
1

© 2010 IBM Corporation

WLM and Hiperdispatch

Robert Vaupel
STSM z/OS Workload Management

vaupel@de.ibm.com

Version 9a

� Dispatching in z/OS and LPAR
– What is the problem and rationale for Hiperdispatch

� Hiperdispatch Function
– New Terminology for Processors
– What are Processor Shares?
– How can this be observed thru RMF?
– What does z/OS WLM do?
– Special Processors
– User interface

� Hiperdispatch Benefit on z196

This presentation gives and overview of Hiperdispatch how it is integrated in LPAR and z/OS. The
presentation introduces the problem being addressed with Hiperdispatch and explains the new
terminology with it.

2

© 2010 IBM Corporation2

z/OS Workload Manager

Dispatching: z/OS and PR/SM

� Operating system dispatches work to next available logical CP
– Work usually has no affinity to any logical processor

� PR/SM dispatches logical CPs to physical CPs based on weights
– Typically multiple LCPs from different LPARs share the same physical CP
– PR/SM attempts to keep an LCP on a PCP but there is no guarantee for it

On today’s System z environments there are always two dispatching (or work scheduling)
processes:

1. On the z/OS system where the logical processors select the ready TCBs and SRBs
from the dispatcher queue. There is in general 1 dispatcher queue for all regular (or
logical) processors of the system (also additional dispatcher queues for offload
processors (zIIPs and zAAPs). If a system contains many logical processors it is
unpredictable which logical processor will select a ready TCB or SRB. Therefore a
unit of work can be dispatched across all possible logical processors.

2. Within the z/OS Hipervisor. The Hipervisor or PR/SM dispatches logical processors
of the partitions to physical processors. PRE/SM always attempts to dispatch a
logical processor back to the same physical processor or if this is not possible at least
to a physical processor of the same book. But that can’t be guaranteed and therefore
it is also possible that logical processors float across the physical processor
configuration.

The disadvantage of this type of dispatching is that a unit work which was first dispatched
on a logical processor 1 could be dispatched next on a logical processor 15 on a
larger partition. Even if PR/SM achieves that the logical processors will be re-
dispatched on the same physical processor or book it is still possible that the unit
work finds itself on a different physical processor or even different book just because
of the z/OS dispatching process. So there is a high likelihood that it must regain its
cache context either from memory or remote level 2 caches which has an impact on
the execution time of the work and thus an impact on the throughput of the system.

3

© 2010 IBM Corporation3

z/OS Workload Manager

Hiperdispatch: Motivation

� Remarks: Dispatching w/o Hiperdispatch
– PR/SM dispatching attempts to re-dispatch a logical processor on the same physical

processor but can’t guarantee that
– In z/OS all logical processor select work from the same work unit queue

•Therefore it is completely unpredictable where a UoW lands

� Result:
– On a large scale computer this will result in un-wanted access to remote L2 caches
– Thus the environment does not optimal scale

� Cache latency for a z10 system (1, 4, 23, 61 are relative access times)

With System z10 the frequency of the processor became much faster then on any
previous System z generations. As a result the access to memory or Level 2 cache gets
longer in the sense that it requires more cycles where the processor must wait before the
memory context has been retrieved. In addition the higher frequency also puts more
limitations on Level 1 cache because the processor should be able to access information
within 1 cycle of the Level 1 cache. An additional cache was introduced as a first
improvement to this problem. The Level 1.5 cache is a processor only cache which allows
much faster access than the Level 2 cache which is shared between the processors of
the same book.

The graphic above shows the relative access times of a processor to the various cache
structures. Access to the local L2 cache is 23 times more expensive than access to the
Level 1 cache and retrieving information from the remote Level 2 cache is again 3 times
more expensive than retrieving information for from the local L2 cache. As a result the
desire comes up to improve dispatching in order to reduce the potentially required access
to remote L2 cache structures and at the same time to increase the possibility that a unit
of work can find cache context already within the L1 and L1.5 cache structures.

4

© 2010 IBM Corporation4

z/OS Workload Manager

Hiperdispatch: Motivation

� On a z196 there is one more cache level
– Access to L3 which is shared by 4 LCPs is faster than the access to “old” L2 on z10
– But access to L4 (“old” L2 on z10) is worse

� Result:
– Motivation increases to improve the performance of the system

� Cache latency for a z196 system (1, 4, 12, 32, 77 are relative access times)

For z196 the motivation becomes even higher than for z10. Now a another cache
structure has been introduced. The processors of a book are now organized in chips with
an additional cache on the chip. Also the cache structures have been renamed on z196. It
can be observed that the access to the local L4 structure which was the local L2 cache
structure on z10 is now a little more expensive than on z10. At the same time the access
to chip cache structure (L3) is more effective. So now there is even higher motivation to
not only keep dispatches local to a book but also local to a chip.

