Romney White IBM System z Architecture and Technology romneyw@us.ibm.com

z/VM 6.3 Scalability

GSE Hamburg – October, 2013

Topics

z/VM 6.3 Themes

Scalability and Performance

- -Large Memory Support
- -Enhanced Dump Support
- -HiperDispatch

References

Q&A

z/VM 6.3 Themes

Reduce the number of z/VM systems you need to manage

- Expand z/VM systems constrained by memory up to four times
 - Increase the number of Linux virtual servers in a single z/VM system
- Exploit HiperDispatch to improve processor efficiency
 - Allow more work to be done per IFL
 - Support more virtual servers per IFL
- Expand real memory available in a Single System Image Cluster to 4 TB

Improved memory management flexibility and efficiency

- -Benefits for z/VM systems of all memory sizes
- -More effective prioritization of virtual server use of real memory
- Improved management of memory on systems with diverse virtual server processor and memory use patterns

Large Memory Support

Large Memory Support

Support for up to 1TB of real memory (increased from 256 GB)

- Proportionally increases total virtual memory
- Individual virtual machine limit of 1TB unchanged

Improved efficiency of memory over-commitment

- Better performance for large virtual machines
- More virtual machines can be run on a single z/VM image (depending on workload)

Paging DASD utilization and requirements have changed

- No longer need to double the paging space on DASD
- Paging algorithm changes increase the need for a properly configured paging subsystem

Recommend converting all Expanded Storage to Central Storage

- Expanded Storage will be used if configured

Large Memory Support: Reserved Storage

Reserved processing is improved

- More effective at keeping specified amount of reserved storage in memory

SET RESERVED command is enhanced

- Pages can be now be reserved for NSS and DCSS as well as virtual machines
 - Set after CP SAVESYS or SAVESEG of NSS or DCSS
 - A segment does not need to be loaded in order to SET RESERVED for it
 - Can be used for monitor segment (MONDCSS)
- -Can define number of frames or storage size to be reserved
- SYSMAX operand defines maximum amount of storage that can be reserved for system
 - CP SET RESERVED command or STORAGE RESERVED config statement

Reserved settings do not survive IPL

Large Memory Support: The Big State Diagram

Large Memory Support: Trial Invalidation

- Page table entry (PTE) contains an "invalid" bit
- What if we
 - Keep the PTE intact but set the "invalid" bit
 - Leave the frame contents intact
 - Wait for the guest to touch the page
- A touch will cause a page fault, but...
- On a fault, there is nothing really to do except
 - Clear the "invalid" bit
- We call this trial invalidation

Large Memory Support: Two-Section Frame-Owned Lists

Large Memory Support: Global Aging List

- Size of global aging list can be specified but is best left to the system to manage
- All pages here are IBR
- Demand scan fills from the top
- Revalidated pages return to their ownedlists
- Changed pages are pre-written up from bottom of list
- Global aging list accomplishes age-filtering process that XSTORE used to provide
- No longer suggest XSTORE for paging, but will use it if configured

Large Memory Support: The Big State Diagram

- are used to satisfy requests for frames

Large Memory Support: Reorder

Reorder processing has been removed

-Commands remain for compatibility but have no effect

- **SET REORDER** command gives RC=6005, "not supported"
- QUERY REORDER command says it's OFF

– Monitor data no longer recorded

Large Memory Support: New/Changed Commands

	Concept	Command	Comments
	Size of the global aging list Early writes allowed	Command: SET AGELIST Config file: STORAGE AGELIST Lookup: QUERY AGELIST	Sets size of global aging list: - A fixed amount (e.g., GB) - A percentage of DPA Default is 2% of DPA Determines if early writes allowed (if storage-rich, say NO)
1:	Amount of storage reserved for a user or for a DCSS	Command: SET RESERVED Config file: STORAGE RESERVED Lookup: QUERY RESERVED	You can set RESERVED for: - A user, a NSS, or a DCSS You can also set a SYSMAX on total RESERVED storage Config file can set only SYSMAX

