

TCP/IP for VSE/ESA 1.4 and 1.5

1

Performance considerations

Ingo Franzki e-mail: ifranzki@de.ibm.com VSE/ESA Development

05/07/03

Contents

e-business

TCP/IP basics

- General TCP/IP performance tuning
- TCP/IP for VSE/ESA
 - Multiple TCP/IP partitions
 - Startup, Parameters
- Telnet and FTP Performance results
- News with 1.4
 - OSA-Express and QDIO
- News with 1.5
 - HiperSockets support
 - Hardware Crypro support

Protocol Layers

e-business

	-		-	
Application	Message	Telnet FTP HTTP	SNMP NFS 	
Transport	UDP Datagram TCP Segment	TCP connection oriented	UDP connection less	
Internetwork	IP Datagram	IP (connectionless)		
Link (Device Drivers)	Frames	Token-Ring, Ethernet, FDDI, ATM		
Hardware		Hardware		

Protocol Layers - continued

TCP = Transmission Control Protocol

4

- Connection oriented
- Accepts data transmission requests of any length
- Breaks the transmission data into chunks (TCP segments)
- Reliably sends them across the network
- Employs checksums, sequence numbers, timestamps, time-out counters for retransmission
- Uses and exploits acknowledgments
- ► Used for FTP, HTTP, Telnet, ...

Protocol Layers - continued

- UDP = User Datagram Protocol
 - Connectionless
 - UDP Datagram treated as 'single entity'
 - Each UDP Datagram is delivered separately
 - No checking for successful delivery

5

- No use of acknowledgments
- Datagram length is limited
- ► Used for SNMP, NFS, ...

Protocol Layers - continued

6

- IP = Internet Protocol
 - ► No reliability, flow control or error recovery
 - Can do fragmentation and reassembly of its datagrams
 - No acknowlegments used
 - Just performs the transfer of IP datagrams

Encapsulation principle for layers

- Each layer sends its data down the protocol stack
- Receives its data from the layer below

Protocol Layers - continued

Physical transferred (Frame)

Header	IP Datagram (or fragment)	Trailer
	IP datagram	

Header	IP Data (TCP segment or UDP datagram)
--------	---------------------------------------

TCP Segment

Header TCP data (application message)

UDP Datagram

Header UDP data (application message)

Maximum Transfer Unit

- MTU = Maximum Transfer Unit
 - Maximum amount of data in a frame that can be sent over the physical media
 - Maximum IP datagram size

Adapter	Default	Minimum	Maximum
Ethernet	1500	576	1500
Token-Ring	1500	576	4464 (4 Mbit/s)
			17914 (16 Mbit/s)
			17914 (100 Mbit/s)
CTC	4096	576	16K (RS/6000 CLAW)
			32K (S/390 CTCA)
Fast Ethernet	1500	576	1500
FDDI	1500	576	4K
Gigabit Ethernet	1500	576	9K
HiperSockets	1500	576	64K

Maximum Segment Size

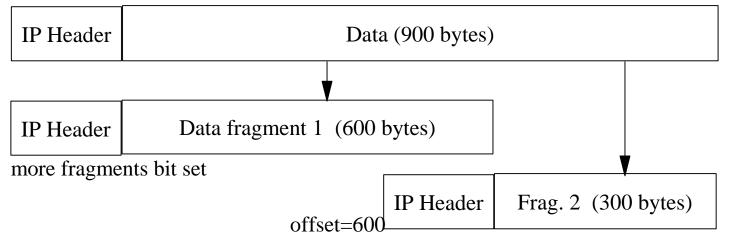
- MSS = Maximum Segment Size
- Biggest amount of data a TCP stack can receive in a single TCP segment
- Sent at connection setup time to communication partner

IP Header	TCP Hdr	MSS			
20 bytes	20 bytes				
		TCP Segment			

MSS = **MTU** - 40 bytes (without fragmentation)

Optimal MSS for a TCP Connection: MIN out of

- the MSS value of the other system
- the MTU value of the route minus 40 bytes



IP Fragmentation and Reassembly

Example: MTU=620

Large (unfragmented) IP datagram

- Large IP datagrams can be fragmented, each getting its own IP header
- Datagram is reassembled at final destination

IP Fragmentation and Reassembly (continued)

- Performance impacts
 - ► For sender
 - CPU overhead to create and transmit additional packets
 - Retransmit ALL packets in a datagram if a packet is lost
 - ► For receiver
 - -CPU overhead to reassemble the packets
 - Memory overhead for buffers to reassemble the packets
 - Delays if a packet is lost
 - No problem if fragmentation only occurs occasionally

TCP Windowing Technique

- Send as much data as possible/reasonable before waiting for an acknowledgment
- Receiver decides how much data it is willing to accept
- Sender must stay within this limit
- Window is always related to a single session and direction
- At connection setup each partner assigns receive buffer space
- Every ACK sent back by the receiver
 - Contains the highest sequence number received
 - ► The size of its current receive window left

TCP/IP Performance Tuning

- Operating system tuning
 - Includes to tune local file attributes
- TCP/IP setup tuning
- Communication/network tuning
 - Mainframe end
 - Network
 - Workstation end
- TCP/IP application tuning

TCP/IP Performance Tuning

TCP/IP Performance is limited by the

14

- Speed of the slowest link
- Window size of receiver, divided by the round trip time
- Amount of CPU-time available on host
- Speed of reading/writing data from/to disk
- Many TCP/IP performance problems are
 - Environment specific
 - Implementation specific
 - Not caused by inherent protocol limits

Network Performance

- Long transfer times in a net may be caused by
 Slow links or small MTUs
 - Too many links involved or routing not efficient
 - Inefficient setup of packet and window sizes
 - Higher share of IP datagrams
 - -e.g. 'time to live' expired
 - Higher share of resent TCP segments
 - 'Retransmission rate'
 - -ACKs are delayed too long

TCP/IP Acknowledgment Considerations

- TCP ACKs are 'cumulative'
- No packet must be individually and immediately acknowledged
- Packets are only sent as long as the receiver's window can hold the data
- Packets are resent, if after a time-out no ACK was received by the sender
- Performance implications
 - Sender should proceed to send data, as long as receive window is open
 - A too low time-out in the sender may cause unnecessary retransmission of packets
 - ► A too high time-out my reduce the data rate

Principal Performance Dependencies

e-business

Parameter	Host	Host	Network	DASD
	CPU-time	Storage	Transfer time	time
Host CPU speed	X			
S/390 Op.Syst. & Setup	Х	Х		Х
MTU/MSS used	Х	Х	Х	
Window size		X	Х	
# transfer buffers		Х	Х	
Type of Comm.Adapter			Х	
Network/Line speed			Х	
Network reliability	Х	X	Х	
#Applbytes in/out	Х	Х	Х	Х
TCP/IP implementation	X	Х	Х	X
TCP/IP application	Х	X	Х	X
Other TCP/IP parameters	Х	Х	Х	Х
DASD I/O Subsystem				X
DASD I/O Blocking	X			Х

X major impact

TCP/IP for VSE/ESA

- VSE native implementation
- Especially developed for VSE (not ported)
- Runs in a separate VSE partition
 - Own multitasking mechanism
 - All daemons/servers run in the TCP/IP partition
 - -I/O is done from the TCP/IP partition
 - Each TCP/IP partition has a unique ID in the EXEC card
- Shipped with VSE/ESA 2.3 and up
 - To be key enabled

Communication Hardware

- Communication Hardware
 - ► 3172/8232 LAN Channel Station Controller
 - Token-Ring, FDDI, Ethernet
 - ES/9221 Integrated Adapter (CETI)
 - Token-Ring, Ethernet
 - ► OSA-2
 - -Token-Ring, Ethernet (10/100), FDDI, ATM-LE
 - 2216 Nways Multiaccess Connector
 - CTCA to any S/390 operating system
 - Channel attached RS/6000 (CLAW)
 - ► New: OSA-Express
 - Gigabit Ethernet, Fast Ethernet, ATM-LE, TR100
 - New: HiperSockets

