

IBM Systems & Technology Group

z/VM Performance Update, z/VM 6.3 Revision 2014-04-14.1, BKW

Brian K. Wade, Ph.D. bkw@us.ibm.com

© 2014 IBM Corporation

Trademarks

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries. For a complete list of IBM Trademarks, see www.ibm.com/legal/copytrade.shtml: AS/400, DBE, e-business logo, ESCO, eServer, FICON, IBM, IBM Logo, iSeries, MVS, OS/390, pSeries, RS/6000, S/30, VM/ESA, VSE/ESA, Websphere, xSeries, z/OS, zSeries, z/VM

The following are trademarks or registered trademarks of other companies

Lotus, Notes, and Domino are trademarks or registered trademarks of Lotus Development Corporation Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries LINUX is a registered trademark of Linus Torvalds UNIX is a registered trademark of The Open Group in the United States and other countries. Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation. SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC. Intel is a registered trademark of Intel Corporation * All other products may be trademarks or registered trademarks of their respective companies.

NOTES:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

References in this document to IBM products or services do not imply that IBM intends to make them available in every country.

Any proposed use of claims in this presentation outside of the United States must be reviewed by local IBM country counsel prior to such use.

The information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

Permission is hereby granted to SHARE to publish an exact copy of this paper in the SHARE proceedings. IBM retains the title to the copyright in this paper, as well as the copyright in all underlying works. IBM retains the right to make derivative works and to republish and distribute this paper to whomever it chooses in any way it chooses.

Acknowledgements – Your z/VM Performance Team

- Dean DiTommaso
- Bill Guzior
- Steve Jones
- Virg Meredith happy 50th, Virg ③
- Patty Rando
- Dave Spencer
- Susan Timashenka department manager
- Xenia Tkatschow
- Brian Wade

Agenda

z/VM 6.3 thoughts

- A little about Large Memory
- A little about HiperDispatch
- Various other line items or small changes
- Monitor record changes
- Performance-related service
- z/VM Performance Toolkit

Other thoughts

- Reminder about CPU MF
- Continued evolution of System z CPC Performance workloads

z/VM 6.3 Highlights: A Performance View

- Regression performance
- Large Memory considerations
- HiperDispatch considerations
- Large Dump considerations
- Some smaller changes
- Monitor record changes
- Performance-related service
- z/VM Performance Toolkit changes

Regression Performance

Ran our usual library of workloads

- CMS interactive, various Apache configurations

Results are within usual 5% regression criteria

Some workloads will see improvements:

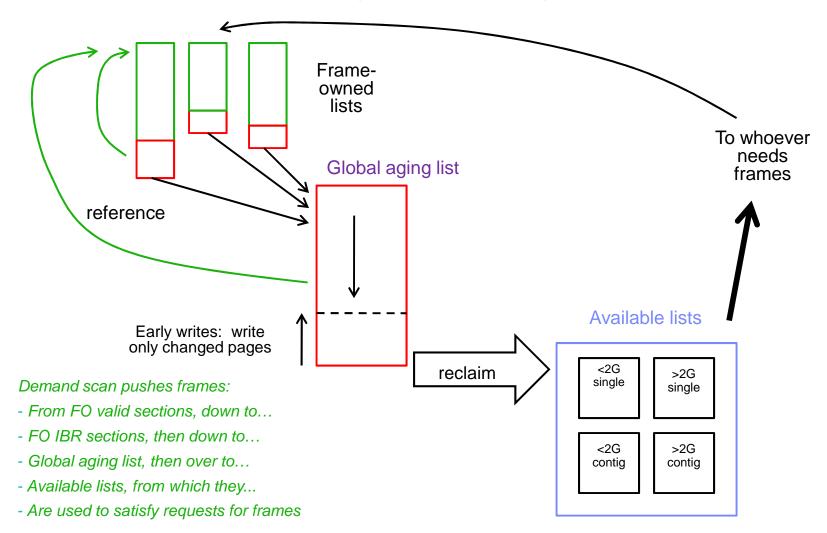
- Constrained by reorder or demand scan
- A few heavy guests along with small VCPU:LCPU ratio

Thoughts on Large Memory

Large Memory: Highlights

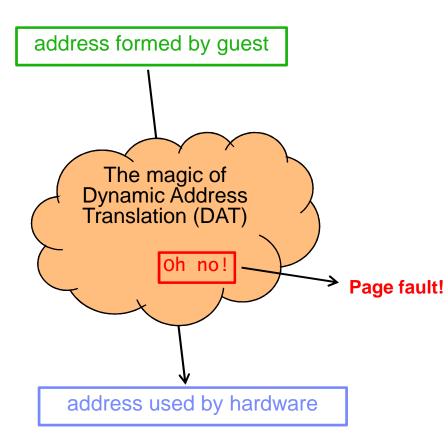
Exploit a 1 TB central memory

- Exploit larger real
- Allow larger total virtual
- XSTORE no longer required; best practice is not to use it
- Remove algorithms and techniques known not to scale
- Improve SET RESERVED in a couple key ways
 - Make it work
 - Extend it to NSS and DCSS
- Overhaul CP Monitor records appropriately
- New or changed z/VM Performance Toolkit screens
- New planning heuristics: See Large Memory Deep Dive or z/VM Planning and Admin for guidance



Large Memory, Scaling Problems Removed

- Reorder is gone
- Demand scan no longer searches frame lists
- No more use of RRBE instruction (long CPI)
- DASD channel program now does scatter-scatter I/O
- Unchanged pages usually not rewritten



New Approach: The Big State Diagram

New Approach: Trial Invalidation

- Page table entry (PTE) contains an "invalid" bit
- What if we:
 - Keep the PTE intact but set the "invalid" bit
 - Leave the frame contents intact
 - Wait for the guest to touch the page
- A touch will cause a page fault, but...
- On a fault, there is nothing really to do except:
 - Clear the "invalid" bit
 - Move the frame to the front of the frame list to show that it was recently referenced
- We call this trial invalidation.

=	_	
	_	= 7 =

New Approach: Visit Everybody

• Old way:

- Was focused on the dispatch list
- Did not remember "where it left off"

New way:

- Focused on the list of logged-on users
- Remembers "where it left off"

Objective: try to visit more equitably

Workload: "Sweet Spot"

Our synthetic workload called *Sweet Spot* imitates behaviors we have seen in customer-supplied MONWRITE data.

