIB data set (System Definition)

Chapter 29. Tuning databases 675

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_updatepool.htm#ims_cr2updatepool
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_querypool.htm#ims_querypool
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsvsmxx_proclib.htm#ims_dfsvsmxx_proclib

Monitoring VSAM buffers
If you are using VSAM, you can monitor buffers using the DB-Monitor reports, the
IMS Monitor tool, or an IMS command.

With DB-Monitor reports, a VSAM subpool report is produced for each buffer size
you define. The VSAM Buffer Pool report tells the number of buffers in the
subpool and their size (in the SUBPOOL BUFFER SIZE and TOTAL BUFFERS IN
SUBPOOL fields).

The IMS Monitor is a tool that records data about the performance of your DL/I
databases in a batch environment.

Use the type-1 /DISPLAY POOL DBAS command to display processor storage
utilization statistics for VSAM database buffer pools.

If you dynamically reconfigure your VSAM shared resource pools using the
dynamic database buffer pools function, you can issue the type-2 QUERY POOL
TYPE(DBAS) command to obtain information about the buffer pools and to
confirm that the dynamic updates are completed as intended.
Related concepts:
Chapter 28, “Monitoring databases,” on page 609

DB Monitor reports (System Administration)
Related reference:

QUERY POOL command (Commands)

/DISPLAY POOL command (Commands)

Options for improving VSAM buffer performance
You can make a number of adjustments to improve the performance of VSAM
buffers.
v If background write is turned on and the number in the NUMBER OF VSAM

WRITES TO MAKE SPACE IN THE POOL field is not zero, you probably do not
have enough buffers allocated in the subpool. Try allocating more buffers to
decrease the number or reduce it to zero.

v If you need to improve performance for a specific application, you can reserve
subpools for certain data sets by:
– Defining multiple local shared resource pools.
– Dedicating subpools to a specific data set.
– Defining separate subpools for index and data components of VSAM data

sets.
v If VSAM sequential mode processing is not used, the number of VSAM buffers

specified in the DFSVSAMP DD statement can dramatically affect performance.
This problem occurs when the number of VSAM KSDS indexes that must be
read, plus one for the data portion, is equal to or greater than the number of
VSAM buffers allocated. This problem can be alleviated either by increasing the
number of buffers or by using VSAM sequential mode. With VSAM sequential
mode, the need to read indexes above the sequence set is reduced. However,
sequential mode can only be obtained in a batch environment with a DBD
referenced by a single PCB and with a processing option of LOAD or RETRIEVE
only. VSAM sequential mode is not available in data sharing.

v VSAM buffers can take advantage of z/OS Hiperspace buffering.
Related concepts:

676 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/ims_reports/ims_dbmon_reports.htm#ims_dbmon_reports
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_querypool.htm#ims_querypool
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_displaypool.htm#ims_cr1displaypool

“Adjusting OSAM and VSAM database buffers” on page 678

Hiperspace buffering parameters:

To use Hiperspace buffering, you must specify one or two optional parameters on
the VSRBF subpool definition statement.

The parameters are:

HSO|HSR
Specifies the action IMS takes if Hiperspace buffering requested for a subpool
is unavailable.

HSO Hiperspace buffering is optional. IMS continues to run.

HSR Hiperspace buffering is required. IMS terminates.

HSn
Specifies the number of Hiperspace buffers to build for a subpool. The number
n is a 1- to 8-digit number.

Hiperspace parameters are valid only for buffer sizes of 4K or multiples of 4K.
Specifying Hiperspace parameters on buffers smaller than 4K causes an error. To
use Hiperspace buffering you might need to unload your database and then reload
it into 4K or multiples of 4K CI sizes to accommodate Hiperspace requirements.

If you decide to leave intact databases with CI sizes of less than 4K, do not allocate
any buffers less than 4K. The CIs that are less than 4K are placed in 4K or larger
buffer pools. However, the CIs compete with VSAM data sets already there. This
method might be expedient in the short term.

Related Reading: For more information about VSAM buffers, including Hiperspace
buffers, see z/OS DFSMS: Using Data Sets.
Related concepts:
“Hiperspace buffering” on page 440
Related reference:

Defining VSAM subpools (System Definition)

OSAM buffers
If you are using OSAM, individual subpool buffer reports do exist. However, you
can monitor the number of buffers you are using by using the Enhanced OSAM
Buffer Subpool statistics function. If you defined your OSAM subpools
dynamically, you can also obtain information about the buffer pools by issuing a
QUERY command.

The Enhanced OSAM Buffer Subpool statistics function supports the following
values:

DBESF
Provides the full OSAM Subpool statistics in a formatted form.

DBESU
Provides the full OSAM Subpool statistics in an unformatted form.

DBESS
Provides a summary of the OSAM database buffer pool statistics in a
formatted form.

Chapter 29. Tuning databases 677

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsvsmxx_proclib_vsam_subpools.htm#definingvsamsubpools

DBESO
Provides a the full OSAM database buffer pool statistics in a formatted
form for online statistics returned as a result of a /DIS POOL command.

Another way to improve performance, this time for a specific application, is to
reserve subpools for use by certain data sets. For example, if you have an index
data set with a block size of 512 bytes, reserve a subpool for it that contains
512-byte buffers. You can do this by not defining 512-byte block sizes for any other
data sets in the database. (Remember, block sizes are specified by data set in the
BLOCK= operand in the DATASET statement in the DBD.) If you then allocate
enough 512-byte buffers to hold all the blocks in your index, all blocks read into
the buffer pool will remain in the buffer pool.

Performance can also be improved through the use of the co (caching option)
parameter of the IOBF control statement specified either in the DFSVSMxxx
member of IMS.PROCLIB or in DFSVSAMP.

You can dynamically reconfigure OSAM subpools, create new buffer pools, and
modify existing pools without taking your IMS system offline.
Related concepts:
“Adjusting OSAM and VSAM database buffers”

OSAM buffer pool compatibility definition (System Definition)

Format of enhanced/extended OSAM buffer subpool statistics (Application
Programming)

Database-Buffer-Pool report (System Administration)
Related reference:

QUERY POOL command (Commands)

Using the coupling facility for OSAM data caching (System Definition)

Defining OSAM subpools (System Definition)

Adjusting OSAM and VSAM database buffers
You can adjust OSAM and VSAM database buffers by specifying parameters in the
DFSVSMxx member of the IMS PROCLIB data set during system definition.

You can also adjust OSAM and VSAM database buffers dynamically by specifying
parameters in the DFSDFxxx member of the IMS PROCLIB data set.
Related concepts:
“Overview of dynamic database buffer pools” on page 674
“VSAM buffers” on page 675

IMS buffer pools (System Definition)
Related tasks:
“OSAM buffers” on page 677
Related reference:

DFSVSMxx member of the IMS PROCLIB data set (System Definition)

DFSDFxxx member of the IMS PROCLIB data set (System Definition)

UPDATE POOL command (Commands)

QUERY POOL command (Commands)

678 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_i2hobpc.htm#i2hobpc
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_osambuffersubpoolformat.htm#ims_osambuffersubpoolformat
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.apg/ims_osambuffersubpoolformat.htm#ims_osambuffersubpoolformat
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/ims_reports/ims_dbbufreport.htm#ims_dbbufreport
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_querypool.htm#ims_querypool
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsvsmxx_proclib_cf_osam.htm#usingthecouplingfacilityforosamdatacaching
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsvsmxx_proclib_osam_subpools.htm#definingosamsubpools
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_i2hsbsz.htm#i2hsbsz
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsvsmxx_proclib.htm#ims_dfsvsmxx_proclib
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_updatepool.htm#ims_cr2updatepool
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_querypool.htm#ims_querypool

Adjusting OSAM and VSAM database buffers in DFSVSMxx
To adjust OSAM and VSAM database buffers, change the control statements that
specify buffer size and number and place the control statements in the appropriate
member of the IMS PROCLIB data set.

Put the new control statements in the:
v DFSVSAMP data set in batch and utility environments
v IMS.PROCLIB data set with the member name DFSVSMxx in IMS TM and

DBCTL environments

Adjusting OSAM database buffers dynamically
To adjust OSAM database buffers while IMS resources are still actively in use,
specify new OSAM subpool definitions in the DFSDFxxx member of the IMS
PROCLIB data set, and then issue the appropriate UPDATE POOL TYPE(DBAS)
command.

Prerequisites: Make sure the following conditions exist:
v The current number or size of OSAM buffer pools is either insufficient or not

needed for workload processing for application programs.
v The DFSDFxxx member of the IMS PROCLIB data set exists.
v IMS is configured with at least a minimal Common Service Layer (to support

issuing type-2 commands).
1. Update the DFSDFxxx member of the IMS PROCLIB data set with an IOBF

statement. Complete one or more of the following steps:
v Change the number of buffers for an existing OSAM subpool.

When changing the number of buffers for an existing OSAM subpool, the
values for bufnum, fix1, and fix2 can be changed.

v Create an OSAM subpool with a new subpool ID.
Add an IOBF statement with a value for the id parameter that does not exist.
A subpool can be created with a buffer size which already exists. It would be
considered a duplicate subpool and would have to be defined with a unique
subpool ID. A database data set must be closed and then re-opened in order
for a different subpool to be assigned.
If the buffer size is the same as an existing subpool and a unique subpool ID
is not assigned, you are in effect changing the definitions for an existing
subpool.

v Add a new set of buffers to an existing subpool.
Add an IOBF statement with the subpool ID that you want to add the new
set of buffers to.
The new values in the IOBF statement do not replace the values that were
previously set.
For example, specifying a different bufsize value does not change the size of
the buffers in the subpool. It adds a new set of buffers with a different buffer
size to the existing subpool. The effect of specifying a different bufsize value
with an existing subpool ID is to increase the overall size of buffers in the
subpool.

v Delete an OSAM subpool by setting bufnum to 0.

The format of the IOBF statement:
IOBF=(bufsize,bufnum,fix1,fix2,id,co)

2. Issue the following command:
UPD POOL TYPE(DBAS) SECTION(OSAMxxx) MEMBER(xxx)

Chapter 29. Tuning databases 679

If the procedure is performed successfully, the IMS system quiesces activities
against the target subpools during reconfiguration.

If you specified a number of buffers that is unchanged from the number of buffers
in the existing OSAM subpool, the request to update the OSAM subpool is ignored
(as if the request was never made).

Determine whether the updated database buffer pools configuration is adequate
for your workloads:
1. Issue the following command:

QUERY POOL TYPE(DBAS) SUBTYPE(OSAM,VSAM) SIZE() POOLID() SHOW(STATISTICS)

The IMS system returns statistics about the OSAM and VSAM buffer pools.
2. Based on the returned statistics, evaluate whether there must be further

adjustments to the configuration of OSAM buffer pools.
Related concepts:
“Overview of dynamic database buffer pools” on page 674
Related reference:

DFSDFxxx member of the IMS PROCLIB data set (System Definition)

UPDATE POOL command (Commands)

QUERY POOL command (Commands)

Adjusting VSAM database buffers dynamically
To adjust VSAM database buffers while IMS resources are still actively in use,
specify new VSAM shared resource pool definitions in the DFSDFxxx member of
the IMS PROCLIB data set, and then issue the appropriate UPDATE POOL
TYPE(DBAS) command.

Make sure that the following conditions exist:
v The current number or size of VSAM shared resource pools is either insufficient

or not needed for workload processing for application programs.
v The DFSDFxxx member of the IMS PROCLIB data set exists.
v IMS is configured with at least a minimal Common Service Layer (to support

issuing type-2 commands).
1. Update the DFSDFxxx member of the IMS PROCLIB data set. Do one or more

of the following:
v Change the number of buffers for an existing VSAM subpool.

Define the DFSDFxxx member with a POOLID, which identifies the VSAM
shared resource pool the subpool belongs to, followed by a VSRBF statement.
For example:
POOLID=(id,VSRBF=bufsize,bufnum)

Set bufnum to a different value, indicating that the subpool with the specified
buffer size is to change in the number of buffers.

v Create a subpool for an existing VSAM shared resource pool.
Update the DFSDFxxx member with a POOLID, which identifies the VSAM
shared resource pool the subpool belongs to, followed by a VSRBF statement.
For example:
POOLID=(id,VSRBF=bufsize,bufnum,type,HSO,HSR,HSn)

v Delete a subpool from an existing VSAM shared resource pool.

680 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_updatepool.htm#ims_cr2updatepool
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_querypool.htm#ims_querypool

In the POOLID statement in the DFSDFxxx member, set bufnum to 0,
indicating that the subpool with the specified buffer size is to be removed.
For example:
POOLID=(id,VSRBF=bufsize,0)

v Change the size of the buffers in a VSAM subpool.
Create a subpool with a different buffer size than the current subpool, and
then delete the current subpool.

v Create a VSAM shared resource pool.
When adding a new VSAM shared resource pool, update the DFSDFxxx
member with a POOLID statement, followed by one or more VSRBF subpool
definition statements. For example:
POOLID=id,Fixdata=,Fixindex,Fixblock,Stringnm=n
VSRBF=bufsize,bufnum,type,HSO,HSR,HSn

2. Issue the following command:
UPD POOL TYPE(DBAS) SECTION(VSAMxxx) MEMBER(xxx)

If the procedure is performed successfully, the IMS system quiesces activities
against the target subpools during reconfiguration.

Determine whether the updated database buffer pools configuration is adequate
for your workloads:
1. Issue the following command:

QUERY POOL TYPE(DBAS) SUBTYPE(OSAM,VSAM) SIZE() POOLID() SHOW(STATISTICS)

The IMS system returns statistics about the VSAM buffer pools.
2. Based on the returned statistics, evaluate whether there must be further

adjustments to the configuration of VSAM buffer pools.
Related concepts:
“Overview of dynamic database buffer pools” on page 674
Related reference:

DFSDFxxx member of the IMS PROCLIB data set (System Definition)

UPDATE POOL command (Commands)

QUERY POOL command (Commands)

Usage data for OSAM sequential buffering
If you are using OSAM Sequential Buffering, you can use the Sequential Buffering
Summary report and the Sequential Buffering Detail report to see how the SB
buffers were used during a your program's execution.

By default, four buffer sets exist in each SB buffer pool. If the reports indicate that
a large percentage of random read I/O operations were used, and you know that
the program was processing your database sequentially, increasing the number of
buffer sets to six or more can improve performance. By increasing the number of
buffer sets, it is more likely that a block is still in an SB buffer when requested,
and a read I/O operation is not necessary.

If only a few random reads were used during your program's execution, it
indicates that the database is very well organized and most requests were satisfied
from the SB buffer pool or with sequential reads. If this happens, you can save
virtual storage space by decreasing the number of buffer sets in each SB buffer
pool to two or three.

Chapter 29. Tuning databases 681

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_updatepool.htm#ims_cr2updatepool
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_querypool.htm#ims_querypool

Related tasks:
“Tuning OSAM sequential buffering” on page 672

Adjusting sequential buffers
You can change the number of buffer sets allocated to each SB buffer pool in two
ways.

You can:
v Code an SBPARM control statement with the BUFSETS keyword
v Use an SB Initialization Exit Routine

Once you have changed the number of buffer sets, you can use the SB Test Utility
to reprocess the SB buffer handler call sequence that was issued during your
program's execution. Then you can study the resulting //DFSSTAT reports to see
the impact of the change.

Related reading:

v The Sequential Buffering Summary report and the Sequential Buffering Detail
reports are described and instructions on how to use the SB Test Utility are in
IMS Version 13 Database Utilities.

v Detailed instructions on how to code an SBPARM control statement are in IMS
Version 13 System Definition.

v Details on the SB Initialization Exit Routine are in IMS Version 13 Exit Routines.

Adjusting VSAM options
For VSAM, you can adjust options specified in the OPTIONS control statement and
options specified in the Access Method Services DEFINE CLUSTER command.

The only VSAM option you can specifically monitor for is background write. If
you are not using background write, you can look at the VSAM Buffer Pool report
described in IMS Version 13 System Administration. The report, in the Number of
VSAM Writes To Make Space in the Pool field, documents the number of times
data in a buffer had to be written to the database before the buffer could be used.
If you use background write, you might find that you are able to reduce this
number and therefore the size of the buffer pool.

If you are already using background write, the VSAM Buffer Pool report tells you
how many times background write is invoked in the Number of Times Background
Write Function Invoked field. The VSAM Statistics report (another report produced
by the DB monitor) tells you in the BKG WTS field if background write was
invoked. It also tells you, in the USR WRTS field, among other things, how many
times background write was invoked.
Related tasks:
“VSAM options” on page 451
“Changing operating system access methods” on page 685

Adjusting VSAM options specified in the OPTIONS control
statement

To adjust VSAM options, change the appropriate parameters in the OPTIONS
control statement and put the new control statement in the appropriate data set.

682 Database Administration

The data set you put the control statement in depends on whether you have a
batch or online IMS system.
v In a batch system, use the DFSVSAMP data set
v In an online system, use the IMS.PROCLIB data set with the member name

DFSVSMnn

Detailed information on how to code these control statements is in IMS Version 13
System Definition.

Adjusting VSAM options specified in the Access Method
Services DEFINE CLUSTER command

To adjust these VSAM options, change the appropriate parameters in the DEFINE
CLUSTER command. What additional things you must do depends on which VSAM
parameter you are changing.

Changing the FREESPACE parameter

You can use the reorganization utilities to change the use of free space or to change
the percent of free space you have specified. To make this change:
1. Unload your database using the existing DBD and the appropriate unload

utility.
2. Recalculate database space. You need to do this because the change you are

making will result in different requirements for database space.
3. Delete the old database cluster and define the new database cluster with a

change to the FREESPACE parameter.
4. Reload your database, using either the existing DBD (if no changes were made

to the DBD) or the new DBD. Use the appropriate reload utility.
5. If the database being reorganized is a secondary index with direct pointers, you

must run some of the reorganization utilities before and after reloading to
resolve prefix information.

Changing the SPEED / RECOVERY parameter

Do not unload and reload your database merely to change the SPEED/RECOVERY
parameter. Rather, if you have RECOVERY specified, change the parameter to
SPEED to improve performance when the database is reloaded and restart of the
load program is not used. IMS does not support the RECOVERY parameter.
Recovery can only be done when the database load program is run under control
of UCF.

Because it is assumed you would only change the parameter when making other
database changes that require you to unload and reload your database, no
procedure for changing it is provided here.
Related concepts:
Chapter 25, “Loading databases,” on page 529
Related tasks:
“Estimating the minimum size of the database” on page 529
“Offline reorganization by using the reorganization utilities” on page 618

Chapter 29. Tuning databases 683

Adjusting OSAM options
To adjust OSAM options, change the appropriate parameters in the OPTIONS
control statement. Then put the new control statement in the appropriate data set.

The appropriate data set depends on whether:
v DFSVSAMP data set in a batch system
v IMS.PROCLIB data set with the member name DFSVSMxx in an online system

The OSAM options you can choose are described in “OSAM options” on page 455.
Performance implications of each OSAM option are also discussed there. To
improve performance, reread that topic and reassess the original choices you made.
You cannot specifically monitor any OSAM options.

Detailed information about how to code the OPTIONS control statement is in IMS
Version 13 System Definition.
Related tasks:
“Changing operating system access methods” on page 685

Changing the amount of space allocated
Change the amount of space allocated for your database in two situations.

The first is when you are running out of primary space. Do not use your
secondary space allocation because this can greatly decrease performance. Also
change the amount of space allocated for your database when the number of I/O
operations required to process a DL/I call is large enough to make performance
unacceptable. Performance can be unacceptable if data in the database is spread
across too much DASD space.

One way to routinely monitor use of space is by watching the IWAITS/CALL field
in the DL/I Call Summary report. If the IWAITS/CALL field has a relatively high
number in it, the high number can be caused by space problems. If you suspect
space is the problem, you can verify such problems in two specific ways:
v For VSAM data sets, you can get a report from the VSAM catalog using the

LISTCAT command. In the report, check CI/CA splits, EXCPs, and EXTENTS.
v For non-VSAM data sets, you can get a report on the VTOC using the LISTVTOC

command. In the report, check the NOEXT field.

If you decide to change the amount of space allocated for your database, do it with
JCL or with z/OS utilities. The reorganization utilities must be run to put the
database in its new space. The procedure for putting the database in its new space
is as follows:
1. Unload your database, using the existing DBD and the appropriate unload

utility.
2. Recalculate database space.
3. Delete the old database space for non-VSAM data sets and define new database

space. For VSAM data sets, delete the space allocated for the old clusters and
define space for the new clusters.

4. If you are changing the space in the root addressable area of an HDAM
database, you might need to adjust other HDAM parameters. In this case, you
must code a new DBD before reloading (a new DBD is not needed when a

684 Database Administration

PHDAM partition is changed). To change the space in the root addressable area
of a PHDAM partition, you must use the HALDB Partition Definition utility.

5. Reload your database, using either the existing DBD (if no changes were made
to the DBD) or the new DBD. Use the appropriate reload utility.

6. If your non-HALDB database uses logical relationships or secondary indexes,
you must run reorganization utilities before and after reloading the database to
resolve prefix information.

Related concepts:
Chapter 28, “Monitoring databases,” on page 609

DL/I-Call-Summary report (System Administration)
Related tasks:
“Estimating the minimum size of the database” on page 529
“Offline reorganization by using the reorganization utilities” on page 618

Changing operating system access methods
You can use the reorganization utilities to change access methods from OSAM to
VSAM, or from VSAM to OSAM.

To change access methods:
1. Unload the database.
2. Code a new DBD (unless you have already done this as described in Step 1).
3. Delete the old data sets and define the new clusters when changing from

non-VSAM to VSAM. Delete the old clusters and define new database data sets
when changing from VSAM to non-VSAM.

4. You need to change from OSAM options and buffers to VSAM options and
buffers or vice versa.

5. Reload your database, using the new DBD. Remember to make an image copy
of your database as soon as it is reloaded.

6. If your non-HALDB database uses logical relationships or secondary indexes,
you must run reorganization utilities before and after loading the database to
resolve prefix information.

Related concepts:
“Adjusting buffers” on page 674
“Adjusting VSAM options” on page 682
Related tasks:
“Adjusting OSAM options” on page 684
“Offline reorganization by using the reorganization utilities” on page 618

Tuning Fast Path systems
Your objective in tuning the IMS online system when Fast Path applications are
present depends upon the importance of the message-driven programs and their
criteria for acceptable response time.

The performance analysis studies that you should undertake are:
v Examining the availability of sufficient real storage
v Checking the effectiveness of the balancing groups
v Investigating the number of Fast Path dependent regions and the possibility of

parallel processing

Chapter 29. Tuning databases 685

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/ims_reports/ims_dlicallsumreport.htm#ims_dlicallsumreport

v Monitoring of the required frequency of DEDB reorganization to reduce
fragmented units of work

v Monitoring of the use of DEDB overflow buffers
v Monitoring the forced serialization of programs that concurrently need to use

overflow buffers specified by the EXEC statement DBFX parameter
v Examining the area key ranges and whether the randomizing algorithm can be

refined
v Reducing the amount of mixed mode processing

Fast Path performance can also be improved by eliminating unnecessary delays
caused by the following:
v Transaction volume to a particular Fast Path application program
v DEDB structure considerations
v Contention for DEDB Control Interval (CI) resources
v Exhaustion of DEDB DASD space
v Utilization of available real storage
v Sync point processing and physical logging
v Contention for output threads (OTHR)
v Overhead resulting from reprocessing
v Dispatching priority of processor-dominant and I/O-dominant tasks
v DASD contention caused by I/O on DEDBs
v Resource locking considerations with block level sharing
v Buffer pool usage and not grouping Fast Path application programs with similar

buffer use characteristics together into one or more message classes

Statistics on transaction processing and contention for CIs can be obtained from the
output of the Fast Path Log Analysis utility (DBFULTA0), which retrieves (from
system log input) data relating to the usage of Fast Path resources.
Related concepts:
“Managing unusable space with IMS tools” on page 203
Related reference:

Fast Path Log Analysis utility (DBFULTA0) (System Utilities)

Transaction volume to a particular Fast Path application
program

If a disproportionately high number of transactions are queued to a particular
balancing group, consider increasing the number of regions associated with that
particular balancing group.

The Fast Path Log Analysis report provides information about balancing group
queuing.

DEDB structure considerations
Several characteristics of DEDB usage affect the response time of an application
program.

These characteristics include:
v Data replication
v Subset pointers

686 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbfulta0.htm#ims_dbfulta0

v Number of areas
v Complexity of hierarchical structure
v Complexity of DL/I calls
v Use of sharing across IMS
v Last child pointers
v Recoverability

The first three characteristics are unique to DEDBs; the last five apply generally to
databases. Data replication allows up to seven data sets for an individual area.
When reading from an area represented by multiple data sets, performance is not
impacted, unless the CI is defective. When updating, up to seven additional writes
could be required. Although the physical write is performed asynchronously to
transaction processing, there could be delays caused by access paths to a variety of
DASD devices.

Up to eight subset pointers allow an application program to separate the children
of a parent into groups in a DEDB, with the subset pointer pointing to the start of
each group. Use of such pointers can help improve performance by reducing the
time needed to access segments whose position is significantly displaced in a chain
of sequential dependent segments.

Usage of buffers from a Fast Path buffer pool
The Fast Path buffer pool is used by all Fast Path programs except the DEDB
online utilities and the High-Speed Sequential Processing (HSSP) function, both of
which have their own buffer pool. The Fast Path buffer pool is used to support the
processing of MSDBs and DEDBs.

The Fast Path buffer pools in an IMS system can be either defined automatically by
IMS by enabling the Fast Path 64-bit buffer manager or defined manually by
specifying the DBBF, DBFX, and BSIZ parameters in the IMS and DBC startup
procedures.
Related concepts:

Specifying IMS execution parameters (System Definition)

Database buffer pool tuning (System Administration)

Dynamic definition and allocation of Fast Path buffer pools
When the Fast Path 64-bit buffer manager is enabled, it defines and allocates the
Fast Path buffer pools dynamically. If specified, the DBBF, DBFP, DBFX, and BSIZ
parameters are ignored.

The Fast Path 64-bit buffer manager defines the Fast Path buffer pools dynamically
based on buffer usage and CI size requirements. You do not need to specify either
the size or number of Fast Path buffers. If IMS detects that more buffers are
required or that a CI size does not match any of the currently allocated buffer
pools, the Fast Path 64-bit buffer manager allocates the required buffer pools.

The maximum number of buffers that the Fast Path 64-bit buffer manager can
allocate to a dependent region is defined by the combined value of the NBA and
OBA dependent region parameters.

To alleviate the usage of the extended common storage area (ECSA), the Fast Path
64-bit buffer manager places DEDB buffer pools in 64-bit private storage.

Chapter 29. Tuning databases 687

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_i2hspcx.htm#i2hspcx
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_tune_buffpools_db.htm#ims_tune_buffpools_db

To enable the Fast Path 64-bit buffer manager, specify FPBP64=Y in the DFSDFxxx
PROCLIB member.
Related reference:

DFSDFxxx member of the IMS PROCLIB data set (System Definition)

Manual definition of Fast Path buffer pools
If you do not use the Fast Path 64-bit buffer manager, you must define the Fast
Path buffer pools by specifying the DBBF, DBFX, and BSIZ parameters in the IMS
or DBC startup procedures.

To modify the buffer pools, you must change the values of the DBBF, DBFX, and
BSIZ parameters and restart IMS. IMS also places all of the Fast Path buffer pools,
including the DEDB buffer pools, in ECSA storage.

If you do not use the Fast Path 64-bit buffer manager, the Fast Path buffer pool
comprises buffers of a size defined at system startup by the BSIZ parameter. The
buffer size selected must be capable of holding the largest CI from any DEDB area
that is to be opened. The number of buffers page-fixed is based upon the value of
supplied parameters:
v The normal buffer allocation (NBA) value causes the defined number of buffers

to be fixed in the buffer pool at startup of the dependent region. (This number
can be specified for the dependent region startup procedure using the NBA
parameter.) The application program in this dependent region is eligible to
receive up to this number of buffers within a given sync interval before one of
the following occurs:
– The buffer manager acquires unmodified buffers from the requesting

application program.
– No more buffers can be acquired on behalf of the requesting application

program (a number of buffers equal to NBA have been requested, received,
and modified). In this case, the buffer manager must acquire access to the
overflow buffer allocation (OBA) if this value was specified for this program.
If no OBA was specified, then all resources acquired for this program during
sync interval processing to date are released.

v The OBA value is the number of buffers that a program can serially acquire
when NBA is exceeded. (This number can be specified for the dependent region
startup procedure using the OBA parameter.) The overflow interlock function
serializes the overflow buffer access, and only one application program at a time
can gain access to the overflow buffer allocation. Therefore, the overflow buffer
can be involved in deadlocks.

v The DBFX value, which is a system startup parameter, defines a reserve of
buffers that are page-fixed upon start of the first Fast Path application program.
These buffers are used when asynchronous OTHREAD processing is not
releasing buffers quickly enough to support the requests made in sync interval
processing.

It follows that:
v BSIZ should be set equal to the largest DEDB CI that will be online. Because the

buffer manager does not split buffers to accommodate multiple control intervals,
making all DEDB CIs of a same size will provide more optimum use of storage.
Even though large block sizes (up to 28K) can be used, this would cause only
partial use of the buffer pool if there were many smaller CI sizes.

v The NBA value should be set approximately equal to the normal number of
buffer updates made during a sync interval. The NBA value for inquiry-only

688 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsdfxxx_proclib.htm#ims_dfsdfxxx_proclib

programs should be small, because the buffers that are never modified can be
reused and will all be released at sync time.

v The OBA should be used only in relation to a limited proportion of sync
intervals. OBA is not required for inquiry-only programs. In general, the user
should be careful to use the OBA value as intended. It should be used to
support sync intervals where application program logic demands a variation in
total modified buffer needs, thereby requiring access to OBA on an exceptional
basis. With BMPs, OBA values greater than 1 should be unnecessary because the
'FW' status code that is returned when the NBA allocation is exceeded can be
used to invoke a SYNC call. Invoking a SYNC call would then release all
resources. Such application design reduces the serialization and possible
deadlocks inherent in using the overflow interlock function.

v The DBFX value should be set, taking into account the total number of buffers
that are likely to be in OTHREAD processing at peak load time. If this value is
too low, an excessive number of wait-for-buffer conditions are reflected in the
IMS Fast Path Log Analysis report.

To optimize the buffer usage, group message processing application programs with
similar buffer use characteristics and assign them to a particular message class, so
that the applications share the region's buffers.
Related concepts:

Specifying IMS execution parameters (System Definition)
Related reference:

Parameter descriptions for IMS procedures (System Definition)

Contention for DEDB control interval (CI) resources
Queuing takes place on the DEDB CI resource to maintain serialized access on
DEDB data. When two independent application programs concurrently request
access to a particular CI, one requestor is required to wait.

When such a wait would cause a deadlock, one of the application programs is
selected to have its resources released and its processing returned to the previous
sync point. (It should be noted that the overflow buffer interlock can also be
involved in a deadlock). The rules for selection of the program to be interrupted
because of a deadlock are:
v If the deadlock involves one or more message-driven programs, one of the

programs is abnormally terminated, reinstated to its previous sync point, and
rescheduled.

v If a BMP deadlocks with another BMP, the BMP that went through sync point
last is abnormally terminated, has its resources released, is sent back to its
previous sync point, and is given a return code.

v If a deadlock involves a DEDB utility, the other program is terminated and
rescheduled. Two utilities cannot be involved in a deadlock, because two utilities
cannot concurrently access the same DEDB area.

The number of contention and deadlock situations can be decreased by taking the
following steps:
v Ensure that CIs contain no more segments than necessary. (CI size is specified in

the DBD.)
v Enable the Fast Path 64-bit buffer manager. The Fast Path 64-bit buffer manager

dynamically defines, allocates, and manages Fast Path buffer pools based on
buffer usage and CI size requirements and, because of multi-threading, allows

Chapter 29. Tuning databases 689

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_i2hspcx.htm#i2hspcx
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_parameter_descriptions_for_procedures.htm#ims_procedure_parm_descriptions

multiple dependent regions to access overflow buffers at the same time. The Fast
Path 64-bit buffer manager is enabled by specifying FPBP64=Y in the DFSDFxxx
PROCLIB member.

v If you are not using the Fast Path 64-bit buffer manager, limit the use of the
overflow buffer interlock by increasing the NBA value, which, in conjunction
with CI usage can be involved in a deadlock.

v Limit the value of NBA to the value necessary to cope with the majority of cases
and use OBA to deal with the exceptional conditions. When the full buffer
allocation (NBA or NBA and OBA) for a program has been exceeded, the buffer
manager can begin stealing unmodified buffers from this program. When all
buffers associated with a CI have been stolen, the CI can be released, providing
it is not currently in use by a PCB. The buffer stealing and associated CI
releasing is triggered by exceeding the full buffer allocation. Minimizing NBA
and OBA will assist the timely release of CIs, thereby reducing CI contention.

v Ensure that BMPs accessing DEDBs issue SYNC calls at frequent intervals.
(BMPs could be designed to issue many calls between sync points and so gain
exclusive control over a significant number of CIs.)

v BMPs that do physical-sequential processing through a DEDB should issue a
SYNC call when crossing a CI boundary (provided it is possible to calculate this
point). This ensures that the application program never holds more than a single
CI.

Reports produced by the Fast Path Log Analysis utility give statistics about CI
contention.

Exhaustion of DEDB DASD space
An out-of-space condition (with consequent stoppage of the DEDB area) can occur
in the root addressable and sequential dependent portions of an area. Such
situations affect the operation of the system as a whole and can necessitate lengthy
recovery procedures.

The number of out-of-space conditions can be decreased by:
v Attempting to restrict the number of uses of independent overflow CIs through

randomizing algorithm design or regular reorganization
v Deleting sequential dependent CIs on a regular basis
v Using display commands or DEDB POS calls to track space usage

An out-of-space condition can be relieved without bringing IMS down by
following the procedures in “Extending DEDB independent overflow online” on
page 763.

Utilization of available real storage
The amount of page-fixed storage defined is a significant consideration in limited
storage systems.
Related concepts:
“Insert, delete, and replace rules for logical relationships” on page 273

Synchronization point processing and physical logging
Some 'clustering' of output and release of updated CIs and buffers occurs because
DEDB updates are deferred until after physical logging is complete.

690 Database Administration

In BMPs, it helps to minimize the number of updates performed in any one sync
interval, particularly if the program is to be run concurrent with the main bulk of
message processing.

It is likely that, for performance reasons, the physical log record will be large, so
that the log record might not be written for some time during low logging activity.
However, IMS varies the interval between the periodic invoking of physical
logging. This interval is directly related to the total logging activity in the IMS
system. (Low activity causes a smaller interval to be set.)

The physical logging process can be relatively slow because of small physical log
buffers or channel or control unit contention for the WADS/OLDS data sets.

The Fast Path environment can have high transaction rates and logging activity.
Therefore, the physical configuration supporting the logging process must also be
analyzed and altered for optimum performance.

Contention for output threads
Each OTHR defined provides for the possibility of scheduling a separate service
request block (SRB) to control the writing of the modified buffers associated with a
particular sync interval.

If the OTHR value is low, then queuing of write buffers waiting for an output
thread can occur. In general, it is probably best to have one OTHR for each started
dependent region that will cause modification of a DEDB.

Overhead resulting from reprocessing
Overhead will result from the necessity to perform reprocessing in either the
message-driven or non-message-driven environments.

The following conditions will necessitate reprocessing:
v Deadlocks involving CIs and (possibly) overflow interlock
v Verify failures at sync point time
v User-initiated rollback caused by such conditions as verify failure at call time

In the case of deadlocks, the application program is pseudo abended for dynamic
backout. The program controller subtask is detached, and subsequently, reattached.
For verify failures or rollback calls, rescheduling involves only the release of
resources held and returned to the application program.

Excessive incidence of the above conditions will add to response time and total
overhead. Conditions resulting in abend interception followed by dump and
application program reinstatement will add to overhead.

Dispatching priority of processor-dominant and I/O-dominant
tasks

Because MSDB processing within a sync interval is processor-dominant, application
programs processing solely or mainly MSDBs should be dispatched at a lower
priority than those programs processing solely or mainly DEDBs (I/O dominant).

DASD contention due to I/O on DEDBs
As always, I/O contention for DEDB Areas will act as a limitation upon
performance.

Chapter 29. Tuning databases 691

To minimize this impact:
v Limit the number of heavily-used Areas per device.
v Limit the number of application programs accessing any one DEDB area. One

possibility here is to design the transaction, input edit/routing exit, and
randomizing algorithm combination so that the access to any one area is limited
to a particular application program or programs.

v Limit the incidence and effect of stealing unmodified buffers by appropriate
application program design. Buffer stealing can necessitate a second I/O to
recover the stolen buffer/control interval. This can happen if the logic of the
application program requires processing of a buffer when a significant number
of calls have been made following the first retrieval.

Maintaining read performance for multiple area data sets
If you use multiple copies of your area data sets (ADSs), place the first ADS
registered in the RECON data set on your fastest DASD for the best read
performance.

Subsequent copies of the ADS can reside on slower DASD without affecting overall
read performance.

IMS always attempts to read from the first ADS shown in the RECON list. If the
first ADS is not available or if it is in a long busy state, IMS attempts to read from
each subsequent ADS in the list until an available ADS is found. If all of the ADSs
are in a long busy state, IMS uses the first ADS in the list.

Resource locking considerations with block-level data sharing
Resource locking can occur either locally in a non-sysplex environment or globally
in a sysplex environment.

In a non-sysplex environment, local locks can be granted in one of three ways:
v Immediately because of either of the following reasons:

IMS was able to get the required IRLM latches, and there is no other interest
on this resource.
The request is compatible with other holders or waiters.

v Asynchronously because the request could not get the required IRLM latches
and was suspended. (This can also occur in a sysplex environment.) The lock is
granted when latches become available and one of two conditions exist:

No other holders exist.
The request is compatible with other holders or waiters.

v Asynchronously because the request is not compatible with the holders or
waiters and was granted after their interest was released. (This could also occur
in a sysplex environment.)

In a sysplex environment, global locks can be granted in one of three ways:
v Locally by the IRLM because either of the following two reasons:

There is no other interest for this resource.
This IRLM has the only interest, this request is compatible with the holders
or waiters on this system, and XES already knows about the resource.

v Synchronously on the XES CALL because:
Either XES shows no other interest for this resource.
Or XES shows only SHARE interest for the hash class.

692 Database Administration

v Asynchronously on the XES CALL because of one of two conditions:
Either XES shows EXCLUSIVE interest on the hash class by an IRLM, but the
resource names do not match (FALSE CONTENTION by RMF).
Or the request is incompatible with the other HOLDERs and is granted by
the CONTENTION Exit after their interest is released (IRLM REAL
CONTENTION).

Resource name hash routine
The Fast Path Resource Name Hash routine generates the hash value used by the
IRLM.

You can specify the name of such a routine with the UHASH= startup parameter,
but it is ignored. IMS always sets the value of UHASH to DBFLHSH0.

One technique used by the IMS-supplied Fast Path Resource Name Hash routine
(DBFLHSH0) increases the range of values implicit with the relative CI numbers by
combining parts of the 31-bit CI number with values derived from a database's
DMCB number and its area number as follows: Bits 11 through 15 of DMCB
number are XOR'd with bits 7, 6, 5, 4, 3 of the area number to give a combination
5-bit position number. (Using the area number's bits in reverse order helps make
both DMCB number and area number vary the combination value.)

For the relative CI number (bits 0 through 15 are not used):
v Bits 16 through 20 are XOR'd with the combination value.
v Bits 21 through 25 are XOR'd with the combination value.
v Bits 26 through 29 are used unchanged.
v Bits 30 and 31 are not used—thus a hashed CI number used as a GHT entry

represents four CIs.

For the hashed resource name:
v Bits 16 through 29 of the hashed relative CI become bits 18 through 31 of the

hash value that is passed to the IRLM.
v Bits 18 through 26 of the hash value are used as the displacement into the

resource hash table (RHT).
v Bits 18 through 31 are used as the displacement into the GHT.

Chapter 29. Tuning databases 693

694 Database Administration

Chapter 30. Modifying databases

You can modify your database structure in a variety of ways using the
reorganization utilities and other methods.

Over time, user requirements can change, necessitating changes in the database
design. Or you might choose to use new or different options or features. Or
perhaps you have simply found a more efficient way to structure the database.

When you modify your database, you often make more than a simple change to it.
For example, you might need to add a segment type and a secondary index. This
topic has procedures to guide you through making each type of change.

If you make more than one change at a time, refer to “Changing the number of
data set groups” on page 723, which contains a series of flowcharts that, when
used with the individual procedures in this topic, can guide you in making some
types of multiple changes to the database.

Attention: If the DBD for an existing MSDB is changed, the header information
(BHDR) might change, even though the database segments do not. In this case, the
headers in the MSDBCPx data sets are invalid or the wrong length. A change in
the MSDB headers causes message DFS2593I. If ABND=Y is specified in the MSDB
PROCLIB member, ABENDU1012 is also issued. Correct this problem by using the
MSDBLOAD option on a warm start or cold start to load the MSDBs from an
MSDBINIT data set.
Related concepts:
“Reorganization utilities” on page 616
“Reorganizing the database” on page 615
Chapter 31, “Converting database types,” on page 797

Data sharing in IMS environments (System Administration)
Related tasks:
“Reorganizing databases offline” on page 616

Modifying record segments
You can modify record segments in a variety of ways, including adding deleting,
or moving segment types, changing the size of a segment, and changing the data
stored in a segment.
Related concepts:
“Changing the hierarchical structure of database records” on page 670
Related tasks:
“Modifications to HALDB record segments” on page 789

Adding segment types
There are several ways to add a segment type to a database.

The ways to add a segment type to a database include:
v Unloading and reloading using the reorganization utilities
v Without unloading or reloading

© Copyright IBM Corp. 1974, 2016 695

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_datasharing.htm#ims_datasharing

v Using your own unload and reload program

Unloading and reloading using the reorganization utilities
In some cases, you can add segment types to a database record by using the
reorganization utilities.

You can add segment types to a database record using the reorganization utilities
if:
v The segment type to be added is at the bottom level of a path in the hierarchy.

The following figure shows an existing database record (indicated by solid lines)
and the places where a new segment type can be added (indicated by dashed
lines).

v The existing relative order of segments in the database record does not change.
In other words, the existing parent to child relationships cannot change.

v The existing segment names do not change.

To use the reorganization utilities to add a segment type to the database:
1. Determine if the change you are making affects the code in any application

programs. If the code is affected, make the necessary changes to the
application program.

2. Unload your database, using the existing DBD.
3. Code a new DBD. You need to add SEGM= statements to the DBD for the

new segment type. No database updates are allowed between unload and
reload.

4. If the change you are making affects the code in application programs, make
any necessary changes to the PSBs for those application programs.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.
6. Recalculate database space. You need to do this because the change you are

making will result in different requirements for database space.
7. For non-VSAM data sets, delete the old database space and define the new

database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Reload your database, using the new DBD. Make an image copy of your
database as soon as it is reloaded.

Figure 276. Where segment types can be added in a database record

696 Database Administration

9. If your database uses logical relationships or secondary indexes, you must run
reorganization utilities before and after reloading to resolve prefix information.

10. Code and execute an application program to insert the new segment types
into the database.

Related tasks:
“Estimating the minimum size of the database” on page 529
“Offline reorganization by using the reorganization utilities” on page 618

Without unloading or reloading
You can add segment types to a database record without unloading the database
under the following circumstances.
v In a HISAM database, the segment type to be added must be the last segment in

the hierarchy. In addition, the segment type to be added must fit in the existing
logical record.

v In an HD database, the segment type to be added must also be the last segment
in the hierarchy. The parent of the new segment type must use hierarchical
pointers. Also, the segment type cannot be the largest segment type in the data
set group.

To add a segment type to the database without unloading and reloading:
1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.
2. Code a new DBD. You need to add a SEGM= statement to the DBD for the new

segment type.
3. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for those application programs. If you have
the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

4. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.
5. Code and execute an application program to insert the new segment type.

Using your own unload and reload program
If you must unload your database to add a segment type and you cannot use the
reorganization utilities, you must write your own unload and reload program.

Generally, you need to write your own unload and reload program if the new
segment type changes the hierarchical structure of or relationship between the
existing segments in the database.

Deleting segment types
You can delete a segment type from a database by using either the reorganization
utilities provided by IMS or by using your own unload and reload program.

You can delete a segment type from a database, using the reorganization utilities,
if:
v The existing relative order of segments in the database record does not change.

In other words, the existing parent to child relationships cannot change.
v The existing segment names do not change.

To use the reorganization utilities to delete a segment type from the database:

Chapter 30. Modifying databases 697

1. Code and execute an application program to delete all occurrences of the
segment type being deleted. You must code and execute the application
program before the database is unloaded.

2. Determine whether the change you are making affects the code in any
application programs. If the code is affected, make sure it gets changed.

3. Unload your database, using the existing DBD.
4. Code a new DBD. You need to remove SEGM= statements from the DBD for:
v The segment type being deleted
v The children of the deleted segment.

5. If the change you are making affected the code in application programs, make
any necessary changes to the PSBs for those application programs. If you have
the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

6. Recalculate database space. You need to do this because the change you are
making will result in different requirements for database space.

7. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.
8. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

9. Reload your database using the new DBD. Remember to make an image copy
of your database as soon as it is reloaded.

10. If your database uses logical relationships or secondary indexes, you must run
reorganization utilities before and after reloading to resolve prefix information.

Related tasks:
“Estimating the minimum size of the database” on page 529
“Offline reorganization by using the reorganization utilities” on page 618

Moving segment types
Because segment types cannot be moved using the reorganization utilities, you
must write your own unload and reload program to move them.

Changing segment size
Using the reorganization utilities, you can increase or decrease segment size at the
end of a segment type.

When increasing segment size, you are adding data to the end of a segment. When
decreasing segment size, IMS truncates data at the end of a segment.

If you are increasing the size of a segment, you cannot predict what is at the end
of the segment when it is reloaded. Also, new data must be added to the end of a
segment using your own program after the database is reloaded.

To increase or decrease segment size:
1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.
2. Unload your database, using the existing DBD. If you are changing a HISAM

database, you must use the HD UNLOAD/RELOAD utility since the HISAM
utilities cannot be used to make structural changes.

3. Code a new DBD. You need to change the BYTES= operand on the SEGM
statement in the DBD to reflect the new segment size. If you are eliminating
data from a segment for which FIELD statements are coded in the DBD, you

698 Database Administration

need to eliminate the FIELD statements. If you are adding data to a segment
and the data is referenced in the SSA in application programs, you need to
code FIELD statements. No database updates are allowed between unload and
reload.

4. If the change you are making affected the code in application programs, make
any necessary changes to the PSBs for those application programs. If you have
the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than build dynamically.
6. Recalculate database space. You need to do this because the change you are

making results in different requirements for database space.
7. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Reload your database, using the new DBD. Make an image copy of your
database as soon as it is reloaded.

9. If your database uses logical relationships or secondary indexes, you must run
reorganization utilities before and after reloading to resolve prefix information.

Related tasks:
“Estimating the minimum size of the database” on page 529
“Offline reorganization by using the reorganization utilities” on page 618

Adding or converting to variable-length segments
If you need to change selected segments in your database from fixed to variable
length—or convert the entire database to variable-length segments—two ways exist
to do it.

Regardless of which way you use, the object in conversion is to put a size field in
the segment you need to make variable length and then get the segment defined as
variable length in the DBD.
Related concepts:
“Variable-length segments” on page 373

Method 1. Converting segments or a database
Method 1 for converting segments or a database to use variable length segments
involves creating a new DBD and writing your own application program to
retrieve each segment, add the 2-byte size field, and then insert the segment back
into the database.

To convert selected segments or the entire database this way, you must:
1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.
2. Code and generate a new DBD that identifies the segment types that will be

variable length, and their size.
3. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for those application programs. If you have
the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

4. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.
5. Write a program that sequentially retrieves from the database all segments that

are to be variable length. Your program must add the 2-byte size field to each
segment retrieved and then insert the segment back into the database.

Chapter 30. Modifying databases 699

Method 2. Converting segments or a database
Method 2 for converting segments or a database to use variable length segments
involves creating two DBDs (an interim DBD and a final DBD), unloading the
database, and then using a segment edit/compression exit routine to add the
2-byte size field during the reload of the database.

To convert selected segments or the entire database this way, you must:
1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.
2. Unload your database, using the existing DBD.
3. Code and generate a new (interim) DBD. This DBD should specify

fixed-length segments for all segments being converted to variable length. It
should also specify the use of the segment edit/compression exit routine for
each segment to be converted. (The interim DBD is used, as explained in Step
9, to add a size field to the existing fixed-length segments.)

4. If the change you are making affected the code in application programs, make
any necessary changes to the PSBs for those application programs. If you have
the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.
6. Recalculate database space if necessary. You need to do this when the change

you are making results in different requirements for database space.
7. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Write an edit routine to which the segment edit/compression exit routine can
exit. Your edit routine should add a size field to each segment it receives.

9. Reload the database, using the interim DBD. As each occurrence of a segment
type that needs to be converted is presented for loading, your edit routine
gets control and adds the size field to the segment. When your edit routine
returns control, the segment is loaded into the database. Remember to make
an image copy of your database as soon as it is loaded.

10. If your database uses logical relationships or secondary indexes, you must run
reorganization utilities before and after reloading to resolve prefix information.

11. After the database is loaded, code and generate a new DBD that specifies the
segment types in the database that are variable, and their size.

Related concepts:
“Segment Edit/Compression exit routine” on page 376
Related tasks:
“Offline reorganization by using the reorganization utilities” on page 618

Changing data in a segment (except for data at the end of a
segment)

Data in a segment cannot be increased or decreased in size using the
reorganization utilities. To increase or decrease the size of fields, you must write
your own unload and reload programs.

Changing the position of data in a segment
You cannot change the position of data in a segment using the reorganization
utilities.

700 Database Administration

To make this kind of change, you must write your own unload and reload
program, use field-level sensitivity, or use a tool, such as the IMS High
Performance Pointer Checker for z/OS, which includes a DB Segment Restructure
utility.

Related Reading: For information about the IMS High Performance Pointer
Checker for z/OS, see IMS High Performance Pointer Checker for z/OS User's Guide.
Related concepts:
“Field-level sensitivity” on page 384

Changing the name of a segment
If you change the name of a segment without changing anything else about the
segment, you do not need to unload and reload the database or otherwise
reorganize the database.

To change the name of a segment, you must:
1. Change the segment name in the DBD statement that defines the segment.
2. If the segment is referenced in a logical relationship or secondary index, you

must change the segment name in the DBD for the logical or index database.
3. Update the DBDLIB by running the DBD Generation utility.
4. Change the segment name in the PSB statements that reference the segment.
5. Update the PSBLIB by running the PSB Generation utility.
6. Update the ACBLIB by running the ACB Maintenance utility and performing

Online Change.
7. Update all application code that references the segment.
Related reference:

Database Description (DBD) Generation utility (System Utilities)

Program Specification Block (PSB) Generation utility (System Utilities)

Application Control Blocks Maintenance utility (System Utilities)

Adding logical relationships
You can add logical relationships to an existing database.

This topic contains examples and procedures for adding a logically-related
database to an existing database. Not all situations in which you might need to
add a logical relationship are described in this topic. However, if the examples do
not fit your specific requirements, you should be able to gather enough
information from them to decide:
v If adding a logical relationship to your existing database is possible
v How to add the relationship

The examples show the logical parent as a root segment, although this is not a
requirement. The examples are still valid when the logical parent is at a lower level
in the hierarchy.

When adding logical relationships to existing databases, you should always make
the change on a test database. Thoroughly test the change before implementing it
using production databases.

In the following examples, these conventions are used:

Chapter 30. Modifying databases 701

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdgen.htm#ims_dbdgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_psbgen.htm#ims_psbgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_acbgen.htm#ims_acbgen

v Existing databases are shown using solid lines.
v The database being added is shown using dashed lines.
v The logical parent and logical child relationship is labeled for the database being

added. They are labeled LP and LC.
v The terms DBX, DBY, and DBZ refer to database 1, database 2, and database 3.
Related concepts:
Chapter 15, “Creating logical relationships,” on page 231
Related tasks:
“Estimating the minimum size of the database” on page 529
“Writing a load program” on page 544

Examples of adding logical relationships
Each of the examples include a figure to illustrate the addition of a logical
relationship. The steps required to add the logical relationship shown in each
example are also provided.

Example 1. DBX exists, DBY is to be added
In example 1, DBX must be reorganized to add the counter field to the segment
prefix for A.

Example 1 is shown in the following figure.

DBIL must be specified in the control statement for DBX. In the following steps,
the counter field for segment A is updated to show the number of C segments
because segment C is loaded with a user load program.

Example 1 procedure

1. Determine whether the change you are making affects the code in any
application programs. If the code is affected, make sure it gets changed.

2. Unload DBX, using the existing DBD and the HD Unload utility.
3. Code a new DBD for DBX and DBY.
4. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for these application programs. If you have
the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.
6. Recalculate database space for DBX and calculate space for DBY.

Figure 277. DBX exists, DBY is to be added

702 Database Administration

7. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Run the Prereorganization utility, specifying DBIL in the control statements for
DBX and DBY.

9. Reload DBX, using the new DBD and the HD Reload utility.
10. Load DBY, using an initial load program.
11. Run the Prefix Resolution utility, using the DFSURWF1 work files that are

output from Steps 9 and 10 as input.
12. Run the Prefix Update utility, using the DFSURWF3 work file that is output

from Step 11 as input.
13. Remember to make an image copy of both databases as soon as they are

loaded.
Related tasks:
“Specifying logical relationships in the logical DBD” on page 263

Example 2. DBX and DBY exist, DBZ is to be added
In this example, the counter exists in the segment C prefix. DBX and DBY must be
reorganized to calculate the new value for the counter in the segment C prefix.

Example 2 is shown in the following figure.

DBIL must be specified in the control statement for DBX and DBY. In the following
steps, the segment A counter field is updated to show the number of C segments
because segment C is loaded with a user load program.

Example 2 procedure

1. Determine whether the change you are making affects the code in any
application programs. If the code is affected, make sure it gets changed.

2. Unload DBX and DBY, using the existing DBDs and HD Unload utility.
3. Code a new DBD for DBY and DBZ.
4. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for these application programs. If you have
the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.
6. Recalculate database space for DBX and DBY, and calculate space for DBZ.

Figure 278. DBX and DBY exist, DBZ is to be added

Chapter 30. Modifying databases 703

7. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Run the Prereorganization utility, specifying DBIL in the control statements for
DBX, DBY and DBZ.

9. Reload DBX and DBY, using the new DBDs and the HD Reload utility.
10. Load DBZ, using an initial load program.
11. Run the Prefix Resolution utility, using the DFSURWF1 work files that are

output from Steps 9 and 10 as input.
12. Run the Prefix Update utility, using the DFSURWF3 work file that is output

from Step 11 as input.
13. Remember to make an image copy of all three databases as soon as they are

loaded.
Related tasks:
“Specifying logical relationships in the logical DBD” on page 263

Example 3. DBX and DBY exist, DBZ is to be added
In example 3, DBY must be reorganized to add the counter field to the segment C
prefix. DBIL must be specified in the control statement for DBY. DBX must be
reorganized because an initial load (DBIL) of the logical parent (segment C)
assumes an initial load (DBIL of the logical child).

Example 3 is shown in the following figure.

The procedure for this example (and all conditions and considerations) is exactly
the same as example 2.

Example 4. DBX and DBY exist, DBZ is to be added
In example 4, the procedure and all conditions and considerations are exactly the
same as for example 2.

Example 4 is shown in the following figure.

Figure 279. DBX and DBY exist, DBZ is to be added

704 Database Administration

Example 5. DBX exists, DBY is to be added
In example 5, DBX must be reorganized to add the logical child pointers in the
segment A prefix.

Example 5 is shown in the following figure.

Procedure

1. Determine whether the change you are making affects the code in any
application programs. If the code is affected, make sure it gets changed.

2. Unload DBX, using the existing DBD and the HD Unload utility.
3. Code a new DBD for DBX and DBY.
4. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for these application programs. If you have
the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.
6. Recalculate database space for DBX, and calculate space for DBY.
7. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Run the Prereorganization utility, specifying DBR in the control statement for
DBX, and DBIL in the control statement for DBY.

DBX DBY

LP

SEG A

SEG C

LC

LP
SEG B

Figure 280. DBX and DBY exist, DBZ is to be added

DBX DBY

LP

SEG A

SEG C

LC

LP
SEG B

Figure 281. DBX exists and DBY is to be added

Chapter 30. Modifying databases 705

9. Reload DBX, using the new DBD and the HD Reload utility.
10. Load DBY, using an initial load program.
11. Run the Prefix Resolution utility, using the DFSURWF1 work files that are

output from Steps 9 and 10 as input.
12. Run the Prefix Update utility, using the DFSURWF3 work file that is output

from Step 11 as input.
13. Remember to make an image copy of both databases as soon as they are

loaded.
Related tasks:
“Specifying logical relationships in the logical DBD” on page 263

Example 6. DBX and DBY exist, DBZ is to be added
In example 6, DBY must be reorganized to add the logical child pointers to the
segment C prefix.

Example 6 is shown in the following figure.

One of the following three procedures should be used to add the logical child
pointers to the segment C prefix:

Procedure when reorganizing DBY (segment B contains a symbolic
pointer)
1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.
2. Unload DBY, using the existing DBD and HD Unload utility.
3. Code a new DBD for DBY and DBZ.
4. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for these application programs. If you have
the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.
6. Recalculate database space for DBY, and calculate space for DBZ.
7. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Run the Prereorganization utility, specifying DBR in the control statement for
DBY, and DBIL in the control statement for DBZ. (The output from the
Prereorganization utility indicates that a scan of DBX is required.)

Figure 282. DBX and DBY exist, DBZ is to be added

706 Database Administration

9. Reload DBY, using the new DBD and the HD Reload utility.
10. Load DBZ, using an initial load program.
11. Run the Prefix Resolution utility, using the DFSURWF1 work files that are

output from Steps 9 and 10 as input.
12. Run the Prefix Update utility, using the DFSURWF3 work file that is output

from Step 11 as input.
13. Remember to make an image copy of both databases as soon as they are

loaded.

When DBY is reloaded, two type 00 records are produced for each occurrence of
segment C. One contains a logical child database named DBZ and matches the
type 10 record produced for segment E. The other contains a logical child database
named DBX. Because a scan or reorganization of DBX was not done, a matching 10
record was not produced for segment B. The Prefix Resolution utility produces
message DFS878 when this occurs. The message can be ignored as long as the
printed 00 record refers to DBY and DBX. Any messages for DBY and DBZ should
be investigated.

Procedure when reorganizing DBY and scanning DBX (segment B
contains a direct pointer)
1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.
2. Unload DBY, using the existing DBD and HD Unload utility.
3. Code a new DBD for DBY and DBZ.
4. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for these application programs. If you have
the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.
6. Recalculate database space for DBY, and calculate space for DBZ.
7. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Run the Prereorganization utility, specifying DBR in the control statement for
DBY, and DBIL in the control statement for DBZ. (The output from the
Prereorganization utility says that a scan of DBX is required.)

9. Run the scan utility against DBX.
10. Reload DBY, using the new DBD and the HD Reload utility.
11. Load DBZ, using an initial load program.
12. Run the Prefix Resolution utility, using the DFSURWF1 work files that are

output from Steps 9, 10, and 11 as input.
13. Run the Prefix Update utility, using the DFSURWF3 work file that is output

from Step 12 as input.
14. Remember to make an image copy of both databases as soon as they are

loaded.

Procedure when reorganizing DBX and DBY
1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.
2. Unload DBX and DBY, using the existing DBDs and HD Unload utility.
3. Code a new DBD for DBY and DBZ.

Chapter 30. Modifying databases 707

4. If the change you are making affected the code in application programs, make
any necessary changes to the PSBs for these application programs. If you have
the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.
6. Recalculate database space for DBX and DBY, and calculate space for DBZ.
7. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Run the Prereorganization utility, specifying DBR in the control statements for
DBX and DBY, and DBIL in the control statement for DBZ. (The output from
the Prereorganization utility says that a scan of DBX is required.)

9. Reload DBX and DBY, using the new DBDs and the HD Reload utility.
10. Load DBZ, using an initial load program.
11. Run the Prefix Resolution utility, using the DFSURWF1 work files that are

output from Steps 9 and 10 as input.
12. Run the Prefix Update utility, using the DFSURWF3 work file that is output

from Step 11 as input.
13. Remember to make an image copy of all three databases as soon as they are

loaded.
Related tasks:
“Specifying logical relationships in the logical DBD” on page 263

Example 7. DBX and DBY exist, DBZ is to be added
In example 7, DBY must be reorganized to add the logical child pointers to the
segment C prefix. Logical child pointers from segment C to segment B are not
unloaded, therefore, DBX must be reorganized or scanned. DBX must be
reorganized to add the logical child pointers in the segment A prefix.

