

MVS WORKLOAD MANAGER VELOCITY GOALS: WHAT
YOU DON'T KNOW CAN HURT YOU

John Arwe

IBM Corporation
522 South Road

Poughkeepsie, NY 12601-5400

Abstract

One of the goal types introduced with the MVS Workload Manager (WLM) in MVS/ESA
SP5.1.0 was execution velocity. During its brief lifetime this goal type has bemused and
befuddled performance analysts and consultants alike more than any other concept intro-
duced by WLM. This paper will examine the definition of execution velocity, the practical
implications of its definition, factors which influence its applicability to managing different
types of work, how to use it more safely, and the possible effects of future changes.

Trademarks and Notices

CICS, IMS, MVS/ESA, MVS/SP, RMF, are trademarks of the International Business Machines Corpo-
ration. DB2 and IBM are registered trademarks of the International Business Machines Corporation. CATIA
is a registered trademark of Dassault Systemes. The information contained in this paper has not been submitted to
any formal IBM test and is distributed on an "as is" basis without any warranty either expressed or implied.
The use of this information or the implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the customer's operational environment.

 Introduction

Why are WLM execution velocity goals confusing?
Why do they tend to violate Rankin's "principle of
least surprise" in many people's eyes? The simple
answer is velocity goals confuse because they do not
measure reality; rather they are an imperfect way to
map reality to an abstract number. Contrast this with
other WLM goal types:

¹ Response time goals use elapsed time, an objec-
tively measurable metric commonly used to under-
stand on-line performance.

¹ System goals use a fixed set of controls, time-
based metrics are not used to assess progress.

¹ Discretionary goals are a hybrid, using fixed dis-
patching priority controls but variable storage and
MPL controls that are changed based on system
throughput.

Execution velocity1 is an abstract mathematical
description with no objectively measurable metric.

Definition of Execution
Velocity

WLM's execution velocity is defined as a quotient of
various sampled states:

CPU Using
CPU Using + Delays Managed by WLM

which can be restated as

CPU Using
CPU Using + CPU Delay

+ Paging Delays + Swapping and MPL Delays

This mathematical definition has a number of impli-
cations which need to be examined. The states are
based on sampling of work by WLM at fixed intervals,
so the most obvious weakness of velocity is that it
relies on sampling rather than measured results. Sam-
pling is a well-accepted compromise of precision
versus overhead when precise measurement of the
quantities involved would significantly affect the state

of the system. Sampling is useful as long as the
sampled states accurately reflect the actual behavior of
the work. Certainly in MVS, while everyone would
like to measure quantities like CPU queueing delay,
the cost of doing so in the dispatcher would be prohib-
itive.

Not all state samples are included in the velocity cal-
culation. Since I/O delays are not managed by WLM,
neither I/O using nor I/O delay samples are considered
in velocity. Likewise other potentially significant
states such as enqueue contention, database lock con-
tention, tape mounts, HSM recalls, and time waiting
for initiation do not influence velocity and are not
reported in the SMF type 72 records although some of
them are reported in other SMF records. Idle state
samples are separately reported in the SMF type 72
records in theIDLE category along with other major
using/delay states. Non-idle state samples for delays
not managed by WLM are collectively reported in the
SMF type 72 records in the OTHER category. For
many traditional workloads, delays such as I/O are the
primary delay reasons andOTHER state samples can
comprise the majority of the delays. It is not unusual
to see 60% OTHER delay for second period TSO due
primarily to I/O waits.

Factors Affecting Execution
Velocity

All Samples are Not Created
Equal

Most sampled states included in velocity calculations
have fairly intuitive definitions, falling into the broad
categories of CPU, storage, and swapping. An impor-
tant distinction amongst the sample types is their
cardinality. CPU using samples, CPU delay samples,
and paging delay samples are all counted per
dispatchable unit, i.e. per task or service request block
(SRB). OTHER, IDLE, and swapping-related delays are
counted per address space,2 regardless of the number
of ready dispatchable units in the address space.

The difference in cardinality amongst the various
sample types suggests a number of effects on calcu-

1 Execution velocity is abbreviated to velocity hereafter.

2 "Address space" should be read to mean "address space or enclave" wherever CPU or paging issues are concerned.

lated velocity and on the overall behavior of the WLM
policy adjustment process by which resource allo-
cations are changed to meet the objectives of the
active service policy while optimizing system
throughput.