5

© 2010 IBM Corporation5

z/OS Workload Manager

Hiperdispatch: Motivation …

� Design Objective
– Keep work as much as possible local to a physical processor to optimize

the usage of the processor caches
– Expected Result

• Cache reloads shall occur much less often
• Cache misses and fetches from other books (and chips) should be avoided as

much as possible

� Function: Hiperdispatch
– Interaction between z/OS and PR/SM to optimize work unit and logical

processor placement to physical processors
– Consists of 2 parts

• In z/OS (sometimes referred as Dispatcher Affinity)
� Because it attempts to create a temporary affinity between work and processors

• In PR/SM (sometimes referred as Vertical CPU Management)
� Because it attempts to assign physical processors exclusively to logical processors (as

much as possible)

Based on the previous discussion we can summarize the motivation for introducing
Hiperdispatch as an optimized dispatching on large virtualized systems. Also based on
the previous discussion it can be seen that Hiperdispatch is a function of the LPAR
Hipervisor (PR/SM) and the z/OS operating system because both have to act together to
ensure that dispatching can be optimized.

In the following discussion we will understand why the PR/SM function is named “Vertical
CPU Management”. The idea is to drastically improve the current attempts of PR/SM to
re-dispatch logical processors on the same physical processor. We will also understand
why the z/OS function is named dispatcher affinity. We already saw that it is possible and
not advantageous if Z/OS potentially re-dispatches a units of work on any possible logical
processor.

6

© 2010 IBM Corporation6

z/OS Workload Manager

Hiperdispatch: PR/SM

� Optimize the number of logical processors to the minimum number needed of
physical processors

� Based on the share of the logical partition

� Result
– Form N.M with

• N = number of physical processors which can be used completely by this partition
• M = the fraction of a physical processor which must be used to satisfy the share of the

partition

_of_PPTotal_# i)Share(LPAR PP(LPARi)#

Rj)Weight(LPA

Ri)Weight(LPA
 i)Share(LPAR n

1j

•=

=
∑

=

In order to optimize the access of logical processors to physical processors we have to
determine the share of a partition and we are interested in the number of physical
processors which can be fully used by a partition. The result of this calculation is a share
in physical processors in the form N.M with N being the physical processors which could
be solely used by this partition and M the fraction or remainder of the share.

7

© 2010 IBM Corporation7

z/OS Workload Manager

� Example
– Assignment of logical processors to

physical processors in Hiperdispatch
mode

– LPAR1
• 3 physical processors (High

Processors)
• Share of 50% of the 4th processor

(Medium Processor)
– LPAR2

• 1 physical processor
• share of 50% of the 4th processor

� What about the “un-used” share of
physical processors?

– 1.5 for LPAR1 and 3.5 for LPAR2
• Low Processors (parked = not used)

– If demand exists AND the other
partition does not need its share
1. Medium processors can use up to all of

their physical processors
2. Low processors can be un-parked and

start to use physical processors which
are not needed by other partitions

Hiperdispatch: PR/SM …

0

20

40

60

80

100

PP0 PP1 PP2 PP3 PP4

LPAR1 LPAR2

1.530%1505LPAR2

5500

3.570%3505LPAR1

Share in
PPs

ShareWeightLPsPartition

1

2

In the next step we now try to map this result to the logical processors and we start to
differentiate logical processors:

•Those logical processors which could fully use a physical processor are named High
processors and we assign a physical processor share of 100 to them

•The remainder of the previous calculation is used to define a shared or now called
Medium processor which can use a physical processor only for a limited time

•Finally all the logical processors which have been defined in excess to the partition share
are named Low processors and they do not get a processor share initially.

The example now shows a small system with two partitions LPAR1 and LPAR2. Based
on the partition weights the share of LPAR1 results in 3 High and 1 Medium processor
with a processor share of 50%. For LPAR2 the calculation results in 1 High and 1
Medium processor. Because there are 5 logical processors are defined for both partitions
1 logical processor for LPAR1 and 3 for LPAR2 are treated as low processors. They are
not used initially and placed in a so called park state. As long as both partition have high
demand the assigned processors for LPAR 1 and LPAR2 reflect the share and they are
sufficient for processing. The benefit of the high processor is now that they get a physical
processor assigned and that PR/SM will always re-dispatch them on the same physical
processor.