TCP/IP Application Types

- TCP/IP Application types (services)
 - ► TELNET (Client and Server)
 - ► FTP (Client and Server)
 - ► GPS (Server)
 - HTTP Server
 - LPR/LPD (Client/Server)
 - ► NFS (Server only)
- TCP/IP APIs
 - Assembler SOCKET interface
 - C-LE Socket interface
 - EZA Socket Interface(s)

TCP/IP Application Types - continued

- TELNET
 - As server
 - Allow remote access/logon to VTAM applications via TN3270
 - As client
 - -Access to other applications from local CICS
- GPS (General Print Server)
 - Allows, in a TN3270 environment, to direct VTAM 328x print to any TCP/IP capable printer
 - ► Identifies itself to VTAM as a locally attached 3287

TCP/IP Application Types - continued

■ FTP

- Transfer data or files from/to remote systems
- Supported file types
 - -VSAM ESDS and KSDS
 - -VSE SD files
 - -VSE library members
 - POWER queue entries
 - -VSE/ICCF library members (read only)
- ► FTP Server = FTP Daemon
- FTP Client
 - Interactive FTP client
 - -Batch FTP
 - -FTPBATCH

TCP/IP Application Types - continued

- HTTP Server
 - Allows to retrieve HTML documents via browser
 - CGIs can be used to create the pages dynamically
 - HTML files are stored in VSE libraries
- LPD (= Server)
 - Print data of any TCP/IP system on a VSE printer
 - Printing via POWER
- LPR (=Client)
 - Print VSE data on any TCP/IP network printer
 - ► AUTOLPR, CICS transaction, batch job

TCP/IP Application Types - continued

- NFS (Network File System)
 - Transparent access from NFS client (PC or UNIX) to files stored in a remote VSE as if they were local
 - Share files across a TCP/IP network
 - ► NFS assumes
 - A hierarchical file system
 - Each file being a byte stream of a certain length
 - -Without a record structure
 - Supported file types
 - -VSE library members
 - POWER queue entries
 - -VSAM ESDS files

TCP/IP Application Programming Interfaces

- Socket APIs
 - Assembler SOCKET macro
 - SOCKET type,connect,keywords
 - 'Proprietary' interface
 - ► COBOL, PL/I Socket API
 - C-LE Socket API
 - Standard C socket interface (using VSE/LE)
 - Compatible with OS/390
 - EZA Socket Interface(s)
 - Ported from OS/390
 - ► REXX Socket API

Performance Aspects

- Socket APIs
 - C-LE Socket interface requires VSE/LE
 - The most efficient API from a performance point of view is the Assembler SOCKET macro interface
- Basic considerations
 - Try to send and receive as much data as possible per socket call
- Number of concurrently active sockets
 - All sockets are chained in a single queue which is searched sequentially

TCP/IP Startup job

- VSE partition size
 - Start with 20-30M partition size
- SETPFIX LIMIT
 - Start with LIMIT=900K
 - OSA Express and HiperSockets needs at least 2100K
- Type of VSE partition
 - Can be static of dynamic
- Parameters to EXEC IPNET
 - ► SIZE=IPNET
 - IPINIT0x contains all TCP/IP parameters
 - DSPACE=3M max. size of dspace used by VTAM

TCP/IP Dispatch Priority

- Select PRTY sequence (low to high)
 Batch, DB2, CICS, TCP/IP, VTAM, POWER
- A second TCP/IP partition is recommended
 - If besides Telnet ...
 - Concurrent FTP activity (not FTPBATCH)
 - Concurrent LPR/LPD activities
 - High concurrent FTP (or LPR/LPD) activity may/wil impact e.g. Telnet response times
 - ► Or use FTPBATCH

Multiple TCP/IP Partitions

- Each TCP/IP Partition should have
 - ► A separate IP address
 - ► A separate host name
 - Its own set of adapters
 - Its own setup of startup parameters

29

- Functional reasons
 - Separation of workload
 - Separation of production and test
 - Separation of production workload
 - Separation of network (e.g. security)

Multiple TCP/IP Partitions - continued

- Performance reasons
 - Exploit more than 1 engine for TCP/IP
 - -Only one engine per partition
 - Need of more virtual storage below the line
 - -e.g. Telnet (VTAM) buffers
 - Individual customization
 - Separation of TELNET and FTP/LPR activities
- IPNET link has no performance benefits
 - Recommendation: let each partition have its own network link

TCP/IP's Access to VSE Data

- VSAM
 - VSAM macros and VSAM code in SVA
- POWER
 - ► POWER SAS (XPCC)
- LIBR
 - LIBRM macro
- ICCF
 - ► SLI (Read only) and DTSIPWR in SVA
- SD
 - DTFSD macro (BAM)

Batch FTP From a Separate Partition

- // EXEC FTP
 - Only FTP initialization is done from a batch partition
 - No performance related benefits
- // EXEC FTPBATCH
 - Potential exploitation of >1 engine of an n-way
 - Separate File-I/O routine used per FTP
 - Control of FTP batch CPU dispatch priority
 - More overhead for data transfer between batch and TCP/IP partition
 - Move of data between batch and TCP/IP partition using access registers

Performance Related Parameters

e-business	Parameter	Any	outbound	inbound	TN3270	FTP
		·	only	only	in+out	in+out
	DEFINE ADAPTER/LINK MTU		X			
XLIRA	TELNETD POOL				X	
170	SET ALL_BOUND	Х				
+++X	DISPATCH_TIME	Х				
	REDISPATCH	Х				
	ARP_TIME	Х				
INDARY.	REUSE_SIZE	Х				
***	FULL_SCAN	Х				
	GATEWAY	Х				
	CHECKSUM	Х				
	SET MAX_SEGMENT			Х		
	WINDOW_DEPTH			Х		
	CLOSE_DEPTH			Х		
	WINDOW_RESTART			Х		
	SET RETRANSMIT		X			
	FIXED_RETRANS		X			
	WINDOW		X			
	ADDITIONAL_WINDOW		X			

Performance Related Parameters (continued)

34

e-business

Parameter	Any	outbound	inbound	TN3270	FTP
		only	only	in+out	in+out
SET SLOW_START		X			
SLOW_RESTART		X			
SLOW_INCREMENT		X			
SET TELNETD_BUFFERS				Х	
TRANSFER_BUFFERS					Х
MAX_BUFFERS					X

Performance Related SET Commands

- SET ALL_BOUND maximum idle time
 - Similar to CICS ICV
 - Default is 9000 (30 sec)
- SET DISPATCH_TIME maximum time-slice a single TCP/IP pseudo task can get
 - Reduced impact since SERV130K
- SET MAX_SEGMENT maximum size of a TCP segment
 - ► 576 .. 32k (64K for HiperSockets), default is 32768
- SET WINDOW receive window size