Run ID		STXG3258		
	6.2.0	6.3.0		
SYSGEN Storage (P)	262144	393216	131072	50.0
Total CP Xstor (p)	131072	0	-131072	-100.0
Number of CPUs (p)	4	4	0	0.0
Aggregate ETR	0.0746	0.0968	0.0222	29.8
User Group 1 ETR	0.0065	0.0128	0.0063	96.9
User Group 2 ETR	0.0138	0.0236	0.0098	71.0
User Group 3 ETR	0.0268	0.0264	-0.0004	-1.5
User Group 4 ETR	0.0275	0.0341	0.0066	24.0
ITR (h)	77.77		27.83	35.8
	31.4	4.7	-26.7	-85.0
T/V Ratio (p)	1.51	1.08	-0.43	

By getting rid of both reorders and spin lock contention, we achieved huge drops in %CPU and T/V.

Workload: Apache Paging

Our Linux-based workload called *Apache Paging* is built to page heavily to DASD almost no matter how much central or XSTORE we give it.

Run ID	A38W952A	A38XM820
CP Level (p) SYSGEN Storage (P) Total CP Xstor (p) Number of CPUs	6.2.0 262144 131072 8	6.3.0 393216 0 8
Tx/sec (c)	1.000	1.024
ITR (h)	1.000	1.017
XSTORE paging /sec DASD paging /sec	82489 33574	0 31376

This is an example of a workload where the limit comes from something large memory will not fix.

Planning for Large Memory

- Change XSTORE to central
- Plan enough DASD space (see Planning and Admin)
- Plan robust DASD configuration
- Check or add SET RESERVED settings
- Plan enough dump space
 - http://www.vm.ibm.com/service/zvmpladm.pdf

Large Memory CP Monitor Changes

Domain	Record	Name	Туре	Title	Fields, N / D / C
D0	R3	MRSYTRSG	sample	Real Storage Data (Global)	DC
D0	R4	MRSYTRSP	sample	Real Storage Data (Per Processor)	D
D0	R6	MRSYTASG	sample	Auxiliary Storage (Global)	NC
D0	R7	MRSYTSHS	sample	Shared Storage Data	D
D0	R23	MRSYTLCK	sample	Formal Spin Lock Data	NC
D1	R7	MRMTRMEM	config	Memory Configuration Data	Ν
D1	R15	MRMTRUSR	config	Logged on User	С
D2	R4	MRSCLADL	event	Add User to Dispatch List	DC
D2	R5	MRSCLDDL	event	Drop User from Dispatch List	DC
D2	R6	MRSCLAEL	event	Add User to Eligible List	С
D2	R8	MRSCLSTP	event	System Timer Pop	D
D3	R1	MRSTORSG	sample	Real Storage Management (Global)	NDC
D3	R2	MRSTORSP	sample	Real Storage Activity (Per Processor)	D
D3	R3	MRSTOSHR	sample	Shared Storage Management	NC
D3	R14	MRSTOASI	sample	Address Space Information Record	NC
D3	R15	MRSTOSHL	event	NSS/DCSS/SSP Loaded into Storage	Ν
D3	R16	MRSTOSHD	event	NSS/DCSS/SSP Removed From Storage	NC
D4	R2	MRUSELOF	event	User Logoff Data	NDC
D4	R3	MRUSEACT	sample	User Activity Data	NDC
D4	R9	MRUSEATE	event	User Activity Data at Transaction End	DC

=	_	= =
르		
		= 7 =

z/VM Performance Toolkit: Highlights

Changed screens:

- FCX102 SYSTEM, Some Internal System Counters
- FCX103 STORAGE, General Storage Utilization
- FCX133 NSS, NSS and DCSS Utilization and Paging Activity
- FCX146 AUXLOG, Auxiliary Storage Utilization, by Time
- FCX147 VDISKS, Virtual Disks in Storage
- FCX265 LOCKLOG, Spin Lock Log, by Time

Deleted screens:

- FCX254 AVAILLOG, Available List Management, by Time
- FCX259 DEMNDLOG, Demand Scan Details, by Time

New screens:

- FCX290 UPGACT, User Page Activity
- FCX291 UPGACTLG, User Page Activity (benchmarks a user)
- FCX292 UPGUTL, User Page Utilization Data
- FCX293 UPGUTLLG, User Page Utilization Data (benchmarks a user)
- FCX294 AVLB2GLG, Available List Data Below 2G, by Time
- FCX295 AVLA2GLG, Available List Data Above 2G, by Time
- FCX296 STEALLOG, Steal Statistics, by Time
- FCX297 AGELLOG, Age List Log, by Time

page state transition rates

page residency counts

available list counts

steal algorithm activity global aging list activity

z/VM Performance Toolkit: New Columns and Concepts

Caption or Column Heading	What this means
Inst	Instantiations: the rate at which valid memory is being created Instantiated: the amount of valid memory
Relse	Releases: the rate at which memory is being released
Inval	Invalidations: the rate at which demand scan is marking memory invalid as a way to determine whether it is being touched
Reval	<i>Revalidations</i> : the rate at which invalid pages are being made valid because somebody touched them
Ready	Ready reclaims or ready steals: the frame was found and selected for reclaim and had already been prewritten to auxiliary storage
Not Ready	Notready reclaims or notready steals: the frame was selected for reclaim but we had to wait for the aux write to finish before we could take it
PNR	<i>Private, not referenced</i> : the page was read from aux as part of a block read, but it is still marked invalid because nobody has touched it yet
<i>x</i> <2G or <i>x</i> >2G	Below 2 GB or Above 2 GB: tells where the real backing frames are in real central
Sing	Singles: free frames surrounded by in-use frames (cannot coalesce)
Cont	Contigs: free frames in strings of two or more
Prot	Protect threshold: number of frames a singles-obtain must leave on a contigs-list