We now assume that LPAR1 has low demand and LPAR2 has high demand. LPAR2 can
now use more CPU capacity than it is entitled too because of its weight. So the low
processors for LPAR2 must be used. This is done by un-parking the low processors and
PR/SM will then try to dispatch them on physical processors which are not used by
LPAR1. As we can see it is necessary to have a mechanism which parks and unparks the
low processors and also which ensures that they can use physical processors efficiently.

8

© 2010 IBM Corporation8

z/OS Workload Manager

Hiperdispatch: RMF Example for Processor Types

The new state of processors can be easily observed in the RMF CPU Activity Report.

•For High Processors the “SHARE%” is always 100 and the state is also displayed right
to the share number for z/OS V1.11 and above.

•For medium processors the remainder of the calculation is shown.

•For Low processors a “SHARE%” of 0 is depicted. We will see that this only reflects the
share when the processor is parked.

A new column “PARKED” tells the you how long a low processor was parked meaning
not used during the reporting interval.

Another important observation will be that the meaning of MVS BUSY changes with
HIPERDISPATCH=YES. MVS BUSY only reflects how busy the z/OS system was for all
un-parked processors. That means low processors which were in the park state are not
used to determine this value. As a result MVS BUSY will be usually higher than on
systems which ran with HIPERDISPATCH=NO before. It is also worth to mention that the
meaning of LPAR BUSY hasn’t changed and still reflects the usage of all logical
processors. It must be understood that this is meaningful because MVS BUSY reflects
the state from the z/OS perspective and LPAR BUSY is PR/SM view.

9

© 2010 IBM Corporation9

z/OS Workload Manager

Hiperdispatch: Processor Share

� Processor Share: M.N
– Example: 13.94

• 13 High Processors à 100% share
• 1 Medium Processor with 94% share if all lows

are parked
• With 1 low unparked

� Medium: 47% share
� Unparked Low: 47% share

� High Logical Processor
– Always 100% Share
– That means

• Always re-dispatched to its physical processor
whenever it has demand

� Medium and Low Processors
– Divide the share of the medium processors

between them
– That means

• The share decreases per processor when more
low processors become un-parked

� Share of Medium processor is used to “fuel” low processors

Finally we need to understand how PR/SM really manages the logical processors. PR/SM
dispatches logical processors based on their share and how much of the processor share
has been used for a specified time interval. The PR/SM Planning Guide describes
processor shares in detail.

For High processors the share is always 100% and therefore they can always use their
assigned physical processors when needed. The medium processor gets the remaining
share assigned. So for the previous example the remainder is 0.94 which means that the
processor gets a share of 94% assigned. The interesting part now starts when low
processors are unparked. Because they also need a share the share of the medium
processor is divided between the unparked low processors plus the medium processor.
That nmeans if 1 low processor is unparked the low processor and the medium processor
now have a share of 47% each and if another low processor is unparked the share is
31.3% for the medium and unparked low processors each.

As a result we can see that the share of the non-High processors gets reduced with each
unparked low processor. So we still need to ensure that the unparked processors can
really use the physical processor capacity and we can also see that it is not meaningful to
keep low processors unparked but to optimize their usage.

10

© 2010 IBM Corporation10

z/OS Workload Manager

Hiperdispatch: PR/SM Part …

� Optimization for medium share processors
– If M is too small (M < 50%) the number of medium share processors for a

partition is increased by 1 and the number of high share processors is reduced
by 1

•This is done to avoid that the logical processor receives a too small fraction of the
physical processors

– Calculation:

}
2

M1
 M 1;-N{N THEN 0.5 M IF

N.M _of_PPTotal_# i)Share(LPAR PP(LPARi)#

Rj)Weight(LPA

Ri)Weight(LPA
 i)Share(LPAR

NEW

n

1j

+==<

=•=

=
∑

=

Another aspect is what should be done when the remainder of the calculation is too
small? What if the share of the medium processor is already smaller than 50%?
Unparking low processors will now very fast result in processors with too little share. So
an optimization is included which avoids this situation. If the share for the medium
processor is too smnall, smaller than 50%, a high processor is converted to a medium
processor and the share of the former high processor plus the remainder of the original
calculation is divided between the two medium processors. If now a low processor is
unparked the share percentage must be divided by 3 processors and so forth.