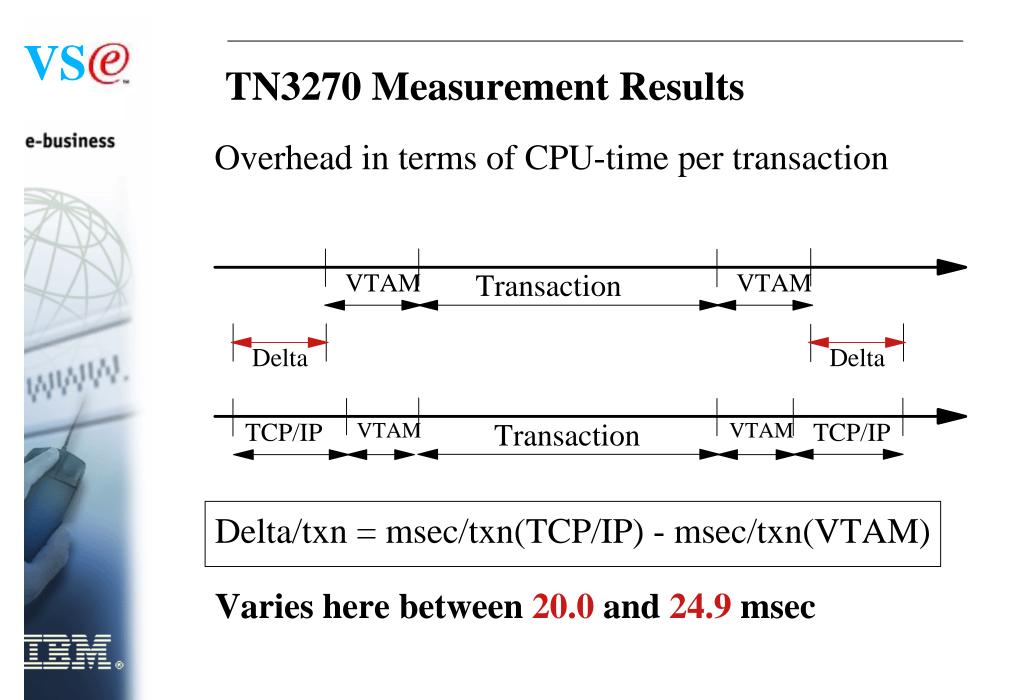
Performance Related SET Commands

- SET WINDOW_DEPTH number of data segments which can be concurrently queued inbound in TCP
- SET CLOSE_DEPTH number of TCP segments are still accepted, in spite of a fully closed window
- SET RETRANSMIT time interval before retransmission occurs
- SET TELNETD_BUFFERS number of 16K buffers in the TELNETD buffer pool (only if POOL=YES)
- SET TRANSFER_BUFFERS number of 32K transfer buffers allocated to the FTP buffer pool

Remove Unnecessary Actions from TCP/IP

- Symptom
 - TCP/IP partition consumes sporadically CPU-time, 'without doing anything'
- Background Info
 - TCP/IP must inspect EVERY incoming data packet
- Recommendations
 - Filter unnecessary data packets
 - Make sure IP filtering is ON for OSA and 3172
 - Find out the source for frequent ARP updates

TN3270 Measurement Environment


e-business

VSE/ESA 2.3

- TCP/IP 1.3 (E/G/J/K) and also 1.4
- Turbo Dispatcher, single engine
- DSW online workload
- 2 CICS/VSE partitions (F4 and F5)
- TCP/IP for VSE/ESA (F7)
- F4 and F5 balanced with F7
- 125 active terminals per CICS partition
 driven by TPNS

POOL=YES and TELNETD_BUFFERS=20

05/07/03

TN3270 Measurement Results continued

Expected rel.-CPU-time and ITR-ratio vs SNA

$$ITRR = ITR ratio = \frac{msec/txn (VTAM)}{msec/txn (TCP/IP)}$$

In the measured cases, average overall (VTAM based) CPU-time of a transaction was about 20 msec (~280KI) TCP/IP overhead was between 280KI and 350KI

Type/CPU-Heaviness of workload	Rel. CPU-time with TCP/IP	ITRR
DSW, measured (280KI)	2.0	0.5
Medium customer transaction (560KI)	1.5	0.67
Heavier customer transaction (840KI)	1.33	0.75
Heavy customer transaction (1000KI)	1.28	0.78

TN3270 Measurement Results continued

- TCP/IP for VSE/ESA 1.4 vs. 1.3
 - 7-13 % less TCP/IP CPU-time overhead
- Response time impact is small
- TN3270 overhead
 - VSE/ESA native
 - Online utilization increases from 50% to 62%
 - VM/VSE Guest
 - Online utilization increases from 60% to 74%

TN3270 Measurement Results continued

TN3270 Virtual Storage capacity

	125 daemons		per daemon	
	-24	-31	-24	-31
TCP/IP GETVIS	476K	600K	3.8K	4.8K
VTAM GETVIS	0K	52K	0K	0.4K
SVA	20K	524K	0.16K	4.2K

Rough estimate for TN3270 VS-Capacity:

Max. #TN daemons = (remaining GETVIS-24) / 4K

Example:

A remaining GETVIS-24 of about 10M, gives about 2500 Telnet daemons

42

FTP Measurement Results

- EDR = effective Data Rate (KB/sec)
- It is irrelevant who initiated an FTP transfer
- Transfer of a file from A to B may differ in EDR from transferring the identical file from B to A
 - Speed of physical HDD
 - Read/write caching
 - Blocksizes used (KB/IO)
- The higher the EDR of an FTP transfer, the higher is the required CPU utilization
- EDRs displayed by TCP/IP for VSE/ESA
 - Transfer sends
 - File I/O seconds

FTP Measurement Results - continued

e-business

Parameters	FTP speeds		Network	CPUT/KB
	Source	Target		
Network speed and load			X	
TCP/IP parameters	Х	Х	X	X
FTP parameters	Х	Х	X	X
DASD speed (READ/WRITE)	Х	Х		
Local file definition				
- type	Х	Х		X
- log record length (NFS)	Х	Х		
- blocksize on disk	Х	Х		X
- I/O blocking (KB/IO)	Х	Х		X
- ASCII/EBCDIC/BINARY	Х	Х		X
size of files	Х	Х		X
Processor speed	Х	Х		X
other concurrent activities	Х	Х	X	
TCP/IP for VSE/ESA PTF level	Х	Х	X	X

FTP Measurement Results - continued

e-business

EDR ranges (KB/sec) observed (1.3)

	FTP to VSE	FTP from VSE	Major impact
LIBR	340	470	DASD, network speed
POWER	115	290	DBLK
VSAM ESDS		460	to S/390 (CTCA)
		360	to RS/6000 CLAW
		160	Via CLAW & T/R

CPU resources (KI/KB) required (1.3)

	FTP to	FTP from VSE	Dependencies
	VSE		
LIBR	18.9 - 20.1	11.9 - 13.3	
POWER	85	45	
VSAM ESDS		7.6 - 9.2	Convertion

FTP Measurement Results - continued

- TCP/IP for VSE/ESA 1.4 (ServPack A)
 - ► EDRs increased by 10% to 30%
 - ► CPU-time consumption decreased by about 25%
- Virtual Storage Capacity

	10 daemons		per daemon	
	-24	-31	-24	-31
TCP/IP GETVIS	3104K	40K	310K	4K

Max #FTP daemons = (remaining GETVIS-24) / 310K

Example:

A remaining GETVIS-24 of about 10M, gives about 32 FTP daemons

FTP with Batch Measurement Results - continued

Data rate comparison (VSAM)

	Overal	1 EDR		
	Transfer (KB/sec)		File I/O (KB/sec)	
	Real 9345	Virt. Disk	Real 9345	Virt. Disk
Interactive FTP	639	930	682	1462
Batch FTP	639	930	682	1462
FTPBATCH	511		682	

- Same rates as for Interactive FTP
 - Except transfer rate seen by FTPBATCH
- Overall EDRs for (single) FTPBATCH are about 15% lower here than from Batch FTP

FTP with Batch Measurement Results - continued

- FTPBATCH with slightly higher CPU-time and with lower EDR
- FTPBATCH file transfers
 - Can be better workload balanced (controlled)
 Via PRTY
 - Can run concurrently and thus achieve a higher sum of FTP EDRs
 - Allow to exploit >1 processor engines

Multi Thread Event Processing

- More than 1 events can be processed at a time
 - Separate TCP/IP internal task is assigned to any event (printout)
- Possible problems
 - Unpredictable order of events from independent jobs
 - Some printers only accepts one connection at a time
- SET SINGLEDEST=ON
 - Only one open connection possible to one destination

