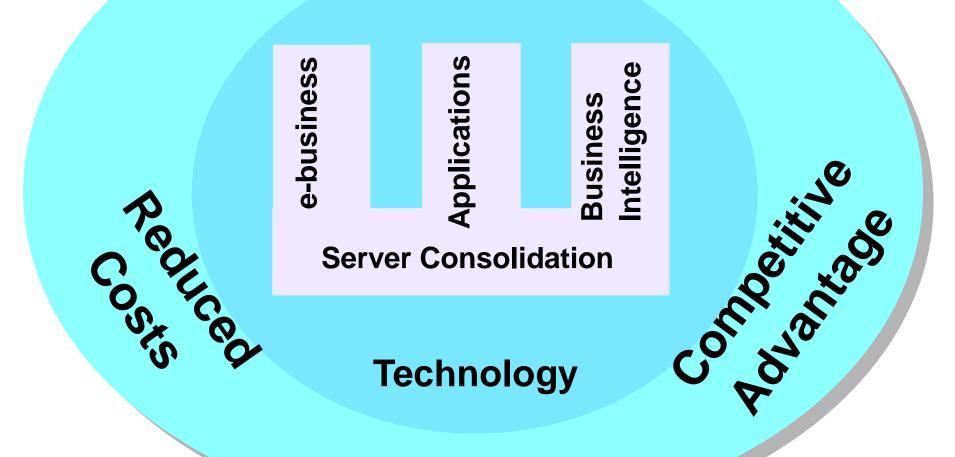
Server Consolidation and Your Business


Alan Glickenhouse S/390 New Technology Center Poughkeepsie, NY calls390@us.ibm.com

AGENDA

- What is Server Consolidation?
- Why Consolidate Servers?
- Technology Comparison: Why S/390 Technology allows for Server Integration
- Creating a Server Consolidation Business Case
- Summary