z/VM Performance Toolkit: New Report FCX292 UPGUTL

FCX292 Run 2013/04/10 07:38:36 From 2013/04/09 16:02:10			I	Jser Pa	ıge Uti	lizati	on Dat	ta							Page 103 SYSTEMID				
	04/09 1 Secs (,	'This i	s a pe	erforma	nce re	eport f	for sys	бтем хү	′Z''					2817-74 4 V.6	44 SN A6 .3.0 SLU 0
		•				-			•		-	-				-			
		<																>	
	Data				<				Res			lid But						Base	
	Spaces				/	Total	>	<-Lock	< ho										Nr of
Userid	Owned	WSS	Tnst	Resvd				L<2G								YSTOR	AUX	•	Users
>>Mean>>			6765M		5286M		5259M		232K		2238K			53080			1815M	7108M	73
User Clas			010011	5011	5200.1		5255.	2020	2020	0000	22500		20	55000	207.11		10101	. 200	
CMS1_USE		3320ĸ	19м	.0	484K	.0	484K	.0	4096	.0	69632	.0	244K	.0	344K	.0	19м	2047M	1
LCC_CLIE	.0	364M	485M	.0	365M	11264	365M	.0	208K	.0	325K	.0	2686K	.0	8177K	.0	164M	1024M	8
LXA_SERV	.0	7974м	10G	.0	7978м	41M	7937м	.0	206к	9984	3327к	90624	39м	80725	161M	.0	2719M	10240м	48
User Data																			
DISKACNT		4976K		0	4K	0	4к	0	0	0	4к	0	0	0	0	0	5152K	32M	
DTCVSW1	.0	184K	11M	0	196K	8к	188K	8к	4K	0	4к	0	0	0	168K	0	11M	32M	
DTCVSW2	.0	180ĸ	11M	0	184K	0	184K	0	4K	0	4к	0	0	0	164K	0	10M	32M	
EREP		4912K		0	4K	0	4K	0	0	0	4K	0	0	0	0		4940K	32M	
FTPSERVE	.0		5764K	0	88K	0	88K	0	4K	0	4K	0	0	0	76K		5760K	32M	
GCSXA	.0	204K		0	8K	0	8K	0	4K	0	4K	0	0	0	0	0	200K	16M	
LCC00001	.0	364M	488M	0	365M	0	365M	0	204K	0	228K		2884K		8660K	0	192M	1024M	
LCC00002	.0	369M	492м 484м	0	371M	20K	371м 364м	0	204K	0	224K		2312K		7736K	0	159M	1024M	
LCC00003	.0	363M	4ŏ4M	0	364M	0	364M 363M	0	204к 204к	0	252к 228к		2852к 2724к		8372к 8512к	0	215м 185м	1024м 1024м	

Look for the new concepts: Inst IBR UFO PNR AgeList

Amounts are in bytes, suffixed. Not page counts!

FCX113 UPAGE is still produced.

IBM Systems & Technology Group

z/VM Performance Toolkit: New Report FCX290 UPGACT

FCX29	00 Run 2013	8/04/10 07:38:36	UPGACT User Page Activity	I	Page 102
	2013/04/09 2013/04/09 660 Secs	16:13:10		SYSTEMID CPU 2817-744 z/VM V.6.3.0	SN A6D85 SLU 0000

Storage -----<----- Movement/s -----> Stl <--- Transition/s ----> <-Steal/s-> <Migrate/s> Nr of Userid Wt Inst Relse Inval Reval Ready NoRdy PGIN PGOUT Reads Write MWrit Xrel Users >>Mean>> 1.0 143K 5142 849K 718K 999k .0 .0 .0 958K 761K .0 .0 73 User Class Data: CMS1 USE 1.0 15515 15801 2377 1632 5145 .0 .0 .0 .0 1980 .0 1 .0 486K 60875 .0 .0 .0 54212 22869 .0 .0 8 LCC CLIE 1.0 658K 20875 488K LXA_SERV 1.0 108K 1095 1191K 994K 1506K .0 .0 .0 1447K 1153K .0 .0 48 User Data: DISKACNT 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 3072 2855 0 0 0 DTCVSW1 3004 2780 0 0 0 0 0 DTCVSW2 1.0 0 0 0 0 0 0 0 0 0 0 EREP 1.0 0 0 0 0 0 0 0 FTPSERVE 1.0 0 0 1434 1434 0 0 0 0 0 0 0 0 0 0 0 0 0 0 GCSXA 1.0 0 0 0 0 0 0 0 LCC00001 1.0 601K 18686 501K 498K 65139 0 0 49866 23670 0 0 0 0 LCC00002 657K 24955 487K 486K 54725 0 0 44522 18991 0 1.0 LCC00003 1.0 565K 23012 485K 481K 64065 0 0 0 44783 19859 0 0 LCC00004 602K 24104 499K 495K 63178 0 0 48811 24588 0 1.0 0 0 0 LCC00005 1.0 717K 25675 500K 499K 65865 0 0 66002 28753 0 0

Look for the new concepts: Inst

Relse Inval Reval

Ready NoRdy

z/VM Performance Toolkit: New Report FCX295 AVLA2GLG

FCX295 Run 2013/04/10 07:38:36	AVLA2GLG Available List Data Above 2G, by Time	Page 25
	Available List Data Above 2G, by Thie	
From 2013/04/09 16:02:10		SYSTEMID
то 2013/04/09 16:13:10		CPU 2817-744 SN A6D85
For 660 Secs 00:11:00	"This is a performance report for SYSTEM XYZ"	z/VM V.6.3.0 SLU 0000

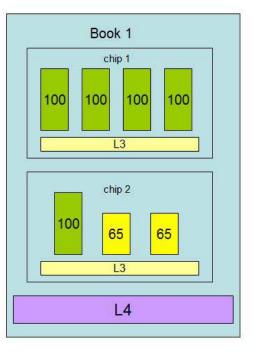
	<		Stora	age		>	<tim< th=""><th>es></th><th><-Fram</th><th>e Thre</th><th>sh></th></tim<>	es>	<-Fram	e Thre	sh>
Interval	<avai< td=""><td>lable></td><td><reques< td=""><td>sts/s></td><td><retur< td=""><td>rns/s></td><td><-Empt</td><td>y/s-></td><td>Sing</td><td><-Cont</td><td>igs-></td></retur<></td></reques<></td></avai<>	lable>	<reques< td=""><td>sts/s></td><td><retur< td=""><td>rns/s></td><td><-Empt</td><td>y/s-></td><td>Sing</td><td><-Cont</td><td>igs-></td></retur<></td></reques<>	sts/s>	<retur< td=""><td>rns/s></td><td><-Empt</td><td>y/s-></td><td>Sing</td><td><-Cont</td><td>igs-></td></retur<>	rns/s>	<-Empt	y/s->	Sing	<-Cont	igs->
End Time	Sing	Cont	Sing	Cont	Sing	Cont	Sing	Cont	Low	Low	Prot
>>Mean>>	23M	267м	47м	59м	47M	51M	.0	.0	1310	15	15
16:02:40	0	938м	32м	126м	502K	30310	.0	.0	1332	15	15
16:03:10	152K	4556к	50M	89м	49м	59м	.0	.0	1168	15	15
16:03:40	400K	4824K	68M	82м	71M	79м	.0	.0	1321	15	15
16:04:10	0	5896K	49м	72м	52M	70м	.0	.0	2409	15	15
16:04:40	0	2124к	40M	60м	41M	59м	.0	.0	1308	15	15
16:05:10	876K	3488к	54M	52м	55M	51M	.0	.0	1118	15	15
16:05:40	0	3624к	53M	58M	54M	57M	.0	.0	1409	15	15
16:06:10	2016K	4464K	49м	57м	51M	56м	.0	.0	1273	15	15