Example 7 is shown in the following figure.

Procedure using scan

1. Determine whether the change you are making affects the code in any
application programs. If the code is affected, make sure it gets changed.

2. Unload DBY, using the existing DBD and HD Unload utility.
3. Code a new DBD for DBY and DBZ.

Figure 283. DBX and DBY exist, DBZ is to be added

708 Database Administration

4. If the change you are making affected the code in application programs, make
any necessary changes to the PSBs for these application programs. If you have
the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.
6. Recalculate database space for DBY and calculate space for DBZ.
7. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Run the Prereorganization utility, specifying DBR in the control statements for
DBY, and DBIL in the control statement for DBZ. (The output from the
Prereorganization utility indicates that a scan of DBX is required.)

9. Run the scan utility against DBX.
10. Reload DBY, using the new DBDs and the HD Reload utility.
11. Load DBZ, using an initial load program.
12. Run the Prefix Resolution utility, using the DFSURWF1 work files that are

output from Steps 9, 10, and 11 as input.
13. Run the Prefix Update utility, using the DFSURWF3 work file that is output

from Step 12 as input.
14. Remember to make an image copy of both databases as soon as they are

loaded.

Procedure when reorganizing DBX and DBY

1. Determine whether the change you are making affects the code in any
application programs. If the code is affected, make sure it gets changed.

2. Unload DBY and DBY using the existing DBDs and the HD Unload utility.
3. Code a new DBD for DBY and DBZ.
4. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for these application programs. If you have
the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.
6. Recalculate database space for DBX and DBY and calculate space for DBZ.
7. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Run the Prereorganization utility, specifying DBR in the control statements for
DBX and DBY, and DBIL in the control statement for DBZ. (The output from
the Prereorganization utility indicates that a scan of DBX is required.)

9. Reload DBX and DBY, using the new DBDs and the HD Reload utility.
10. Load DBZ, using an initial load program.
11. Run the Prefix Resolution utility, using the DFSURWF1 work files that are

output from Steps 9 and 10 input.
12. Run the Prefix Update utility, using the DFSURWF3 work file that is output

from Step 11 as input.
13. Remember to make an image copy of both databases as soon as they are

loaded.
Related tasks:
“Specifying logical relationships in the logical DBD” on page 263

Chapter 30. Modifying databases 709

Example 8. DBX and DBY exist, DBZ is to be added
In example 8, DBY must be reorganized to add the logical child pointers in the
segment C prefix. The procedure for this example and all conditions and
considerations are exactly the same as the procedures for example 6.

Example 8 is shown in the following figure.

Example 9. DBY exists, DBZ is to be added
DBY must be reorganized. DBZ must be loaded using an initial load program.
DBIL must be specified in the control statement for DBY. Do not specify DBR in
the control statement for DBY.

Example 9 is shown in the following figure.

Procedure

1. Determine whether the change you are making affects the code in any
application programs. If the code is affected, make sure it gets changed.

2. Unload DBY, using the existing DBD and HD Unload utility.
3. Code a new DBD for DBY and DBZ.
4. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for these application programs. If you have
the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.

Figure 284. DBX and DBY exist, DBZ is to be added

Figure 285. DBY exists, DBZ is to be added

710 Database Administration

6. Recalculate database space for DBY and calculate space for DBZ.
7. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Run the Prereorganization utility, specifying DBIL in the control statements for
DBY and DBZ.

9. Reload DBY, using the new DBDs and the HD Reload utility.
10. Load DBZ, using an initial load program.
11. Run the Prefix Resolution utility, using the DFSURWF1 work files that are

output from Steps 9 and 10 as input.
12. Run the Prefix Update utility, using the DFSURWF3 work file that is output

from Step 11 as input.
13. Remember to make an image copy of both databases as soon as they are

loaded.

Example 10. DBY exists, DBZ is to be added
In example 10, segment X might be considered a logical child if the key of segment
D is at the correct location in segment X. DBY must be reorganized, because an
initial load (DBIL) of the logical parent (segment D) assumes an initial load (DBIL)
of the logical child.

In this example, you could use symbolic or direct pointers for segment X. Do not
under any circumstances specify DBR in the control statement for DBY. If you do,
the reload utility will not generate work records for segment D; the logical child
pointer in segment D would never be resolved. The procedure for this example
(and all conditions and considerations) is exactly the same as the procedures for
example 9.

Example 10 is shown in the following figure.

Example 11. DBX and DBY exist, DBZ is to be added
In example 11, DBX and DBY must be reorganized. DBZ must be loaded using an
initial load program. Because you must specify DBIL in the control statement for
DBZ (a logical parent database), you must also specify DBIL for DBY (a logical
child database). DBY is also a logical parent database. Therefore, you must specify
DBIL in the control statement for DBX (a logical child database).

The procedure for this example and all conditions and considerations are exactly
the same as for Example 2.

Figure 286. DBY exists, DBZ is to be added

Chapter 30. Modifying databases 711

Example 11 is shown in the following figure.

Example 12. DBX and DBY exist, DBZ is to be added
In example 12, segment B has a symbolic pointer. The procedure for this example
and all conditions and considerations are exactly the same as for example 2.

Example 12 is shown in the following figure.

Example 13. DBX and DBY exist, segment Y and DBZ are to be
added
Example 13 is shown in the following figure.

Figure 287. DBX and DBY exist, DBZ is to be added

Figure 288. DBX and DBY exist, DBZ is to be added

712 Database Administration

1. Determine whether the change you are making affects the code in any
application programs. If the code is affected, make sure it gets changed.

2. Unload DBX, using the existing DBD and HD Unload utility.
3. Code a new DBD for DBY and DBZ.
4. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for these application programs. If you have
the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.
6. Recalculate database space for DBX and DBY, and calculate space for DBZ.
7. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

8. Run the Prereorganization utility, specifying DBIL in the control statements for
DBX, DBY and DBZ.

9. Reload DBX, using the new DBD and the HD Reload utility.
10. Load DBY and DBZ, using an initial load program.
11. Run the Prefix Resolution utility, using the DFSURWF1 work files that are

output from Steps 9 and 10 as input.

Figure 289. DBX and DBY exist, segment Y and DBZ are to be added

Chapter 30. Modifying databases 713

12. Run the Prefix Update utility, using the DFSURWF3 work file that is output
from Step 11 as input.

13. Remember to make an image copy of both databases as soon as they are
loaded.

Related tasks:
“Specifying logical relationships in the logical DBD” on page 263

Altering IMS logical relationships
The steps in the table below outline the steps required to add or modify logical
relationships by reorganizing a database.

The table below shows you what you need to do based on the logical relationships
and pointers you are starting from in column 1, the databases you are reorganizing
in column 2, and the logical relationships and pointers you are adding in columns
3 to 6. Column 1 is the “FROM” column. Columns 3 to 6 are the “TO” columns.

At the intersection between the existing and new logical relationships and pointers,
the table provides the following information:
v When a logically related database must be scanned
v When both sides of a logical relationship must be reorganized
v When the Prefix Resolution and Prefix Update utilities must be run

If the Prefix Resolution and Prefix Update utilities do not need to be run, the table
cell contains “finished”.

The figure applies to reorganizations only. When initially loading databases, you
must run the Prefix Resolution and Update utilities whenever work data sets are
generated.

The following table covers all reorganization situations, whether or not database
pointers are being changed. In using the figure, a bidirectional physically paired
relationship should be treated as two unidirectional relationships. Unless otherwise
specified, DBR should be specified for the reorganized databases when the
Prereorganization utility is run.

The following two examples guide you in use of the table.

Example 1: Reorganizing a database with unidirectional symbolic
pointers without changing pointers

Assume your database has unidirectional symbolic pointers and you are not
changing pointers. On the left side of the table below, in the FROM column, find
unidirectional symbolic pointers and follow the row across to the right until it
intersects with the TO column of unidirectional symbolic pointers. The figure tells
you what you must do to reorganize with one of the following:
v The database containing the logical parent
v The database containing the logical child
v Both databases, if necessary

In all three situations, it is not necessary to run the Prefix Resolution or Update
utilities (this is what is meant by “finished”).

714 Database Administration

Example 2: Changing bidirectional symbolic pointers to
bidirectional direct pointers during a reorganization

Assume your database has bidirectional symbolic pointers and you need to change
to bidirectional direct pointers. In the FROM column, find the row for bidirectional
symbolic pointers. In the TO columns, find bidirectional direct pointers. Where the
row and column intersect, the table below shows that:
v Reorganizing only the logical parent database cannot be done, because a logical

parent pointer must be created in the logical child segment in the logical child
database.

v Reorganizing the logical child database can be done. To scan the logical child
database, you must scan the logical parent database. The control statements for
the Prereorganization utility must specify DBIL for the logical child database.
Also, the Prefix Resolution and Update utilities must be run.

v Reorganizing both databases can also be done. In this case, the control
statements for the Prereorganization utility must specify DBIL for the logical
child database and DBR for the logical parent database. Again, the Prefix
Resolution and Update utilities must be run.

Table 82. Steps required to convert logical relationships and pointers during a database reorganization.

FROM: existing
logical
relationship and
pointers

Databases to be
reorganized

TO: new logical relationship and pointers

Unidirectional
symbolic pointers

Unidirectional
direct pointers

Bidirectional
symbolic pointers

Bidirectional
direct pointers

Unidirectional
with symbolic
pointers

Logical parent
database only

Finished1 Not valid,
because symbolic
LP pointers exist
now and direct
LP pointers must
be added to the
logical child
database.

1. Scan logical
child database.

2. Run prefix
resolution and
update.

Note: Logical
child segment will
not contain LT
pointers unless it
is reorganized.

Not valid,
because direct LP
and LT pointers
must be put in
the logical child
database.

Logical child
database only

Finished 1. Scan logical
parent database.

2. Run prefix
resolution and
update.

Specify DBIL for
the logical child
database.

Not valid,
because a counter
exists now and
LCF/LCL
pointers must be
put into the
logical parent
database.

Not valid,
because a counter
exists now and
LCF/LCL
pointers must be
put into the
logical parent
database.

Both databases Finished2 Run prefix
resolution and
update.

Specify DBIL for
the logical child
database and DBR
for the logical
parent database.

Run prefix
resolution and
update.

Specify DBR for
both databases.

Run prefix
resolution and
update.

Specify DBIL for
the logical child
database and DBR
for the logical
parent database.

Chapter 30. Modifying databases 715

Table 82. Steps required to convert logical relationships and pointers during a database reorganization (continued).

FROM: existing
logical
relationship and
pointers

Databases to be
reorganized

TO: new logical relationship and pointers

Unidirectional
symbolic pointers

Unidirectional
direct pointers

Bidirectional
symbolic pointers

Bidirectional
direct pointers

Unidirectional
with direct
pointers

Logical parent
database only

Not valid,
because a direct
LP pointer exists
now and symbolic
LP pointers must
be added to the
logical child
database.

1. Scan logical
child database.

2. Run prefix
resolution and
update.

Not valid,
because a direct
LP pointer exists
now and symbolic
LP pointers must
be added to the
logical child
database. LT
pointers must also
be added to the
logical child
database.

1. Scan logical
child database.

2. Run prefix
resolution and
update.

Note: Logical
child segment will
not contain LT
pointers unless
database is
reorganized.

Logical child
database only

Finished Finished Not valid,
because LCF/LCL
pointers must be
put in the logical
parent database.

Not valid,
because LCF/LCL
pointers must be
put in the logical
parent database.

Both databases Finished2 Run prefix
resolution and
update.

Run prefix
resolution and
update.

Run prefix
resolution and
update.

Bidirectional with
symbolic pointers

Logical parent
database only

Not valid,
because the
counter in the
logical parent
database will not
be resolved and
LT pointers exist
now in the logical
child database.

Not valid,
because symbolic
LP and LT
pointers exist now
and a direct LP
pointer must be
added to the
logical child
database.

1. Scan logical
child database.

2. Run prefix
resolution and
update.

Note: LCF/LCL
pointers are not
unloaded and
reloaded.

Not valid,
because a
symbolic LP
pointer exists now
and a direct LP
pointer must be
added to the
logical child
database.

Logical child
database only

Not valid,
because LCF/LCL
pointers exist now
in the logical
parent database
and a counter
must be added to
the logical parent
database.

Not valid,
because LCF/LCL
pointers exist now
in the logical
parent database
and a counter
must be added to
the logical parent
database.

1. Scan logical
parent database.

2. Run prefix
resolution and
update.

1. Scan logical
parent database.

2. Run prefix
resolution and
update.

3. Specify DBIL
for the logical
child database.

Both databases Run prefix
resolution and
update.

Specify DBIL for
the logical child
database and DBR
for the logical
parent database.

Run prefix
resolution and
update.

Specify DBIL for
the logical child
database and DBR
for the logical
parent database.

Run prefix
resolution and
update.

Run prefix
resolution and
update.

Specify DBIL for
the logical child
database and DBR
for the logical
parent database.

716 Database Administration

Table 82. Steps required to convert logical relationships and pointers during a database reorganization (continued).

FROM: existing
logical
relationship and
pointers

Databases to be
reorganized

TO: new logical relationship and pointers

Unidirectional
symbolic pointers

Unidirectional
direct pointers

Bidirectional
symbolic pointers

Bidirectional
direct pointers

Bidirectional with
direct pointers

Logical parent
database only

Not valid,
because direct LP
and LT pointers
exist in the logical
child database
and symbolic LP
pointers must be
added.

Not valid,
because the
counter in the
logical parent
database will not
be resolved and
LT pointers will
not be removed
from the logical
child database.

Not valid,
because a direct
LP pointer exists
in the logical
child database
and the change is
to symbolic LP
pointers.

1. Scan logical
child database.

2. Run prefix
resolution and
update.

Note: LCF/LCL
pointers are not
unloaded and
reloaded.

Logical child
database only

Not valid,
because LCF/LCL
pointers exists in
the logical parent
database and a
counter must be
added to the
logical parent
database.

Not valid,
because LCF/LCL
pointers exist now
in the logical
parent database
and a counter
must be added to
the logical parent
database.

1. Scan logical
parent database.

2. Run prefix
resolution and
update.

1. Scan logical
parent database.

2. Run prefix
resolution and
update.

Both databases Run prefix
resolution and
update.

Specify DBIL for
the logical child
database and DBR
for the logical
parent database.

Run prefix
resolution and
update.

Specify DBIL for
the logical child
database and DBR
for the logical
parent database.

Run prefix
resolution and
update.

Run prefix
resolution and
update.

Note:

1. The Prereorganization utility says to scan the logical child database and the
DFSURWF1 records will be produced if scan is run.

2. DFSURWF1 records are produced; however, the prefix resolution and update
utilities need not be run.

Related concepts:
“Defining sequence fields for logical relationships” on page 257

Some restrictions on modifying existing logical relationships
In some cases, the IMS utilities cannot be used to modify an existing logical
relationship. When an existing logical relationship cannot be modified, you must
write your own program.

The topics below provide examples.

Chapter 30. Modifying databases 717

Example 1: changing from bidirectional virtual to bidirectional
physical pairing
The following example shows the change in pairing from virtual to physical.

Example 2: changing the location of the real logical child in a
bidirectional logical relationship
The following figure shows the position change of a real logical child from one
logically related database to another.

Figure 290. The change in pairing from virtual to physical

718 Database Administration

In both of these “before” examples, occurrences of segment B can exist that are
physically, but not logically, deleted. The logical child can be accessed from the
logical path but not the physical path. When unloading DBX, the HD Unload
utility cannot access occurrences of segment B that are physically, but not logically,
deleted. Therefore, you must write your own program to do this type of
reorganization.

Summary on use of utilities when adding logical relationships
The following points summarize adding logical relationships with the IMS utilities.
v Counters are increased by counting logical children loaded using an initial load

program or, when logically related databases are reorganized, by using DBIL in
the control statement.

v Counter problems can be corrected by reorganizing databases. When correcting
counter problems, DBIL must be specified in the control statement for the
databases involved.

Figure 291. The position change of a real logical child from one logically related database to
another

Chapter 30. Modifying databases 719

v LCF and LCL pointers are not unloaded and reloaded. They must be recreated
by the Prefix Resolution and Update utilities.

v Unless DBIL is specified for all its logical child databases, never specify DBIL in
the control statement for a logical parent database.

v To change from symbolic to direct pointers, specify DBIL on the control
statement for the logical child database.

Converting a logical parent concatenated key from virtual to physical
or physical to virtual

You can convert a logical parent concatenated key from virtual to physical or from
physical to virtual by using DBDGEN and the HD reorganization utilities.

To convert a logical parent concatenated key from virtual to physical or from
physical to virtual:
1. Unload your database, using the existing DBD.
2. Code a new DBD, changing the concatenated key physical/virtual specification.
3. If you use prebuilt ACBs rather than dynamically built ACBs, rebuild the ACB.
4. Recalculate the database space. You need to do this because the change you are

making changes database space requirements.
5. For non-VSAM data sets, delete the old database space and define new

database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

6. If your database uses logical relationships or secondary indexes, you must run
reorganization utilities before and after reloading to resolve prefix information.

7. Reload your database using the new DBD. Remember to make an image copy
of your database as soon as it is reloaded.

8. If required, run reorganization utilities to resolve prefix information.
Related tasks:
“Offline reorganization by using the reorganization utilities” on page 618

Altering IMS indexes
You can add or remove a secondary index from a full-function or a DEDB
database.
Related concepts:
Chapter 16, “Creating secondary indexes,” on page 321
“How secondary indexes restructure the hierarchy of databases” on page 328
Related tasks:
“Dropping an index” on page 723

Adding a secondary index to a full-function database
You can add a secondary index to a full-function database to process a segment
type in a sequence other than the one defined by the key of the segment.

To add a secondary index:
1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, ensure that the code is changed.
2. Unload the database by using the existing DBD and the HD Reorganization

Unload utility.

720 Database Administration

3. Code 2 new DBDs. one for the existing database and one for the new
secondary index database.

4. If the change you are making affects the code in application programs, make
any necessary changes to the PSBs for those application programs. If you have
the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Optional: Rebuild the ACB if you have ACBs prebuilt rather than built
dynamically.

6. Delete the old database space and define new database space (non-VSAM), or
delete the space allocated for the cluster and define space for the new cluster.
In addition, define space for the secondary index.

7. Reload the existing database, using the new DBD and the HD Reorganization
Reload utility.

8. Run the Database Prefix Resolution utility, using the DFSURWF1 work file
that is output from Step 7 as input.

9. Run the HISAM Reorganization Unload utility, using the DFSURIDX work file
that is output from Step 8 as input. Indicate in the utility control statement
that HISAM unload is being used to build a secondary index.

10. Run the HISAM Reorganization Reload utility using as input the output from
HISAM unload in Step 9.

11. Change your JCL to add a DD statement for the secondary index data set even
when you are not using the secondary index to process the main database.

12. Change your reorganization procedures when adding a secondary index.
13. When you reorganize the data set the secondary index points to, you must

execute the reorganization utilities to rebuild the secondary index.
Related concepts:
Chapter 16, “Creating secondary indexes,” on page 321
“Example of defining secondary indexes” on page 353
Related reference:

Examples with secondary indexes (System Utilities)

Adding a secondary index to a new primary DEDB
You can add a secondary index to a new primary DEDB database to process a
segment type in a sequence other than the one defined by the segment's key.

To add a secondary index:
1. Create a DBD definition for a DEDB primary database that has a secondary

index defined.
2. Create a DBD definition for a Fast Path secondary index database.
3. Add the PROCSEQD= parameter with a Fast Path secondary index DBD name

in the PCB for the primary DEDB database that will be accessed through the
Fast Path secondary index database.

4. Run the DBDGEN utility with the definitions with Fast Path secondary index
defined.

5. Run the PSBGEN utility with the definitions with Fast Path secondary index
defined.

6. Run the ACB Maintenance utility with the definitions with Fast Path
secondary index defined.

7. Allocate a new data set for the area.

Chapter 30. Modifying databases 721

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_secindexexam.htm#ims_secindexexam

8. Optional: Register new DB/DBDS/ADS for the new DEDB database to DBRC.
9. Format the new area data set using DEDB Initialization utility (DBFUMIN0).

10. Create a DMB directory entry (DDIR) for the new DEDB and its secondary
index database using one of the following methods:
v Perform a MODBLKS system definition and use the ACBLIB online change

process.
v If you are using dynamic resource definition, issue the CREATE DB

command and then perform an ACBLIB or member online change.
11. Take an image copy of the new primary DEDB database.
12. Optional: For data-sharing Fast Path secondary index databases, register the

new Fast Path secondary index databases in DBRC.
13. Create an application program to load the primary DEDB database with a

Fast Path secondary index defined.
14. Run the application program to build and load both the primary DEDB

database and its Fast Path secondary index database.

Both the primary DEDB database and its Fast Path secondary index database are
available for IMS online access.
Related concepts:
Chapter 16, “Creating secondary indexes,” on page 321
Related reference:

Examples with secondary indexes (System Utilities)

Adding a secondary index to a DEDB
You can add a secondary index to an existing DEDB database to process a segment
type in a sequence other than the one defined by the segment's key.
1. Modify the DBD definition for a DEDB primary database to add secondary

index information.
2. Create a DBD definition for a Fast Path secondary index database.
3. Add the PROCSEQD= parameter with a Fast Path secondary index DBD name

in the PCB for the primary DEDB database that will be accessed through the
Fast Path secondary index database.

4. Run the DBDGEN utility with the definitions with Fast Path secondary index
defined.

5. Run the PSBGEN utility with the definitions with Fast Path secondary index
defined.

6. Run the ACBGEN utility with the definitions with Fast Path secondary index
defined.

7. For data-sharing Fast Path secondary index databases, register the new Fast
Path secondary index databases in DBRC.

8. Change the access of the primary DEDB database to “Read Only” or take the
primary DEDB database offline in preparation to build its Fast Path secondary
index database.

9. Build and load a Fast Path secondary index database. Use a tool that is offered
by IMS Tools vendors.

10. If you have not already done so, take the primary DEDB database offline
before performing an online change.

11. Create a DMB directory entry (DDIR) for the new Fast Path secondary index
database. You can create the DDIR by one of the following methods:

722 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_secindexexam.htm#ims_secindexexam

v Perform a MODBLKS system definition and use the ACBLIB online change
process.

v If you are using dynamic resource definition, issue the CREATE DB
command to create the DDIR for the new Fast Path secondary index
database and then perform an online change (ACBLIB online change or
member online change).

12. Start the primary DEDB database and its Fast Path secondary index database.

Both the primary DEDB database and its Fast Path secondary index database are
available for IMS online access.
Related concepts:
“How secondary indexes restructure the hierarchy of DEDB databases” on page
330
Chapter 16, “Creating secondary indexes,” on page 321
Related reference:

Examples with secondary indexes (System Utilities)

Dropping an index
You can remove a secondary index from a DEDB database if it is no longer
necessary.

To remove a secondary index:
1. Remove the LCHILD and XDFLD statements in the DBD for the primary

DEDB database.
2. Remove or change the FIELD statement that specifies a /CK name.
3. Delete the DBD definition for its associated Fast Path secondary index

database.
4. Delete any PSB definitions that have the PROCSEQD= parameter for the Fast

Path secondary index database.
5. Run the DBDGEN utility with the new definitions without the Fast Path

secondary index defined.
6. Run the PSBGEN utility with the new definitions without the Fast Path

secondary index defined.
7. Run the ACBGEN utility with the new definitions without the Fast Path

secondary index defined.
8. Take offline the primary DEDB database and its Fast Path secondary index

database.
9. Perform an online change to revert changes in the primary DEDB database

definition without secondary index defined.
10. Start the database on the primary DEDB database to make the database

available for IMS online access.
Related concepts:
Chapter 16, “Creating secondary indexes,” on page 321

Changing the number of data set groups
Normally, a database is physically stored on one data set or, as in HISAM, on a
pair of data sets. However, databases can be physically stored on more than one
data set or pair of data sets. If so, each data set or pair of data sets is called a data
set group.

Chapter 30. Modifying databases 723

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_secindexexam.htm#ims_secindexexam

You can change to multiple data set groups to tune your database. It is not
possible for you to specifically monitor your database to determine whether
multiple data set groups will improve performance or better utilize space. Rather,
knowledge of your application's requirements along with many types of statistics
about database use might help you make this decision.

You can use the database reorganization/load processing utilities (that is, the
HISAM Unload/Reload, HD Unload/Reload, Prefix Resolution and Prefix Update
utilities) when you change to multiple data set groups and you can use the utilities
on one or more databases concurrently. For example, you can reorganize one or
more existing databases at the same time that other databases are being initially
loaded. Any or all of the databases being operated on can be logically interrelated.
A database operation is defined as an initial database load, a database
unload/reload (reorganization), or a database scan.

If you are making additional structural changes to a HISAM database other than
introducing multiple data set groups (for example, changing the access method
from HISAM to HDAM, pointer changes, additional segments, or adding a
secondary index), you must follow a procedure similar to that shown in “Example
flow for HD databases with logical relationships or secondary indexes” on page
727.

To change the number of data set groups in your database:
1. Unload your database using the existing DBD.
2. If your database is PHDAM or PHIDAM, delete the database definition from

the DBRC RECON data sets using the HALDB Partition Definition Utility.
3. Code a new DBD.
4. Recalculate database space. You need to recalculate database space because the

change you are making will result in different requirements for database space.
5. Delete the old database space and define new database space for non-VSAM

data sets. Delete the space allocated for the old clusters and define space for
the new clusters for VSAM data sets.

6. If your new database is PHDAM or PHIDAM, run the HALDB Partition
Definition utility to define the partition data sets for the database.

7. Reallocate data sets because the number and size of data sets you are using will
change.

8. Reload your database using the new DBD. Take an image copy of your
database as soon as the database is reloaded.

9. If your database uses logical relationships or secondary indexes, you must run
reorganization utilities before and after reloading to resolve prefix information.

Related concepts:
“Multiple data set groups” on page 396

Allocating OSAM data sets (System Definition)
Related tasks:
“Estimating the minimum size of the database” on page 529
“Allocating database data sets” on page 537
“Offline reorganization by using the reorganization utilities” on page 618

724 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_sag42.htm#sag42

Example flow for simple HD databases
The process flow for making changes to simple HD databases by using the
reorganization utilities is simple compared to the process flow for HD databases
that use logical relationships or secondary indexes.

The following figure illustrates the process flow for modifying a database to use
multiple data set groups.

Reorganization

DFSURGU0

HD Unload
All Databases

Delete and
Reallocate
data sets

DBDGEN
All DBDs

Reorganization
Complete

No

Yes

Database
Changes
needed?

DFSURGL0

HD Reload

Figure 292. Flow chart of process for modifying a database to use multiple data set groups

Chapter 30. Modifying databases 725

Example flow for modifying HISAM databases with the
reorganization utilities

The following flow chart illustrates the process for using the reorganization utilities
to modify a database to use multiple data set groups.

Reorganization

Change
BLKSIZE or

LRECL?

Change
DBD?

DBDGEN utility

DBDGEN utility

Change
BLKSIZE or

LRECL?

DFSURRL0

HISAM
Reload

Reorganization
Complete

Use CHNG=
Card

No

No

No

No

Yes

Yes

Yes

Yes

CHNG=
Card Used?

DFSURUL0

HISAM
Unload

Delete and
Reallocate
Data Sets

Figure 293. Flow chart of process for modifying a HISAM database to use multiple data set
groups

726 Database Administration

Example flow for HD databases with logical relationships or
secondary indexes

If your HD database has logical relationships or secondary indexes or if you are
making additional structural changes to your database when adding multiple data
set groups, you will follow a process similar to that shown in the following figure.

The following figure illustrates the process flow for modifying a database that uses
logical relationships or secondary indexes to use multiple data set groups.

Chapter 30. Modifying databases 727

Notes to the preceding flow chart:
1. If one or more segments in any or all of the databases being operated upon is

involved in either a logical relationship or a secondary index relationship, the
YES branch must be taken. You can also use the Prereorganization utility to
determine which database operations must be performed.

2. Based upon the information given to it on control statements, the database
Prereorganization utility provides a list of databases that must be initially

Reorganization

Reorganization
Complete

DFSURGU0

HD Unload
All Databases

Delete and
Reallocate
data sets

DBDGEN utility
all DBDs

Logical
Relation-

ships?

Type of
Operation?

All
Operations
Complete?

Work
Data Sets

Generated?

Database
Initial Load

AMS

Define
Data Sets

DFSURG10

DFSURUL0 DFSURRL0

DFSURGP0

Prefix
Resolution

HISAM
Unload

Secondary
Index Exit?

HISAM
Reload

Logical
Relation-

ships?

Prefix
Update

End

User
Load

Program

Note 1

Note 2

Note 3

Note 4

Note 6

Note 7

Note 9

Note 8

Note 5

Note 10

No

No

Yes

No

Yes

No

No

Yes
Yes

Yes

Yes

No

Database
Scan

Initial
Load

Database
Reorganization

Database
Changes
needed?

DFSURGS0

Database
scan

Prereorganization

DFSURPR0

DFSURGL0

HD Reload

Figure 294. Flow chart of process for modifying a database with logical relationships or
secondary indexes to use multiple data set groups

728 Database Administration

loaded, reorganized, or scanned. You must not change the number and
sequence of databases specified on the prereorganization control statement
between reload and prefix resolution.

3. You must run the DB Scan utility before a database is unloaded when logical
parent concatenated keys are defined as virtual in the logical child database to
be unloaded.
This program should be executed against each database listed in the output of
the Prereorganization utility. A work data set can be generated for each
database scanned by this utility. Databases for scanning are listed after the
characters “DBS=” in one or more output messages of the Prereorganization
utility.

4. The HD Reorganization Reload utility can cause the generation of a work data
set to be later used by the Database Prefix Resolution utility. Databases to be
reorganized using the HD Reorganization Unload utility and the HD
Reorganization Reload utility are listed after the character “DBR=” in one or
more output messages of the Prereorganization utility.

5. The user-provided initial database load program can automatically cause the
generation of a work data set to be later used by the Prefix Resolution utility.
You do not need to add code to the initial load program for work data set
generation. Code is added automatically by IMS through the user program
issuing ISRT requests. You must, however, provide a DD statement for this
data set along with the other JCL statements necessary to execute the initial
load program. Databases for initial loading are listed after the characters
DBIL= in one or more output messages of the Prereorganization utility.

6. You must ensure that all operations indicated by the Prereorganization utility
(if it was executed) are completed prior to taking the YES branch.

7. If any work data sets were generated during any of the database operations
that were executed by you, the YES branch must be taken. The presence of a
logical relationship in a database does not guarantee that work data sets will
be generated during a database operation. The reorganization/load processing
utilities determine the need for work data sets dynamically, based upon the
actual segments presented during a database operation. If any segments that
participate in a logical relationship are loaded, work data sets will be
generated and the YES branch must be taken.
If for any specific database operation no work data set was generated for the
database, processing of that database is complete and ready to use.
When a HIDAM database is initially loaded or reorganized, its primary index
will be generated at database load time.

8. The Database Prefix Resolution utility combines the work file output from the
Database Scan utility and either the HD Reorganization Reload utility or the
user's initial database load execution, but not both, to create an output data
set, DFSURWF3, for use by the Prefix Update utility. The Prefix Update utility
then completes all logical relationships defined for the databases that were
operated upon.

9. If a secondary index needs to be created or if two secondary indexes need to
be combined, you must run the HISAM Unload/Reload utilities. After the
HISAM Unload/Reload utilities are run, if logical relationships exist in the
database, you must execute the Prefix Update utility before the reorganization
or load process is considered to be complete.

10. This area of the flowchart must be followed once for each database to be
operated upon, whether the operation consists of an initial load,
reorganization, or scan. The operations can be done for all databases
concurrently, or one database at a time. If the various database operations are

Chapter 30. Modifying databases 729

performed sequentially, work data set storage space can be saved and
processing efficiency increased if DISP=(MOD,KEEP) is specified for the
DFSURWF1 DD statement associated with each database operation. The
attributes of the work data set for the database initial load, reorganization,
and scan programs must be identical.
When using the HD Reorganization Reload utility, first do all unloads and
scans of logically related databases if logical parent concatenated keys are
defined as virtual in the logical child.

Converting to the Segment Edit/Compression exit routine
You might need to make changes to your database before you can use a Segment
Edit/Compression exit routine, such as the IMS sample exit routine DFSCMPX0.

To convert an existing database to support a Segment Edit/Compression exit
routine, follow these steps:
1. Determine whether the change you are making affects the code in any

application programs. If the code is affected, make sure it gets changed.
2. Unload your database, using the existing DBD and the HD Unload utility.
3. Code a new DBD. The new DBD must specify the name of your edit routine

for the segment types you need edited.
4. If the change you are making affected the code in application programs, make

any necessary changes to the PSBs for those application programs. If you have
the DB/DC Data Dictionary, it can help you determine which application
programs and PCBs are affected by the DBD changes you have made.

5. Rebuild the ACB if you have ACBs prebuilt rather than built dynamically.
6. Recalculate database space. You need to do this because the change you are

making results in different requirements for database space.
7. Delete the old database space and define new database space. If you are using

VSAM, use the Access Method Services DEFINE CLUSTER command to define
VSAM data sets.

8. Reload the database, using the new DBD. Remember to make an image copy of
your database as soon as it is reloaded.

9. If your database uses logical relationships or secondary indexes, you must run
reorganization utilities before and after reloading to resolve prefix information.

Related concepts:
“Segment Edit/Compression exit routine” on page 376
Related tasks:
“Offline reorganization by using the reorganization utilities” on page 618
Related reference:

Segment edit/compression exit routines (Exit Routines)

Converting databases for Data Capture exit routines and
Asynchronous Data Capture

You can convert a database for a data capture exit routine or asynchronous data
capture in for basic steps.

This topic contains General-use Programming Interface information.

730 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_dfscmpx0.htm#ims_dfscmpx0

To convert an existing database for use with Data Capture exit routines or
Asynchronous Data Capture:
1. Determine whether the change requires revisions to the logical delete rules in a

database. If so, change the delete rules, which might require reorganizing your
database.

2. Code a new DBD. On the DBD or SEGM statements, specify the name of each
exit routine you need called against a segment in the database.

3. Run DBDGEN.
4. If you use prebuilt ACBs rather than dynamically built ACBs, rebuild the ACB.
Related concepts:
“Data Capture exit routines” on page 379
Related reference:

Database Description (DBD) Generation utility (System Utilities)

Database Manager exit routines (Exit Routines)

Modifying online databases
IMS provides several methods for making changes to online IMS databases,
including dynamic resource definition support, which uses type-2 commands, the
online change function, which uses the type-1 commands, and the HALDB and
DEDB alter functions.

Each of the methods has different prerequisites and steps, and each of the methods
supports different types of database modifications.

For example, the online change function requires a MODBLKS system definition
and dynamic resource definition does not. You start the HALDB Alter function by
issuing the INIT OLREORG command, but you start the DEDB Alter function by
running the DEDB Alter utility (DBFUDA00).
Related tasks:
“Introducing databases into online systems” on page 516

Altering the definition of an online HALDB database
By specifying the ALTER option of the INITIATE OLREORG command, you can
apply certain segment or field definition changes to an online HALDB database
without stopping access to the database.

During the reorganization process, application programs that use the existing
database structure can continue to access the database. Application programs that
use the altered database structure cannot access the database until the
reorganization process is complete and you perform the online change function to
enable access to the new segment and field definitions.

The ALTER option is currently supported by the following database access types:
v PHDAM
v PHIDAM

You can use the ALTER option to make only the following changes to a database
definition:
v An increase to the length of a segment.
v The addition of new fields to existing, undefined space at the end of a segment.

Chapter 30. Modifying databases 731

|

|
|
|

|
|
|
|
|

|

|

|

|
|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdgen.htm#ims_dbdgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_dbexitroutines.htm#dbexitroutines

When the ALTER option is specified, the database is altered by the integrated
HALDB online reorganization function. Therefore, unless otherwise noted, the
procedures, guidelines, requirements, and so forth that are documented for the
integrated HALDB online reorganization function apply when altering a HALDB
database.
Related concepts:
“HALDB online reorganization” on page 642

Configuration requirements for altering an online HALDB
database
Before you can alter an online HALDB database, your IMS system must meet a
few configuration requirements.

The IMS system must be configured with the Operations Manager (OM) and
Structure Call Interface (SCI) components of the IMS Common Service Layer (CSL)
to enable a type-2 command environment. A HALDB alter operation can be
initiated only by the type-2 command INITIATE OLREORG NAME(haldbmaster)
OPTION(ALTER).

The MINVERS value of the RECON data set must be set to a version of IMS that
supports altering an online HALDB database. Consequently, a RECON data set
that supports an IMS system that uses the HALDB alter function cannot be shared
by versions of IMS that do not support the HALDB alter function.

Steps for altering an online HALDB database
The steps required for altering the structure of an online HALDB database include
modifying the database definition, performing DBD and ACB generations, issuing
the INIT OLREORG OPTION(ALTER) command, and performing the Online
Change (OLC) procedure.

The HALDB alter function uses dynamic allocation to allocate the staging ACB
library. If dynamic allocation of the staging ACB library is not already enabled, you
can enable it by using the DFSMDA macro and the IMSDALOC procedure to build
the dynamic allocation member named IMSACB.

The high-level steps required to apply database changes with the ALTER option
include:
1. Code the changes to the database structure in the SEGM and, if necessary, the

FIELD input statements of the Database Generation (DBDGEN) utility.
2. Generate the DBD members by running the DBDGEN utility with the changed

macros.
3. Generate the PSB members for the application programs that access the

database. If database versioning is enabled, you are not required to update the
PSBs of the application programs that access only prior versions of the
database.

4. Generate the ACB members into the ACB staging library by using one of the
following methods:
v If the IMS catalog is enabled in your system, run the ACB Generation and

Catalog Populate utility (DFS3UACB) to generate the ACB members and
populate the IMS catalog in a single job step.

v If the IMS catalog is not enabled in your system, run the ACB Maintenance
utility.

5. If necessary, set the ALTERSZE values in the RECON data set to alter the
OSAM block or VSAM CI sizes of the output data sets.

732 Database Administration

|
|
|
|
|

|

|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|
|

|
|

|
|

6. Issue the IMS type-2 INITIATE OLREORG OPTION(ALTER) command to
apply the changes to the online database. After the command is issued,
application programs that use the old database structure can continue to access
the database until online change is performed.

7. Enable access to the new database structure by using the member online
change procedure. A HALDB online alter operation is not complete until the
ACB members for the altered database that are in the staging library are
activated.

Related concepts:
“Coding database descriptions as input for the DBDGEN utility” on page 488
“Building the application control blocks (ACBGEN)” on page 497

Dynamically allocating the ACB staging library for ACBLIB member online
change (System Definition)
Related tasks:
“Activating database changes by using the online change function” on page 751
“Modifying block or CI sizes with HALDB alter” on page 735
Related reference:

IMSDALOC procedure (System Definition)

DFSMDA macro (System Definition)

INITIATE OLREORG command (Commands)

INITIATE OLC command (Commands)

CHANGE.PART command (Commands)

Database Description (DBD) Generation utility (System Utilities)

Application Control Blocks Maintenance utility (System Utilities)

ACB library and HALDB alter
Before you start an alter operation, you must generate the ACB members that
define the new structure of the database into the staging ACB library. These ACB
members must be maintained in the staging library until the online change
function clears the ALTER IN PROGRESS status from the database partition
records in the RECON data set.

The staging ACB library must be available to all IMS systems that share the
database and any batch application programs or utilities that access the database.
You can use a single, shared staging ACB library or multiple staging ACB libraries
with cloned copies of the ACB members that contain the database changes. You
must enable dynamic allocation and deallocation of the staging ACB library by
defining TYPE=IMSACB DFSMDA macros.

If the ACB members for the altered database are modified or deleted from the
staging library while the partition records have an ALTER IN PROGRESS status,
application programs and utilities cannot access the database and the online
change function cannot activate the new database structure. If the ACB members
are modified or deleted, you can restore access to the database and complete
online change by restoring the staging ACB library to its state at the time that alter
processing began.

Chapter 30. Modifying databases 733

|
|
|
|

|
|
|
|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dynamically_allocate_acb.htm#dynamically_allocate_acb
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dynamically_allocate_acb.htm#dynamically_allocate_acb
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_imsdalocprocedure.htm#imsdalocprocedure
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dfsmda_macro.htm#ims_dfsmda_macro
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_initiateolreorg.htm#ims_cr1initiateolreorg
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_initiateolc.htm#ims_cr1initiateolc
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_chgpart.htm#ims_cr3chgpart
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdgen.htm#ims_dbdgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_acbgen.htm#ims_acbgen

After all of the partition data sets are altered, the ACB members in the staging
library must be added to the active ACB library to enable access to the new
database structure.

To add the ACB members to the active ACB library, use the ACB member online
change function. The member online change function copies from the staging ACB
library to the active ACB library only the ACB members of the altered database.

If necessary, you can use either the local online change function or the global
online change function. However, both of these methods require you to copy the
ACB members from the staging library to the inactive ACB library before you start
the online change process. These methods also replace the entire ACB library
instead of only the altered ACB members.

Unless database versioning is enabled to allow certain application programs to
continue accessing the database without modifications, you must also activate
application programs that reference the altered segments in the database when you
activate the new ACB members.

After the ACB members are activated, the staging library is no longer required.
Related concepts:

ACB library member online change (System Administration)

Dynamically allocating the ACB staging library for ACBLIB member online
change (System Definition)
Related tasks:

Changing or adding IMS.ACBLIB members online (System Administration)

Online change and HALDB alter
The IMS online change function is required to enable access to the new structure of
a HALDB database after alter processing completes.

In addition to activating the ACB members that contain the new database
structure, the online change function clears various flags and counters in the
RECON data set. Activating the ACB members by a means other than the online
change function does not clear the flags and counters automatically.

Until the ACB members are activated and the flags and counters are cleared, the
alter procedure is not complete and the new database structure cannot be used.

Before you start the online change procedure to complete an alter operation, you
must stop access to the HALDB database by issuing either a /DBRECOVERY DB
HALDB_master_name command or an UPDATE DB NAME(HALDB_master_name)
STOP(ACCESS) command.

Use the member online change function to complete the alter procedure. The
member online change function reads directly from the staging ACB library and
can process only the specific ACB members that require activation. The local and
global online change functions require you to copy the ACB members into the
inactive ACB library. They also process the entire ACB library, instead of just the
ACB members that contain the new database changes.

In a data sharing environment, if you use local online change you must coordinate
it across all IMS systems that share the database. Because the first IMS system in
which the local online change is performed resets all of the flags and counters in

734 Database Administration

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|

|

|

|
|

|

|

|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_intro/ims_acblibgolc.htm#ims_acblibgolc
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dynamically_allocate_acb.htm#dynamically_allocate_acb
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dynamically_allocate_acb.htm#dynamically_allocate_acb
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_changingacblibmembers.htm#ims_changingacblibmembers

the RECON data set, you should issue the /DBRECOVER command for the
database in all IMS systems first and then do the local online change in each
system.
Related concepts:
“Online change and HALDB databases” on page 775

ACB library member online change (System Administration)
Related tasks:
“Activating database changes by using the online change function” on page 751

Changing or adding IMS.ACBLIB members online (System Administration)
Related reference:

INITIATE OLC command (Commands)

Modifying block or CI sizes with HALDB alter
If you are increasing the size of a segment when you are altering an online
HALDB database, you might also need to increase the OSAM block size or VSAM
CI size of the output database data set that holds the altered segment.

Note: The INITIATE OLREORG command fails if the ALTER option is specified,
but no changes to the database structure are detected in the input database
member. Consequently, you cannot change the block or CI sizes by using the
ALTER option unless you are also making a structural change to the database.

New block or CI sizes are applied to the output data sets at the start of alter
processing, but must be stored in the RECON data set before the INIT OLREORG
OPTION(ALTER) command is issued.

New block or CI sizes are stored in the RECON by specifying them on the
ALTERSZE keyword of the CHANGE.PART command.

For VSAM data sets, if output data sets for alter processing exist, the output data
sets that require a new CI size must be deleted before initiating the alter process.
Alter processing automatically re-creates the required output data sets with the
new CI sizes, unless you create them yourself. If you create the output data sets
yourself, the CI sizes must match their corresponding ALTERSZE values. If no
ALTERSZE value is specified for a given VSAM data set group and an output data
set exists, the CI size of the output data set is used. If no ALTERSZE value is
specified and an output data set does not exist, the CI size of the input data set is
used.

For OSAM data sets, if no ALTERSZE value is set, the block size of the input data
set is used, even if an output data set exists.

When you change a block or CI size, you might also need to change the size of the
buffers. If the new block or CI size does not fit into the current buffer subpool, IMS
tries to find a larger subpool among the available subpools. If none of the available
subpools are large enough to hold the new block or CI size, the output data set
fails to open. To check buffer sizes, issue the type-2 command QUERY POOL
TYPE(DBAS).
Related concepts:
“Adjusting buffers” on page 674
Related tasks:
“Steps for altering an online HALDB database” on page 732

Chapter 30. Modifying databases 735

|
|
|

|

|

|

|

|

|

|

|

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_intro/ims_acblibgolc.htm#ims_acblibgolc
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_changingacblibmembers.htm#ims_changingacblibmembers
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_initiateolc.htm#ims_cr1initiateolc

Related reference:

CHANGE.PART command (Commands)

LIST.DB command (Commands)

QUERY POOL command (Commands)

Setting ALTERSZE values for HALDB alter:

To increase the OSAM block size or VSAM CI size of the database data sets when
you are modifying the structure of a database with the HALDB alter function, you
must set ALTERSZE values for each data set group that is changing in each
partition record in the RECON data set.

To set the ALTERSZE values, you can use either DBRC command CHANGE.PART
or the HALDB Partition Definition utility (%DFSHALDB).

If you use the CHANGE.PART command to set the ALTERSZE values, the values
must be specified as positional, comma-separated values. The value in the first
position applies to the first data set group. The value in the second position
applies to the second data set group, and so on.

For example, the following ALTERSZE specification sets a new block or CI size for
the third data set group, but leaves the sizes unchanged for the first and second
data set groups, as well as for the fourth through tenth data set groups, if they
exist: ALTERSZE(,,4096).

You can determine the position in which to enter a size for a data set group by
looking at the DSGROUP keyword in the SEGM statement that defines the
segment that you are altering. DSGROUP=A indicates the first position,
DSGROUP=B, the second position, and so on, up to DSGROUP=J, which indicates
the tenth position.

To set ALTERSZE values for the output database data sets of an alter operation by
using batch DBRC commands, specify the following command.

►► CHANGE.PART DBD(name) PART(name) ▼

,

ALTERSZE(nnnnn) ►◄

After the command is successfully processed, the block or CI sizes to be used by
the alter process are listed under “ALTER BLOCK SIZE” in the RECON record for
a partition, which can be displayed by issuing the DBRC command LIST.DB
DBD(partitionname).

After the alter size values are set, you can start the alter process by issuing the IMS
type-2 command INIT OLREORG NAME(masterdb) OPTION(ALTER).
Related reference:

CHANGE.PART command (Commands)

LIST.DB command (Commands)

736 Database Administration

|

|

|

|

|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|||||||||||||||||||||||

|

|
|
|
|

|
|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_chgpart.htm#ims_cr3chgpart
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_listdb.htm#ims_cr3listdb
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_querypool.htm#ims_querypool
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_chgpart.htm#ims_cr3chgpart
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_listdb.htm#ims_cr3listdb

Changing ALTERSZE values after they are set:

To correct an ALTERSZE value that is already set, replace the incorrect value with
the correct value by using either the CHANGE.PART command or the HALDB
Partition Definition utility (%DFSHALDB).

For OSAM data sets, if you change an ALTERSZE value back to the original block
size of the input data set, the ALTERSZE value displays as 0 to indicate that the
block size is not changing. If all of the ALTERSZE values are restored to the
original block sizes of the input data sets, the ALTER SIZE field is omitted from
the output of the LIST.DB command.

For VSAM data sets, if you change an ALTERSZE value back to the original CI
size, the original CI size is displayed. If all of the ALTERSZE values are restored to
the original CI sizes of the input data sets, the ALTER SIZE field is displayed with
the last values that you entered.

You can clear all of the ALTERSZE values for a partition by specifying
CHANGE.PART PART(name) NOALTRSZ command. For both OSAM and VSAM
data sets, when the NOALTRSZ keyword is used to clear all ALTERSZE values, the
ALTER SIZE field is omitted when the partition record is displayed.

After the command is successfully processed, the block or CI sizes to be used by
the alter process are listed under ALTER BLOCK SIZE in the RECON record for a
partition, which can be displayed by the issuing DBRC command LIST.DB
DBD(partitionname).

After the alter size values are corrected, you can start the alter process by issuing
the IMS type-2 command INIT OLREORG NAME(masterdb) OPTION(ALTER).
Related reference:

CHANGE.PART command (Commands)

LIST.DB command (Commands)

Online reorganization processing when the ALTER option is
specified
When the ALTER option is specified, the INIT OLREORG command initiates a
reorganization of an entire HALDB database to apply the database changes to all
of the database partitions.

Upon receiving the INIT OLREORG OPTION(ALTER) command, an IMS system
can alter a maximum of 10 partitions concurrently. If there are more than 10
partitions, those that are processed immediately are queued and altered as soon as
processing completes for one of the partitions that were altered first.

While an IMS system reorganizes and alters a partition, the IMS system has
ownership of the partition. The subsystem ID of the IMS system that owns a
partition for alter processing is recorded in the OLRIMSID field of the partition
record.

In a data-sharing environment, ownership of a partition is granted to the first IMS
system that is available to alter the partition. If one IMS system is available to
process ten partitions before any other IMS system becomes available, all ten
partitions are processed by the single IMS system. If a partition is queued for alter
processing, the partition will be processed by the first IMS system that can obtain
ownership of the partition.

Chapter 30. Modifying databases 737

|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|

|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_chgpart.htm#ims_cr3chgpart
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_listdb.htm#ims_cr3listdb

When alter processing starts, IMS updates the RECON records for every partition
in the database with ALTER IN PROGRESS=YES, including for those partitions
that are queued. While an IMS system is actively altering a partition, the partition
record shows OLREORG CURSOR ACTIVE=YES.

After alter processing is complete for a partition, the partition record to shows
PARTITION ALTERED=YES.

Only after all partitions in the database have a status of PARTITION
ALTERED=YES can you perform online change to activate the new database
structure. The online change function resets both the ALTER IN PROGRESS field
and the PARTITION ALTERED fields to NO.
Related concepts:
“HALDB online reorganization” on page 642
Related reference:

INITIATE OLREORG command (Commands)

DB (HALDB) record fields (Commands)

DB (PART) record fields (Commands)

Sample listing of a RECON data set at the active site (Commands)

LIST.DB command (Commands)

HALDB alter and offline reorganization
After starting HALDB alter on a database, if the alter operation is terminated, you
can complete the application of the DBD changes to the database by using the
offline reorganization process.

Before you start the offline reorganization, access to the database must be stopped
by issuing either the IMS type-2 command UPDATE DB NAME(partition_name)
STOP(ACCESS) command or the IMS type-1 command /DBRECOVERY.

An offline reorganization is performed by unloading the database with the HD
Reorganization Unload utility (DFSURGU0) and then reloading the database with
the HD Reorganization Reload utility (DFSURGL0).

The HD Reorganization Unload utility automatically unloads the records from the
active portions of both the A–J and M–V data sets. The IMS DD statement in the
execution JCL of the HD Reorganization Unload utility must reference the DBD
library that contains the original, unaltered DBD of the database, regardless of
whether some or all of the database segments have been altered by the HALDB
alter function.

The execution JCL for the HD Reorganization Reload utility (DFSURGL0) also
must contain an IMS DD statement that references the DBD library that contains
original, unaltered DBD of the database.

The altered DBD is in the staging ACB library. If you have dynamic allocation
enabled for the staging ACB library, a DD statement for the staging ACB library is
not required for either utility.

The HD Reorganization Reload utility loads all records into the A–J data sets. If the
HALDB alter function was writing to the M–V data sets, the characteristics of the
A–J data sets might not be correct. Before you reload the database, ensure that the

738 Database Administration

|
|
|
|

|
|

|
|
|
|

|

|

|

|

|

|

|

|

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_initiateolreorg.htm#ims_cr1initiateolreorg
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_fieldsrecon_dbhaldb.htm#ims_cr3fieldsrecon_dbhaldb
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_fieldsrecon_dbpart.htm#ims_cr3fieldsrecon_dbpart
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_sampreconactv_13.htm#ims_cr3sampreconactv
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_listdb.htm#ims_cr3listdb

A-J data sets are allocated enough storage for the altered segment sizes and, if you
are altering VSAM data sets, that the VSAM CI sizes of the A–J data sets are
correct.

After the database is reloaded, perform the online change function to enable the
altered database in the online system and to reset the HALDB alter flags and
counters in the RECON data set.

After online change is performed, you can restart the database.
Related tasks:
“HALDB offline reorganization” on page 637
“Offline Reorganizations after HALDB Online Reorganizations” on page 663
Related reference:

HD Reorganization Unload utility (DFSURGU0) (Database Utilities)

HD Reorganization Reload utility (DFSURGL0) (Database Utilities)

Altering shared HALDB databases
In a data-sharing environment, alter processing can be distributed among multiple
IMS systems by routing the INIT OLREORG OPTION(ALTER) command to each
of the participating IMS systems.

All of the IMS systems that participate in the alter operation read the database
changes from members in the staging ACB library. The staging ACB library can be
shared or each of the IMS systems can have its own staging ACB library. However,
if the staging ACB library is not shared, the ACB members that are used by each
IMS system must be copies that are created by the same execution of the ACB
Maintenance utility.

Recommendation: If possible, have each participating IMS system allocate the
same shared staging ACB library.

When the alter operation begins, all of the IMS systems in the IMSplex issue
message DFS3197I to acknowledge the start of alter processing, even if the IMS
systems do not access the database that is being altered.

During the alter operation, no IMS system can initiate either another alter
operation of the database that is being altered or a HALDB online reorganization
of the database that is being altered.

Each IMS system issues message DFS3198I when it stops altering the partitions
that it started. In a data sharing environment, IMS systems can issue one of two
versions of DFS3198I: DFS3198I HALDB ALTER ENDED... or DFS3198I HALDB ALTER
COMPLETED.... An IMS system issues DFS3198I HALDB ALTER ENDED... if either alter
processing was interrupted or one or more of the partitions in the HALDB
database were altered by another IMS system. The other IMS systems might or
might not have finished altering the partitions that they started. An IMS system
issues DFS3198I HALDB ALTER COMPLETED... if it altered all of the partitions in the
HALDB database itself and alter processing is complete for all of the partitions in
the database.

Use member online change to activate the ACB members in the staging ACB
library for all of the IMS systems that share the database.

Chapter 30. Modifying databases 739

|
|
|

|
|
|

|

|

|

|

|

|

|

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dfsurgu0.htm#ims_dfsurgu0
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dfsurgl0.htm#ims_dfsurgl0

If you use either global or local online change, after alter processing is complete
and before online change is performed, the ACB members that contain the
database changes must be copied into the inactive ACB library that is used by each
IMS system.

Recommendation: Do not use local online change in a data sharing environment
to activate the ACB members after alter processing.

HALDB alter and batch processing
Batch application programs and batch utilities can access a HALDB database while
the database is being reorganized by the HALDB alter function.

Batch application programs

Batch application programs can access a HALDB database while a HALDB alter
operation is in progress without requiring any changes to their existing execution
JCL. However, until the online change function completes the alter operation, IMS
still requires the original, unaltered database definition for comparison purposes,
even if all of the segment data in the database already conforms to the new
database definition. Consequently, DLIBATCH application programs must reference
the DBD library that contains the original, unaltered DBD on the IMS DD
statement in the execution JCL. DBBBATCH application programs must reference
the active ACB library that contains the original, unaltered database definition on
the IMSACB DD statement. If you have dynamic allocation of the staging ACB
library enabled, a DD statement for the staging ACB library that contains the new,
altered database definition is not required.

Batch utilities

Batch utilities can access a HALDB database while a HALDB alter operation is in
progress. However, until the online change function completes the alter operation,
IMS requires the original, unaltered database definition for comparison purposes,
regardless of whether some or all of the segment data in the database already
conforms to the new database definition.

Consequently, the IMS DD statement in the execution JCL for the utility must
reference the DBD library that contains the original, unaltered database definition
until online change is performed.

If you have dynamic allocation of the staging ACB library enabled, a DD statement
for the staging ACB library that contains the new, altered database definition is not
required.

If the HD Reorganization Reload utility is used to complete the reorganization of
one or more partitions in a HALDB database for which the HALDB alter function
was started, but the online change function has not been performed to complete
the alter process, the execution JCL of the HD Reorganization Reload utility must
include an IMS DD statement that references the DBD library that contains the
original, unaltered DBD.
Related reference:

DBBBATCH procedure (System Definition)

DLIBATCH procedure (System Definition)

HD Reorganization Reload utility (DFSURGL0) (Database Utilities)

740 Database Administration

|
|
|
|

|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dbbbatch_procedure.htm#ims_dbbbatch_procedure
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_dlibatch_procedure.htm#ims_dlibatch_procedure
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dfsurgl0.htm#ims_dfsurgl0

Querying the status of ALTER processing for HALDBs
To determine whether alter processing is complete when altering the structure of
an online HALDB database, you can use the IMS type-2 command QUERY
OLREORG NAME(partname | *) STATUS(ALTER | ALTINPRG | ALTDONE).

You can issue the command for one, some, or all partitions in a HALDB database.

If you specify NAME(*) on the command with STATUS(ALTER), IMS returns the
alter status of all of the partitions in the database. If you specify NAME(*) with
either STATUS(ALTINPRG) or STATUS(ALTDONE), IMS returns only the partitions
in the database with the specified status.

If you specify the name of one or more partitions, IMS returns the alter status of
only the specified partitions.

A partition in a HALDB that is being altered can be in the following states:

ALTINPRG
Indicates that the partition is either currently being altered or is queued for
altering.

ALTDONE
Indicates that alter processing is complete for the partition. The ALTER
COMPLETE status of a partition remains in effect until Online Change is
performed to activate the ACB members for the new database structure.

ALTINQUE
Indicates that alter processing has not yet started for the partition.

To query the status of an alter operation on an online HALDB database, issue the
type-2 command QUERY OLREORG NAME(partname | *) STATUS(ALTER |
ALTINPRG | ALTDONE).

Stopping alter processing before completion
You can stop alter processing of a HALDB database before it is complete by
issuing the TERMINATE OLREORG command.

You can issue either the type-1 or type-2 version of the TERMINATE OLREORG
command; however, only the type-2 version of the command can be issued to
multiple IMS systems. The type-1 command is processed by only the local IMS
system on which it is issued.

The TERMINATE OLREORG command does not support the specification of the
name of a HALDB master database. To stop alter processing for the entire HALDB
database, you specify a wildcard character in place of the partition names or you
can specify the names of all of the partitions in the database explicitly. If multiple
IMS systems are altering the database, you must use the type-2 TERMINATE
OLREORG command to stop all of the IMS systems at once or issue the type-1
command separately on each IMS system.

When alter processing is stopped for a subset of the partitions in the database,
alter processing continues for the other partitions that are not contained within the
specified subset.

When alter processing is stopped, the data in the partition might be physically
stored in both the input and output data sets. The output data sets conform to the
altered database structure. The input data sets conform to the old database

Chapter 30. Modifying databases 741

|
|
|
|

|

|
|
|
|

|
|

|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

structure. However, where the data is physically stored is not apparent to
application programs. Until alter processing completes and online change is
performed, application programs can access the data only in the old database
structure.

Until all of the partitions in the HALDB database are altered and online change is
performed, only application programs that use the unaltered database structure can
access the database.
v To stop alter processing for one or more partitions of a HALDB database, issue

the TERMINATE OLREORG NAME(partnm | *) command.
v To resume alter processing, issue the INITIATE OLREORG OPTION(ALTER)

command.
Related concepts:
“The termination phase for HALDB Online Reorganization” on page 646
Related tasks:
“Stopping HALDB Online Reorganization” on page 656
Related reference:

INITIATE OLREORG command (Commands)

TERMINATE OLREORG command (Commands)

Altering a HALDB database that has logical relationships
If a HALDB database is logically related to another database, you can use the
HALDB online alter function to modify any segment in the database except for
logical parent or logical child segments.

If you need to alter a segment that is a logical parent or logical child, you must
take both databases offline so that you can apply the changes to both databases at
the same time by using the HD Reorganization Unload utility (DFSURGU0) and
the HD Reorganization Reload utility (DFSURGL0). The online alter function for
HALDB databases can apply changes to only one database at a time.