SSL and Crypto Overview

- SSL for VSE is part of the TCP/IP base (ServPack C)
- Enabled with the Application Pak
- Integrated into TCP/IP for VSE/ESA
- Supports SSL 3.0 and TLS 1.0
- Key exchange: RSA
- Data Encryption: DES and Triple DES
- Hash algorithm: MD5, SHA
- Supports X.509v3 PKI Certificates
- SSL daemon implementation for HTTPS, Telnet
- SSL API compatible with the OS/390 SSL API

Key Management

- Keys and certificates are stored in a "keyring file"
 VSE: In a VSE library
- SSL for VSE uses 3 VSE library members:
 - keyname.PRIV the private key
 - ► keyname.CERT the certificate
 - keyname.ROOT the root certificate
- Stored in library CRYPTO.KEYRING per default
- Utilities available for key management and creation
 CIALPRVK, CIALCERT, CIALROOT
- SOCKOPT.PHASE defines the SSL parameters

SSL Daemon (SSLD)

Define an SSL daemon for each TCP port that you want to secure:

 DEFINE TLSD,ID=MYSSLD, PORT=443, HTT PASSPORT=443, CIPHER=0A096208, Ciph CERTLIB=CRYPTO, libra CERTSUB=KEYRING, subl CERTMEM=MYKEY, men TYPE=1, serv MINVERS=0300, SSL DRIVER=SSLD Driv

HTTPS port

Cipher suites library name sublibrary name member name server application SSL 3.0 Driver phase name

Secure Socket Layer API

53

- Compatible to OS/390 SSL API
- Functions available for
 - Session initiating
 - Sending/receiving data
 - Ending a session
- SSL API is based on Socket API
- SSL API can be called from
 - ► LE-C programs
 - Assembler programs
 - REXX programs

CryptoVSE API

- Native cryptographic API (not available through LE)
- Provides cryptographic services:
 - Data encryption
 - -DES
 - -Triple DES
 - -RSA PKCS #1
 - Message Digest
 - -MD5
 - -SHA-1
 - Digital Signatures
 - -RSA PKCS #1 with SHA1 or MD5
 - Message Authentication
 - -HMAC

05/07/03

Restrictions

e-business

- Cipher Suites supported:
 - ► 01 RSA512_NULL_MD5
 - ► 02 RSA512_NULL_SHA
 - ▶ 08 RSA1024_DES40_CBC_SHA
 - ▶ 09 RSA1024_DES_CBC_SHA
 - ► 0A RSA1024_3DES_CBC_SHA
 - ► 62 RSA1024_EXPORT_DES_CBC_SHA
- Only one Root certificate
- Certificate revocation lists not supported
- Keyring is not password protected
- Software encryption only for
 - ► DES, DES CBC, 3DES CBC
 - ► SHA, MD5

SSL Enabled Applications

- MS Internet Explorer 5.5 or higher (HTTPS)
- Netscape Navigator 4.7 or higher (HTTPS)
- Mozilla
- Several telnet clients
- VSE Connectors (VSE/ESA 2.6 or later)
 - The VSE Connector Server and Client have been SSL enabled
 - SSL client authentication with user ID mapping supported with VSE/ESA 2.7
- CICS Web Support (HTTPS)
 - TCP/IP Service can be SSL enabled

SSL Enabled VSE Connector Server

- The VSE Connector Server can run either in
 - ► Non SSL mode (as in VSE/ESA 2.5)
 - ► SSL mode
- Configurable values
 - ► SSL Version (typically SSL 3.0)
 - Keyring library and key member
 - Cipher Suites
 - Server or Client authentication
- Separate SSL configuration member

SSL Enabled VSE Connector Client

- SSL can be enabled per connection
- New properties in VSEConnectionSpec
 - setSSL(true/false)
 - setSSLProperties(...) / setSSLPropertiesFile(...)
- SSL properties specifies
 - Keyring file (containing the certificates + private key)
 - Keyring password
 - SSL Version
 - Cipher Suites

SSL Enabled VSE Connector Client continued

- Supports PKCS#12 keyring files as well as JKS
- SSL implementation is based on JSSE (Java Secure Socket Extension)
- JSSE Provider available from
 - Sun (http://java.sun.com/products/jsse/index.html)
 - IBM (based on SSLight)
 - -shipped with JDK
- VSE Connectors uses IBM's JSSE implementation
 - Software encryption
- Key management can be done with graphical front-end (IKEYMAN)

Performance Related Parameters

e-business

Parameters	Session initiating	Data exchange
Key exchange algorithm		
RSA512	Х	-
RSA1024	Х	-
Encryption Algorithm		
NULL	-	Х
DES40CBC	-	Х
EXPORT_DESCBC	-	Х
DESCBC	-	Х
3DESCBC	-	Х
Hash Algorithm		
MD5	Х	Х
SHA	Х	Х
Session caching	Х	-
Message Length	-	Х

-Data exchange overhead is proportional to bytes/msg

-CPU-time overhead caused by SSL is in

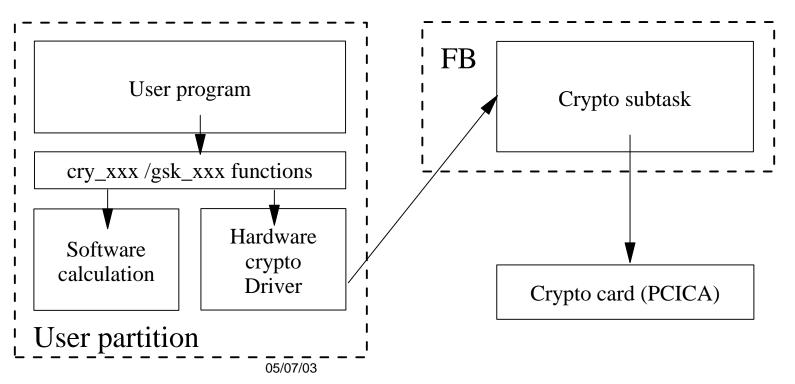
-TCP/IP partition for SSL Daemon

-application partition for API usage

05/07/03

Hardware Crypto Overview

61


- Requires VSE/ESA 2.7 and TCP/IP for VSE/ESA 1.5
- Supported crypto card
 - PCI Cryptographic Accelerator (PCICA)
 - -Feature code 0862
 - -Available for zSeries (z800, z900)
- Only RSA (asymmetric) is supported
 - Of benefit for Session initiation (SSL-Handshake)
- Also supported with
 - ► z/VM 4.2 + APAR VM62905
 - ► z/VM 4.3

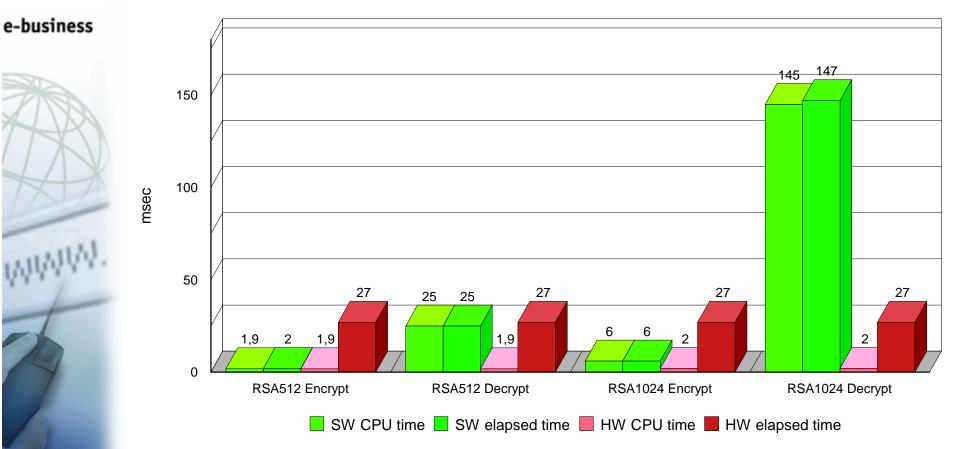
Hardware Crypto Overview - continued

- New crypto subtask in Security Server (SECSERV) running in FB
 - Or as separate job if no SECSERV is running
 - Crypto card is polled by crypto task