First, and frequently overlooked: a single address
space, in a single pass by the state sampler, can accu-
mulate more than one state sample. This is different
from releases before MVS/ESA SP 5, where the RMF
state sampler recorded one state sample per address
space per sampling interval. It means among other
things that, because it takes into account multitasking,
the samples are more likely to accurately reflect the
state of the system. An unfortunate side effect is that
there is no way to correlate the number of samples and
the transaction response time once multitasking occurs.

Second, WLM will tend to fix problems for
swapped-in work before adding more work to the
multiprogramming set for a given service class period
regardless of the goal type used. Swapped-in work
has the opportunity to record one CPU/paging sample
per dispatchable unit, whereas swapped-out work can
record only one state sample per address space. Hence
CPU and paging samples will tend to dominate over
swap and MPL delay samples when WLM policy
adjustment uses the number of delay samples to select
the resource which a service class period most needs.
If a service class period consists primarily of non-
swappable work, there are no swapping or MPL delay
samples so CPU and storage are the only resources
managed by WLM which can reduce delays for the
service class period.

Third, the observed velocities of multitasking address
spaces can be sensitive to the number of CPUs in use
by MVS. At equal CPU utilizations, systems with dif-
ferent numbers of CPUs running heavy multitaskers
like DB2 will have very different CPU queue lengths.
Probability theory states that with a CPU utilization of
90%, at any given instant on a machine with one CPU
there is a 90% chance that all CPUs are busy (and
hence a 90% chance that newly ready work will be
queued). At the same utilization on an otherwise iden-
tical machine with five CPUs, the chance that all
CPUs are busy is (.90)5 or 59% if the state of each
CPU is assumed to be independent. The table below

shows some observed values running the DB2 Large
System Performance Evaluation (LSPR) workload on
the same processor family with the DB2 address
spaces3 running in service class SYSSTC.

Amount of Work Contributing
Samples

Remembering again that velocities are calculated for
service class periods, the number of sampled address
spaces in a service class period with a velocity goal
will influence the number of state samples collected
per sampling interval, and they may also influence the
values of the samples themselves. Periods with few
work units will contribute correspondingly few state
samples per sampling interval, and WLM will use
more historical data to achieve a statistically signif-
icant sample. More importantly with respect to
velocity goals in particular though, is that periods with
a large number of work units compared to the number
of CPUs will have lower achievable velocities due to
CPU queueing. This is very similar to the DB2 sce-
nario discussed earlier, with multiple address spaces
replacing the multitasking in the previous discussion.
A velocity goal of 50 simply will not be achievable
with 100 active IMS Message Processing Regions
(MPRs) competing for the CPU. Typical achieved
velocities with this many active MPRs are between 0
and 10.

Unmanaged Delays are Ignored

The exclusion of IDLE samples from velocity is fairly
obvious: if an address space or enclave is not doing
anything, it is neither using nor delayed. WLM cannot
make work become less idle since the duration of the
idle time is dependent upon factors outside the system.

Table 1. n-way affect on DB2 velocity

Processor Model 9021- 711 952

Number of CPUs 1 5

DB2 achieved velocity 13.3 74.9

SYSSTC achieved velocity 17.4 74.7

CPU Busy % 89.75 88.60

3 In many places individual address spaces are used as examples because they provide a common frame of reference, but this
does not imply that WLM calculates actual velocities for each address space. WLM calculates velocities for service class
periods with velocity goals only.

Note that other WLM goal types do not intend to con-
sider idle time either: transaction response times are
intended to ignore idle time, and system goals do not
consider elapsed time at all. Transactional work
whose response time does include idle time, such as
CICS conversational transactions and CATIA trans-
actions, have proved difficult to manage for this very
reason. Percentile response time goals are a partial
remedy, in that they allow the response times which
include large amounts of idle time to be ignored.