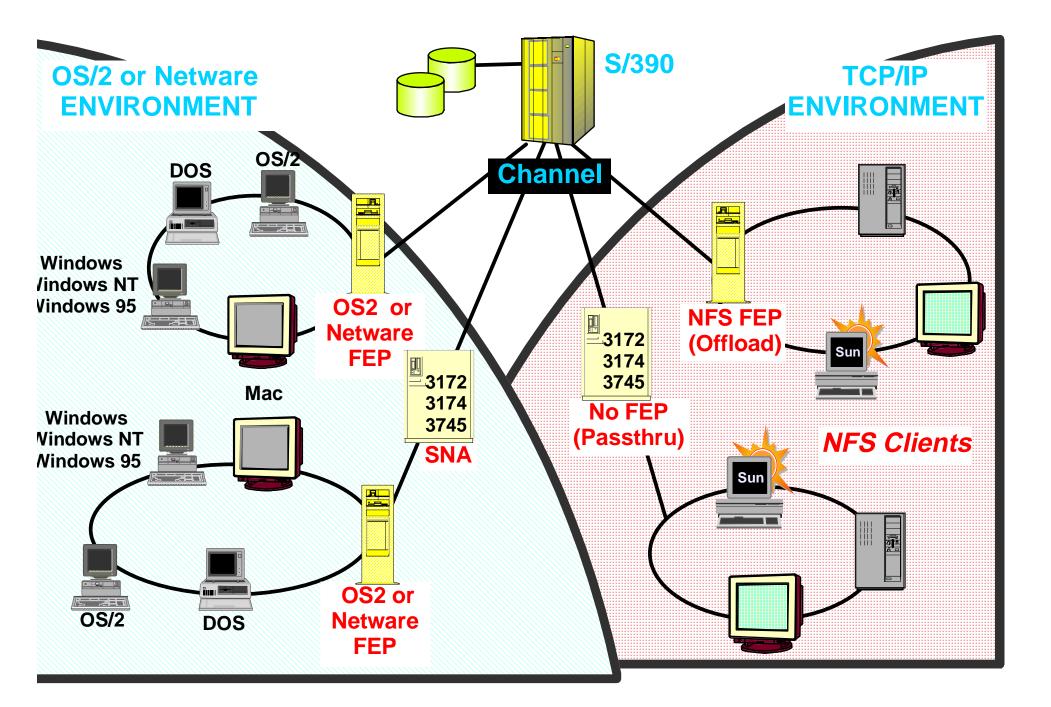
S/390 Strategic Initiatives

Business Solutions

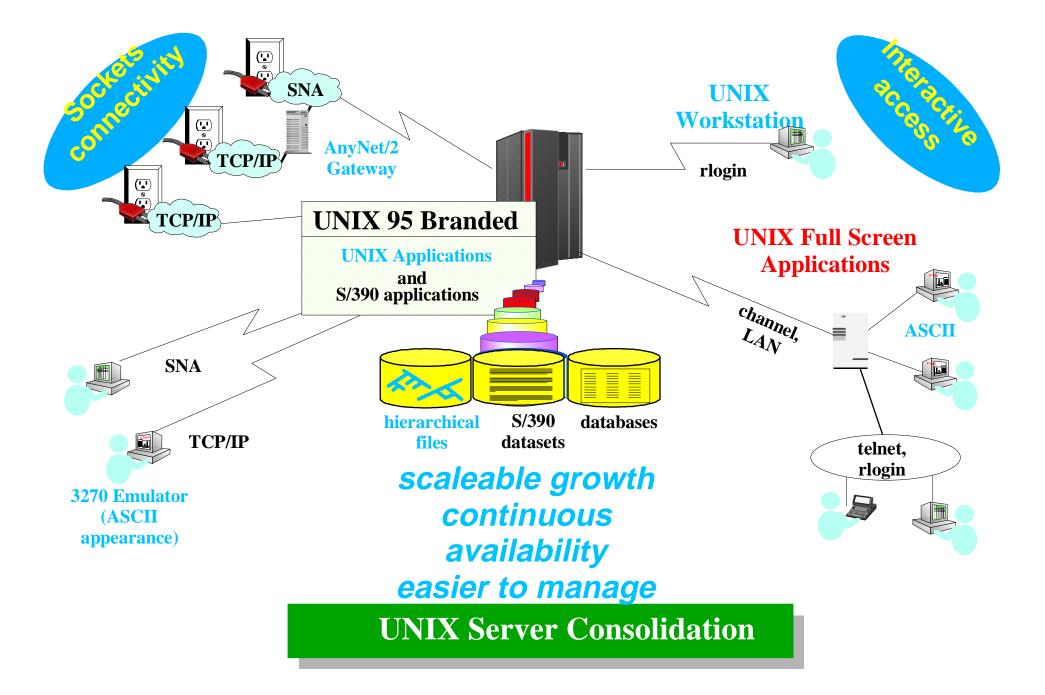
What is Server Consolidation?

Server Consolidation Definitions

Location Consolidation (Co-location)	Logical Consolidation (Sys. Mgt.)	Physical Consolidation (Re-centralization)	Combination Consolidation (Rationalization)
 Co-locating servers in a common location increased security reduced operations support compared to physically distributed servers application of uniform systems management pratices 	- Common, consolidated management of distributed servers - use of distributed systems management and nerwork management tools - higher availability, reduced operations costs	 Reducing the total number of servers replacing smaller servers with larger servers of the same type fewer points of failure, reduced operations and communications costs, increased security 	 re-engineering of applications and databases simplifying a multi-platform environment more efficient use of hardware, fewer software assets, reduced complexity
LO			HI
LO			HI


Source: Definitions from Gartner Group, supported by trade press publications.

Payback


omplexity

OS/390 LAN Data Consolidation

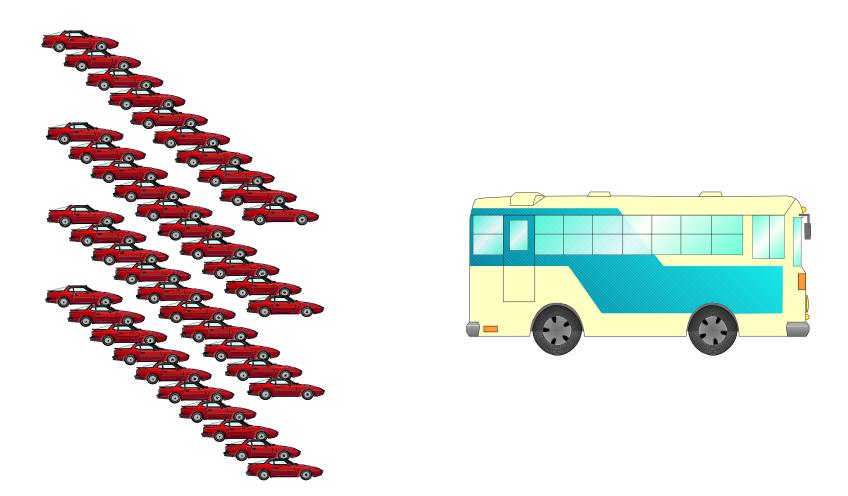
OS/390 Application Consolidation

Why Consolidate Servers?

