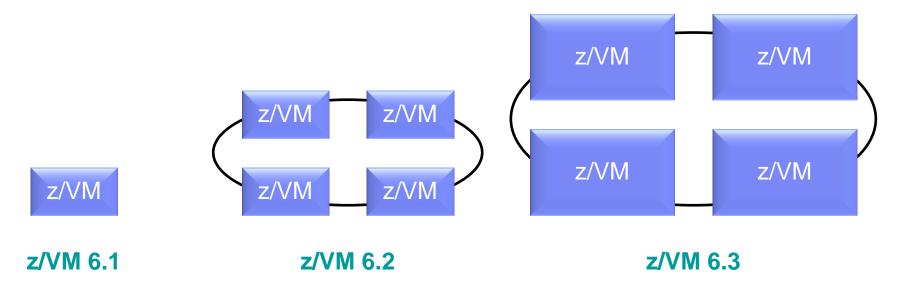


z/VM Update

Romney White
System z Architecture and Technology
romneyw@us.ibm.com


Agenda

- z/VM 6.3 Themes
- z/VM 6.3 Content
 - Processor
 - Memory
 - **I/O**
 - Network
 - Install and Service
 - Systems Management
 - Performance
 - Miscellaneous
- Q&A

z/VM 6.3 – Making Room to Grow Your Business

- Preview Announcement introducing z/VM 6.3 on February 5, 2013
- Full Announcement on July 23, 2013
- General Availability on July 26, 2013

z/VM 6.3 Themes

- Reduce the number of z/VM systems you need to manage
 - Expand z/VM systems constrained by memory up to four times
 - Increase the number of Linux virtual servers in a single z/VM system
 - Exploit HiperDispatch to improve processor efficiency
 - Allow more work to be done per IFL
 - Support more virtual servers per IFL
 - Expand real memory available in a Single System Image Cluster to 4 TB
- Improved memory management flexibility and efficiency
 - Benefits for z/VM systems of all memory sizes
 - More effective prioritization of virtual server use of real memory
 - Improved management of memory on systems with diverse virtual server processor and memory use patterns

z/VM 6.3 Content

- Processor
 - HiperDispatch
- Memory
 - Memory Scalability
 - Large Memory Dump support
 - IPL Changes for NSS in Linux Dump
- I/O
 - MSS and DS8K Synergy (stage 1)
 - FCP Data Router support

z/VM 6.3 Content ...

Network

- Live Guest Relocation support for Port Based Virtual Switches
- Virtual Switch VEPA support
- HiperSockets Completion Queue Guest Exploitation
- Virtual Switch Recovery Stall Prevention
- Manual Virtual Switch Recovery
- IPv6 support for SSL
- Uplevel MPROUTE to z/OS 1.13
- A220/CLAW/DHCP/LPD Removal
- Support TLS V1.2

Install and Service

- Installation Upgrade in Place
- Highest Level Part Handling for Multiple Releases

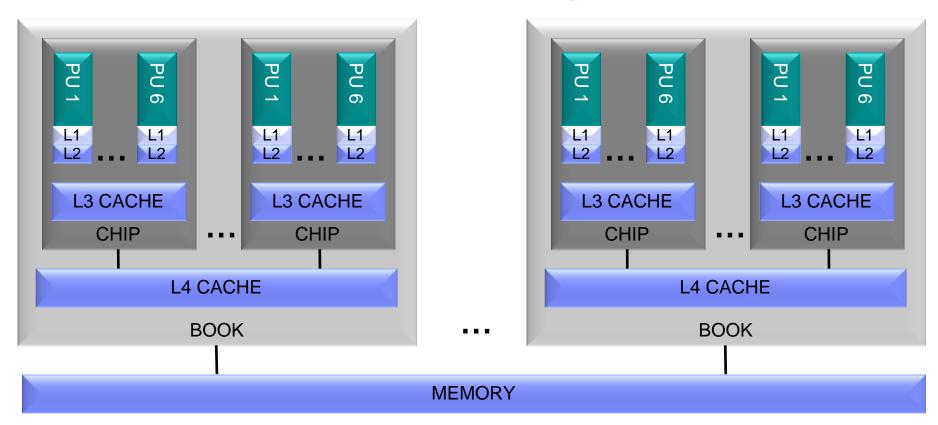
z/VM 6.3 Content ...