There is a pragmatic reason for the exclusion of OTHER
samples from velocity: OTHER samples consist par-
tially of IDLE states that WLM's state sampler does not
or cannot detect. Contrast this with response time
goals however, where the elapsed time that corre-
sponds to OTHER samples is included in the response
time. Thus OTHER delays do affect WLM's decision-
making (specifically the actual vs. goal comparison)
for response time goals but the same delays do not
affect velocity goals. In resource-constrained environ-
ments, service class periods with largeOTHER time that
are managed using velocity goals will exhibit perform-
ance indices (PIs) that are more variable than other

goal types since the work is effectively being managed
on a subset of its total delays. The performance index
is a comparison of the goal for a service class to its
actual achieved response time or velocity. Any change
in the subset of delays used to calculate velocity will
have a disproportionate effect on periods with velocity
goals. For example, imagine a period just meeting its
response time goal and whose time is equally divided
among CPU using, CPU delay, and I/O delay. Dou-
bling the CPU delay would cause it to miss a response
time goal by 33%, while it would miss a velocity goal
by 50%, as shown in Figure 1 on page 5. Another
consequence of this treatment is that as WLM is
enhanced to manage additional delays and resources,
the corresponding state samples will move from OTHER
to the new delay states causing observed velocities to
change and thereby changing resource allocation deci-
sions. This migration aspect should not be overlooked
when deciding amongst the various goal types. Like
storage isolation controls in the past, on-going man-
agement of velocity goals is to be expected. Other
goal types should be much less susceptible to this phe-
nomenon.

Response time goal:
Velocity goal:

3x
50

Response time actual:
Response time goal PI:

Velocity actual:
Velocity goal PI:

Response time actual:
Response time goal PI:

Velocity actual:
Velocity goal PI:

CPU Using I/O Delay CPU Delay

x x x

xxx

3x
3x/3x = 1.00

x/2x * 100 = 50
50/50 = 1.00

4x
4x/3x = 1.33

x/3x * 100 = 33
50/33 = 1.51

Before

After

Figure 1. Effects of Delay Changes on Performance Indices

Why are there Always CPU Delay
Samples?

People monitoring MVS performance have often asked
why MVS/ESA SP 5 almost always shows CPU delay
samples, even for their most important work. The
answer is reduced preemptionand it has been around
for years. The change in MVS/ESA SP 5 CPU sam-
pling from single state to multistate has made delays
due to reduced preemption more visible than in the
past.

Simply put, MVS usually avoids interrupting executing
work to perform a work search in the instant after new
work becomes ready to execute. Rather it relies on the
normal behavior of work to release the CPU volun-
tarily, and backs this up with timed preemptions. In
either case, a work search is eventually done and if the
newly-ready work is of high enough dispatching pri-
ority it is run, otherwise it remains queued. This
mechanism avoids a fruitless work search when the

newly-ready work is of equal or lower dispatching pri-
ority than all currently executing work. When the
reverse is true and the newly-ready work has a higher
dispatching priority than currently executing work,
deferring the interrupt often allows the executing work
to progress to a voluntary wait. Allowing executing
work to give up control voluntarily saves a work
search and context switch that otherwise would have
been required to redispatch the interrupted work after
the higher priority work had run, making more effec-
tive use of the processor cache at the cost of delaying
the higher priority work for a short time. For a more
detailed treatment of reduced preemption and a com-
parison to its predecessor, see [Pierce].

When the WLM state sampler finds a ready
dispatchable unit not running on any CPU, it records a
CPU delay sample. If the delayed dispatchable unit
has a dispatching priority higher than currently exe-
cuting work, it is being delayed by reduced pre-
emption. Thus the presence of a small number of
CPU delay samples is part of normal MVS behavior;

the sampler does not distinguish between delays due to
reduced preemption and those due to ordinary CPU
queueing. Since some CPU delay samples are to be
expected for all work, this means that achieved veloci-
ties will rarely reach 100%. When 100% is reached, it
is more likely that the sampler did not observe work
waiting than it is that the work actually did not enter a
wait.

The effects described above will also vary with the
mean time to wait of the work being sampled. If the
dispatching priority is held constant, work with a low
mean time to wait is more likely to be delayed by
reduced preemption because it enters the CPU queue
more often. Work with a high mean time to wait will
monopolize the CPU within MVS's limits, and reduced
preemption will not delay executing work.

Since it becomes difficult to achieve velocities
consistenly above 90 due to reduced preemption,
velocity goals in that range should be used sparingly to
avoid forcing WLM to attempt to address delays which
in reality cannot be removed. Such goals tend to be
achievable however with complex DB2 queries, scien-
tific batch, and very CPU-intensive work which gener-
ally exhibits a relatively long mean time to wait.