11

© 2010 IBM Corporation11

z/OS Workload Manager

z/OS V1R9 SYSTEM ID R71 DATE 01/28/2009 INTERVAL 00.59.753

CONVERTED TO z/OS V1R10 RMF TIME 11.02.00

-CPU 2097 MODEL 716 H/W MODEL E26 SEQUENCE CODE 00000000000A73A2 HIPERDISPATCH=YES

0---CPU--- ---------------- TIME % ---------------- LOG PROC --I/O INTERRUPTS--

NUM TYPE ONLINE LPAR BUSY MVS BUSY PARKED SHARE % RATE % VIA TPI

0 CP 100.00 99.50 100.0 0.00 100.0 29.40 0.00

1 CP 100.00 99.88 100.0 0.00 100.0 18.14 0.00

2 CP 100.00 99.83 100.0 0.00 100.0 31.71 0.00

3 CP 100.00 99.78 100.0 0.00 100.0 16.82 0.00

4 CP 100.00 72.24 100.0 0.00 66.4 0.00 0.00

5 CP 100.00 72.30 100.0 0.00 66.4 0.00 0.00

6 CP 100.00 35.16 100.0 46.14 0.0 0.00 0.00

7 CP 100.00 52.22 100.0 24.06 0.0 0.00 0.00

8 CP 100.00 0.00 ----- 100.00 0.0 0.00 0.00

9 CP 100.00 0.00 ----- 100.00 0.0 0.00 0.00

A CP 100.00 0.00 ----- 100.00 0.0 0.00 0.00

B CP 100.00 0.00 ----- 100.00 0.0 0.00 0.00

C CP 100.00 0.00 ----- 100.00 0.0 0.00 0.00

D CP 100.00 0.00 ----- 100.00 0.0 0.00 0.00

E CP 100.00 0.00 ----- 100.00 0.0 0.00 0.00

F CP 100.00 0.00 ----- 100.00 0.0 0.00 0.00

TOTAL/AVERAGE 39.43 100.0 532.8 96.08 0.00

Hiperdispatch: RMF Report Example

Medium LCPs

Low Un-parked LCPs

The following example shows how unparking of processors works. For this reason we
look at a test scenario for a CEC with two partitions. The RMF CPU Activity Report for the
smaller of the two partitions is shown above. The CEC has 16 physical processors and
for both partitions 16 logical processors have been defined. The smaller partition has 33%
of the share which results in 5 High and 1 Medium processor with 32% share. Based on
the optimization which we just discussed 1 High processor is converted to a medium
processor and therefore the smaller partition now has 4 High processors and 2 medium
processors with 66% share each.

We can also observe from the RMF report that only 2 low processors were unparked
during the reporting interval of 1 minute. And finally that the processors state: HIGH,
MED, and LOW is not printed on this report because it was generated for a z/OS 1.9
system on a reporting system of z/OS 1.10 and the state was added with z/OS 1.11.

12

© 2010 IBM Corporation12

z/OS Workload Manager

Hiperdispatch: Processors and Utilizations
LPAR: R71 LPAR: R72

0

2

4

6

8

10

12

14

16

18

10
:5

6:
02

10
:5

6:
40

10
:5

7:
18

10
:5

7:
56

10
:5

8:
34

10
:5

9:
12

10
:5

9:
50

11
:0

0:
28

11
:0

1:
06

11
:0

1:
44

11
:0

2:
22

11
:0

3:
00

11
:0

3:
38

11
:0

4:
16

11
:0

4:
54

11
:0

5:
32

11
:0

6:
10

11
:0

6:
48

11
:0

7:
26

10
:5

6:
05

10
:5

6:
43

10
:5

7:
21

10
:5

7:
59

10
:5

8:
37

10
:5

9:
15

10
:5

9:
53

11
:0

0:
31

11
:0

1:
09

11
:0

1:
47

11
:0

2:
25

11
:0

3:
03

11
:0

3:
41

11
:0

4:
19

11
:0

4:
57

11
:0

5:
35

11
:0

6:
13

11
:0

6:
51

11
:0

7:
29

[#
]

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

[%
]

High Med UnPk Park MVSBusy CECUtil

Hiperdispatch: Example for Parking and Un-Parking

Weight = 333 � 5.32 PCPs
� 4 High + 2 Medium

Partition has very high demand (red line)

Weight = 667 � 10.67 PCPs
� 10 High + 1 Medium

Partition some demand (80-95% MVS Busy)

The graphic above now shows the SMF 99 information for the test run. The graphic is
shows both partitions R71, the small partition which we just discussed on the left hand
side and R72 the big partition on the right hand side. The test run started at 10:56 until
11:08. For R72 we can observe that based on the partition share 10 logical processors
are treated as High processors and 1 as a medium processor because the share of 67%
is high enough.

The work which runs on the partitions is very different. R71 shows a very high demand.
The MVS BUSY value for R71 is always at 100%. For R72 the demand is not that high.
The red line which depicts the MVS BUSY fluctuates between 75 and 95%. For R71 we
can now also observe that low processors are being unparked. Based on the the demand
of the partition which is always at 100% and the amount of cxapacity which is not used by
R72 R71 unparks between 1 and 3 processors. But we can also observe that no low
processor for R71 is unparked. This is the case if WLM determines that it is not efficient
to use a low processor because there isn’t enough capacity which can be used by the low
processor.