- Systems Management
 - SMAPI enhancements
 - Disable CSE
 - OVERRIDE utility removal
 - OpenStack enablement
 - xCAT appliance integration
- Performance Toolkit
 - Memory Scalability
 - HiperDispatch
 - Guest Fibre-Channel eXtensions (FCX)
 - HiperSockets Bridge
 - Live Guest Relocation

z/VM 6.3 Content ...

- Miscellaneous
 - Uplevel DFSMS Binder to z/OS 1.13
 - RACF CMS 27 and LE enablement

Processor


HiperDispatch

- Improves processor efficiency
 - Better n-way curves
 - Supported processor limit remains at 32
 - Better use of processor cache to take advantage of cache-rich system design
- Two components
 - Dispatching Affinity: dispatching cognizant of processor cache topology
 - Vertical CPU Management: cooperation with PR/SM to distribute physical processor resources to logical processors more efficiently for some configurations

HiperDispatch: Dispatching Affinity

- Processor cache structures increasingly complex and critical to performance
- Goal is to re-dispatch work close (in terms of topology) to where it last ran

HiperDispatch: Dispatching Affinity

- Dispatcher changed to be aware of cache topology and dispatch work accordingly
 - Attempt to dispatch virtual CPU near cache where its data may be, based on where it was last dispatched
- Potentially increases cache efficiency, lowering processor costs by reducing CPI (Cycles Per Instruction)
- Previously, z/VM used soft affinity to processor when dispatching virtual CPUs
 - No awareness of chip or book

HiperDispatch: Vertical CPU Management

- Attempts to align system workload processor resource requirements to a minimal number of logical processors to improve efficiencies of system management and cache use
- With current horizontal management, weight of particular processor type is evenly distributed across the logical processors of the z/VM LPAR
- Example
 - 10 Physical IFLs
 - LPAR A: 8 Logical IFLs, weight of 400 out of 1000
 - LPAR A's entitlement is 4 IFLs, so 8 is more than necessary if LPAR A only receives its entitlement
 - z/VM & LPAR can cooperate
 - z/VM concentrates the workload on a smaller number of logical processors
 - LPAR redistributes the partition weight to give a greater portion to each of the (smaller number of) logical processors

Memory

Large Memory Support

- Increase the real memory limit from 256GB to 1TB
 - Proportionately increases total virtual memory based on tolerable over commitment levels and workload dependencies
 - Individual virtual machines limit unchanged at 1TB
- Paging DASD utilization and requirements change
 - Proactive writing of pages to DASD increases need to have properly configured paging subsystem
 - Removed the need to provide double the paging space on DASD
 - Some additional space will continue to be recommended to avoid problems.
- Expanded Storage continues to be supported with current limit of 128GB

Large Memory Support

- Page selection algorithms rewritten
 - Reorder processing removed
- Improved effectiveness of the CP SET RESERVE command
 - Reserved pages protected better than in previous releases
 - Support for reserving pages of NSS or DCSS space
 - E.g., Monitor Segment (MONDCSS)
 - Ability to limit the total number of reserved pages in the system

Large Memory Dump

- Ensure that customers can obtain dumps of z/VM systems that exploit larger real memory
 - Extended z/VM to create dumps of real memory configurations up to 1 TB
- New Stand-Alone Dump utility can dump to either ECKD or SCSI devices
- Enhancements made to speed up hard abend dump processing
 - Reduce the effect of using the SNAPDUMP command on production systems
- No enhancements to existing VM Stand-Alone Dump Utility, VMDUMP, and DUMPLOAD
 - VM Stand-Alone Dump Utility supports storage sizes up to 512 GB
 - VMDUMP dumps virtual machines and is not recommended for dumping large amounts of memory
 - DUMPLD2 (DUMPLOAD replacement) can load dump to multiple files/devices

IPL Changes to Retain NSS

- Linux users can share the kernel via NSS
 - Requires a specific setup in Linux
 - All sharing Linux systems at same kernel level
- NSS released when guest IPLs
- Linux has its own tools to create a stand-alone dump
 - Linux standalone dump tool IPLed in virtual machine
 - NSS not included in dump because it is released by IPL
 - NSS contains kernel code that is often needed for debug purposes
- Enhancement allows stand-alone dump tools to include NSS contents in the dump
 - CP IPL command enhanced with new NSSDATA option
 - Changed specifically to support Linux standalone dump