Inherently Variable Work

Observed velocities for some work will vary consider-
ably more than for other work. Why is this? Most
often it is due to the dispatching behavior of the work
involved, involving either a low mean time to wait as
discussed above and/or infrequent periods where the
work is ready to execute. In the definition of velocity
the idle state and unmanaged delays are ignored.
Work such as VTAM or IRLM that is often idle compared
with a production CICS region generates fewer state
samples used in the velocity calculation per sampling
interval, forcing older historical data to be used in
building a statistically representative profile of the
work. Let us use VTAM as an example to see why.

In goal mode WLM will sample the state of each
address space and enclave every quarter second.
Assuming a 15-minute RMF interval and thatVTAM is
in the IDLE or OTHER states 98% of the time, a total of
72 samples will be statistically available for the
velocity calculation.

15 Minutes

Interval
× 60 Seconds

Minute
×

4 Samples
Second

=
3600 Samples

Interval

.02×
3600Samples

Interval
=

72 Samples Used in Velocity
Interval

Since this work has a low mean time to wait and does
not consume much CPU per dispatch, the state sampler
is much more likely to find the work waiting for the
CPU than executing. Assuming 100 microseconds of
CPU is consumed per dispatch and that the average
CPU queue time is 1.9 milliseconds, 95% of the time
when VTAM has ready work it would be seen as
delayed for CPU by the state sampler.

.95×
72 Velocity Samples

Interval
=

68.4CPU Delay Samples
Interval

If 68.4 is taken as 68, the calculated velocity will be
5.555:

4 CPU Using Samples
4 CPU Using Samples+ 68 CPU Delay Samples

× 100

which after truncation will be 5.0. If 68.4 is taken as
69, the calculated velocity after truncation will be
4.1666:

3 CPU Using Samples
3 CPU Using Samples+ 69 CPU Delay Samples

× 100

which after truncation will be 4.0. Notice that a single
state sample's difference skews the result 1.3%. Add
in the difference between the velocity reported by
RMF over an n-minute interval and the value com-
puted by WLM each 10 seconds and considerable vari-
ation is observed. The graph below was built using
data from SMF type 72 records and SMF type 99
records running a TPNS TSO workload. VTAM was
classified to a service class with a velocity goal of 70,
it was the only address space in the service class, and
was at the highest importance running work. The cor-
responding achieved velocity from the SMF type 72
record was 9.0 which yields a performance index of

70.0Goal
9.0Actual

= 7.77

after truncation. Note that the performance index in
the SMF type 99 records is scaled by 100; this scaling
factor has been removed in the graph but not in the
tables which follow.

14:08:57
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
17

18

14:12:12 14:15:41

Policy Adjustment Interval

W6213TA6 VEL70 (VTAM) Performance Indices

10-second
Performance
Index

14:19:01 14:22:36 14:26:04

Figure 2. SMF99 Performance Index of VTAM Over Time. Constrast the variability of the actual 10-second performance
indices calculated by WLM with the RMF average of 7.77 for the measurement.

TS PI CPUUD AUXDELAY MPLSWAP IDLE OTHER

14:12:12 125 311 1 0 0 29
14:12:22 125 310 1 0 0 29
14:12:32 137 320 37 0 0 29
14:12:42 179 319 151 0 0 29
14:12:53 205 325 229 0 0 29
14:13:03 218 325 269 0 0 29
14:13:13 241 325 327 0 0 29
14:13:23 241 328 326 0 0 29
14:13:34 233 342 314 0 0 29
14:13:44 233 334 308 0 0 29
14:13:54 233 334 307 0 0 29
14:14:04 233 340 309 0 0 29
14:14:14 233 363 308 0 0 29
14:14:25 233 350 308 0 0 29
14:14:35 233 350 308 0 0 29
14:14:45 233 350 310 0 0 29
14:14:55 233 358 315 0 0 29
14:15:06 233 356 312 0 0 29
14:15:16 233 357 314 0 0 29
14:15:26 500 148 402 0 0 0
14:15:41 1750 49 519 0 0 0
14:15:47 1750 49 546 0 0 0
14:15:57 700 148 650 0 0 0
14:16:07 700 148 641 0 0 0
14:16:17 700 148 610 0 0 0
14:16:28 777 148 686 0 0 0
14:16:38 777 150 729 0 0 0
14:16:48 777 149 738 0 0 0
14:16:59 700 171 755 0 0 0
14:17:09 777 160 734 0 0 0
14:17:19 700 164 744 0 0 0
14:17:29 700 170 739 0 0 0
14:17:39 700 174 745 0 0 0
14:17:50 700 172 760 0 0 0
14:18:00 700 91 486 0 0 0