As a result of this test scenario we learned:

•WLM parks and unparks the low processors

•WLM evaluates the park and unpark conditions every 2 seconds

•High demand is required to unpark a low processor. In fact WLM unparks a low
processor when the MVS BUSY is above 95% and sufficient capacity on the system
exists. The parking conditions will be discussed later. But this is also shows why the MVS
BUSY has changed and only considers unparked processors

13

© 2010 IBM Corporation13

z/OS Workload Manager

Hiperdispatch: PR/SM – Annotations

� What if there is only 1 High or 1 Medium share processor?
– The high share processor will be converted to a medium share processor

• So there isn’t really just 1 High Share processor
– A low share processor is always un-parked
– The share of the medium processor is now equally divided between the two

processors
• So it is ensured that the system does not starve because there is just one processor online

� If “low share” processors exist there is also ALWAYS at least one medium
processor
– For example if the previous calculation would end with 2.0 meaning that 2 high

processors exist and no medium AND in addition there is at least one low processor
• One high processor is converted to a medium processor

� This is necessary to ensure that the low processors get some share of the shared processor pool when
they need to be un-parked

At this point we are completed with the PR/SM part of Hiperdispatch. PR/SM determines
the state of the processors whether they are treated as High, Medium or Low processors
and PR/SM ensures that a High processors is always re-dispatched on the same physical
processor. In fact PR/SM determines the full logical processor topology which is
presented to z/OS. z/OS and within z/OS WLM then controls whether a low processor is
in the park or unpark state.

Some final annotations are required for cases where only very few processors exist are
listed above.

14

© 2010 IBM Corporation14

z/OS Workload Manager

Hiperdispatch: PR/SM – Annotations

� PR/SM dispatches logical processors to physical processors in the same
way whether it is HD=YES or HD=NO

– Logical Processors have a “Share per PCP”
• For HD=NO: the share is equal for all LCPs of the same partition
• For HD=YES: High processors always have 100% share and medium and un-parked

low processors use the remaining share together
– For HD=NO

• PR/SM attempts to re-dispatch LCPs on the same PCP or book but can’t guarantee
this

– For HD=YES
• PR/SM always guarantees that vertical high processors are re-dispatched on the

same physical processor

� Mix of HD=YES and HD=NO partitions
– No special treatment

• High processors of HD=YES partitions will be re-dispatched on the same physical
processor

• All other LCPs compete for the shared logical processors
�Shared logical processors are those processors which have no logical high processor

assigned to them or which are not used by their logical high processor

A final remark is necessary about the way PR/SM dispatches processors. As earlier mentioned
PR/SM uses the processor share to deterime the runtime of the logical processor on a physical
processor. This hasn’t changed between HIPERDISPATCH=NO and HIPERDISPATCH=YES.
The only difference is that the share is not equally distributed between the logical processors for
the HIPERDISPATCH=YES case. This also shows that it is possible at any time to run partitions
with HIPERDISPATCH=YES on the same CEC with partitions with HIPERDISPATCH=NO.

15

© 2010 IBM Corporation15

z/OS Workload Manager

Hiperdispatch: PR/SM – Annotations

� LPAR with dedicated processors:
– All processors are high share processors and nodes are created as for shared logical

processors
– Hiperdispatch is efficient too in this case:

• z/OS part – re-dispatch work on a node of physically closely related processors

� Special Processors
– Special processors (zAAPs and zIIPs) have their own processor pools
– PR/SM divides the special processors into the same structure of high, medium and low

share processors as it does with regular CPs
• The mechanism is the same

– PR/SM provides this information also to z/OS

Special processors are assigned separate pools with their own weight definitions. Other
than that the topo0logy information, the state of processors and the way how processors
are parked and unparked are the same for special processors than for regular
processors.

Finally for dedicated processors HIPERDISPATCH=YES is meaningful from a z/OS
perspective as we will see in the following charts

16

© 2010 IBM Corporation16

z/OS Workload Manager

Hiperdispatch: Special Processors

The example on this foil shows an RMF CPU Activity report for a partition with regular
and z/IIP processors. Based on the different weights and different number of processors
two separate pictures of High, Med and Low processors can be observed.