I/O

MSS and DS8K Synergy (Stage 1)

- Support new disk subsystem capabilities
 - Preemptive HyperSwap notifications to improve Hyperswap reliability
 - Summary event notifications to improve PPRC suspend scalability
- Allow PPRC secondary volumes to reside in an alternate subchannel set
 - Complement z/OS alternate subchannel set support
 - Simplify I/O subsystem configuration
- Provide related infrastructure for exploitation by GDPS 3.8

FCP Data Router Support

- Initial FCP adapter design used store-and-forward approach
 - Intermediate buffer in adapter
 - Limited throughput
- zEnterprise GA2 introduced DMA capability in FCP adapter
 - Optional feature enabled by guest
 - Improves throughput by eliminating intermediate buffer use
 - Allows errors to be reported after initial acceptance of request
 - Enables multiple I/Os to be acknowledged in one response
- Enabled for guest exploitation

Network

Port-Based Virtual Switch LGR Support

- Logical ports on a VSWITCH are reserved for a guest (one or more)
- Each port associated with a VLAN
- Authorization changes take effect immediately
- Eliminates need for VLAN-aware guests

USER1 4f8 USER1 4fc VLAN 100 VSWITCH1 3

set vswitch vswitch1 portnumber 1 userid USER1
set vswitch vswitch1 portnumber 2 userid USER1
set vswitch vswitch1 portnumber 3 userid USER2 porttype trunk
set vswitch vswitch1 vlanid 100 add 1 3
set vswitch vswitch1 vlanid 200 add 2 3

USER1:
Couple 4f8 to system vswitch1 portnum 1
Couple 4fc to system vswitch1 portnum 2

USER2:
Couple 4f8 to system vswitch1 [portnum 3]

define vswitch vswitch1 portbased vlan aware native none

USER2 4f8

Virtual NIC Relocation Eligibility Requirements

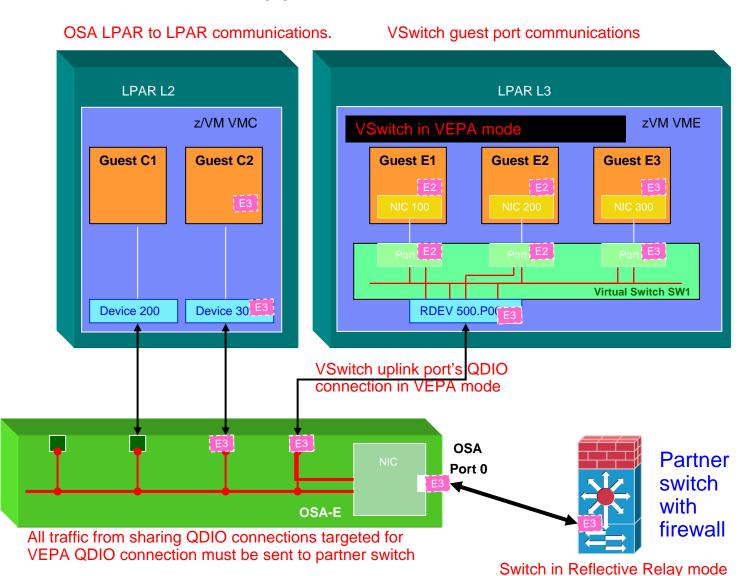
- Improved eligibility checks for Virtual Switch
 - Additional attributes now checked to make sure source and target match
 - CP Authorizations from source will be set on target if missing or not the same
 - Authorization to access Virtual Switch
 - VLAN attributes on target
 - OSDSIM authorization
 - MACPROTECT setting for virtual NIC
 - PROMISCUOUS setting

Virtual NIC Relocation Eligibility Requirements

- Requirements checked
 - Same Virtual Switch name
 - Same Virtual Switch type (QDIO, IEDN, INMN)
 - Guests coupled to IEDN or INMN VSWITCH not eligible for relocation
 - Uplink ports must be operational and have same EQID
 - Same Virtual Switch protocol (ETHERNET or IP)
 - Same user-based or port-based attribute
 - Same VLAN attributes
 - VLAN aware or unaware
 - Native VLAN ID
 - Default VLAN ID
 - Same isolation setting (ON or OFF)
 - For port-based Virtual Switch, same USERID and PORT number definitions
 - Same OSDSIM setting
 - Same VLAN port type (ACCESS or TRUNK)