Figure 3. SMF99 Delay/Using Sample Data for VTAM. Do not be alarmed at the large number of auxiliary storage delay
samples for VTAM. The measurement used was designed to recreate the conditions described by OW20486 which
involved heavy paging to auxiliary storage. The PI column is the performance index recorded in the SMF type 99
records at the end of each 10-second policy adjustment interval and is shown in Figure 2. This data demonstrates that
RMF interval averages are averages, and do not necessarily reflect the data SRM is acting upon each policy adjust-
ment interval. The RMF interval performance index of 9.0 is quite different from the performance indices computed
by SRM which range from 1.25 to 17.5.

TS CPUUD AUXDELAY MPLSWAP IDLE OTHER CPUU10 CPUD10

9:11:51 122 0 0 8136 1 0 0
9:12:01 122 0 0 8175 1 0 0
9:12:12 122 0 0 8217 1 0 0
9:12:22 122 0 0 8258 1 0 0
9:12:32 122 0 0 8299 1 0 0
9:12:42 122 0 0 8340 1 0 0
9:12:53 126 0 0 8379 1 1 1
9:13:03 126 0 0 8419 1 1 0
9:13:13 125 0 0 8461 1 0 0
9:13:23 125 0 0 8502 1 0 0
9:13:33 125 0 0 8543 1 0 0
9:13:44 125 0 0 8584 1 0 0
9:13:54 127 0 0 8623 1 1 0
9:14:04 126 0 0 8665 1 0 0
9:14:14 126 0 0 8706 1 0 0
9:14:25 104 0 0 4862 0 0 0
9:14:35 104 0 0 4903 0 0 0
9:14:45 104 0 0 4944 0 0 0
9:14:55 104 0 0 4985 0 0 0
9:15:06 104 0 0 5026 0 0 0
9:15:16 106 0 0 5065 0 1 0 ←
9:15:26 107 0 0 5105 0 0 1
9:15:36 106 0 0 5147 0 0 0
9:15:47 106 0 0 5186 0 0 0
9:15:57 110 0 0 5226 0 1 1
9:16:07 110 0 0 5194 0 1 0
 0 0 0

Figure 4. Typical State Sample Profile of VTAM. This data is from a less constrained measurement of a TSO workload, where
paging to auxiliary storage is not occuring. This sample profile is more typical for VTAM on normal systems. The
CPUU10 and CPUD10 are the CPU using and delay samples collected over the preceding policy adjustment interval.
Note that historical data dominates the performance index when few samples used in the velocity calculation are
collected per policy adjustment interval. For example, at 09:15:16 105 of the 106 samples used to calculate velocity
are historical data. This is more likely to happen when few address spaces are grouped in a service class period.

--------------------- TS=14:08:57 -------------------------------

SRVCLASS PERIOD PI WHATGOAL GOALVAL IMP BDP

TSOCLASS 1 36 Short RT 300 2 247
TSOCLASS 2 15 Short RT 1500 2 247
TSOCLASS 3 82 Short RT 5000 3 247
TSOEVEN 1 40 Short RT 300 2 251
TSOEVEN 2 211 Short RT 2500 2 251
TSOEVEN 3 96 Short RT 5000 2 249
TSOODD 1 40 Short RT 300 2 251
TSOODD 2 180 Short RT 2500 2 251
TSOODD 3 98 Short RT 5000 2 251
VEL70 1 125 Velocity 70 2 249 ← VTAM ran here
VEL80 1 307 Velocity 80 1 253
VEL90 1 93 Velocity 90 2 253
$SRMBEST 1 0 System 0 0 255
$SRMGOOD 1 0 System 0 0 254
$SRMDI00 1 81 Disc 0 6 192