Measurement Environment

VSE/ESA 2.7 running on a z900 (2064-109)

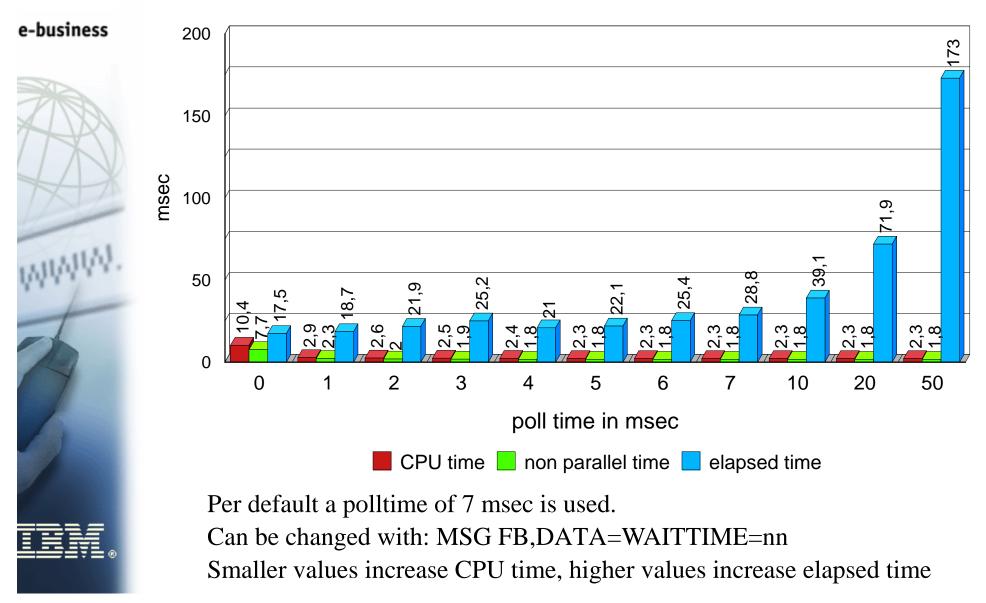
- ► on 1 processor (~2064-101)
- with a PCI Cryptographic Accelerator
- Testcase programs on VSE
 - Crypto operations measurements
 - -calling cry_xxx functions (RSA, DES, SHA, MD5)
 - -each crypto operation is performed 10000 times
 - Secured data transfer (SSL)
 - -performs SSL handshake
 - -performs encrypted data transfer
 - counterpart program running on Windows (SSL-client)
- All RSA operations are measured
 - with Hardware Crypto support
 - with Software Crypto
 - support already available with TCP/IP 1.4/1.5 as shipped in VSE/ESA 2.6



Measurement Environment - continued

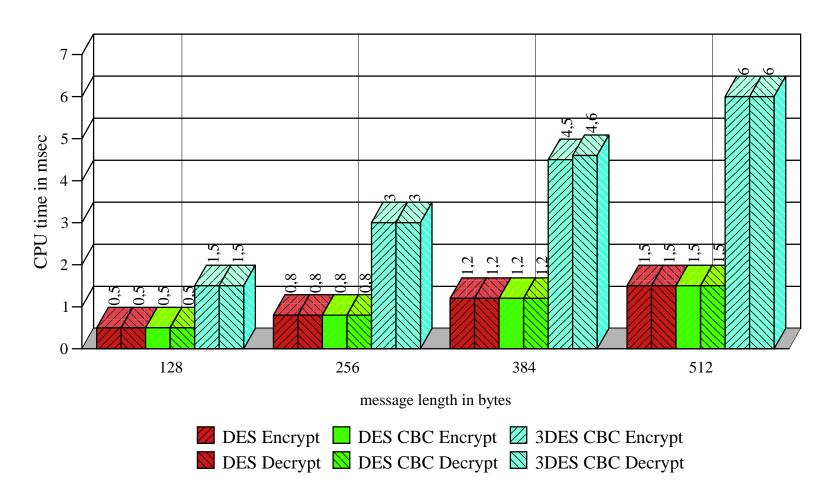
- Variations
 - RSA encrypt/decrypt
 - -512 / 1024 bit key
 - DES, DES CBC, 3DES CBC encrypt/decrypt
 - -software crypto only
 - -message length (128, 256, 512 bytes)
 - ► SHA Hash, MD5 Hash, SHA HMAC, MD5 HMAC
 - -software crypto only
 - -message length (128, 256, 512, 1K, 2K bytes)
 - SSL handshake/data transfer
 - -01 RSA512_NULL_MD5
 - -02 RSA512_NULL_SHA
 - -08 RSA512_DES40CBC_SHA
 - -09 RSA1024_DES_CBC_SHA
 - -0A RSA1024_3DES_EDE_CBC_SHA

Measurements Results - RSA


HW Crypto:

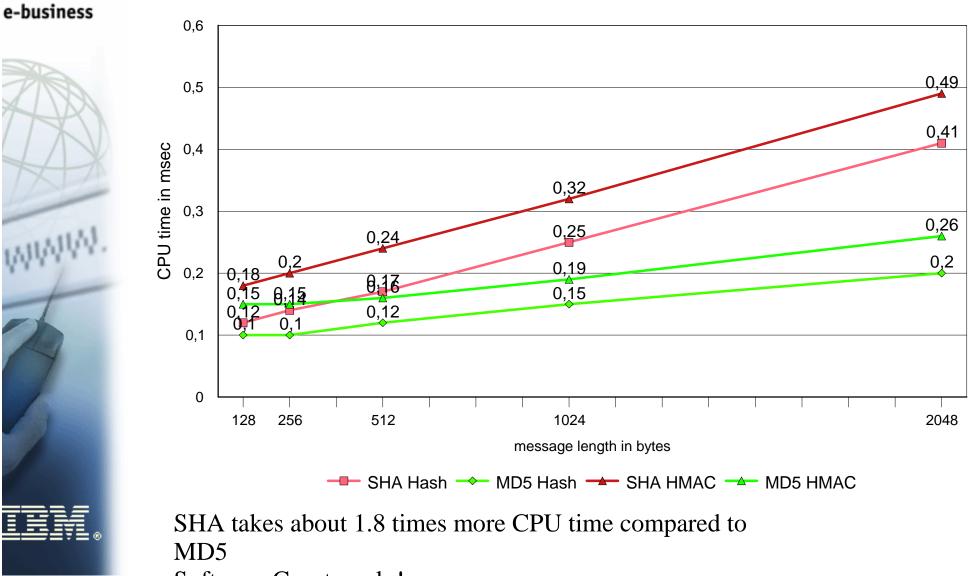
- CPU time and elapsed time is independent of operation / key length
- RSA operation takes about 2 msec CPU time and 28 msec elapsed time
- CPU time is always less than software crypto

65



Measurements Results - RSA polltime

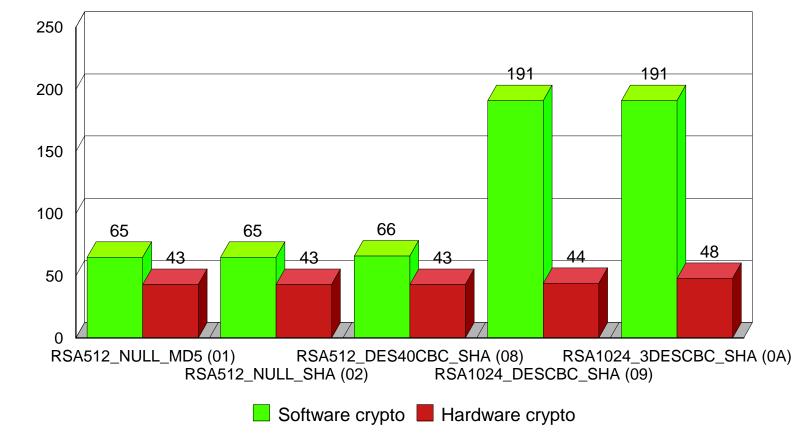
Measurements Results - DES, DES CBC, 3DES CBC (symmetric)



05/07/03

Measurements Results - SHA, MD5

05/07/03


Software Crypto only!