Altering a HALDB database that has a secondary index
If a HALDB database is indexed by one or more secondary indexes, you can use
the HALDB online alter option to modify the database; however, you cannot use
the HALDB online alter option to alter the secondary indexes.

Altering the definition of an online DEDB database with the
DEDB Alter utility

You can alter the database or area definitions of DEDB databases that use
two-stage randomizers while the DEDB area or the DEDB database remains
accessible online with the DEDB Alter utility (DBFUDA00).

If you are to use the DEDB Alter utility, set ALTERHLQ as the default in the Fast
Path section of the DFSDFxxx member of the PROCLIB data set.

If more than one IMS is involved, you must set ALTERGRP in the Fast Path section
of the DFSDFxxx member of the PROCLIB data set.

Requirements:

v A two-stage randomizer must be used, which enables areas to be processed
individually.

742 Database Administration

|
|
|
|

|
|
|

|
|

|
|

|

|

|

|

|

|

|

|
|
|
|

|
|
|
|
|

|
|
|
|

|

|

|
|
|

|
|

|
|

|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_initiateolreorg.htm#ims_cr1initiateolreorg
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_terminateolreorg.htm#ims_cr2terminateolreorg

v All IMS data sharing systems must be at IMS Version 13 or later. The MINVERS
value in the RECON data set must be 13.1 or later.

v The DEDB databases must be registered to DBRC.
v If the active IMS system in an XRF pair participates in the altering of a DEDB

database, both the active and tracking IMS systems in the XRF pair must share
the same ACB library.

v If an IMS system that is tracked by an FDBR region participates in the altering
of a DEDB database, both the tracked IMS system and the FDBR region must
share the same ACB library.

The DEDB Alter function supports both single and multiple area data sets (ADS).
You have control over the output of the DEDB Alter function as either single or
multiple ADSs depending on the number of shadow area data sets that you define
to DBRC for the DEDB database.

The DEDB Alter function does not support DEDB databases that are in Fast Path
Virtual Storage Option (VSO) or Shared Virtual Storage Option (SVSO) mode.
DEDB databases using the VSO or SVSO option must first be unloaded to DASD
using the /VUNLOAD command before running the DEDB Alter utility.
Related reference:

DEDB Alter utility (DBFUDA00) (Database Utilities)

Altering the size attributes of an active DEDB area with the
DEDB Alter utility
You can alter the DEDB area definitions of the SIZE, UOW, and ROOT parameters
for an active DEDB area to increase the size of the DEDB area while the DEDB
area remains accessible online by using the DEDB Alter utility (DBFUDA00).
1. Update the AREA statement with any changes to the SIZE, UOW, and ROOT

parameters, as necessary. See AREA statement (System Utilities) for parameter
descriptions.

2. Run the DBDGEN utility with the updates to the SIZE, UOW, and ROOT
parameters to alter the new DEDB DBD definitions for the active DEDB area.

3. Run the ACBGEN utility for all PSBs that reference the changed DEDB DBD
definitions to the staging ACBLIB.
If you are using the IMS catalog, use one the following methods to update it
after the DEDB Alter utility finishes:
v Run both the ACB Maintenance utility and the IMS Catalog Populate utility

(DFS3PU00).
v Run the IMS catalog ACBGEN utility (DFS3UACB), which builds the ACBs

and populates the IMS catalog in a single job step.
4. Allocate one or more shadow DEDB area data sets for an active DEDB area to

be altered:
v Allocate two to six new shadow DEDB area data sets if an active DEDB area

is defined as multiple area data sets. The DEDB Alter utility supports six
shadow DEDB area data sets, because one shadow image copy data set is
required. If you need seven area data sets for multiple area data sets, run the
DEDB Create utility to create the seventh area data set after the DEDB Alter
utility finishes.

v You can change from single area data set to multiple area data sets at DEDB
Alter processing:
– Allocate two to six new shadow DEDB area data sets if it is to change to

multiple area data sets.

Chapter 30. Modifying databases 743

|
|

|

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|

|

|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|

|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dbfuda00.htm#ims_dbfuda00
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_areastmt.htm#ims_areastmt

– The DEDB Alter utility supports six shadow DEDB area data sets, because
one shadow image copy data set is required.

v You can change from multiple area data sets to single area data set at DEDB
Alter processing:
– Allocate one new shadow DEDB area data set if it is to change to single

area data set.
The VSAM control interval size must match the SIZE= parameter on the AREA
statement for the active DEDB area to be altered in the new DEDB DBD
definitions.

5. Register the shadow data sets that were allocated in step 4 on page 743 for an
active DEDB area to be altered to DBRC by using the DBRC INIT.ADS
command with the SHADOW option. One must be registered as a SHADOW
IC dataset with DBRC. The shadow area data sets are unavailable until the
DEDB Alter utility is run to replace the active area data sets with the shadow
area data sets:
INIT.ADS ADDN(name) ADSN(name) AREA(name) DBD(name) SHADOW

The ADDN(name) for the data sets’ ddname and ADSN(name) for the data sets’
dsname must be unique for each shadow area data set, and they must be
different from those of its associated active area data set.

6. For the active DEDB area to be altered, format the data sets with the updated
DEDB area definitions. Use the DEDB Initialization utility (DBFUMIN0) with
the SHADOW control statement to format the data sets in the staging ACBLIB.
After the DEDB Initialization utility runs, these shadow DEDB area data sets
remain inaccessible to IMS online system but are marked available in DBRC
under the 'SHADOW ADS LIST:'

7. Register one of the shadow area data sets, which was allocated in step 4 on
page 743, as a shadow image copy data set for an active DEDB area to be
altered to DBRC. Use the DBRC INIT.ADS command with SHADOW and IC
options to register the shadow image copy data set. The shadow image copy
data set is unavailable until the DEDB Alter utility is run to replace the active
DEDB area data sets with the shadow area data sets. The image copy is created
by the DEDB Alter utility during execution.
INIT.ADS ADDN(name) ADSN(name) AREA(name) DBD(name) SHADOW IC

The ADDN(name) for the shadow image copy data set's ddname and
ADSN(name) for the shadow image copy data set's dsname must be different
from those of its associated area data set.

8. Format one shadow image copy data set for the active DEDB area to be altered
with the updated DEDB area definitions for the DEDB database associated with
the active DEDB area to be altered in the staging ACBLIB using the DEDB
Initialization utility (DBFUMIN0).
After the DEDB Initialization utility runs, the shadow image copy data set
remains inaccessible to IMS online systems.
You can format shadow area data sets and shadow image copy data sets for a
DEDB area to be altered in one DEDB Initialization utility execution.

9. Run the DEDB Alter utility using the ALTERAREA function to alter an active
DEDB area while the DEDB area remains accessible online.

After successful completion of the ALTERAREA of the DEDB Alter utility, the
shadow area data sets are promoted to the active area data sets. The old active
area data set is demoted to the shadow area data set, and is no longer accessible to
IMS online systems.

744 Database Administration

|
|

|
|

|
|

|
|
|

|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|
|
|

You can delete the old active DEDB area data set in DBRC at a later time when
you no longer have a need for the old active DEDB area data set using the
DELETE.ADS command.
DELETE.ADS ADDN(name) AREA(name) DBD(name)

The ADDN(name) is the ddname of the old active area data set.
Related reference:

DEDB Alter utility (DBFUDA00) (Database Utilities)

DEDB Initialization utility (DBFUMIN0) (Database Utilities)

AREA statement (System Utilities)

FIELD statements (System Utilities)

SEGM statements (System Utilities)

ACB Generation and Catalog Populate utility (DFS3UACB) (System Utilities)

INIT.ADS command (Commands)
Related information:

Changing a randomizer when altering an active DEDB area with
the DEDB Alter utility and IMS generation utilities
Instead of using the REPLRAND function of the DEDB Alter utility (DBFUDA00),
you can also change the randomizer name for an active DEDB with the
ALTERAREA function. Only two-stage randomizers can be used with DEDB Alter.
The randomizer must not alter the data location of existing areas in the DEDB.
This function allows the renaming of a randomizer or preparation for adding new
DEDB areas in the future.

When changing a randomizer, the DEDB Alter utility's ALTERAREA function
supports DEDB databases without sequential dependent (SDEP) segments defined.

When changing a randomizer, the DEDB Alter utility's REPLRAND function
supports DEDB databases with or without SDEP segments defined.
1. Prepare for altering the DEDB randomizer online using ALTERAREA:

a. Assemble and link-edit the changed randomizer into the IMS SDFSRESL or
one of the libraries of the IMS SDFSRESL STEPLIB concatenation.

b. Specify the name of the new two-stage randomizer on the RMNAME
parameter in the definition of the DEDB database that is associated with the
DEDB area to be altered.

c. Alter the SIZE, UOW, and ROOT parameters on the AREA statement for the
active DEDB area to be altered in the DEDB DBD definitions.

d. Run the DBDGEN utility with the updated SIZE, UOW, and ROOT
parameters to alter the new DEDB DBD definitions for an active DEDB
area, and the updated RMNAME.

e. Run the ACBGEN utility for all PSBs that reference the changed DEDB DBD
definitions to the staging ACBLIB.

f. Allocate one or more shadow DEDB area data sets for an active DEDB area
to be altered.
v Allocate one new shadow DEDB area data set if the active DEDB area is

defined as a single area data set.

Chapter 30. Modifying databases 745

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|

|
|

|
|

|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dbfuda00.htm#ims_dbfuda00
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dbfumin0.htm#ims_dbfumin0
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_areastmt.htm#ims_areastmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_fieldstmt.htm#ims_fieldstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_segmstmt.htm#ims_segmstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_catalog_dfs3uacb.htm#ims_catalog_dfs3uacb
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_initads.htm#ims_cr3initads

v Allocate two to six new shadow DEDB area data sets if the active DEDB
area is defined as multiple area data sets. The DEDB Alter utility supports
six shadow DEDB area data sets, because one shadow image copy data set
is required. If you need seven area data sets for multiple area data sets,
run the DEDB Create utility to create the seventh area data set after the
DEDB Alter utility finishes.

You can change from single area data set to multiple area data sets at DEDB
Alter processing:
v Allocate two to six new shadow DEDB area data sets if it is to change to

multiple area data sets.
v The DEDB Alter utility supports six shadow DEDB area data sets, because

one shadow image copy data set is required.
You can change from multiple area data sets to single area data set at DEDB
Alter processing: allocate one new shadow DEDB area data set if it is to
change to single area data set.
The VSAM control interval size must match the SIZE= parameter on the
AREA statement for the active DEDB area to be altered in the new DEDB
DBD definitions.

g. Register one or more shadow DEDB area data sets for an active DEDB area
to be altered to DBRC using the DBRC INIT.ADS command with the
SHADOW option. The shadow DEDB area data sets are unavailable until
the DEDB Alter utility is run to replace the active DEDB area data sets with
the shadow DEDB area data sets.
INIT.ADS ADDN(name) ADSN(name) AREA(name) DBD(name) SHADOW

The ADDN(name) for the shadow area data set's ddname and the
ADSN(name) for the shadow area data set's dsname must be unique for
each shadow area data set, and they must be different from those of the
associated active area data set.

h. Format one or more shadow DEDB area data sets for the active DEDB area
to be altered with the updated SIZE, UOW, and ROOT DEDB area
definitions for the DEDB database associated with the active DEDB area to
be altered in the staging ACBLIB using the DEDB initialization utility
(DBFUMIN0). After the DEDB Initialization utility runs, the shadow DEDB
area data sets remain inaccessible to IMS online systems.

i. Register one of the shadow area data sets, which was allocated in step 1f on
page 745, as a shadow image copy data set for an active DEDB area to be
altered to DBRC. Use the DBRC INIT.ADS command with SHADOW and IC
options to register the shadow image copy data set. The shadow image copy
data set is unavailable until the DEDB Alter utility is run to replace the
active DEDB area data sets with the shadow DEDB area data sets.
INIT.ADS ADDN(name) ADSN(name) AREA(name) DBD(name) SHADOW IC

The ADDN(name) for the shadow image copy data set's ddname and the
ADSN(name) for the shadow image copy data set's dsname must be
different from those of the associated active area data set.

j. Format one shadow image copy data set for the active DEDB area to be
altered with the updated SIZE, UOW, and ROOT DEDB area definitions for
the DEDB database associated with the active DEDB area to be altered in the
staging ACBLIB using the DEDB Initialization utility (DBFUMIN0).
After the DEDB Initialization utility runs, the shadow image copy data set
remains inaccessible to IMS online systems.
You can format shadow area data sets and shadow image copy data sets for
a DEDB area to be altered in one DEDB Initialization utility execution.

746 Database Administration

|
|
|
|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|

|
|
|
|

|
|

|
|

2. Perform the following steps to alter a DEDB randomizer of a DEDB database
online:
a. Assemble and link-edit the changed randomizer into the IMS SDFSRESL or

one of the libraries of the IMS SDFSRESL STEPLIB concatenation.
b. Alter the RMNAME parameter on the DBD statement with a different

two-stage DEDB randomizer name for the DEDB database that is associated
with the active DEDB area to be altered in the DEDB DBD definitions.

c. Run the DBDGEN utility with the new, altered DEDB AREA statement and
the randomizer change in the DEDB DBD statement that are in the DEDB
DBD definitions.

d. Run the ACBGEN utility for all PSBs that reference the changed DEDB DBD
definitions to the staging ACBLIB.

3. Run the DEDB Alter utility using the ALTERAREA function to alter an active
DEDB area with randomizer change while the DEDB area remains accessible
online. The DEDB Alter utility alters one active DEDB area with randomizer
change when the utility is run. The DEDB randomizer is altered as part of the
ALTERAREA function of the DEDB Alter utility. The randomizer change does
note impact the distribution of data across the DEDB areas that are not altered
by the DEDB Alter utility for the DEDB database randomizer to be altered. The
new randomizer is not shared with other DEDB databases unless it is an
existing randomizer for other DEDB databases.
After the DEDB Alter utility has run successfully, the shadow area data set is
promoted to the active area data set. The old active area data set is demoted to
the shadow area data set. The old active area data set is not accessible to IMS
online systems any longer.
You can delete the old active DEDB area data set in DBRC at a later time when
you no longer have a need for the old active DEDB area data set using the
DELETE.ADS command.
DELETE.ADS ADDN(name) AREA(name) DBD(name)

The ADDN(name) is the ddname of the old active area data set.
4. If you are using the IMS Catalog, use one the following methods to update it

after the DEDB Alter utility finishes:
v Run both the ACB Maintenance utility and the IMS Catalog Populate utility

(DFS3PU00).
v Run the IMS Catalog ACBGEN utility (DFS3UACB), which builds the ACBs

and populates the IMS Catalog in a single job step.
Related reference:

DEDB Alter utility (DBFUDA00) (Database Utilities)

DEDB Initialization utility (DBFUMIN0) (Database Utilities)

AREA statement (System Utilities)

DBD statements (System Utilities)

FIELD statements (System Utilities)

SEGM statements (System Utilities)

IMS Catalog Populate utility (DFS3PU00) (System Utilities)

ACB Generation and Catalog Populate utility (DFS3UACB) (System Utilities)

INIT.ADS command (Commands)

Chapter 30. Modifying databases 747

|
|

|
|

|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|

|

|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dbfuda00.htm#ims_dbfuda00
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dbfumin0.htm#ims_dbfumin0
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_areastmt.htm#ims_areastmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdstmt.htm#ims_dbdstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_fieldstmt.htm#ims_fieldstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_segmstmt.htm#ims_segmstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_catalog_pop_utility.htm#ims_catalog_pop_utility
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_catalog_dfs3uacb.htm#ims_catalog_dfs3uacb
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/compcmds/ims_initads.htm#ims_cr3initads

Replacing an active DEDB database randomizer online with the
DEDB Alter utility
You can replace an active DEDB database randomizer while the DEDB database
remains accessible online by using the REPLRAND function of the DEDB Alter
utility (DBFUDA00). The DEDB Alter utility's randomizer change supports DEDB
databases with and without SDEP segments defined.

If the DEDB randomizer has been changed as part of the ALTERAREA function
and you want to change back to the original DEDB randomizer name, run the
DEDB Alter utility using the REPLRAND function. Doing so changes the new
randomizer name to the original DEDB randomizer name after the DEDB Alter
ALTERAREA function finishes.
1. Prepare for replacing the DEDB randomizer online

a. Assemble and link-edit the changed randomizer into the IMS SDFSRESL or
one of the libraries of the IMS SDFSRESL STEPLIB concatenation.

b. Alter the RMNAME parameter on the DBD statement with a different
two-stage DEDB randomizer name for the DEDB database associated with
the active DEDB area to be altered in the DEDB DBD definitions.

c. Run the DBDGEN utility with the RMNAME parameter on the DBD
statement in the DEDB DBD definitions.

d. Run the ACBGEN utility for all PSBs that reference the changed DEDB DBD
definitions to the staging ACBLIB.

2. Run the DEDB Alter utility using the REPLRAND function to replace a
randomizer while the DEDB database remains accessible online.

3. If you are using the IMS Catalog, use one the following methods to update it
after the DEDB Alter utility finishes:
v Run both the ACB Maintenance utility and the IMS Catalog Populate utility

(DFS3PU00).
v Run the IMS Catalog ACBGEN utility (DFS3UACB), which builds the ACBs

and populates the IMS Catalog in a single job step.

After the DEDB Alter utility completes successfully, the new randomizer replaces
the old randomizer for the DEDB database while the DEDB database remains
accessible online.
Related reference:

DEDB Alter utility (DBFUDA00) (Database Utilities)

DBD statements (System Utilities)

FIELD statements (System Utilities)

SEGM statements (System Utilities)

Changing databases dynamically in online systems
Dynamic resource definition allows you to add new databases to an online IMS
system, update certain attributes of the database online, or remove databases from
the online IMS system without requiring you to shut IMS down or perform any of
the system definition process.

To use dynamic resource definition, the feature must be enabled in your IMS
system.

748 Database Administration

|
|
|
|
|
|

|
|
|
|
|

|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|

|

|

|

|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dbfuda00.htm#ims_dbfuda00
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdstmt.htm#ims_dbdstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_fieldstmt.htm#ims_fieldstmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_segmstmt.htm#ims_segmstmt

The type-2 commands that support changing databases by using dynamic resource
definition include:
v CREATE DB
v DELETE DB
v UPDATE DB

By using the QUERY DB command, you can display the database attributes that
can be changed by the other commands.

Dynamic resource definition also allows you to define and store database resource
descriptors, which can be used as a template to create new databases with
common attributes. For example, when adding a database to an online system by
using the CREATE DB command, instead of specifying each attribute individually,
you can specify CREATE DB NAME(db_name) LIKE(DESC(db_desc_name)). The LIKE()
parameter can also be used to create new databases based on existing databases or
database descriptors.

To save changes made to databases online by using dynamic resource definition
across cold starts, the database definitions must be either exported to the resource
definition data set (RDDS) or the IMSRSC repository if IMS is enabled with the
repository, or added to the IMS MODBLKS data set by system definition and then
imported during cold start. Across warm starts and emergency restarts, IMS
recovers dynamic resource definition changes from the logs.

If IMS is enabled to use the IMSRSC repository, resource definitions in the IMS
change list are read at the end of warm or emergency restart. IMS calls the
Resource Manager (RM) to read the change list for the IMS. The IMS change list is
maintained by RM in the repository.

If a change list exists, IMS imports the stored resource definitions from the
IMSRSC repository for all the resources and descriptors in the change list. The IMS
change list is processed after the IMS log is processed. The resources and
descriptors in the change list are quiesced and are not available for use until the
stored resource definitions are imported from the repository. The change list for the
IMS system is deleted at the end of warm or emergency restart or at the end of
IMS cold start.
Related concepts:

Resource lists for the IMSRSC repository (System Definition)

Overview of the IMSRSC repository (System Definition)
Related tasks:
“Introducing databases into online systems” on page 516

Changing database attributes dynamically in an online IMS
system
You can change the attributes and status of an online database by using the
UPDATE DB command.

For example, the UPDATE DB command can make a database available, take the
database offline, stop scheduling, stop updates, lock, and unlock a database. You
must stop access to databases before changing their attributes.

Chapter 30. Modifying databases 749

|
|
|
|

|
|
|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_overview_of_repo_resourcelists.htm#imsrepositoryoverview_resourcelists
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sdg/ims_overview_of_repo.htm#imsrepositoryoverview

You can specify multiple database names on the UPDATE DB command. Each
named database is processed individually and if the processing fails for an
individual database, IMS returns a condition code for the individual database that
explains the failure.

To view the current attributes and status of a database, issue the QUERY DB
command.

By using the UPDATE DB command, you can:
v Start and stop databases, partitions, and DEDB areas
v Set the access type for databases
v Change the RESIDENT attribute of a database
v Lock or unlock a database
v In IMSplex environments, set the global status of a database

The changes to the definitional attributes of an online database are not saved
across a cold start of IMS unless the database definitions are exported to the
resource definition data set (RDDS) or the IMSRSC repository.

Database definitions can be exported to an RDDS or the repository by using the
EXPORT DEFN command. In addition, IMS can be configured to export the
definitions automatically to an RDDS during system checkpoints. You can enable
automatic export by specifying AUTOEXPORT=AUTO or AUTOEXPORT=RDDS in
the DYNAMIC_RESOURCES section of the DFSDFxxx member in the IMS
PROCLIB data set.
Related reference:

UPDATE DB command (Commands)

QUERY DB command (Commands)

Removing databases dynamically from an online IMS system
You can remove databases from an online IMS system by using the DELETE DB
command.

Removing an MSDB database from an online system requires a different procedure
than other database types.

Use the commands QUERY DB SHOW(WORK) and QUERY DB SHOW(PGM) to
display the status of the DB and whether it is referenced by a PSB.

To remove a database other than an MSDB database from an online IMS system:
1. Stop access to the database by issuing either:
v UPD DB NAME(name) STOP(ACCESS)
v /DBR DB name

2. If the database uses logical relationships, you must remove the logical
relationships before you can remove the database from the online system:
a. Modify the DBDs to remove the relationships.
b. Perform a DBDGEN and an ACBGEN with the modified DBD statements.
c. Bring the new definitions online.

750 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_updatedb.htm#ims_updatedb
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.cr/imscmds/ims_querydb.htm#ims_cr2querydb

3. Remove references to the database from all PSBs in the program directory
control block (PDIR) by either deleting the PDIR altogether or deleting
references to the database from the PSBs and running the ACBLIB online
change function.

4. Issue the DELETE DB command.

Removing an MSDB database dynamically from an online IMS system:

Because MSDB databases reside in the extended common storage area (ECSA),
removing an MSDB database from an online system requires an IMS restart with
MSDBLOAD specified.

To remove an MSDB database from an online IMS system:
1. Delete the MSDB database from the MSDBINIT data set by using the MSDB

Maintenance utility (DBFDBMA0).
2. Remove the MSDB database (the BHDR control block) from the ACB library by

using the online change function.
3. Remove references to the MSDB database from any PSBs.
4. Shut down IMS normally.
5. Warm start IMS with MSDBLOAD keyword. Because an MSDBINIT data set no

longer exists and there is no entry for it in the ACBLIB, IMS recognizes the
database, but not as an MSDB database.

6. Issue /DBR command against the MSDB database. The /DBR command is
allowed against the database because IMS no longer recognizes the database as
an MSDB.

7. Issue the command DELETE DB NAME(MSDB_name).

Activating database changes by using the online change
function

Using the online change function, you can add, change, and delete full-function
databases, including HALDB master databases, and Fast Path DEDB databases
online without stopping IMS.

MSDBs do not support the online change function.

The online change function for DEDBs allows both database-level and area-level
changes. A database-level change affects the structure of the DEDB and includes
such changes as adding or deleting an area, adding a segment type, or changing
the randomizing routines. An area-level change involves increasing or decreasing
the size of an area (IOVF, DOVF, CI). An area-level change requires the user to
stop only that area with the /DBRECOVERY command; a database-level change
requires the user to stop all areas of the DEDB.

Unlike standard randomizers that distribute database records across the entire
DEDB, two-stage randomizers distribute database records within an area. By using
a two-stage randomizer, changes to an individual area's root addressable allocation
are area-level changes, and only the areas that are affected need to be stopped.

To use online change with full-function databases, HALDB master databases, and
DEDB databases, perform the following steps:
1. Allocate the data sets for online change as described in IMS Version 13

Installation.

Chapter 30. Modifying databases 751

2. Run a MODBLKS system definition if additions, changes, or deletions to the
system definition DATABASE (and possibly APPLCTN) statements need to be
made (see IMS Version 13 System Administration for more information).

3. Run the necessary DBDGEN, PSBGEN, and ACBGEN (see IMS Version 13
System Utilities).

Note: All changes to ACBLIB members that resulted from the ACBGEN
execution are available to the online system after the online change (provided
that the changed PSB and DBD resources are defined in the online system).

4. Update the security definitions of the IMS system's security facilities to
include any new databases. Security facilities can include RACF, another
external security product, and exit routines. For more information on IMS
security, see IMS Version 13 System Administration.

5. Allocate the database data sets for databases to be added.
6. Load your database.
7. For Fast Path, online change must be completed before the database can be

loaded. Also, Fast Path can only load databases online; batch jobs cannot be
used.

8. If dynamic allocation is used in a z/OS environment, run the dynamic
allocation utility.

9. Use the Online Change Copy utility (DFSUOCU0) to copy your updated
staging libraries to the inactive libraries (see IMS Version 13 System Utilities for
information on running this utility).

10. Issue the operator commands to cause your inactive libraries to become your
active libraries (see IMS Version 13 Operations and Automation for the
commands that are used for online change).

If a database in a z/OS environment needs to be reorganized because of changes to
the active ACBLIB data set, /DBR must be issued to deallocate the database before
the /MODIFY COMMIT command that introduces the ACBGEN changes. The
commands /DBR, /DBD, or /STA DATABASE ACCESS= must be completed to take the
areas of the database to be changed or deleted offline before issuing the /MODIFY
COMMIT command.
Related concepts:
“Building the application control blocks (ACBGEN)” on page 497
“Online change and HALDB databases” on page 775
“Online change and HALDB alter” on page 734

Modifying ACB library members online
You can add or change individual members of the ACB library and bring these
members online while IMS is running by using the ACB library member online
change function.

The ACB library member online change function quiesces only those resources that
are affected by the online change, allowing for resources unaffected by the change
to remain active concurrently during the online change process.

If any ACB library members that are being modified or deleted by the online
change function have been loaded into online storage for use by IMS, IMS removes
them from storage at the time of the online change. Non-resident ACB members
are reloaded into storage the next time an application program that requires them
is scheduled.
Related concepts:

752 Database Administration

ACB library member online change (System Administration)

Related tasks:

Changing or adding IMS.ACBLIB members online (System Administration)

The online change function, DEDBs, and Availability of IFP and
MPP Regions
Changes can be made to DEDBs using online change while maintaining the
availability of IFP and MPP regions that access the DEDBs. If database level
changes are made to the DEDB while an IFP/MPP is running, then the application
will pseudo-abend and the PSB will be rescheduled on the next DL/I call to the
DEDB.

If database level changes are made to the DEDB while an IFP/MPP is running,
then the application will pseudoabend and the PSB will be rescheduled on the next
DL/I call to the DEDB.

Two level changes can be made to DEDBs. The database level changes allow:
1. Add or Delete DEDBs.
2. Add or Delete segment types.
3. Add, Change, or Delete a segment and its fields.
4. Add, Change, or Delete segment compression routines.
5. Add, Change, or Delete data capture exit routines.
6. Change randomizers.
7. Add or Delete areas.
8. Change area RAP space allocation and the randomizer is not a 2-stage

randomizer.

The area level changes allow:
1. Change area RAP space allocation and the randomizer is a 2-stage randomizer.
2. Change DOVF or IOVF space allocation.
3. Change SDEP space allocation.
4. Change CI size.

Area level changes and items 4 through 8 of the database level change require a
BUILD DBD (not a BUILD PSB). In this case, with exception to items 4 and 5 when
the defined PSB SENSEGs have reference to exit routines that are added or deleted,
the PSB does not change. Changes can be made to DEDBs using online change
while maintaining the availability of IFP and MPP regions that access the DEDBs
only if there is no change to the scheduled PSB. The application will then
pseudoabend with ABENDU0777 and the PSB will be rescheduled on the next
DL/I call to DEDB. The message DFS2834I is issued. Other changes to the PSBs
such as items 1 through 5 of the DEDB database changes, full-function database
changes, or PSB changes using online change require that the IFP and MPP regions
be brought down.

The following procedure describes the steps necessary to make database level
changes to a DEDB with an IFP / MPP running:
1. Use a specific user-developed application program or OEM utility to unload

the DEDB through existing system definitions.

Chapter 30. Modifying databases 753

|
|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_intro/ims_acblibgolc.htm#ims_acblibgolc
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/system_admin/ims_changingacblibmembers.htm#ims_changingacblibmembers

2. DBDGEN, PSBGEN and ACBGEN to generate the application control blocks
to implement the DEDB structural changes. The changed or new application
control blocks must be built into the active IMS system's staging copy of
ACBLIB, which is offline.

3. Run the online change utility, DFSUOCU0, to move the changed ACBLIB from
the staging ACBLIB to the inactive (A or B) copy of the ACBLIB that is online
to the active IMS system.

4. Enter the normal /DBR command sequence to remove access to the DEDB from
the active IMS system. If GLOBAL option is used on /DBR, Prohibit Further
Authorization flag will be set in DBRC, which will cause U0458 abend when
PSB is rescheduled. Recommendation for data sharing customers who
normally use GLOBAL option is to add NOPFA keyword : /DBR DB NOFPA

5. Enter and follow the online change command sequence for PREPARE
processing for ACBLIB changes.

6. Enter and follow the online change command sequence for COMMIT/ABORT
processing for ACBLIB changes. The online IMS system will switch from using
the active (A or B) copy of the ACBLIB to the inactive (A or B) copy.

7. Delete, define and initialize all of the DEDB AREA data sets with the new
system definitions.

8. Enter the normal /START DATABASE and /START AREA commands to make the
DEDB and its AREAs accessible to the active IMS system.

9. Use a specific user-developed application program or OEM utility to reload
the DEDB through the change system definitions for the DEDB.

10. On the first access to the newly changed DEDB, the application will
pseudoabend and the PSB will be rescheduled. Message DFS2834I will be
displayed.
The transaction will be tried again for both IFPs and MPPs when the PSB is
rescheduled. If the application attempts to access the DEDB before commit
processing has completed, an 'FH' status will be returned to the application.
The DEDB is inaccessible because the randomizer for the DEDB is unloaded
by the /DBR command.

If either database level or area level changes are made to DEDBs while a BMP or
DBCTL thread is active, then commit processing fails and the message DFS3452 is
issued.
Related information:

DFS3452 (Messages and Codes)

Online change and DEDB randomizer and exit routines
Randomizing routines determine the location of database records by AREA within
the DEDB and by root anchor point (RAP) within the AREA. A change of the
DEDB randomizer is a database level change.

A new randomizing routine affects the location (AREA and RAP) of every database
record within the DEDB. The randomizer is defined for the DEDB in the DBD
parameter: RMNAME=.

A randomizer change can involve introducing a brand new randomizer into the
active IMS system or changing an existing randomizer in use by one or more
DEDBs.

754 Database Administration

|
|
|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.msgs/msgs/dfs3452.htm#dfs3452

The name of the randomizer is specified in the DBD parameter: RMNAME=. If a
new randomizer is introduced for an existing DEDB, a DBDGEN and ACBGEN of
the database with the new randomizer name is required in addition to the
following procedural steps.

To introduce a new DEDB randomizing routine using online change:
1. Use a specific customer-developed application program or original equipment

manufacturer (OEM) utility to unload the DEDB with the current randomizer.
2. Assemble and link edit the new randomizer into the IMS SDFSRESL or one of

the libraries in the STEPLIB concatenation.
3. Run a DBDGEN for the DEDB with the new randomizer designated in the

DBD parameter: RMNAME=.
4. ACBGEN is also needed to build the application control blocks to implement

the DEDB definition that includes the new randomizer. The changed or new
application control blocks must be built into the active IMS system's staging
copy of ACBLIB, which is offline.

5. Run the online change utility, DFSUOCU0, to move the changed ACBLIB from
the staging ACBLIB to the inactive (A or B) copy of the ACBLIB that is online
to the active IMS system.

6. Remove access to the DEDB from the active IMS system and to unload the
randomizer by entering the type-1 /DBR DB operator command sequence or
the type-2 UPDATE DB STOP(ACCESS) operator command sequence. Do not use
the OPTION(NORAND) parameter when you issue the UPDATE DB
STOP(ACCESS) type-2 command, because the NORAND parameter prevents the
randomizer from unloading.

7. Enter and follow the online change command sequence for PREPARE
processing for ACBLIB changes.

8. Enter and follow the online change command sequence for COMMIT/ABORT
processing for ACBLIB changes. The online IMS system will switch from using
the active (A or B) copy of the ACBLIB to the inactive (A or B) copy.

9. Delete, define and initialize all of the DEDB AREA data sets with the new
system definitions.

10. Make the DEDB and its areas accessible to the active IMS system by entering
the type-1 commands /START DATABASE and /START AREA or the type-2
command UPDATE DB START(ACCESS) AREA(*).

11. Use a specific customer-developed application program or OEM utility to
reload the DEDB with the new randomizing routine in effect.

Changing a DEDB randomizing routine using online change:

If a change is made to a randomizer already in use by one or more DEDBs, then
all of the DEDBs using the subject randomizer must be included in the change
process.

The changed randomizer will not be introduced if an existing version is already
loaded for any DEDB in the active IMS system. You can determine that the existing
version is no longer used by locating the keyword GONE in message DFS2838I.
Also, you can determine that the randomizer module is brought from any library
to the storage by locating the keyword LOADED in the message DFS2842I.

Changing DEDB randomizers requires the procedures described below. Because the
name of the randomizer remains the same, DBDGEN, ACBGEN and the online
change command sequence are not applicable.

Chapter 30. Modifying databases 755

1. Use a specific customer-developed application program or OEM utility to
unload the DEDB with the existing randomizer. This should be done for all of
the DEDBs that use the randomizer to be changed.

2. Remove access to the DEDBs from the active IMS system by entering the type-1
command /DBR DATABASE or the type-2 command UPDATE DB STOP(ACCESS). The
/DBR DATABASE command unloads the randomizer for the DEDBs designated as
operands. The UPDATE DB STOP(ACCESS) command also unloads the randomizer
for the DEDBs that are designated as operands, unless the OPTION(NORAND)
parameter is specified. When all of the DEDBs that reference the randomizer
are stopped, the randomizer is removed from the active IMS system. If a DEDB
is not stopped and it references a randomizer that has been removed from the
IMS system, then the next DL/I call results in a U1021 abend.

3. Assemble and link edit the changed randomizer into the IMS SDFSRESL or one
of the libraries of the IMS SDFSRESL STEPLIB concatenation.

4. Delete, define and initialize all of the DEDB AREA data sets to prepare for
reloading the DEDB with the changed randomizer.

5. Resume access to the DEDBs that use the changed randomizer by issuing the
type-1 command /START DATABASE or the type-2 command UPDATE DB
START(ACCESS). For DEDBs, the /START DATABASE command or the UPDATE DB
START(ACCESS) command causes the randomizer to be loaded. To resume access
to all of the areas at the same time, you can issue the type-2 command UPDATE
DB START(ACCESS) AREA(*).

6. Use a specific customer-developed application program or OEM utility to
reload the DEDB with the changed randomizing routine in effect.

Deleting a DEDB randomizing routine using online change:

After all of the DEDBs that use the old randomizing routine are unloaded and had
either the type-1 command /DBR or the type-2 command UPDATE DB
STOP(ACCESS) run successfully against them, then the randomizing routine can be
deleted.

To delete a randomizing routine from the active IMS system, follow the steps in
“Online change and DEDB randomizer and exit routines” on page 754. Message
DFS2838 is generated when the randomizing routine is deleted.

If you use the type-2 command UPDATE DB STOP(ACCESS), do not include the
OPTION(NORAND) parameter, because the NORAND parameter prevents the
DEDB randomizing routine from unloading from storage.

Customers with data sharing IMS systems that do not share SDFSRESLs must be
careful to delete the randomizing routine from both systems.

Online change and DEDB segment compression routines:

Segment compression routines are segment specific and are defined for the DEDB
in the DBD SEGM parameter ("COMPRTN=").

Adding, changing or deleting segment compression routines is procedurally the
same and involves the same restrictions as DEDB randomizing routines.

Online change and DEDB Data Capture exit routines:

Data Capture exit routines can be defined for the DEDB on the DBD statement, for
a specific segment on the SEGM statement ("EXIT="), or for both.

756 Database Administration

Multiple exit routines can be specified on a single DBD or SEGM statement.

Adding a new DEDB Data Capture exit routine using online change:

You can add a new Data Capture exit routine to a DEDB by using the online
change function.

To add a new Data Capture exit routine, follow the procedure below:
1. Assemble and link edit the new exit routine into the IMS.SDFSRESL or one of

the libraries in the IMS.SDFSRESL STEPLIB concatenation.
2. Run a DBDGEN for the DEDB with the new exit routine designated in the DBD

or SEGM parameter: "EXIT=".
3. ACBGEN is also needed to build the application control blocks to implement

the DEDB definition that includes the new exit routine. The changed or new
application control blocks must be built into the active IMS system's staging
copy of ACBLIB, which is offline.

4. Run the Online Change Copy utility, DFSUOCU0, to move the changed
ACBLIB from the staging ACBLIB to the inactive (A or B) copy of the ACBLIB
that is online to the active IMS system.

5. Enter the normal /DBR command sequence to remove access to the DEDB from
the active IMS system.

6. Enter and follow the online change command sequence for PREPARE
processing for ACBLIB changes.

7. Enter and follow the online change command sequence for COMMIT/ABORT
processing for ACBLIB changes. The online IMS system will switch from using
the active (A or B) copy of the ACBLIB to the inactive (A or B) copy.

8. Enter the normal /START DATABASE and /START AREA commands to make the
DEDB and its areas accessible to the active IMS system.

Changing an existing DEDB Data Capture exit routine using online change:

You can change an existing DEDB Data Capture exit routine by using the online
change function.

To change an existing Data Capture exit routine, follow these steps:
1. Allow the dependent regions that are accessing DEDBs with the particular Data

Capture exit to end normally.
2. Assemble and link edit the changed exit routine into the IMS SDFSRESL or one

of the libraries of the IMS SDFSRESL STEPLIB concatenation.
3. Start the dependent regions. Data Capture exits are loaded at dependent region

initialization time, so the new version of the exit will take effect when the
region is started. Data Capture exit routines that were linked as reentrant or
reusable are unloaded at dependent region termination time. Otherwise, they
are unloaded after every DL/I call.

Deleting a DEDB Data Capture exit routine using online change:

You can delete a DEDB Data Capture exit routine by using the online change
function.

To delete a Data Capture exit routine, execute the following steps:
1. Run a DBDGEN for the DEDB with the old exit routine omitted from the DBD

or SEGM statement.

Chapter 30. Modifying databases 757

2. Build the application control blocks by using the Application Control Block
Maintenance utility to implement the DEDB definition that excludes the old
exit routine. The changed or new application control blocks must be built into
the active IMS system's staging copy of ACBLIB, which is offline.

3. Run the Online Change Copy utility, DFSUOCU0, to move the changed
ACBLIB from the staging ACBLIB to the inactive (A or B) copy of the ACBLIB
that is online to the active IMS system.

4. Enter the normal /DBR command sequence to remove access to the DEDB from
the active IMS system.

5. Enter and follow the online change command sequence for PREPARE
processing for ACBLIB changes.

6. Enter and follow the online change command sequence for COMMIT/ABORT
processing for ACBLIB changes. The online IMS system will switch from using
the active (A or B) copy of the ACBLIB to the inactive (A or B) copy.

7. Enter the normal /START DATABASE and /START AREA commands to make
the DEDB and its areas accessible to the active IMS system.

Changing DEDB root addressable space with two stage randomizing routine
using online change:

You can change the DEDB root addressable space with two stage randomizing
routine by using online change.

The UOW structure and root addressable allocation is specific to each area within
each DEDB. However, a change to the number of root addressable CIs within one
area can affect the number of root anchor points within the whole DEDB. If the
DEDB uses a standard randomizing routine that randomly distributes database
records across the entire database, changes to the root addressable allocation are
Database Level changes and procedurally must be handled as such. This topic is not
applicable to such changes.

If, however, a two-stage randomizing routine is used for the DEDB, a change to an
individual area UOW root addressable definition is an AREA Level change. A
two-stage randomizing routine does not attempt to evenly distribute database
records across all areas based on the total number of root anchor points in the
entire DEDB. A two-stage randomizing routine is designated in the DBDGEN by
coding the randomizing routine name as follows:

RMNAME=(mmmmmmmm,2)

In prior releases of IMS, customers would get the following error message if a
DEDB DBD had more than one operand in the RMNAME parameter:

8, DBD130 - RMNAME OPERAND IS OMITTED OR INVALID

The same message will appear for this release of IMS if anything but a two is
specified as the second operand of RMNAME. Customers can still specify
RMNAME=(mmmmmmmm) for standard randomizing routines.

Changing the DEDB AREA UOW structural definition using online change:

Changing the DEDB AREA UOW structural definition requires the following of
several procedural steps.

To change the DEDB AREA UOW structural definition follow these steps:

758 Database Administration

1. Use a specific customer-developed application program or original equipment
manufacturer (OEM) utility to unload the area through existing system
definitions.

2. DBDGEN, PSBGEN and ACBGEN to generate the application control blocks to
implement the DEDB structural changes. The "UOW=(x,y)" parameter on the
AREA DBDGEN macro statement defines the amount of space allocated to
overflow within a DEDB UOW. The "ROOT=(nnn,mmm)" parameter on the
AREA DBDGEN macro statement defines the amount of space allocated to
Independent Overflow. The changed or new application control blocks must be
built into the active IMS system's staging copy of ACBLIB, which is offline.

3. Run the online change utility, DFSUOCU0, to move the changed ACBLIB from
the staging ACBLIB to the inactive (A or B) copy of the ACBLIB that is online
to the active IMS system.

4. Enter the /DBR AREA command to remove access to the area from the active
IMS system.

5. Enter and follow the online change command sequence for PREPARE
processing for ACBLIB changes.

6. Enter and follow the online change command sequence for COMMIT/ABORT
processing for ACBLIB changes.

7. Delete, define and initialize the area with the new system definitions.
8. Enter the /START AREA command to make the area accessible to the active

IMS system.
9. Use a specific customer-developed application program or OEM utility to

reload the DEDB through the changed system definitions for the DEDB.
Related tasks:
“Online change and DEDB dependent and independent overflow space allocation”
on page 763

Making online changes at the DEDB and area level
You can make online changes to DEDB databases at either the database level or the
area level.

Adding or deleting DEDB databases using online change:

You can add or delete a DEDB database by using the online change function.

The following figure shows the overall process for adding a database using online
change.

Chapter 30. Modifying databases 759

Adding or deleting a DEDB and implementing the change by means of the IMS
online change facility requires that you perform the following steps.
1. MODBLKS level system definition (Stage 1 and Stage 2) to add or delete the

DEDB. The changes for the IMS.MODBLKS data set should be generated into
the active IMS system's staging copy of the IMS.MODBLKS data set, which is
offline.

2. DBDGEN, PSBGEN and ACBGEN to generate the application control blocks to
add or delete the DEDB and PSBs that access it. The changed or new
application control blocks must be generated into the active IMS system's
staging copy of the IMS.ACBLIB data set, which is offline.

3. Run the online change utility, DFSUOCU0, to move the changed
IMS.MODBLKS data set and IMS.ACBLIB data set from the staging libraries to
the inactive (A or B) copies of these libraries that are online to the active IMS
system.

MODBLKSB

Active
library

ACBLIBB

New DBD
(DBDGEN)

New PSB
(PSBGEN)

ACBLIBB

Inactive
library

ACBLIB

Staging
library

DBDLIB

PSBLIB

ABCGEN

Online
Change
utility

New
DATABASE
New
APPLCTN

MODBLKSB

Inactive
library

MODBLKS

Staging
library

(Stage 1)

MODBLKSGEN

Execute
output
(Stage 2)

Online
Change
utility

/MODIFY PREPARE
MODBLKS ACBLIB
/MODIFY COMMIT

Figure 295. Adding a database using online change

760 Database Administration

4. Enter and follow the online change command sequence for PREPARE
processing. If a DEDB is being added to an IMS system that does not have Fast
Path installed, the DFS2833 error message will appear and the PREPARE
process will be aborted.
If a DEDB is added whose areas have CI sizes that exceed the system buffer
size (BSIZ=), message DFS2832 appears and the PREPARE process aborts.
Finally, if a DEDB is added to an IMS system that was initialized without any
DEDBs, message DFS2837 appears and the PREPARE process aborts.
Output threads are initialized during Fast Path initialization only if DEDBs are
currently generated in the system. In order for the user to be able to add
DEDBs with online change, IMS must be initialized with DEDBs to begin with.

5. If the DEDB is to be deleted, any BMP region or DBCTL thread scheduled for
access to the DEDB must first be stopped. Full function transactions scheduled
for access to the DEDB will be placed in a QSTOP state and as a result, MPP or
IFP dependent regions need not be stopped to implement the online change to
delete the DEDB.

6. If the DEDB is to be deleted, access to it from the active IMS system must be
removed by means of a /DBR DB command. The commit will fail with a
DFS3452 message if the DEDB has not had the /DBR command successfully run
against it beforehand.

7. Execute the online change command sequence for COMMIT/ABORT
processing.

8. If the DEDB is newly added, execute the following additional steps at any
appropriate time prior to making the DEDB generally available for normal user
access:
a. Execute the normal procedures for defining the new DEDB and its areas

and area data sets to DBRC and the RECON data sets.
b. Define and initialize all of the area data sets belonging to the new DEDB.
c. Execute the procedures to include the required Dynamic Allocation

definitions that will enable the DEDB and its areas to be allocated to the
active IMS system. Or register the DEDB and its areas to DBRC, and DBRC
will dynamically allocate them during IMS initialization.

d. Enter the /START DATABASE and /START AREA commands to make the DEDB
and its areas accessible to the active IMS system.

e. Run the necessary application load programs.

Adding or deleting DEDB segments using online change:

You can add or delete a DEDB segment by using the online change function.

Adding or deleting segment types or changing segment formats affects the
structure of a DEDB and constitutes a Database Level change. The addition or
deletion of segment types (including the DEDB Sequential Dependent Segment
type) affects the hierarchical structure and the segment prefix layout to implement
this structure. Similarly, the change of individual segment formats changes the
structure of the entire database and space allocations within each AREA of the
DEDB.

To make structural changes to an existing DEDB, execute the procedural steps
described below.
1. Use a specific customer-developed application program or OEM utility to

unload the DEDB through existing system definitions.

Chapter 30. Modifying databases 761

2. DBDGEN, PSBGEN and ACBGEN to generate the application control blocks to
implement the DEDB structural changes. The changed or new application
control blocks must be built into the active IMS system staging copy of
ACBLIB, which is offline.

3. Run the Online Change Copy utility (DFSUOCU0) to move the changed
ACBLIB from the staging ACBLIB to the inactive (A or B) copy of the ACBLIB
that is online to the active IMS system.

4. Enter the normal /DBR command sequence to remove access to the DEDB from
the active IMS system. This command may be issued any time prior to the
/MODIFY COMMIT.

5. Enter and follow the online change command sequence for PREPARE
processing for ACBLIB changes.

6. Enter and follow the online change command sequence for COMMIT/ABORT
processing for ACBLIB changes.

7. Delete, define and initialize all of the AREA data sets belonging to the DEDB
with the new system definitions.

8. Enter the normal /START DATABASE and /START AREA commands to make the
DEDB and its areas accessible to the active IMS system.

9. Use a specific customer-developed application program or OEM utility to
reload the DEDB through the changed system definitions for the DEDB.

Adding or deleting DEDB areas using online change:

Adding or deleting an area can affect the location of every database record
throughout the DEDB. Changing the number of areas will alter the number of root
anchor points (RAPs) within the DEDB.

DEDB randomizing routines attempt to randomly distribute database records
throughout the entire DEDB based first on the area and then on the root anchor
point (RAP) within the area.

Adding or deleting one or more areas to a DEDB constitutes a structural change
such as adding a segment type. The steps described in “Adding or deleting DEDB
segments using online change” on page 761 should be followed to change the
number of areas defined in the DEDB. If areas are newly added, the required
DBRC definitions for areas and area data sets must be processed and dynamic
allocation blocks must be prepared before the new areas can be accessed by the
active IMS system.

Changing DEDB root addressable space allocation using online change:

There are different implications depending on whether you randomly distribute
DEDB records or use a standard randomizing routine to evenly distribute DEDB
records. In either case, you can distribute DEDB records across an entire DEDB or
just a single DEDB area.

Random distribution of database records across all DEDB areas

Changes to the DEDB unit of work (UOW) structure that affect the number of
DEDB Control Intervals defined to the Root Addressable portion impact the
number of root anchor points within the entire DEDB. This type of change
potentially affects the location of every database record within the DEDB.

Standard DEDB randomizing routines

762 Database Administration

Standard DEDB randomizing routines attempt to evenly distribute database
records across all areas and within the selected AREA. Such randomizing routines
determine the record location based on the total number of root anchor points in
the entire DEDB.

A change to the UOW structure that changes the number of CIs defined to the root
addressable area constitutes Database Level change when a standard DEDB
randomizing routine is used. This type of change should be treated the same as a
DEDB structural change in terms of online change procedures.

Online change and DEDB dependent and independent overflow space
allocation:

Fast Path has provides limited support for extending DEDB AREA Independent
Overflow space allocation. Additionally, DEDB online change will allow changes to
the overflow space allocation both within each UOW (Dependent Overflow) and
outside the root addressable portion (Independent Overflow) of the AREA.

Both Dependent and Independent Overflow changes are considered to be
Area-level changes. However, such changes must not alter the number of CIs
defined to the root addressable portion. Changing the number of root addressable
CIs will change the number of root anchor points and could affect the DEDB
randomizing routine in locating database records.

Changing DEDB AREA overflow allocation requires the same procedural steps as
those defined for changing the root addressable area.
Related tasks:
“Changing the DEDB AREA UOW structural definition using online change” on
page 758

Changing DEDB CI size using online change:

DEDB online change can be used to change DEDB AREA control interval size.
However, CI size changes must not alter the number of CIs allocated to the root
addressable portion of an AREA because this could affect the DEDB randomizing
routine in locating database records across the DEDB.

The SIZE= parameter on the AREA statement of DBDGEN defines the CI size of
the data set that constitutes the AREA.

Extending DEDB independent overflow online
You can extend the independent overflow (IOVF) portion of a DEDB area while
IMS is online.

The first time the area is opened after this procedure is completed, a message is
issued to verify that Fast Path recognizes and accepts the change to the area and
normal open processing completes. You can also modify the IOVF portion of a
DEDB using DEDB online change.

You cannot decrease the size of the IOVF with this procedure. However, the size of
the sequential dependent part might increase or decrease depending on the total
amount of space allocated to the area. The steps in this procedure also reorganize
the area.

To increase the size of the IOVF portion of a DEDB online:

Chapter 30. Modifying databases 763

1. Run the DBDGEN utility to obtain an updated DBD. Update the number2 and
overflow2 operands on the ROOT= keyword of the AREA statement. See AREA
statement (System Utilities).
All other control statements must remain identical to those on the existing
DBD. Changing other control statements might damage data and create
unpredictable results.

2. Run the ACBGEN utility using the updated DBD. You should run PSB=ALL
to create a new and complete ACBLIB with the new ROOT= parameters. The
output should be a different data set from the one currently used by the
control region. The new ACBLIB is identical to the old ACBLIB, except for the
ROOT= changes. You can use the staging ACBLIB, but do not switch with the
online change function.

3. Ensure that the area is in good condition. The area must not have any
in-doubts, and must not be in a recovery-needed condition. Also, at least one
copy of the area (one area data set) must have no error queue elements
(EQEs). Use the /DIS AREA command to display EQEs and the condition. Use
the /DIS CCTL INDOUBT command to display all in-doubt threads. Eliminate
potential defects before continuing to the next step so that data is not lost or
damaged.

4. Process SDEPs using the SDEP scan and delete utilities. This step is required
because the IOVF extension procedure requires an unload and load of the
area. Some unload and load utilities are unable to process SDEPs.
Unload/load utilities that do process SDEPs might reload them in root order
rather than time order, which can interfere with subsequent SDEP scan and
delete operations.

5. If multiple copies of the area (MADS) exist, stop all copies of the area except
one using the /STOP ADS command. Ensure that the remaining copy does not
have any EQEs and is not in a recovery-needed condition. Multiple ADSs
must be stopped to ensure that DBRC has accurate information when the area
is brought online after the IOVF is extended.

6. Issue a /DBR or /STO AREA command against the area.
7. Take an image copy of the area.
8. If the area is registered with DBRC, set the recovery-needed flag on for the

area. This flag is required by the DEDB Initialization utility and can be set
using a CHANGE.DBDS RECOV command.

9. Unload the area.
10. Execute the IDCAMS utility to delete and redefine the data set. The amount of

space you allocate for the area in the Define procedure should reflect the
increased size of the IOVF. The number of SDEP CIs in the area might change
because this number represents the difference between the total amount of
space allocated to the area and the amount used by the other parts. These
other parts are the root addressable part, the IOVF, the reorganization UOW,
and two control CIs.
Related Reading: See z/OS DFSMS Access Method Services for Catalogs for a
description of the IDCAMS Delete and Define functions.

11. Execute the Fast Path initialization utility against the new area using the new
ACBLIB.

12. Issue the /START AREA command to bring the area online.
13. Reload the area.

764 Database Administration

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_areastmt.htm#ims_areastmt
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_areastmt.htm#ims_areastmt

Recommendation: Reload the area in batch. If you reload the area using a
BMP, the BMP might fail with message DFS3709A and reason code 5. If this
failure occurs, issue the CHANGE.DBDS command to set ICOFF and restart the
BMP.

14. Take an image copy of the area after the reload.

When the area is next accessed, message DFS3703I is issued. This message alerts
you that discrepancies were found during open processing. However, open
processing continues because the discrepancies indicate to IMS that you used an
accepted procedure to increase the size of the IOVF. DFS3703I is not issued during
subsequent opens of the area as long as IMS remains online. DFS3703I is also
issued by any sharing subsystem the first time the area is opened on that
subsystem after the IOVF is extended.

During emergency restart or extended recovery facility (XRF) takeover, the updated
area information is picked up from the log. Therefore, DFS3703I is not issued.

Use the new ACBLIB for any subsequent normal restarts of the online system.
Ensure that the new ACBLIB reflects only the changes made to the ROOT=
keyword. Any other changes you make might cause damage to the area. If you do
not use the new ACBLIB, open logic allows the discrepancy between information
from the old ACBLIB and information from the area data set, but issues message
DFS3703I each time the discrepancy is encountered.

Note: You cannot use the online change function to update the ACBLIB with the
altered ROOT= parameter.
Related concepts:
“DEDB area design guidelines” on page 458

DBRC administration (System Administration)
Related reference:

Application Control Blocks Maintenance utility (System Utilities)

Database Description (DBD) Generation utility (System Utilities)

DEDB Sequential Dependent Scan utility (DBFUMSC0) (Database Utilities)

Data Entry Database Sequential Dependent Scan utility exit routine
(DBFUMSE1) (Exit Routines)

Modifying HALDB databases
You can modify existing HALDB databases just as you can modify any other
full-function database; however, you must perform some modification tasks
differently for HALDB and other modification tasks are unique to HALDB.

You should also familiarize yourself with the many unique HALDB concepts and
characteristics before performing any of the modification tasks described in this
topic.
Related concepts:
“Converting HDAM and HIDAM databases to HALDB” on page 804
“Implementing HALDB design” on page 510
“Options for offline reorganization of HALDB databases” on page 638

Chapter 30. Modifying databases 765

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sag/dbrc_admin/ims_dbrc_administration.htm#ims_dbrc_admin
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_acbgen.htm#ims_acbgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.sur/ims_dbdgen.htm#ims_dbdgen
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dbfumsc0.htm#ims_dbfumsc0
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_dbfumse1.htm#ims_dbfumse1
http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_dbfumse1.htm#ims_dbfumse1

Overview of modifying HALDB databases
Many of the changes that you can make to HALDB databases are the same as
those that you can make to other IMS full-function database types. However, some
changes are unique to HALDB databases, such as adjusting the distribution of
records across the partitions in a HALDB database.

You specify most changes to HALDB databases in either the database definition
(DBD) statements that define the HALDB master database or in the DBRC RECON
data set where the partition definitions are stored. Where you specify changes
depends on the type of change you are making. For example, to change the
hierarchical structure of records you specify the changes in the DBD using the
DBDGEN process; to modify the range of records stored in a partition you specify
the change in the DBRC RECON data set using either the Partition Definition
utility or batch DBRC commands.

The scope of HALDB database modifications
When you modify HALDB databases, you need to be aware of the scope of your
changes. Some of the changes that you can make affect only one partition or a
subset of partitions. Other changes to HALDB databases affect the entire database
and all of its partitions.

The following table provides a list of typical HALDB database changes, where you
specify the change, and the scope of the change.

Table 83. Examples of HALDB database changes, where to specify them, and their scope

What you are
modifying

Where you specify
the change

The scope of the
change Notes

Field definition,
adding or deleting

DBD statements Entire HALDB
database and its
partitions

The HALDB database
must be unloaded
only if you are
changing field offsets
or the length of a
segment

Data capture exit
routine

DBD statements Entire HALDB
database and its
partitions

Does not require an
unload of the HALDB
database

Segment type, adding
or deleting

DBD statements Entire HALDB
database and its
partitions

The HALDB database
must be unloaded

Pointer options DBD statements Entire HALDB
database and its
partitions

The HALDB database
must be unloaded

Segment
Edit/Compression
exit routine

DBD statements Entire HALDB
database and its
partitions

The HALDB database
must be unloaded

Selection criteria of a
HALDB partition
selection exit routine

DBD statements and
the RECON data set

Only the partitions
that are impacted by
the change in the
distribution of
records by the
partition selection exit
routine

You must unload
only the partitions
that are impacted by
the change in record
distribution

766 Database Administration

Table 83. Examples of HALDB database changes, where to specify them, and their
scope (continued)

What you are
modifying

Where you specify
the change

The scope of the
change Notes

Data set name prefix The RECON data set Only the specified
partition

Only the affected
partition is
unauthorized, access
to all other partitions
is unaffected

Randomizing module
or randomizing
parameters

DBD statements, the
RECON data set, or
both

If made in the DBD,
all partitions in the
database. If made in
the RECON data set,
only the specified
partition

For changes to the
specifications in the
RECON data set, only
the affected partition
is unauthorized,
access to all other
partitions is
unaffected

High keys of
partitions

The RECON data set All partitions affected
by the change in
record distribution
introduced by the
new or changed high
key

You must unload
only the partitions
affected by the
change in record
distribution

Changes that affect all of the partitions in a HALDB database:

Certain characteristics of HALDB partitions are shared by all of the partitions in a
HALDB database.

Before you can change these characteristics, you must take all of the partitions in
the HALDB database offline by issuing either the type-1 command /DBRECOVERY DB
HALDB_master_name or the type-2 command UPDATE DB NAME(HALDB_master_name)
STOP(ACCESS).

You can change the following characteristics of HALDB partitions only after you
take offline all of the partitions the HALDB database:
v DBD definition
v A HALDB partition selection exit routine
v Share level
v Nonrecoverable attribute status
v RSR GSG name or tracking level
v Maximum size of OSAM data sets for PHDAM and PHIDAM databases

Note: In addition to taking the partitions in the HALDB database offline, some of
the changes listed above require you to unload all of the partitions, make the
applicable change, reload the partitions, and then restore access to the partitions.

For example, suppose a HALDB database has an existing HALDB partition
selection exit routine that needs to be replaced with a HALDB partition selection
exit routine that selects partitions based on a new algorithm. This change requires
the entire HALDB database to be offline because partition selection exit routines
can affect the placement of records in every partition in the database. After taking
the database offline, you must unload the database, make your changes to the exit
routine, reload the database, and then restore access to the database.

Chapter 30. Modifying databases 767

|

Changes you can apply to a single partition:

Certain characteristics of HALDB databases are specific to each partition in the
database. To change these characteristics, you do not need to take the entire
HALDB database offline; you need to take offline only the partition in which you
are making changes.

Before making changes to a partition, issue either the type-1 command
/DBRECOVERY DB partition_name or the type-2 command UPDATE DB
NAME(partition_name) STOP(ACCESS) against the partition.