Large Memory Support: INDICATE Command Changes

Command	Comments
INDICATE LOAD	STEAL-nnn% field no longer appears in output
INDICATE NSS	Includes a new "instantiated" count (number of pages that exist) Sum of locus counts might add to more than "instantiated"
INDICATE USER	Includes a new "instantiated" count Sum of locus counts might add to more than "instantiated"
INDICATE SPACES	Includes a new "instantiated" count

Large Memory Support: Planning DASD Paging Space

Calculate the sum of

- -Logged-on virtual machine primary address spaces
- -Any data spaces they create
- -Any VDISKs they use
- Total number of shared NSS or DCSS pages

• Multiply by 1.01 to allow for PGMBKs and friends

Add to that sum

- Total number of CP directory pages (reported by DIRECTXA)
- -Min (10% of central, 4 GB) to allow for system-owned virtual pages
- Multiply by safety factor (e.g., 1.25) to allow for growth or uncertainty
- Remember that your system will abend (PGT004) if you run out of paging space
 - Consider using something that alerts on page space utilization, such as Operations Manager for z/VM

The "Sweet Spot" Workload

A synthetic workload called *Sweet Spot* imitates behaviors we have seen in customer-supplied MONWRITE data

	z/VM 6.2	z/VM 6.3	Delta	Pct. Delta
Cstore	256	384	128	
Xstore	128	0	-128	
External Throughput (ETR)	0.0746	0.0968	0.0222	29.8%
Internal Throughput (ITR)	77.77	105.60	27.83	35.8%
System Util/Proc	31.4	4.7	-26.7	-85.0%
T/V Ratio	1.51	1.08	-0.43	-28.5

By getting rid of both reorder and spin lock contention we achieved huge drops in %CPU and T/V

VIRSTOR Workload in Overcommitted Environment

ETR = External Throughput; ITR = Internal Throughput; DASD ST = DASD Service Time

Apache Workload in Overcommitted Environment

ETR = External Throughput; ITR = Internal Throughput; DASD ST = DASD Service Time

Enhanced Dump Support

Enhanced Dump: Scalability

Create dumps of real memory configurations up to 1 TB

- -Hard abend dump
- -SNAPDUMP
- Stand-alone dump

Performance improvement for hard abend dumps

- -Writes multiple pages of CP Frame Table per I/O
 - CP Frame Table accounts for significant portion of the dump
 - Previously wrote one page per I/O
- -Also improves time required for SNAPDUMPs and Stand-alone dumps

Enhanced Dump: Utilities

New Stand-Alone Dump utility

- Dump is written to disk either ECKD or SCSI
 - Type of all dump disks must match IPL disk type
 - Dump disks for first level systems must be entire ECKD volumes or SCSI LUNs
 - Dump disks for second level systems may be minidisk "volumes"
- -Creates a CP hard abend format dump
 - Reduces space and time required for stand-alone dump
- DUMPLD2 utility can now process stand-alone dumps written to disk
- VM Dump Tool supports increased memory size in dumps

Enhanced Dump: Allocating Disk Space for Dumps

Dumps are written to disk space allocated for spool

-Kept there until processed with DUMPLD2 (or DUMPLOAD)

Recommend allocating enough spool space for three dumps

- See "Allocating Space for CP Hard Abend Dumps" in CP Planning and Administration manual
- -<u>http://www.vm.ibm.com/service/zvmpladm.pdf</u>

CPOWNED statement

 Recommend use of DUMP option to reserve spool volumes for dump space only

SET DUMP rdev

- -Can specify up to 32 real device numbers of CP_Owned DASD
- -Order specified is the order in which they are searched for available space

Enhanced Dump: New Stand-Alone Dump Utility

SDINST EXEC (new)

- Used to create new stand-alone dump utility
- -For details:
 - Chapter 12, "The Stand-Alone Dump Facility", in CP Planning and Administration manual

APAR VM65126 required to run SDINST second-level on z/VM 5.4 – 6.2 systems

- -PTF UM33687 for z/VM 5.4
- -PTF UM33688 for z/VM 6.1
- -PTF UM33689 for z/VM 6.2