68

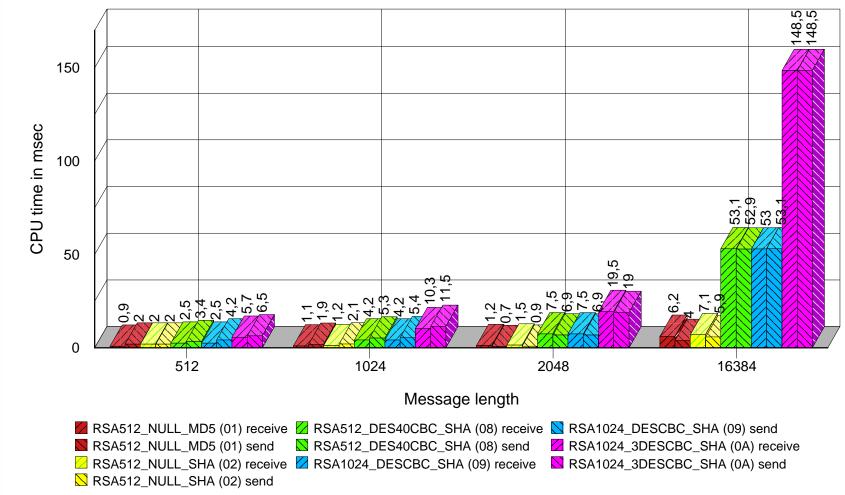
CPU time in msec

Measurements Results - SSL Handshake

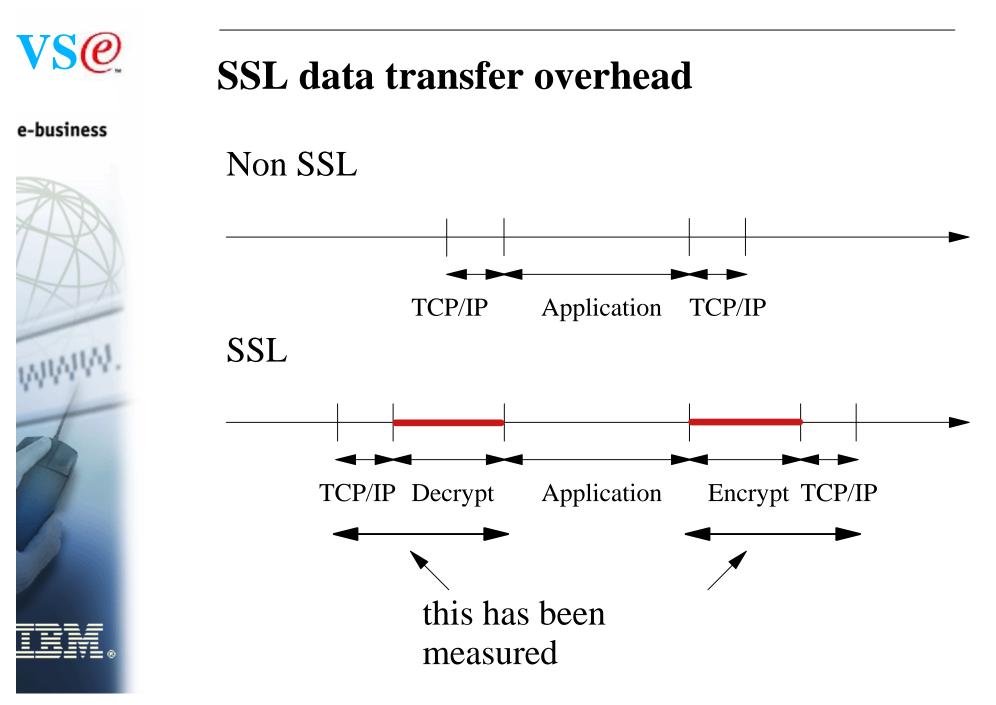
HW Crypto:

- CPU time and elapsed time is independent of cipher suite used

- SSL handshake takes about 43-48 msec CPU time (connection establishment)


69

VS@


Measurements Results - SSL data transfer

70

CPU time depends on used hashing (SHA/MD5) and encryption algorithm (DES/3DES)

Software Crypto only!

71

Measurements Results - conclusion

- HW Crypto
 - Supports RSA operations only (e.g used by SSL handshake)
 - CPU time/elapsed time is independent of operation and key length
 - Software RSA encryption is faster in terms of elapsed time (on large processors)
 - -but hardware crypto saves CPU time
- SW Crypto
 - CPUtime /elapsed time is very dependent on CPU speed and utilization

SSL Performance Recommendations

- Use SSL only if there is a need for
 - ► If at least one of the following is required
 - -Keeping secrets
 - Proving identity
 - -Verifying information
- Cipher Suites 01 and 02 has less CPU-time consumption, but NO data encryption
 - RSA512_NULL_MD5, RSA512_NULL_SHA
- If data encryption is required
 - ► Use cipher suites 08, 09 or 0A
 - ► 08 uses 512 bit keys, others 1024
 - 1024 bit RSA keylength is recommended (from a security point of yiew)

OSA-Express

e-business

Requires VSE/ESA 2.6 or later

- Available for G5 and above
- Exploits Queued Direct I/O

	Gigabit Ethernet	Fast Ethernet 100 Mbps	ATM-LE 155 Mbps	Tokenring 4/16/100 Mbps
CHIPID TYPE=OSE (non-QDIO)	no	yes	yes	yes
CHPID TYPE=OSD (QDIO)	yes	yes	yes	yes

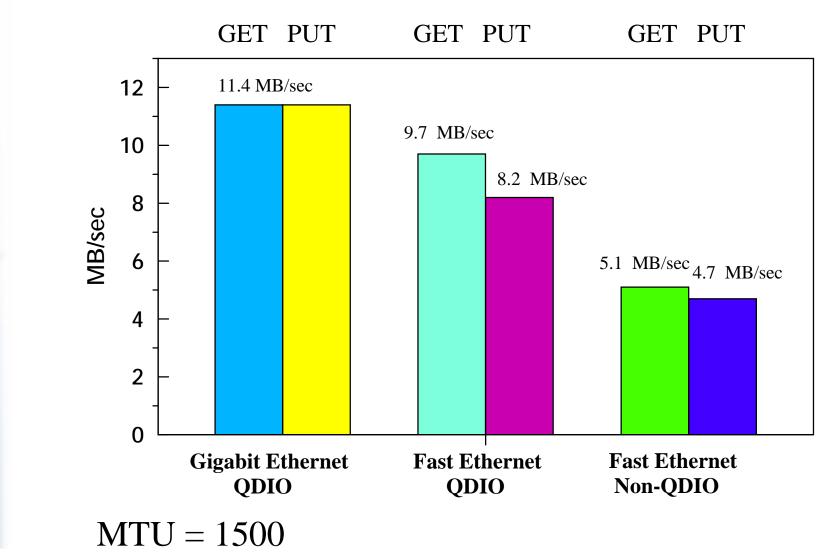
OSA-Express for IBM eServer zSeries and S/390, G221-9110-01, 11/2001

OSA-Express - continued

e-business

- Queued Direct I/O
 - Designed for very efficient exchange of data
 - Uses the QDIO Hardware Facility, without traditional S/390 I/O instructions
 - Without interrupts (in general)
 - Use of internal queues
 - With pre-defined buffers in memory for asynchronous use