17

© 2010 IBM Corporation17

z/OS Workload Manager

Hiperdispatch: z/OS WLM

� z/OS WLM
– Every 2s
– Tests Hiperdispatch ON and OFF

switch
– Reads logical processor topology from

PR/SM
– Builds affinity nodes
– Parks and un-parks low LCPs based on

processor demand
– Balances units of work to affinity nodes

� z/OS Dispatcher
– Dispatches work on affinity nodes
– Determines whether nodes need help

In the next step we want to take a look at z/OS and WLM. WLM evaluates every 2 second
the state of HIPERDISPATCH, retrieves the topology if necessary, rebuilds its affinity
nodes, parks and unparks low processors and balances the units of work across the
affinity nodes. These steps will be discussed on the following pages.

18

© 2010 IBM Corporation18

z/OS Workload Manager

Hiperdispatch: z/OS

� Dispatcher Nodes
– Nodes are created based on the high-share processors

• Ideally a node has 4 high share processors (target for z10)
• An additional node is created when at least 3 high share processors (or 2 high and 2 medium) can

be placed in it
• Ideally a node encompasses only high share processors of the same book

– High shared processors are always re-dispatched on the same physical processor
– Medium and low share processors are added to the created nodes based on their book

placement to keep a node as much as possible on one book
• Medium and Low share processors have no fixed physical processor placement
• But book crossing nodes can’t be avoided
• Also even if a low processor is “assigned” to a book it may float to the other book if necessary

4

0

6

Low

2

1

2

Medium

4

1

13

High

211000

5.0424%10240LPAR3

1.688%280LPAR2

14.2868%21680LPAR1

PhysProcShareLCPsWeightLPAR

We will start with an example of a z10. The system contains three partitions with one big
partition encompassing 13 high, 2 medium and 6 low processors. The system is a z10
with 21 physical processors. Even with assigning a polarization (High, Medium, Low) to
the logical processors it is still necessary to limit the work to a subset of logical
processors. This subset is named a node and ideally a node consists of 4 high
processors. In fact if the partition is rather small than only 1 node is created and if the
system has only 5 or 6 High processors also only 1 node is created because it is not
possible to create a second node which would be too small.

19

© 2010 IBM Corporation19

z/OS Workload Manager

Hiperdispatch: z/OS

4

0

6

Low

2

1

2

Medium

4

1

13

High

211000

5.0424%10240LPAR3

1.688%280LPAR2

14.2868%21680LPAR1

PhysProcShareLCPsWeightLPAR

The chart above shows the topology and the nodes which have been created for the
partitions. As mentioned before for LPAR3 only 1 has been created but for LPAR1 3
nodes have been built for the regular processors. The nodes are first created for the high
processors and on which book the high processors are located. The third node has 5 high
processors because it is not possible to form a node of one high processor.

After creating the node the medium and low processors are added to the nodes. This is
again done by the location of these processors. As mentioned before it can’t be
guaranteed that a medium or low processor is always re-dispatched on the book it is
assigned to but at least there is a high likelihood that this is possible. WLM now attempts
to create the nodes in a way that book crossing activities are reduced as much as
possible and if possible that these are restricted to as few nodes as possible. Therefore
node 3 receives all medium and low processors which are located on the second book so
that this node is mostly used for cross book activities. In this content it must be noted that
node 1 receives a low processor which is assigned on book 1 the same book then the
High processors.

20

© 2010 IBM Corporation20

z/OS Workload Manager

Hiperdispatch: Parking and Un-parking of Low Processors

� WLM tracks PR/SM white space attributes to dynamically address longer term
workload requirements

– Parks and un-parks low polarity LCPs based on available excess capacity

Reasons for Un-parking:
• MVS Busy > 95% and Enough free capacity on CEC
Reasons for Parking (examples):
• LPAR uses less than its guaranteed share
• Logical processors use too little of a physical processor
• MVS Busy < 85%

The next important part is to park and unpark the low processors. As already mentioned a
low processor can be unparked if the MVS BUSY of all unparked processors exceeds
95% and if sufficient capacity exists on the CEC. Parking a low processor is triggered by
more events of which some are listed above. The graphic in the background shows how
the low processors were unparked for the big partition LPAR1 for a 15 minute time period.

21

© 2010 IBM Corporation21

z/OS Workload Manager

Hiperdispatch: Work Balancing

� WLM balances work across nodes
– Each unit of work gets a home node

assigned for CPs, zAAPs and zIIPs
• Based on dispatch priority and

consumed capacity

� Each node gets a helper list
assigned
– Required if a node has too much

work
• Work unit queue is too long
• CPs, zAAPs and zIIPs do not enter

wait within a specified time interval
– Regular CPs can help any node

The last step is to assign work to the nodes. This is done based on dispatch priority and
CPU consumption. The idea is that all nodes get a similar mix of work so that it doesn’t
happen that on one node there are only high priority tasks and on another node only high
CPU consuming work. The node assignment is also done for offload processor nodes so
that each unit of work gets up to 3 nodes assigned, one for regular processors one for
zIIPs and one for zAAPs.