Enhanced Dump: What is Unchanged for Large Memory Dumps

- Old (pre-z/VM 6.3) stand-alone dump utility (HCPSADMP)
- DUMPLOAD
- VMDUMP

HiperDispatch

HiperDispatch

Objective: Improve performance of guest workloads

- z/VM 6.3 communicates with PR/SM to maintain awareness of its partition topology
 - Partition Entitlement and excess CPU availability
 - Exploit cache-rich system design of System z10 and later machines
- -z/VM polls for topology information/changes every 2 seconds

Two components

- -Dispatching Affinity
- -Vertical CPU Management

 For most benefit, Global Performance Data (GPD) should be on for the partition in its Activation Profile

- Default is ON

HiperDispatch: System z LPAR Entitlement

The allotment of CPU time for an LPAR

Function of

- -LPAR's weight
- -Weights for all other shared LPARs
- Total number of shared CPUs

Dedicated CPU partitions

- Entitlement for each logical CPU = 100% of one real CPU

HiperDispatch: Partition Entitlement vs. Logical CPU Count

Suppose we have 10 IFLs shared by partitions FRED and BARNEY:

Partition	Weight	Weight Sum	Weight Fraction	Physical Capacity	Entitlement Calculation	Entitlement	Maximum Achievable Utilization
FRED	63	100	63/100	1000%	1000% x	630%	1000%
logical 10-way					(63/100)		
BARNEY	37	100	37/100	1000%	1000% x	370%	800%
logical 8-way					(37/100)		

For FRED to run *beyond* 630%, BARNEY has to leave some of its entitlement *unconsumed*

CEC's excess power (XP) = total power (TP) - consumed entitled power (EP)

HiperDispatch: Entitlement and Consumption

Entitlement and Consumption

HiperDispatch: Horizontal and Vertical Partitions

Horizontal Polarization Mode

- Distributes a partition's entitlement evenly across all of its logical CPUs
- Minimal effort to dispatch logical CPUs on the same (or nearby) real CPUs ("soft" affinity)
 - Affects cache effectiveness
 - Can increase time required to execute a set of related instructions
- -z/VM releases prior to 6.3 always run in this mode

Vertical Polarization Mode

- -Consolidates a partition's entitlement onto a subset of logical CPUs
- -Places logical CPUs topologically near one another
- -Three types of logical CPUs
 - Vertical High (Vh)
 - Vertical Medium (Vm)
 - Vertical Low (VI)

HiperDispatch: Horizontal and Vertical Partitions

Two Ways To Get 630% Entitlement

Horizontally: 10 each @ 63%

63 63 63 63 63 63 63 63 63	63	63
----------------------------	----	----

Vertically: 5 Vh @ 100%, 2 Vm @ 65%, 3 VI @ 0%

In vertical partitions:

- Entitlement is distributed unequally among LPUs
- Unentitled LPUs are useful only when other partitions are not using their entitlements
- PR/SM tries very hard not to move Vh LPUs
- PR/SM tries very hard to put the Vh LPUs close to one another
- Partition consumes its XPF on its Vm and VI LPUs

HiperDispatch: Dispatching Affinity

- Processor cache structures have become increasingly complex and critical to performance
- z/VM 6.3 groups together the virtual CPUs of n-way guests
 - Dispatches guests on logical CPUs and in turn real CPUs that share cache
 - Goal is to re-dispatch guest CPUs on same logical CPUs to maximize cache benefits
 - Better use of cache can reduce the execution time of a set of related instructions

HiperDispatch: Vertical Polarization Mode

z/VM monitors CPU use in its LPAR as well as others to predict CPU demand and project whether excess CPU power will be available

- Determines the best number of CPUs for consuming the available power

- Determines which logical CPUs should be in use
 - Unnecessary CPUs are put into new "parked" state

z/VM 6.3 runs in vertical mode by default

- -Mode can be switched between vertical and horizontal
 - New **POLARIZATION** option of SET SRM command and SRM statement
- -Vertical mode is not permitted for second-level z/VM systems