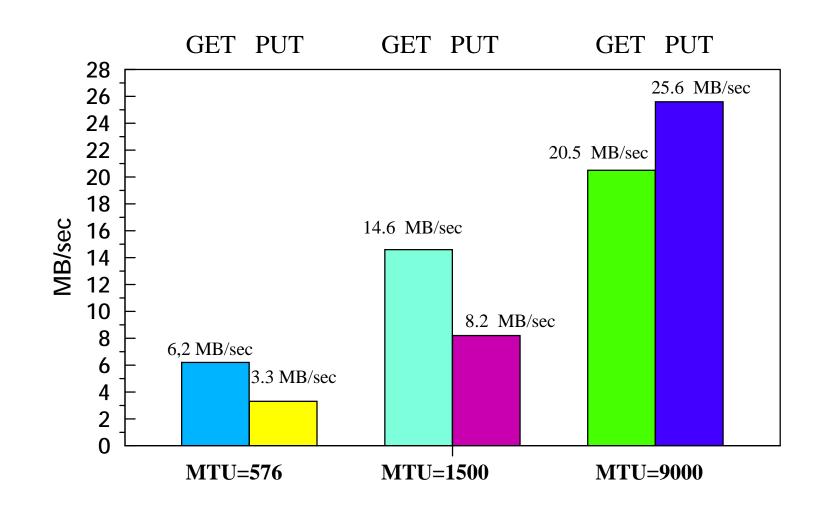
OSA-Express Measurements


- Environment
 - ► VSE/ESA 2.6 on G6 native (LPAR)
 - -TCP/IP 1.4 ServPack C
 - Linux on Netfinity
- Network attachment
 - ► Gigabit Ethernet QDIO (MTU=1500)
 - ► Fast Ethernet QDIO (MTU=1500)
 - ► Fast Ethernet Non-QDIO (MTU=1500)
- Workload
 - ► GET = VSE to Linux, 100MB \$NULL file
 - ► PUT = Linux to VSE, 100MB \$NULL file

OSA-Express Measurements continued

77

e-business



Gigabit Ethernet Measurements

- Environment
 - VSE/ESA 2.6 on G6 native (LPAR) - TCP/IP 1.4 ServPack C
 - Linux on G6 native (LPAR)
- Network attachment
 - Gigabit Ethernet QDIO
 - ► MTU = 576...9000
- Workload
 - ► GET = VSE to Linux, 100MB \$NULL file
 - ► PUT = Linux to VSE, 100MB \$NULL file

Gigabit Ethernet Measurements continued

05/07/03

HiperSockets hardware elements ('Network in a box')

- Synchronous data movement between LPARs and virtual servers within a zSeries server
 - Provides up to 4 "internal LANs" HiperSockets accessible by all LPARs and virtual servers
 - ► Up to 1024 devices across all 4 HiperSockets
 - ► Up to 4000 IP addresses
 - Similar to cross-address-space memory move using memory bus
- Extends OSA-Express QDIO support
 - LAN media and IP layer functionality (internal QDIO = iQDIO)
 - Enhanced Signal Adapter (SIGA) instruction
 - -No use of System Assist Processor (SAP) $_{05/07/03}$

HiperSockets hardware elements ('Network in a box') - continued

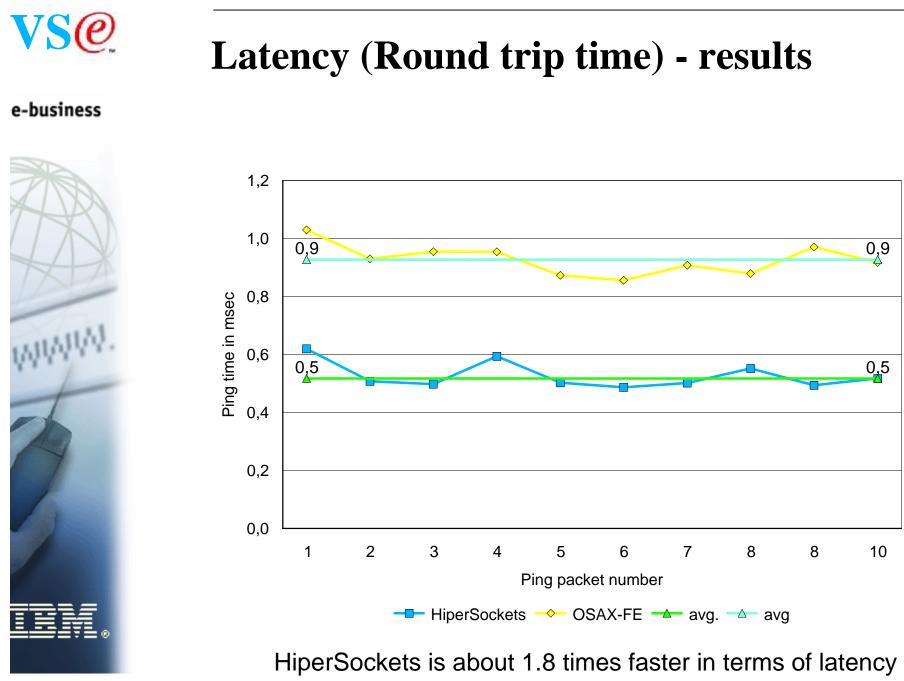
- HiperSockets hardware I/O configuration with new CHPID type = IQD
 - Controlled like regular CHPID
 - Each CHPID has configurable Maximum Frame Size
- Works with both standard and IFL CPs
- No physical media constraint, no physical cabling, no priority queuing
- Secure connections
- Requires TCP/IP 1.5

Measurement Environment

- z800 (2066-004)
 - ► 4 processors
- VSE/ESA 2.7 GA Driver in an LPAR (native)

82

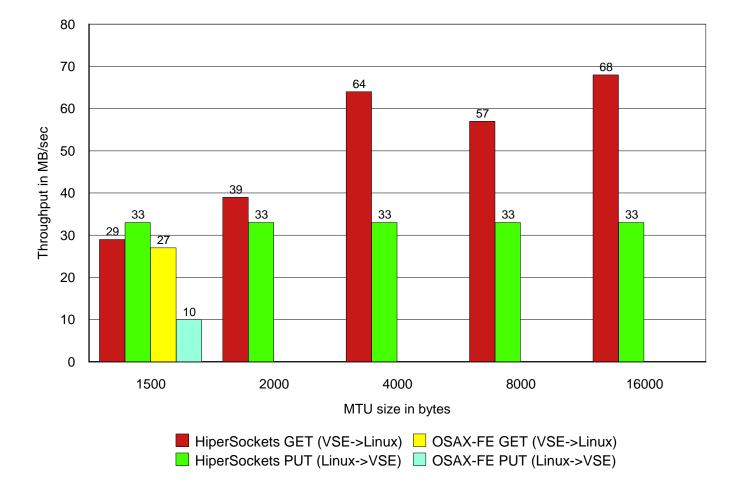
- ▶ 1 CPU active (~2066-001)
- ► TCPIP00 (F7): OSA Express Fast Ethernet
- TCPIP01 (F8): HiperSockets
- Linux for zSeries in an LPAR (native)
 - ► 3 CPUs active (shared)
 - eth0: OSA Express Fast Ethernet
 - hsi10: HiperSockets



Latency (Round trip time) - results

- Measurements has been done with PING command
 - Issued at Linux side
 - ► 10 Pings
 - PING sends a datagram to VSE
 - VSE sends an answer back to Linux
 - Time until answer arrives is measured
 - -Round trip time