For example, you can change the following characteristics of a HALDB partition by
taking only the single partition offline:
v Data set name prefix
v Randomizing module name
v Number of root anchor points (RAPs)
v Bytes parameter
v OSAM block size
v VSAM CI size

Note: In addition to taking the partition offline, the changes listed above require
you to unload the partition, make the applicable change, reload the partition, and
then restore access to the partition.

Record distribution and partition boundaries in HALDB
databases
You can adjust the distribution of records in your HALDB database by redefining
the range of records that a partition holds.

You redefine the range of records for a partition by changing the boundaries
between the partitions. Because the number of records that a partition contains can
change over time, you would typically adjust the distribution of records in a
HALDB database when one or more partitions in the HALDB database become too
large or too small.

How you change partition boundaries depends on how your HALDB database
performs partition selection. HALDB databases perform partition selection by
using either partition high keys, which are based on the root keys of the records,
or a partition selection exit routine, which is based on a user-defined partition
selection string.

If your HALDB database selects partitions based on high keys, you change the
range of records in a partition by changing its high key.

If your HALDB database selects partitions using a partition selection exit routine,
you change the range of records in a partition by modifying the exit routine itself.
These modifications are typically installation-specific and therefore are not
documented in this topic.

Changes to partition boundaries can affect one or more partitions. If a change to
one partition causes records to be moved to or from any other partitions, the
change also affects those other partitions. If you use high keys for partition
selection, IMS automatically sets the initialization-required flag for the partitions
that are affected by a boundary change. If you use a HALDB partition selection
exit routine, you must flag the partitions that are affected by a boundary change as

768 Database Administration

requiring initialization. In either case, before you change the partition boundaries,
you must issue the /DBR command against all of the partitions that will be affected
by the change.

Adding, disabling, and deleting partitions from a HALDB database can also affect
the distribution of records.
Related concepts:
“Disabling and enabling HALDB partitions” on page 780
Related tasks:
“Adding partitions to an existing HALDB database” on page 776
“Deleting partitions from an existing HALDB database” on page 783

Record distribution and high key partitioning:

If you use key range partitioning, you can change the distribution of records across
HALDB partitions by changing the high key of one or more partitions. The high
key of a partition specifies the highest root key of a record that a partition can
contain.

The high key of a partition also defines the boundary between the partition that
owns the high key and the partition with the next higher high key, if such a
partition exists. If you change a high key that defines a boundary between two
partitions, both partitions are affected by the change. For example, lowering a high
key of a partition usually reduces the number of records in the partition that owns
the high key and increases the number of records in the partition with the next
higher high key.

Before you adjust the distribution of records in your HALDB database:
v Analyze the current distribution of records across the partitions in the HALDB

database.
For an accurate report of the records in an existing HALDB database, you can
use the IBM IMS HALDB Toolkit for z/OS, a separately licensed software tool.
For more information about the tool, see the information about IMS Tools in the
IBM Knowledge Center at www.ibm.com/support/knowledgecenter..

v Enable the HALDB reorganization number verification function, which prevents
the reorganization numbers of partitions from being regressed by the movement
of records between partitions.

You can change the high key of a partition by using either the Partition Definition
utility or by using DBRC batch commands. These changes generally require that
you unload the affected partitions before changing the partition definitions, and
then initialize and reload the partitions when you are done making changes. An
affected partition is any partition whose range of keys has increased or decreased,
even if you did not directly change the definition of the partition.

You typically change the high key of a partition when the amount of data in a
HALDB database is not balanced from one partition to the next. Changing a high
key of a partition changes the boundary of the partition and causes some records
to be moved from one partition to another.

The following figure shows the change of the high key for partition B from 400 to
500, which results in the movement of records with keys from 401 to 500 from
partition C to partition B.

Chapter 30. Modifying databases 769

The change to the high key of partition B in the previous figure is therefore a
change that affects both partition B and partition C. When the definition of
partition B is changed, IMS flags both partition B and partition C as requiring
initialization. Partitions A and D are not affected by the change.

Note that the online IMS system is not aware of the changes to the partition
definitions of partitions B and C in the previous figure until one of the following
events occurs:
v A /START DB HALDB_Master OPEN command is issued.
v An UPDATE DB NAME(HALDB_Master) START(ACCESS) OPTION(OPEN)

command is issued.
v A DL/I call causes an authorization call to DBRC for partition B or C. The first

DL/I call goes through HALDB partition selection to select and authorize either
partition B or C.

Related concepts:
“HALDB partition reorganization numbers” on page 169
Related tasks:
“Changing the high key of a partition” on page 775

Record distribution and the partition selection exit routine:

If you use a partition selection exit routine, the distribution of records across
partitions is managed by the exit routine, not by IMS.

HD unload1

HD reload4

2. Change high key for partition B

3. Initialize B and C

DB AA
200

B
400

C
600

D
High values

A
200

B
500

C
600

D
High values

Figure 296. Changing a high key with key range partitioning

770 Database Administration

To adjust the distribution of records across partitions, you must modify the exit
routine.

IMS cannot detect changes in the exit routine to the distribution of records. Nor
does IMS know which partitions are affected by those changes. Consequently, you
must understand which partitions are affected by any changes you make and
initialize them accordingly.

When a change causes records to be moved from one partition to another, you
must run the HD Reorganization Unload utility (DFSURGU0), set the
partition-initialization-required (PINIT) flags, initialize, and run the HD
Reorganization Reload utility (DFSURGL0) for every partition that is affected by
the movement of records.

You should also ensure that any partition selection exit routine that you are using
contains code that processes the structure initialization and structure modification
calls that IMS issues when updating online partition structures after partitions are
added or modified. The sample Partition Selection exit routine (DFSPSE00)
provided with IMS includes code that supports these calls.
Related tasks:
“Adding or changing a HALDB partition selection exit routine” on page 792
Related reference:

HALDB Partition Selection exit routine (DFSPSE00) (Exit Routines)

Partition definition control blocks and partition definitions in the
RECON data set
The online IMS system creates an internal partition definition control block for
each HALDB partition that you define.

Any time you change HALDB partition definitions in the RECON data set, IMS
must rebuild the partition definition control blocks of all the partitions that are
affected by the change before the partitions can be used.

To detect when IMS needs to rebuild a partition definition control block, IMS
tracks changes to HALDB databases using a change version number. Each time you
change the partition definitions recorded in the RECON data set, DBRC increases
the change version number for the HALDB master database by one. When the
online IMS system detects an increase in the change version number for a HALDB
database, IMS rebuilds the partition definition control block of each partition
affected by the change.

Online change is not used to change HALDB partition definitions or rebuild
partition definition control blocks. IMS recognizes any increases in HALDB change
version numbers and dynamically reflects the new definitions in the online IMS
system.

If you are using XRF, the alternate IMS system sees the dynamic change and
automatically updates the definitions in the alternate system.
Related concepts:
“HALDB partition names and numbers” on page 168

Chapter 30. Modifying databases 771

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_dfspse00.htm#ims_dfspse00

Events that trigger a rebuild of partition definition control blocks:

IMS checks the HALDB change version numbers to detect changes to partition
definitions.

IMS rebuilds the internal partition definition control blocks, if necessary, in the
following events:
v When a partitions are authorized for use, which detects changes in existing

partitions or in partitions that are not already authorized. This situation occurs
commonly when a partition is taken offline, changes are made to its definition in
the RECON data set, and the partition is made available again. The first use of
the updated partition triggers the rebuild of the partition definition control
blocks.

v When an invalid key is detected by partition selection or by a partition selection
exit routine, such as when a new partition is added beyond the high key of the
last partition and all existing partitions are already authorized. In this case, IMS
partition selection or the partition selection exit routine detects the new partition
and IMS rebuilds the partition definition control blocks automatically.

v When a /START DB HALDB_Master OPEN or UPDATE DB
NAME(HALDB_Master) OPTION(OPEN) command is issued. For example, if a
new partition is added beyond the high key of the last partition and all existing
partitions are already authorized, these commands initiate a rebuild of the
partition definition control blocks.

Related concepts:
“Additional considerations for the partition definition control blocks”

Additional considerations for the partition definition control blocks:

When making changes to HALDB partition definitions, until the online partition
definition control blocks are rebuilt, a number of circumstances could occur that
you should be aware of.

Consider the following points:
v If you use a HALDB partition selection exit routine, you must issue either the

/DBRECOVERY command or the UPDATE STOP(ACCESS) command and then, after
making the changes to the partition definition, the /START command or the
UPDATE START (ACCESS) command. When the HALDB partition selection exit
routine selects a HALDB partition, IMS is not aware of HALDB partition
boundaries until the internal partition definition control blocks are finished
being rebuilt.

v If you are using a HALDB partition selection exit routine and IMS notifies you
of a structure modification, you might need the exit routine to select partitions
correctly based on the current partition structure.

v A /START DB partition_name OPEN command might fail after the definition of a
partition structure is changed because the corresponding partition definition
control block needs to be rebuilt. To invoke a rebuild of the control block, an
application program that uses the partition must be run or the type-1 command
/START DB HALDB_Master OPEN must be issued.

v Newly added partitions are not known by the online IMS system until a rebuild
of the corresponding partition definition control blocks has been invoked and
the new control blocks have been created.

v If you are using a partition selection exit routine, be sure that it contains code
that processes the structure initialization and structure modification calls that
IMS issues when updating partition definition control blocks after partitions are

772 Database Administration

added or modified. The sample Partition Selection exit routine (DFSPSE00)
delivered with IMS includes code that supports these calls.

Related concepts:
“Events that trigger a rebuild of partition definition control blocks” on page 772

How IMS assigns partition ID numbers
IMS assigns a partition ID number to each partition when the partition is defined.

The partition ID of each new partition is generated by incrementing the partition
ID number of the last partition defined to IMS. Therefore, each new partition in a
HALDB database is assigned a new higher number. The last partition ID that is
assigned is stored in the RECON data set. Previously assigned partition ID
numbers are not reused.

If you delete the definition of a partition, the partition ID of that partition is
permanently lost. If you try to restore the partition by redefining it, the redefined
partition will have a new higher partition ID.

The assignment of new partition IDs when deleting and redefining partitions has
important implications for your ability to back out of such changes. Partition IDs
are physically stored in partition data sets. Consequently, data sets that are created
for one partition cannot be used with other partitions or with the same partition if
it is deleted and redefined. Similarly, image copies cannot be used if the partition
ID in the image copies does not match the partition ID of the partition you are
applying them to.

Recommendation: Disable partitions before you delete them. Disabled partitions
are removed from active use, but can be re-enabled. Re-enabled partitions retain
their original partition ID. Disabled partitions can be deleted later, after their
removal from the active HALDB database has been thoroughly tested.

The following three figures illustrate the assignment of partition IDs in a HALDB
database that has three partitions.

The following figure shows a HALDB database with three partitions: A, B, and C.
The three partitions have partition IDs of 001, 002, and 003.

The following figure shows the same HALDB database after partition C is deleted.
Deleting partition C requires unloading both partitions B and C, deleting partition
C, initializing partition B, and then reloading the records that were in both

Figure 297. Partition IDs prior to deleting and redefining a partition

Chapter 30. Modifying databases 773

partition B and C into partition B. This changes the database from three to two
partitions.

The following figure illustrates why you cannot recover partition C after redefining
it: because the original partition ID of partition C was permanently lost when the
partition was deleted. When partition C is redefined, IMS assigns a partition ID of
004, which was obtained by incrementing the previously assigned partition ID
number. Because partition C now has partition ID 004, image copies of the
partition C data sets taken before the partition was deleted cannot be used. These
image copies contain partition ID 003.

Related concepts:
“Disabling and enabling HALDB partitions” on page 780
Related tasks:
“Deleting partitions from an existing HALDB database” on page 783
“Restoring deleted HALDB partitions” on page 787

Automatic update of HALDB secondary index and logical
relationship pointers
When an application program updates a HALDB database that has logical
relationships or secondary indexes, IMS automatically corrects the pointers for you
by using the HALDB self-healing pointer process.

Figure 298. Partition IDs after deleting, but before redefining a partition

Figure 299. Partition IDs after deleting and redefining a partition

774 Database Administration

You do not need to update the pointers used in the logical relationships nor do
you need to rebuild your secondary indexes.

For example, when you make changes to an indexed database that do not require
changes to secondary index definitions, you do not need to unload, reload, or
rebuild the secondary indexes. The HALDB self-healing pointer process adjusts the
pointers individually when the pointers are used. The reload process for the
indexed database updates the ILDSs. Nothing else needs to be done to ensure that
the secondary index pointers can be used to find the moved target segments.

Also, you can change the partitions of a logically related database without making
any changes to other logically related databases. When you add, delete, or modify
partitions in a database, you do not need to unload and reload any logically
related database. The self-healing pointer process of HALDB adjusts pointers
individually when they are used.
Related concepts:
“The HALDB self-healing pointer process” on page 664

Online change and HALDB databases
DBD changes for HALDB databases can be implemented in online systems with
online change.

The database cannot be in use during the online change process. You should stop
access to the entire HALDB database by issuing either a /DBRECOVERY DB
HALDB_master_name command or an UPDATE DB NAME(HALDB_master_name)
STOP(ACCESS) command.

After the DBD change is committed, you can resume access to the database by
issuing either a /START DB HALDB_master_name command or a UPDATE DB
NAME(HALDB_master_name) START(ACCESS) command. DBD changes affect
every partition, so the master database name must be used for these commands.

Restriction: If you delete a database name from IMS using online change, you
cannot reuse that name for another HALDB partition without first performing a
cold start. Similarly, if you delete a partition name from the RECON data set, you
cannot use online change to reuse that name for another database without first
performing a cold start.
Related concepts:
“Online change and HALDB alter” on page 734
Related tasks:
“Activating database changes by using the online change function” on page 751

Changing the high key of a partition
You can change the high key of a partition to either increase or decrease the
number of records the partition contains.

Recommendation: Prior to changing the high keys of partitions in your HALDB
database, enable the HALDB reorganization number verification function. The
HALDB reorganization number verification function protects the integrity of data
when records are moved by a change in a high key or by database reorganizations.

To change the high key of a partition:

Chapter 30. Modifying databases 775

1. For all partitions that will be affected by the change to the high key, issue
either the /DBRECOVERY DB partition_name command or the UPDATE DB
NAME(partition_name) STOP(ACCESS) command.

2. Unload all partitions that will be affected by the change to the high key.
3. Change the high key definition for the partition by using either the HALDB

Partition Definition utility (%DFSHALDB) or DBRC commands.
4. Initialize all partitions that are affected by the change by running either of the

following utilities:
v HALDB Partition Data Set Initialization utility (DFSUPNT0)
v Database Prereorganization utility (DFSURPR0)

5. Reload all partitions that are affected by the change by using the output of step
2. The image copy needed flag is set for the data sets in the reloaded partitions.

6. Create image copies of the data sets in the affected partitions. DBRC does not
allow updates to the data after the image copy required flag is set and before
the image copies have been recorded in the RECON data sets.

7. Make the partitions available again by issuing either the /START DB
partition_name command or the UPDATE DB NAME (partition_name)
START(ACCESS) command.

An online IMS system is not aware of the changes to partition definitions in the
RECON data set until one of the following events occurs:
v A /START DB HALDB_Master OPEN command is issued.
v An UPDATE DB NAME(HALDB_Master) START(ACCESS) OPTION(OPEN) command is

issued.
v A DL/I call causes an authorization call to DBRC for a partition affected by the

change. The first DL/I call goes through HALDB partition selection again to
select and authorize the correct partition.

Related concepts:
“Record distribution and high key partitioning” on page 769
“HALDB partition reorganization numbers” on page 169

Adding partitions to an existing HALDB database
You can add partitions to your existing HALDB databases. Typically, you do this
when a partition grows too large. Adding a partition usually causes records in an
existing partition to be moved to the new partition.

To add a new partition:
v Determine whether your HALDB database performs partition selection using

high keys or a partition selection exit routine. If your HALDB database is using
a partition selection exit routine you must take extra steps when adding a
partition.

v Identify all existing partitions that contain records that will be redistributed to
the new partition. You must unload, initialize, and reload these partitions to add
the new partition.

v After you add the partition, ensure that the online IMS system recognizes the
new partition and updates its online database structures. IMS rebuilds its online
structures when any of the following events occur:
– A /START DB HALDB_Master OPEN command is issued.
– An UPDATE DB NAME(HALDB_Master) START(ACCESS) OPTION(OPEN) command is

issued.

776 Database Administration

– A DL/I call causes an authorization call to DBRC for a partition affected by
the change. The first DL/I call goes through HALDB partition selection again
to properly select and authorize the correct partition.

In the following figure, partition D is added to a database that uses high keys for
partition selection. The high key of partition D is 300. Previously defined partitions
A, B, and C had high keys of 200, 400, and high values. The addition of the new
partition requires the movement of records with keys above 200 and up to 300
from partition B to partition D. This means that partition B is affected by the
change. When partition D is defined with a high key of 300, IMS sets the PINIT
flag for partitions B and D. Partition initialization will initialize these two
partitions. Partitions A and C are not affected by the change.

Related concepts:
“Record distribution and partition boundaries in HALDB databases” on page 768
Related tasks:
“Restoring deleted HALDB partitions” on page 787

Adding a partition to a HALDB database that uses high key
partition selection
Unless you use a partition selection exit routine, your HALDB database uses high
keys for partition selection. IMS automatically sets the partition initialization
(PINIT) flag for new partitions you add, as well as for any existing partitions
affected by the redistribution of records to the new partition.

Figure 300. Adding a partition with key range partitioning

Chapter 30. Modifying databases 777

To add a partition to a HALDB database that uses high keys for partition selection:
1. For all partitions that contain records that will be redistributed, issue either the

/DBRECOVERY DB partition_name command or the UPDATE DB
NAME(partition_name) STOP(ACCESS) command.

2. Unload all partitions that contain records that will be redistributed to the new
partition.

3. Define the new partition with the Partition Definition utility or DBRC
commands.

4. Allocate the data sets for the new partition.
5. Initialize the new partition and the existing partitions affected by the

redistribution of records to the new partition.
6. Reload all partitions using the output of step 1. The image copy needed flag is

set for the reloaded data sets.
7. Make the partitions available again by issuing either the /START DB

partition_name command or the UPDATE DB NAME (partition_name)
START(ACCESS) command.

8. If the online IMS system does not immediately recognize the new partition,
issue either a /START DB HALDB_Master OPEN or UPDATE DB NAME(HALDB_Master)
OPTION(OPEN) command to rebuild all of the online partition structures of the
HALDB database specified in the command.

Adding a partition that defines a new highest high key
You might add a partition that has a higher high key than any existing partition, if
the keys in your HALDB database are based on time or on an ascending value. As
the key values increase, you can add new partitions to hold new records.

To add a partition that will define a new highest high key for your HALDB
database:
1. If records from any other partition will be moved into the new partition, stop

access to the partitions from which records will be moved by issuing either the
/DBRECOVERY DB partition_name command or the UPDATE DB
NAME(partition_name) STOP(ACCESS) command.

2. If records from any other partition will be moved into the new partition,
unload the partitions from which records will be moved.

3. Define the new partition, specifying an appropriate high key, such as X'FF'.
4. If necessary, modify the high key of the partition that previously had the

highest high key to avoid having two partitions with a high key of X'FF'.
5. Initialize the new partition and any partitions from which records were moved.
6. If necessary, load the new partition and any partitions from which records were

moved. The image copy needed flag is set for the data sets in the new
partition.

7. Make the partitions available again by issuing either the /START DB
partition_name command or the UPDATE DB NAME (partition_name)
START(ACCESS) command.

8. If the online IMS system does not immediately recognize the new partition,
issue either a /START DB HALDB_Master OPEN or UPDATE DB NAME(HALDB_Master)
OPTION(OPEN) command to rebuild all of the online partition structures of the
HALDB database specified in the command.

The following figure illustrates the addition of a partition that defines a new
highest high key for a HALDB database. The key for the database is based on
time. The high order part of the key contains the year. There is a partition for each

778 Database Administration

year. A new partition is required for each new year. There are no records with keys
above 2007zzz. Before they are added to the database, partition D with a high key
of 2008zzz is added. Because no records are moved from an existing partition, they
are not affected.

Adding a partition to a HALDB database that uses a partition
selection exit routine
When you add a partition to a HALDB database that uses a partition selection exit
routine, you must manually set the PINIT flag in any partition from which records
will be moved to the new partition.

You might also need to modify the exit routine to recognize the new partition, as
well as change the partition selection criteria used by the exit routine.

When you use a partition selection exit routine, IMS cannot know which existing
partitions are affected by the addition of the partition. Consequently, IMS does not
set the PINIT flag for existing partitions that are affected by the redistribution of
records to the new partition. You must set the PINIT flag for the existing partitions.

You should also be sure that any partition selection exit routine that you use
contains code that processes the structure initialization and structure modification
calls that IMS issues when it updates online partition structures after partitions are
added or modified. The sample Partition Selection exit routine (DFSPSE00)
delivered with IMS includes code that supports these calls.

To add a new partition to a HALDB database that uses a partition selection exit
routine:
1. Stop access to the database as appropriate:
v If you need to modify the partition selection exit routine, stop access to the

HALDB master database by issuing either the /DBRECOVERY DB
HALDB_master_name command or the UPDATE DB NAME(HALDB_master_name)
STOP(ACCESS) command. Stopping access to the HALDB master unloads the
existing partition selection exit routine from storage.

Figure 301. Adding a higher key partition with key range partitioning

Chapter 30. Modifying databases 779

v If you do not need to modify the partition selection exit routine, stop access
only to those partitions from which records will be moved to the new
partition by issuing either the /DBRECOVERY DB partition_name command or
the UPDATE DB NAME(partition_name) STOP(ACCESS) command.

2. If necessary, modify the partition selection exit routine to use the new
partition. The exit routine should be able to process the

3. Unload the partition or partitions from which records will be moved.
4. Define the new partition. IMS sets the PINIT flag for the new partition.
5. Set the PINIT flag in the appropriate existing partitions.
6. Initialize the partitions that have the PINIT flag set.
7. Load the new partition and any partition from which records were moved.
8. Take an image copy of the reloaded data sets. The image copy needed flag is

set for the data sets in the partitions that are initialized or loaded by HD
Reload.

9. Resume access to the database as appropriate:
v If you stopped the entire database, resume access by issuing either the

/START DB HALDB_master_name command or the UPDATE DB
NAME(HALDB_master_name) START(ACCESS) command. Stopping access to the
HALDB master unloads the existing partition selection exit routine from
storage.

v If you stopped only selected partitions, resume access by issuing either the
/START DB partition_name command or the UPDATE DB NAME
(partition_name) START(ACCESS) command.

10. If you did not stop access to the entire database and the online IMS system
does not immediately recognize the new partition, issue either a /START DB
HALDB_Master OPEN or UPDATE DB NAME(HALDB_Master) OPTION(OPEN) command
to rebuild all of the online partition structures of the HALDB database
specified in the command.

For more information about the sample HALDB Partition Selection exit routine
(DFSPSE00), see IMS Version 13 Exit Routines.

Disabling and enabling HALDB partitions
You can temporarily remove partitions from an active HALDB database by
disabling the partition.

Disabled partitions appear to be deleted from the HALDB database and are
unavailable for use by IMS and most utilities; however all of the records related to
the partition, such as the partition ID number and image copy records, are retained
by DBRC in the RECON data set.

You would normally disable a partition that you plan to delete. Disabling the
partition allows you to test the proposed deletion without actually deleting the
partition and the recovery information associated with it. After you disable a
partition, you can delete it or restore the partition to the HALDB database by
enabling and recovering the partition.
Related concepts:
“Record distribution and partition boundaries in HALDB databases” on page 768
“How IMS assigns partition ID numbers” on page 773

780 Database Administration

About disabled partitions
In a RECON listing, the flag PARTITION DISABLED=YES identifies a partition as
disabled. The HALDB Partition Definition utility identifies a disabled partition by
showing its status as DISABLED.

In most situations, a disabled partition is not known to IMS and is treated as if it is
not registered in the RECON data set. However, you can still view all information
about a disabled partition by using either the DBRC LIST command or the HALDB
Partition Definition utility (%DFSHALDB). A disabled partition still counts towards
the maximum number of partitions that can be defined for a HALDB database.

Disabled partitions are not removed from the DBRC groups CAGROUP, DBDSGRP,
DBGROUP and RECOVGRP; however, disabled partitions are generally not
processed as part of a group when the group is used in a DBRC command. This is
also true of implied groups used in a command. An exception to this is that
changes are accumulated for disabled partitions that are members of a change
accumulation group when you issue the GENJCL.CA command and execute the
IMS Database Change Accumulation utility.

The GENJCL.IC and GENJCL.RECOV commands fail for disabled partitions. If the
commands specify a group of any kind, disabled partitions are simply skipped,
JCL is not generated and no message is issued.

The following code is an example of disabling a partition by using the DBRC
CHANGE.PART command:
//CHGPART JOB
...
...
//SYSIN DD *
CHANGE.PART DBD(DB3) PART(PART3) DISABLE
/*

Disabling HALDB partitions
Disabling a partition removes it from an active HALDB database while retaining
all of the partition records in the RECON data set. Disabled partitions can be
enabled later.

To disable a HALDB partition:
1. Take an image copy of the partition that you intend to disable and any

partitions into which records will be moved from the disabled partition.
2. Stop access to the partition you are disabling and the other affected partitions

by issuing either the /DBRECOVERY DB partition_name command or the UPDATE
DB NAME(partition_name) STOP(ACCESS) command.

3. Unload the partition you are disabling and the other affected partitions.
4. Disable the partition by using one of the following methods:
v The HALDB Partition Definition utility
v The DBRC command CHANGE.PART DBD(HALDB_master_name)

PART(partition_name) DISABLE

5. If the HALDB database uses high-key partitioning, ensure that the high key
values defined to DBRC for each partition are still appropriate.

6. Initialize the remaining partitions affected by the change.
7. Reload the remaining partitions affected by the change.

Chapter 30. Modifying databases 781

8. Take an image copy of the reloaded data sets. The image copy needed flag is
set for the data sets in the partitions that are initialized or loaded by the HD
Reorganization Reload utility (DFSURGL0).

9. Issue the /START DB partition_name command or the UPDATE DB
NAME(partition_name) START(ACCESS) command to make the affected partitions
available again.

About enabling partitions
Enabling a disabled partition makes it available for use by IMS again.

The procedure for enabling a partition for use in a HALDB database is essentially
the same as the procedure for adding a new partition to a HALDB database. You
can enable a disabled partition by issuing the DBRC command CHANGE.PART with
the ENABLE parameter.

When you enable a HALDB partition, you can either enable the partition in
conjunction with the unload and reload processes or you can restore the HALDB
database to its state prior to the partition being disabled by using the recovery
process.

If updates have been made to the database after the partition was disabled, you
must use a time stamp recovery to recover the HALDB database. A time stamp
recovery typically requires you to recover the entire HALDB database and all of its
partitions, as well as any related HALDB databases.

When you enable a partition, DBRC flags the partition as needing recovery. If the
HALDB database uses a partition selection exit routine, DBRC flags all of the
partitions in the database as needing partition initialization. If the HALDB
database uses high key partitioning, DBRC flags the partition with the next higher
high key value as needing partition initialization.

Enabling HALDB partitions
Enabling a disabled partition makes it available for use by IMS again.

To enable a HALDB partition in conjunction with the unload and reload processes:
1. For all partitions that contain records that will be redistributed after the

partition is enabled, issue either the /DBRECOVERY DB partition_name
command or the UPDATE DB NAME(partition_name) STOP(ACCESS) command.

2. Unload the offline partitions.
3. Enable the partition by using one of the following methods:
v The HALDB Partition Definition utility
v The DBRC command CHANGE.PART DBD(HALDB_master_name)

PART(partition_name) ENABLE

DBRC marks all of the database data sets in the enabled partition as needing
recovery.

4. If the HALDB database uses high-key partitioning, ensure that the high key
values defined to DBRC for each partition are appropriate.

5. Allocate the data sets for the enabled partition and any other affected
partitions.

6. Initialize the offline partitions.
7. Reload the partitions. The image copy needed flag is set for the data sets.
8. Take an image copy of the reloaded partitions.

782 Database Administration

9. Make the partitions available again by issuing either the /START DB
partition_name command or the UPDATE DB NAME (partition_name)
START(ACCESS) command.

10. If the online IMS system does not immediately recognize the enabled
partition, issue either a /START DB HALDB_Master OPEN or UPDATE DB
NAME(HALDB_Master) OPTION(OPEN) command to rebuild all of the online
partition structures of the HALDB database.

Recovering HALDB databases when enabling partitions
When a partition is enabled, it is flagged in the RECON data set as needing
recovery. When recovering an enabled partition, you must also recover any
partitions that were affected when the partition was disabled.

If updates were made to the HALDB database after the partition was disabled, you
will likely have to recover the entire HALDB database, as well as any other
HALDB databases that are logically related to the HALDB database that contains
the partition being enabled.

To enable a partition as part of recovery:
1. Enable the partition by using one of the following methods:
v The HALDB Partition Definition utility
v The DBRC command CHANGE.PART DBD(HALDB_master_name)

PART(partition_name) ENABLE

DBRC marks all of the database data sets in the enabled partition as needing
recovery.

2. By using the image copies taken before the partition was disabled, recover all
of the partitions that changed when the partition was disabled or that were
changed by applications after the partition was disabled.
If updates were made to the databases after the partition was disabled, you
must perform a time stamp recovery.

3. Make the partitions available again by issuing either the /START DB
partition_name command or the UPDATE DB NAME (partition_name)
START(ACCESS) command.

4. If the online IMS system does not immediately recognize the enabled partition,
issue either a /START DB HALDB_Master OPEN or UPDATE DB NAME(HALDB_Master)
OPTION(OPEN) command to rebuild all of the online partition structures of the
HALDB database.

Related concepts:
“Recovery of databases” on page 577

Deleting partitions from an existing HALDB database
You can delete partitions from an existing HALDB database. You do this typically
when a partition has little data. Deleting a partition usually involves moving its
records to another partition.

Prior to deleting a partition, you should:
1. Determine whether your HALDB database performs partition selection using

high keys or a partition selection exit routine. If your HALDB database is using
a partition selection exit routine you must take extra steps when you delete a
partition.

Chapter 30. Modifying databases 783

2. Identify all other partitions that will receive records previously stored in the
deleted partition. You must unload, initialize, and reload these partitions in
addition to the deleted partition.

3. Determine if the HALDB database uses a secondary index (PSINDEX). You
might need to rebuild the PSINDEX after you delete a partition.

4. Make an image copy of the partition.
5. Export the partition definition of the partition you are going to delete by using

the HALDB Partition Definition utility (%DFSHALDB).
6. Disable the partitions that you intend to delete. Disabling a partition effectively

removes the partition from the HALDB database without deleting any
information about the partition from the RECON data set. The partition
definition, including the partition ID number, are retained in the RECON data
set. If you need to restore the partition, you can easily enable it again and any
prior image copies are still usable. After you are certain you will not need to
restore the partition, you can then delete the partition record from the RECON
data set.

The following figure shows the deletion of a partition from a HALDB database
that performs partition selection using high keys. The HALDB database has
partitions A, B, C, and D. Partition B, with a high key of 400, is deleted. The
records in partition B move to partition C, meaning that partition C is affected by
the deletion of partition B. When the definition of partition B is deleted, IMS sets
the PINIT flag for partition C. Partition initialization initializes partition C.
Partitions A and D are not affected by the change.

HD unload1

HD reload4

2. Delete partition B

3. Initialize C

DB AA
200

A
200

B
400

C
600

D
High values

C
600

D
High values

Figure 302. Deleting a partition with key range partitioning

784 Database Administration

Related concepts:
“Record distribution and partition boundaries in HALDB databases” on page 768
“How IMS assigns partition ID numbers” on page 773

Deleting a partition from a HALDB database that uses high-key
partitioning
Deleting a partition permanently removes a partition and any records that it might
contain from both the HALDB database. The records associated with the deleted
partition are also permanently removed from the RECON data set.

To delete a partition from a HALDB database that selects partitions using high
keys:
1. Take an image copy of the partition you intend to delete and any partitions in

to which records from the deleted partition will be moved.
2. Stop access to the partition you are deleting and the other affected partitions by

issuing either the /DBRECOVERY DB partition_name command or the UPDATE DB
NAME(partition_name) STOP(ACCESS) command.

3. Unload both the partition you are deleting and the other partitions affected by
the deletion.

4. Delete the definition of the partition from the RECON data set by using one of
the following methods:
v The HALDB Partition Definition utility
v The DBRC command DELETE.PART DBD(HALDB_master_name)

PART(partition_name)

5. Ensure that the high key values defined in the RECON data set for each
partition are still appropriate.

6. Initialize the remaining partitions that will contain the records of the deleted
partition.

7. Reload the remaining partitions using the output of step 1.
8. Take an image copy of the reloaded partitions. The image copy needed flag is

set for the data sets of the reloaded partition.
9. Issue the /START DB partition_name command or the UPDATE DB

NAME(partition_name) START(ACCESS) command to make the affected partitions
available again.

After you complete the deletion process, IMS issues message DFS0415W with
reason code 90 for the deleted partition when IMS rebuilds the online partition
structures for the HALDB database.

Deleting the partition with the lowest key and all of its records
In some cases, it might be useful to delete a partition that has the lowest key range
along with all of the records the partition contains.

Such a case might arise if the keys in a HALDB database are based on time or an
ascending value. As the key values increase, you can delete a partition that has
become empty or whose records are no longer of interest.

For example, in the following figure the key for the database is based on time. The
high order part of the key contains the year and there is a partition for each year.
In this example, partition A with a high key of 2005zzz is no longer needed. Either
all of its records have been deleted or they are no longer needed. In fact, this is an
efficient way to delete all the records in partition A. Because no records are moved
either to or from any other partitions, no other partitions are affected. No

Chapter 30. Modifying databases 785

partitions need to be unloaded, reloaded, or initialized. There is only one step in
the process: to delete partition A.

Considerations for deleting a partition from a HALDB database
that uses a secondary index
If there a HALDB database uses a secondary index, you must be careful when you
delete a partition.

If the secondary index has entries that point to the deleted partition, the secondary
index becomes invalid. You must rebuild it with a tool such as the IMS Index
Builder. If the secondary index does not have entries that point to the deleted
partition, the secondary index is not affected and does not need to be rebuilt. If
there are no records in the deleted partition, the secondary index does not need to
be rebuilt. The secondary index is unaffected by the deletion of the partition.

Deleting a partition from a HALDB database that uses a partition
selection exit routine
When you use a partition selection exit routine, IMS cannot know which partitions
are affected by the deletion of a partition.

Consequently, IMS does not set the PINIT flag for the partitions affected by the
redistribution of records from the deleted partition. You must set the PINIT flag for
these partitions manually.

You might also need to modify the exit routine to recognize the new partition, as
well as change partition strings in some partitions.

To delete a partition from a HALDB database that uses a partition selection exit
routine:
1. Take offline both the partition you are going to delete and any partition into

which the records from the deleted partition will be moved by issuing the
/DBRECOVERY DB partition_name command or the UPDATE DB
NAME(partition_name) STOP(ACCESS) command.

Figure 303. Deleting the partition with the lowest key in a HALDB that uses key range
partitioning

786 Database Administration

2. Unload both the partition you are going to delete and any partition into
which the records from the deleted partition will be moved by running the
HD Reorganization Unload utility (DFSURGU0).

3. Delete the definition of the partition you are deleting from the RECON data
set.

4. If necessary, change the partition selection exit routine.
5. Change the partition strings for partitions, as necessary.
6. Set the PINIT flag in the partitions that will receive records from the deleted

partition.
7. Initialize the partitions that have the PINIT flag set.
8. Load the partitions by running the HD Reorganization Reload utility

(DFSURGL0).
9. Take an image copy of the reloaded data sets. The image copy needed flag is

set for the data sets in the partitions that are initialized or loaded by the
DFSURGL0 utility.

10. Make the affected partitions available again by issuing the /START DB
partition_name command or the UPDATE DB NAME(partition_name)
START(ACCESS) command.

Restoring deleted HALDB partitions
The way in which you restore a deleted HALDB partition depends on whether or
not you took certain precautions before you deleted the partition.

If you made image copies and used the HALDB Partition Definition utility
(%DFSHALDB) to export the partition definitions, including their partition IDs,
before you deleted the partition, you can restore a deleted partition by importing
the partition definition and applying the image copies.

To import only the deleted partition by using the HALDB Partition Definition
utility, specify Try all partitions as the processing option in the Import a
Database panel when you import the partition definition. Only the definition of the
deleted partition is imported. Any definitions for partitions that were not deleted,
are not imported. The restored partition has the same partition ID that it had
before it was deleted, which allows you to use the image copies of the partition
data sets that you made before you deleted the partition.

If you did not make image copies and export the partition definitions before you
deleted the partition, instead of restoring the deleted partition, you can define a
new partition to hold the records previously held by the deleted partition.
However, in this case, the new partition has a different partition ID than the
deleted partition and you cannot use any existing image copies of the deleted
partition.
Related concepts:
“How IMS assigns partition ID numbers” on page 773
Related tasks:
“Adding partitions to an existing HALDB database” on page 776

Changing the name of a HALDB partition
You can change the name of HALDB partition by deleting the partition and
redefining it with a new name.

However, deleting and redefining a partition has a number of consequences that
you should be aware of:

Chapter 30. Modifying databases 787

v The partition ID number changes.
v The image copy records for the partition are deleted from the RECON data sets.
v The ALLOC records for the partition are deleted from the RECON data sets.

Note: Using the online change function, a HALDB partition name that has been
deleted from the RECON data set cannot be reused by the online change function
to name a database without also performing a cold start of IMS. The opposite is
also true: a database name that has been deleted from IMS cannot be reused to
name a HALDB partition without also performing a cold start.

To change the name of a HALDB partition:
v Take the partition offline by issuing either the /DBRECOVERY DB partition_name

command or the UPDATE DB NAME(partition_name) STOP(ACCESS) command.
v Unload the partition.
v Delete the partition definition from the RECON data set.
v Redefine the partition in the RECON data set with the new name.
v Initialize the partition.
v Reload the partition.
v

Make the partition available by issuing the /START DB partition_name command
or the UPDATE DB NAME(partition_name) START(ACCESS) command.

After you complete the name change process, when IMS rebuilds the online
partition structures for the HALDB database it issues message DFS0415W with
reason code 90 for the deleted partition.
Related concepts:
“How IMS assigns partition ID numbers” on page 773
Related tasks:
“Changing databases dynamically in online systems” on page 748

Modifying the number of root anchor points in a PHDAM
partition

If a PHDAM partition has many roots that randomize to the same root anchor
point (RAP), lock contention problems that negatively impact performance can
occur. To remedy this problem, you can increase the number of RAPs in the
partition.

The modify the number of RAPs in a PHDAM partition:
1. Take the partition offline by issuing either the /DBRECOVERY DB partition_name

command or the UPDATE DB NAME(partition_name) STOP(ACCESS) command.
2. Unload the data from the partition.
3. Change the number of RAPs in the partition by using either the HALDB

Partition Definition utility (%DFSHALDB) or DBRC commands.
4. Initialize the partition.
5. Reload the partition.
6. Take an image copy of the data sets for the partition.
7. Make the partition available by issuing either the /START DB partition_name

command or the UPDATE DB NAME(partition_name) START(ACCESS) command.

788 Database Administration

Modifications to HALDB record segments
Changes to segments and segment hierarchies in a HALDB database are made in
the DBD statements of the DBDGEN process.

Most changes to segments and segment hierarchies in a HALDB database require
you to first unload all of the partitions in the HALDB database and reload the
partitions after the changes are complete.

The following list includes typical changes you can make to HALDB segments and
segment hierarchies and whether or not they require a complete unload of the
HALDB database:
v Adding a field definition that does not increase the size of a segment does not

require an unload of the database.
v Deleting a field definition that does not decrease the size of a segment and that

is not used with a secondary index does not require an unload of the database.
v Adding or deleting a segment type requires an unload of the database.
v Changing the definition of a segment size requires an unload of the database.
v Changing the definition of a sequence field requires an unload of the database.
v Changing the location of a segment in the hierarchy requires an unload of the

database.
v Changing pointer options requires an unload of the database.
Related concepts:
“Modifying record segments” on page 695

Modifying HALDB partition data sets
In a HALDB database, each partition has its own data sets. Changes to the
database data sets of one partition do not affect the database data sets in any other
partitions.

Moreover, only the partition in which you are making the change needs to be
unavailable for processing. All other partitions in the HALDB database can remain
available.

Before making any of the following changes to HALDB partition data sets, you
must stop access to the partition by issuing a /DBRECOVERY DB partition_name
command or a UPDATE DB NAME(partition_name) STOP(ACCESS) command
against the partition. All other partitions in the HALDB database can remain
available.

Changing HALDB data set name prefixes
The data set name prefix for each partition is stored in the RECON data set. You
can change it using either the HALDB Partition Definition utility (%DFSHALDB)
or the DSNPREFX(string) parameter of the DBRC batch command CHANGE.PART.

If you change a data set name prefix, the partition initialization needed (PINIT)
flag is set for the partition.

Changing the free space parameters for a partition data set
The free space specifications for a HALDB partition data set are stored in the
RECON data set.

Chapter 30. Modifying databases 789

You can change them using either the HALDB Partition Definition utility
(%DFSHALDB) or by using the free space parameters FBFF(value) or FSPF(value)
of the DBRC batch command CHANGE.PART.

You cannot change the free space parameters of a partition while the partition is
being reorganized by the integrated HALDB Online Reorganization function, as
indicated by OLREORG CURSOR ACTIVE = YES in the record in the RECON data
set, or while the partition is owned by an IMS system for the integrated HALDB
Online Reorganization process.

Changing the OSAM block size for a HALDB database data set
The OSAM block size for a HALDB database data set is stored in the RECON data
set.

You can change it using either the HALDB Partition Definition utility
(%DFSHALDB) or the BLOCKSZE(nnnnn) parameter of the DBRC batch command
CHANGE.PART. After you change the OSAM block size of a data set, the partition
initialization needed (PINIT) flag is set for the partition.

Changing the VSAM CI size for a HALDB database data set
You can change VSAM CI sizes for a HALDB database data set only by using
z/OS DFSMS commands. After you change the VSAM CI size, the partition
initialization needed (PINIT) flag is set for the partition.

Because VSAM CI sizes are not stored in the DBRC RECON data set, you cannot
change them using the HALDB Partition Definition utility (%DFSHALDB) or the
DBRC CHANGE commands.

For information about the z/OS DFSMS commands used for VSAM data sets, see
z/OS DFSMS Access Method Services for Catalogs.

The maximum size of OSAM data sets and HALDB databases
You set the maximum size of the OSAM PHDAM and PHIDAM data sets for a
HALDB database in the RECON data set.

The maximum size of OSAM PHDAM and PHIDAM data sets for a HALDB
database can be 4 or 8 gigabytes. When a HALDB database supports 8-GB OSAM
data sets, the HALDB online reorganization (OLR) function cannot be used to
reorganize the database. Instead, use offline utilities for database reorganization or
use 4-GB OSAM data sets, which supports OLR.

Defining the maximum size of OSAM data sets for a new HALDB
database
When you register a new HALDB master database with DBRC, you can specify the
maximum size of OSAM PHDAM or PHIDAM data sets.

A HALDB database can support up to 4 or 8 gigabytes of data in OSAM PHDAM
or PHIDAM database data sets.
1. Issue the DBRC batch command INIT.DB DBD(master_HALDB_name)

TYPHALDB.
2. Unless you want the default of 4-GB OSAM data sets and the ability to use the

HALDB online reorganization (OLR) function, include these keywords on the
command:
v For 8-GB OSAM data sets, specify OLRNOCAP and OSAM8G.

790 Database Administration

|

|
|

|
|
|
|
|

|
|
|
|

|
|

|
|

|
|
|

|

v For 4-GB OSAM data sets that cannot be reorganized online, specify
OLRNOCAP and NOOSAM8G.

The HALDB database is registered with DBRC, and the master database record
indicates whether the HALDB database supports 4-GB or 8-GB OSAM data sets.

Changing the maximum OSAM data set size for a HALDB from 4
GB to 8 GB
Use the CHANGE.DB command to increase the maximum size of OSAM PHDAM
and PHIDAM data sets for a HALDB database from 4 to 8 GB.

To increase the maximum size of HALDB OSAM data sets to 8 GB:
1. If the database is open in an online IMS system, stop access to the database by

issuing either the /DBRECOVERY DB haldb_master command or the UPDATE
DB NAME(haldb_master) STOP(ACCESS) command.

2. If HALDB online reorganization has been run against the database, ensure that
all of the database partitions use A through J data sets.

3. Issue the CHANGE.DB command with the OSAM8G keyword. If the database
has been reorganized online, you must also specify the OLRNOCAP keyword.

4. Make the partitions available by issuing either the /START DB haldb_master
command or the UPDATE DB NAME (partition_name) START(ACCESS)
OPTION(OPEN) command.

The master database record in the RECON data set is updated to indicate that the
HALDB supports 8-GB OSAM data sets.

Changing the maximum OSAM data set size for a HALDB from 8
GB to 4 GB
Use the CHANGE.DB command to decrease the maximum size of OSAM PHDAM
and PHIDAM data sets for a HALDB database.

When you reduce the data capacity of the OSAM data sets from 8 GB to 4 GB, you
must consider how to manage the data in the database, especially if the database
contains more than 4 GB of data.

To decrease the maximum size of the OSAM data sets to 4 GB:
1. If the database is already open in an online IMS system, stop access to the

database by issuing either the /DBRECOVERY DB haldb_master command or
the UPDATE DB NAME(haldb_master) STOP(ACCESS) command.

2. Unload the data from all of the partitions in the database.
3. Issue the CHANGE.DB command with the NOOSAM8G keyword.
4. Split the partitions that contain any data sets that have more than 4 GB of data.

Either define new partitions or rearrange the high key definitions of the
existing partitions by using either the HALDB Partition Definition utility
(%DFSHALDB) or DBRC commands.

5. Initialize all of the partitions that are affected by the change by running either
the HALDB Partition Data Set Initialization utility (DFSUPNT0) or the Database
Prereorganization utility (DFSURPR0).

6. Reload all of the partitions that are affected by the change by using the output
from unloading the data from the database.

7. Create image copies of the data sets in the affected partitions. DBRC does not
allow updates to the data after the image copy required flag is set and before
the image copies are recorded in the RECON data sets.

Chapter 30. Modifying databases 791

|
|

|
|

|
|
|
|

|

|
|
|

|
|

|
|

|
|
|

|
|

|
|
|
|

|
|
|

|

|
|
|

|

|

|
|
|
|

|
|
|

|
|

|
|
|

8. Make the partitions available by issuing either the /START DB haldb_master
command or the UPDATE DB NAME (partition_name) START(ACCESS)
OPTION(OPEN) command.

The master database record in the RECON data set is updated to indicate that the
HALDB supports 4-GB OSAM data sets.

Exit routine modifications and HALDB databases
For most exit routines that you can use with HALDB databases, the methods for
modifying them are no different from modifying exit routines for a non-partitioned
database.

You make most specifications for HALDB exit routines in the database definition
statements and not in the RECON data set. Exceptions to this rule are
modifications to a partition selection exit routine or the PHDAM randomizing
modules, which you can specify in both the DBD and in the RECON data set.
Specifications in the RECON data set override any specifications made in the
database definition.

With the exception of PHDAM randomizing routines, any changes you make to
database exit routines apply to the whole HALDB database and all of its partitions.

After you make changes to some exit routines, such as PHDAM Randomizing
routines or partition selection exit routine, consider reorganizing your database.

The exit routines that are commonly used with HALDB databases include:
v HALDB Partition Selection exit routine
v Data Capture exit routine
v Data Conversion User exit routine
v Segment Edit/Compression exit routines
v Secondary Index Database Maintenance exit routine
v HDAM and PHDAM Randomizing routines
Related concepts:
“Data Capture exit routines” on page 379
“Segment Edit/Compression exit routine” on page 376
Related reference:

Database Manager exit routines (Exit Routines)

Adding or changing a HALDB partition selection exit routine
If your installation uses a HALDB partition selection exit routine, you might need
to modify the exit routine to adjust the distribution of records across the partitions
in your HALDB database.

Typically, you do this when the amount of data in each partition is not balanced
across all of the partitions in the HALDB database. You can change the distribution
of records by switching exit routines or modifying the existing exit routine while
the entire HALDB database is offline.

To add or change a HALDB partition selection exit routine:
1. Take the entire HALDB database offline by issuing either the type-1 command

/DBRECOVERY DB or the type-2 command UPDATE DB NAME(dbname) STOP(ACCESS).

792 Database Administration

|
|
|

|
|

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.err/ims_dbexitroutines.htm#dbexitroutines

2. Unload all of the partitions that will be affected by the new or changed
partition selection exit routine.

3. Change the partition definitions, such as the partition strings or randomizing
parameters, as necessary. Changing the definition of a partition sets the PINIT
flag for the partition, which might save you time in the next step.

4. Set or unset the PINIT flags of each partition as necessary by using either the
HALDB Partition Definition utility (%DFSHALDB) or the batch DBRC
command CHANGE.DB:
v If you are adding a new partition selection exit routine and are, therefore,

introducing a new distribution of records across all partitions, you do not
need to change any of the PINIT flags. The PINIT flag is correctly set in all
of the partitions.

v If you are changing only the name of an existing partition selection exit
routine and the distribution of records across all partitions remains the same,
turn off the PINIT flags in all partitions. Even though only the name of the
exit routine has changed, IMS views the exit routine as a new partition
selection exit routine and, therefore, sets the PINIT flag of all partitions.

v If you are changing the name of an existing partition selection exit routine
and you have also changed how the partition selection exit routine
distributes records across partitions, turn off the PINIT flags in any partitions
that are not affected by the change in the distribution of records.

v If you are changing only the way an existing partition selection exit routine
distributes records across partitions, but you have not changed the name of
the partition selection exit routine, you must set the PINIT flag in all
partitions that are affected by the change in the distribution of records.

5. Initialize the partitions that are affected by any changes in the distribution of
records.

6. Reload the partitions affected by any changes in the distribution of records
using HD Reorganization Reload utility (DFSURGL0).

7. Take an image copy of the reloaded partitions. The image copy needed flag is
set for the data sets in the partitions that are initialized or loaded by the
DFSURGL0 utility.

8. Restore access to the HALDB database by issuing either the type-1 command
/START DB or the type-2 command UPDATE DB NAME(dbname) START(ACCESS).

For more information:
v About the sample HALDB Partition Selection exit routine (DFSPSE00), see IMS

Version 13 Exit Routines.
v About the HD Reorganization Reload utility, see IMS Version 13 Database Utilities.
Related concepts:
“Record distribution and the partition selection exit routine” on page 770

Changing the randomizing module or the randomization
parameters of a PHDAM partition
You can store the specifications for PHDAM randomizing modules in two places:
the DBD for the HALDB database and the record for each partition in the RECON
data set.

The specifications in the DBD apply to all of the partitions in the HALDB database.
The specifications in a partition record in the RECON data set apply only to that
partition and override the specifications in the DBD.

Chapter 30. Modifying databases 793

To change a randomizing module or randomization parameters of a PHDAM
partition:
1. Back up the current randomization specifications by issuing the DBRC

command LIST.DB DBD(partition_name) against the partition and saving the
output.

2. Stop access to the partition by issuing either the type-1 command /DBRECOVERY
or the type-2 command UPDATE DB NAME(partition_name) STOP(ACCESS) against
the partition. All other partitions in the database can remain available.

3. Unload the partition.
4. If you are modifying the randomization parameters, modify them by using

either the Partition Definition utility or the DBRC command CHANGE.PART.
5. If you are replacing the randomizing module, specify the name of the new

randomizing module by using either the Partition Definition utility or the
DBRC command CHANGE.PART DBD(name) PART(name) RANDOMZR(name).

6. Initialize the partition by using either the HALDB Partition Data Set
Initialization utility (DFSUPNT0) or the Database Prereorganization utility
(DFSURPR0). The partition initialization needed (PINIT) flag is set for the
partition after you change the parameters.

7. Reload the partition.
8. Restart the partition by issuing either the type-1 command /START DB or the

type-2 command UPDATE DB NAME(partition_name) START(ACCESS).

Adding a secondary index to a HALDB database
You can add a secondary index to an existing HALDB database.

IMS does not provide a utility to create secondary indexes. The easiest way to add
a secondary index is by using a tool, such as the IBM IMS Index Builder. The IMS
Index Builder reads an existing HALDB database and creates one or more
secondary indexes for it.

When you add a secondary index, you do not add any entries to the ILDSs
because the pointers in the newly created secondary index are accurate. Later,
when the partitions are reorganized, IMS adds entries for target segments to the
ILDSs.

Adding a secondary index requires new definitions in the indexed database DBD,
but does not require changes in the database data sets.

To add a secondary index to a HALDB manually:
1. Create an unload file for the indexed database. You can use HD Reorganization

Unload utility (DFSURGU0) or an application program that you write.
2. Add the secondary index definitions to the indexed database DBD.
3. Create the DBD for the secondary index.
4. Define the partitions for the secondary index.
5. Allocate the data sets for the secondary index.
6. Initialize the secondary index partitions.
7. Load the indexed database. You must provide the program to do this. The

program reads the file that is created in step 1. When the indexed database is
loaded, secondary index entries are created. The creation of the secondary
index entries is a random process that can significantly increase the load time.

794 Database Administration

If you use the DFSURGU0 utility in step 1, the output file contains a header
record, one record for each segment, and a trailer record. The segment record
includes the segment name and the segment data. Your load program for step 7
might map the records in this file by using the DSECT in the IMS DFSURGUP
macro in SDFSMAC.
Related concepts:
“Modifying a HALDB partitioned secondary index”

Modifying a HALDB partitioned secondary index
Changes to HALDB partitioned secondary indexes (PSINDEXes) are like changes
to other HALDB databases: you can add, delete, or modify the partitions of a
PSINDEX.

Affected partitions must be unloaded, initialized, and reloaded. The indexed
database is unaffected by changes to secondary index partitions.

As with non-partitioned full-function databases, if changes to the secondary index
require changes to the definition of the indexed database, you might have to
unload and reload the indexed database.

An example of a change to a secondary index is a change in a subsequence field. If
you add or modify a subsequence field, you must also change the DBD of the
indexed database. If the field in the indexed database already exists or does not
require other changes to the DBD, you do not have to unload and reload the
indexed database. Of course, you need to recreate the secondary index using the
new definitions.

Reorganizations of an indexed database do not cause its secondary indexes to be
recreated: you must use other means for this, such as the IBM IMS Index Builder
tool. Alternatively, you can use a technique similar to one used to add a secondary
index.

Initialize partitions in a PSINDEX as you would partitions in a PHDAM or
PHIDAM database by using the HALDB Partition Data Set Initialization utility
(DFSUPNT0). DFSUPNT0 automatically generates recovery points for the
PSINDEX. Recovery points are not created if you delete and redefine your
PSINDEX partitions and then turn off their PINIT flags.

When you make changes to an indexed database that do not require changes to
secondary index definitions, you do not need to make any changes to the
secondary indexes. They do not need to be unloaded, reloaded, or rebuilt. The
self-healing pointer scheme of HALDB provides this capability. The reload process
for the indexed database updates the ILDSs. This is all that is required to ensure
that the secondary index pointers can be used to find the moved target segments.
Related tasks:
“Adding a secondary index to a HALDB database” on page 794

Chapter 30. Modifying databases 795

796 Database Administration

Chapter 31. Converting database types

If the characteristics of your applications have changed over a period of time,
performance might be improved by changing to another DL/I access method.

DL/I access methods (or types of databases) are typically chosen based on such
variables as:
v The type of processing you needed to do (sequential, direct, or both)
v The volatility of your data

Assuming that you have decided to change access methods, this topic tells you:
v Given your existing DL/I access method, what things you need to change to

convert to a different DL/I access method
v How to do the conversion

The reorganization utilities described in related topics can be used to change DL/I
access methods among the HISAM, HDAM, and HIDAM access methods. One
exception to this is that HDAM cannot be changed to HISAM or HIDAM unless
HDAM database physical records are in root key sequence. This exception exists
because HISAM and HIDAM databases must be loaded with database records in
root key sequence. When the HD Reorganization Unload utility unloads an HDAM
database, it unloads it using GN calls. GN calls against an HDAM database unload
the database records in the physical sequence in which they were stored by the
randomizing module. This will not be root key sequence unless you used a
sequential randomizing module (one that put the database records into the
database in physical root key sequence).
Related concepts:
Chapter 30, “Modifying databases,” on page 695
“Types of pointers you can specify” on page 136
“Determining the size of CIs and blocks” on page 437
“Number of buffers” on page 440
“Choosing HDAM or PHDAM options” on page 432
“Determining which randomizing module to use (HDAM and PHDAM only)” on
page 431
Related tasks:
“Specifying free space (HDAM, PHDAM, HIDAM, and PHIDAM only)” on page
429
“Choosing a logical record length for HD databases” on page 436
“Estimating the minimum size of the database” on page 529

Converting a database from HISAM to HIDAM
Converting a database from HISAM to HIDAM can be performed in a few steps;
however, you need to perform a number of preliminary steps also.

You need the following before changing your DL/I access method from HISAM to
HIDAM:

© Copyright IBM Corp. 1974, 2016 797

v Determine whether you are going to set aside free space in the HIDAM
database. (Free space is space into which database records are not loaded when
the database is initially loaded.)
Unlike HISAM, in a HIDAM database you can set aside periodic blocks or CIs
of free space or a percentage of free space in each block or CI (in the ESDS or
OSAM data set). This free space can then be used for inserting database records
or segments into the database after initial load.

v Determine what type of pointers you are going to use in the database. Unlike
HISAM, HIDAM uses direct-address pointers to point from one segment in the
database to the next.

v Reassess your choice of logical record size. A logical record in HISAM can only
contain segments from the same database record. In HIDAM, a logical record
can contain segments from more than one database record.

v Reassess your choice of CI or block size. In HISAM, your choice of CI or block
size should have been some multiple of the average size of a database record. In
HIDAM, the size should be chosen because of the characteristics of the device
and the type of processing you plan to do.

v Reassess your choice of database buffer sizes and the number of buffers you
have allocated. If you have changed your CI or block size, you need to allocate
buffers for the new size.

v Recalculate database space. You need to do this because the changes you are
making will result in different requirements for database space.

Once you have determined what changes you need to make, you are ready to
change your DL/I access method from HISAM to HIDAM. To do this:
1. Unload your database using the existing DBD and the HD Reorganization

Unload utility.
2. Code a new DBD that reflects the changes you need to make. You must also

code a DBD for the HIDAM index.
3. If you need to make change that are not specified in the DBD (such as

changing database buffer sizes or the amount of space allocated for the
database), make these changes.

4. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

5. Reload the database using the new DBD and the HD Reorganization Reload
utility. Remember to make an image copy of your database as soon as it is
reloaded.
If you are using logical relationships or secondary indexes, you need to run
additional utilities immediately before and after reloading your database.

Related tasks:
“Offline reorganization by using the reorganization utilities” on page 618

Converting a database from HISAM to HDAM
Converting a database from HISAM to HDAM can be performed in a few steps;
however, you need to perform a number of preliminary steps also.

You need to do the following before changing your DL/I access method from
HISAM to HDAM:

798 Database Administration

v Determine what type of pointers you are going to use in the database. Unlike
HISAM, HDAM uses direct-address pointers to point from one segment in the
database to the next.

v Determine which randomizing module you are going to use. Unlike HISAM,
HDAM uses a randomizing module. The randomizing module generates
information that determines where a database record will be stored.

v Determine which HDAM options you are going to use. Unlike HISAM, an
HDAM database is divided into two parts: a root addressable area and an
overflow area. The root addressable area contains all root segments and is the
primary storage area for dependent segments in a database record. The overflow
area is for storage of dependent segments that do not fit in the root addressable
area. The HDAM options here are the ones that pertain to choices you make
about the root addressable area. These are:
– The maximum number of bytes of a database record to be put in the root

addressable area when segments in the database record are inserted
consecutively (without intervening processing operations).

– The number of blocks or CIs in the root addressable area.
– The number of RAPs (root anchor points) in a block or CI in the root

addressable area. (A RAP is a field that points to a root segment.)
v Reassess your choice of logical record sizes. A logical record in HISAM can only

contain segments from the same database record. In HDAM, a logical record can
contain segments from more than one database record. In addition, HDAM
logical records contain RAPs and two space management fields (FSEs and
FSEAPs).

v Reassess your choice of CI or block size. In HISAM, your choice of CI or block
size should have been some multiple of the average size of a database record. In
HDAM, the size should be chosen because of the characteristics of the device
and the type of processing you plan to do.

v Reassess your choice of database buffer sizes and the number of buffers you
have allocated. If you have changed your CI or block size, you need to allocate
buffers for the new size.

v Recalculate database space. You need to do this because the changes you are
making will result in different requirements for database space.