Virtual Switch Recovery Stall Prevention

- Virtual Switch controller can become hung trying to clear failure condition and failover to another uplink device
 - CP enhanced to try to clear conditions causing a hang so that normal failover processing can continue
 - Exploits z/VM Missing Interrupt Handler selectively based on CCW command code
 - CP takes measures to force failover to an alternate controller in extreme cases
 - Primary controller will remain hung
 - Alternate controller will accomplish failover to a backup uplink device



Virtual Switch VEPA Support

- Implemented in the z/VM Virtual Switch and the OSA feature
 - Based on existing OSA QDIO Connection Isolation
- Supports both IEDN and customer external (QDIO) Ethernet (Layer 2) networks
- VEPA mode instantiated through the SET VSWITCH command (VEPA option)
 - Initiates a VEPA mode QDIO connection between the z/VM VSWITCH and its OSA uplink port
 - Initiates a VEPA mode connection between the partner switch and the OSA
- VEPA support requires a network switch that supports Reflective Relay (VEPA) and is exclusive to the IBM zEC12 processor and beyond

Virtual Switch VEPA Support

HiperSockets Completion Queue Guest Exploitation

- Transfer HiperSockets messages asynchronously
- Used when traditional synchronous queues are full
- Automatic enablement; no z/VM configuration required
- Helpful when traffic is "bursty"
- z/VM 6.2 support provided for z/VM Virtual Switch
 - Support for guest exploitation added

Manual Virtual Switch Recovery

- New SET VSWITCH UPLINK SWITCHOVER CP command
 - Forces fast failover to the backup uplink device
 - Use when primary uplink device needs to be made available for hardware maintenance
 - Link aggregation (GROUP) uplink ports not supported
 - SET PORT GROUP LEAVE/JOIN is preferred method for Link Aggregation
 - Virtual Switch must have active and connected uplink port
 - NIC uplink port is not supported
 - Virtual Switch with NOUPLINK is not supported
 - At least one backup uplink device must be configured
 - Bridge Ports not supported
 - Use SET VSWITCH BRIDGE DISCON to accomplish failover

TCP/IP

IPv6 Support for SSL

- Since January 2011, US Federal Government has required IT companies doing business with Government agencies to support IPv6-based communication
- In support of this requirement, an IPv6 roadmap was developed for z/VM to outline a schedule for its TCP/IP clients and servers to become IPv6-capable
- IPv6 support for the z/VM SSL Server is delivered in z/VM 6.3 in accordance with this roadmap
 - Parts of the TCP/IP stack that communicate with the SSL Server updated to support IPv6 addressing
 - Servers that currently support secure IPv4 connections (FTP, Telnet, and SMTP)
 modified to also support secure IPv6 connections

Uplevel MPROUTE to z/OS 1.13

Improve serviceability (comply with z/OS DoU)

A220/CLAW/DHCP/LPD Removal

- A220 HYPERchannel devices
- CLAW devices
- DHCP daemon
- LPSERVE (LPD)
 - RSCS LPD will continue to be provided at no charge
 - Does not affect LPR

Support TLS V1.2

- Enhance SSL server to support TLS 1.2
 - Allow clients to adhere to requirements of NIST Special Publications 800-131a and 800-131b
 - Prepare for potential requirements of the Common Criteria Operating System
 Protection Profile (OSPP), the basis of z/VM's current Target of Evaluation

Installation and Service

Release Migration Procedures

- Migration to z/VM 6.3 can use one of three procedures
 - Migration Documented in the migration section of z/VM Installation Guide
 - E.g.,

```
5.4 or 6.1 \rightarrow 6.3 non-SSI
```

5.4 or 6.1
$$\rightarrow$$
 6.3 SSI

- Use Cases Documented in Part 5 of z/VM CP Planning and Administration
 - E.g.,

Converting a z/VM System to a Single-Member z/VM SSI Cluster Combining Two Non-SSI z/VM Systems to Create a z/VM SSI Cluster

