
© Copyright IBM Corp. 2009 How to use the Java-based Connector with DBCS

Page 1 of 5

How to use the Java-based Connector with DBCS

The z/VSE e-business Connectors component 5686-CF8-35 contains different types of
connectors:

• Java based-Connector (VSE Connector Client and Server)
• VSE Script Server
• VSAM Redirector
• Web Services (SOAP)

These connectors have different options how to work with DBCS data. This document
describes how to use the Java-based Connector with DBCS data.

Note: This document does not cover tools like VSE Navigator which are using the VSE
Connector Client under the covers.

Overview

The Java-based connector consists of a VSE Connector Client and a VSE Connector Server.
The VSE Connector Server runs on z/VSE. The VSE Connector Client provides a set of Java
classes that you can use as programming interface (API) in your Java applications.

The API has several classes, each providing several methods/functions. Many functions take
textual data as input or pass back textual data as output. Here, we have to distinguish between
textual names of system resources (like member names, file names, job names, user IDs) and
textual user data (like the contents of a member, the contents of a file or record).

z/VSE

Web Client

HTML,Java
servlet,applet or
EJB VSAM

Power
LIBR

Console
ICCF

TCP/IP

Connector
 Server

VSAM

Web Application Server

 Program
TCP/IP

VSE Connector
 Client

To:

Mapped files

JDBC
 CICS
Transaction
 Server

DL/I

© Copyright IBM Corp. 2009 How to use the Java-based Connector with DBCS

Page 2 of 5

Textual resource names

Textual resource names do not contain DBCS characters. Most resource names do only allow
characters from A-Z, 0-9 and some special characters like $, %, &, #, -, _ or *.

For resource names, ASCII to EBCDIC codepage conversion automatically happens on the
server side. Since the names only contain SBCS characters, you can use a SBCS codepage
like IBM-1047 (US English) for that conversation.

Textual user data

Textual user data can be contained within resources like members, files or records. When
accessing such user data, the user of the VSE Connector Client API can decide if the access
should be performed without translation (binary mode) or with translation (text mode).

Since the codepage translation process of the VSE Connector Server does not support DBCS,
you need to access the user data in binary mode to avoid any codepage translation at that time.
The VSE Connectors do not display the user data itself; it’s the user application that for
example displays the data on a screen or on a web page. So anything that deals with correct
displaying of the data (e.g. BiDi, left-to-right vs. right-to-left) is out of the scope of the VSE
Connector Client. It’s the user application that has to take care of this.

You can use Java’s codepage translation methods to translate any (SBCS and DBCS)
EBCDIC data, which you have obtained in binary mode, into its ASCII or Unicode
equivalent. Java internally works with Unicode (UTF-16), so special characters (DBCS) can
be handled by Java. Java supports various codepages (called Charsets in Java), including
EBCDIC DBCS codepages. Please see here for a list of supported codepages/charsets:
http://java.sun.com/javase/6/docs/technotes/guides/intl/encoding.doc.html

To translate binary data into a Unicode Java string, you can use the following code:

 byte[] bindata = new byte[100];
 // fill bindata with binary data

 String str = new String(bindata,“Cp1047“);

In this example the binary data will be translated from the EBCDIC codepage Cp1047 into a
Java string (Unicode). You can also specify a DBCS EBCDIC codepage instead.

To translate a Java String into binary data using an EBCDIC codepage use the following
code:

 String str = “Text to translate“;
 byte[] bindata = str.getbytes(“Cp1047“);

Again, this example uses codepage Cp1047, but you can use any other codepage as well.

http://java.sun.com/javase/6/docs/technotes/guides/intl/encoding.doc.html

© Copyright IBM Corp. 2009 How to use the Java-based Connector with DBCS

Page 3 of 5

Accessing Library member contents in binary mode

The class VSELibraryMember can be used to upload (VSELibraryMember.upload(...)) or
download (VSELibraryMember.download(...)) the contents of a library member. To
switch to binary mode, use method VSELibraryMember.setBinary(true) before up- or
downloading.

VSEConnectionSpec spec = new VSEConnectionSpec(InetAddress.getByName(“1.2.3.4”),
 2893,”SYSA”,”password”);
 spec.setLogonMode(true);

VSESystem system = new VSESystem(spec);
system.setConnectionMode(true);

 VSELibraryMember member = new VSELibraryMember(system,”LIB1”,”SLIB2”,”MYMEMB”,”X”);
 member.setBinary(true);

member.download(“C:\\myfile.txt”);

member.setBinary(true);
member.upload(“C:\\myfile.txt”);

Dependent on the format of the member (fixed or string) and the logical record length, you
can the split the received binary member data into lines of for example 80 bytes each and
translate the lines from DBCS EBCDIC to Unicode or ASCII.