Result:

•WLM distributes the work based on CPU consumption and dispatch priority across the
nodes in order to achieve an equal node distribution.

22

© 2010 IBM Corporation22

z/OS Workload Manager

Hiperdispatch: Balancing and Node Utilization for LPAR1

Capacity consumed by a node divided by capacity assigned to the node

All low processors are un-parked Low processors only sporadically un-parked

In the chart above we can observe how the 3 nodes of LPAR1 are being utilized. We can
observe that on a 2 second time scale the utilization can vary from 75 to 120% and we
can easily derive that it is not possible to run more than 100% on a node. So we need a
method to ensure that a node which temporarily has more demand then it can execute is
being helped.

The above picture also shows that the node utilization on a 1 minute time scale is pretty
consistent between the three nodes especially during the time period of very high
demand when all low processors are unparked.

23

© 2010 IBM Corporation23

z/OS Workload Manager

Hiperdispatch: Helper Processing

Node1

N/A

N/A

N/A

Help3

Node2Node3No010zIIPNode

Node2Node1Yes525Node3

Node3Node1No004Node2

Node3Node2No104Node1

Help2Help1Book
Cross

LowMedHighNode

� Each node gets a helper list assigned
– Required if a node has too much work

• Work unit queue is too long
• CPs, zAAPs and zIIPs do not enter wait within a specified time interval

– Regular CPs can help any node

� Supervisor implements Needs-Help detection and action to address transient
spikes in utilization

– Maintains priority-based Affinity Node utilization statistics
– Responsively acts on statistics by asking other LPs for “Help”

� Table: shows the internal structure of helper nodes per Node
– Preferred are non book crossing nodes
– All high processors can become helper processors

In order to ensure that no work starves on a node a list of helper nodes is assigned to
each affinity node. If Supervisor now detects that the demand on a node is too high it
enables processors of the helper nodes to also select work from the node which needs
help. The helping processor helps the other node until it gets in a wait state. During this
period the processor selects work from its node work queue and the node work queue
being helped in priority order.

For helper nodes nodes which do not cross books are prefered. Therefore Node 3 is only
listed as the second bets choice of being a helper in the example above.

24

© 2010 IBM Corporation24

z/OS Workload Manager

Hiperdispatch: Helper Processing

Native: executed on node 1, Foreign: executed on a helper node

The graphic above shows for Node1 of LPAR1 the percent of work which is executed
locally by processors of the node (Native) or which is executed by processors of another
node which helps Node 1 (Foreign). It can be observed that high help activity also results
in unparking low processors. This can be especially seen on the right hand side when it is
no longer required to have all low processors being unparked all the time.

Result:

•WLM and Supervisor have developed a mechanism which ensures that no work starves
on a node while a node is temporarily overutilized.

25

© 2010 IBM Corporation25

z/OS Workload Manager

Hiperdispatch: User Interface …

RMF Monitor 2
OPT Display
– Shows status of OPT

parameters
– z/OS 1.11 and above

– There are two values
shown on the panel.
The first value reflects
the OPT setting
(inOPT) the second
whether
HIPERDISPATCH is
really used in the

system (Running)

� Parameter IEAOPTxx HIPERDISPATCH=YES/NO
– HIPERDISPATCH=YES

• Specifies that WLM should switch to Hiperdispatch mode.
– HIPERDISPATCH=NO

• Specifies that WLM should not switch to Hiperdispatch mode.

– Default Value: NO until z/OS 1.12
– Default Value: YES from z/OS 1.13 on

At the moment HIPERDISPATCH is still optional on System z and z/OS but with z/OS
1.13 it becomes the default for dispatching work. The state of HIPERDISPATCH can also
be easily observed through the RMF Monitor II OPT display panel

26

© 2010 IBM Corporation26

z/OS Workload Manager

Hiperdispatch: Processor Latency Considerations

� SMPs are good at latency reduction
– Higher probability of a processor to run important work
– Running work anywhere reduces cache value

� Affinity nodes can limit access of work to processors
– During periods of modest load (less than 95% busy), the CPU latency is very likely to

increase if all else held constant
– HiperDispatch is much more aggressive at having a processor running to service the

work
– The net can still be some increased CPU delay at modest utilization
– HiperDispatch value is strongest at high utilization – which is where most clients expect

z/OS to be tested
– Clients analyze processor efficiency at all utilizations so HiperDispatch manages work to

affinity nodes at all utilizations

� For WLM Service Definition
– Hiperdispatch=Yes typically uses fewer logical processors than Hiperdispatch=No

• Work may show higher CPU delays
• This is most often the case for lower important work
• This will effect the PI and achieved execution velocities
• Consequence: Review your goal settings and potentially adjust execution velocity goals

This foil discusses the benefit of Hiperdispatch and what should not be expected from it.