Upgrade in Place – Described in z/VM Installation Guide

Installation Upgrade In Place

- New INSTUPGR command
 - Designed to facilitate new shared environment supported by SSI
 - Also supports non-SSI systems
- Stage 1
 - Does not affect workload running on the system being upgraded
 - Does not affect the way other members in an SSI cluster are running
 - Does not change the current function of other members in a cluster
 - Does not require an IPL or taking down a virtual machine
 - Can be backed out
- Stage 2
 - May affect the workload running on the system being upgraded
 - Can be backed out only by restoring a DDR backup
 - May affect another member in the SSI cluster

Highest Level Part Handling

- When SSI cluster members run different release or service levels, certain parts are required to be at the highest release level on all members in order to manage shared resources
 - User Directory: DIRECTXA MODULE, DISKMAP EXEC, DIRMAP MODULE, RPIDIRCT EXEC
 - System-owned DASD: CPFMTXA EXEC, CPFMTXA MODULE
 - SSI Persistent Data Record: FORMSSI MODULE
- In z/VM 6.2, these parts were moved to a common disk
- In z/VM 6.3, new common test/production build disk set used to ship and maintain these parts
 - Disks located on common (cluster-wide) volume
 - Installation and service programs and files recognize these parts and process them to ensure they are copied to the common disks to prevent back leveling

Systems Management

SMAPI Enhancements

- Restructure SMAPI Directory Exit (DMSSIXDM)
 - Directory exit is 11,000 lines of code and provides more than 70 APIs
 - Makes service updates and new development very difficult
 - Split into several common routines and a separate EXEC for each API
- New capabilities for existing API functions
 - System_Disk_Query
 - System_WWPN_Query
 - Virtual Network Vswitch Create Extended
 - Virtual_Network_Vswitch_Query_Extended
 - Virtual_Network_Vswitch_Set_Extended

SMAPI Enhancements ...

New API functions

- Image_Lock_Query_DM
- Profille_Lock_Query_DM
- Image_MDISK_Link_Query
- SMAPI_Status_Capture
- SMSTATUS (stand-alone command, not callable as an API)
- System_Disk_I/O_Query
- System_EQID_Query
- System_Information_Query
- System_Page_Utilization_Query
- System_Performance_Info_Query
- System_Service_Status_Query
- System Shutdown
- System_Spool_Utilization_Query
- Network IP Interface Create
- Network_IP_Interface_Modify
- Network_IP_Interface_Query
- Network_IP_Interface_Remove

Disable CSE

- CSE (Cross-System Extensions) is pre-SSI VM clustering technology
 - Replaced by and incompatible with SSI
 - In z/VM 6.2, can choose either CSE or SSI for clustering
- In z/VM 6.3, all CSE functions are disabled except XLINK
 - XLINK used to share minidisks across z/VM systems
 - Supports more than four systems
 - Still supported in non-SSI environments
- External interfaces required for CSE are disabled
 - Publication references removed

OVERRIDE Utility Removal

- User Class Restructure (UCR) first introduced in VM/SP Release 6 to allow changes to the privilege classes associated with CP commands and DIAGNOSE codes
- OVERRIDE utility is "compiler" used to create special UCR files in the spooling subsystem
- Function replaced by MODIFY COMMAND capability in VM/ESA
 - Use the CP MODIFY COMMAND command or SYSTEM CONFIG statement

OpenStack Enablement

OpenStack

- "[...] global collaboration of developers and cloud computing technologists producing the ubiquitous open source cloud computing platform for public and private clouds" (openstack.org)
- Building z/VM adapter to present OpenStack APIs leveraging z/VM SMAPI
- Basis for SmartCloud offerings for System z

Schedule

- 2012-12-10: Initial code drop to OpenStack community
- 2013-04-18: Final code drop to OpenStack community for z/VM 6.3 support

xCAT Appliance Integration

- eXtreme Cloud Administration Tool
 - Open source tool to manage, provision, and monitor physical and virtual machines
 - Grew up in HPC environments
- Available for z/VM today as GTS service offering
- Integrated into z/VM 6.3
 - Virtual machine definitions
 - Management node and zHCP executables
 - Serviceable via full-part replacement



xCAT Appliance Integration ...