Accessing POWER entry contents in binary mode

The class VSEPowerEntry can be used to upload or submit (VSEPowerEntry.put(...)) or
download (VSEPowerEntry.get(...)) the contents of a POWER entry. The POWER entry
can be a job, a listing or a punch entry. To switch to binary mode, use method
VSEPowerEntry.setTransferBinary(true) and the VSEPowerEntry.
setTransferRecordLength(record-length) before up- or downloading.

VSEConnectionSpec spec = new VSEConnectionSpec(InetAddress.getByName(“1.2.3.4”),
 2893,”SYSA”,”password”);
 spec.setLogonMode(true);

VSESystem system = new VSESystem(spec);
system.setConnectionMode(true);

 VSEPowerEntry entry = new VSEPowerEntry(system,VSEPowerEntry. QUEUE_LIST,

“MYJOB2”,1234,0);
entry.setTransferBinary(true);

 entry.setTransferRecordLength(121);
entry.get(“C:\\myfile.txt”);

entry.setTransferBinary(true);

 entry.setTransferRecordLength(121);
entry.put(“C:\\myfile.txt”);

Dependent on the format of the entry and the logical record length, you can the split the
received binary entry data into lines of for example 121 bytes each and translate the lines
from DBCS EBCDIC to Unicode or ASCII.

© Copyright IBM Corp. 2009 How to use the Java-based Connector with DBCS

Page 4 of 5

Accessing VSAM record contents in binary mode

The class VSEVsamRecord can be used to get (VSEVsamRecord.getField(...)), update
(VSEVsamRecord.setField(...) followed by VSEVsamRecord.commit()), or insert
(VSEVsamRecord.add(...)) VSAM records in a VSAM cluster. To access VSAM data, you
need to define a mapping of the fields within the record (see class VSEVSamMap). The
mapping defines what part of the record belongs to what field. Every field has a name, an
offset within the record, a length in bytes and a data type.

The data type determines if the field data is translated by the VSE Connectors or not. There
are different data types like INTEGER, PACKED, or ZONED which are used to store
numeric data. For textual data you typically use the type STRING. The contents of a STRING
type field will be translated from EBCDIC to ASCII and vice versa when access the record. If
the VSAM record contains DBCS data, you should use the data type BINARY instead.
BINARY fields will not be translated.

VSEConnectionSpec spec = new VSEConnectionSpec(InetAddress.getByName(“1.2.3.4”),
 2893,”SYSA”,”password”);
 spec.setLogonMode(true);

VSESystem system = new VSESystem(spec);
system.setConnectionMode(true);

 VSEVsamCluster cluster = new VSEVsamCluster(system,”MY.USER.CATALOG”,
 ”MY.SAMPLE.CLUSTER”);

VSEVSamMap map = cluster.getVSEVsamMap(“MYMAP”);

// add a record with DBCS data
VSEVsamRecord record1 = cluster.getVSEVsamRecord(map);

 record1.setKeyField(map.getIndex(“KEY-FIELD“), “RECORD00“); // STRING (key)
 record1.setField(map.getIndex(“DBCS-FIELD“),dbcsdata.getBytes((“Cp1047“)); // BINARY
 record1.setField(map.getIndex(“NUMERIC-FIELD“),new Integer(123)); // PACKED

record1.add();

// read a record with DBCS data
VSEVsamRecord record2 = cluster.getVSEVsamRecord(map);

 record2.setKeyField(“KEY-FIELD“, “RECORD00“); // STRING field (key)
 String dbcsdata = new String((String)record2.getField(map.getIndex(“DBCS-FIELD“)),
 “Cp1047“); // BINARY field
 Integer numdata = (Integer)record2.getField(map.getIndex(“NUMERIC-FIELD“)); // PACKED

 // update the record
 record2.setField(map.getIndex(“DBCS-FIELD“),textdata.getBytes((“Cp1047“)); // BINARY
 record2.commit();

Here the DBCS data is translated with Java methods into Java’s String representation
(Unicode) and vice versa. The field in the VSAM record is defined in the mapping as
BINARY, so no translation happens during transfer.

© Copyright IBM Corp. 2009 How to use the Java-based Connector with DBCS

Page 5 of 5

Recommendations

• Use a standard US English EBCDIC codepage (e.g. IBM-1047) and a standard US
English ASCII codepage (e.g. IBM-850) in the configuration member for the VSE
Connector Server (see skeleton SKVCSCFG in ICCF library 59). This codepages are
used for translating textual resource names.

• Transfer any user data that contain DBCS data in binary mode only. Perform the
codepage translation in your Java program. Java is capable of translating DBCS
EBCDIC data into its ASCII or Unicode equivalent.

• For VSAM data: Define the fields containing textual DBCS data as BINARY instead
of STRING and perform the codepage translation in your Java program.