--------------------- TS=14:16:48 --------------------------------

SRVCLASS PERIOD PI WHATGOAL GOALVAL IMP BDP

TSOCLASS 1 413 Short RT 300 2 249
TSOCLASS 2 182 Short RT 1500 2 245
TSOCLASS 3 1200 Short RT 5000 3 237
TSOEVEN 1 2700 Short RT 300 2 247
TSOEVEN 2 141 Short RT 2500 2 243
TSOEVEN 3 206 Short RT 5000 2 239
TSOODD 1 1800 Short RT 300 2 245
TSOODD 2 134 Short RT 2500 2 241
TSOODD 3 163 Short RT 5000 2 241
VEL70 1 777 Velocity 70 2 253
VEL80 1 320 Velocity 80 1 253
VEL90 1 93 Velocity 90 2 253
V50TOOL 1 294 Velocity 50 2 253
$SRMBEST 1 0 System 0 0 255
$SRMGOOD 1 0 System 0 0 254
$SRMDI00 1 81 Disc 0 6 192

Figure 5. SMF99 Subtype 2 Record Goal-Related Data. SMF type 99 subtype 2 period records are only written for service
class periods which demanded resources over the previous policy adjustment interval, thus this extract shows all goals
relevant for the measurement. The BDP column is the base dispatching priority of the service class period. VTAM's
dispatching priority started out to be lower than most system programmers would like: below 5 of 9 TSO periods, and
competing with a 6th.

At 14:16:48 VTAM was moved above all of the TSO periods and it remained there for the duration of the measure-
ment, but the presence of historical data from the preceding period of light TSO load helped to delay WLM's response
to its woes for 8 minutes. Had VTAM been classified or defaulted to service classSYSSTC its dispatching priority
would have been above that of TSO from the start and would have remained there.

Using Velocity to Statically Rank
Work

For years system programmers have fought dispatching
priority wars for server address spaces: VTAM above
JES2, CICS TOR (terminal owning region) above CICS
AORs (application owning regions), et cetera. Different
people came to different conclusions about how to
juggle these address spaces so that when one loops the
others are not starved for CPU. What does this have
to do with velocity goals? Those once bitten by
having things in the wrong order tend to latch onto
velocity goals as a way to continue ranking their
server address spaces.This does not work. The
relationship between two different velocity goals
implies nothing deterministic about their relative dis-
patching priorities.

Some of the "A's dispatching priority must be above
B's dispatching priority" rules originated from a loop
in one while both were at the same dispatching pri-
ority. Others came from conflicts between workloads
whose CPU demand conflicted at certain times, and
still others from true client-server relationships where
enough client work exists to degrade or starve the
server if the dispatching priorities are out of order.
The first case has seen some changes in MVS/ESA SP
5. Prior to MVS/ESA SP 5 a looping address space
could prevent other address spaces at the same dis-
patching priority from being dispatched as well as
those with lower dispatching priorities. The only sol-
utions were to rank their dispatching priorities or use
time slicing. In MVS/ESA SP 5 the dispatcher was
changed to implement "fair share" access to the CPU
within a dispatching priority which greatly reduces this
effect, thus allowing the previously incompatible
address spaces to share the same dispatching priority
without fear of one looping address space totally
locking out its priority-mates. The need for this type
of static ranking has lessened, but the old rules remain
in many minds.

When deciding on velocity goals for "loved ones", it is
better to not even bother putting velocity goals on
trusted started tasks which consume relatively little
CPU and are idle much of the time.VTAM and IRLM
are prime examples of such started tasks; put them in
SYSSTC rather than trying to manage them to velocity
goals. Doing so assures them of receiving the excel-
lent CPU access that they require and eliminates the
problem of setting velocity goals for them. Because
they are idle most of the time the observed velocities
for these address spaces tend to vary greatly even with

constant controls. Having WLM attempt to manage
important and highly variable work to a predictable
velocity is not practical.

 Velocity Extremes

Combining the definition of velocity with Murphy's
Law, how far can WLM go? What is the illogical
conclusion of a velocity goal? Since only the subset
of samples where work is not in theIDLE or OTHER
states affects velocity, the danger points are 0% and
100% ready. Work that is never ready is not con-
suming enough resources to worry about, so we are
left with the 100% point to worry about. Jobs or
transactions that become 100% ready are known by
many names: soakers, loopers, and other more colorful
variants. "Looper" probably conveys the meaning
best: 100% CPU appetite. In terms of state samples, a
looper is always in either the CPU using or CPU delay
states. In what ratio are the two states? Its very defi-
nition says that the velocityis the desired ratio, in this
case CPU using to CPU appetite (using plus delay).
In other words, a velocity goal of 50 could be read to
mean "try to run this work at least 50% of the time it
wants to run." For production subsystems this may be
exactly what is desired, but few system administrators
would want last period TSO to have such generous
access to the CPU. One can imagine the implications
of this for a looping transaction. Especially for service
classes containing ad hoc work, this difference
between what may be achievable currently, perhaps
using excess resources, and what WLM should manage
to may be very real. If relatively unimportant work is
over-achieving due to excess resource availability,
there is no reason to use the achieved actual as a goal;
a lower velocity or importance on such a goal allows
WLM to degrade such work when the resources are
needed by other work.