27

© 2010 IBM Corporation27

z/OS Workload Manager

Hiperdispatch: Special processing for SYSSTC

� Work classified to SYSSTC typically contains lots of short-running local SRBs
required for transaction flow.

– Examples of address spaces recommended to be classified into SYSSTC are VTAM,
TCP/IP and IRLM.

� Local SRBs for address spaces classified into SYSTEM or SYSSTC can execute
on any available logical processor in HiperDispatch mode.

� WLM service policies should be reviewed with this in mind.

Planning for HiperDispatch a good opportunity to review your WLM service
definition to be sure that it reflects the needs of the business. The dispatching priorities produced
by WLM have additional uses in HiperDispatch mode.

The SYSSTC is the service class that has the highest dispatching priority of those
one can select. In an OLTP environment, many local SRBs are scheduled by address spaces like
VTAM, TCP/IP etc. During the course of developing HiperDispatch, it became clear that there was
little benefit to adhering to the rule that these SRBs must be hosted by the processors assigned to
the affinity node of those address spaces. There is very little opportunity for cache reuse because
the data touched is for many transactions. It was also learned that reducing the opportunity to
service these short requests can elongate response time since the transaction is waiting to begin
to deliver its output in may cases. Therefore, local SRBs in SYSTEM and SYSSTC service
classes are executed on the first available unparked LP.

When you have the opportunity to convert to HiperDispatch mode, if you have
some response time increase for a very high priority service class, which you feel is intolerable,
and your application is one with many short requests for processor, you might try assigning it to
SYSSTC. One should not do this if it compromises your other goals and importance settings.

28

© 2010 IBM Corporation28

z/OS Workload Manager

Hiperdispatch: Summary

� Hiperdispatch is a combination of PR/SM and z/OS to provide more
efficient dispatching on large scale processor environments

– PR/SM provides a much better mapping of logical to physical processors
– z/OS re-dispatches work on a subset of the logical processors

� Hiperdispatch is most efficient for systems with many logical processors
– Provides the base to grow with many processors on System z

� White Paper published 2008 and republished 2009

� Hiperdispatch Benefit on z196:

Hiperdispatch is most valuable for large partitions on large CECs. Nevertheless
especially on z196 more benefit also exists for smaller partitions because of the cache
structure which is shared by the processors of the same chip. The table above shows the
expected benefit when Hiperdispatch=YES is used on z196 systems. In any case it
should be noted that Hiperdispatch will not have a negative effect.

29

© 2010 IBM Corporation29

z/OS Workload Manager

The following are trademarks of the International Business Machines Corporation in the United
States and/or other countries:
APPN*, CICS*, DB2*, DB2 Connect, DirMaint, e-business logo*, ECKD, Enterprise Storage Server*,
ESCON*, FICON*, GDPS*, Geographically Dispersed Parallel Sysplex, HyperSwap, IBM*, IBM eServer,
IBM e(logo)server*, IBM logo*, IMS, Language Environment*, MQSeries*, NetView*, OS/390*, Parallel
Sysplex*, PR/SM, Processor Resource/Systems Manager, RACF*, Resource Link, RMF, S/390*, Sysplex
Timer*, System z9, Virtualization Engine, VM/ESA*, VSE/ESA, VTAM*, WebSphere*, z/Architecture,
z/OS*, z/VM*, z/VSE, zSeries*

The following are trademarks or registered trademarks of other companies:
•Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United
States and other countries
•Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
•UNIX is a registered trademark of The Open Group in the United States and other countries.
•Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
•Red Hat, the Red Hat "Shadow Man" logo, and all Red Hat-based trademarks and logos are trademarks
or registered trademarks of Red Hat, Inc., in the United States and other countries.
•SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction
LLC.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in
a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the
amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed.
Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance
ratios stated here. IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our
warranty terms apply. All customer examples cited or described in this presentation are presented as illustrations of the manner in
which some customers have used IBM products and the results they may have achieved. Actual environmental costs and
performance characteristics will vary depending on individual customer configurations and conditions. This publication was
produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries,
and the information may be subject to change without notice. Consult your local IBM business contact for information on the
product or services available in your area. All statements regarding IBM's future direction and intent are subject to change or
withdrawal without notice, and represent goals and objectives only. Information about non-IBM products is obtained from the
manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the
performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products
should be addressed to the suppliers of those products. Prices subject to change without notice. Contact your IBM representative
or Business Partner for the most current pricing in your geography.