Look for the new concepts: Singles Contigs Prot

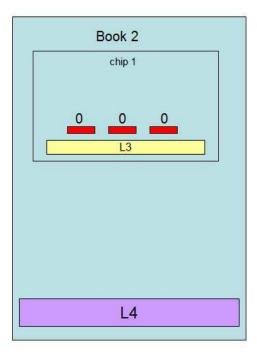
Amounts are in bytes, suffixed. Not page counts!

FCX254 AVAILLOG is no longer produced.

Thoughts on HiperDispatch



HiperDispatch: Highlights

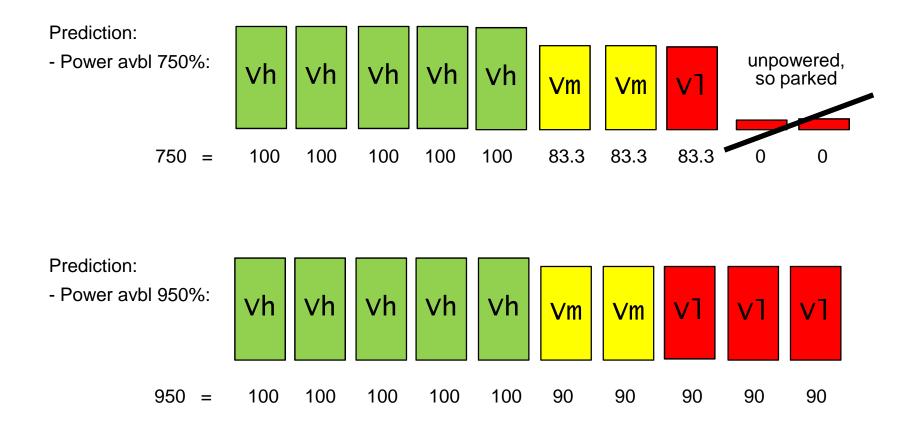

- Use of vertical mode partitions
- Running widely if power is there
- Automatic reduction of MP level
- Topology-aware dispatching
- New or changed CP Monitor records
- New or changed z/VM Performance Toolkit screens
- How to plan for HiperDispatch

Vertical-Mode Partitions

Partition Topology

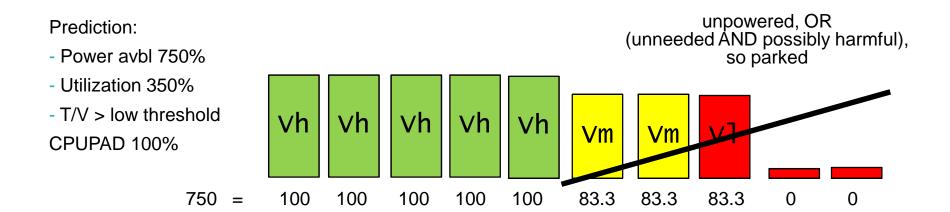
Features:

Concentrated entitlement Durable placement


Advantages:

Quiet place to run Opportunity to reduce MP level

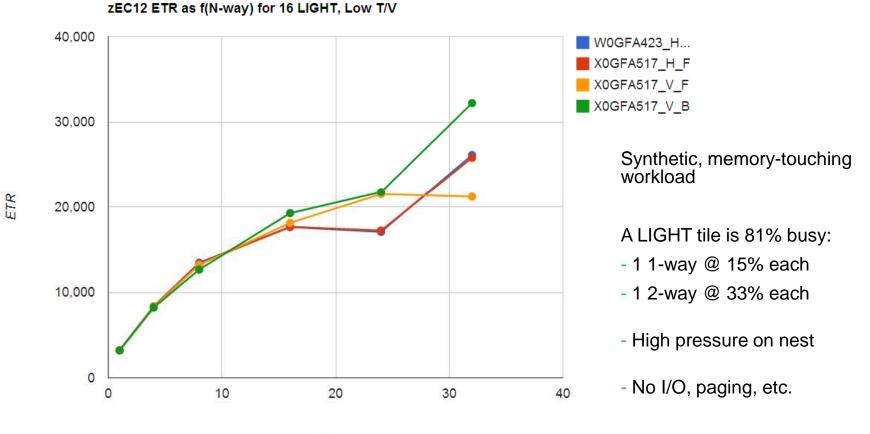
Running Widely When The Power Is There


Entitlement: 630% via 5 Vh @ 100, 2 Vm @ 65, 3 VI @ 0

Parking to Try To Reduce z/VM Overhead

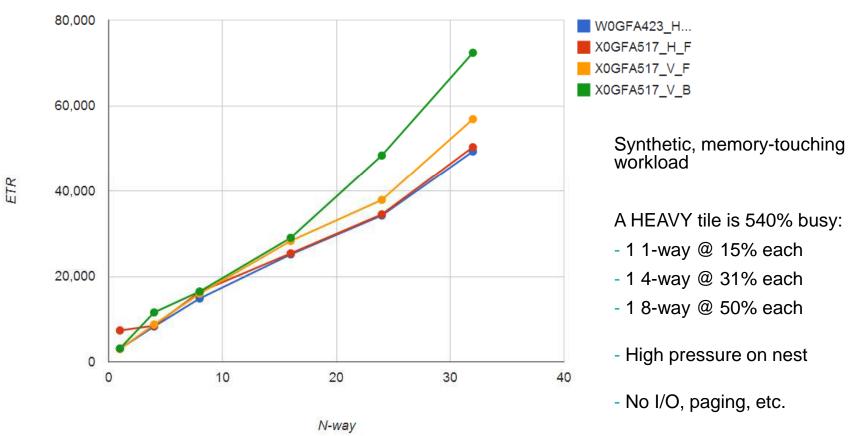
Entitlement: 630% via 5 Vh @ 100, 2 Vm @ 65, 3 VI @ 0

z/VM parks apparently unneeded processors, but only if T/V is projected high and load is projected below capacity. Safety margin is controlled via CP SET SRM CPUPAD.