DEDICATE command or directory statement not allowed in vertical mode

-Cannot switch to vertical mode if there are dedicated CPUs

HiperDispatch: Parked Logical CPUs

z/VM automatically parks and unparks logical CPUs

- -Based on use and topology information
- -Only in vertical mode

Parked CPUs remain in wait state

-Still varied on

Parking/Unparking is faster than VARY OFF/ON

HiperDispatch: Checking Parked CPUs

QUERY PROCESSORS shows parked CPUs

PROCESSOR nn MASTER type PROCESSOR nn ALTERNATE type PROCESSOR nn PARKED type PROCESSOR nn STANDBY type

HiperDispatch: Checking Topology

QUERY PROCESSORS TOPOLOGY shows partition topology

q proc topology 13:14:59 TOPOLOGY 13:14:59 NESTING LEVEL: 02 ID: 01 13:14:59 NESTING LEVEL: 01 ID: 01 13:14:59 PROCESSOR 00 PARKED СΡ 0000 VH13:14:59 PROCESSOR 01 PARKED CP VH 0001 13:14:59 PROCESSOR 12 PARKED 0018 CP VH 13:14:59 NESTING LEVEL: 01 ID: 02 13:14:59 PROCESSOR OE MASTER СΡ 0014 VH 13:14:59 PROCESSOR OF ALTERNATE CP VH 0015 13:14:59 PROCESSOR 10 PARKED CP VH 0016 13:14:59 СΡ 0017 PROCESSOR 11 PARKED VH . TD: 02 13:14:59 NESTING LEVEL: 02 13:14:59 NESTING LEVEL: 01 TD: 02 13:14:59 0020 PROCESSOR 14 PARKED CP VΜ 13:14:59 NESTING LEVEL: 01 ID: 04 13:14:59 PROCESSOR 15 PARKED 0021 СΡ VM 13:14:59 0022 PROCESSOR 16 CP PARKED VL 13:14:59 PROCESSOR 17 PARKED CP VL 0023

HiperDispatch: Other Changes

INDICATE LOAD

 AVGPROC now represents average value of the portion of a real CPU that each logical CPU has consumed

Monitor records – new and updated

z/VM Performance Toolkit – new and updated reports

HiperDispatch: Knobs

Concept	Knob
Horizontal or vertical	SET SRM POLARIZATION { HORIZONTAL VERTICAL }
How optimistically to predict XPF floors	SET SRM [TYPE cpu_type] EXCESSUSE { HIGH MED LOW }
How much CPUPAD safety margin to allow when parking below available power	SET SRM [TYPE cpu_type] CPUPAD nnnn%
Reshuffle or rebalance	SET SRM DSPWDMETHOD { RESHUFFLE REBALANCE }

Defaults

- Vertical mode
- EXCESSUSE MEDIUM (70%-confident floor)
- CPUPAD 100%
- Reshuffle

CP Monitor has been updated to report changes to these new SRM settings

Memory-Touching Workload, Light Edition

Memory-Touching Workload, Heavy Edition

Comments on Workloads

Workloads amenable to z/VM HiperDispatch

- -High-CPU, CPU-constrained workloads (CPI)
- -Active VCPU:LCPU ratio not too large (context switches)
- -Runs in a partition with multiple topology containers (affinity)

Workloads indifferent to z/VM HiperDispatch

- -Constrained by something else (e.g., I/O)
- -Memory-overcommitted
- -High Virtual:Logical processor ratio with all low activity virtual CPUs
- -Workloads with poor memory access habits

Remember that vertical mode isolates your partition

More Information

z/VM 6.3 resources

http://www.vm.ibm.com/zvm630/ http://www.vm.ibm.com/events/

z/VM 6.3 Performance Report

http://www.vm.ibm.com/perf/reports/zvm/html/index.html

z/VM Library

http://www.vm.ibm.com/library/

Live Virtual Classes for z/VM and Linux

http://www.vm.ibm.com/education/lvc/

Efficiency of One. Flexibility of Many. 40 Years of Virtualization.