Using Velocity Safely

If velocity goals are so sensitive to various factors,
why use them? Quite simply, response time goals and
discretionary goals are not enough. Since the real
world does have things like subsystem regions which
do not use WLM's transaction management interfaces
and even with WLM-exploiting subsystems some sub-
system work is not done on behalf of a specific trans-
action, a way to manage non-transactional work is
needed that does not rely on response times. Exe-
cution velocity was invented to fill this need and there
are ways to use it without falling into traps.

Use SYSTEM and SYSSTC

The first thing to do is to figure out which work
should just be put into service classes SYSTEM and
SYSSTC and do so. VTAM, JESx, IRLM, and most
system address spaces should fall into one of the
service classes above. Trustworthy production server
regions (CICS TORs, IMSCTL) are also candidates for
SYSSTC as long as they do not present the threat of
starving other work by monopolizing the CPU. No
velocity goals need to be provided for work which is
managed using these service classes.

Combine and Conquer

Due to the variability of velocities, micromanagement
of many different service class periods with only
slightly different velocity goals is not practical. Many
sites find it useful to think in terms of
high/medium/low velocities rather than concentrating
on the numbers. A set of three such service classes
with one period each should cover most work with
velocity goals, perhaps using low=10, medium=30,
high=70. This is nothing magic about these numbers,
they merely provide guidelines for relative magnitude.
If production regions consistently achieve a velocity of
80 or 90, either scale the high velocity goal to meet
the observed value or add a one-period service class
with the observed actual as the goal specifically for the
production regions. The rule to remember is to take
good care of loved ones, and consider undercutting the
achieved velocities as measured in WLM compatibility
mode for less important work to allow WLM some
freedom during demand spikes in the production
regions.

Hedge Your Bets

If untrustworthy work, e.g. potential loopers such as
test regions or ad hoc batch, is given a velocity goal
then use either goal importance or a resource group
maximum to minimize potential damage to competing
work. Lowering the importance of the velocity goal
will prevent loopers from impacting higher importance
work, although it could still cause CPU starvation for
work with discretionary goals. Use a resource group
maximum if lowering the importance is not possible or
if discretionary work needs some protection.

Use Peak Demand to Measure
Achieved Velocities

Do not base velocity goals on observed off-peak
values: remember that the goal will be managed to all
of the time, and peak times are the ones with most
downside potential. The best source of data is your
workload, running in WLM compatibility mode during
a peak period. For the important work, use the
achieved compatibility mode velocity from a peak
period or the highest from a sample of peak periods.
For less important work, use a value below the
achieved compatibility mode velocity so WLM has
room to work when tradeoffs are necessary.

 Conclusion

There are many different factors which affect velocity
goals, what is achievable, and what WLM can effec-
tively manage to. These factors include:

1. The inherent inaccuracy of sampling

2. The cardinality of the different sample types

3. The treatment of OTHER state samples

4. The effects of reduced preemption

5. The dispatching behavior of often-idle server
address spaces

6. Misconceptions about the relationship between
velocity and dispatching priority

7. The implications of the definition of velocity when
applied to looping work

8. Migration implications as new delay types are
moved from OTHER to new managed delay
samples

These factors do not preclude the use of velocity
goals. Rather, they underscore the idea that velocity
goals should be used with care when they are appro-
priate, and should be qualified by an importance or
resource group maximum to reduce the impact on
competing work.

 References
1. [LSPR] “IBM Large System Performance Refer-

ence,” SC28-1187
2. [Pierce] “Dispatching Management in MVS -

TCBs to Enclaves,” Pierce, Bernard R., CMG95

 Acknowledgements

The author wishes to thank the following people for
their constructive review and suggestions for this
paper:

 Ed Berkel
 Steve Grabarits
 Peter Enrico
 Greg Dyck
 Peter Yocom
 Steve Kinder
 Catherine Eilert
 Wayne Morschhauser