Once you have determined what changes you need to make, you are ready to
change your DL/I access method from HISAM to HDAM. To do this:
1. Unload your database, using the existing DBD and the HD Reorganization

Unload utility.
2. Code a new DBD that reflects the changes you need to make.
3. If you need to make changes that are not specified in the DBD (such as

changing database buffer sizes or the amount of space allocated for the
database), make these changes. HDAM only requires one data set, whereas
HISAM requires two.

4. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

5. Reload the database using the new DBD and the HD Reorganization Reload
utility. Make an image copy of your database as soon as it is reloaded.
If you are using logical relationships or secondary indexes, you need to run
additional utilities before reloading your database.

Related tasks:
“Offline reorganization by using the reorganization utilities” on page 618

Chapter 31. Converting database types 799

Converting a database from HIDAM to HISAM
Converting a database from HIDAM to HISAM can be performed in a few steps;
however, you need to perform a number of preliminary steps also.

You need to do the following before changing your DL/I access method from
HIDAM to HISAM:
v Reassess your choice of logical record size. A logical record in HISAM can only

contain segments from the same database record. In HIDAM, a logical record
can contain segments from more than one database record.

v Reassess your choice of CI or block size. In HIDAM, your choice of CI or block
size should be based on the characteristics of the device and the type of
processing you plan to do. In HISAM, the size should be some multiple of the
average size of a database record.

v Reassess your choice of database buffer sizes and the number of buffers you
have allocated. If you have changed your CI or block size, you need to allocate
buffers for the new size.

v Recalculate database space. You need to do this because the changes you are
making will result in different requirements for database space.

Once you have determined what changes you need to make, you are ready to
change your DL/I access method from HIDAM to HISAM. To do this:
1. Unload your database using the existing DBD and the HD Reorganization

Unload utility.
2. Code a new DBD that reflects the changes you need to make. You will not be

specifying direct-address pointers or free space in the DBD, because HISAM,
unlike HIDAM, does not allow use of these. Also, HISAM has only one DBD
whereas HIDAM had two.

3. If you need to make changes that are not specified in the DBD (such as
changing database buffer sizes or the amount of space allocated for the
database), make these changes.

4. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

5. Reload the database using the new DBD and the HD Reorganization Reload
utility. Remember to make an image copy of your database as soon as it is
reloaded.
If you are using logical relationships or secondary indexes, you must run
additional utilities right before and after reloading your database.

Related tasks:
“Offline reorganization by using the reorganization utilities” on page 618

Converting a database from HIDAM to HDAM
Converting a database from HIDAM to HDAM can be performed in a few steps;
however, you need to perform a number of preliminary steps also.

You need to do the following before changing your DL/I access method from
HIDAM to HDAM:
v Reassess your choice of direct-address pointers. Although both HIDAM and

HDAM use direct-address pointers, you might need to change the type of
direct-address pointer used:

800 Database Administration

– Because of the changing needs of your applications.
– Because pointers are partly chosen based on the type of database you are

using. For example, if you used physical twin backward pointers on root
segments in your HIDAM database to get fast sequential processing of roots,
they will not have any use in an HDAM database.

v Determine which randomizing module you are going to use. Unlike HIDAM,
HDAM uses a randomizing module. The randomizing module generates
information that determines where a database record is to be stored.

v Determine which HDAM options you are going to use. Unlike HIDAM, an
HDAM database does not have a separate index database. Instead the database
is divided into two parts: a root addressable area and an overflow area. The root
addressable area contains all root segments and is the primary storage area for
dependent segments in a database record. The overflow area is for storage of
dependent segments that do not fit in the root addressable area. The HDAM
options here are the ones that pertain to choices you make about the root
addressable area. These are:
– The maximum number of bytes of a database record to be put in the root

addressable area when segments in the database record are inserted
consecutively (without intervening processing operations).

– The number of blocks or CIs in the root addressable area.
– The number of RAPs in a block or CI in the root addressable area.

v Reassess your choice of logical record size.
v Reassess your choice of CI or block size.
v Reassess your choice of database buffer sizes and the number of buffers you

have allocated. If you have changed your CI or block size, you need to allocate
buffers for the new size.

v Recalculate database space. You need to do this because the changes you are
making will result in different requirements for database space.

After you have determined what changes you need to make, you are ready to
change your DL/I access method from HIDAM to HDAM. To do this:
1. Unload your database using the existing DBD and the HD Reorganization

Unload utility.
2. Code a new DBD that reflects the changes you need to make. You probably will

not be specifying free space, but you will be specifying HDAM options. Note
also that you'll need only one DBD for HDAM, whereas HIDAM required two
DBDs.

3. If you need to make changes that are not specified in the DBD (such as
changing database buffer sizes or the amount of space allocated for the
database), make these changes. HDAM only requires one data set, whereas
HIDAM requires two.

4. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

5. Reload the database using the new DBD and the HD Reorganization Reload
utility. Remember to make an image copy of your database as soon as it is
reloaded.
If you are using logical relationships or secondary indexes, you will need to
run additional utilities right before and after reloading your database.

Related concepts:
“Types of pointers you can specify” on page 136

Chapter 31. Converting database types 801

Related tasks:
“Offline reorganization by using the reorganization utilities” on page 618

Converting a database from HDAM to HISAM
Converting a database from HDAM to HISAM can be performed in a few steps;
however, you need to perform a number of preliminary steps also.

You need to do the following before changing your DL/I access method from
HDAM to HISAM:
v Reassess your choice of logical record size. A logical record in HISAM can only

contain segments from the same database record. In HISAM, a logical record can
contain segments from more than one database record.

v Reassess your choice of CI or block size. In HDAM, your choice of CI or block
size should be based on the characteristics of the device and the type of
processing you plan to do. In HISAM, the size should be some multiple of the
average size of a database record.

v Reassess your choice of database buffer sizes and the number of buffers you
have allocated. If you have changed your CI or block size, you need to allocate
buffers for the new size.

v Recalculate database space. You need to recalculate database space because the
changes you are making will result in different requirements for database space.

After you have determined what changes you need to make, you are ready to
change your DL/I access method from HDAM to HISAM. Remember you must
write your own unload and reload programs unless database records in the
HDAM database are in physical root key sequence. In writing your own load
program, if your HDAM database uses logical relationships, you must preserve
information in the delete byte (for example, a segment that is logically deleted in
the database might not be physically deleted).

To change from HDAM to HISAM:
1. Unload your database using the existing DBD and one of the following:
v Your unload program
v The HD Reorganization Unload utility if database records are in physical

root key sequence
2. Code a new DBD that reflects the changes you need to make. You will not be

specifying direct-address pointers or HDAM options.
3. If you need to make changes that are not specified in the DBD (such as

changing database buffer sizes or the amount of space allocated for the
database), make these changes. HDAM only requires one data set, whereas
HISAM requires two.

4. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

5. Reload the database using the new DBD and:
v Your load program, or
v The HD Reorganization Reload utility if database records are in physical root

key sequences
Remember to make an image copy of your database as soon as it is reloaded.

If you are using logical relationships or secondary indexes, you need to run
additional utilities right before and after reloading your database.

802 Database Administration

Related tasks:
“Offline reorganization by using the reorganization utilities” on page 618

Converting a database from HDAM to HIDAM
Converting a database from HDAM to HIDAM can be performed in a few steps;
however, you need to perform a number of preliminary steps also.

You need to make the following changes before changing your DL/I access
method from HDAM to HIDAM:
v Determine whether you are going to set aside free space in the HIDAM

database. (Free space is space into which database records are not loaded when
the database is initially loaded.) In a HIDAM database, you can set aside
periodic blocks or CIs of free space or a percentage of free space in each block or
CI (in the ESDS or OSAM data set). This free space can then be used for
inserting database records or segments into the database after initial load. In an
HDAM database, you generally get the free space you need by careful choice of
HDAM options.

v Reassess your choice of direct-address pointers. Although both HIDAM and
HDAM use direct-address pointers, you might need to change the type of
direct-address pointer used:
– Because of the changing needs of your applications.
– Because pointers are partly chosen based on the type of database you are

using. For example, you can chose to use physical twin forward and
backward pointers on root segments in your HIDAM database to get fast
sequential processing of roots.

v Reassess your choice of logical record size.
v Reassess your choice of CI or block size.
v Reassess your choice of database buffer sizes and the number of buffers you

have allocated. If you have changed your CI or block size, you need to allocate
buffers for the new size.

v Recalculate database space. You need to recalculate database space because the
changes you are making will result in different requirements for database space.

Once you have determined what changes you need to make, you are ready to
change your DL/I access method from HDAM to HIDAM. Remember you must
write your own unload and reload programs unless database records in the
HDAM database are in physical root key sequence. In writing your own load
program, if your HDAM database uses logical relationships, you must preserve
information in the delete byte (for example, a segment that is logically deleted in
the database might not be physically deleted).

To change from HDAM to HIDAM:
1. Unload your database using the existing DBD and one of the following:
v Your unload program
v The HD Reorganization Unload utility if database records are in physical

root key sequence
2. Code a new DBD that reflects the changes you need to make. You must also

code a DBD for the HIDAM index. You will not be specifying HDAM options
but you probably will be specifying free space.

Chapter 31. Converting database types 803

3. If you need to make changes that are not specified in the DBD (such as
changing database buffer sizes or the amount of space allocated for the
database), make these changes. HDAM only requires one data set, whereas
HIDAM requires two.

4. For non-VSAM data sets, delete the old database space and define new
database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

5. Reload the database using the new DBD and one of the following:
v Your load program
v The HD Reorganization Reload utility if database records are in physical root

key sequence.

Remember to make an image copy of your database as soon as it is reloaded.
If you are using logical relationships or secondary indexes, you need to run
additional utilities before reloading your database.

Related tasks:
“Offline reorganization by using the reorganization utilities” on page 618

Converting HDAM and HIDAM databases to HALDB
You can convert an HDAM or HIDAM database to a HALDB database by using
the IMS base utilities.

For a logical view of HDAM and HIDAM databases before and after changing to
PHDAM and PHIDAM, respectively, see the following figure.

Figure 304. HDAM and HIDAM databases before and after changing to PHDAM and
PHIDAM

804 Database Administration

Restriction: HALDB support for logical relationships does not include support for
virtual pairing. When converting a logically related database to HALDB, you can
convert the logical relationships as follows:
v Unidirectional relationships in the database being converted can remain

unidirectional in the HALDB database.
v Physically-paired logical relationships in the database being converted can

remain physically-paired in the HALDB database.
v Virtually-paired logical relationships in the database being converted can be

converted to physically-paired in the HALDB database.

In addition to the basic steps for converting a database to HALDB, this section also
contains the steps for converting a database with a secondary index to HALDB,
and the steps for converting databases with logical relationships to HALDB. Each
of these tasks, as well other concepts and issues related to the conversion process,
are covered in the following topics.
Related tasks:
“Modifying HALDB databases” on page 765

Parallel unload for migration to HALDB
If you are migrating a large database to HALDB, you can improve unload
performance by running the HD Unload Utility (DFSURGU0) in multiple parallel
jobs, with each job unloading a specified key range of database records.

Unloading a key range of database records is supported only when the
MIGRATE=YES option is used.

To further improve migration performance, unload a key range for a single
partition in one step followed by a migration reload of the corresponding HALDB
partition.

The migration reload must use DBRC=Y and requires that the RECON data sets
that contain the new HALDB partition definitions be allocated either with JCL or,
for dynamic allocation, with DBRC RECON MDA members.
Related reference:

HD Reorganization Unload utility (DFSURGU0) (Database Utilities)

Backing up existing database information
Before beginning the conversion process, back up the critical database elements.

Because you will be modifying the DBD statements for your existing database,
deleting the database information from the RECON data sets, and unloading and
reloading the database itself, you should back up each of these elements in case
you need to restore the non-HALDB database structure.

To begin the conversion process, complete the following steps to back up the
critical database elements:
v Create image copies of your database data sets by using one of the IMS image

copy utilities or other means.
v Before making any changes to the DBD, back up the DBD source for the existing

database.
v Before deleting information from the RECON data sets, back up the RECON

data sets. There are two methods to backing up the RECON data sets:

Chapter 31. Converting database types 805

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dfsurgu0.htm#ims_dfsurgu0

– To save only the information specific to the database you are converting to
HALDB, issue the DBRC LIST.DB command. If you need to revert your
database to its non-HALDB state after the conversion, you will only have to
re-enter into the RECON data sets the non-HALDB database information;
however, you will likely have to manually re-enter the information into the
RECON data sets.

– To back up the entire RECON data set, issue the DBRC BACKUP.RECON
command. If you need to revert your database to its non-HALDB state after
the conversion, you will have to restore the backup copy of the RECON data
set and then recover all changes to the RECON data sets that have occurred
since the backup copy was created.

Regardless of which method of recovery you intend to use, consider issuing both
the LIST.DB command and the BACKUP.RECON command to ensure that all
options are available to you in the event you need to revert your database to its
non-HALDB state.

Related tasks:
“Converting logically related HDAM or HIDAM databases to HALDB” on page
825
“Converting HDAM or HIDAM databases with secondary indexes to HALDB” on
page 812
“Converting simple HDAM or HIDAM databases to HALDB PHDAM or
PHIDAM”

Converting simple HDAM or HIDAM databases to HALDB
PHDAM or PHIDAM

Databases that do not have secondary indexes or logical relationships are referred
to as simple databases. If your database uses secondary indexes or logical
relationships, you must take extra steps to convert them.

Prior to converting your database to HALDB, backup the database, supporting
data sets, and the associated DBD statements.

To convert a simple HDAM or HIDAM database to a HALDB database, complete
the steps that are detailed in the topics listed below.
Related tasks:
“Backing up existing database information” on page 805
“Converting logically related HDAM or HIDAM databases to HALDB” on page
825
“Converting HDAM or HIDAM databases with secondary indexes to HALDB” on
page 812

Unloading the existing database
Unload the existing database by using the IMS HD Reorganization Unload utility
(DFSURGU0).

Specify the MIGRATE=YES control statement. The MIGRATE=YES control
statement identifies this unload as being part of the HALDB conversion process.
The IMS HD Reorganization Unload utility must use the DBD that defines the
non-HALDB database.

Recommendations:

806 Database Administration

v If you currently use OSAM database data sets, use OSAM sequential buffering
when unloading the database. OSAM sequential buffering typically improves the
performance of the unload.

v If the database that you are migrating is large and you are using the MIGRATE
control statement, the DFSURGU0 utility can unload records in ranges of keys.
Multiple key ranges can be unloaded in parallel jobs to improve unload
performance.

Related concepts:
“OSAM sequential buffering” on page 443
Related reference:

HD Reorganization Unload utility (DFSURGU0) (Database Utilities)

Deleting database information from the RECON data sets
Delete the database information from the RECON data sets by using the DBRC
DELETE.DB command.

You must delete the database information prior to registering the new HALDB
database with DBRC in the next step.

Defining HALDB database DBD statements
Because the DBD for your new HALDB is based on the DBD of your current
non-HALDB database, you must make several changes to your existing DBD to
convert your database to HALDB.

To modify the DBD, you need to modify the following statements:
v The DBD statement of the database being converted
v The DBD statement of a HIDAM primary index
v The DATASET statement
v The SEGM statement
v The LCHILD statement
v The FIELD statement
v The XDFLD statement

Changing the DBD statement

You might need to make the following changes to the DBD statement for HALDB:
v Specify PHDAM, PHIDAM, or PSINDEX for the ACCESS parameter, depending

on the type of HALDB database to which you are converting.
v If you are going to use a partition selection exit routine, specify the module

name of the exit routine by using the PSNAME parameter in the DBD statement
for the HALDB database. If you are not going to use the exit routine, do not
specify the PSNAME parameter.
You can also introduce or change a partition selection exit routine during the
partition definition process. Any specification that you make for a partition
selection exit routine during the partition definition process overrides any
specification you have made in the DBD statement.

v If you are converting to a PHDAM database, specify the RMNAME parameter.
For HALDB, the RMNAME parameter defines a default randomizer value for all
partitions in the HALDB database. You can specify different randomizer values
for individual partitions when you define each partition.

Chapter 31. Converting database types 807

http://www.ibm.com/support/knowledgecenter/SSEPH2_13.1.0/com.ibm.ims13.doc.dur/ims_dfsurgu0.htm#ims_dfsurgu0

Tip: When you convert your database to a HALDB database, keep the same
database name, if possible. If you change the name, you will need to change all of
the PSBs that reference the database. All of the conversion processes that are
described in this information use the same database name before and after the
conversion process.

Omitting the DBD statements for HIDAM indexes

If your database is a HIDAM database, delete the DBD statements for the primary
index. PHIDAM primary indexes do not require a DBD. When a HIDAM database
is migrated to PHIDAM, the DBD for the HIDAM index is discarded. IMS obtains
the information that is required to generate the PHIDAM primary index from the
PHIDAM DBD.

Deleting the DATASET statement

HALDB databases do not use the DATASET statement. If you are creating the DBD
for the HALDB database by modifying the DBD of the existing database, delete the
DATASET statement. You can specify the elements that were previously defined in
the DATASET statement by using the following methods:
v Create ddnames when you define partitions.
v Define data set groups by using the DSGROUP parameter on SEGM statements.
v Specify free space and OSAM block sizes when you define partitions.
v Omit the SCAN parameter for HALDB databases. HALDB searches only the

current cylinder for available storage space during segment insertion operations.

Changing the SEGM statement

You might need to make the following changes to the SEGM statement for
HALDB:
v Change the pointer specifications of the PTR parameter.

HALDB does not use hierarchical pointers. You must change any specifications
of the HIER, H, HIERBWD, or HB keywords with the PTR parameter to TWIN,
T, TWINBWD, or TB.
PHIDAM does not support the use of twin forward only (TWIN or T) pointers
for root segments. If you have HIDAM roots that use twin forward only
pointers, change the keyword for the PTR parameter on the SEGM statement to
NOTWIN, NT, TWINBWD, or TB.
HALDB does not use symbolic pointers. The changes that are required for
logical relationships are explained in “Defining DBD statements for logically
related HALDB databases” on page 827.

v If you want to use multiple data set groups, specify the DSGROUP parameter in
the SEGM statement.
To define multiple data set groups, you must specify the DSGROUP parameter
on the SEGM statement for any segment that is not in the first data set group.
The valid values for DSGROUP are the letters A through J. A is the first data set
group, B is the second, and J is the tenth.

v If you are using a /SX field as a subsequence field, you must increase the value
of the BYTES parameter for a secondary index segment by 4 bytes. For more
information, see “Defining DBD statements for the PSINDEX” on page 816.

Changing the LCHILD statement

808 Database Administration

The LCHILD statement does not define the primary index for PHIDAM databases.
When converting a HIDAM DBD to PHIDAM, delete the LCHILD statement.

When converting a secondary index DBD to a HALDB PSINDEX DBD, you might
need to make the following changes:
v If PTR=SYMB is specified in a secondary index, you must either change it to

PTR=SNGL or omit the PTR= keyword. PTR=SNGL is the default and is the
only valid specification for PSINDEX LCHILD statements.

v If PTR=SYMB is specified for a HDAM or HIDAM indexed database, you must
change it to PTR=INDX.

v If your database has a secondary index, you must specify the size of the key of
the root segment in the target database by using the RKSIZE parameter on the
LCHILD statement in the secondary index DBD.

When you use symbolic pointing to convert a logical relationship, you must omit
the PTR=SYMB specification on the LCHILD statement for the logical relationship.

Changing the FIELD statement

The changes for LCHILD statements that are used to define logical relationships
that use virtual pairing are explained in “Defining DBD statements for logically
related HALDB databases” on page 827.

In the secondary index DBD, the value of the BYTES parameter of the FIELD
statement for the sequence field of a secondary index segment must be increased
by 4 bytes if a /SX field is used as a subsequence field. The /SX field is defined in
the indexed database DBD. For more information, see “Converting HDAM or
HIDAM databases with secondary indexes to HALDB” on page 812.

Changing the XDFLD statement

HALDB does not support shared secondary indexes. If the CONST parameter is
specified in an XDFLD statement of an indexed database, you must delete it. The
CONST parameter specifies the character that is associated with a shared
secondary index. Each HALDB secondary index must be stored in its own
secondary index database. Separate PSINDEX databases must be defined for each
shared secondary index that is being converted to HALDB.
Related tasks:
“Defining DBD statements for logically related HALDB databases” on page 827
“Defining the DBD statements for a HALDB database indexed by a PSINDEX” on
page 816

Registering the HALDB master database with DBRC
A HALDB master database must be registered with DBRC.

To register the HALDB master database with DBRC use either the Partition
Definition utility or the DBRC batch command INIT.DB.

Defining the partitions to DBRC
HALDB partitions are defined in the DBRC RECON data set.

When defining partitions, you must have update authority for the RECON data
sets.

Chapter 31. Converting database types 809

To define the partitions to DBRC, use either the Partition Definition utility or the
DBRC batch command INIT.PART.

Allocating database data sets
You need to allocate the database data sets that are used by the databases.

The data set names are created from the data set name prefix that you specify
when you define a partition and the data set name algorithm. You must use these
names when you allocate your data sets.

Allocate the database data sets for each partition, including the indirect list data set
(ILDS).

The information that is generated by the HALDB Migration Aid utility
(DFSMAID0) can assist you in determining how large to make the data sets. The
utility reports the number of bytes used by the existing segment data in each
partition. You will need to add additional bytes to allow space for segments to be
added, for the free space you want to include, and for bitmaps.

When migrating to HALDB, you might want to increase your free space
parameters. Non-HALDB databases sometimes have suboptimal free space values
due to data set size limitations. Additional free space allows you to reorganize
your databases or partitions less frequently. In some cases, additional free space
can eliminate the need for reorganizations altogether.

Although databases that do not have logical relationships or secondary indexes do
not use the ILDS, in some cases HALDB requires that an ILDS exist in each
partition anyway. An online IMS system does not allocate an ILDS if the database
does not require one; however, batch jobs do allocate an ILDS, so you must define
an ILDS. IMS issues message IEC161I 152-061 when an empty ILDS is opened, but
this message does not indicate a problem.

When no secondary indexes or logical relationships are defined, the HD
Reorganization Reload utility (DFSURGL0) does not update the ILDS.

If you do not use the ILDS, you can allocate a very small amount of space for the
data set, such as one track.

All ILDSs have fixed-length 50-byte records. Keys are 9 bytes at zero offset. The
following example shows IDCAMS DEFINE statements to allocate an ILDS.

DEFINE CLUSTER(-
NAME(JOUKO3.HALDB.DB.PEOPLE.L00001) -
INDEXED -
CYL(1 1) -
RECORDSIZE(50 50) -
SHAREOPTIONS(3 3) -
SPEED -
KEY(9,0) -
FREESPACE(10,10) -
CONTROLINTERVALSIZE(8192) -
VOLUMES(TOTIMN) -

)

You must specify REUSE on the DEFINE statement for all HALDB VSAM data sets
other than ILDSs.

The output of the DBDGEN utility is useful when you allocate PHIDAM primary
indexes. The output of the DBDGEN utility for the PHIDAM database lists the

810 Database Administration

required parameters for the IDCAMS definition, as shown following the label
RECOMMENDED VSAM DEFINE CLUSTER PARAMETERS. The required
parameters are the INDEXED parameter, the values of the RECORDSIZE
parameter, the REUSE parameter, and the values of the KEY parameter. The
following example shows the IDCAMS DEFINE statement to allocate a PHIDAM
primary index data set.

DEFINE CLUSTER(-
NAME(JOUKO3.HALDB.DB.RZL.X00001) -
INDEXED -
CYL(10 5) -
RECORDSIZE(20 20) -
SHAREOPTIONS(3 3) -
REUSE -
KEY(14,5) -
FREESPACE(25,10) -
CONTROLINTERVALSIZE(8192) -
VOLUMES(TOTIMN) -

)

Related concepts:
“Naming conventions for HALDB partitions, ddnames, and data sets” on page 26
Related tasks:
“Allocating logically related database data sets” on page 830
“Allocating the indexed database data sets” on page 822

Initializing the partitions
Before you can use HALDB partitions, you must initialize them.

To initialize partitions, you can use either the IMS Database Prereorganization
utility (DFSURPR0) or the IMS HALDB Database Data Set Initialization utility
(DFSUPNT0). Alternatively, you can use the IBM IMS High Performance Load tool
to initialize partitions.
Related concepts:
“HALDB partition initialization” on page 171

Loading the database as a HALDB database
Reload the database as a HALDB database by using the HD Reorganization Reload
utility (DFSURGL0).

The input to the HD Reorganization Reload utility is the output from the HD
Reorganization Unload utility (DFSURGU0). You can ensure that your ILDS
includes free space by specifying the ILDSINGLE control statement when running
the HD Reorganization Reload utility.

Image copying the database data sets
The reload process sets the image copy needed flag for each database data set other
than ILDSs and PHIDAM primary indexes.

Create image copies of the flagged data sets.

Cleaning up DFSMDA members and HIDAM primary index DBDs
HALDB databases do not use DFSMDA members for dynamic allocation and do
not require a separate DBD for the primary index of a PHIDAM database.

HALDB databases use information stored in the DBRC RECON data set to enable
dynamic allocation of the database data sets and do not use DFSMDA members.

Chapter 31. Converting database types 811

After the conversion process is complete and you are certain you will not need to
revert the database to its non-HALDB state, you can delete the DFSMDA members.

IMS obtains the information that is required to generate the PHIDAM primary
index from the PHIDAM DBD. If you converted a HIDAM database to a HALDB
PHIDAM database, after the conversion process is complete and you are certain
that you will not need to revert the database to its non-HALDB state, you can
discard the DBD for the primary index of the old HIDAM database.
Related tasks:
“Cleaning up DFSMDA members and HIDAM primary index DBDs” on page 832
“Cleaning up DFSMDA members and HIDAM primary index DBDs after
converting to PSINDEX” on page 825

Converting HDAM or HIDAM databases with secondary
indexes to HALDB

Partitioned secondary indexes (PSINDEXes) are the only type of secondary index
that HALDB databases support. When you convert HDAM or HIDAM databases
that have secondary indexes to HALDB PHDAM or PHIDAM databases, you must
also convert the secondary index databases to HALDB PSINDEX databases.

Create image copies of your database data sets and back up your RECON data sets
and your existing DBD definitions.

To convert a target HDAM or HIDAM database and its secondary index to
HALDB, the steps are essentially the same as those documented in greater detail in
“Converting simple HDAM or HIDAM databases to HALDB PHDAM or
PHIDAM” on page 806, except for the changes that are related to converting the
secondary index and populating the ILDS.

You must define partition boundaries for the PSINDEX database. You can run the
HALDB Migration Aid utility (DFSMAID0) against your existing secondary index
to help you determine a partitioning scheme for your PSINDEX.

If you are using only the IMS base utilities for the conversion process, you can take
either of the two following approaches when you convert your database and its
secondary indexes:
v To create secondary index output files as the HD Reorganization Unload utility

(DFSURGU0) unloads the target database, specify the MIGRATX=YES control
statement when you run the HD Reorganization Unload utility. The
MIGRATX=YES control statement instructs the utility to create secondary index
output files from the target segments of the indexed database without reading
the secondary indexes. The MIGRATX=YES control statement method does not
preserve any user data in the secondary indexes.

v To convert the secondary index as a standalone database, specify the
MIGRATE=YES control statement when you run the HD Reorganization Unload
utility for both the indexed database and the each secondary index. This method
requires that the HD Reorganization Unload utility read and unload each
secondary index separately. When reading the secondary index, the utility must
also read the indexed database.
This information does not describe the MIGRATE=YES control statement method
for converting secondary indexes to HALDB.

Recommendation: Use the MIGRATX=YES method.

812 Database Administration

Related tasks:
“Backing up existing database information” on page 805
“Converting simple HDAM or HIDAM databases to HALDB PHDAM or
PHIDAM” on page 806
“Converting logically related HDAM or HIDAM databases to HALDB” on page
825

Unloading the existing database
Unload the existing target database by using the HD Reorganization Unload utility
with the MIGRATX=YES control statement. The MIGRATX=YES control statement
creates unload files for the secondary indexes in addition to the unload file for the
indexed database.

When you unload the database by using the MIGRATX=YES control statement, the
HD Reorganization Unload utility does not read the secondary indexes. DD
statements for the secondary index data sets are not required. The information that
is needed to create secondary index entries is generated from the source segments.
The unload files for secondary indexes must be sorted before they are used to load
the secondary indexes. The output of the HD Reorganization Unload utility
includes sort control statements for sorting the unload files of the secondary
indexes.

The MIGRATX=YES control statement technique does not preserve any user data
in the secondary indexes, which is rarely a problem. Most installations do not
maintain user data in secondary indexes because user data is lost every time a
reorganization of a non-HALDB database requires the rebuilding of its secondary
indexes.

The following figure illustrates a use of the HD Reorganization Unload utility with
the MIGRATX=YES control statement to migrate a database and its two secondary
indexes.

Chapter 31. Converting database types 813

If you use OSAM database data sets, you can improve the performance of the
unload process by using OSAM sequential buffering.

The SYSPRINT listing of the HD Reorganization Unload utility includes a Work
File Statistics report. The HD Reorganization Unload utility assigns a name, such
as DFSWORK1 or DFSWORK2, to the output file for each secondary index. The
Work File Statistics report lists the output file name, the sort file name, and other
data associated with each secondary index on a single row in the report. This
report maps each output file to each secondary index. You must use the report to
understand this relationship. The utility assigns the name DFSWRK01 to the first
secondary index relationship it encounters in during the unload process. The
report also lists the number of segments in the secondary index files and the sort
field sizes and offsets. The following example shows a sample report in which the
work file DFSWRK01 contains the records for secondary index STUNUM, and the
work file DFSWRK02 contains the records for secondary index STUCRT.

W O R K F I L E S T A T I S T I C S

SINAME WFNAME SFNAME RCDTOTAL OFFSET LENGTH

STUNUM DFSWRK01 DFSSRT01 000087012 0124 0006

STUCRT DFSWRK02 DFSSRT02 000010702 0124 0010

Sorting the output of the HD Reorganization Unload utility
The method for sorting the output of the HD Reorganization Unload utility differs
depending on whether you are using /SX fields to create unique keys in your
secondary index.

Sort
control

statement

Non-HALDB HALDB

Secondary
index 1

Secondary
index 2

Secondary
index 2

Secondary
index 1

Indexed
database

Indexed
database

Sort
control

statement

HD unload

HD reload

HD reload

HD reload

Sort

Sort

Report

Figure 305. Using the MIGRATX=YES control statement to migrate a database with two
secondary indexes

814 Database Administration

Sorting output when you are not using a /SX field for uniqueness

If you are not using /SX fields, sort the secondary index output data sets by using
the sort control statements that are generated by the HD Reorganization Unload
utility in the data sets that are defined by the DFSSRTnn DD statement.

You must sort each secondary index output file. The following example shows
sample JCL for the sorting of the STUNUM secondary index. The SORTIN DD
specifies the DFSWRK01 output from the HD Reorganization Unload utility. The
SYSIN DD specifies the DFSSRT01 output from the HD Reorganization Unload
utility. The output of this sort is input to the HD Reorganization Reload utility
(DFSURGL0) for the STUNUM secondary index.
//***
//* SORT THE STUNUM SEC. INDEX RECORDS FROM MIGRATX=YES
//***
//*
//SORT01 EXEC PGM=SORT,REGION=2048K,PARM=’CORE=MAX’
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR
//SYSOUT DD SYSOUT=*
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(50,5),,CONTIG)
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(50,5),,CONTIG)
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(50,5),,CONTIG)
//SYSIN DD DSN=JOUKO3.STUDENT.MIGR.SRT01,DISP=OLD
//SORTIN DD DSN=JOUKO3.STUDENT.MIGR.WRK01,DISP=OLD
//SORTOUT DD DSN=JOUKO3.STUDENT.MIGR.WRK01.SORTED,DISP=(NEW,CATLG),
// UNIT=3390,VOL=SER=TOTIMN,
// SPACE=(CYL,(50,10),RLSE)

Sorting output when you are using a /SX field for uniqueness

If you are using /SX fields for uniqueness, perform the following steps to place the
secondary index unload records in the correct subsequence order:
1. Split the file into three separate files that contain the header record, the unload

records, and the trailer record. The following example shows sort JCL and
control statements for this step.

Note: The following example is used when MIGRATX=YES is specified. When
MIGRATE=YES is specified, the OUTFIL INCLUDE statement for the trailer
record includes X'0090' instead of X'0290'.
//SORTIN DD DSN=UNLOAD.OUTPUT,DISP=SHR
//HEADER DD DSN=HEADER.FILE,DISP=(NEW,PASS)
//TRAILER DD DSN=TRAILER.FILE,DISP=(NEW,PASS)
//ULCOPY DD DSN=UNLOAD.COPY,DISP=(NEW,PASS)
//SYSIN DD *
OPTION COPY
OUTFIL INCLUDE=(5,2,CH,EQ,X’0080’),FNAMES=HEADER
OUTFIL INCLUDE=(5,2,CH,EQ,X’0290’),FNAMES=TRAILER
OUTFIL SAVE,FNAMES=ULCOPY
RECORD TYPE=V

2. Sort the file that contains the unload records in the /SX subsequence order. You
must calculate the offset and the size of the sort field. The offset is 63 bytes
plus the size of the root key of the indexed database. The sort field size is the
size of the secondary index search field plus 8 bytes. The following example
shows sort JCL and control statements for this step. In this example, the offset
is 73 bytes and the sort field size is 18 bytes.
//SORTIN DD DSN=UNLOAD.COPY,DISP=SHR
//SORTOUT DD DSN=UNLOAD.SORTED1,DISP=(,CATLG),
// UNIT=SYSDA,VOL=SER=000000,SPACE=(CYL,(1,5))

Chapter 31. Converting database types 815

//SYSIN DD *
SORT FIELDS=(73,18,CH,A),FILSZ=E1000
RECORD TYPE=V
END

3. Merge the records into one file. The following example shows sort JCL and
control statements for this step.
//SORTIN DD DSN=UNLOAD.HEADER,DISP=(OLD,DELETE),
// UNIT=SYSDA,VOL=SER=000000,SPACE=(CYL,(1,5))
// DD DSN=UNLOAD.SORTED1,DISP=(OLD,DELETE),
// UNIT=SYSDA,VOL=SER=000000,SPACE=(CYL,(1,5))
// DD DSN=UNLOAD.TRAILER,DISP=(OLD,DELETE),
// UNIT=SYSDA,VOL=SER=000000,SPACE=(CYL,(1,5))
//SORTOUT DD DSN=UNLOAD.SORTED2,DISP=(NEW,KEEP),
// UNIT=SYSDA,VOL=SER=000000,SPACE=(CYL,(1,5))
//SYSOUT DD SYSOUT=A
//SYSIN DD *
OPTION COPY
END

Deleting database information from the RECON data sets
You must delete the old database information from the RECON data set prior to
registering the new HALDB database with DBRC in the next step.

Delete the database information from the RECON data sets by using the DBRC
DELETE.DB command.

Defining the DBD statements for a HALDB database indexed by a
PSINDEX
Attributes of the indexed HALDB master database are defined by using the DBD
statements.

To define the DBD statements for the indexed HALDB database, modify the
following DBD statements:
v The DBD statement
v Remove the DATASET statement
v The SEGM statement
v The LCHILD statement
v The FIELD statement
v If your database uses shared secondary indexes, delete the CONST parameter

from the XDFLD statement of the indexed database before you convert the
secondary index to HALDB.

Related tasks:
“Defining HALDB database DBD statements” on page 807

Defining DBD statements for the PSINDEX
Attributes of the PSINDEX master database are defined by using the DBD
statements.

Define the following DBD statements for the PSINDEX:
v DBD statement

Specify ACCESS=PSINDEX to identify this database as a HALDB partitioned
secondary index.

v SEGM statement
v LCHILD statement

You must specify the RKSIZE parameter for a PSINDEX.

816 Database Administration

If you used symbolic pointers in your non-HALDB secondary index, you must
change the PTR=SYMB specification in the indexed database DBD to PTR=INDX
and either omit the PTR parameter in the secondary index DBD or specify
PTR=SNGL in it.

v XDFLD statement
v FIELD statement

If you use non-unique keys in your existing secondary index, you can use the
/SX field to create unique keys in your PSINDEX. HALDB PSINDEXes require
unique keys.

You must change the DBDs for your secondary index databases before they are
loaded as HALDB secondary indexes. You might also need to change the DBDs of
some of your indexed databases.

Removing symbolic pointers

If you use symbolic pointers, you must remove them, because HALDB secondary
indexes do not support symbolic pointers.

Symbolic pointers are defined with a PTR=SYMB parameter on the LCHILD
statements in the non-HALDB secondary index and the indexed database DBDs.
You must change the PTR=SYMB specification in the indexed database DBD to
PTR=INDX and either omit the PTR parameter in the secondary index DBD or
specify PTR=SNGL in it.

The examples in the following series of figures illustrate the changes you need to
make to remove symbolic pointers from the DBD statements. The DBD statements
involved are:
v The non-HALDB secondary index DBD with symbolic pointing defined.
v The indexed HDAM DBD.
v The secondary index DBD after it has been converted to HALDB.
v The indexed database DBD after it has been converted to HALDB.

The following figure shows the non-HALDB secondary index DBD with symbolic
pointing defined.

DBD NAME=CONTRSI,ACCESS=INDEX
DATASET DD1=CONTSI,DEVICE=3390,SIZE=8192
SEGM NAME=CONTR,BYTES=26,PARENT=0
FIELD NAME=(CONTRNUM,SEQ,U),BYTES=8,START=1,TYPE=C
LCHILD NAME=(CONTRACT,ENGAGEM),INDEX=CONTRIDX,PTR=SYMB
DBDGEN
FINISH
END

The following figure shows the indexed HDAM DBD.

DBD NAME=ENGAGEM,ACCESS=HDAM,RMNAME=(DFSHDC40,1,500,824)
DATASET DD1=ENGAHDAM,BLOCK=1648,SCAN=0
SEGM NAME=CLIENT,BYTES=100,PTR=TWIN
FIELD NAME=(CLNUM,SEQ,U),BYTES=10,START=1,TYPE=C

Figure 306. Example: DBD for secondary index that uses symbolic pointing

Figure 307. Example: DBD for indexed database with symbolic pointing

Chapter 31. Converting database types 817

SEGM NAME=CONTRACT,PARENT=CLIENT,BYTES=60,PTR=TWIN
FIELD NAME=(CONTRNO,SEQ,U),BYTES=8,START=1,TYPE=C
LCHILD NAME=(CONTR,CONTRSI),PTR=SYMB
XDFLD NAME=CONTRIDX,SRCH=CONTRNO
DBDGEN
FINISH
END

The following figure shows the secondary index DBD after it has been converted
to HALDB. PTR=SYMB is deleted from the LCHILD statement. RKSIZE is added
to it. Symbolic pointers are stored in the data area of index segments. Because it is
not in the HALDB secondary index, the BYTES parameter on the SEGM segment is
reduced by the size of the symbolic pointer.

DBD NAME=CONTRSI,ACCESS=PSINDEX
SEGM NAME=CONTR,BYTES=8,PARENT=0
FIELD NAME=(CONTRNUM,SEQ,U),BYTES=8,START=1,TYPE=C
LCHILD NAME=(CONTRACT,ENGAGEM),INDEX=CONTRIDX,RKSIZE=10
DBDGEN
FINISH
END

The following figure shows the indexed database DBD after it has been converted
to HALDB. PTR=INDX is specified on the LCHILD segment for the secondary
index relationship.

DBD NAME=ENGAGEM,ACCESS=PHDAM,RMNAME=(DFSHDC40,1,500,824)
SEGM NAME=CLIENT,BYTES=100,PTR=TWIN
FIELD NAME=(CLNUM,SEQ,U),BYTES=10,START=1,TYPE=C
SEGM NAME=CONTRACT,PARENT=CLIENT,BYTES=60,PTR=TWIN
FIELD NAME=(CONTRNO,SEQ,U),BYTES=8,START=1,TYPE=C
LCHILD NAME=(CONTR,CONTRSI),PTR=INDX
XDFLD NAME=CONTRIDX,SRCH=CONTRNO
DBDGEN
FINISH
END

If you have applications that process a secondary index by using symbolic pointers
as a database, you will need to make other changes to your DBDs.

Converting non-unique secondary index keys to unique keys

HALDB secondary indexes must have unique keys.

If your secondary indexes use non-unique keys, complete the following steps to
convert them to unique keys:
1. Add a subsequence field by adding the /SX system-related field to the XDFLD

statement in the indexed database DBD. This field adds 8 bytes to the length of
the sequence field in the index. In the examples, the BYTES parameter in the
FIELD statement is increased by 8 bytes for this conversion.

2. On the FIELD statement, change the value of the third subparameter from M to
U on the NAME parameter. The U parameter indicates that only unique values
are allowed in the sequence field of the segment.

Figure 308. Example: DBD for HALDB secondary index

Figure 309. Example: DBD for HALDB indexed database

818 Database Administration

The following example shows a non-HALDB secondary index DBD with
non-unique keys.

DBD NAME=XSI3,ACCESS=INDEX
DATASET DD1=XSI301,OVFLW=XSI302
SEGM NAME=XSNAM,BYTES=6,PARENT=0
FIELD NAME=(XSNAME,SEQ,M),START=1,BYTES=6
LCHILD NAME=(PERF,XPER01),INDEX=NAMX1,POINTER=SNGL
DBDGEN
FINISH
END

The following figure shows the DBD for the secondary index after it has been
converted to HALDB.

DBD NAME=XSI3,ACCESS=PSINDEX
SEGM NAME=XSNAM,BYTES=14,PARENT=0
FIELD NAME=(XSNAME,SEQ,U),START=1,BYTES=14
LCHILD NAME=(PERF,XPER01),INDEX=NAMX1,POINTER=SNGL,RKSIZE=12
DBDGEN
FINISH
END

Modifying the PSINDEX DBD for the larger HALDB /SX field

If you already use a /SX field to create unique keys for the secondary index you
are converting to HALDB, increase the BYTES parameter on both the SEGM
statement and the FIELD statement by 4 bytes. In non-HALDB secondary indexes,
a /SX field contains a 4-byte RBA. In a HALDB secondary index, a /SX field
contains an 8-byte ILK.

You do not need to change the XDFLD statement or the /SX FIELD statement in
the indexed DBD. The BYTES parameter on the /SX FIELD statement is not
required and is ignored if it is specified.

The following example shows the DBD for an indexed HDAM database with a
/SX field defined.

DBD NAME=VEHICLE,ACCESS=(HDAM,OSAM), X
RMNAME=(DFSHDC40,2,500,)

DATASET DD1=VEHICLE1,BLOCK=1648,SCAN=0
SEGM NAME=AUTO,BYTES=54,PTR=TB
FIELD NAME=(ID,SEQ,U),BYTES=10,START=1
FIELD NAME=MAKE,BYTES=20,START=11
FIELD NAME=MODEL,BYTES=20,START=31
FIELD NAME=YEAR,BYTES=4,START=51
FIELD NAME=/SX1
LCHILD NAME=(MAKEMOD,VEHSI),PTR=INDX
XDFLD NAME=MMIDX,SRCH=(MAKE,MODEL),SUBSEQ=/SX1
DBDGEN
FINISH
END

Figure 310. Example: non-HALDB secondary index DBD with non-unique keys

Figure 311. Example: HALDB secondary index DBD with unique keys

Figure 312. Example: HDAM DBD with /SX field

Chapter 31. Converting database types 819

The following example shows the DBD for a non-HALDB secondary index that
uses the /SX field that is defined in the preceding figure.

DBD NAME=VEHSI,ACCESS=INDEX
DATASET DD1=VEHSI1,DEVICE=3390,SIZE=8192
SEGM NAME=MAKEMOD,BYTES=44,PARENT=0
FIELD NAME=(NAMES,SEQ,U),BYTES=44,START=1
LCHILD NAME=(AUTO,VEHICLE),INDEX=MMIDX
DBDGEN
FINISH
END

The following example shows the DBD from Figure 312 on page 819 after it has
been converted to HALDB. The only changes are those made for all HDAM DBDs
when they are converted to PHDAM. That is, the ACCESS parameter on the DBD
STATEMENT is changed to PHDAM and the DATASET statement is deleted.

DBD NAME=VEHICLE,ACCESS=(PHDAM,OSAM), X
RMNAME=(DFSHDC40,2,500,)

SEGM NAME=AUTO,BYTES=54,PTR=TB
FIELD NAME=(ID,SEQ,U),BYTES=10,START=1
FIELD NAME=MAKE,BYTES=20,START=11
FIELD NAME=MODEL,BYTES=20,START=31
FIELD NAME=YEAR,BYTES=4,START=51
FIELD NAME=/SX1
LCHILD NAME=(MAKEMOD,VEHSI),PTR=INDX
XDFLD NAME=MMIDX,SRCH=(MAKE,MODEL),SUBSEQ=/SX1
DBDGEN
FINISH
END

The following example shows the DBD from Figure 313 after it has been converted
to HALDB. As with other secondary index DBD conversions, the ACCESS
parameter on the DBD statement is changed to PSINDEX, the DATASET statement
is deleted, and the RKSIZE parameter is added to the LCHILD statement. Because
the /SX field is used as a subsequence field, the BYTES parameters on the SEGM
and FIELD statements are increased by four.

DBD NAME=VEHSI,ACCESS=PSINDEX
SEGM NAME=MAKEMOD,BYTES=48,PARENT=0
FIELD NAME=(NAMES,SEQ,U),BYTES=48,START=1
LCHILD NAME=(AUTO,VEHICLE),INDEX=MMIDX,RKSIZE=10
DBDGEN
FINISH
END

Registering the indexed HALDB master database with DBRC
The indexed HALDB master database must be registered with DBRC.

Register the HALDB master database with DBRC by using either the Partition
Definition utility or the DBRC batch command INIT.DB.

Figure 313. Example: non-HALDB secondary index DBD using a /SX field

Figure 314. Example: PHDAM DBD with /SX field

Figure 315. Example: HALDB secondary index DBD using a /SX field

820 Database Administration

Defining the partitions of the indexed database to DBRC
HALDB partition definitions are stored in DBRC RECON data sets.

When defining partitions, you must have update authority for the RECON data
sets.

Define the partitions to DBRC by using either the Partition Definition utility or the
DBRC batch command INIT.PART.

Registering the PSINDEX HALDB master database with DBRC
The indexed PSINDEX HALDB master database must be registered with DBRC.

Register the HALDB PSINDEX with DBRC by using either the Partition Definition
utility or the DBRC batch command INIT.DB.

Defining the partitions of the PSINDEX database to DBRC
HALDB partition definitions for the PSINDEX are stored in DBRC RECON data
sets.

HALDB PSINDEX records are often much larger than non-HALDB secondary
index records for two reasons:
v The pointers in PSINDEX records are different. Each PSINDEX record includes

the 28-byte extended pointer set (EPS). Non-HALDB secondary index records
have either a 4-byte direct pointer or a symbolic pointer. Symbolic pointers are
the length of the concatenated key.

v The root keys of the target segments are stored in the PSINDEX records.
Non-HALDB secondary index records do not store the root keys. When
allocating your HALDB secondary index partitions, you must account for this
increased size.

The total size of the secondary index is usually easy to estimate. All secondary
index entries are fixed length. The DBDGEN utility reports this length. The total
length is indicated by the RECORDSIZE under RECOMMENDED VSAM DEFINE
CLUSTER PARAMETERS in the output of the DBDGEN utility for the HALDB
database. The number of entries does not change during the conversion. You can
determine the current number of entries from the output of several utilities. When
you re-create a secondary index as part of a reorganization process, the HISAM
Reload utility or any tool that you use reports this information.

Alternatively, you can use the REC-TOTAL value from the z/OS LISTCAT
command to find the number of records in the existing secondary index data set.

Finally, you can use the HALDB Migration Aid utility to find the number of
records. You can use the number of records, their length, and free space
requirements to estimate the size of an entire HALDB secondary index. For
example, if you had 1 000 000 entries, a record length of 48 bytes, and wanted an
additional 25% for free space, the index would require 60 000 000 bytes.

The size requirements of each partition depend on the number of index entries in
the partition. You can estimate this from the output of the HALDB Migration Aid
utility (DFSMAID0) or by other means. If you already know the number of
secondary index entries in a key range, you do not need to use the Migration Aid
utility. Otherwise, you should use the utility.

Chapter 31. Converting database types 821

The HALDB Migration Aid utility provides accurate information about the number
of records in a key range and key range boundaries. It does not provide accurate
information about the number of bytes that are required for a segment or partition.
For this reason, you should not use the MAX control statement when reading a
secondary index. If you know the number of partitions that you want, use the NBR
control statement. If you know the high keys that you want, use KR control
statements. When an NBR statement is used, the high keys that are reported for
each partition are accurate. When you use KR control statements, the number of
segments reported for each partition is accurate.

The following example output shows some of the output of the HALDB Migration
Aid utility for a secondary index. This output was generated with a NBR=4 control
statement. The reports for partitions 1, 2, and 3 are omitted here. Only the report
for partition 4 and the total database are shown. The numbers of segments that are
reported in the segments column are correct. Partition 4 will contain 158518
secondary index segments, and the entire index will contain 634078 segments. The
information in the bytes and prefix-incr columns is incorrect, as it is for all such
reports for secondary indexes. Nevertheless, you need only the number of
segments in a partition to calculate its space requirements.
partition 4 :

minimum key =

+0000 f0f0f1f6 f0f8f1f1 f5f0f0f0 f0f0f1f3 |0016081150000013|
+0010 f1f7 |17 |

maximum key =

+0000 f0f0f2f1 f1f0f3f0 f0f0f0f0 f0f0f0f5 |0021103000000005|
+0010 f4f6 |46 |

segments bytes prefix-incr length-incr
1) ’ORDRCUST’ 158518 3804432 1268144 0

SUM) 158518 3804432 1268144 0

--

sum of partitions:
segments bytes prefix-incr length-incr

1) ’ORDRCUST’ 634078 15217872 5072624 0
SUM) 634078 15217872 5072624 0

You can use the record size that is reported by the DBDGEN utility and the
number of segments for a partition to estimate the size requirement for the
partition. If necessary, you can add free space and room for expansion of the
partition.

Important: Do not use the numbers of bytes and prefix-incr for secondary indexes
reported by the HALDB Migration Aid utility to estimate the size requirements for
a partition, because these reports are inaccurate. The reports are inaccurate because
the segment prefixes for secondary indexes are larger than the prefixes for
segments in the indexed database. The HALDB Migration Aid utility does not
adjust for secondary indexes. The HALDB Migration Aid utility can be used to
find high keys and the number of secondary index entries for each partition.

Allocating the indexed database data sets
Allocate the database data sets for each partition in the indexed database.

822 Database Administration

The data sets you need to allocate are the ILDS and, if your HALDB database is a
PHIDAM database, the primary index.
Related concepts:
“Naming conventions for HALDB partitions, ddnames, and data sets” on page 26
Related tasks:
“Allocating PSINDEX VSAM KSDS data sets”
“Allocating database data sets” on page 810

Allocating PSINDEX VSAM KSDS data sets
Allocate a VSAM KSDS data set for each partition of the PSINDEX by using the
IDCAMS DEFINE statement.

The following parameters are required when allocating the data sets for the
PSINDEX partitions:
v KEY values
v RECORDSIZE values
v INDEXED
v REUSE

The output of the DBDGEN utility is useful when you allocate secondary index
data sets. The output for the secondary index lists the required parameters for the
IDCAMS definition under RECOMMENDED VSAM DEFINE CLUSTER
PARAMETERS. The following example shows IDCAMS DEFINE statements to
allocate a secondary index data set.

DEFINE CLUSTER(-
NAME(JOUKO3.HALDB.DB.PEOSKSI.A00001) -
INDEXED -
RECORDSIZE(86 86) -
CYL(20 5) -
SHAREOPTIONS(3 3) -
REUSE -
KEY(29,50) -
FREESPACE(10,10) -
CONTROLINTERVALSIZE(4096) -
VOLUMES(TOTIMN) -

)

Related tasks:
“Allocating logically related database data sets” on page 830
“Allocating the indexed database data sets” on page 822

Initializing the partitions
Before you can use HALDB partitions, you must initialize them.

To initialize partitions, you can use either the IMS Database Prereorganization
utility (DFSURPR0) or the IMS HALDB Database Data Set Initialization utility
(DFSUPNT0). Alternatively, you can use the IBM IMS High Performance Load tool
to initialize partitions.
Related concepts:
“HALDB partition initialization” on page 171

Selecting an ILDS update method
You have three options for how you update the ILDS data set when you load the
target database of a secondary index. The option you choose impacts the
performance of the load process.

Chapter 31. Converting database types 823

Use one of the following control statement specifications to select an update
method for the ILDS:
v To update the ILDS as each target segment is loaded into the indexed database

by the HD Reorganization Reload utility (DFSURGL0), do not specify an ILDS
control statement when you run the HD Reorganization Reload utility. This
method is the most time consuming.

v To have the HD Reorganization Reload utility update the ILDS after the indexed
database has been reloaded, specify the ILDSMULTI control statement when you
run the HD Reorganization Reload utility. This process uses a multi-threaded
update process, which can be much more efficient than updating the entries as
the target segments are loaded for the following reasons:
– The writes of the ILDS entries to different partitions are overlapped
– The writes are sequential
– The writes are done in load mode, which avoids the overhead of CI and CA

splits

Additionally, you can create free space. Future reorganizations might benefit
from having this free space for their updates to the ILDSs.
The ILDSMULTI control statement is valid only when converting a database to
HALDB.

v To update the ILDS by a means other than the HD Reorganization Reload utility
after the indexed database has been reloaded, specify the NOILDS control
statement. If you choose this option, you can use the HALDB Index/ILDS
Rebuild utility (DFSPREC0) to update the ILDS.
Using the NOILDS control statement provides the fastest reload, and the
HALDB Index/ILDS Rebuild utility can update the ILDS for each partition in
parallel; however, the HALDB Index/ILDS Rebuild utility reads each partition to
update its ILDS. Optionally, the HALDB Index/ILDS Rebuild utility can rebuild
the ILDS in VSAM load mode, which can improve performance and includes
free space in the ILDS.
You can also use the NOILDS control statement with the HD Reorganization
Reload utility when reorganizing an existing HALDB database.

Recommendation: If you are converting a database to HALDB that has a large
number of secondary index entries, use the ILDSMULTI control statement with the
HD Reorganization Reload utility when you reload the database.
Related tasks:
“Loading the indexed database and its secondary indexes”

Loading the indexed database and its secondary indexes
To load the indexed database and its secondary index, use the HD Reorganization
Reload utility (DFSURGL0).

The input to the HD Reorganization Reload utility is the sorted output from the
HD Reorganization Unload utility.

Other than choosing a method of updating the ILDS, there are no special
considerations for loading indexed databases and their secondary indexes.

After the migration reload, the pointers in the secondary index are no longer
accurate and IMS cannot use them to retrieve the target segments in the indexed
database until they are healed; however, you do not need to do anything to fix
them. To heal them, IMS waits until the target segment is needed and then locates

824 Database Administration

the target segment through the ILDS of the target partition, at which time IMS
updates the target segment's pointer in the secondary index.
Related tasks:
“Selecting an ILDS update method” on page 823

Creating image copies
The reload process sets the image copy needed flag for each data set other than
ILDSs and PHIDAM primary indexes.

Create image copies of the flagged database data sets and the PSINDEX data sets.

Cleaning up DFSMDA members and HIDAM primary index DBDs
after converting to PSINDEX
After the conversion process is complete and you are certain that you will not need
to revert the database to its non-HALDB state, you can delete any DFSMDA
members for the old database and discard the DBDs for any HIDAM primary
index.
Related tasks:
“Cleaning up DFSMDA members and HIDAM primary index DBDs” on page 811

Converting logically related HDAM or HIDAM databases to
HALDB

Converting logically related HDAM or HIDAM databases to HALDB PHDAM or
PHIDAM is similar to converting a simple database to HALDB; however, HALDB
support for logical relationships might require changes to your logical relationships
and all of the logically related databases must be converted to HALDB at the same
time.

Create image copies of your database data sets and back up your RECON data sets
and your existing DBD definitions.

In addition to the steps for converting logically related databases to HALDB, this
section describes the concepts and issues that you should consider before
beginning the conversion process.

Databases that are logically related to each other must be converted to HALDB at
the same time. IMS does not support logical relationships between HALDB and
non-HALDB databases.

HALDB supports only two types of logical relationships: unidirectional and
bidirectional with physical pairing. HALDB does not support virtual pairing. You
must convert bidirectional logical relationship that use virtual pairing to
bidirectional logical relationships that use physical pairing.

HALDB does not use symbolic pointers or hierarchical pointers. HALDB PHIDAM
databases do not support the use of twin forward only pointers (TWIN or T).

You do not need to change the DBDs for logical databases when the physical
databases that they reference are migrated. DBDs for logical databases have
ACCESS=LOGICAL in their DBD statements.
Related tasks:
“Backing up existing database information” on page 805
“Converting simple HDAM or HIDAM databases to HALDB PHDAM or
PHIDAM” on page 806

Chapter 31. Converting database types 825

“Converting HDAM or HIDAM databases with secondary indexes to HALDB” on
page 812

Unloading the existing database
Unload the existing databases by using the HD Reorganization Unload utility
(DFSURGU0) with the appropriate control statement.

The control statements you can use with the DFSURGU0 utility include:
v If your logically related databases do not use secondary indexes, use the

MIGRATE=YES control statement.
v If your logically related databases use secondary indexes, use the

MIGRATX=YES control statement to create unload files for the secondary
indexes. You must also complete the steps documented in “Converting HDAM
or HIDAM databases with secondary indexes to HALDB” on page 812.

When you unload a database for conversion to HALDB that has a logical child, its
logically related database might also be read. The HD Reorganization Unload
utility reads the logically related database when any of the following conditions
exists:
v The logical relationship uses physical pairing.
v The VIRTUAL option is specified (the logical parent's concatenated key is not

stored in the logical child).
v The logical relationship uses symbolic pointing.
v The database that is being unloaded contains the virtual logical child.

Stated another way, there are only two cases in which the logically related database
is not read. They are:
v The database that is being unloaded contains the real logical child of a virtually

paired relationship that uses direct pointing, and the logical parent's
concatenated key is stored in this logical child.

v The logical relationship is unidirectional and uses direct pointing, and the logical
parent's concatenated key is stored in the logical child.

When the HD Reorganization Unload utility reads the logically related database,
either the logical parent or the paired logical child of each logical child is read.
That is, each instance of a logical relationship requires a read of the related data.
These reads are random. Each read might require a physical I/O, which can
greatly increase the elapsed time of the unload.

You must provide buffer pools for any logically related database that is read by the
unload. The DFSVSAMP DD statement for the HD Reorganization Unload utility
must include definitions for these buffers.

The following figure illustrates a migration of two logically related databases to
HALDB databases.

826 Database Administration

Defining DBD statements for logically related HALDB databases
Define the DBD statements for each logically related HALDB database.

The statements that you need to modify are:
v The DBD statement
v The SEGM statement
v The LCHILD statement
v The XDFLD statement
v The FIELD statement

HALDB databases do not use the DATASET statement.

Changing pointer options for logical relationships

Logically related databases might require changes to pointers in addition to the
changes that are required for databases that do not have logical relationships.

HALDB does not use symbolic pointers. You must change any logical relationship
that has been implemented with symbolic pointing. You can do this by adding the
LPARNT keyword to the PTR parameter on the SEGM statement for the logical
child.

Although symbolic pointing is not used, the concatenated key of the logical parent
is stored in the logical child, regardless of the keywords that you use in the
PARENT parameter. That is, PHYSICAL or P is used, even when you specify
VIRTUAL or V. To avoid the warning message that is issued when VIRTUAL or V
is specified, you should specify the PHYSICAL or P keyword.

Recognizing virtual pairing

Logically
related
databases

HD unload

NON-HALDB HALDB

HD unload

Database 2

Database 2

Database 1

Database 1

HD reload

HD reload

Figure 316. Migrating databases with logical relationships

Chapter 31. Converting database types 827

You can determine if you have virtual pairing by examining your DBDs. If your
HDAM or HIDAM database contains a SEGM statement with a SOURCE
parameter, this segment is a virtual logical child. The first subparameter of the
SOURCE parameter identifies the real logical child. The third subparameter
identifies the database in which the real logical child resides. In the following
example of a HIDAM DBD with a logical relationship, the NAMESKIL segment in
the DBD contains a SOURCE parameter. It is a virtual logical child.

The source parameter references the SKILNAME segment in the SKILLINV
database in Figure 318, in which SKILNAME is a real logical child.