==	_	= =
_	_	= 7 =

Topology-Aware Dispatching

- If can't send home, send close to home
 - Same chip? Same book?
- Try to keep a virtual MP's VCPUs together
- Try not to do long-drag steals
 - Cross-book, cross-chip
- Be smart about which real CPU we wake up
 - Same chip as stacked work? Same book?
- Rebalance: only certain workloads are suitable
 - A few heavy users, low VCPU:LCPU ratio, clearly distinguishable %CPU


Memory-Touching Workload, Light Edition

N-way

Memory-Touching Workload, Heavy Edition

zEC12 ETR as f(N-way) for 6 HEAVY, Low T/V

Planning for HiperDispatch

Before:

- Decide what "success" looks like: metrics and values
- Measure: transaction rates, MONWRITE data
- Turn on Global Performance Data Control (activation profile)
- After:
 - We think vertical and reshuffle are probably the right choice for you
 - Do same measurements
 - Compare
- The way out:
 - CP SET SRM POLARIZATION HORIZONTAL
 - SRM statement in system configuration file

Comments on Workloads

- Amenable workloads for z/VM HiperDispatch:
 - High-CPU, CPU-constrained workloads
 - Improving cache behavior stands to improve performance
 - Active VCPU:LCPU ratio isn't too large
 - High ratio has too much context switching to feel much effect
 - Runs in a partition having multiple topology containers
 - Gives z/VM an opportunity to separate guests from one another
- Compare those statements to IBM's statements about PR/SM and partitions

Indifferent workloads for z/VM HiperDispatch

- Constrained by something else, such as I/O
- Memory-overcommitted
- High VCPU:LCPU ratio with every virtual CPU active just a little bit
- Workloads with bad memory access habits
- Remember that vertical mode also keeps your partition away from the other partitions

HiperDispatch CP Monitor Changes

Domain	Record	Name	Туре	Description of Change
D0	R2	MRSYTPRP	sample	Added polarity, entitlement, and park-time accumulator
D0	R16	MRSYTCUP	sample	Added partition current weight
D0	R23	MRSYTLCK	sample	Added the HCPDSVTL topology lock
D1	R4	MRMTRSYS	config	Added bit indicating whether system is horizontal or vertical
D1	R5	MRMTRPRP	config	Added park state, polarization, entitlement, and topological location
D1	R16	MRMTRSCH	config	Added h/v bit, CPUPAD settings, and EXCESSUSE settings
D2	R7	MRSCLSRM	event	Added h/v bit, CPUPAD settings, and EXCESSUSE settings
D4	R2	MRUSELOF	event	Added rebalance results and steal results
D4	R3	MRUSEACT	sample	Added rebalance results and steal results
D5	R2	MRPRCVOF	event	Added park/unpark failure as reason varied off
D5	R3	MRPRCVON	event	Added parked as a state; use iff neither D5 R17 nor D5 R18 are seen
D5	R15 (new)	MRPRCDSV	event	Records assignment of processors to dispatch vectors
D5	R16 (new)	MRPRCPUP	event	Records park/unpark decision
D5	R17 (new)	MRPRCRCD	sample	Records processor's VMDBK steal behavior
D5	R18 (new)	MRPRCDHF	sample	Records PLDV population trends

z/VM Performance Toolkit

Themes in the changes in existing Perfkit screens

- CPU entitlement appears in sensible places, e.g. FCX100 CPU
- Percent-parked appears in sensible places, e.g. FCX100 CPU
- Parked time is correctly accounted for, e.g. FCX126 LPAR %Susp
- SRM settings are reported where they ought to be, e.g. FCX154 SYSSET
- Interesting events are reported in FCX180 SYSCONF as they should
- Number of unparked CPUs appears in sensible places, e.g. FCX225 SYSSUMLG
- Counts of new monitor records appear in FCX155 MONDATA as they should
- Obsolete data is compatibly deleted in certain places, e.g. FCX144 PROCLOG
- New reports sure to attract interest:
 - FCX287 TOPOLOG shows a log of partition topology, container-major
 - FCX298 PUORGLOG shows a log of partition topology, CPU-major
 - FCX299 PUCFGLOG shows a log of the park/unpark state
 - FCX301 DSVBKACT replaces the PLDV emptiness columns on FCX144 PROCLOG
 - FCX302 PHYSLOG shows a physical CPU utilization log of the CEC by type pool
 - FCX303 DSVSLOG replaces the PLDV steal columns on FCX144 PROCLOG
 - FCX304 PRCLOG is where you should now look instead of FCX144 PROCLOG
 - FCX306 LSHARACT reports the partitions' entitlements vs. logical CPU counts
- Obsolete reports
 - FCX144 PROCLOG is still there for now, but start using FCX304 PRCLOG instead

New Report PUORGLOG

LFCX298 Run 2013/05/20 10:39:48			PUORGLOG Processor Unit organization log				
From 2013/05/19 03:39:31						•	
o 20	013/05/19	03:41:3	31				
or	120 Secs	00:02:0	00		Result	of GF003855 Run	
Logica	al PU org	anizatio	on for	Partition	PPRF1	(GDLBOFVM)	
Date	Time	СРИ Тур	e PPD	Ent. Loca	tion		
05/19	03:39:31	0 CP	VhD	100 1:6			
05/19	03:39:31	1 CP	VhD	100 1:6			
-	03:39:31		VhD			Notes:	
-	03:39:31		VhD			N /I	
-	03:39:31		VhD			Vh	vertical high
-	03:39:31		VhD			Vm	vertical medium
•	03:39:31		VhD			VIII	ventical medium
	03:39:31		VhD			VI	vertical low
-	03:39:31		VhD				vertical birth dedicated partition
-	03:39:31 03:39:31		VhD VhD			VhD	vertical high, dedicated partition
-	03:39:31		VhD			Ent	entitlement (100% = 1 CPU's worth)
•	03:39:31		VhD				· · · · · · · · · · · · · · · · · · ·
-	03:39:31		VhD			Location	book:chip (z10: book)
-	03:39:31		VhD				
				trunc	atad		

... truncated ...