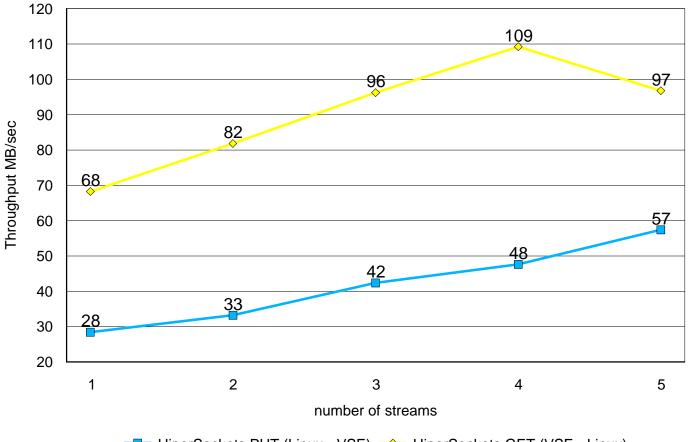
Throughput (MB/sec)


- Measurements has been done with FTP
 - Initiated at the Linux side
 - Transferring 1GB (1000MB)
 - without translation (binary)
 - -1 to 5 parallel streams
 - PUT: send data to VSE
 - -VSE inbound
 - sending a 1GB file to \$NULL file (in memory file)
 - No file I/O is done by VSE/Linux
 - ► GET: receive data from VSE
 - -VSE outbound
 - receiving \$NULL file (in memory file) into /dev/null
 - No file I/O is done by VSE/Linux

Throughput (MB/sec) - results

e-business

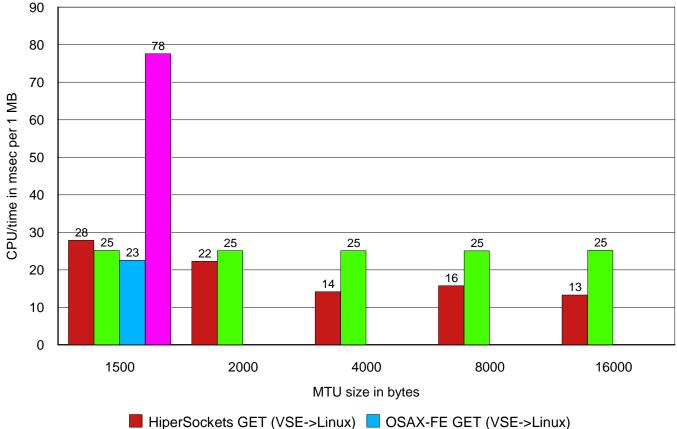
HiperSockets throughput is between 30-80 MB/sec


05/07/03

Throughput (MB/sec) - results (2)

e-business

Max. HiperSockets throughput of 109 MB/sec at 4 concurrent connections


05/07/03

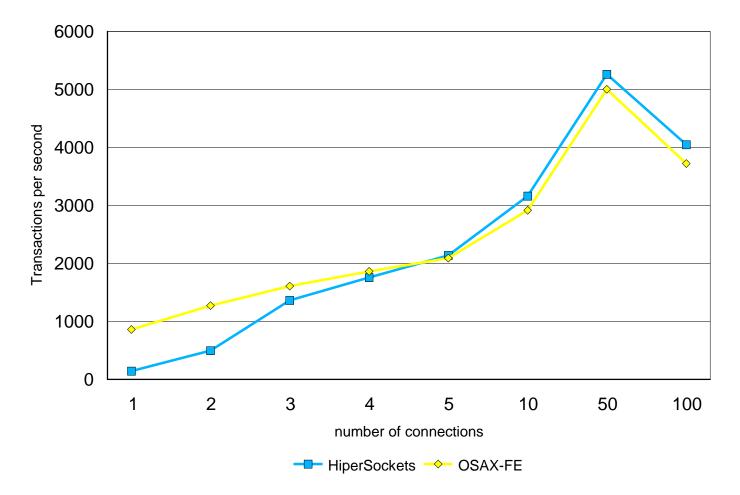
CPU time per MB - results

e-business

■ HiperSockets PUT (Linux->VSE) ■ OSAX-FE PUT 1 (Linux->VSE)

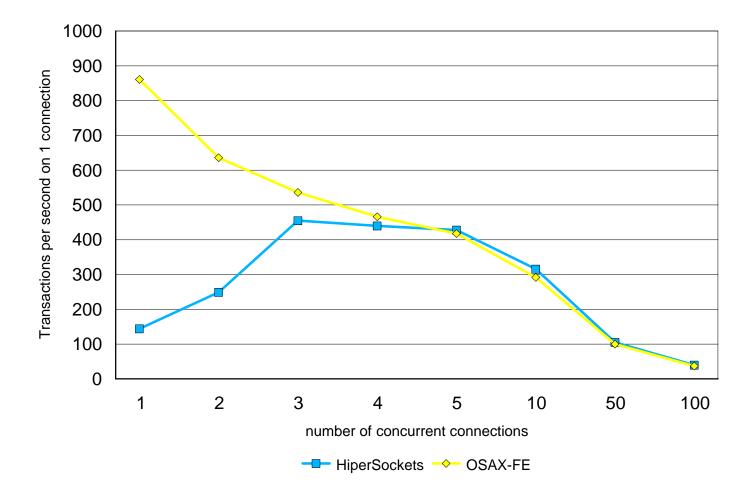
About 15-30 msec CPU time per MB for HiperSockets (on a z800 2066-001/)³

Transaction per second


- Measurements has been done with an ECHO server
 - Client on Linux sends 100 bytes to server
 - Server on VSE echoes 100 bytes
 - Per TCP connection 10000 transactions are driven
 - Variations: Number of TCP connections
 - -1,2,3,4,5
 - -10,50,100
 - Measurements
 - Transactions per second
 - CPU time per transaction

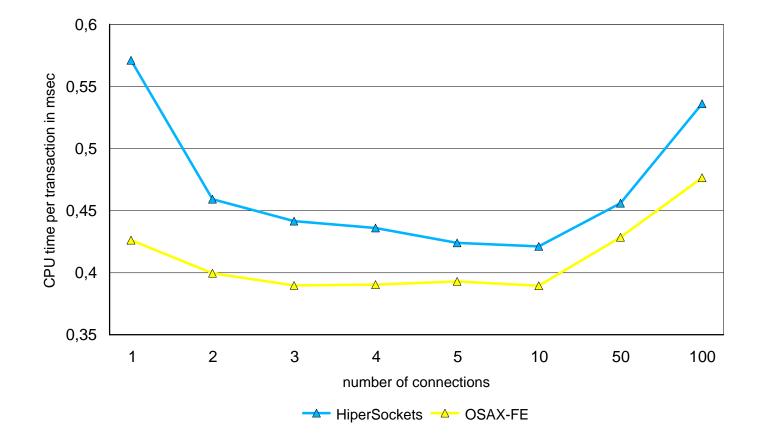
Transactions per second - results

e-business



Maximum of 5200 transactions per second at 50 concurrent connections

Transactions per second on 1 connection - results


HiperSockets: Maximum of about 450 transactions per second on 1 connection (= $about_{05/07/03}^{2}$ msec response time)

CPU time per transaction

e-business

HiperSockets: About 0.45 msec CPU time per transaction for 2-50 connections

92

05/07/03

Measurement Results - conclusion

- HiperSockets
 - Throughput
 - Between 30-80 MB/sec
 - Maximum throughput of 109 MB at 4 concurrent connections
 - About 15-30 msec CPU time per MB
 - Transactions per second
 - Maximum of 5200 Transactions per second at 50 concurrent connections
 - About 0.45 msec CPU time per transaction
 - includes ECHO Server code

Further Information

- VSE Homepage: http://www.ibm.com/servers/eserver/zseries/os/vse/
- VSE Performance Homepage: http://www.ibm.com/servers/eserver/zseries/os/ vse/library/vseperf.htm
- Performance Documents from W. Kraemer
 - available on the Performance Homepage
- VSE/ESA e-business Connectors User's Guide http://www.ibm.com/servers/eserver/zseries/os/ vse/pdf/ieswue20.pdf