DBD NAME=PAYROLDB,ACCESS=HIDAM
DATASET DD1=PAYHIDAM,BLOCK=1648,SCAN=3
SEGM NAME=NAMEMAST,PTR=TWINBWD,RULES=(VVV), X

BYTES=150
LCHILD NAME=(INDEX,INDEXDB),PTR=INDX
LCHILD NAME=(SKILNAME,SKILLINV),PAIR=NAMESKIL,PTR=DBLE
FIELD NAME=(EMPLOYEE,SEQ,U),BYTES=60,START=1,TYPE=C
SEGM NAME=NAMESKIL,PARENT=NAMEMAST,PTR=PAIRED, X

SOURCE=((SKILNAME,DATA,SKILLINV))
FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
DBDGEN

FINISH

END

DBD NAME=SKILLINV,ACCESS=HDAM,RMNAME=(DFSHDC40,1,500,824)
DATASET DD1=SKILHDAM,BLOCK=1648,SCAN=0
SEGM NAME=SKILMAST,BYTES=31,PTR=TWINBWD
FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
SEGM NAME=SKILNAME, X

PARENT=((SKILMAST,DBLE),(NAMEMAST,P,PAYROLDB)), X
BYTES=80,PTR=(LPARNT,LTWINBWD,TWIN)

FIELD NAME=(EMPLOYEE,SEQ,U),START=1,BYTES=60,TYPE=C
DBDGEN
FINISH
END

Converting virtual pairing to physical pairing

If your existing logically related databases use virtual pairing, you need to modify
the DBD statements to convert them to HALDB.

To convert a virtually paired logical relationship to physical pairing, complete the
following steps:
1. Add an LCHILD statement under the parent of the segment that was the real

logical child. In Figure 317, this is the SKILMAST segment. Make the following
changes to this LCHILD statement:
v In the new LCHILD statement, include a NAME parameter that specifies the

segment that had the SOURCE parameter. In Figure 317, this is NAMESKIL.
v In the PAIR parameter, specify the same segment that was specified in the

SOURCE parameter. This segment was the real logical child. In Figure 317,
this is SKILNAME.

Figure 317. Example: HIDAM DBD with a logical relationship

Figure 318. Example: HDAM DBD with a logical relationship

828 Database Administration

2. Find the LCHILD statement that references the segment that was the real
logical child. In Figure 317 on page 828, this is the LCHILD statement in the
PAYROLDB database that includes NAME=(SKILNAME,SKILLINV). Make the
following changes to this LCHILD statement:
v Delete the PTR parameter.
v If there is a RULES parameter, delete it.

3. Find the SEGM statement that defined the virtual logical child. In Figure 317 on
page 828, this is the NAMESKIL segment. Make the following changes to the
SEGM statement:
v Add a BYTES parameter. The lengths of the fixed intersection data in the

paired logical children must be the same. The BYTES parameter includes
both the fixed intersection data and the logical parent's concatenated key
(LPCK). You can calculate the BYTES value for this segment by taking the
BYTES value from the paired logical child's SEGM statement, adding the
LPCK size for this segment, and subtracting the LPCK size for the paired
logical child. In Figure 317 on page 828, the paired logical child for the
NAMESKIL segment is the SKILNAME segment. Its size is 80 bytes. The
LPCK for the NAMESKIL segment is the TYPE field in the SKILMAST
segment. Its size is 21 bytes. The LPCK for the SKILNAME segment is the
EMPLOYEE field in the NAMEMAST segment. Its size is 60 bytes. The
BYTES parameter for the NAMESKIL segment should be 41, which is 80 + 21
- 60.

v Delete the SOURCE parameter.
v Change the PARENT parameter so that it also references its logical parent. In

Figure 317 on page 828, this is the SKILMAST segment. The PARENT
parameter should also include the PHYSICAL or P keyword.

v Change the PTR parameter specifications. Include PAIRED. Include TWIN, T,
TWINBWD, TB, NOTWIN, or NT. Do not use NOTWIN or NT unless you
will have a maximum of only one instance of this segment type under a
parent.

4. Find the SEGM statement for the segment that was the real logical child. In
Figure 317 on page 828, this is the SKILNAME segment. Make the following
changes to this SEGM statement:
v Change the PARENT parameter so that neither SNGL nor DBLE is specified.

If VIRTUAL or V was specified, change this to PHYSICAL or P.
v Change the PTR parameter specifications. Delete LTWIN, LT, LTWINBWD, or

LTB keywords if they exist. Specify both the LPARNT and PAIRED
keywords.

Figure 319 and Figure 320 on page 830 show the DBDs from Figure 317 on page
828 and Figure 318 on page 828 after they have been converted to HALDB
databases with physical pairing. In addition to the changes that were made for
logical relationships, other changes for the conversion to HALDB have been made.
These are changes in the ACCESS parameter on the DBD statements and deletion
of the DATASET statements.

DBD NAME=PAYROLDB,ACCESS=PHIDAM
SEGM NAME=NAMEMAST,PTR=TWINBWD,RULES=(VVV), X

BYTES=150
LCHILD NAME=(SKILNAME,SKILLINV),PAIR=NAMESKIL
FIELD NAME=(EMPLOYEE,SEQ,U),BYTES=60,START=1,TYPE=C
SEGM NAME=NAMESKIL, X

Figure 319. Example: PHIDAM DBD with a logical relationship

Chapter 31. Converting database types 829

PARENT=((NAMEMAST),(SKILMAST,P,SKILLINV)), X
BYTES=41,PTR=(TWIN,PAIRED)

FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
DBDGEN
FINISH
END

DBD NAME=SKILLINV,ACCESS=PHDAM,RMNAME=(DFSHDC40,1,500,824)
SEGM NAME=SKILMAST,BYTES=31,PTR=TWINBWD
FIELD NAME=(TYPE,SEQ,U),BYTES=21,START=1,TYPE=C
LCHILD NAME=(NAMESKIL,PAYROLDB),PAIR=SKILNAME
SEGM NAME=SKILNAME, X

PARENT=((SKILMAST),(NAMEMAST,P,PAYROLDB)), X
BYTES=80,PTR=(TWIN,PAIRED)

FIELD NAME=(EMPLOYEE,SEQ,U),START=1,BYTES=60,TYPE=C
DBDGEN
FINISH
END

Related tasks:
“Defining HALDB database DBD statements” on page 807

Deleting the database information from the RECON data set
Delete database information for each logically related database from the RECON
data sets.

This information must be deleted prior to the new HALDB database being
registered in the next step. You can delete the database information by using the
DBRC DELETE.DB command.

Registering each HALDB master database with DBRC
Register each HALDB master database with DBRC by using either the Partition
Definition utility or the DBRC batch command INIT.DB.

Defining the partitions to DBRC
Define the HALDB partitions in the DBRC RECON data set.

When defining partitions, you must have update authority for the RECON data
sets.

Define the partitions to DBRC by using either the Partition Definition utility or the
DBRC batch command INIT.PART.

Allocating logically related database data sets
Allocate the database data sets, including the indirect list data set for each partition
and the primary index for PHIDAM databases.
Related concepts:
“Naming conventions for HALDB partitions, ddnames, and data sets” on page 26
Related tasks:
“Allocating database data sets” on page 810
“Allocating PSINDEX VSAM KSDS data sets” on page 823

Initializing the partitions
Before you can use HALDB partitions, you must initialize them.

Figure 320. Example: PHDAM DBD with a logical relationship

830 Database Administration

Initialize the partitions in your databases by using either the Database
Prereorganization utility (DFSURPR0) or the HALDB Partition Data Set
Initialization utility (DFSUPNT0).
Related concepts:
“HALDB partition initialization” on page 171

Selecting an ILDS update method
You can update the ILDS by using one of three possible methods when you load
the logically related databases.

The option that you choose impacts the performance of the load process. Because
loading logically related databases takes much longer than it does for other
databases, the option that you choose might have a considerable impact on
performance.

Use one of the following methods to update your ILDS:
v To update the ILDS as each logical parent of a unidirectional relationship is

loaded or as each logical child of a bidirectional relationship is loaded into the
database by the HD Reorganization Reload utility (DFSURGL0), do not specify
an ILDS control statement when you run the HD Reorganization Reload utility.
This method is the most time consuming.

v To have the HD Reorganization Reload utility update the ILDS after the logically
related database has been reloaded, specify the ILDSMULTI control statement
when you run the HD Reorganization Reload utility. This process uses a
multi-threaded update process, which can be much more efficient than updating
the entries as the target segments are loaded for the following reasons:
– The writes of the ILDS entries to different partitions are overlapped
– The writes are sequential
– The writes are done in load mode, which avoids the overhead of CI and CA

splits

Additionally, you can create free space. Future reorganizations might benefit
from having this free space for their updates to the ILDSs.
The ILDSMULTI control statement is valid only when converting a database to
HALDB.

v To update the ILDS by a means other than the HD Reorganization Reload utility
after the logically related databases have been reloaded, specify the NOILDS
control statement. If you choose this option, you can use the HALDB
Index/ILDS Rebuild utility (DFSPREC0) to update the ILDS.
Using the NOILDS control statement provides the fastest reload, and the
HALDB Index/ILDS Rebuild utility can update the ILDS for each partition in
parallel; however, the HALDB Index/ILDS Rebuild utility reads each partition to
update its ILDS. Optionally, the HALDB Index/ILDS Rebuild utility can rebuild
the ILDS in VSAM load mode, which can improve performance and includes
free space in the ILDS.
You can also use the NOILDS control statement with the HD Reorganization
Reload utility when reorganizing an existing HALDB database.

Related tasks:
“Loading each database as a HALDB database”

Loading each database as a HALDB database
Use the HD Reorganization Reload utility (DFSURGL0) to load HALDB databases
with logical relationships.

Chapter 31. Converting database types 831

Unless you specify otherwise, when a logical parent of a unidirectional relationship
is loaded or a logical child of a bidirectional relationship is loaded into a partition,
an entry is created in the ILDS of that partition. Otherwise, no special
considerations exist for loading logically related databases during a conversion.

After the migration reload, the pointers in the logically related databases are no
longer accurate and IMS cannot use them to retrieve the target segments until they
are healed; however, you do not need to do anything to fix them. To heal them,
IMS waits until the target segment is needed and then locates the target segment
through the ILDS of the target partition, at which time IMS corrects the target
segment's pointer.
Related tasks:
“Selecting an ILDS update method” on page 831

Creating image copies
Create image copies of the database data sets.

The image copy needed flag is set for each database data set other than ILDSs and
PHIDAM primary indexes. You must take image copies of the flagged data sets.

Cleaning up DFSMDA members and HIDAM primary index DBDs
HALDB databases do not use DFSMDA members for dynamic allocation and they
do not require a separate DBD for the primary index of a PHIDAM database.

HALDB databases use information stored in the DBRC RECON data set to enable
dynamic allocation of the database data sets and do not use DFSMDA members.
After the conversion process is complete and you are certain that you will not need
to revert the database to its non-HALDB state, you can delete any DFSMDA
members for the old database and discard the DBDs for any HIDAM primary
index.

IMS obtains the information that is required to generate the PHIDAM primary
index from the PHIDAM DBD. If you converted a HIDAM database to a HALDB
PHIDAM database, after the conversion process is complete and you are certain
that you will not need to revert the database to its non-HALDB state, you can
discard the DBD for the primary index of the old HIDAM database.
Related tasks:
“Cleaning up DFSMDA members and HIDAM primary index DBDs” on page 811

Changing the database name when converting a simple
database to HALDB

When converting a database to HALDB, you can choose to change the database
name. However, if you do, you will be creating extra work for yourself because
you will also have to change all of your PCBs to conform to the new name. You
should continue to use the same database name.

To change the name of a database when you convert the database to HALDB,
follow these steps:
1. Create a RECON list before deleting the records for the database. The old

information is retained in RECON as long as necessary.
2. Unload the old database.
3. Remove the DBD from DBDLIB and ACBLIB.
4. Delete all MDA members that refer to the old database.

832 Database Administration

5. Perform a DBDGEN on the old database name as a logical database with the
source being the new HALDB database.

6. Define the HALDB database by using DBDGEN, ACBGEN, and either the
HALDB Partition Definition utility or the DBRC commands INIT.DB and
INIT.PART.

Restoring a non-HALDB database after conversion
The process of restoring HDAM or HIDAM databases that were migrated to
PHDAM or PHIDAM is referred to as fallback.

Fallback supports the conversion of the following types of logical relationships:
v Unidirectional HALDB databases to unidirectional non-HALDB databases
v Physically paired HALDB databases to physically paired non-HALDB databases

Fallback from HALDB maintains the order of physical twin segments, including
segments that are non-keyed and those that have a non-unique key.

Primary indexes are re-created, not unloaded. Secondary indexes are re-created by
the reload utility process. User data is not preserved.

Understanding the requirements of fallback
Before attempting to restore a HALDB database to a non-HALDB database, there
are several requirements and considerations you should take into account.

The requirements for fallback include:
v You must perform a concurrent fallback of all of the databases that are logically

related.
v If logical children or secondary indexes exist, prefix resolution and prefix update

utilities must be installed on your system.
v Before you can use the restored database, you must restore all of the related

databases and secondary index databases.

Recommendation: Before you use the database, but after you reload and perform
any prefix resolution or prefix updates, you should take an image copy of all data
sets, including the primary index, by using one of the image copy utilities. The
image copy utilities run DBRC to validate input and record results, which ensures
that you have a backup copy of the database that can serve as an effective point of
recovery in case of failure.

Restoring the database before updates are made
Restoring a database to its HDAM or HIDAM structure is simplest if you have not
updated the database since you converted it to HALDB.

To fall back to HDAM or HIDAM if the database has not been updated since it
was converted to HALDB, perform the following steps:
1. Change the DBD to its former specifications
2. Delete the HALDB database information from the RECON data set
3. If the non-HALDB database data sets have been deleted, restore them from the

last image copies and any necessary logs. You will need logs only if the
database was updated after you created the last image copies but before you
started the conversion process.

4. Register the non-HALDB database with DBRC
5. Take an image copy of the database data sets

Chapter 31. Converting database types 833

Restoring the database after updates are made
If you have updated the database after converting it to HALDB, your options for
restoring the database to its non-HALDB state are limited.

If the data no longer fits in the VSAM 4 GB size limit or the OSAM 8 GB size limit
of a non-HALDB database, you cannot restore it without taking extraordinary
steps. The natural growth of the database or even the conversion of virtual pairs to
physical pairs can cause the database to grow beyond these non-HALDB size
limits. In the unlikely event that you need to restore the non-HALDB database
structure and your data no longer fits into the non-HALDB database size
limitations, contact IBM Software Support.

If the amount of data is still within the space limitations of a non-HALDB
database, you can restore the database by completing the following steps:
1. Unload the database by using the HD Reorganization Unload utility

(DFSURGU0) and the FALLBACK=YES control statement. The HD
Reorganization Reload utility locates the paired logical children and saves the
information that is needed for fallback in the prefix of the output data. The
prefix that is created by the HD Reorganization Unload utility contains the
information that is required to create the new segment prefix when the data is
reloaded.

2. Restore the DBD of the non-HALDB database.
3. Delete the HALDB database information from the RECON data set.
4. Register the non-HALDB database with DBRC.
5. Run the Database Prereorganization utility (DFSURPR0) and specify the DBR

control statement.
6. Reload the non-HALDB database by using the HD Reorganization Reload

utility (DFSURGL0).
7. If the database has secondary indexes, restore the secondary indexes by

rebuilding them after the fallback process is complete for the indexed database.
8. If the database is logically related to another database, you must perform

fallback for all of the logically related databases at the same time.
9. Take an image copy of the database data sets.
Related tasks:
“Restoring a secondary index database”
“Restoring a database that uses logical relationships” on page 835

Restoring a secondary index database
To restore a secondary index database to its non-HALDB state, rebuild it as part of
the fallback process for the indexed database.

You can use the same rebuilding process that you would use when you reorganize
a non-HALDB database.

You can run one of the following utilities to rebuild the secondary index database:
v IMS Prefix Resolution
v HISAM Unload
v HISAM Reload
v IMS Index Builder
v Any tool that builds secondary indexes from the indexed database

834 Database Administration

The fallback process for the indexed database is the same as that described in the
following topics:
v “Restoring the database before updates are made” on page 833
v “Restoring the database after updates are made” on page 834
Related tasks:
“Restoring the database after updates are made” on page 834

Restoring a database that uses logical relationships
To restore logically related databases, you use the normal utilities for resolving
logical relationships as part of a reorganization of a non-HALDB database.

You can use the following utilities:
v Database Prereorganization utility (DFSURPR0)
v Database Prefix Resolution utility (DFSURG10)
v Database Prefix Update utility (DFSURGP0)

If your non-HALDB databases used virtual pairing, you probably converted the
virtual pairing to physical pairing when you converted the logically related
databases to HALDB, because HALDB does not support virtual pairing.
Unfortunately, you cannot restore virtual pairing as part of the fallback process.
The DBD statements for the non-HALDB database you are restoring must include
the definitions for physical pairing. Moreover, the additional space that physically
paired segments require can prevent you from being able to fall back.

To restore virtual pairing after a fallback, complete the following steps:
1. Perform a fallback on current physically paired databases.
2. Reorganize the current database.
3. Change the logical relationship to virtually paired databases.

Logical child segments have special considerations in the fallback process.
Non-HALDB IMS databases offer a virtual key storage option that does not store
the concatenated key of the logical parent in the logical child; in normal retrieval,
the key is built and the user application has access to the concatenated key in the
data. For all logical child segments that are unloaded, you must drop the logical
parent's concatenated key if you choose the virtual key storage option. The
unloaded segments are reloaded as real segments that are part of a physically
paired relationship. An unload drops the logical parent's concatenated key only
when the HD Reorganization Unload utility (DFSURGU0) performs a fallback
unload.

You cannot restore the database from physical pairing directly to virtual pairing
and preserve the logical sequence of the virtual logical child.
Related tasks:
“Restoring the database after updates are made” on page 834

Converting databases to DEDB
Converting a database to DEDB can be performed in a few steps; however, you
need to perform a number of preliminary steps also.

If your database requires logical relationships, a secondary index, or fixed-length
segments, DEDBs cannot be used.

Chapter 31. Converting database types 835

You need to do the following before changing your database to DEDBs:
v Determine whether or not your application programs can tolerate the FH (data

unavailable) status code.
v Determine whether or not your database can tolerate a randomizing routine

(might not be a problem when changing from HDAM).
v Recalculate database space, particularly when using DEDB features such as

partitioning and data set replication.
v Determine which pointers are available to use.

To change to DEDBs:
1. Unload your database using the existing DBD and one of the following:
v Your unload program
v The HD Reorganization Unload utility if database records are in physical

root key sequence
2. Code a new DBD for the DEDBs.
3. Execute the DBD generation.
4. For non-VSAM data sets, delete the old database space and define the new

database space. For VSAM data sets, delete the space allocated for the old
clusters and define space for the new clusters.

5. Run the DEDB initialization utility (DBFUMIN0).
6. Run the user DEDB load program.

836 Database Administration

Part 6. Appendixes

© Copyright IBM Corp. 1974, 2016 837

838 Database Administration

Notices

This information was developed for products and services offered in the US. This
material might be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 1974, 2016 839

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data and client examples cited are presented for illustrative
purposes only. Actual performance results may vary depending on specific
configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample

840 Database Administration

programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work
must include a copyright notice as follows:
© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Programming interface information
This information documents Product-sensitive Programming Interface and
Associated Guidance Information provided by IMS, as well as Diagnosis,
Modification or Tuning Information provided by IMS.

Product-sensitive Programming Interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of this software product. Use of such interfaces creates dependencies on the
detailed design or implementation of the IBM software product. Product-sensitive
Programming Interfaces should be used only for these specialized purposes.
Because of their dependencies on detailed design and implementation, it is to be
expected that programs written to such interfaces may need to be changed in order
to run with new product releases or versions, or as a result of service.
Product-sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a section or topic,
or by a Product-sensitive programming interface label. IBM requires that the
preceding statement, and any statement in this information that refers to the
preceding statement, be included in any whole or partial copy made of the
information described by such a statement.

Diagnosis, Modification or Tuning information is provided to help you diagnose,
modify, or tune IMS. Do not use this Diagnosis, Modification or Tuning
information as a programming interface.

Diagnosis, Modification or Tuning Information is identified where it occurs, either
by an introductory statement to a section or topic, or by the following marking:
Diagnosis, Modification or Tuning Information.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other
countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Notices 841

http://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

842 Database Administration

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, See IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Notices 843

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

844 Database Administration

Bibliography

This bibliography lists all of the publications in the IMS Version 13 library,
supplemental publications, publication collections, and accessibility titles cited in
the IMS Version 13 library.

Title Acronym Order number
IMS Version 13 Application Programming APG SC19-3646
IMS Version 13 Application Programming APIs APR SC19-3647
IMS Version 13 Commands, Volume 1: IMS
Commands A-M

CR1 SC19-3648

IMS Version 13 Commands, Volume 2: IMS
Commands N-V

CR2 SC19-3649

IMS Version 13 Commands, Volume 3: IMS
Component and z/OS Commands

CR3 SC19-3650

IMS Version 13 Communications and Connections CCG SC19-3651
IMS Version 13 Database Administration DAG SC19-3652
IMS Version 13 Database Utilities DUR SC19-3653
IMS Version 13 Diagnosis DGR GC19-3654
IMS Version 13 Exit Routines ERR SC19-3655
IMS Version 13 Installation INS GC19-3656
IMS Version 13 Licensed Program Specifications LPS GC19-3663
IMS Version 13 Messages and Codes, Volume 1: DFS
Messages

MC1 GC19-4240

IMS Version 13 Messages and Codes, Volume 2:
Non-DFS Messages

MC2 GC19-4241

IMS Version 13 Messages and Codes, Volume 3: IMS
Abend Codes

MC3 GC19-4242

IMS Version 13 Messages and Codes, Volume 4: IMS
Component Codes

MC4 GC19-4243

IMS Version 13 Operations and Automation OAG SC19-3657
IMS Version 13 Release Planning RPG GC19-3658
IMS Version 13 System Administration SAG SC19-3659
IMS Version 13 System Definition SDG GC19-3660
IMS Version 13 System Programming APIs SPR SC19-3661
IMS Version 13 System Utilities SUR SC19-3662

Supplementary publications

Title Order number
Program Directory for Information Management System Transaction
and Database Servers V13.0

GI10-8914

Program Directory for Information Management System Transaction
and Database Servers V13.0 Database Value Unit Edition V13R1

GI10-8966

Program Directory for Information Management System Transaction
and Database Servers V13.0 Transaction Manager Value Unit Edition
V13R1

GI10-9001

IRLM Messages and Codes GC19-2666

© Copyright IBM Corp. 1974, 2016 845

Publication collections

Title Format Order number
IMS Version 13 Product Kit CD SK5T-8864

Accessibility titles cited in the IMS Version 13 library

Title Order number
z/OS TSO/E Primer SA22-7787
z/OS TSO/E User's Guide SA22-7794
z/OS ISPF User's Guide Volume 1 SC34-4822

846 Database Administration

Index

Special characters
/CK operand 340
/SX field

modifying PSINDEX DBD for
HALDB 819

sorting output of HD Reorganization
Unload utility 815

/SX operand 340

A
abnormal termination in logical

relationships 303
ACB (application control block)

building 497
description 497
generation 497

ACB library
HALDB alter function 733

ACB members
online modification 752

ACBGEN (Application Control Block
Generation) utility 757

adding randomizing routines
online 754

access methods
BSAM (Basic Sequential Access

Method) 537
changing DL/I access methods 797
converting DL/I access methods 797
database

hierarchical direct 132
hierarchical direct 132
HISAM 116
IMS access methods 12, 112
introduction 12
operating system access methods 12
OSAM (Overflow Sequential Access

Method) 537
OSAM (overflow sequential access

methods)
used by HD 146

QSAM (Queued Sequential Access
Method) 537

VSAM
HISAM 116

accessibility
features xiii
keyboard shortcuts xiii

accessing segments
HDAM (Hierarchical Direct Access

Method) 157
HIDAM (Hierarchical Indexed Direct

Access Method) 157
HISAM (Hierarchical Indexed

Sequential Access Method) 121
HSAM (Hierarchical Sequential Access

Method) 114
PHDAM (Partitioned Hierarchical

Direct Access Method) 157

accessing segments (continued)
PHIDAM (Partitioned Hierarchical

Indexed Direct Access Method) 157
add programs, use in loading a

database 544
administration

database
overview 3

aids
for test databases

DL/I test program 525
AL (available length) field 148
algorithm

first fit
assigning VSO DEDB areas to data

spaces 220
algorithms

Fast Path buffer allocation
algorithm 477

Fast Path buffer allocation algorithm
for BMPs 482

Fast Path buffer allocation algorithm
for CCTL threads 483

HD space search algorithm 162
allocating data sets

for HALDB conversion 810
for PSINDEX databases 823

allocation
IMS data sets 537
OSAM data sets 539

alter
HALDB alter and online change 734

ALTER option
ACB library 733
batch application programs 740
data-sharing environments 739
HALDB partition processing,

description 737
HD Reorganization Reload utility

(DFSURGL0) 738
HD Reorganization Unload utility

(DFSURGU0) 738
IMS configuration requirements 732
logical relationships 742
offline reorganization 738
online change 734
OSAM data set block sizes 735
OSAM data sets

correcting ALTERSZE values 737
setting ALTERSZE values 736

overview 731
querying status 741
secondary indexes 742
steps for altering the structure of an

online database 732
stopping before completion 741
terminating before completion 741
utilities 740
VSAM data set CI sizes 735
VSAM data sets

correcting ALTERSZE values 737

ALTER option (continued)
VSAM data sets (continued)

setting ALTERSZE values 736
alternate PCB statement 495
AM status code 278, 311
anchor point area 149
application control block (ACB)

building 497
description 497
generation 497

Application Control Block Maintenance
utility

database implementation
building the ACBs 497

deleting a data capture exit routine
online 757

application development
IMS Application Development Facility

II 525
application I/O area

calculating storage 465
application programs

basic load program 547
BMP

database uncommitted updates
restriction 495

parallel partition processing 179
processing HALDB databases 175
selective partition processing 175

Application programs
SHISAM

restart 130
application requirements, analyzing 4,

419, 427
AREA statement

overview 489
areas

adding online 762
authorizing structure connections for

DEDB VSO 217
block-level sharing of

authorizing structure connections
for DEDB VSO 217

copying data sets 190
DEDB

design guidelines 458
opening 185
preopening 185
reopening 186
starting 187
stopping 187

deleting online 762
disabling preopen process 186
emergency restart

reopening 186
errors in DEDB areas 188
FPOPN= 186
introduction to DEDB areas 184
multiple area data sets

read performance 692

© Copyright IBM Corp. 1974, 2016 847

areas (continued)
preopen

concurrent to operation 185
preopening 214
reopening

emergency restart 186
replicating data sets 190
starting DEDB areas 187
UOW structural definition 758
VSO DEDB

defining 211
Asynchronous Data Capture

description 18
procedure for adding 730
using 730

auxiliary storage requirements for
MSDBs 470

available length (AL) field 148

B
background write 439, 451
backout

batch
error log 608
errors 608
system failure during 606

batch utility 605
dynamic

batch 605
because of abend 604
commit point 603
errors 607
overview 603
restarting transactions after 604

error
emergency restart 608
I/O 607
recovery 607

recovery 607
backspacing 116
backup

catalog
methods 44
overview 43

database 565
databases

introduction 559
RSR environments 576

image copies
RSR environments 576

IMS catalog
methods 44
overview 43

primary indexes 167
backward recovery 603
basic initial load program, writing 547
Batch Backout utility

when to use 606
Batch Backout utility (DFSBBO00) 605
batch jobs

image copies after 567
batch message processing (BMP)

application programs
database uncommitted updates

restriction 495

batch message processing (BMP)
programs

Fast Path buffer allocation
algorithm 482

batch message processing programs
(BMPs)

accessing DEDBs 689
and CCTL threads 482
data sharing 106
DBCTL environment 106
NBA values 688
normal buffer allocation 481
OBA values 687, 688
overflow buffer allocation 482
updates in a sync interval 691

BGWRT parameter 451
bidirectional physically paired logical

relationship 234
bidirectional virtually paired logical

relationship 237
bitmap block

HALDB partitions 147
bitmaps

calculating space 536
description 147

bits in delete byte 311
BLDSNDX keyword 557
block size

changing when altering the structure
of an online database 735

block sizes
correcting ALTERSZE values 737
setting ALTERSZE values 736

block-level data sharing 166
CI reclaim 404
SHISAM restriction 404

blocks
calculating number needed 533
determining size 113
determining size of 437
HIDAM (Hierarchical Indexed Direct

Access Method) 154
HISAM (Hierarchical Indexed

Sequential Access Method) 117
PHIDAM 154
recommendations for specifying

size 437
BMP (batch message processing)

application programs
database uncommitted updates

restriction 495
BMP (batch message processing)

programs
Fast Path buffer allocation

algorithm 482
BMPs (batch message processing

programs)
accessing DEDBs 689
and CCTL threads 482
data sharing 106
DBCTL environment 106
NBA values 688
normal buffer allocation 481
OBA values 687, 688
overflow buffer allocation 482
updates in a sync interval 691

BSAM (Basic Sequential Access Method)
access to GSAM databases 130
access to OSAM databases 537
access to SHSAM databases 129

BSIZ parameter 474, 480
buffer lookaside

described 223
buffer pools

description 438
designing a Fast Path 474
Fast Path

defining 688
dynamically defined and

allocated 687
size for DBCTL 484

Fast Path 64-bit buffer manager 687
Fast Path, use 687
formulas

calculating buffers for Fast
Path 484

in DBCTL environment 480
lookaside option 223
private

description 217
private, defining in DFSVSMxx

PROCLIB member 219
buffers

adjusting
DFSVSAMP 679
DFSVSMxx 679
OSAM 678
VSAM 678

buffer handler 439
choosing options 438
description 465
Fast path

uses 475
uses in DBCTL systems 481

Fast Path
allocation in IMS regions 486
buffer allocation 478
DBCTL and system buffer

allocation 483
number of buffers in buffer

pool 478
system buffer allocation in DBCTL

environment 483
Fast Path 64-bit buffer manager 475
Fast Path buffer allocation

algorithm 477
Fast Path buffer allocation algorithm

for BMPs 482
Fast Path buffer allocation algorithm

for CCTL threads 483
Fast Path system buffers

low activity 479
low activity in DBCTL

environments 485
fixing in storage 442, 453
Hiperspace buffering for VSAM 440
number of 441
OSAM

adjusting 679
adjusting dynamically 679
options for adjusting 677

OSAM buffer sizes 442

848 Database Administration

buffers (continued)
sequential

adjusting 682
size 440
specifying 442
use chain 439
VSAM

adjusting 676, 680
adjusting dynamically 676, 680

VSAM buffer sizes 441
business process

local view 419
BWO(TYPEIMS) 454

KSDS 454
bytes operand 150
BYTES parameter 261, 340

C
cache structure

VSO DEDB areas 211
cache structures

DEDB VSO areas
connection authorization 217

defining a VSO DEDB cache structure
name 217

registering name with DBRC 219
shared storage 215

calculating space 529
calls

CHKP
benefits in GSAM databases 132
benefits in SHISAM

databases 130
UOW size considerations 460

GU or GN 114
ROLB 477, 482
SYNC 460

Castout threshold for CIs in VSO areas
castout 225
threshold 225
threshold)

castout 225
VSO areas 225

VSO areas 225
catalog

impact analysis 99
metadata

DFSCASE statement 507
DFSMAP statement 507
field maps 507
REDEFINES parameter 506
redefining fields 506

record format 51
secondary index 99
structure 51

catalog database
backup

methods 44
overview 43

maintaining 45
metadata

arrays, dynamic 504
arrays, overview 502
arrays, static 503
data types, defining for application

programs 501

catalog database (continued)
metadata (continued)

definition 500
structures, defining 505

record format 51
recovery

overview 43
reorganizing 45
structure 51

catalog segment types
AREA segment 54
AREARMK segment 54
CAPXDBD segment 55
CAPXSEGM segment 56
case comments segment 59
case field comments segment 61
case field marshaller comments

segment 63
case field marshaller property

segment 63
case field segment 59
case marshaller segment 62
CASE segment 58
CASERMK segment 59
CFLD segment 59
CFLDRMK segment 61
CMAR segment 62
CMARRMK segment 63
CPROP segment 63
data capture exit segment 55, 56
data set comments segment 70
data set segment 68
database definition comments

segment 66
database intent segment 88
DBDRMK segment 66
DBDVEND segment 67
DBDXREF segment 88
DSET segment 68
DSETRMK segment 70
Fast Path area segment 54
Fast Path database area definition

comment segment 54
field definition comments

segment 72
field definition segment 71
field marshaller comments

segment 79
field marshaller segment 78
FLD segment 71
FLDRMK segment 72
LCH2IDX segment 73
LCHILD segment 73
LCHRMK segment 77
logical child comments segment 77
logical child secondary index

segment 73
logical child segment 73
map case segment 58
map comments segment 78
MAP segment 77
MAPRMK segment 78
MAR segment 78
MARRMK segment 79
PCB segment 89, 91
program control block segment 89

catalog segment types (continued)
program control comments

segment 91
program specification block comments

segment 94
PROP segment 80
PSBRMK segment 94
PSBVEND segment 94
secondary index 84
SEGM segment 80
SEGMRMK segment 84
sensitive field comments segment 95
sensitive field segment 95
sensitive segment 96
sensitive segment remarks 98
SF segment 95
SFRMK segment 95
SS segment 96
SSRMK segment 98
user-defined marshaller property

segment 80
vendor data segment 67, 94
XDFLD segment 84
XDFLDRMK segment 87

catalog, IMS
database versioning

deleting a DBD version 47
DBD instances

deleting 47
DBD segment 64
deleting segments 47
HEADER segment 51
overview 41
preventing deletion of segments 47
PSB instances

deleting 47
PSB segment 92
record segments

DBD segment 64
HEADER segment 51
PSB segment 92

records
DBD record segments 53
PSB record segments 87

removing segments 47
retention criteria

defining 47
segment types

DBD segment 64
HEADER segment 51
PSB segment 92

segments
deleting 47

CCTL
threads

Fast Path buffer allocation
algorithm 483

CCTL threads
Fast Path buffer allocation

algorithm 483
CFRM (coupling facility resource

management)
estimating CFRM list structure

size 228
CFRM policy for MADSIOT 228

Index 849

CFSizer
estimating CFRM list structure

size 228
CFSTR1|2 naming convention 218
change accumulation

JCL example 593
using for recovery 581

change version numbers
HALDB 169

changing
exit routines 754
randomizing routines 754

characteristics 323
checkpoints

system
database uncommitted updates

restriction 495
CHKP call

benefits in GSAM databases 132
benefits in SHISAM databases 130
UOW size considerations 460

CI (control interval)
calculating number needed 533
CI reclaim for VSAM KSDS 404
contention 689
DEDB (data entry database) 194
determining size of 437
enqueue level of segment CIs 198
format 194
HIDAM (Hierarchical Indexed Direct

Access Method) 154
HISAM (Hierarchical Indexed

Sequential Access Method) 117
number 150
overhead 532
PHIDAM (Partitioned Hierarchical

Indexed Direct Access Method) 154
recommendations for specifying

size 437
SDEP 460
size determination in DEDB 459
size, changing 763
splits 122

CI reclaim
block-level data sharing 404
deleting records 404
introduction 404
KSDS reorganization 404
VSAM REPRO, using 404
XRF environments 404

CI size
changing when altering the structure

of an online database 735
CI sizes

correcting ALTERSZE values 737
setting ALTERSZE values 736

CICS (Customer Information Control
System)

background write 452
DL/I Test Program 525
overview of access to IMS 4
sequential buffering

benefits 444
SB Initialization exit routine 450
using 448, 450
virtual storage 447

VSAM database buffers 453

CICS-DBCTL
GSAM 128
SHISAM 128
SHSAM 128

CIDF (control interval definition
field) 532

CK (/CK) operand 340
clean image copies 568
code inspections 32
command

shared secondary index database 345
commands

/DBRECOVERY 596
allocating VSAM data sets with

DEFINE CLUSTER 537
DISPLAY 596
GENJCL.CA for HALDB OLR 662
GENJCL.RECOV for HALDB

OLR 662
HALDB Online Reorganization,

modifying and tuning 655
HALDB Online Reorganization,

stopping 656
monitoring HALDB Online

Reorganization 655
QUERY 596
specifying optional VSAM functions

with DEFINE CLUSTER 454
starting HALDB Online

Reorganization 654
UPDATE 596

commit point
dynamic backout 603

common synchronization point
process, 691

compressing segment data 376
compression facility 18
COMPRTN parameter

DBD SEGM statement 756
concatenated key

converting 720
in symbolic pointing 325
logical parent's 238

concatenated segments 247, 258
concurrent copy

overview of image copies 565
concurrent image copies 567
concurrent image copy

recovery 595
constant field 333
control blocks

partition definition control
blocks 771

control interval (CI)
calculating number needed 533
CI reclaim for VSAM KSDS 404
contention 689
DEDB (data entry database) 194
determining size of 437
format 194
HIDAM (Hierarchical Indexed Direct

Access Method) 154
HISAM (Hierarchical Indexed

Sequential Access Method) 117
number 150
overhead 532

control interval (CI) (continued)
PHIDAM (Partitioned Hierarchical

Indexed Direct Access Method) 154
recommendations for specifying

size 437
SDEP 460
size determination in DEDB 459
size, changing 763
splits 122

control interval definition field
(CIDF) 532

control interval update sequence number
(CUSN) 194

control intervals (CI)
enqueue level of segment CIs 198

conventions
naming

general rules 25
HALDB (High Availability Large

Database) 27
HALDB data sets 28

copying phase of HALDB Online
Reorganization 645

counter
in logical relationships 250

counter area
of segment, introduction 16

coupling facility
cache structure 211
MADSIOT 228
structures 218
structures, naming convention 218

CP (free space chain pointer) field 148
CREATE DB command

adding a database to an online
system 517

changing a database in an online
system 749

MSDB, adding to online system 518
crossing a logical relationship 265
cursor

cursor-active status for HALDB
Online Reorganization 643

HALDB Online Reorganization 646
CUSN (control interval update sequence

number) 194
Customer Information Control System

(CICS)
overview of access to IMS 4

D
DA status code 278, 311
DASD

contention in Fast Path 686
out-of-space for DEDB 690
space release 311

data
marshalling

DFSMARSH statement
overview 492

XML
overview of storing in IMS

databases 405
Data Capture exit routine 757

adding online 757
and logical databases 384

850 Database Administration

Data Capture exit routine (continued)
call functions 383
call sequence 381
changing 757
data capture exit routine 382
deleting 757
description 18, 379
function 379
specifying in DBD 380
using 380, 730

Data Capture exit routines
cascade delete

crossing logical relationships 384
data definition names (ddnames)

HALDB naming conventions 27
HALDB Online Reorganization 27

Data Dictionary
See DB/DC Data Dictionary 20

data elements in segment 17
data entry database (DEDB)

CI size, changing online 763
overflow space allocation, changing

online 763
record distribution

impact of changes to UOW
structure 762

VSO areas
restrictions 212

Data entry database (DEDB)
altering online

FDBR, requirements for 742
overview 742
randomizer change 745
XRF, requirements for 742

altering size attributes
DEDB Alter utility 743

randomizer
replacing online 748

Data Entry Database (DEDB)
partitioned secondary indexes 355
secondary indexes 355

data entry databases (DEDB)
CI format 194
DEDB space search algorithm 201
segment format 194

data entry databases (DEDBs)
adding 759
and segment edit/compression exit

routine 376
areas

adding online 762
deleting online 762

areas, copying 190
areas, overview 184
buffer pools 480
CI resource contention 689
copying

areas 190
data sharing 191
DBCTL support 106
DEDB physical format 184
DEDBs (data entry database)

enqueue level of segment CIs 198
deleting 759
designing 457
DL/I calls against 203
enqueue level of segment CIs 198

data entry databases (DEDBs) (continued)
free space algorithm 202
HSSP processing of 471
insert algorithm 201
IOVF

extending online 763
loading the database 555
modifying

adding and deleting
segments 761

overview 183
performance considerations 686
replicating

areas 190
segments, adding and deleting 761
SSA restrictions 203
storage of records 197
when to use 183

Data Language/I (DL/I)
definition 3

data part of segment 15, 17
data requirements, analyzing 419, 427
data sensitivity 317
data set groups

changing the number of 724
multiple 18

data sets
allocating

OSAM multi-volume data
sets 540

OSAM single-volume data
sets 539

allocating for HALDB
conversion 810

allocating logically related database
data sets 830

allocation 537
area

read performance for MADS 692
contained in partitions 171
copying

DEDB areas 190
DEDB multiple area data sets 463
deleting as part of recovery 579
DFSVSAMP 122
ESDS in HD databases 146
ESDS in secondary indexes 332
full-function database data sets

number of open data sets 438
groups

changing the number of 724
HALDB data sets, modifying 789
HALDB Online Reorganization

naming conventions 650
output data sets 651

HALDB partitions
maximum number of data

sets 171
HALDB partitions and recovery 173
HISAM 117
KSDS in secondary indexes 332
large format sequential data set

OSAM allocation example 543
large format sequential data sets

GSAM 130
maximum size

OSAM 134

data sets (continued)
maximum size (continued)

VSAM 134
modifying HALDB data sets 789
MSDBCP1 and MSDBCP2 470
MSDBDUMP data set 470
naming conventions

HALDB (High Availability Large
Database) 28

HALDB Online
Reorganization 650

HALDB Online Reorganization
overview 27

PHDAM 28
PHIDAM 28
PSINDEX 28

OSAM
allocating large format sequential

data sets 543
maximum size 134, 538
multi-volume allocation

advisories 542
OSAM in HD databases 146
pre-formatting space 455
PSINDEX, allocating 823
recovery 579
recovery and HALDB partitions 173
replicating

DEDB areas 190
VSAM

maximum size 134
separate subpools 440

data sharing
database recovery

forward recovery steps 593
DEDB 191
VSO DEDB Areas 222

data space
z/OS

accessing for VSO DEDB
areas 220

acquiring for VSO areas 220
data structures, developing 419, 427
database

backout utility 605
backup 565
failures 559
modifying 695

database administrator
role in design reviews 29

database description (DBD)
introduction 20

Database Image Copy 2 utility
(DFSUDMT0)

concurrent copy, overview 565
fast replication, overview 565
overview of image copies 565

Database Image Copy utility
(DFSUDMP0)

frequency of creating image
copies 565

overview of image copies 565
Database Prefix Resolution utility

(DFSURG10) 627
Database Prefix Update utility

(DFSURGP0) 628

Index 851

Database Prereorganization utility
(DFSURPR0) 625

fallback from HALDB 834
database records

definition 7
HDAM (Hierarchical Direct Access

Method) 150
HIDAM 154
HISAM (Hierarchical Indexed

Sequential Access Method) 118
HSAM (Hierarchical Sequential Access

Method) 113
introduction to 13
locking 165
MSDB (main storage database) 207
PHDAM (Partitioned Hierarchical

Direct Access Method) 150
PHIDAM 154

Database Recovery utility (DFSURDB0)
RSR environment 598

Database Scan utility (DFSURGS0) 627
Database Surveyor utility

(DFSPRSUR) 632
database versioning

deleting a DBD version 47
databases

adding dynamically to an online
system 517

administration overview 3
administrative tasks 529
allocating data sets for HALDB

conversion 810
altering an online HALDB database

logical relationships 742
secondary indexes 742

altering online
DEDB areas 743
DEDB randomizer change 745
DEDB, overview 742
HALDB, overview 731

altering online databases
OSAM data set block sizes 735
VSAM data set CI sizes 735

altering online HALDB
IMS configuration

requirements 732
altering online HALDBs

OSAM data sets, correcting
ALTERSZE values 737

OSAM data sets, setting
ALTERSZE values 736

VSAM data sets, correcting
ALTERSZE values 737

VSAM data sets, setting
ALTERSZE values 736

altering the structure of an online
databases

querying status 741
steps 732
stopping before completion 741
terminating before

completion 741
altering the structure of an online

HALDB
batch application programs 740
HD Reorganization Reload utility

(DFSURGL0) 738

databases (continued)
altering the structure of an online

HALDB (continued)
HD Reorganization Unload utility

(DFSURGU0) 738
offline reorganization 738
utilities 740

application program's view 20
backup

introduction 559
backup copies

RSR environments 576
block level sharing

locking considerations 166
changing an online HALDB database

logical relationships 742
secondary indexes 742

changing dynamically in an online
system 749

changing dynamically in online
systems, overview 748

changing the structure of an online
databases

OSAM data set block sizes 735
querying status 741
steps 732
stopping before completion 741
terminating before

completion 741
VSAM data set CI sizes 735

changing the structure of an online
HALDB

batch application programs 740
HD Reorganization Reload utility

(DFSURGL0) 738
HD Reorganization Unload utility

(DFSURGU0) 738
offline reorganization 738
utilities 740

changing the structure of an online
HALDBs

OSAM data sets, correcting
ALTERSZE values 737

OSAM data sets, setting
ALTERSZE values 736

VSAM data sets, correcting
ALTERSZE values 737

VSAM data sets, setting
ALTERSZE values 736

CICS local-DL/I 106
concepts 3, 6
converting database types 797

parallel unload for HALDB
migration 805

converting types
DEDB 835

data sets
allocating logically related data

sets 830
data structure

implementing 426
database types

changing 797
DBCTL support 106
DEDB

alter, online 742, 745
areas 184

databases (continued)
DEDB (continued)

converting to 835
Data Capture exit routine,

changing 757
Data Capture exit routines 757
enqueue level of segment CIs 198
errors in DEDB areas 188
example of defining fixed-length

segments 191
example of defining

variable-length segments 191
fixed- and variable-length

segments 191
non-recovery option 189
online changes 759
parts of an area 192
prefix descriptor byte 312
record deactivation 463
reorganization 202
sequential dependent segment

storage 198
starting 187
tools for managing unusable

space 203
VSO, system-managed

rebuild 217
DEDB (data entry database)

AREA statement, overview 489
DEDB description 183
DEDB randomizer

replacing, online 748
DEDBs

altering online 743
altering with the DEDB Alter

utility 743
design guidelines 457
minimizing DASD contention due

to DEDB I/O 692
multi-area structures,

defining 220
defining 20
design 419

designing a conceptual data
structure 424

designing
organization 673
overview 4

developing test databases 525
DL/I test program

(DFSDDLT0) 525
File Manager for z/OS for IMS

Data 525
IMS Application Development

Facility II 525
DL/I access methods

changing 797
dynamic resource definition 731

adding database to an online
system 517

adding MSDB to an online
system 518

changing database in an online
system 749

overview 748
removing database from an online

system 750

852 Database Administration

databases (continued)
dynamic resource definition

(continued)
removing MSDB from an online

system 751
EEQEs

I/O error retry 597
Fast Path

design considerations 457
Fast Path 64-bit buffer

manager 475
registering in DBRC 229

Fast Path synchronization points
build log record 227

Fast Path Virtual Storage Option
input and output processing 223

field changes
HALDB online alter 731

forward recovery
JCL example, change

accumulation 593
JCL example, HALDB

partition 591
JCL example, HIDAM 586
JCL example, PHIDAM 587, 590
JCL example, PSINDEX 589

forward recovery steps
data sharing example 593
HIDAM example 585
PHIDAM example 587
PHIDAM example, data

sharing 590
single partition example 591

forward recovery, database 583
full function

number of open data sets 438
full-function

design considerations 429
nonrecoverable 112

full-function types
summary of characteristics 107

GSAM description 130
HALDB

adding partitions 779
alter, online 731
deleting a partition and all of its

records 785
free space parameters,

changing 790
implementing design 510
modifying 765
Online Change 775
OSAM block size, changing 790
scope of changes to HALDB 766
VSAM CI size, changing 790

HALDB (High Availability Large
Database), definition 132

HALDB alter
online change 734

HALDB conversion steps
summary 806

HALDB online alter function
logical relationships 742
secondary indexes 742

HALDB online reorganization
output data set requirements 651

databases (continued)
HALDB Partition Definition

utility 511
HALDB, altering online

IMS configuration
requirements 732

HALDB, modifying online
OSAM data set block sizes 735
OSAM data sets, correcting

ALTERSZE values 737
OSAM data sets, setting

ALTERSZE values 736
VSAM data set CI sizes 735
VSAM data sets, correcting

ALTERSZE values 737
VSAM data sets, setting

ALTERSZE values 736
HALDB, modifying the structure

online
ACB library 733
batch application programs 740
data-sharing environments 739
HD Reorganization Reload utility

(DFSURGL0) 738
HD Reorganization Unload utility

(DFSURGU0) 738
offline reorganization 738
online change 734
partition processing,

description 737
querying status 741
steps 732
stopping before completion 741
terminating before

completion 741
utilities 740

HALDBs
partitions, defining 511

HD
qualified calls 158
unqualified calls 158

HD databases, introduction 132
HDAM (Hierarchical Direct Access

Method), definition 132
HIDAM (Hierarchical Indexed Direct

Access Method)
primary index, introduction 132

HIDAM (Hierarchical Indexed Direct
Access Method), definition 132

hierarchical direct (HD) databases,
introduction 132

hierarchy
implementing 426

HISAM
inserting dependent segments 125

HSAM
DL/I calls, sequence field

undefined 115
HSAM description 112
I/O error management 180
I/O errors

I/O error retry 597
image copies

RSR environments 576
implementation 419
implementing

overview 4

databases (continued)
implementing database design 487
IMS database types 101
introduction 3, 12
loading 544

description 529
Fast Path initial loads 547
GSAM (Generalized Sequential

Access Method) 554
HALDBs with secondary

indexes 557
overview 4
restartable load program, using

UCF 550
sample JCL 547
SSAs in a load program 547
types of load program 547

Local-DL/I support 106
logical 247
logical relationships

adding by reorganizing 714
allocating logically related data

sets 830
insert rules, real logical child

segment 315
physical child last pointers 464

logically related
changing pointers for conversion

to HALDB 827
converting to HALDB using base

IMS utilities 825
converting virtual pairing to

physical pairing for
HALDB 828

defining HALDB DBD
statements 827

identifying virtual pairing in
non-HALDB DBD 828

loading HALDB databases 832
unloading for HALDB

conversion 826
modifying

HALDB 765
HALDB scope of changes 766
overview 4
overview of modifying

HALDBs 766
reorganization utilities, example

for HISAM databases 726
reorganization utilities, example

for logical relationships and
secondary indexes 727

reorganization utilities, example
for simple HD databases 725

segments 695
modifying an online HALDB database

logical relationships 742
secondary indexes 742

modifying online databases
OSAM data set block sizes 735
VSAM data set CI sizes 735

modifying online HALDBs
OSAM data sets, correcting

ALTERSZE values 737
OSAM data sets, setting

ALTERSZE values 736

Index 853

databases (continued)
modifying online HALDBs (continued)

VSAM data sets, correcting
ALTERSZE values 737

VSAM data sets, setting
ALTERSZE values 736

modifying the structure of an online
databases

querying status 741
steps 732
stopping before completion 741
terminating before

completion 741
modifying the structure of an online

HALDB
batch application programs 740
HD Reorganization Reload utility

(DFSURGL0) 738
HD Reorganization Unload utility

(DFSURGU0) 738
offline reorganization 738
utilities 740

monitoring 609
overview 4

MSDB
adding dynamically to an online

system 518
DL/I call execution 208
non-terminal-related 204
reloading on restart 207
removing dynamically from an

online system 751
terminal-related 204

MSDB description 204
multiple data set groups 401
ODBA application programs

overview 4
online change function 751
online changes 731
options 373
organization 672
OSAM

sequential buffering 681
partitions, defining 511
PCB statement 495
PHDAM (Partitioned Hierarchical

Direct Access Method),
definition 132

PHIDAM (Partitioned Hierarchical
Indexed Direct Access Method)

primary index, introduction 132
PHIDAM (Partitioned Hierarchical

Indexed Direct Access Method),
definition 132

primary index
introduction to HD databases 132

procedures 3
protecting during reorganization 616
PSINDEX

converting non-unique keys to
unique 818

converting to HALDB 812
defining DBD statements 816
defining partitions 821
loading 824
modifying DBD for the larger

HALDB /SX field 819

databases (continued)
PSINDEX (continued)

overview 360
sorting output of HD

Reorganization Unload
utility 815

sorting output of HD
Reorganization Unload utility
when using /SX field 815

symbolic pointers,
eliminating 817

quiesce
application program impact 562
database type support 561
DBRC 563
options 561
overview 560
RECON data set 563
restrictions 564

record size
calculating 532

records
calculating size 530
hierarchical structure,

changing 670
recovery

introduction 559
overview 4
RSR environments 598

recovery point
establishing 560

recovery utilities in an RSR
environment 599

recovery, forward 577
reload program 697
removing dynamically from an online

system 750
reorganization

offline reorganization 618
offline using UCF 618
partial offline 617
reorganization utilities 618

reorganizing 615
HALDB databases, offline

reorganization 663
HALDB offline

reorganization 638
HD databases 636
HDAM 636
HIDAM 636
HISAM 636
offline 616
output data set attributes for

HALDB online
reorganization 652

primary index 636
primary or secondary index 636
secondary index 636
when to reorganize 616

reorganizing, in an RSR
environment 635

replacing online
DEDB randomizer 748

review process
code inspection 1 attendees 32
design assumptions 30
design review 1 30

databases (continued)
review process (continued)

design review 2 30
design review 3 31
design review 4 31
general information 29
introduction 29
performance review 31
user requirements 30

review processes
code inspections, second 32

RSR, recovery utilities 599
RSR, reorganizing databases 635
secondary index

calculating space 535
secondary indexes

considerations 352
security

establishing 35
for application programs 20
introduction 4

segment changes
HALDB online alter 731

segments
modifying 695

SHISAM description 130
SHSAM description 129
simple

converting to HALDB 806
definition 806

standards 3
standards and procedures

overview 4
summary of databases

characteristics 103
terminology 6
test 521

creating overview 524
designing overview 524
disable RECON data set

security 522
loading overview 524

testing 521
overview 4

testing standards 524
tuning 615

changing the number of data set
groups 724

overview 4
types

full function 105
summary characteristics 103

types of IMS databases 101
unload

converting secondary index to
HALDB 813

unload program 697
utilities

recovery in an RSR
environment 599

reorganizing in an RSR
environment 635

versioning 363
catalog requirement 364
changes supported 365
configuring 369
DBLEVEL= 368

854 Database Administration

databases (continued)
versioning (continued)

default version, implications 368
defining 369
enabling 369
existing free space and new

fields 366
fields, adding to existing free

space 366
IMS catalog requirement 364
logical relationships 370
modifications supported 365
overview 363
secondary indexes 370

VSO
input and output processing 223

XML
overview of storing XML

data 405
z/OS application programs

overview 4
DATASET statement

description 489
example 403
HALDB (High Availability Large

Database) 489
in logical DBD 264

DB Monitor 609
DB/DC Data Dictionary

establishing security 38
generating DBDs 20
generating PSBs 20
introduction 20

DBBF parameter
DEDB or MSDB Buffer Pools 474

DBCTL
accessing from CICS, overview 4
CICS applications 106
definition 4
designing DEDB buffer pools 480

DBD
deleting instances from IMS

catalog 47
IMS catalog

DBD record segments 53
DBD segment type 64
deleting DBD instances 47
PSB record segments 87

segment type, IMS catalog 64
versions

deleting versions from IMS
catalog 47

DBD (database description)
coding 487
introduction 20
logical relationships 257
specifying use

Data Capture exit routine 380
field-level sensitivity 386
logical relationships 259, 263, 264
multiple data set groups 401
secondary indexes 353
segment edit/compression exit

routine 379
variable-length segments 373

using dictionary to generate 20
DBD statement 489

DBD statements
defining for logically related HALDB

databases 827
defining for PSINDEX databases 816
defining HALDB DBDs 816

DBDGEN (Database Description
Generation) utility

coding database descriptions 488
DBDLIB 488
DBFDBMA0 (MSDB Maintenance

utility) 205
DBFUDA00, DEDB Alter utility

altering databases or areas
online 742

areas
altering size attributes 743
randomizer, changing with the

DEDB Alter utility 745
randomizer, replacing with the

DEDB Alter utility 748
DBFUHDR0 (High-Speed DEDB Direct

Reorganization utility) 460
DBFX parameter 474
DBFX value 479, 485
DBLEVEL= 368
DBRC

quiesce function 563
RECON data set 563

DBRC (Database Recovery Control)
using for recovery 582
with image copy utility 566

DCCTL
data sharing 106
definition 4
GSAM (Generalized Sequential Access

Method) 128
SHISAM (Simple Hierarchical Indexed

Sequential Access Method) 128
SHSAM (Simple Hierarchical

Sequential Access Method) 128
DDATA parameter 341
ddnames (data definition names), naming

conventions
HALDB naming conventions 27
HALDB Online Reorganization 27

deactivation, record 189
decomposed storage of XML data

overview 405
DEDB

areas 184
buffer pools

manual specification 474
converting databases to DEDB 835
Data Capture exit routine

changing 757
errors in DEDB areas 188
multi-area structures

defining 220
online changes 759
prefix descriptor byte 312
sequential dependent segment

storage 198
VSO, system-managed rebuild 217

DEDB (data entry database)
AREA statement, overview 489
areas

design guidelines 458

DEDB (data entry database) (continued)
CI format 194
CI size, changing online 763
functions 184
overflow space allocation, changing

online 763
record distribution

impact of changes to UOW
structure 762

recovery 582
segment format 194
VSO areas

restrictions 212
DEDB (Data entry database)

altering online
FDBR, requirements for 742
overview 742
randomizer change 745
XRF, requirements for 742

randomizer
replacing online 748

size attributes
altering online 743

DEDB (Data Entry Database)
partitioned secondary indexes 355
secondary indexes 355

DEDB (data entry databases)
DEDB space search algorithm 201

DEDB Alter utility (DBFUDA00)
altering databases or areas

online 742
areas

altering size attributes 743
randomizer, changing with the

DEDB Alter utility 745
randomizer, replacing with the

DEDB Alter utility 748
DEDB Area Data Set Create utility

(DBFUMRI0)
copying area data sets 190

DEDB areas
disabling preopen process 186
emergency restart

reopening 186
FPOPN= 186
opening 185
preopen

concurrent to operation 185
preopening 185
reopening

emergency restart 186
restarting

after IRLM failure 187
starting 187
stopping 187
UOW structural definition,

changing 758
DEDB CI resource

and DBFX value 479, 485
determine resource size 437
Fast Path Performance 686
overhead needed 532

DEDB segments
segment growth 378

DEDB VSO areas
authorizing connections 217

Index 855

DEDB VSO areas (continued)
block-level sharing of

authorizing connections 217
DEDBs

starting 187
DEDBs (data entry databases)

adding using online change 759
and segment edit/compression exit

routine 376
areas

adding online 762
deleting online 762

areas, overview 184
buffer pools 480
CI resource contention 689
data sharing 191
DBCTL support 106
DEDB physical format 184
deleting using online change 759
designing 457
DL/I calls against 203
free space algorithm 202
HSSP processing of 471
insert algorithm 201
IOVF

extending online 763
loading the database 555
modifying

adding and deleting
segments 761

overview 183
performance considerations 686
segments, adding and deleting 761
SSA restrictions 203
storage of records 197
when to use 183

DEFINE CLUSTER command
in access method services 454
VSAM data set allocation 537

delete byte
bits 311
DEDB prefix descriptor byte 312
description 16
HDAM 153
HISAM 119
HSAM 113
in logical relationships 311
in secondary indexes 333
PHDAM (Partitioned Hierarchical

Direct Access Method) 153
DELETE DB command

MSDB, removing from online
system 751

removing a database from an online
system 750

delete rule
violations, detecting 304

delete rules for logical relationships 270,
308

deleting segments
HD databases 162
HISAM databases 127
HSAM databases 116

dependent segment, definition 7
design aids

for test databases 525

design reviews
description of 29
introduction 4

destination parent 249, 317
determining VSAM options 451
DFSBBO00 (Batch Backout utility) 605
DFSCASE statement 507

description 493
overview 493

DFSCTL data set control statements
SB control statement 448
SBPARM control statement 448

DFSDDLT0 (DL/I test program) 525
DFSDFxxx

DBLEVEL= 368
DFSMAP statement 507

description 493
overview 493

DFSMARSH statement
defining application metadata 501
description 492
overview 492

DFSMDA members
clean up when migrating to

HALDB 832
cleaning up after HALDB

conversion 811
DFSMNTB0 (DB Monitor program) 609
DFSPRCT1 (Partial Database

Reorganization utility) 632
DFSPREC0 (HALDB Index/ILDS Rebuild

utility)
HALDB Online Reorganization 663

DFSPRSUR (Database Surveyor
utility) 632

DFSUDMP0 (Database Image Copy
utility)

frequency of creating image
copies 565

overview of image copies 565
DFSUDMT0 (Database Image Copy 2

utility)
concurrent copy, overview 565
fast replication, overview 565
overview of image copies 565