New Report LSHARACT

1FCX306 Run 2013/02/19 12:10:57	LSHARACT Logical Partition Share
From 2013/02/19 11:49:58 To 2013/02/19 11:56:10	
For 372 Secs 00:06:12	Result of GFCM0107 Run

LPAR Data, Collected in Partition RPRF2

Physical PUs, Shared: CP- 40 ZAAP- 2 IFL- 16 ICF- 1 ZIIP- 3 Dedicated: CP- 4 ZAAP- 0 IFL- 0 ICF- 0 ZIIP- 0

Proc	Partition	LPU	LPAR	•	- DI TO	otal,%>	I DII
	Name			Entlment		Excess	
CP	RCPX4	10	10	59.3	3.0	.0	
CP	RCTS1	5	10	59.3	311.9	252.6	
СР	RCTS2	5	30	177.8	1.0	.0	0
СР	RCT1	20	30	177.8	111.3	.0	0
СР	RCT2	10	10	59.3	11.2	.0	0
СР	REXT1	5	10	59.3	.0	.0	0
СР	rext2	4	10	59.3	.0	.0	0
СР	RINS	10	10	59.3	.0	.0	0
CP	RPRF1	4	DED				
CP	RPRF2	24	335		1548.4	.0	
CP	RSPX1	6	40	237.0			
CP	RSPX2	6	40	237.0		262.7	
CP	RSPX5	6	40	237.0		.0	
CP	RST1	10	10	59.3	16.2	.0	
CP	RST1X	6	10	59.3			
CP	rst2	6	50	296.3		.0	
CP	rst3	3	30	177.8	1.2	.0	
ICF	RCTS2	1	10	25.0	.0	.0	
ICF	RCT1	1	30	75.0	.0	.0	
IFL	RCTS2	2	10	188.2	.0	.0	
IFL	RCT1	2	30	564.7	.0	.0	
IFL	RSTL1	16	45	847.1	449.2	.0	
	RCPX4	1	10	40.0	.1	.0	
	RCTS2	1	10	40.0	.0	.0	
	RCT1	1	30	120.0	.0	.0	
	RCPX4	1	10	60.0	.3	.0	
	RCTS2	1	10	60.0	.0	.0	
ZIIP	RCT1	1	30	180.0	.0	.0	u

You now have an easy way to see the entitlements of your partitions.

Features:

- Reports by partition and CPU type
- Reports entitlement in percent
- Reports percent-busy of the partition's CPUs of that type
- Reports whether the partition is consuming beyond its entitlement ("Excess")
- Réports LPU configuration wrt entitlement:
 - "o" overconfigured
 - "u" underconfigured
 - "-" apparently just right

IBM Sys	stems &	Technol	logy	Grou	р
---------	---------	---------	------	------	---

New Report PUCFGLOG

1FCX299 Run 2013/06/24 09:36:54	PUCFGLOG Processor Unit Configuration log	Page 6
From 2013/02/19 11:49:52 To 2013/02/19 11:56:10		GFCM0107 CPU 2817-744 SN B6D85
For 378 Secs 00:06:18	Result of GFCM0107 Run	z/VM v.6.3.0 sLu 0000

	Туре < Las	st> <	Next	>
Date Time Type OnL Entitl	Cap CPUPAD EX Load XP	XPF T/V LCei	XPF T/V N	NotVh UpCap LPU Unparked mask
02/19 11:49:54 CP 24 1985.2	100.0 70 2.2 1159.4	892.8 3.519 3.9 88	5.9 200.5 2	.0 200.0 00300000_0000000
02/19 11:49:56 CP 24 1985.2	100.0 70 .5 1153.3	888.1 256.0 1.7 88	3.4 201.3 2	.0 200.0 00300000_0000000
02/19 11:49:58 CP 24 1985.2	100.0 70 .5 1159.7	893.1 122.3 1.7 88	5.2 204.2 2	.0 200.0 00300000_0000000
02/19 11:50:00 CP 24 1985.2	100.0 70 .7 1136.7	875.4 53.45 1.7 85	7.7 172.5 2	.0 200.0 00300000_0000000
02/19 11:50:02 CP 24 1985.2	100.0 70 .9 1128.6	869.2 4.531 1.7 86	3.0 172.5 2	
02/19 11:50:04 CP 24 1985.2	100.0 70 1.3 1034.5	778.8 1.822 1.8 68	8.3 172.4 2	.0 200.0 00300000_0000000
02/19 11:50:06 CP 24 1985.2	100.0 70 .6 1157.1	891.1 38.57 1.8 85	6.4 168.5 2	.0 200.0 00300000_0000000
02/19 11:50:08 CP 24 1985.2	100.0 70 .5 1162.9		6.9 211.1 2	.0 200.0 00300000_0000000
02/19 11:50:10 CP 24 1985.2	100.0 70 44.8 1161.8	894.7 2.214 89.1 85	8.9 211.1 2	.0 200.0 00300000_0000000
02/19 11:50:12 * CPU Park/Unpark	5			
02/19 11:50:12 CP 24 1985.2	100.0 70 199.7 1145.1	881.9 1.517 354.6 85	8.5 197.6 5	.0 500.0 00300000_0000000
02/19 11:50:14 * CPU Park/Unpark	5			
02/19 11:50:14 CP 24 1985.2	100.0 70 501.6 1155.6	890.0 1.009 803.5 85	8.3 197.5 10	.0 1000.0 013c0000_0000000
02/19 11:50:16 * CPU Park/Unpark	5			
02/19 11:50:16 CP 24 1985.2	100.0 70 999.6 1147.4	883.6 1.001 1497.6 85	7.9 146.5 16	6 .0 1600.0 0FFC0000_0000000
02/19 11:50:18 * CPU Park/Unpark	5			
02/19 11:50:18 CP 24 1985.2	100.0 70 1599.3 1155.1	889.6 1.001 2199.1 85	7.7 130.3 23	3 100.0 2300.0 FFFF0000_0000000
02/19 11:50:20 * CPU Park/Unpark				
02/19 11:50:20 CP 24 1985.2	100.0 70 2297.6 1179.7	908.5 1.001 2995.8 86	0.2 125.6 24	100.0 2400.0 FFFFE00_0000000
02/19 11:50:22 * CPU Park/Unpark				
02/19 11:50:22 CP 24 1985.2	100.0 70 2397.1 1144.5			100.0 2400.0 FFFFF00_0000000
02/19 11:50:24 CP 24 1985.2	100.0 70 2080.5 1181.8			100.0 2400.0 FFFFF00_0000000
02/19 11:50:26 CP 24 1985.2	100.0 70 1681.3 1140.0			100.0 2400.0 FFFFF00_0000000
02/19 11:50:28 CP 24 1985.2	100.0 70 1632.4 1169.6			100.0 2400.0 FFFFF00_0000000
02/19 11:50:30 CP 24 1985.2	100.0 70 1587.7 1149.4			100.0 2400.0 FFFFF00_0000000
02/19 11:50:32 CP 24 1985.2	100.0 70 1878.3 1129.6			100.0 2400.0 FFFFF00_0000000
02/19 11:50:34 CP 24 1985.2	100.0 70 1824.3 1176.2	905.8 1.002 2425.8 88	4.3 1.007 24	100.0 2400.0 FFFFF00_0000000