- Functionality
 - Virtual machine lifecycle management
 - Inventory
 - Image management
 - Network management
 - Storage management
 - Operating system management
 - Monitoring
- xCAT management node (MN) runs on preconfigured Linux virtual server
 - Manages each z/VM partition using a System z hardware control point (zHCP) running on second preconfigured Linux virtual server
 - zHCP interfaces with z/VM systems management API (SMAPI), directory manager (DirMaint), and Control Program (CP) to manage the z/VM partition
 - C socket interface to communicate with the SMAPI layer
 - VMCP Linux module to communicate with the CP layer

xCAT Architecture

zManager Support Removal

- Unlike zEnterprise blade hypervisors, z/VM is not encapsulated
- Clients tell us they cannot perform all z/VM management tasks via zManager
 - Hypervisor configuration and management
 - Backup
 - Accounting
 - Clustering and guest mobility
 - Performance analysis and tuning
 - Dedicated device management
 - ...
- Need to continue to use existing management interfaces conflicts with zManager
- Unrealistic to expect zManager to address gaps and restrictions, especially as z/VM evolves
- z/VM 6.2 will be last release supported by zManager and only on zEC12 / zBC12 and earlier
 - z/VM will continue to be supported in a logical partition but zManager will not provide management of z/VM guests
 - Alternatives will be provided for establishing IEDN connectivity

System z Cloud Ecosystem

Integrate Automate Orchestrate

IBM Products &

& Offerings

• zEnterprise: zEC12, zBC12

Linux on System z

• Tivoli Provisioning Manager

• Cloud Ready for Linux on System z

Tivoli Service Automation

Tivoli Service Automation
 Manager

• z/VM 6.3

SmartCloud Entry

SmartCloud Provisioning

SmartCloud Orchestrator

System z support currently in development

ISV Solutions

CSL Wave

- Provided by <u>CSL International</u>, an IBM company
- Hypervisor manager
- Provides simplified graphical user interface for z/VM system management tasks

zPRO

- Provided by **Velocity Software**
- Add-on feature to Velocity's zVPS product that provides performance management
- Provides golden image creation, cloning, and operational controls

APPLogic

- Provided by **Computer Associates**
- Manages both distributed and z/VM environments.

MOAB

- Provided by Adaptive Computing
- Provides policy driven cloud management based on xCAT

xCAT

- Extreme Cloud Administration Tool
- Now shipped in z/VM 6.3
- Required for OpenStack

OpenStack

- Being enabled with z/VM 6.3
- Used as a code base for SmartCloud Entry / Provisioning / Orchestrator

Open

Source Options

Performance

Performance Toolkit Feature Enhancements

- New memory displays/reports
 - User paging menu
 - User Page Activity
 - User Page Activity (benchmarked)
 - User Page Utilization Data
 - User Page Utilization Data (benchmarked)
 - Available List Data Below 2G, by Time
 - Available List Data Above 2G, by Time
 - Steal Statistics, by Time

Performance Toolkit Feature Enhancements ...

- New HiperDispatch displays/reports
 - System topology machine organization
 - Logical PU Organization Log
 - Logical PU Configuration Log
 - Dispatch Vector Configuration Log
 - Dispatch Vector Activity
 - Real CPU Utilization Log
 - DSVBK Steals per Processor Log Screen
 - Processor Log Screen
 - Logical Partition Activity Menu
 - Logical Partition Share
 - Logical Partition Logs Menu

Performance Toolkit Feature Enhancements ...

- Guest Fibre-Channel eXtensions (FCX)
 - Additions to existing I/O displays/reports
- HiperSockets Bridge
 - Additions to existing network displays/reports
- New Live Guest Relocation displays/reports
 - Live Guest Relocation Event Log
 - Live Guest Relocation Data

Other

Uplevel DFSMS Binder to z/OS 1.13

- Support PRIV parameter on STRIPSEC function
 - Allows Private Code sections to be removed
- Support RLD conditional sequential resolution
- Improve serviceability (comply with z/OS DoU)

RACF LE and CMS 27 Enablement

- RACF/VM supplies its own CMS system
- Upgrade CMS level one provided with z/VM 6.3
 - Move to a supported release of CMS (was CMS 14!)
 - Remove CMS-imposed restrictions on running Language Environment
- Enable Language Environment (LE) and LE-dependent programs, specifically System SSL, to run in the RACF/VM virtual machine
 - System SSL requires LE C run-time support
 - Enable future support for RACDCERT (RACF digital certificates)