DFSUICP0 (Online Database Image Copy
utility)

overview of image copies 565
DFSUOCU0 (Online Change Copy utility)

changing a data capture exit
routine 757

deleting a data capture exit routine
online 757

DFSURDB0 (Database Recovery utility)
Remote Site Recovery 598

DFSURG10 (Database Prefix Resolution
utility) 627

DFSURGL0 (HD Reorganization Reload
utility) 624

DFSURGP0 (Database Prefix Update
utility) 628

DFSURGS0 (Database Scan utility) 627
DFSURGU0 (HD Reorganization Unload

utility) 623
DFSURPR0 (Database Prereorganization

utility) 625
DFSURRL0 573

DFSURRL0 (HISAM Reorganization
Reload utility) 622

DFSURUL0 573
DFSURUL0 (HISAM Reorganization

Unload utility) 621
DFSVSAMP

BLDSNDX keyword 557
buffers, adjusting 679

DFSVSAMP data set 122
DFSVSMxx

buffers, adjusting 679
DFSVSMxx member of IMS.PROCLIB

MADSIOT 228
dictionary 20
direct access methods

HDAM (Hierarchical Direct Access
Method) 132

HIDAM (Hierarchical Indexed Direct
Access Method) 132

PHDAM (Partitioned Hierarchical
Direct Access Method) 132

PHIDAM (Partitioned Hierarchical
Indexed Direct Access Method) 132

direct address pointers 136
direct dependent segment types

(DDEP) 197
direct pointers

logical relationships 238, 242, 245,
316

secondary indexes 333
direct storage method 106
distribution of database records

DEDB 762
DL/I

access methods
changing from HDAM to PHDAM

and HIDAM to PHIDAM 804
from PHDAM and PHIDAM to

HDAM and HIDAM 833
HDAM to HIDAM 803
HDAM to HISAM 802
HIDAM to HDAM 800
HIDAM to HISAM 800
HISAM to HDAM 798
HISAM to HIDAM 797

calls
DEDBs 203
HD databases 134
HISAM databases 121
HSAM databases 114
MSDB 207

calls in logical relationships
delete call 310
logical child insert call 274
replace call 278

definition 3
DL/I Call Summary report 670

DL/I access methods
changing 797

from HDAM to PHDAM and
HIDAM to PHIDAM 804

from PHDAM and PHIDAM to
HDAM and HIDAM 833

HDAM to HIDAM 803
HDAM to HISAM 802
HIDAM to HDAM 800
HIDAM to HISAM 800

856 Database Administration

DL/I access methods (continued)
changing (continued)

HISAM to HDAM 798
HISAM to HIDAM 797

converting 797
DL/I Call Summary report 670
DL/I calls

DEDBs 203
HD databases 134
HISAM databases 121
HSAM databases 114
in logical relationships

delete call 310
logical child insert call 274
replace call 278

MSDB 207, 210
DL/I test program (DFSDDLT0) 525
DLET call

DASD space release 311
DLIModel utility plug-in

storing XML data
overview 405

DREF (disabled reference) option
for VSO-area data spaces 220

dump option 453
DUMP parameter 453, 455
duplex paths 309
duplicate data field 333
duplicate data in logical

relationships 231
duplicate keys 332
DX status code 311
dynamic database buffer pools

adjusting for OSAM 679
adjusting for VSAM 680
monitoring OSAM (Overflow

Sequential Access Method) 677
monitoring VSAM 676
options for OSAM 677
options for VSAM 676
overview 674
types of updates 674

dynamic resource definition
databases 731

adding, overview 516
databases, adding to online

system 517
databases, changing in an online

system 749
databases, overview 748
databases, removing from online

system 750
MSDB, adding to online system 518
MSDB, removing from online

system 751

E
ECNT (extended communications node

table) 208
edit/compression exit routine 18
editing segment data 376
EEQEs

I/O error retry 597
emergency restart

DEDB areas
reopening 186

encoding data 18
encrypting data 38
END statement 494, 497
enqueue levels 198
error

I/O
backout 607
recovery 595

read 560
write 559

Error Queue Element (EQE) 188
ESAF 107
ESCD (extended system contents

directory) 208
ESDS (entry-sequenced data set)

HD databases 146
HISAM 117
secondary indexes 332

examples
DFSCASE 507
DFSMAP 507
field mapping 507

EXIT parameter 380
exit routines

HALDB
modifying HALDB exit

routines 792
modifying randomizing

modules 793
partition selection exit routine,

defined 174
exit routines, changing 754
extended communications node table

(ECNT) 208
extended system contents directory

(ESCD) 208
external subsystem attach facility 107
EXTRTN parameter 343

F
fallback

defined 833
from HALDB

secondary indexes, rebuilding 834
HALDB

after updates are made 834
before updates are made 833
virtual pairing 835

HALDB requirements 833
HDAM or HIDAM databases 833
logical child segments 835
non-HALDB database with secondary

indexes 834
to non-HALDB database with logical

relationships from HALDB 835
to original non-HALDB database 833

FALLBACK=YES control statement 834
Fast path

buffers
uses 475
uses in DBCTL systems 481

Fast Path
access to DL/I databases 204
application programs

excessive transaction volume 686

Fast Path (continued)
block-level data sharing

resource locking
considerations 692

buffer pools
manual specification 474

buffers 687
BSIZ 688
buffer allocation 478
DBBF 688
DBCTL and system buffer

allocation 483
DBFX 688
defining 688
NBA values 688
number of buffers in buffer

pool 478
OBA values 688
performance 478
system buffer allocation in DBCTL

environment 483
CI contention 613, 689
committing updates 227
common sync point processing 691
control interval 689
data sharing

DEDB 191
databases

DEDB overview 183
MSDB overview 204
overview 183

DBCTL environment
system buffers and low

activity 485
environments 183
Fast Path 64-bit buffer manager 475
Fast Path buffer allocation

algorithm 477
Fast Path buffer allocation algorithm

for BMPs 482
Fast Path buffer allocation algorithm

for CCTL threads 483
initial database load 547
interpreting analysis reports 614
loading the database 554
log analysis 611
log reduction 612
mixed mode 204
monitored events 613
monitoring and tuning 611
output thread 227
output threads

contention 691
overflow buffer allocation (OBA) 477
performance

buffers 478
performance considerations 611
Resource Name Hash routine 693
selecting transactions 613
subset pointers 197, 464
synchronization point

processing 227, 691
synchronization points

build log record 227
system buffers and low activity 479
transaction timings 612

Index 857

Fast Path (continued)
tuning

dispatching priority of tasks 691
tuning Fast Path systems 685
user hash routine, programming

considerations 692
using the Log Analysis utility

(DBFULTA0) 611
Virtual Storage Option (VSO)

structure size, automatic
altering 216

Fast Path 64-bit buffer manager 687
overview 475
requirements 475

Fast Path secondary index 360
Fast Path virtual storage option 211
fast replication

image copies, overview 568
Image Copy 2 utility, overview 568
overview of image copies 565

fbff (free block frequency factor) 429
FCP (forward chain pointer) 207
FDBR

DEDB Alter function 742
FH status code 188
field level sensitivity

replacing missing fields 391
FIELD statement

coding 490
definition 340
in secondary indexing 355
maximum number 490
position in DBD 490

field-level sensitivity
description of 385
general considerations 395
inserting missing fields 393
inserting segments 388
introduction 18
overlapping paths 389
path calls 389
replacing partially present fields 395
replacing segments 387
retrieving segments 387
specifying in DBD and PSB 386
use with variable-length

segments 390
uses 385
using 385
variable length segments

retrieving missing fields 390
retrieving partially present

fields 394
fields

AL 148
constant 333
CP 148
definition 7
delete byte 333
duplicate data 333
FSE 148
FSEAP 148
ID 148
in segment 17
mapping

DFSCASE statement
overview 493

fields (continued)
mapping (continued)

DFSMAP statement overview 493
pointer 333

HISAM 336
SHISAM 339

search 333
subsequence 333
symbolic pointer 333
system related 340
user data in pointer segment 333

FINISH statement 494
first fit algorithm to assign VSO DEDB

areas to data spaces 220
fixed intersection data 251
fixed-length segments

specifying minimum size 378
fixed-length segments, definition 15
FLD (Field) call 210
format

CI in DEDB 194
DEDB segments 194
fixed-length segments 16
HD databases 146
HDAM segments 153
HIDAM index segment 155
HIDAM segments 154
HISAM segments 119
HSAM segments 113
PHDAM segments 153
PHIDAM index segment 155
PHIDAM segments 154
pointer segment 333

HISAM 336
SHISAM 339

variable-length segments 16
formula

estimating CFRM list structure
size 228

first fit algorithm 220
formulas for

calculating space for MSDBs 470
calculating storage for MSDB 465
size of root addressable area 430

forward chain pointer 207
forward recovery

about 583
JCL example, change

accumulation 593
JCL example, HALDB partition 591
JCL example, HIDAM 586
JCL example, PHIDAM 587, 590
JCL example, PSINDEX 589
steps

data sharing example 593
HIDAM example 585
PHIDAM example 587
PHIDAM example, data

sharing 590
single HALDB partition 591

FPOPN=
overview 186

FPRLM=
restarting DEDB areas 187

FR status code
for BMP regions 478
for CCTL threads 484

FR status code (continued)
in Fast Path buffer allocation 477
in Fast Path buffer allocation for

BMPs 482
free block frequency factor (fbff) 429
free logical record 121
free space

chain pointer (CP) field 148
element (FSE) 148
element anchor point (FSEAP) 148
HD (Hierarchical Direct) 147
HDAM (Hierarchical Direct Access

Method) 429
HIDAM 429
HIDAM (Hierarchical Indexed Direct

Access Method) 154
KSDS 454
percentage factor 430
PHDAM (Partitioned Hierarchical

Direct Access Method) 429
PHIDAM 429
PHIDAM (Partitioned Hierarchical

Indexed Direct Access Method) 154
space calculations 536

FREESPACE parameter 454
FRSPC parameter 429
FS status code 460
FSE (free space element) 148
FSEAP (free space element anchor

point) 148
fspf (free space percentage factor) 430
full-duplex paths 309
full-function database types 105
full-function databases

nonrecoverable 112
number of open data sets 438

full-function segments
specifying minimum size 378

FULLSEG 212
fuzzy copy 567
FW status code

for CCTL threads 485
in BMP regions 479
in Fast Path buffer allocation 477
in Fast Path buffer allocation for

BMPs 482

G
GC status code 460, 472
GE status code 258
Generalized Sequential Access Method

(GSAM)
See GSAM (Generalized Sequential

Access Method) 128
GENJCL.CA

JCL example 593
GENJCL.RECOV

JCL example, HIDAM 586
JCL example, PHIDAM 587, 590
JCL example, PSINDEX 589
JCL example, single HALDB

partition 591
GENMAX keyword 570
GPSB (Generated PSB)

I/O PCB 516

858 Database Administration

GPSB (Generated PSB) (continued)
modifiable alternate response

PCB 516
GSAM (Generalized Sequential Access

Method) 128, 130
loading 554

H
HALDB

altering an online databases
OSAM data set block sizes 735
VSAM data set CI sizes 735

altering the structure of an online
database

ACB library 733
batch application programs 740
HD Reorganization Reload utility

(DFSURGL0) 738
HD Reorganization Unload utility

(DFSURGU0) 738
offline reorganization 738
utilities 740

altering the structure of an online
databases

data-sharing environments 739
IMS configuration

requirements 732
logical relationships 742
partition processing,

description 737
querying status 741
secondary indexes 742
steps 732
stopping before completion 741
terminating before

completion 741
changing the structure of an online

database
ACB library 733

changing the structure of an online
databases

data-sharing environments 739
IMS configuration

requirements 732
logical relationships 742
OSAM data set block sizes 735
partition processing,

description 737
querying status 741
secondary indexes 742
steps 732
stopping before completion 741
terminating before

completion 741
VSAM data set CI sizes 735

changing the structure of an online
HALDB

batch application programs 740
HD Reorganization Reload utility

(DFSURGL0) 738
HD Reorganization Unload utility

(DFSURGU0) 738
offline reorganization 738
utilities 740

converting secondary index to
HALDB 813

HALDB (continued)
converting to

DFSMDA members 832
implementing design 510
modifying online databases

OSAM data set block sizes 735
VSAM data set CI sizes 735

modifying the structure of an online
database

ACB library 733
modifying the structure of an online

databases
batch application programs 740
data-sharing environments 739
HD Reorganization Reload utility

(DFSURGL0) 738
HD Reorganization Unload utility

(DFSURGU0) 738
IMS configuration

requirements 732
logical relationships 742
offline reorganization 738
partition processing,

description 737
querying status 741
secondary indexes 742
steps 732
stopping before completion 741
terminating before

completion 741
utilities 740

partitions
adding and partition selection

exit 779
deleting with high-key

partitioning 785
HALDB (High Availability Large

Database)
adding partitions 776
altering an online databases

OSAM data sets, correcting
ALTERSZE values 737

OSAM data sets, setting
ALTERSZE values 736

VSAM data sets, correcting
ALTERSZE values 737

VSAM data sets, setting
ALTERSZE values 736

altering online
overview 731

altering the structure of an online
database

online change 734
application program processing 175
automatic partition definition 511
bitmap block for partition 147
change version numbers 169
changing 765

changes that affect all
partitions 767

HALDB partition selection exit
routine 792

partition boundaries 768
partition definition control

blocks 771
partition key ranges 768
scope of changes 766

HALDB (High Availability Large
Database) (continued)

changing (continued)
single partitions 768

changing DL/I access methods
changing from HDAM to PHDAM

and HIDAM to PHIDAM 804
from PHDAM and PHIDAM to

HDAM and HIDAM 833
changing partitions using the Partition

Definition utility 511
changing the structure of an online

database
online change 734

changing the structure of an online
databases

OSAM data sets, correcting
ALTERSZE values 737

OSAM data sets, setting
ALTERSZE values 736

VSAM data sets, correcting
ALTERSZE values 737

VSAM data sets, setting
ALTERSZE values 736

conversion
parallel unload for HALDB

conversion 805
converting a simple database to

HALDB 806
backup 805
database name, changing 832
deleting from RECON data

set 807
image copy 811
load 811
partitions, defining to DBRC 809
registering HALDB master with

DBRC 809
unload 806

converting to HALDB
allocating data sets for an indexed

database 823
initializing partitions 811

converting to HALDB with logical
relationships

image copies, creating 832
partitions, defining to DBRC 830
RECON data set, deleting

information 830
registering HALDB master with

DBRC 830
converting to HALDB with secondary

indexes
Defining PSINDEX partitions 821
image copies 825
RECON data sets, deleting

database information 816
registering indexed database with

DBRC 820
registering PSINDEX with

DBRC 821
converting to HALDB, logically

related databases 825
converting to HALDB, secondary

indexes 812
creating HALDB (High Availability

Large Database) partitions 511

Index 859

HALDB (High Availability Large
Database) (continued)

data set naming conventions 28, 650
data sets

allocating for conversion to
HALDB 810

changing data set name
prefixes 789

maximum per partition 171
data sets, modifying 789
DATASET statement 489
DB-PCB/DSG pair 445
DBD statements

defining 816
ddnames

naming conventions 27
defining partitions with the Partition

Definition utility 511
definition 132
definition process 511
deleting partitions 783
DFSMDA, cleaning up after HALDB

conversion 811
disabling partitions 780
enabling partitions 782
exit routines

modifying 792
randomizing modules,

modifying 793
fallback

to HDAM and HIDAM 833
HALDB conversion steps

summary 806, 807
HALDB Online Reorganization 642

and offline reorganizations 663
recovery 663

HALDB partition selection exit routine
changing 792
modifying 792
replacing 792

HIDAM primary index DBD, cleaning
up after HALDB conversion 811

hierarchical structure
changing 671

ILDS, updating
offline reorganization 641

indirect list data set (ILDS)
allocating 515

indirect list entry (ILE)
description 515

indirect list key (ILK)
description 515

initializing partitions 171
LCHILD statement 492
loading

secondary indexes 557
logical relationships 316
logically related databases, converting

to HALDB 825
manual partition definition 511
maximum size 134
migrating

fallback to HDAM and
HIDAM 833

from HDAM to PHDAM and
HIDAM to PHIDAM 804

HALDB (High Availability Large
Database) (continued)

migration
parallel unload for HALDB

migration 805
modifying 765

changes that affect all
partitions 767

HALDB partition selection exit
routine 792

partition boundaries 768
partition definition control

blocks 771
partition key ranges 768
scope of changes 766
single partitions 768

modifying data sets 789
modifying online databases

OSAM data sets, correcting
ALTERSZE values 737

OSAM data sets, setting
ALTERSZE values 736

VSAM data sets, correcting
ALTERSZE values 737

VSAM data sets, setting
ALTERSZE values 736

modifying the structure of an online
database

online change 734
naming conventions 27
offline reorganization 637

overview 637
reallocating data sets 640
reloading partitions 640
unloading partitions 639
updating ILDS 641

online reorganization 642
ddname naming convention 27
modifying 655
naming convention 650
naming convention overview 27
output data set requirements 651
stopping 656
tuning 655

OSAM data sets
decreasing maximum size to 4

GB 791
increasing maximum size to 8

GB 791
maximum size 790
setting maximum size 790

parallel partition processing 179
parallel partition processing,

enabling 179
parallel unload for HALDB

migration 805
partition bitmap block 147
partition definition 511
partition definition control blocks,

updating 771
Partition Definition utility 511
partition high key 511
partition initialization 171
partition selection 173
partition selection exit routine

record distribution 771
partitioned secondary indexes 360

HALDB (High Availability Large
Database) (continued)

partitions
about 168
adding a partition that defines a

new highest high key 778
changes that affect all

partitions 767
changing 768
changing boundaries 768
changing high key 775
changing key ranges 768
data sets in 171
data sets, maximum 171
database uncommitted updates

restriction 495
disabling 781
disabling, about 781
enabling 782
features of 168
ID number 169
ID numbers and partition

modifications 773
ILDS requirement 172
indirect list data set (ILDS)

requirement 172
initializing 823, 831
modifying 765, 768
modifying key ranges 768
name, changing 787
names 169
names and ID number 168
naming conventions 27
overview 168
pointers, affect of modifications

on 775
recovery when enabling 783
reorganization number 169
root anchor points, changing

number of 788
scope of changes 766
single partition selection 176

partitions with secondary index
deleting 786

partitions, adding 776
partitions, deleting 783
partitions, disabling 780
partitions, enabling 782
partitions, enabling selective

processing 175
partitions, restoring deleted 787
PHDAM

introduction 132
randomizing modules,

modifying 793
root anchor points, changing

number in partition 788
PHIDAM

introduction 132
PHIDAM primary index

recovery 167
pointers

healing 667
self-healing optimization 669
self-healing pointer process 664,

665

860 Database Administration

HALDB (High Availability Large
Database) (continued)

primary index DBD, cleaning up after
HALDB conversion 811

PSINDEX
adding a PSINDEX 794
initializing partitions 795
modifying 795

PSINDEXes 360
randomizing modules

modifying 793
reallocating data sets

offline reorganization 640
recovery

forward recovery steps 587, 591
forward recovery steps, data

sharing 590
JCL example, HALDB

partition 591
JCL example, PHIDAM 587, 590
JCL example, PSINDEX 589

recovery and data sets 173
reloading partitions

offline reorganization 640
reorganization

output data set attributes for
online reorganization 652

reorganization number
verification 169

reorganizing 636
offline 637, 638
reallocating data sets 640
reloading partitions 640
secondary indexes 642
unloading partitions 639
updating ILDS 641

REUSE parameter 537
root anchor points

changing number in PHDAM
partition 788

RSR (remote site recovery) 599
secondary index, adding 794
secondary index, initializing

partitions 795
secondary index, modifying 795
secondary indexes 360

reorganizing 642
secondary indexes, converting to

HALDB 812
segments

modifying 789
selective partition processing 175
selective partition processing,

enabling 175
self-healing pointer process 664

finding target segments 666
performance 668

sequential buffering 445
types of HALDB databases 132
unloading partitions

offline reorganization 639
utilities supported by HALDB 179

HALDB Index/ILDS Rebuild utility
(DFSPREC0)

HALDB Online Reorganization 663
HALDB Online Reorganization

and offline reorganizations 663

HALDB Online Reorganization
(continued)

copying phase 645
cursor 646
cursor-active status 643
Database Change Accumulation

utility 662
ddname naming convention 27
dynamic PSB 645
FDBR 659
GENJCL.CA command 662
GENJCL.RECOV command 662
image copy utilities 663
initialization phase 643
locking 660
log impact 658
modifying 655
monitoring 655
naming conventions

overview 27
output data set requirements 651
overview 642
RATE parameter of INITIATE

OLREORG command 658
recovery 661

ILDS and primary index data
sets 663

Remote Site Recovery (RSR) 659
requirements for output data

sets 651
restart 658, 659
restrictions 648
sequential buffering 664
starting 654
stopping 656
system impact 658
termination phase 646
tuning 655
unit of reorganization 646
utilities 660
XRF 658

HALDB online reorganization (OLR)
restrictions 565

HALDB Partition Definition utility
(%DFSHALDB)

changing partitions 511
creating HALDB partitions 511
HALDB functions 511
high key value, entering 511
partition definition steps 511
partition high key value,

entering 511
HALDB partition selection exit routine

changing 792
modifying 792
replacing 792

HALDB utilities
unregistered IMS catalog, using

with 49
half-duplex paths 309
HB (hierarchical backward) pointers 138
HD databases

database reorganization
procedures 636

HD Reorganization Reload utility
ILDS

control statement
specifications 641

updating 641
HD Reorganization Reload utility

(DFSURGL0) 624
loading logically related HALDB

databases 832
loading PSINDEX databases 824

HD Reorganization Unload utility
(DFSURGU0) 623

fallback from HALDB 834
FALLBACK=YES control

statement 834
unloading logically related databases

for HALDB conversion 826
HD space search algorithm 162

how it works 163
HD Tuning Aid 431
HDAM

adjusting 673
options, adjusting 673

HDAM (Hierarchical Direct Access
Method)

accessing segments 157
calls against 134
changing DL/I access methods

from HIDAM 800
from HISAM 798
from PHDAM 833
to HIDAM 803
to HISAM 802
to PHDAM 804

database records 153
database records, locking 165
databases, introduction 132
deleting segments 162
format of database 146
inserting segments 158
loading the database 554
locking 167
logical record length 437
maximum size 134
multiple data set groups 398
options available 134
OSAM (overflow sequential access

methods) used 146
overflow area 150
pointers in 136
randomizing module 431
root addressable area 150, 153
segment format 153
size of root addressable area 430
space calculations 529
specifying free space 429
storage of records 150
when to use 135

HF (hierarchical forward) pointers
description 137

HIDAM
forward recovery steps

data sharing example 593
primary index DBD, cleaning up after

conversion to HALDB 811
primary index recovery 167

Index 861

HIDAM (Hierarchical Indexed Direct
Access Method)

accessing segments 157
calls against 134
changing DL/I access methods

from HDAM 803
from HISAM 797
from PHIDAM 833
to HDAM 800
to HISAM 800
to PHIDAM 804

databases, introduction 132
deleting segments 162
format of database 146
index database 154
index segment 155
inserting segments 158
loading the database 554
locking 167
logical record length 437
maximum size 134
multiple data set groups 398
options available 134
pointers in 136
primary index, introduction 132
RAPs, using 156
segment format 154
sequential root processing 156
space calculations 164, 529
specifying free space 429
storage of records 154
when to use 135

HIDAM primary index DBD, cleaning up
DBD after HALDB conversion 825

hierarchical
backward pointers 138

Hierarchical Direct Access Method
(HDAM)

databases, introduction 132
hierarchical forward (HF) pointers

description 137
Hierarchical Indexed Direct Access

Method (HIDAM)
databases, introduction 132
primary index, introduction 132

Hierarchical Indexed Sequential Access
Method (HISAM)

accessing segments 121
calls against 121

Hierarchical Sequential Access Method
(HSAM)

accessing segments 114
calls against 114

hierarchical structure
changing 670

hierarchy
concept explained 9
definition 7
restructuring of with secondary

indexes 328, 330
High Availability Large Database

(HALDB)
adding partitions 776
altering online

overview 731
application program processing 175
change version numbers 169

High Availability Large Database
(HALDB) (continued)

changing 765
changes that affect all

partitions 767
scope of changes 766

converting a simple database to
HALDB 806

backup 805
database name, changing 832
deleting from RECON data

set 807
image copy 811
load 811
partitions, defining to DBRC 809
registering HALDB master with

DBRC 809
unload 806

converting to HALDB
allocating data sets for an indexed

database 823
initializing partitions 811

converting to HALDB with logical
relationships

image copies, creating 832
partitions, defining to DBRC 830
RECON data set, deleting

information 830
registering HALDB master with

DBRC 830
converting to HALDB with secondary

indexes
Defining PSINDEX partitions 821
image copies 825
RECON data sets, deleting

database information 816
registering indexed database with

DBRC 820
registering PSINDEX with

DBRC 821
converting to HALDB, logically

related databases 825
converting to HALDB, secondary

indexes 812
data sets

allocating for conversion to
HALDB 810

changing data set name
prefixes 789

data sets and recovery 173
data sets, modifying 789
database recovery

forward recovery steps 591
DB-PCB/DSG pair 445
DBD statements

defining 816
deleting partitions 783
DFSMDA, cleaning up after HALDB

conversion 811
disabling partitions 780
enabling partitions 782
exit routines

modifying 792
randomizing modules,

modifying 793
HALDB conversion steps

summary 806

High Availability Large Database
(HALDB) (continued)

HALDB Online Reorganization
and offline reorganizations 663
recovery 663

HIDAM primary index DBD, cleaning
up after HALDB conversion 811

hierarchical structure
changing 671

initializing partitions 171
loading

secondary indexes 557
logical relationships 316
logically related databases, converting

to HALDB 825
modifying 765

changes that affect all
partitions 767

scope of changes 766
modifying data sets 789
naming conventions 27
online reorganization

modifying 655
output data set requirements 651
stopping 656
tuning 655

OSAM data sets
changing maximum size 790
decreasing maximum size to 4

GB 791
increasing maximum size to 8

GB 791
maximum size 790
setting maximum size 790

parallel partition processing 179
parallel partition processing,

enabling 179
partition initialization 171
partition selection 173
partition selection exit routine

record distribution 771
partitioned secondary indexes 360
partitions

about 168
adding a partition that defines a

new highest high key 778
changes that affect all

partitions 767
changing high key 775
data sets in 171
database uncommitted updates

restriction 495
disabling 781
disabling, about 781
enabling 782
features of 168
ID number 169
ID numbers and partition

modifications 773
ILDS requirement 172
indirect list data set (ILDS)

requirement 172
initializing 823, 831
modifying 765
name, changing 787
names 169
names and ID number 168

862 Database Administration

High Availability Large Database
(HALDB) (continued)

partitions (continued)
naming conventions 27
overview 168
recovery when enabling 783
reorganization number 169
root anchor points, changing

number of 788
scope of changes 766
single partition selection 176

partitions with secondary index
deleting 786

partitions, adding 776
partitions, deleting 783
partitions, disabling 780
partitions, enabling 782
partitions, enabling selective

processing 175
partitions, restoring deleted 787
PHDAM

randomizing modules,
modifying 793

root anchor points, changing
number in partition 788

PHIDAM primary index
recovery 167

PHIDAM, converting primary index
to HALDB 807

pointers
healing 667
modifying partitions 775
self-healing optimization 669
self-healing pointer process 665

primary index DBD, cleaning up after
HALDB conversion 811

primary index, converting to
HALDB 807

PSINDEX
adding a PSINDEX 794
initializing partitions 795
modifying 795

PSINDEXes 360
randomizing modules

modifying 793
record distribution 771
recovery

forward recovery steps 587
forward recovery steps, data

sharing 590
JCL example, HALDB

partition 591
JCL example, PHIDAM 587, 590
JCL example, PSINDEX 589

reorganization
output data set attributes for

online reorganization 652
reorganization number

verification 169
reorganizing

offline 638
root anchor points

changing number in PHDAM
partition 788

secondary index, adding 794
secondary index, initializing

partitions 795

High Availability Large Database
(HALDB) (continued)

secondary index, modifying 795
secondary indexes 360
secondary indexes, converting to

HALDB 812
segments

modifying 789
selective partition processing 175
selective partition processing,

enabling 175
self-healing pointer process

finding target segments 666
sequential buffering 445
utilities supported by HALDB 179

high key
defining, HALDB partitions 511
value, entering 511

high keys
partition selection 173

High-Speed DEDB Direct Reorganization
utility (DBFUHDR0) 460

high-speed sequential processing 595
high-speed sequential processing (HSSP)

description 471
hiperspace buffering 677
HISAM

inserting dependent segments 125
HISAM (Hierarchical Indexed Sequential

Access Method)
access method 116
accessing segments 121
calls against 121
changing DL/I access methods

from HDAM 802
from HIDAM 800
to HDAM 798
to HIDAM 797

database reorganization
procedures 636

deleting segments 127
description of 116
inserting segments 121
loading the database 553
locking 165
logical record format 120
logical record length 433
logical records

record length 433
options available 116
performance 117, 122
pointers 120
replacing segments 128
segment format 119
space calculations 529
storage of records 117
when to use 117

HISAM Reorganization Reload utility
(DFSURRL0) 622

HISAM Reorganization Unload utility
(DFSURUL0) 621

HSAM
DL/I calls, sequence field

undefined 115
HSAM (Hierarchical Sequential Access

Method)
accessing segments 114

HSAM (Hierarchical Sequential Access
Method) (continued)

calls against 114
deleting segments 116
description of 112
inserting segments 116
options available 112
performance 116
replacing segments 116
segment format 113
space calculations 529
storage of records 113
when to use 113

HSSP (high-speed sequential processing)
description 471
for database recovery 473
image-copy option 473
limits and restrictions 471
private buffer pools 474
processing option H 473
reasons for choosing 471
SETO statement 472
SETR statement 472
UOW locking 473
using 472
utility private buffer pools 474
utility private buffers 472

HSSP (High-Speed Sequential Processing)
image copy 569, 595

I
I/O errors

ADS 228
MADS 228
multiple area data sets (MADS) 228
single area data sets (ADS) 228

I/O PCB 516
ID (task ID) field 148
IDP and Fast Path 611
IFP regions

maintaining availability during DEDB
changes 753

ILDS
reorganization updates 641

ILDS (indirect list data set)
allocating 515
calculating size 515
defining 515
ILDSMULTI control statement for

logically related databases 831
ILDSMULTI control statement for

PSINDEX databases 824
NOILDS control statement for

logically related databases 831
NOILDS control statement for

PSINDEX databases 824
recovery and HALDB Online

Reorganization 663
required by every partition 172
sample JCL 515
size, calculating 515
updating options for logically related

databases 831
updating options for PSINDEX

databases 824

Index 863

ILDSMULTI control statement
for logically related databases 831
for PSINDEX databases 824

ILE (indirect list entry) 515
ILK (indirect list key) 515
image copies

concurrent copy
overview 565

example of recovery period 571, 572
fast replication

overview 565
frequency of 576
image copy utilities 565
nonstandard, recovering from in an

RSR environment 600
recovery period

additional considerations 573
retaining 576
RSR environment 576
user image copies, recovering from in

an RSR environment 600
image copy

clean 568
concurrent 567, 595
data set

creating 570
nonstandard 574
recovery period of 571
reusing 573

fast replication, overview 568
fuzzy 567
HISAM 573
HSSP 569, 595
Image Copy 2 utility, fast

replication 568
non-concurrent 568
recovery after 569

image-copy option 473
implementing database design 4, 487
IMS catalog

backup
methods 44
overview 43

database administration 41
database versioning

deleting a DBD version 47
DBD instances

deleting 47
DBD segment 64
deleting segments 47
HALDB utilities 49
HEADER segment 51
impact analysis 99
maintaining 45
metadata

arrays, dynamic 504
arrays, overview 502
arrays, static 503
data types, defining for application

programs 501
definition 500
DFSCASE statement 507
DFSMAP statement 507
field maps 507
REDEFINES parameter 506
redefining fields 506
structures, defining 505

IMS catalog (continued)
overview 41
preventing deletion of segments 47
PSB instances

deleting 47
PSB segment 92
record format 51
record segments

DBD segment 64
HEADER segment 51
PSB segment 92

records
DBD record segments 53
PSB record segments 87

recovery
overview 43

removing segments 47
reorganizing 45
retention criteria

defining 47
secondary index 99
segment types

DBD segment 64
HEADER segment 51
PSB segment 92

segments
deleting 47

structure 51
unregistered 49
utilities 49

IMS catalog database
record format 51
structure 51

IMS catalog segment types
AREA segment 54
AREARMK segment 54
CAPXDBD segment 55
CAPXSEGM segment 56
case comments segment 59
case field comments segment 61
case field marshaller comments

segment 63
case field marshaller property

segment 63
case field segment 59
case marshaller segment 62
CASE segment 58
CASERMK segment 59
CFLD segment 59
CFLDRMK segment 61
CMAR segment 62
CMARRMK segment 63
CPROP segment 63
data capture exit segment 55, 56
data set comments segment 70
data set segment 68
database definition comments

segment 66
database intent segment 88
DBDRMK segment 66
DBDVEND segment 67
DBDXREF segment 88
DSET segment 68
DSETRMK segment 70
Fast Path area segment 54
Fast Path database area definition

comment segment 54

IMS catalog segment types (continued)
field definition comments

segment 72
field definition segment 71
field marshaller comments

segment 79
field marshaller segment 78
FLD segment 71
FLDRMK segment 72
LCH2IDX segment 73
LCHILD segment 73
LCHRMK segment 77
logical child comments segment 77
logical child secondary index

segment 73
logical child segment 73
map case segment 58
map comments segment 78
MAP segment 77
MAPRMK segment 78
MAR segment 78
MARRMK segment 79
PCB segment 89, 91
program control block comments

segment 91
program control block segment 89
program specification block comments

segment 94
PROP segment 80
PSBRMK segment 94
PSBVEND segment 94
secondary index 84
SEGM segment 80
SEGMRMK segment 84
sensitive field comments segment 95
sensitive field segment 95
sensitive segment 96
sensitive segment remarks 98
SF segment 95
SFRMK segment 95
SS segment 96
SSRMK segment 98
user-defined marshaller property

segment 80
vendor data segment 67, 94
XDFLD segment 84
XDFLDRMK segment 87

IMS Data Capture exit 379
IMS Database Recovery Facility for z/OS

/RECOVER command 577
IMS High Performance Pointer

Checker 431
IMS Monitor

databases 609
IMS.ACBLIB library

online change procedure 757
IMS.DBDLIB 488
IMS.PSBLIB 494
in the physical DBD 262
independent overflow part of area (IOVF)

description 194
extending online 763

index maintenance exit routine 343
index segment 155
indexed databases

HIDAM 154
HISAM 116

864 Database Administration

indexed databases (continued)
PHIDAM 154

indexes
reorganizing, primary or secondary

index 636
INDICES parameter 349
indirect list data set (ILDS)

allocating 515
calculating size 515
defining 515
ILDSMULTI control statement for

logically related databases 831
ILDSMULTI control statement for

PSINDEX databases 824
NOILDS control statement for

logically related databases 831
NOILDS control statement for

PSINDEX databases 824
recovery and HALDB Online

Reorganization 663
required by every partition 172
sample JCL 515
size, calculating 515
updating options for logically related

databases 831
updating options for PSINDEX

databases 824
indirect list entry (ILE) 515
indirect list key (ILK) 515
INIT OLREORG

ALTER option 731, 732
ACB library 733
batch application programs 740
data-sharing environments 739
HALDB partition processing,

description 737
HD Reorganization Reload utility

(DFSURGL0) 738
HD Reorganization Unload utility

(DFSURGU0) 738
IMS configuration

requirements 732
logical relationships 742
offline reorganization 738
online change 734
OSAM data set block sizes 735
OSAM data sets, correcting

ALTERSZE values 737
OSAM data sets, setting

ALTERSZE values 736
querying status 741
secondary indexes 742
stopping before completion 741
terminating before

completion 741
utilities 740
VSAM data set CI sizes 735
VSAM data sets, correcting

ALTERSZE values 737
VSAM data sets, setting

ALTERSZE values 736
initial load program

basic 547
Fast Path 547
restartable, using UCF 550
writing 547

initialization of partitions 171

initialization phase of HALDB Online
Reorganization 643

input for DBDGEN utility
DBD 488

INSERT parameter
free space for a KSDS 452
using in splitting CIs 122

insert rules
real logical child segment 315

insert rules for logical relationships 270,
273, 277

insert strategy
choosing 452

inserting segments
DEDB SDEPs 460
HD databases 158
HISAM databases 121
HSAM databases 116
MSDB (main storage database) 208

inspections
code inspections 32
security inspection 32

intact storage of XML data
overview 405

intersection data 251
IOB (input/output block) 453
IOBF parameter 442
IOVF 194
IOVF (independent overflow part of area)

extending online 763
IRLM

failure
restarting DEDB areas 187

IRLM (internal resource lock manager)
block-level data sharing 166
failure

restarting DEDB areas 187
locking protocols 164

ISRT (insert), loading a database 544
IWAITS/CALL field 670

J
JCL (Job Control Language)

for allocating data sets 537
for initial load program 553

Job Control Language
See JCL (Job Control Language) 537

K
KEY sensitivity 317
key sequenced data sets (KSDS)

CI reclaim 404
keyboard shortcuts xiii
keys

ascending sequence 112
converting non-unique keys to unique

for PSINDEX databases 818
duplicate 332
partition selection using high keys,

defined 173
unique in secondary indexes 340

KSDS (key sequenced data sets)
CI reclaim 404

KSDS (key-sequenced data set)
HISAM (Hierarchical Indexed

Sequential Access Method) 117
secondary indexes 332
specifying BWO(TYPEIMS) 454
specifying free space for 454

L
large format sequential data set

OSAM allocation example 543
large format sequential data sets

GSAM 130
LCF (logical child first) pointer 241
LCHILD statement

description 492
HALDB (High Availability Large

Database) 492
in logical relationships 259
in secondary indexing 353

LCL (logical child last) pointer 241
legal notices

notices 839
trademarks 839, 841

level in hierarchy 12
LGNR 612
libraries

IMS.DBDLIB 488
IMS.PSBLIB 494

list structure
defining 228
estimating size 228

LKASID
INIT.DBDS and INIT.CHANGE

parameter 212
LOAD (load), description 544
load program

example of initial load program 547
load program, writing 544
load programs

ISRT call
status codes 546

loading
logically related HALDB

databases 832
PSINDEX databases 824

loading databases
description 529
HALDB with secondary indexes 557
introduction 4
MSDB (main storage database) 469
sample programs 547

local views, developing a data
structure 419

locking impact of HALDB Online
Reorganization 660

locking protocols 164
log analysis, Fast Path information 611
log facility, Fast Path performance 686
log impact of HALDB Online

Reorganization 658
log reduction 612
logic

for initial load program 548
for restartable initial load

program 550

Index 865

logical child
rules 262

logical child first (LCF) pointer 241
logical child in logical relationships 231
logical child last (LCL) pointer 241
logical child segments

fallback from HALDB 835
logical children

fallback from HALDB 835
logical databases 247
logical DBD 263, 270
logical parent

rules 263
logical parent in logical

relationships 231
logical parent pointer

See LP (logical parent) pointer 238
logical parent's concatenated key

(LPCK) 238
logical records

HD (Hierarchical Direct) 146
HISAM

record length 433
RECORD parameter 433

length in HISAM 117
overhead 533
record length

HISAM 433
secondary indexes 332

logical relationships
abnormal termination 304
adding

examples 702
utilities, summary of using 719

adding to a database
by reorganizing 714

allocating data sets 830
ALTER option 742
analyzing requirements 427
and Data Capture exit routine 384
bidirectional physically paired 234
bidirectional virtually paired 237
cascade delete

crossing logical relationships 384
comparison with secondary

indexes 232
concatenated segments 249
counter 250
crossing 265
database versioning 370
delete rule

physical delete rule as logical 305
violations, detecting 304

delete rule restrictions 384
delete rules 270, 283, 308

examples 284
inserting physically and logically

deleted segments 306
logical child 284
logical parent 283
logical parent segment B 314
physical parent (virtual pairing

only) 284
physical parent segment A 314
real logical child segment B 315
summary 307

logical relationships (continued)
deleting segments

physical and logical deletion 309
description of 231
DLET call

DASD space release 311
DLET calls 310
establishing 254
examples of adding 702, 703, 704,

705, 706, 708, 710, 711, 712
fallback from HALDB 835
field-level sensitivity

rules 389
HALDB 316
HALDBs

ALTER option 742
insert rules 270, 274, 277
insert rules, real logical child

segment 315
intersection data 251
ISRT call 274
loading databases 554
loading logically related HALDB

databases 832
logical child 231
logical child rules 262
logical parent 231
logical parent rules 263
logical structure 258
modifying

changes that require a user-written
program 718, 719

overview 427
paths 247, 249
performance considerations 316, 321
physical child last pointers 464
physical pairing

fallback from HALDB 833
physical parent 231
physical parent rules 263
physical twin segments

fallback from HALDB 833
pointers 238, 246
procedures for adding to existing

databases 701
REPL call 278
replace rules 270, 278

logical parent segment B 315
physical parent segment A 314
real logical child segment B 315
summary 278

requirements, analyzing 427
restrictions on modifying 717
rules 273

insert rules 313, 314
summary 313

rules for defining 262, 265, 270
secondary indexes, with 351
sequence fields 257
specifying in DBD 259, 263, 264
types 234
unidirectional

fallback from HALDB 833
uses 231
virtual logical children 257

logical replace rule
example 282

logical twin backward (LTB) pointer 244
logical twin chains 318
logical twin forward (LTF) pointer 244
logical twin pointer 597
logically related databases

changing pointers for conversion to
HALDB 827

converting to HALDB using base IMS
utilities 825

converting virtual pairing to physical
pairing for HALDB 828

defining HALDB DBD
statements 827

identifying virtual pairing in
non-HALDB DBD 828

ILDS, options for updating 831
unloading

for HALDB conversion 826
logs

recovery
JCL example, change

accumulation 593
long busy 228
lookaside

DFSVSMxx PROCLIB member,
specifying in 219

option for buffer pools,
described 223

LP (logical parent) pointer 238
correcting bad pointers 597
definition 238
performance considerations 316

LPCK (logical parent's concatenated
key) 238

LTB (logical twin backward) pointer 244
LTERM 204
LTF (logical twin forward) pointer 244

M
macros

PCB 487
PSB 487

MADSIOT (Multiple Area Data Set I/O
Timing)

calculating list structure storage
size 228

CFRM 228
coupling facility 228
long busy 228

main storage database
See MSDB (main storage

database) 554
main storage database (MSDBs)

reloading on restart 207
main storage utilization, Fast Path 690
maintenance

databases, planning 455
IMS catalog 45
secondary indexes 343

making keys unique using system related
fields 340

many-to-many mapping 420
map cases

DFSCASE statement overview 493
mapping data aggregates 420

866 Database Administration

maps
DFSMAP statement overview 493

marshalling
DFSMARSH statement overview 492

maximum size
HALDB (High Availability Large

Database) 134
HDAM database 134
HIDAM database 134
PHDAM database 134
PHIDAM database 134

MBR parameter 264
message

DFS554A 604
DFS555I 605

metadata
definition in IMS catalog 500

data types 501
DFSCASE statement 507
DFSMAP statement 507
field maps 507
marshalling characteristics 501
REDEFINES parameter 506
redefining fields 506

IMS catalog
arrays, dynamic 504
arrays, overview 502
arrays, static 503
structures, defining 505

migrating
fallback

from HALDB 833
from PHDAM and PHIDAM 833
to HDAM and HIDAM 833

from HDAM to PHDAM or HIDAM
to PHIDAM 804

to HALDB 804
minimum size

specifying for full-function
segments 378

mixed mode 204
mixing pointers 144
modifiable alternate response PCB 516
modifying a database

description of 695
introduction 4

MON parameter 609
monitoring

and tuning Fast Path systems 611
description of 609
events for Fast Path 613
introduction 4
reports 609

movement in hierarchy 12
MPP regions

DEDBs
online changes, maintaining

availability 753
MSDB

adding dynamically to online
system 518

DL/I call execution 208
removing dynamically from online

system 751
virtual storage requirements 465

MSDB (main storage database)
buffer pool design 474

MSDB (main storage database)
(continued)

calls against 207
deleting segments 208
design considerations 464
inserting segments 208
loading the database 554, 695
MSDB (main storage database)

description of 204
MSDB Maintenance utility

(DBFDBMA0) 205
options available 204
page fixing 469
position 209
reloading on restart 207
resource allocation 466
restrictions on changing DBD 695
storage of records 207
when to use 203, 205

MSDBCP1 data set 470
MSDBCP2 data set 470
MSDBDUMP data set 470
multi-area structure

duplexing 216
Multiple Area Data Set I/O Timing

(MADSIOT)
calculating list structure storage

size 228
CFRM 228
coupling facility 228
long busy 228

multiple area data sets
overview 463

multiple area data sets (MADS)
I/O errors 228
MADSIOT 228

multiple data set groups
description of 396
HD databases 398
introduction 18
specifying in DBD 401
storage of records 400
uses 396
using 396

multiple fields 360
multiple search fields 360

N
NAME parameter

in a DBD 264
in the SENFLD statement 386

naming convention
examples of defining 218

naming convention, coupling facility
structure 218

naming conventions 25
data definition names (ddnames)

HALDB databases 27
general rules 25
HALDB (High Availability Large

Database) 27
HALDB data sets 28
HALDB online reorganization

ddnames 27
overview 27

HALDB partitions 27

NBA (normal buffer allocation)
for CCTL 481
in DBCTL environment 481
limit 479
use of 476

NBA parameter 465
NBA/FPB limit 485
NBRSEGS parameter 469
NE status code 345
no free logical record 122
NOFULLSG 212
NOILDS control statement

for logically related databases 831
for PSINDEX databases 824

NOLKASID
INIT.DBDS and INIT.CHANGE

parameter 212
non-concurrent image copies 568
nonrecoverable option

full-function databases 112
NOPROT parameter 345
NOREUSE keyword 571
normal buffer allocation (NBA)

for CCTL 481
in DBCTL environment 481
use of 476

NULLVAL parameter 343

O
OBA (overflow buffer allocation)

for CCTL threads 482
in DBCTL environment 482
use of 477

OLR (HALDB online reorganization)
restrictions 565

one-to-many mapping 420
online change

adding a DEDB 759
adding DEDB areas online 762
altering the structure of an online

database 734
databases, online change

function 751
DEDB CI size 763
DEDB overflow space allocation 763
deleting a DEDB 759
deleting DEDB areas online 762
function

databases 751
Online Change

HALDB databases 775
Online Change (OLC)

altering the structure of a HALDB
database 733

Online Change Copy utility (DFSUOCU0)
changing a data capture exit

routine 757
deleting a data capture exit routine

online 757
online change function

ACB library members 752
databases 751
DEDBs and dependent region

availability 753

Index 867

Online Database Image Copy utility
(DFSUICP0)

overview of image copies 565
online reorganization

HALDB
data set naming convention

overview 27
ddname naming convention 27

HALDB naming convention 650
HALDB Online Reorganization 642

online reorganization (OLR)
HALDB

restrictions 565
operands 340

/CK 340
/SX 340

optional functions
Data Capture exit routines 379
field-level sensitivity 385
GSAM databases 131
HISAM databases 116
HSAM (Hierarchical Sequential Access

Method) 112
logical relationships 231
MSDB databases 204
multiple data set groups 396
secondary indexes 321
Segment Edit/Compression exit

routine 376
SHISAM databases 130
variable-length segments 373

OPTIONS statement
fixing buffers in VSAM 442
for OSAM 455
for VSAM 451
OSAM 455
use in splitting CIs 122

OSAM
buffers

adjusting 678, 679
adjusting dynamically 679
DFSVSAMP 679
DFSVSMxx 679
options for adjusting 677

data sets
allocating multi-volume OSAM

data sets 540
allocating single-volume OSAM

data sets 539
maximum size 134

sequential buffering 681
OSAM (Overflow Sequential Access

Method)
allocation example, large format

sequential data set 543
allocation example, multi-volume data

set, non-SMS managed 541
allocation example, multi-volume data

set, SMS managed 541
allocation of data sets 539
description 443, 537
monitoring 677
options 455
track space used 437
used by HD 146

OSAM data sets
block size

modifying with HALDB alter 735
correcting ALTERSZE values 737
decreasing maximum size for HALDB

(High Availability Large
Database) 791

increasing maximum size for HALDB
(High Availability Large
Database) 791

maximum size 538
maximum size for HALDB (High

Availability Large Database) 790
setting ALTERSZE values 736
setting maximum size for HALDB

(High Availability Large
Database) 790

OSAM sequential buffering
ensuring efficient processing 672
flexibility of 445
specifying

order of precedence for
specifications 450

tuning
database organization 672

OSAM Sequential Buffering (SB)
See SB (OSAM Sequential

Buffering) 443
output thread 227
overflow buffer allocation (OBA)

See OBA (overflow buffer
allocation) 482

overflow data set
definition 117

Overflow Sequential Access Method
See OSAM (Overflow Sequential

Access Method) 537
Overflow Sequential Access Method

(OSAM)
allocation example, multi-volume data

set, non-SMS managed 541
allocation example, multi-volume data

set, SMS managed 541
allocation of data sets 539

overflow space allocation
changing online 763

overhead
DEDB CI resources 532
logical records 533

P
packing density 432
page fixing MSDBs 469
parallel partition processing

definition 179
enabling 179

parameters
BGWRT 451
BSIZ

in DB/TM environment 474
in the DBCTL environment 480

BWO(TYPEIMS) 454
BYTES 340
CNBA 481
DB Monitor 609

parameters (continued)
DBBF

in DB/TM environment 474
DBFX

in DB/TM environment 474
DDATA 341
DUMP 453, 455
EXIT 380
EXTRTN 343
FPB 481
FPOB 482
FREESPACE 454
FRSPC 429
INDICES 349
INSERT

free space for a KSDS 452
using in splitting CIs 122

IOBF 442
LGNR 612
MBR 264
MON 609
NAME

in a DBD 264
in the SENFLD statement 386

NBA 465
NBRSEGS 469
NOPROT 345
NULLVAL 343
PARENT 249, 264

in logical relationships 261, 264
to specify PCF and PCL

pointers 140
to specify PCF pointers 139

PASSWD 37
POINTER

bidirectional logical relationships,
specifying 262

PROCOPT 35, 461
PROCSEQ 323, 328
PROCSEQD 323, 330
PROT 345
RECORD 437
REPL 386
RMNAME 150

HDAM options 432
PHDAM options 432
specifying number of blocks or

CIs 431
specifying number of RAPS 149

RULES 273
SHARELVL 191
SOURCE 317

bidirectional logical relationships,
specifying 262

SPEED | RECOVERY 455
START 340
SUBSEQ 340
TYPE 387
VERSION 381
VSAMFIX 442, 453
VSAMPLS 453

PARENT parameter 139, 249, 261, 264
parent segment, definition 8
Partial Database Reorganization utility

(DFSPRCT1) 632
Partition Definition utility (%DFSHALDB)

changing partitions 511

868 Database Administration

Partition Definition utility
(%DFSHALDB) (continued)

creating HALDB partitions 511
HALDB functions 511
high key value, entering 511
partition definition steps 511
partition high key value,

entering 511
partition high key

entering the high key value 511
partition initialization 171
partition selection

defined 173
using high keys, defined 173

partition selection exit routine
defined 174

Partitioned Hierarchical Direct Access
Method (PHDAM)

databases, introduction 132
Partitioned Hierarchical Indexed Direct

Access Method (PHIDAM)
databases, introduction 132
primary index, introduction 132

partitioned secondary indexes
converting secondary indexes to

HALDB 812
overview 355, 360

partitions
about 168
adding

when using high key partition
selection 778

adding a partition that defines a new
highest high key 778

adding to an existing HALDB 776
altering structure of an online

database
data-sharing environments 739
IMS configuration

requirements 732
processing description 737

application program processing 175
automatic definition 511
bitmap block 147
change version numbers 169
changing 768

boundaries 768
key ranges 768
partition definition control

blocks 771
changing with the Partition Definition

utility 511
control blocks

rebuild triggers 772
control blocks, partition

definition 771
creating with the Partition Definition

utility 511
data sets

changing data set name
prefixes 789

data sets and recovery 173
data sets in 171
data sets, maximum 171
database uncommitted updates

restriction 495
databases, types of 132

partitions (continued)
DB-PCB/DSG pair 445
defining

automatically 511
manually 511

defining PSINDEX partitions 821
deleting 783

partition selection exit
routine 786

deleting with high-key
partitioning 785

disabling 780, 781
about 781

enabling 782
features of 168
forward recovery

JCL example, HALDB
partition 591

JCL example, PHIDAM 587, 590
JCL example, PSINDEX 589

forward recovery steps
PHIDAM example 587
PHIDAM example, data

sharing 590
single partition example 591

high key 511
ID numbers 168, 169
ID numbers and partition

modifications 773
ILDS requirement 172
initializing 171, 823, 831
manual definition 511
modifying 768

affect on pointers 775
boundaries 768
key ranges 768
partition definition control

blocks 771
name, changing 787
names 168, 169
naming conventions 27
naming sequences 169
offline reorganization

reallocating data sets 640
reloading 640
unloading 639
updating ILDS 641

online control blocks
considerations when modifying

partition definitions 772
parallel partition processing 179
parallel processing, enabling 179
partition definition process 511
partition high key 511
partition selection

restricted processing 177
partition selection exit routine

record distribution 771
partition selection exit routine,

defined 174
partition selection using high keys,

defined 173
partition selection, defined 173
partition structure modification 773
PHDAM

root anchor points, changing
number in partition 788

partitions (continued)
pointers

modifying partitions 775
reallocating data sets

offline reorganization 640
record distribution

adjusting high keys 769
partition selection exit

routine 771
recovery and data sets 173
recovery when enabling 783
reloading

offline reorganization 640
reorganization number 169
reorganization number verification

enabling 170
introduction 169

restoring deleted partitions 787
root anchor points

changing number of 788
secondary index

deleting 786
selective partition processing 175
selective processing

examples of a range of
partitions 178

logical relationships 175
secondary indexes 176

selective processing, enabling 175
sequential buffering 445
single partition processing

examples 177
examples PSINDEX 177

single partition selection 176
unloading

offline reorganization 639
updating ILDS

offline reorganization 641
PASSWD parameter 37
password protection 37
paths

full duplex 309
half duplex 309
in hierarchy 9
in logical relationships 247
third access 309

PCB (program communication block)
alternate PCB statement 495
coding 494
database PCB statement 495
field-level sensitivity

establishing security 35
introduction 20
masking data structures 35
maximum number of database PCBs

in a PSB 495
restricting data access 35
segment sensitivity

restricting data access 35
SENSEG statement

restricting data access 35
PCBs (program control blocks)

DB
database uncommitted updates

restriction 495
PCF (physical child first) pointers

correcting 597

Index 869

PCF (physical child first) pointers
(continued)

description 139
PCL (physical child last) pointers

correcting 597
description 140

performance
avoiding split segments 378
CI reclaim for KSDSs 404
comparison of databases 128
discussion 429, 457
Fast Path

buffers 478
HISAM 117, 122
HSAM 116
logical relationships 316
monitoring 609
multiple area data sets 692
tuning a database 615

PHDAM
adjusting 673
options, adjusting 673

PHDAM (partitioned Hierarchical Direct
Access Method)

RAPs (root anchor points) 149
PHDAM (Partitioned Hierarchical Direct

Access Method)
access methods 12
accessing segments 157
calls against 134
changing DL/I access methods

from HDAM 804
parallel unload for HALDB

migration 805
to HDAM 833

counter area of segments,
introduction 16

data set naming conventions 28
database records 153
database records, locking 165
databases

reorganizing 636
databases, introduction 132
DBCTL support 106
deleting segments 162
format of database 146
inserting segments 158
loading the database 554
locking 167
logical record length 437
multiple data set groups 398
options available 134
overflow area 150
parallel unload for HALDB

migration 805
pointer area of segments,

introduction 16
pointers in 136
randomizing module 431
root addressable area 150, 153
segment format 153
size of root addressable area 430
space calculations 529
specifying free space 429
storage of records 150

PHDAM databases
restoring to non-HALDB 833

PHIDAM
access methods 12
primary index recovery 167

PHIDAM (Partitioned Hierarchical
Indexed Direct Access Method)

accessing segments 157
calls against 134
changing DL/I access methods

from HIDAM 804
parallel unload for HALDB

migration 805
to HIDAM 833

counter area of segments,
introduction 16

data set naming conventions 28
databases

reorganizing 636
databases, introduction 132
DBCTL support 106
deleting segments 162
format of database 146
index database 154
index segment 155
inserting segments 158
loading the database 554
locking 167
logical record length 437
maximum size 134
multiple data set groups 398
options available 134
parallel unload for HALDB

migration 805
pointer area of segments,

introduction 16
pointers in 136
primary index, introduction 132
segment format 154
space calculations 164, 529
specifying free space 429
storage of records 154
when to use 135

PHIDAM databases
converting primary index to

HALDB 807
restoring to non-HALDB 833

physical block size 437
physical child first pointers 139, 597
physical child last pointers 140, 464, 597
physical pairs

fallback from HALDB 833
physical parent

rules 263
physical parent in logical

relationships 231
physical parent pointer

See PP (physical parent) pointer 243
physical replace rule

example 281
physical twin backward pointers 143,

597
physical twin forward pointers 141, 597
physical twin segments

fallback from HALDB 833
physically adjacent 112, 116
PI (program isolation), lock

protocols 164

pointer area
of segment, introduction 16

pointer field 333, 336, 339
POINTER parameter

bidirectional logical relationships,
specifying 262

pointer segment 325, 332
pointers

changing for conversion to
HALDB 827

correcting 597
eliminating symbolic pointers for

HALDB 817
FCP (forward chain pointer) 207
HALDB

healing 667
HALDB self-healing pointer

process 664
performance 668

HB (hierarchical backward) 138
HD 136
HD databases 136
hierarchical forward (HF) 137
HISAM (Hierarchical Indexed

Sequential Access Method) 120
in HD databases 132
in logical relationships 246
in secondary indexes 333

HISAM 336
SHISAM 339

LCF 241
LCL 241
logical relationships 238
logical twin 597
LP (logical parent) 238, 597
LTB 244
LTF 244
mixing types 144
PCF (physical child first) 139
PCL (physical child last) 140
PP 243
PTB 143
PTF 141
self-healing pointer process 664

performance 668
sequence in a segment's prefix 145,

250
symbolic 325, 333
types 800

position
hierarchy 12
MSDB 209

post-implementation review 33
PP (physical parent) pointer 243
pre-formatting data set space 455
preallocated CIs 460
prefix descriptor byte 312
prefix part of segment 15
Prefix Resolution utility

(DFSURG10) 627
Prefix Update utility (DFSURGP0) 628
preopen

disabling for DEDB areas 186
Prereorganization utility

(DFSURPR0) 625
primary data set, defined 117

870 Database Administration

primary index
converting to HALDB 807
HIDAM, cleaning up DBD after

conversion to HALDB 811
introduction to HD databases 132

primary index data sets
recovery HALDB Online

Reorganization 663
primary indexes

backup and recovery 167
private buffer pool

description 217
procedures

adding logical relationships 701
adding secondary indexes 720, 721,

722
adding segment types 695
adding variable-length segments 699
Asynchronous Data Capture 730
calculating database size 529
changing DASD 671
changing hierarchical structure

changing sequence of segment
types 670

combining segments 670
changing segment size 698
converting concatenated keys 720
database administration,

introduction 4
deleting segment types 697
description of 23
modifying a database 695
removing secondary indexes 723

processing option H 473
processing option P

and NBA limit 479
in determining the size of the

UOW 461
processing, mixed mode 204
PROCOPT parameter

establishing security 35
in HSSP 473
option H 473
option K 496
option P 461

PROCSEQ parameter 323, 328
PROCSEQD parameter 323, 330
program communication block (PCB)

database PCB statement 495
introduction 20
maximum number of database PCBs

in a PSB 495
program control blocks (PCBs)

DB
database uncommitted updates

restriction 495
program isolation lock manager 164
program specification block (PSB)

defined 20
using dictionary to generate 20

program views 20
field-level sensitivity

establishing security 35
masking data structures 35
restricting data access 35
segment sensitivity

restricting data access 35

program views (continued)
SENSEG statement

restricting data access 35
programs

DB Monitor 609
DB Monitor Report print 609
DFSDDLT0 525
DL/I test 525
program views 20
running 550
views 20
writing a load program 544, 553