Look for: effect of high T/V, workload ramp-up, U' and XPF' values; power of a non-Vh

New Report DSVSLOG

1FCX30	03 Run 2013	3/05/20 10:32:38		DSVSLOG DSVBK Steals per logical CPU Log, by Time
	2013/05/19 2013/05/19			
For	114 Secs			Result of GF003820 Run
	с		Pct	

Interval	Ρ					Park	<	DSVBK 3	Steal /s	5		>
End Time	U	туре	PPD	Ent.	DVID	Time	Lv1-00	Lv1-01	Lv1-02	Lv1-03	Lv1-04	Lv1-05
>>Mean>>	0	СР	Vh	100	0000	0	4.404	4.088	.000			
>>Mean>>	1	СР	Vh	100	0001	0	2.456	2.561	.000			
>>Mean>>	2	СР	Vh	100	0002	0	6.877	.921	.000			
>>Mean>>	3	СР	Vh	100	0003	0	7.596	.930	.000			
>>Mean>>	4	СР	Vh	100	0004	0	4.500	.482	.000			
>>Mean>>	5	СР	Vh	100	0005	0	3.614	.228	.000			
>>Mean>>	6	СР	Vh	100	0006	0	4.518	.482	.000			
>>Mean>>	7	CP	Vh	100	0007	0	2.912	.386	.000			
>>Mean>>	8	CP	Vh	100	0008	0	1.412	.421	.000			
>>Mean>>	9	СР	Vh	100	0009	0	1.386	.184	.000			
>>Mean>>	10	CP	Vh	100	000A	0	2.070	.544	.000			
>>Mean>>	11	СР	Vh	100	000в	0	2.114	.149	.000			
>>Mean>>	12	CP	Vh	100	000C	0	5.886	1.623	.000			
>>Mean>>	13	CP	Vh	100	000d	0	3.772	.702	.000			
>>Mean>>	14	CP	Vh	100	000e	0	3.026	.675	.000			
>>Mean>>	15	CP	Vh	100	000F	0	2.658	.360	.000			
>>Total>	16	СР	vh	1600	MIX	0	59.202	14.737	.000			

Reports VCPU steal behavior by the distance the steal dragged the VCPU.

- Lvl-00: you stole it from a CPU in your chip
- Lvl-01: you stole it from a CPU in your book
- Lvl-02: you stole it from a CPU on another book
- (z10: ... in your book)
- (z10: ... in another book)
- (z10: ... not applicable)

New Report PHYSLOG

1FCX302 Run 2013/06/24 09:36:54	PHYSLOG Real CPU Utilization Lo
From 2013/02/19 11:49:58	
то 2013/02/19 11:56:10	
For 372 Secs 00:06:12	Result of GFCM0107 Run

Interval	<pu n<="" th=""><th>vum></th><th>Total</th><th></th><th></th><th></th><th></th><th></th><th></th></pu>	vum>	Total						
End Time Type	Conf	Ded	Weight	%LgclP	%0vrhd	LpuT/L	%LPmgt	%Total	ТуреТ/L
>>Mean>> CP	44	4	675	3387.1	27.947	1.008	31.870	3446.9	1.018
>>Mean>> ZAAP	2	0	50	.093	.042	1.451		.559	6.015
>>Mean>> IFL	16	0		448.16		1.002		451.28	1.007
>>Mean>> ICF	1	0	40	.004	.003	1.624	-	2.263	563.66
>>Mean>> ZIIP	3	0	50	.193	.090	1.465		1.487	7.694
>>Mean>> >Sum	66	4	900	3835.5	29.099	1.008	37.864	3902.5	1.017
11:50:04 CP	44	4		1963.9			36.226		1.035
11:50:04 ZAAP	2	0	50	.004	.001	1.306	.037	.042	10.107
11:50:04 IFL	16	0		501.44		1.002		504.90	1.007
11:50:04 ICF	1	0	40	.007	.004	1.566		2.289	312.13
11:50:04 ZIIP	3	0	50	.005	.002	1.334	.093	.100	19.003
11:50:04 >Sum	66	4	900	2465.4	34.356	1.014	41.006	2540.7	1.031
11:50:10 CP	44	4		2074.2			28.117	-	1.026
11:50:10 ZAAP	2	0	50	.004	.001	1.340	.003	.008	2.013
11:50:10 IFL	16	0		502.09		1.002		505.21	1.006
11:50:10 ICF	1	0	40	.007		1.568		2.176	322.32
11:50:10 ZIIP	3	0	50	.004	.001	1.354	.096	.102	24.829
11:50:10 >Sum	66	4	900	2576.3	26.632	1.010	32.511	2635.4	1.023
11:50:16 CP	44	4		2753.4			25.725		1.018
11:50:16 ZAAP	2	0	50	.003	.001	1.352	.002	.007	2.015
11:50:16 IFL	16	0		502.84		1.001		505.17	1.005
11:50:16 ICF	1	0	40	.006	.003	1.508		2.178	335.01
11:50:16 ZIIP	3	0	50	.004	.001	1.317	.093	.098	27.041
11:50:16 >Sum	66	4	900	3256.3	24.287	1.007	29.592	3310.1	1.017

You now have an easy way to see how busy your CEC is. (At last!)

Features:

Log

- Tallied by CPU type (CP, IFL, ...)
- One group of rows every sample interval
- Reports all three ways CPU gets used:
 - By logical CPUs
 - By PR/SM, chargeable
 - By PR/SM, unchargeable
- New concepts:
 - LPU T/L: like "guest T/V"
 - Type T/L: like "system T/V"

z/VM 6.3: More than Just Large Memory and HiperDispatch

==	_	= =
-	_	= 7 =

Large Memory Dump: Highlights

- Assures the system can produce a dump of a 1 TB system
- Includes changes to hard abend dump, SNAPDUMP, dump loader, and VM Dump Tool
- Changes to help improve the speed of hard abend dumps
 - Speed of dump-to-ECKD has been improved
 - Speed of dump-to-SCSI has been improved
- Can now stand-alone dump in hard-abend format to either ECKD or SCSI
- Emphasis on specifying DUMP operand on CP_OWNED statement
- Recovery of preallocated dump space after a SNAPDUMP
- SET DUMP can now list up to 30 DASD devices to receive the dump
- D1 R17 new fields to describe frames constituting 2 MB buffer reserved for dump

Large Memory Dump: A Couple of Runs

ECKD

SCSI

Dump Rel (O)			6.3		
Run ID		JW1E2561	JX1E2561	Delta	Pct
Dump rate (O) Dump Elapsed (O)	sec	257	164	-93	-36.2
Dump Rel (O)		6.2			
Run ID		JW1S2561	JX1S2561	Delta	Pct
Dump rate (O) Dump Elapsed (O)	sec	903	3334 308	-595	
Dump Records (0)	rec	1025723	1026767	1044	0.1

____ ____

_____ ___

=	_	= =
르	<u> </u>	ett.
		= = =

z/VM 6.3: Other Performance Items

FCP Data Router

- Data movement assist for FCP card
- Lets card move data from System z memory directly to its SCSI card
- Available on z196 GA2 and later

Local TLB Clearing Facility

- Guests can now use IPTE or IDTE with the local-clearing-control (LC) bit
- Ask your OS whether it does this

Access-Exception Fetch/Store Indication Facility

- More detail in Translation Exception Identifier when a storage access is denied
- Ask your OS whether it can make use of this

VSWITCH Recovery Stall Prevention

- Properly handle missing interrupt from Clear Subchannel (CSCH) related to uplink port

CCW fast-trans and MDC both now allow Prefix-LRE CCW

- Important because some later Linux distros use Prefix-LRE
- VM65156 missing path in guest mask no longer causes MDC bypass

Monitor Record Changes

- All the HiperDispatch changes
- All the Large Memory changes
- For FCP Data Router: D1 R19, D6 R25
- HiperSockets changes: D1 R19, D6 R25, D6 R26, D6 R27
- For Large Memory Dump: D1 R7, D3 R1
- VSWITCH Edge Port Aggregator: D6 R21, D6 R35
- VSWITCH Recovery Stall Prevention: D6 R22
- Additional debug: D0 R17, D0 R20, D3 R4, D3 R11, D5 R8, D5 R10, D6 R3, D6 R4, D6 R7, D6 R8, D6 R14, D6 R31, D9 R3

z/VM Performance Toolkit

High Performance FICON changes

 SYSLOG, SYSTEM, DEVICE HPF, HPFLOG, SYSCONF, IOCHANGE, LCHANNEL all updated

VSWITCH HiperSockets Bridge changes

- GVNIC, VNIC, GVSWITCH, VSWITCH, QDIO, IOCHANGE all updated

LGR changes

New reports LGRELOG and LGRDATA

Large Memory Changes

- 6 changed, 2 deleted, 8 new

HiperDispatch Changes

- 7 changed, 1 obsolete, 8 new

The CPU Measurement Facility

CPU Measurement Facility Counters

- CPU MF counters are a System z hardware facility that records the performance of the CPU and nest
 - Instructions, cycles, cache misses, ... processor-ish stuff
- Available on zEC12, zBC12, z196, z114, and z10 EC/BC
- The CPU MF counter values:
 - Help IBM to understand how your workload stresses a CEC
 - Help IBM to map your workload into the LSPR curves
 - Help IBM to understand your system when there is a processor performance problem
- z/VM 5.4 or later can all collect the CPU MF counters from the hardware
 - z/VM 5.4 and 6.1: VM64961, UM33440 (5.4), UM33442 (6.1)
 - Counters come out in a new Monitor record, D5 R13 MRPRCMFC
- We want volunteers to send us MONWRITE data!
 - Your contributions will help us to understand customer workloads!

CPU MF Counters and CP Monitor, Details

- Counter sample record is in the Processor domain
- MONITOR SAMPLE command manipulates counter collection
- QUERY MONITOR reveals whether counter collection is on
- z/VM writes the collected counters into the Monitor data stream
 D5 R13 MRPRCMFC, Processor domain, sample record
- The D5 R13 records land in your MONWRITE data
- CPUMF package on www.vm.ibm.com/download/packages/ can reduce the counters

IBM Wants Your CPU MF Counter Data

- Your data will help IBM to build a library of customer workloads
- Collect an hour's worth of MONWRITE data...
 - From a peak period, <- very important!</p>
 - With CPU MF counters enabled,
 - With one-minute sample intervals
- Contact Richard Lewis at rflewis at us.ibm.com
- Richard will send you instructions on how to transmit the data to IBM
- No deliverable will be returned to you
- We will be ever grateful for your contribution

Other Thoughts

Evolution of System z CPC Performance Workloads

- Now include a memory-constrained configuration
 - Was traditionally all memory-rich
- From 16-way to 32-way
- From workload-indexed to RNI-indexed
 - We do want your CPU MF counter data
- Our goal is to QA the CPC on workloads that represent z/VM customers' environments

IBM Systems & Technology Group

Summary

Summary

- z/VM 6.3 is a performance release
- Large memory: we expect scaling to 1 TB
- HiperDispatch: we expect improvements for amenable workloads
- Large memory dump: necessary for large memory
- Lots of CP Monitor and z/VM Performance Toolkit changes
- Keep that CPU MF data coming Richard wants to hear from you
- In and when you have a moment, send us some MONWRITE data I wanted a some MONWRITE data