PROT parameter 345
PSB

deleting instances from IMS
catalog 47

IMS catalog
deleting PSB instances 47
PSB segment type 92

segment type, IMS catalog 92
PSB (program specification block)

coding 494
defined 20
using dictionary to generate 20

PSBGEN (Program Specification Block
Generation) 497

utilities 494, 758
PSBLIB library 494
PSINDEX

adding a secondary index to a
HALDB 794

data set naming conventions 28
databases

reorganizing 636
initializing partitions 795
modifying 795
partitions, initializing 795

PSINDEX databases
allocating data sets 823
converting non-unique keys to

unique 818
converting secondary indexes to

HALDB 812
defining DBD statements 816
defining PSINDEX partitions 821
ILDS, options for updating 824
loading 824
modifying DBD for the larger HALDB

/SX field 819
overview 360
sorting output of HD Reorganization

Unload utility 815
sorting output of HD Reorganization

Unload utility when using /SX
field 815

symbolic pointers, eliminating 817
PTB (physical twin backward) 597
PTB (physical twin backward)

pointers 143
PTF (physical twin forward) 597
PTF (physical twin forward)

pointers 141

Q
Q command codes, locking 165

QSAM (Queued Sequential Access
Method)

access to GSAM databases 130
and OSAM data set 537
Basic Sequential Access Method 112
BSAM (Basic Sequential Access

Method)
access to HSAM databases 112

HSAM (Hierarchical Sequential Access
Method)

z/OS access methods used 112
processing HSAM databases 112
processing SHSAM databases 129
z/OS access methods

used by HSAM 112
qualified calls

HD databases 158
quiesce

application program impact 562
database 560
database type support 561
DBRC 563
options 561
RECON data set 563
recovery point 560
restrictions 564

R
randomizing module

DEDB design 462
in HDAM database records 431
in PHDAM database records 431
introduction to HD databases 132

randomizing modules
HALDB

modifying randomizing
modules 793

randomizing routines 754
adding online 754
changing existing routines online 755
DEDB, standard

changing RAP space allocation
online 762

DEDB, two stage
changing root addressable space

online 758
deleting online 756

RAP (root anchor point) 754
RAPs (root anchor points)

explained 149
HIDAM 156
number 150

RATE parameter of INITIATE OLREORG
command 658

RDF (record definition field) 532
read errors

DEDB
VSO 225

recovery 560
real logical child 238, 241, 319
RECON data set

disabling security in test
environment 522

record deactivation 189
Record Deactivation 189
record definition field (RDF) 532

Index 871

record distribution
DEDB

impact of changes to UOW
structure on distribution 762

RECORD parameter 437
HISAM 433

record search argument (RSA) 132
record segments

IMS catalog
DBD record segments 53
PSB record segments 87

records
recommendations for specifying

size 437
Recoverable Resource Manager Services

attachment facility 107
recovery 4, 455

after image copy 569
catalog

overview 43
concurrent image copy 595
data sets 579
database 577
database failure 559
databases

introduction 559
nonrecoverable full-function 112
quiesce 560

DEDB 582
deleting data sets 579
denial of authorization of recovery

utility 583
DL/I

I/O errors 595
dynamic backout 607
forward

DBRC 582
forward recovery

JCL example, change
accumulation 593

JCL example, HALDB
partition 591

JCL example, HIDAM 586
JCL example, PHIDAM 587, 590
JCL example, PSINDEX 589

forward recovery steps
data sharing example 593
HIDAM example 585
PHIDAM example 587
PHIDAM example, data

sharing 590
single partition example 591

forward recovery, database 583
HALDB partition data sets 173
HSSP image copy 595
image copies

concurrent nonstandard image
copies 575

example of recovery period 571,
572

nonstandard batch image
copies 575

IMS catalog
overview 43

level of 579
planning 580
primary indexes 167

recovery (continued)
quiescing databases 560
read errors 560
RSR

utilities 599
RSR environment 598

DFSURDB0 utility 598
strategy 580
tools for database recovery 577
using change accumulation 581
using DBRC 582
using RLDS 582
utilities in an RSR environment 599
write errors 559

recovery for HALDB Online
Reorganization 661

recovery log data set (RLDS)
using for recovery 582

recovery period 571
RECOVPD keyword 570, 571
recursive structures 233, 254
relative block number 150
reload utility (DFSURGL0) 624
reload utility (DFSURRL0) 622
reloading

logically related HALDB
databases 832

PSINDEX databases 824
Remote Site Recovery (RSR)

backing up databases 576
database backup 576
database recovery 598
Database Reorganization utilities 635
database utility verification 599
HALDB Online Reorganization 659
image copies 576
recovering databases 598
recovery

nonstandard image copies 600
user image copies 600

reorganization utilities 599
reorganization

HD databases 636
HISAM database 636
IMS catalog 45
online

HALDB naming convention 650
primary or secondary index, HD 636

reorganization numbers
HALDB partitions 169
HALDB reorganization number

verification 169
reorganization utilities

introduction to reorganization
utilities 616

modifying a database with logical
relationships and secondary indexes
during reorganization 727

modifying a HISAM database during
reorganization 726

modifying a simple database during
reorganization 725

reorganizing 597
assessing need using Database

Surveyor utility 632
Database Surveyor utility

(DFSPRSUR) 632

reorganizing (continued)
HALDB (High Availability Large

Database) 636
offline reorganization 637
overview of offline

reorganization 637
reallocating data sets 640
reloading partitions 640
secondary indexes 642
unloading partitions 639
updating ILDS 641

HALDB self-healing pointer
process 664

offline reorganization
HALDB (High Availability Large

Database) 637
reallocating data sets 640
reloading HALDB partitions 640
unloading HALDB partitions 639
updating ILDS 641

PHDAM database
overview of offline

reorganization 637
PHDAM databases 636
PHIDAM database

overview of offline
reorganization 637

PHIDAM databases 636
reloading HALDB partitions 640
secondary indexes

HALDB (High Availability Large
Database) 642

self-healing pointer process for
HALDB databases 664

unloading HALDB partitions 639,
640

updating ILDS 641
REPL parameter 386
replace rules

AM status code 278
DA status code 278
examples

logical replace rule 282
physical replace rule 281
virtual replace rule 283

logical
example 282

physical
example 281

RX status code 278
status codes 278
virtual

example 283
replace rules for logical relationships

choosing 270
description of 278

replacing segments
HISAM databases 128
HSAM databases 116

reports
Fast Path Analysis 614

resolution utility (DFSURG10) 627
resolving data conflicts 427
resource allocation

MSDBs 466
resource contention 467
restart 132

872 Database Administration

restart (continued)
emergency

reopening DEDB areas 186
HALDB Online Reorganization 658,

659
restoring

from HALDB
secondary indexes, rebuilding 834

HALDB
after updates are made 834
before updates are made 833
virtual pairing 835

HDAM or HIDAM databases 833
logical child segments 835
non-HALDB database with logical

relationships from HALDB 835
non-HALDB database with secondary

indexes 834
original non-HALDB database 833
requirements for original non-HALDB

database 833
restrictions

HALDB Online Reorganization 648
HSSP, of 471
modifying existing logical

relationships 717
segments 15
using secondary indexes with logical

relationships 351
retention criteria

defining 47
REUSE keyword 570, 573
reviews 29
RLDS (recovery log data set)

using for recovery 582
RMNAME parameter 432

specifying number of blocks or
CIs 431

specifying number of RAPS 149
usage 754

ROLB call 477, 482
root addressable area 150, 193
root addressable space

changing online, with two stage
randomizing routine 758

root anchor point (RAP) 754
root anchor points

See RAPs (root anchor points) 149
root processing

sequential
HIDAM 156

root segment, definition 7
RRSAF 107
RSA (record search argument) 132
RSR (Remote Site Recovery)

backing up databases 576
database backup 576
database recovery 598
Database Reorganization utilities 635
image copies 576

nonstandard, recovering from 600
user image copies, recovering

from 600
recovering databases 598
recovery

nonstandard image copies 600
user image copies 600

RSR (Remote Site Recovery) (continued)
reorganization utilities 599

rules
defining logical relationships

description of 273
in logical databases 265, 270
in physical databases 262

fields in a segment 17
HD with data set groups 398
secondary indexes with logical

relationships 351
segments 15
sequence fields 17
using an SSA 207

RULES parameter 273
RX status code 278

S
SB (OSAM Sequential Buffering)

benefits 444
productivity 445
programs 444
utilities 444

buffer handler 446
buffer pools 446, 447
buffer set 447
CICS 444
conditional activation 446
data set groups 445
DB-PCB/DSG pair 445
deactivation 446
description 443
disallowing use 450
HALDB Online Reorganization 664
overlapped I/O 444, 446
periodic evaluation 446
random read 443
requesting use 447, 450
sequential read 443
virtual storage 447

SB (sequential buffering)
requesting during PSB

generation 448
SB Initialization exit routine

overview 449
scan utility (DFSURGS0) 627
SCD (system contents directory) 208
schemas

field-level sensitivity
establishing security 35

masking data structures 35
restricting data access 35
segment sensitivity

restricting data access 35
SENSEG statement

restricting data access 35
SDEP (sequential dependent)

CI preallocation 460
SDFSRESL 757
search field 333
secondary data structure 330
secondary index 323
secondary index characteristics 323
secondary indexes 360

allocating PSINDEX data sets 823
ALTER option 742

secondary indexes (continued)
calculating space 535
considerations 352
converting non-unique keys to unique

for PSINDEX databases 818
converting to HALDB 812
database versioning 370
DEDB partitioned, overview 355
defining PSINDEX partitions 821
eliminating symbolic pointers for

PSINDEX databases 817
fallback from HALDB 834
HALDB

adding a secondary index to a
HALDB 794

creating 557
initializing PSINDEX

partitions 795
loading 557
modifying a secondary index 795

HALDB (High Availability Large
Database)

reorganizing 642
HALDBs

ALTER option 742
modifying PSINDEX DBD for the

larger HALDB /SX field 819
PSINDEX

adding a PSINDEX to a
HALDB 794

initializing partitions 795
modifying 795

PSINDEX, overview 360
reorganizing

HALDB (High Availability Large
Database) 642

sorting output of HD Reorganization
Unload utility 815

sorting output of HD Reorganization
Unload utility when using /SX
field 815

secondary indexing
adding 720
analyzing requirements 427
comparison with logical

relationships 232
DEDB 723
DEDBs 721
description of 321
existing DEDB 722
full-function databases 720
index maintenance exit routine 343
INDICES parameter 349
introduction 18
loading databases 554
locking 167
maintenance 343
making keys unique 340
pointer segment 333

HISAM 336
SHISAM 339

procedure for adding 720, 721, 722
procedure for removing 723
processing as separate database 344
removing 720
restructured hierarchy 328, 330
segments 325

Index 873

secondary indexing (continued)
sharing 345
sparse indexing 342
specifying in DBD 353
storage 332
suppressing index entries 342
system related fields 340
use

logical relationships 351
variable-length segments 351

uses 321
utility unload 629

secondary processing sequence 330
security

database
program views 20
PSBs 20

database administration,
introduction 4

establishing 35
field-level sensitivity 385

security inspection 33
SEGM statement 262

description 490
example 264
in secondary indexing 355
in the physical DBD 259
specifying insert, delete, and replace

rules 273
specifying variable-length

segments 373
segment

data
compressing 376
editing 376

dependent
most desirable block in HD

databases 163
root

most desirable block in HD
databases 163

segment code
description 16
HDAM 153
HISAM 119
HSAM 113
PHDAM 153

Segment compression routine
adding 756
changing 756
deleting 756

segment deletion 203
segment edit/compression exit routine

adding 730
avoiding split segments 378
specifying minimum segment

size 378
specifying the use of 379

Segment Edit/Compression exit routine
considerations 378
description of 376
introduction 18
uses 376

segment search argument
See SSA (segment search

argument) 333

segments
accessing

HDAM databases 157
HIDAM databases 157
HISAM databases 121
HSAM databases 114
PHDAM databases 157
PHIDAM databases 157

adding to a database using
reorganization utilities 696

adding to DEDB 761
calculating frequency 531
calculating size 530
catalog, IMS

DBD segment 64
HEADER segment 51
PSB segment 92

changing data 700
changing position of data 701
changing size 698
changing the segment name 701
concatenated

deleting 309
counter area 16
data elements 17

assigning 426
DEDB

segment growth 378
definition 7
deleting

accessibility after deletion 299
HD databases 162
HISAM databases 127
HSAM databases 116
MSDB (main storage

database) 208
deleting from DEDB 761
dependent

inserting in HD databases 161
dependent, definition 7
fields 17
fixed-length 15
fixed-length segments

specifying minimum size 378
full-function

avoiding split segments 378
specifying minimum size 378

HALDB, modifying
root anchor points, changing

number in partition 789
IMS catalog

DBD record segments 53
DBD segment 64
HEADER segment 51
PSB record segments 87
PSB segment 92

IMS catalog, deleting from 47
inserting

HD databases 158
HISAM databases 121
HSAM databases 116
MSDB 208

introduction to 15
loading a sequence of segments 547
logical child 249
modifying 695
moving segment types 698

segments (continued)
name, changing 701
occurrence, definition 8
parent, definition 8
pointer 325
pointer area 16
procedure for adding to

database 695
procedure for deleting from

database 697
replacing

HISAM databases 128
HSAM databases 116

root
inserting root segments into

HDAM or PHDAM 158
inserting root segments into

HIDAM or PHIDAM 159
root, definition 7
rules 15
second-most desirable block 163
sequential dependent

loading 557
sequential dependent segment

storage 198
source 325
target 325
twin, definition 8
type, definition 8
types

adding to a database 697
variable length 15

converting 699, 700
variable-length 373
variable-length segments

specifying minimum size 378
selective partition processing

definition 175
enabling 175

self-healing pointer process 664
performance 668

SENFLD statement 385, 496
SENSEG statement

description 496
field-level sensitivity 386

sequence field
HIDAM 154
HISAM 116
HSAM (Hierarchical Sequential Access

Method) 112
introduction to 17
logical relationships 257
PHIDAM (Partitioned Hierarchical

Indexed Direct Access Method) 154
unique, definition 17

sequencing in hierarchy 9
sequencing logical twin chains 318
sequential access methods

HISAM 116
HSAM 112

sequential buffering
HALDB 445
specifying

order of precedence for
specifications 450

874 Database Administration

sequential buffering (SB)
requesting during PSB

generation 448
See SB (OSAM Sequential

Buffering) 443
sequential dependent part of area 194
sequential dependent segments

storage 198
sequential randomizing module 431
sequential root processing

HIDAM 156
sequential storage method 106
SETO statement 472
SETR statement 472
shared secondary index database

commands 345
shared secondary indexes 345
SHARELVL 191
SHISAM (Simple Hierarchical Indexed

Sequential Access Method) 128, 553
CI reclaim restriction 404
VSAM REPRO, using 404

SHSAM (Simple Hierarchical Sequential
Access Method) 128, 129

simple databases
converting to HALDB 806
definition of 806

Simple Hierarchical Indexed Sequential
Access Method (SHISAM)

See SHISAM (Simple Hierarchical
Indexed Sequential Access
Method) 128

Simple Hierarchical Sequential Access
Method (SHSAM)

See SHSAM (Simple Hierarchical
Sequential Access Method) 128

single area data sets (ADS)
Fast Path I/O toleration 228
I/O errors 228

size
maximum

HALDB (High Availability Large
Database) 134

HIDAM database 134
PHDAM database 134
PHIDAM database 134

size calculations
See space calculations 529

size field in variable-length
segments 373

size of DEDB estimation 460
SOURCE parameter 317

bidirectional logical relationships,
specifying 262

source segment 325
space calculations

CIs or blocks needed for
database 533

database size 529
overhead for DEDB CI resources 532

space management fields, updating 159
space management in HD databases 146
space release in logical relationships 311
space search algorithm

DEDB space search algorithm 201
HD databases 162

sparse indexing 342

SPEED | RECOVERY parameter 455
SSA (segment search argument)

restrictions for DEDBs 203
secondary indexes 333

standards and procedures
database administration,

introduction 4
description of 23

START parameter 340
starting

DEDB areas 187
statements

AREA
overview 489

DATASET
description of 489
example of 403
specifying ddnames for data

sets 264
DBD 489
DBDGEN 494
DFSCASE 493
DFSMAP 493
DFSMARSH 492
END 494, 497
FIELD

coding 490
definition of 340
maximum number 490
position in DBD 490

FINISH 494
LCHILD in logical relationships 259,

353, 492
OPTIONS

fixing buffers in VSAM 442
for OSAM 455
for VSAM 451
OSAM 455
use in splitting CIs 122

PSBGEN 497
SEGM

description of 490
example of 264, 355
in secondary indexing 355
in the physical DBD 259, 262
specifying insert, delete, and

replace rules 273
specifying variable-length

segments 373
SENFLD 385, 496
SENSEG

description of 496
field-level sensitivity 386

XDFLD
description of 340
in secondary indexing 353
restrictions in use 492
specifying sparse indexing 343

status codes
AM

in a delete call 311
in an insert call 275

DA 311
DX 311
FH 188
for replace rules 278

status codes (continued)
FR

for BMP regions 478
for CCTL threads 484
in Fast Path buffer allocation 477
in Fast Path buffer allocation for

BMPs 482
FW

for CCTL threads 485
in BMP regions 479
in Fast Path buffer allocation 477
in Fast Path buffer allocation for

BMPs 482
GC 460
GE 258, 275
II 275
IX 275
NE 345

steps for altering the structure of an
online database 732

stopping
DEDB areas 187

storage of data
DEDBs 197
HDAM databases 150
HIDAM databases 154
HISAM databases 117
HSAM databases 113
introduction 7
MSDB (main storage database) 207,

470
multiple data set groups 400
PHDAM databases 150
PHIDAM databases 154
variable-length segments 374

subpool
buffer use chain 439

subpools
VSAM performance

separate subpools 440
SUBSEQ parameter 340
subsequence field 333
subset pointers 197, 464
suppressing index entries 342
Surveyor utility (DFSPRSUR) 632
SX (/SX) operand 340
symbolic checkpoint call 130, 132
symbolic pointers

logical relationships 238, 316
secondary indexes 325, 333

symbolic pointers, eliminating for
PSINDEX databases 817

SYNC (Synchronization Point) call 460
sync point processing for Fast Path 227
synchronization point

Fast Path 227, 479, 485
output thread 227
processing 227, 691

synonyms
definition 153

syntax diagram
how to read xii

system checkpoints
database uncommitted updates

restriction 495
system contents directory (SCD) 208
system related fields 340

Index 875

T
tape, magnetic 112
target segment 325
task ID field 148
termination phase of HALDB Online

Reorganization 646
test databases 521

developing
DL/I test program

(DFSDDLT0) 525
File Manager for z/OS for IMS

Data 525
IMS Application Development

Facility II 525
testing

databases 521
aids for testing 525

testing a database
introduction 4

testing, application programs 522
third access path 309
tools

for test databases
DL/I test program 525

track space used 437
trademarks 839, 841
transaction timings, Fast Path 612
tuning a database

description of 615
Fast Path 611
introduction 4

two stage randomizing routines
changing root addressable space 758

TYPE parameter 387

U
UCF (utility control facility)

described 632
restartable initial database load

program 550
running restartable load program

under 550
unidirectional logical relationships

fallback from HALDB 833
unique sequence fields

HISAM (Hierarchical Indexed
Sequential Access Method) 116

introduction 17
unit of reorganization for HALDB Online

Reorganization 646
units of work (UOW) 193
unload

converting secondary index to
HALDB 813

Unload utility (DFSURGU0) 623
unload utility (DFSURUL0) 621
unloading

logically related databases
for HALDB conversion 826

unqualified calls
HD databases 158

UOW (unit of work) 193, 460
UOW locking 473
UOW structural definition 758
use chain 439

user data field in pointer segment 333
utilities

Application Control Block
Maintenance utility

building ACBs during database
implementation 497

Database Change Accumulation 662
database image copy 663
Database Prefix Resolution utility

(DFSURG10) 627
Database Prefix Update utility

(DFSURGP0) 628
Database Prereorganization utility

(DFSURPR0) 625
database recovery utilities in an RSR

Environment 599
Database Scan utility

(DFSURGS0) 627
Database Surveyor (DFSPRSUR) 632
DBDGEN 488
DBFDBMA0 205
DBFUHDR0 460
DFSPRCT1 632
DFSPRSUR 632
DFSUCF00 632
DFSURG10 627
DFSURGL0 624
DFSURGP0 628
DFSURGS0 627
DFSURGU0 623
DFSURPR0 625
DFSURRL0 622
DFSURUL0 621
for unload and reloading secondary

indexes 629
HALDB Online Reorganization 660
HALDB, utilities supported by 179
HD Reorganization Reload 624
HD Reorganization Unload 623
High-Speed DEDB Direct

Reorganization (DBFUHDR0) 460
HISAM Reorganization Reload 622
HISAM Reorganization Unload 621
MSDB Maintenance 205
Partial Database Reorganization 632
PSBGEN 494
reorganization 616
RSR

recovery 599
reorganization 635

UCF 632
Unload 623

utility control facility 550
Utility Control Facility (UCF)

offline database reorganization 618
utility private buffers

HSSP (high-speed sequential
processing) 472, 474

V
variable intersection data 251
variable-length segments

definition 15
description of 373
introduction 18
procedure for adding 699

variable-length segments (continued)
replace operations 375
specifying in DBD 373
specifying minimum size 378
storage 374
use with secondary indexes 351
uses 376
using 373
what application programmers need

to know 376
VERSION parameter 381
versioning

databases 363
catalog requirement 364
changes supported 365
configuring 369
default version, implications 368
defining 369
enabling 369
existing free space and new

fields 366
fields, adding to existing free

space 366
IMS catalog requirement 364
logical relationships 370
modifications supported 365
overview of database

versioning 363
secondary indexes 370

DBLEVEL= 368
default version, implications 368

versioning, database
deleting a DBD version 47

virtual logical child 238
virtual pairing

converting to physical pairing for
HALDB 828

fallback from HALDB 835
identifying in non-HALDB DBD 828

virtual replace rule
example 283

virtual storage
MSDB requirements 465

Virtual Storage Access Method (VSAM)
HISAM databases 116

virtual storage option
introduction 211

virtual storage option (VSO)
restrictions for VSO DEDB areas 212

VSAM
adjusting options 682, 683
buffers 675

adjusting 676, 678, 680
adjusting dynamically 676, 680
DFSVSAMP 679
DFSVSMxx 679
monitoring 676

data sets
maximum size 134

DEFINE CLUSTER command 683
monitoring 676
performance

separate subpools 440
VSAM (Virtual Storage Access Method)

access to GSAM databases 130
adjusting buffers 674
adjusting options 683, 684

876 Database Administration

VSAM (Virtual Storage Access Method)
(continued)

and Hiperspace buffering 440
changing access methods 685
changing space allocation 684
CIDF (control interval definition

field) 532
ESDS in HD databases 146
HISAM databases 116
local shared resource pools

assigning data sets 453
defining 453
index and data subpools 453
subpools of same size 439

options 451
passwords 37
RDF (record definition field) 532
storage of secondary indexes 332
track space used 437

VSAM data sets
CI size 735
correcting ALTERSZE values 737
modifying with HALDB alter 735
setting ALTERSZE values 736

VSAMFIX parameter 442, 453
VSAMPLS parameter 453
VSO

system-managed rebuild 217
VSO (virtual storage option)

restrictions for VSO DEDB areas 212
VSO DEDB (virtual storage option data

entry database)
checkpoint processing 225
data sharing 222
defining a VSO cache structure

Name 217
defining a VSO DEDB area 212
emergency restart 226
I/O error processing 224

read errors 225
write errors 224

input processing 223
locking 221
options across restart 226
output processing 223
PRELOAD option 224
resource control 221
using data spaces 220
with XRF 227

VSO DEDB areas
authorizing connections 217
block-level sharing of 215

authorizing connections 217
defining

CHANGE.DBDS 211
INIT.DBDS 211

virtual storage
coupling facility cache

structure 211
data space 211

W
write errors

recovery 559
write errors, DEDB VSO 224

X
XDFLD statement

description 340
in secondary indexing 353
restrictions in use 492
specifying sparse indexing 343

XML
decomposed storage

overview 405
intact storage

overview 405
overview of storing in IMS

databases 405
schema

overview of storing XML
data 405

XML (Extensible Markup Language)
composition 407
data-centric documents 408
decomposed storage mode 408
IMS, and 407
intact storage mode

about 410
base segment 410
database for 410
DBD example 411
overflow segment 410
side segment 414

non-XML databases, and 408
overview 407
storing 407
supported environments 416
type representation 415

XML schema
data types 415
overview 415

XRF
DEDB Alter function 742

Index 877

878 Database Administration

IBM®

Product Number: 5635-A04
5655-DSM
5655-TM2

Printed in USA

SC19-3652-04

Sp
in
e
in
fo
rm
at
io
n:

IM
S

Ve
rs

io
n

13
Da

ta
ba

se
 A

dm
in

is
tra

tio
n

I
B

M

	Contents
	About this information
	Prerequisite knowledge
	IMS function names used in this information
	How new and changed information is identified
	How to read syntax diagrams
	Accessibility features for IMS Version 13
	How to send your comments

	Part 1. General database concepts, standards, and procedures
	Chapter 1. Introduction to IMS databases
	Database administration overview
	DL/I
	CICS
	DBCTL and DCCTL

	Open Database Access (ODBA)
	Database administration tasks
	Database concepts and terminology
	How data is stored in a database
	Root segment
	Parent and child segment
	Segment type and occurrence
	Relationship between segments

	The hierarchy in a database record
	Numbering sequence in a hierarchy: top to bottom
	Numbering sequence in a hierarchy: movement and position
	Numbering sequence in a hierarchy: level

	Types of IMS databases
	The database record
	The segment
	Segment code
	Delete byte
	Pointer and counter area
	The data portion
	The three data portion field types

	Overview of optional database functions
	How databases are defined to IMS
	How application programs view the database

	Chapter 2. Standards, procedures, and naming conventions for IMS databases
	Standards and procedures for database systems
	General naming conventions for IMS databases
	General rules for establishing naming conventions
	Naming conventions for HALDB partitions, ddnames, and data sets
	Naming convention for HALDB partitions
	Naming convention for HALDB data definition names (ddnames)
	Naming convention for HALDB data set names

	Chapter 3. Review process for database development
	The design review
	Role of the database administrator in design reviews
	General information about reviews

	Design review 1
	Design review 2
	Design review 3
	Design review 4
	Code inspection 1
	Who attends code inspection 1

	Code inspection 2
	Security inspections
	Post-implementation reviews

	Chapter 4. Database security
	Restricting the scope of data access
	Restricting processing authority
	Restricting access by non-IMS programs
	Protecting data with VSAM passwords
	Encrypting your database

	Using a dictionary to help establish security

	Part 2. IMS catalog
	Chapter 5. Overview of the IMS catalog
	Chapter 6. Backup and recovery of the IMS catalog
	Backup methods for the IMS catalog

	Chapter 7. Maintaining the IMS catalog
	Chapter 8. Removing DBD and PSB instances from the IMS catalog
	Chapter 9. Using HALDB utilities with an unregistered IMS catalog
	Chapter 10. Format of records in the IMS catalog database
	HEADER segment format
	DBD record segment formats
	AREA segment type format
	AREARMK segment type format
	CAPXDBD segment type format
	CAPXSEGM segment type format
	CASE segment type format
	CASERMK segment type format
	CFLD segment type format
	CFLDRMK segment type format
	CMAR segment type format
	CMARRMK segment type format
	CPROP segment type format
	DBD segment type format
	DBDRMK segment type format
	DBDVEND segment type format
	DSET segment type format
	DSETRMK segment type format
	FLD segment type format
	FLDRMK segment type format
	LCH2IDX segment type format
	LCHILD segment type format
	LCHRMK segment type format
	MAP segment type format
	MAPRMK segment type format
	MAR segment type format
	MARRMK segment type format
	PROP segment type format
	SEGM segment type format
	SEGMRMK segment type format
	XDFLD segment type format
	XDFLDRMK segment type format

	PSB record segment formats
	DBDXREF segment type format
	PCB segment type format
	PCBRMK segment type format
	PSB segment type format
	PSBVEND segment type format
	PSBRMK segment type format
	SF segment type format
	SFRMK segment type format
	SS segment type format
	SSRMK segment type format

	Chapter 11. IMS catalog secondary index
	Part 3. Database types and functions
	Chapter 12. Summary of IMS database types and functions
	Chapter 13. Full-function database types
	Sequential storage method
	Direct storage method
	Databases supported with DBCTL
	Databases supported with DCCTL
	Performance considerations overview
	Nonrecoverable full-function databases
	HSAM databases
	When to use HSAM
	How an HSAM record is stored
	DL/I calls against an HSAM database
	No sequence field defined
	Sequence field defined

	HISAM databases
	Criteria for selecting HISAM
	How a HISAM record is stored
	Accessing segments
	Inserting root segments using VSAM
	A free logical record exists
	No free logical record exists

	Inserting dependent segments
	Deleting segments
	Replacing segments

	SHSAM, SHISAM, and GSAM databases
	SHSAM databases
	SHISAM databases
	SHISAM IMS symbolic checkpoint call

	GSAM databases
	GSAM IMS symbolic checkpoint call

	HDAM, PHDAM, HIDAM, and PHIDAM databases
	Maximum sizes of HD databases
	DL/I calls that can be issued against HD databases
	When to use HDAM and PHDAM
	When to use HIDAM and PHIDAM
	Pointers in HD databases
	Types of pointers you can specify
	Hierarchical forward pointers
	Hierarchical forward and backward pointers
	Physical child first pointers
	Physical child first and last pointers
	Physical twin forward pointers
	Physical twin forward and backward pointers
	Mixing pointers
	Sequence of pointers in a segment's prefix

	General format of HD databases and use of special fields
	Bitmaps
	Free space element anchor point (FSEAP)
	Free space element (FSE)
	Anchor point area

	How HDAM and PHDAM records are stored
	When not enough root storage room exists
	How HIDAM and PHIDAM records are stored
	How a HIDAM or PHIDAM database is loaded
	Creating an index segment
	Use of RAPs in a HIDAM database

	Accessing segments
	Qualified calls
	Unqualified calls

	Inserting root segments
	Inserting root segments into an HDAM or PHDAM database
	Inserting root segments into a HIDAM or PHIDAM database
	Updating the space management fields when a root segment is inserted

	Inserting dependent segments
	Deleting segments
	Replacing segments
	How the HD space search algorithm works
	Root segment
	Dependent segment
	Second-most desirable block

	Locking protocols
	Locking to provide program isolation
	Locking for Q command codes
	Resource locking considerations with block level sharing
	Data sharing impact on locking
	Locking in HDAM, PHDAM, HIDAM, and PHIDAM databases
	Locking for secondary indexes

	Backup and recovery of HIDAM and PHIDAM primary indexes

	Partitions in PHDAM, PHIDAM, and PSINDEX databases
	HALDB partition names and numbers
	HALDB partition names
	HALDB partition ID numbers
	HALDB change version numbers
	HALDB partition reorganization numbers

	HALDB partition initialization
	HALDB partition data sets
	Number of data sets in a HALDB partition
	Indirect list data sets and HALDB partitions
	HALDB partition data sets and recovery

	HALDB partition selection
	Partition selection using high keys
	Partition selection using a partition selection exit routine

	How application programs process HALDB partitioned databases
	HALDB selective partition processing

	IMS utilities supported by HALDB

	Database I/O error management

	Chapter 14. Fast Path database types
	Data entry databases
	DEDB functions
	DEDB areas
	Areas and the DEDB format
	Opening and preopening DEDB areas
	Stopping DEDBs and DEDB areas
	Starting DEDBs and DEDB areas
	Restarting and reopening areas after an IRLM failure
	Read and write errors in DEDB areas
	Record deactivation
	Non-recovery option
	Area data set replication
	DEDBs and data sharing

	Fixed- and variable-length segments in DEDBs
	Examples of defining segments

	Parts of a DEDB area
	Root addressable part
	Independent overflow part
	Sequential dependent part
	CI and segment formats

	Root segment storage
	Direct dependent segment storage
	Sequential dependent segment storage
	Enqueue level of segment CIs
	DEDB space search algorithm
	DEDB insert algorithm
	DEDB free space algorithm
	Reorganization
	Segment deletion

	Managing unusable space with IMS tools
	DL/I calls against a DEDB
	Mixed mode processing

	Main storage databases (MSDBs)
	When to use an MSDB
	MSDBs storage
	MSDB record storage
	Saving MSDBs for restart
	DL/I calls against an MSDB
	Rules for using an SSA
	Insertion and deletion of segments
	Combination of binary and direct access methods
	Position in an MSDB
	The field call
	Call sequence results

	Fast Path Virtual Storage Option
	Restrictions for using VSO DEDB areas
	Defining a VSO DEDB area
	VSO DEDB areas and the PREOPEN and NOPREO keywords

	Sharing of VSO DEDB areas
	The coupling facility and shared storage
	Duplexing structures
	Automatic altering of structure size
	System-managed rebuild
	Private buffer pools
	Authorizing connections to DEDB VSO structures

	Defining a VSO DEDB cache structure name
	Coupling facility structure naming convention
	Examples of defining coupling facility structures
	Registering a cache structure name with DBRC
	Defining a private buffer pool using the DFSVSMxx IMS.PROCLIB member
	Defining a private buffer pool for a multi-area structure

	Acquiring and accessing data spaces for VSO DEDB areas
	Acquiring a data space
	Accessing a data space

	Resource control and locking
	Preopen areas and VSO areas in a data sharing environment
	Input and output processing with VSO
	Input processing
	Output processing
	The PRELOAD option
	I/O error processing

	Castout thresholds for CIs in VSO areas
	Checkpoint processing
	VSO options across IMS restart
	Emergency restart processing
	VSO options with XRF

	Fast Path synchronization points
	Phase 1 - build log record
	Phase 2 - write record to system log

	Managing I/O errors and long wait times
	Registering Fast Path databases in DBRC

	Chapter 15. Creating logical relationships
	Secondary indexes versus logical relationships
	Logical relationship types
	Logical relationship pointer types
	Paths in logical relationships
	The logical child segment
	Segment prefix information for logical relationships
	Intersection data
	Recursive structures: same database logical relationships
	Defining sequence fields for logical relationships
	PSBs, PCBs, and DBDs in logical relationships
	Specifying logical relationships in the physical DBD
	Specifying bidirectional logical relationships
	Checklist of rules for defining logical relationships in physical databases
	Logical child rules
	Logical parent rules
	Physical parent rules

	Specifying logical relationships in the logical DBD
	Checklist of rules for defining logical databases

	Choosing replace, insert, and delete rules for logical relationships
	Insert, delete, and replace rules for logical relationships
	Specifying rules in the physical DBD
	Insert rules
	The logical child insert call
	Status codes that can be issued after an ISRT call
	Insert rules summary

	Replace rules
	The replace call
	Replace rule status codes
	Replace rules summary
	Physical replace rule example
	Logical replace rule example
	Virtual replace rule example

	Delete rules
	Logical parent delete rules
	Physical parent (virtual pairing only) delete rules
	Logical child delete rules
	Examples using the delete rules
	Accessibility of deleted segments
	Possibility of abnormal termination
	Avoiding abnormal termination
	Detecting physical delete rule violations
	Treating the physical delete rule as logical
	Inserting physically and logically deleted segments
	Delete rules summary

	Using the DLET call
	Physical and logical deletion
	Deleting concatenated segments
	The third access path
	Issuing the delete call
	Status codes
	DASD space release

	The segment delete byte
	Bits in the delete byte
	Bits in the prefix descriptor byte

	Insert, delete, and replace rules summary
	Insert rules for physical parent segment A
	Delete rules for physical parent segment A
	Replace rules for physical parent segment A
	Insert rules for logical parent segment B
	Delete rules for logical parent segment B
	Replace rules for logical parent segment B
	Insert rules for real logical child segment B
	Delete rules for real logical child segment B
	Replace rules for real logical child segment B

	Logical relationships and HALDB databases
	Performance considerations for logical relationships

	Chapter 16. Creating secondary indexes
	The purpose of secondary indexes
	Characteristics of secondary indexes
	Segments used for secondary indexes
	How secondary indexes restructure the hierarchy of databases
	How secondary indexes restructure the hierarchy of full-function databases
	How secondary indexes restructure the hierarchy of DEDB databases

	How a secondary index is stored
	Format and use of fields in a pointer segment
	Fields in the HISAM secondary index pointer
	Fields in the SHISAM secondary index pointer

	Making keys unique using system related fields
	How sparse indexing suppresses index entries
	Specifying a sparse index

	How the secondary index is maintained
	Processing a secondary index as a separate database
	Sharing secondary index databases
	INDICES= parameter
	Using secondary indexes with logical relationships
	Using secondary indexes with variable-length segments
	Considerations when using secondary indexing
	Example of defining secondary indexes
	DEDB partitioned secondary indexes
	Multiple index entries for Fast Path secondary indexes
	Considerations for HALDB partitioned secondary indexes

	Chapter 17. Database versioning
	Database versioning overview
	IMS catalog support for database versioning
	Database modifications supported by database versioning
	Database versioning, existing free space, and new fields
	System default for database versioning
	Implementing database versioning
	Logical relationships, secondary indexes, and database versioning

	Chapter 18. Optional database functions
	Variable-length segments
	How to specify variable-length segments
	How variable-length segments are stored and processed
	When to use variable-length segments
	What application programmers need to know about variable-length segments

	Segment Edit/Compression exit routine
	Considerations for using the Segment Edit/Compression exit routine
	Preventing split segments from impacting performance

	Specifying the Segment Edit/Compression exit routine

	Data Capture exit routines
	DBD parameters for Data Capture exit routines
	Call sequence of Data Capture exit routines
	Data passed to and captured by the Data Capture exit routine
	Data Capture call functions
	Cascade delete when crossing logical relationships
	Data Capture exit routines and logically related databases

	Field-level sensitivity
	How to specify use of field-level sensitivity in the DBD and PSB
	Retrieving segments using field-level sensitivity
	Replacing segments using field-level sensitivity
	Inserting segments using field-level sensitivity
	Using field-level sensitivity when fields overlap
	Using field-level sensitivity when path calls are issued
	Using field-level sensitivity with logical relationships
	Using field-level sensitivity with variable-length segments
	Retrieving missing fields
	Replacing missing fields
	Inserting missing fields
	Retrieving partially present fields
	Replacing partially present fields

	General considerations for using field-level sensitivity

	Multiple data set groups
	When to use multiple data set groups
	HD databases using multiple data set groups
	How HD records are stored in multiple data set groups
	Specifying use of multiple data set groups in HD and PHD databases

	VSAM KSDS CI reclaim for full-function databases
	Storing XML data in IMS databases

	Chapter 19. XML storage in IMS databases
	Decomposed storage mode for XML
	Intact storage mode for XML
	DBDs for intact XML storage
	Side segments for secondary indexing

	Generating an XML schema
	XML to JDBC data type mapping
	JDBC interface for storing and retrieving XML

	Part 4. Database design and implementation
	Chapter 20. Analyzing data requirements
	Local view of a business process
	Designing a conceptual data structure
	Implementing a data structure with DL/I
	Assigning data elements to segments
	Resolving data conflicts
	Analyzing requirements for secondary indexes
	Analyzing requirements for logical relationships

	Chapter 21. Designing full-function databases
	Specifying free space (HDAM, PHDAM, HIDAM, and PHIDAM only)
	Estimating the size of the root addressable area (HDAM or PHDAM only)
	Determining which randomizing module to use (HDAM and PHDAM only)
	Choosing HDAM or PHDAM options
	Choosing a logical record length for a HISAM database
	Choosing a logical record length for HD databases
	Determining the size of CIs and blocks
	Recommendations for specifying sizes for blocks, CIs, and records
	Number of open full-function database data sets
	Buffering options
	Multiple buffers in virtual storage
	Subpool buffer use chain
	The buffer handler
	Background write option
	Shared resource pools
	Using separate subpools
	Hiperspace buffering
	Buffer size
	Number of buffers
	VSAM buffer sizes
	OSAM buffer sizes
	Specifying buffers

	OSAM sequential buffering
	Sequential buffering introduction
	Benefits of sequential buffering
	Flexibility of SB use
	How SB buffers data
	Virtual storage considerations for SB
	How to request the use of SB
	Requesting SB during PSB generation
	Requesting SB with SB control statements
	Requesting SB with an SB Initialization exit routine
	SB options or parameters provided by several sources
	Using SB in an online system
	Disallowing the use of SB

	VSAM options
	Optional functions specified in the POOLID, DBD, and VSRBF control statements
	Optional functions specified in the Access Method Services DEFINE CLUSTER command
	Specifying that 'fuzzy' image copies can be taken with the database image copy 2 utility (DFSUDMT0)
	Specifying free space for a KSDS (FREESPACE parameter)
	Specifying whether data set space is pre-formatted for initial load

	OSAM options
	Dump option (DUMP parameter)
	Planning for maintenance

	Chapter 22. Designing Fast Path databases
	Design guidelines for DEDBs
	DEDB design guidelines
	DEDB area design guidelines
	Determining the size of the CI
	Determining the size of the UOW
	SDEP CI preallocation and reporting
	Processing option P (PROCOPT=P)
	DEDB randomizing routine design
	Multiple copies of an area data set
	Record deactivation
	Physical child last pointers
	Subset pointers

	Designing a main storage database (MSDB)
	Calculating virtual storage requirements for an MSDB
	Considerations for MSDB buffers
	Calculating the storage for an application I/O area

	Understanding resource allocation, a key to performance
	Designing to minimize resource contention
	Choosing MSDBs to load and page-fix
	Auxiliary storage requirements for an MSDB

	High-speed sequential processing (HSSP)
	Benefits of the HSSP function
	Limitations and restrictions when using HSSP
	Using HSSP
	HSSP processing option H (PROCOPT=H)
	Image-copy option
	UOW locking
	Private buffer pools

	Designing a DEDB or MSDB buffer pool
	Fast Path buffer uses
	Fast Path 64-bit buffer manager
	Normal buffer allocation (NBA)
	Overflow buffer allocation (OBA)
	Fast Path buffer allocation algorithm
	Fast Path buffer allocation when the DBFX parameter is used
	Determining the Fast Path buffer pool size
	Fast Path buffer performance considerations
	The NBA limit and sync point
	The DBFX value and the low activity environment

	Designing a DEDB buffer pool in the DBCTL environment
	Fast Path buffer uses in a DBCTL environment
	Normal buffer allocation for BMPs in a DBCTL environment
	Normal buffer allocation for CCTL regions and threads
	Overflow buffer allocation for BMPs
	Overflow buffer allocation for CCTL threads
	Fast Path buffer allocation algorithm for BMPs
	Fast Path buffer allocation algorithm for CCTL threads
	Fast Path buffer allocation in DBCTL environments
	Determining the size of the Fast Path buffer pool for DBCTL
	Fast Path buffer performance considerations for DBCTL
	The NBA/FPB limit and sync point in a DBCTL environment
	Low activity and the DBFX value in a DBCTL environment
	Fast Path buffer allocation in IMS regions

	Chapter 23. Implementing database design
	Coding database descriptions as input for the DBDGEN utility
	DBD statement overview
	DATASET statement overview
	AREA statement overview
	SEGM statement overview
	FIELD statement overview
	DFSMARSH statement overview
	LCHILD statement overview
	XDFLD statement overview
	DFSMAP statement overview
	DFSCASE statement overview
	DBDGEN and END statements overview

	Coding program specification blocks as input to the PSBGEN utility
	The alternate PCB statement
	The database PCB statement
	The SENSEG statement
	The SENFLD statement
	The PSBGEN statement
	The END statement

	Building the application control blocks (ACBGEN)
	Defining DBD and PSB metadata to the generation utilities
	Specifying data types for application programs
	Defining arrays in DBD source statements
	Defining a static array to IMS
	Defining a dynamic array to IMS

	Defining a data structure in DBD source statements
	Redefining fields
	Defining alternative field maps for a segment

	Implementing HALDB design
	Creating HALDB databases with the HALDB Partition Definition utility
	Allocating an ILDS

	Defining generated program specification blocks for SQL applications
	Introducing databases into online systems
	Adding databases dynamically to an online IMS system
	Adding MSDB databases dynamically to an online IMS system

	Provision a Fast Path DEDB database with z/OSMF

	Chapter 24. Developing test databases
	Test requirements
	Disabling DBRC security for the RECON data set in test environments
	Designing, creating, and loading a test database
	Using testing standards
	Using IBM programs to develop a test database
	IMS Application Development Facility II
	File Manager for z/OS for IMS Data
	Using the DL/I test program, DFSDDLT0

	Part 5. Database administrative tasks
	Chapter 25. Loading databases
	Estimating the minimum size of the database
	Step 1. Calculate the size of an average database record
	Determining segment size
	Determining segment frequency
	Determining average database record size

	Step 2. Determine overhead needed for CI resources
	Step 3. Determine the number of CIs or blocks needed
	Secondary index: determining the amount of space needed

	Step 4. Determine the number of blocks or CIs needed for free space
	Step 5. Determine the amount of space needed for bitmaps

	Allocating database data sets
	Using OSAM as the access method
	Allocating OSAM data sets
	Allocating single-volume OSAM data sets
	Allocating multi-volume OSAM data sets
	Allocating an OSAM large format sequential data set

	Writing a load program
	Status codes for load programs
	Using SSAs in a load program
	Loading a sequence of segments with the D command code
	Two types of initial load program
	Basic initial load program
	Restartable initial load program

	JCL for the initial load program
	Loading a HISAM database
	Loading a SHISAM database
	Loading a GSAM database
	Loading an HDAM or a PHDAM database
	Loading a HIDAM or a PHIDAM database
	Loading a database with logical relationships or secondary indexes

	Loading Fast Path databases
	Loading an MSDB
	Loading a DEDB
	Loading sequential dependent segments

	Loading HALDBs that have secondary indexes

	Chapter 26. Database backup and recovery
	Database failures
	Database write errors
	Database read errors

	Database quiesce
	Making database backup copies
	Image copies and the IMS image copy utilities
	Concurrent image copies
	Non-concurrent image copies
	Fast replication image copies
	Recovery after image copy

	HSSP image copies
	Creating image copy data sets for future use
	Recovery period of image copy data sets
	Example 1: recovery period of image copy data sets
	Example 2: recovery period of image copy data sets
	Example 3: recovery period of image copy data sets
	Example 4: recovery period of image copy data sets
	Example 5: recovery period of image copy data sets
	Other recovery period considerations

	Reusing image copy data sets
	HISAM copies (DFSURUL0 and DFSURRL0)
	Nonstandard image copy data sets
	Recovery from a batch nonstandard image copy
	Recovery from a concurrent nonstandard image copy

	Frequency and retention for backup copies
	Image copies in an RSR environment

	Recovery of databases
	Recovery and data sets
	Planning your database recovery strategy
	Using database change accumulation input for recovery
	Using log data sets for recovery

	Supervising recovery using DBRC
	Denial of authorization for recovery utility

	Overview of recovery of databases
	Example: recovering a HIDAM database in a non-data-sharing environment
	Recovering a PHIDAM database in a non-data-sharing environment
	Recovering a PHIDAM database in a data sharing environment
	Example: recovering a single HALDB partition in a non-data-sharing environment
	Example: recovering a HIDAM database in a data-sharing environment
	Concurrent image copy recovery
	HSSP image copy recovery
	DL/I I/O errors and recovery
	DEDB full condition
	Continued database authorization
	I/O error retry

	Correcting bad pointers
	Recovery in an RSR environment
	Recovering a database using the DFSURDB0 utility in an RSR environment
	Database utilities in an RSR environment
	Recovering a database with a nonstandard image copy in an RSR environment

	Chapter 27. Database backout
	Dynamic backout
	Dynamic backouts and commit points
	Dynamic backout in batch

	Database batch backout
	When to use the Batch Backout utility
	System failure during backout

	DL/I I/O errors during backout
	Errors during dynamic backout
	Recovering from errors during dynamic backout
	Errors during batch backout
	Errors on log during batch backout
	Errors during emergency restart backout

	Chapter 28. Monitoring databases
	IMS Monitor
	Monitoring Fast Path systems
	Fast Path log analysis utility
	Fast Path log reduction
	Fast Path transaction timings
	Monitored events for Fast Path
	Selecting transactions

	Interpreting Fast Path analysis reports

	Chapter 29. Tuning databases
	Reorganizing the database
	When you should reorganize a database
	Reorganizing databases offline
	Protecting your database during an offline reorganization
	Reorganization utilities
	Partial offline reorganization
	Offline reorganization using UCF
	Offline reorganization by using the reorganization utilities
	HISAM Reorganization Unload utility (DFSURUL0)
	HISAM Reorganization Reload utility (DFSURRL0)
	HD Reorganization Unload utility (DFSURGU0)
	HD Reorganization Reload utility (DFSURGL0)
	Database Prereorganization utility (DFSURPR0)
	Database Scan utility (DFSURGS0)
	Database Prefix Resolution utility (DFSURG10)
	Database Prefix Update utility (DFSURGP0)
	Using HISAM unload and reload utilities for secondary indexing operations
	Utility Control Facility (DFSUCF00)
	Database Surveyor utility (DFSPRSUR)
	Partial Database Reorganization utility (DFSPRCT1)
	RSR and the database reorganization utilities

	Reorganizing HISAM, HD, and index databases offline
	Reorganizing a HISAM database (no secondary indexes)
	Reorganizing an HDAM or HIDAM database (no logical relationships or secondary indexes)
	Reorganizing a primary or secondary index

	Reorganizing HALDB databases
	HALDB offline reorganization
	Overview of HALDB offline reorganization
	Options for offline reorganization of HALDB databases
	Unloading HALDB partitions and databases for offline reorganization
	Reallocating HALDB database data sets for offline reorganization
	Reloading HALDB partitions and databases for offline reorganization
	Reorganizing HALDB partitioned secondary index databases

	HALDB online reorganization
	The initialization phase for HALDB Online Reorganization
	The copying phase for HALDB Online Reorganization
	The termination phase for HALDB Online Reorganization
	Restrictions for HALDB Online Reorganization
	Data set naming conventions for HALDB Online Reorganization
	Output data set requirements for HALDB Online Reorganization
	Starting HALDB Online Reorganization
	Monitoring HALDB Online Reorganization
	Modifying and tuning HALDB Online Reorganization
	Stopping HALDB Online Reorganization
	How a HALDB Online Reorganization impacts IMS logging
	Controlling the overall system impact of a HALDB Online Reorganization
	IMS restart and XRF processing for HALDB Online Reorganization
	IMS restart and Fast Database Recovery processing for HALDB Online Reorganization
	IMS Remote Site Recovery processing for HALDB Online Reorganization
	Locking impacts of HALDB Online Reorganization
	Using IMS utilities with HALDB Online Reorganization
	Recovery for HALDB Online Reorganization
	Offline Reorganizations after HALDB Online Reorganizations
	Activating sequential buffering to improve the performance of HALDB Online Reorganization

	The HALDB self-healing pointer process
	How the self-healing pointer process works
	Finding target segments
	Healing pointers
	Performance of the self-healing process

	Changing the hierarchical structure of database records
	Changing the sequence of segment types
	Combining segments
	Changing the hierarchical structure of a HALDB database

	Changing direct-access storage devices
	Tuning OSAM sequential buffering
	Example of a well-organized database
	Example of a badly organized database
	Ensuring a well-organized database

	Adjusting HDAM and PHDAM options
	Adjusting buffers
	Overview of dynamic database buffer pools
	VSAM buffers
	Monitoring VSAM buffers
	Options for improving VSAM buffer performance

	OSAM buffers
	Adjusting OSAM and VSAM database buffers
	Adjusting OSAM and VSAM database buffers in DFSVSMxx
	Adjusting OSAM database buffers dynamically
	Adjusting VSAM database buffers dynamically

	Usage data for OSAM sequential buffering
	Adjusting sequential buffers

	Adjusting VSAM options
	Adjusting VSAM options specified in the OPTIONS control statement
	Adjusting VSAM options specified in the Access Method Services DEFINE CLUSTER command

	Adjusting OSAM options
	Changing the amount of space allocated
	Changing operating system access methods
	Tuning Fast Path systems
	Transaction volume to a particular Fast Path application program
	DEDB structure considerations
	Usage of buffers from a Fast Path buffer pool
	Dynamic definition and allocation of Fast Path buffer pools
	Manual definition of Fast Path buffer pools

	Contention for DEDB control interval (CI) resources
	Exhaustion of DEDB DASD space
	Utilization of available real storage
	Synchronization point processing and physical logging
	Contention for output threads
	Overhead resulting from reprocessing
	Dispatching priority of processor-dominant and I/O-dominant tasks
	DASD contention due to I/O on DEDBs
	Maintaining read performance for multiple area data sets
	Resource locking considerations with block-level data sharing
	Resource name hash routine

	Chapter 30. Modifying databases
	Modifying record segments
	Adding segment types
	Unloading and reloading using the reorganization utilities
	Without unloading or reloading
	Using your own unload and reload program

	Deleting segment types
	Moving segment types
	Changing segment size
	Adding or converting to variable-length segments
	Method 1. Converting segments or a database
	Method 2. Converting segments or a database

	Changing data in a segment (except for data at the end of a segment)
	Changing the position of data in a segment
	Changing the name of a segment

	Adding logical relationships
	Examples of adding logical relationships
	Example 1. DBX exists, DBY is to be added
	Example 2. DBX and DBY exist, DBZ is to be added
	Example 3. DBX and DBY exist, DBZ is to be added
	Example 4. DBX and DBY exist, DBZ is to be added
	Example 5. DBX exists, DBY is to be added
	Example 6. DBX and DBY exist, DBZ is to be added
	Example 7. DBX and DBY exist, DBZ is to be added
	Example 8. DBX and DBY exist, DBZ is to be added
	Example 9. DBY exists, DBZ is to be added
	Example 10. DBY exists, DBZ is to be added
	Example 11. DBX and DBY exist, DBZ is to be added
	Example 12. DBX and DBY exist, DBZ is to be added
	Example 13. DBX and DBY exist, segment Y and DBZ are to be added

	Altering IMS logical relationships
	Some restrictions on modifying existing logical relationships
	Example 1: changing from bidirectional virtual to bidirectional physical pairing
	Example 2: changing the location of the real logical child in a bidirectional logical relationship

	Summary on use of utilities when adding logical relationships

	Converting a logical parent concatenated key from virtual to physical or physical to virtual
	Altering IMS indexes
	Adding a secondary index to a full-function database
	Adding a secondary index to a new primary DEDB
	Adding a secondary index to a DEDB
	Dropping an index

	Changing the number of data set groups
	Example flow for simple HD databases
	Example flow for modifying HISAM databases with the reorganization utilities
	Example flow for HD databases with logical relationships or secondary indexes

	Converting to the Segment Edit/Compression exit routine
	Converting databases for Data Capture exit routines and Asynchronous Data Capture
	Modifying online databases
	Altering the definition of an online HALDB database
	Configuration requirements for altering an online HALDB database
	Steps for altering an online HALDB database
	ACB library and HALDB alter
	Online change and HALDB alter
	Modifying block or CI sizes with HALDB alter
	Online reorganization processing when the ALTER option is specified
	HALDB alter and offline reorganization
	Altering shared HALDB databases
	HALDB alter and batch processing
	Querying the status of ALTER processing for HALDBs
	Stopping alter processing before completion
	Altering a HALDB database that has logical relationships
	Altering a HALDB database that has a secondary index

	Altering the definition of an online DEDB database with the DEDB Alter utility
	Altering the size attributes of an active DEDB area with the DEDB Alter utility
	Changing a randomizer when altering an active DEDB area with the DEDB Alter utility and IMS generation utilities
	Replacing an active DEDB database randomizer online with the DEDB Alter utility

	Changing databases dynamically in online systems
	Changing database attributes dynamically in an online IMS system
	Removing databases dynamically from an online IMS system

	Activating database changes by using the online change function
	Modifying ACB library members online
	The online change function, DEDBs, and Availability of IFP and MPP Regions
	Online change and DEDB randomizer and exit routines
	Making online changes at the DEDB and area level

	Extending DEDB independent overflow online
	Modifying HALDB databases
	Overview of modifying HALDB databases
	The scope of HALDB database modifications
	Record distribution and partition boundaries in HALDB databases
	Partition definition control blocks and partition definitions in the RECON data set
	How IMS assigns partition ID numbers
	Automatic update of HALDB secondary index and logical relationship pointers
	Online change and HALDB databases

	Changing the high key of a partition
	Adding partitions to an existing HALDB database
	Adding a partition to a HALDB database that uses high key partition selection
	Adding a partition that defines a new highest high key
	Adding a partition to a HALDB database that uses a partition selection exit routine

	Disabling and enabling HALDB partitions
	About disabled partitions
	Disabling HALDB partitions
	About enabling partitions
	Enabling HALDB partitions
	Recovering HALDB databases when enabling partitions

	Deleting partitions from an existing HALDB database
	Deleting a partition from a HALDB database that uses high-key partitioning
	Deleting the partition with the lowest key and all of its records
	Considerations for deleting a partition from a HALDB database that uses a secondary index
	Deleting a partition from a HALDB database that uses a partition selection exit routine
	Restoring deleted HALDB partitions

	Changing the name of a HALDB partition
	Modifying the number of root anchor points in a PHDAM partition
	Modifications to HALDB record segments
	Modifying HALDB partition data sets
	Changing HALDB data set name prefixes
	Changing the free space parameters for a partition data set
	Changing the OSAM block size for a HALDB database data set
	Changing the VSAM CI size for a HALDB database data set

	The maximum size of OSAM data sets and HALDB databases
	Defining the maximum size of OSAM data sets for a new HALDB database
	Changing the maximum OSAM data set size for a HALDB from 4 GB to 8 GB
	Changing the maximum OSAM data set size for a HALDB from 8 GB to 4 GB

	Exit routine modifications and HALDB databases
	Adding or changing a HALDB partition selection exit routine
	Changing the randomizing module or the randomization parameters of a PHDAM partition

	Adding a secondary index to a HALDB database
	Modifying a HALDB partitioned secondary index

	Chapter 31. Converting database types
	Converting a database from HISAM to HIDAM
	Converting a database from HISAM to HDAM
	Converting a database from HIDAM to HISAM
	Converting a database from HIDAM to HDAM
	Converting a database from HDAM to HISAM
	Converting a database from HDAM to HIDAM
	Converting HDAM and HIDAM databases to HALDB
	Parallel unload for migration to HALDB
	Backing up existing database information
	Converting simple HDAM or HIDAM databases to HALDB PHDAM or PHIDAM
	Unloading the existing database
	Deleting database information from the RECON data sets
	Defining HALDB database DBD statements
	Registering the HALDB master database with DBRC
	Defining the partitions to DBRC
	Allocating database data sets
	Initializing the partitions
	Loading the database as a HALDB database
	Image copying the database data sets
	Cleaning up DFSMDA members and HIDAM primary index DBDs

	Converting HDAM or HIDAM databases with secondary indexes to HALDB
	Unloading the existing database
	Sorting the output of the HD Reorganization Unload utility
	Deleting database information from the RECON data sets
	Defining the DBD statements for a HALDB database indexed by a PSINDEX
	Defining DBD statements for the PSINDEX
	Registering the indexed HALDB master database with DBRC
	Defining the partitions of the indexed database to DBRC
	Registering the PSINDEX HALDB master database with DBRC
	Defining the partitions of the PSINDEX database to DBRC
	Allocating the indexed database data sets
	Allocating PSINDEX VSAM KSDS data sets
	Initializing the partitions
	Selecting an ILDS update method
	Loading the indexed database and its secondary indexes
	Creating image copies
	Cleaning up DFSMDA members and HIDAM primary index DBDs after converting to PSINDEX

	Converting logically related HDAM or HIDAM databases to HALDB
	Unloading the existing database
	Defining DBD statements for logically related HALDB databases
	Deleting the database information from the RECON data set
	Registering each HALDB master database with DBRC
	Defining the partitions to DBRC
	Allocating logically related database data sets
	Initializing the partitions
	Selecting an ILDS update method
	Loading each database as a HALDB database
	Creating image copies
	Cleaning up DFSMDA members and HIDAM primary index DBDs

	Changing the database name when converting a simple database to HALDB
	Restoring a non-HALDB database after conversion
	Understanding the requirements of fallback
	Restoring the database before updates are made
	Restoring the database after updates are made
	Restoring a secondary index database
	Restoring a database that uses logical relationships

	Converting databases to DEDB

	Part 6. Appendixes
	Notices
	Programming interface information
	Trademarks
	Terms and conditions for product documentation
	IBM Online Privacy Statement

	Bibliography
	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