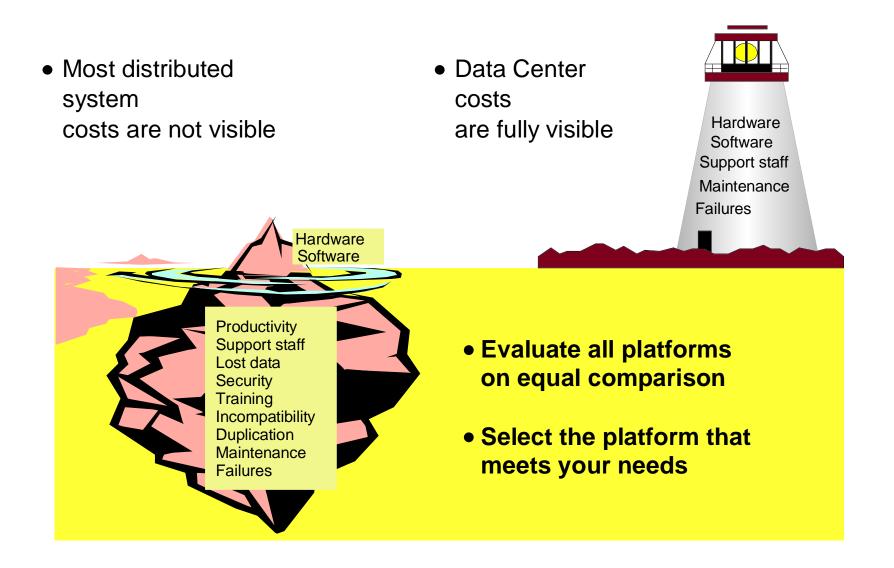
Which Solution is Better?

- Small business or independent department
 Small workgroup support
 Local branches with low bandwidth connection to enterprise servers
 Only need a single
- application supported
 Autonomous decisions for local IT infrastructure

- Total lower cost solutions
- Easier to manage
- More reliable system
- Mixed workload environment
- Centralized decisions for IT infrastructure
- Single view of large databases
- High volume transaction processing



Decentralized Support

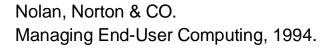

Centralized Support

Number of Components

- A car is less costly and easier to manage than a bus
- But what if I need to take 40 children to school?
- A bus is much less costly and easier to manage than 40 cars

True Total Cost of Computing

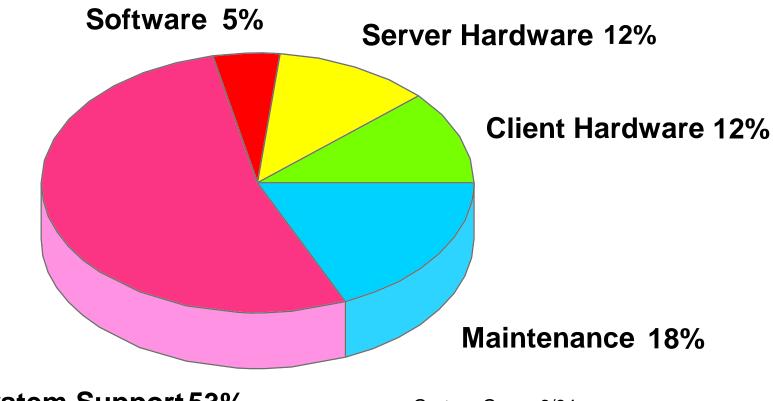
Peer to Peer Support



End Users Performing some or all:

- Backups
 - Slow & Unreliable Results
- Security Administration
- Software Installation
- Disk Management
- Network Monitoring
- Problem Analysis
 - Detection & Correction
 - Send an Expert to Every Location

Nolan, Norton Study


- Major hidden cost is users helping users
- Leads to customer disatisfaction
- Users are untrained in systems
- Creates errors and problems
- Inefficiencies
- Waste average of \$6,000 per user per year

System Management Is Costly

Distribution of Operational Costs in Client/Server

System Support 53%

Death of the Mainframe?

- S/390 MIPS shipments increased 65% in 1996 - Datamation April 1997

\$ / user / year

Number of Users	Mainframes	Unix Servers
50 to 99	\$5183	\$7947
100 to 249	\$4779	\$6036
250 to 499	\$3855	\$5641
500 to 999	\$2883	\$5100
1000+	\$1225	\$4170

Source: International Technology Group

- Since the introduction of CMOS, S/390 hardware prices have dropped 35% per year - International Data Corp.

Annual Cost per User

	Type Of Environment	Annual Cost per User
Gartner Group	Workgoup configuration Divisional configuration 5,000 user configuration Enterprise Server costs	\$10,162 \$13,270 \$9,272 \$5,324
International Data Corp.	LAN Decentralized configuration LAN Distributed configuration UNIX Servers Decentralized UNIX Servers Distributed	\$8,040 \$6,624 \$10,176 \$6,144
International Technology Group	User spending Mainframe: User spending	\$6,445 \$2,282
KPMG Management Consulting	Peer Support and Help Desk	\$10,000+
Meta Group	PC/LANs	\$8,084
Nolan, Norton and Company	Peer Support Specialist support	\$6,000 - \$15,000 \$2,000 - \$6,500
Price Waterhouse	PC/LANs	\$9,000+

Networking Computing Drives I/T Consolidation

I/T Architectural Intentions		
No Shift	21%	23%
Decentralization	51%	18%
Centralization	28%	59%
	'90 -	Foday
Source: McKinsey		

<u>DRIVERS</u>

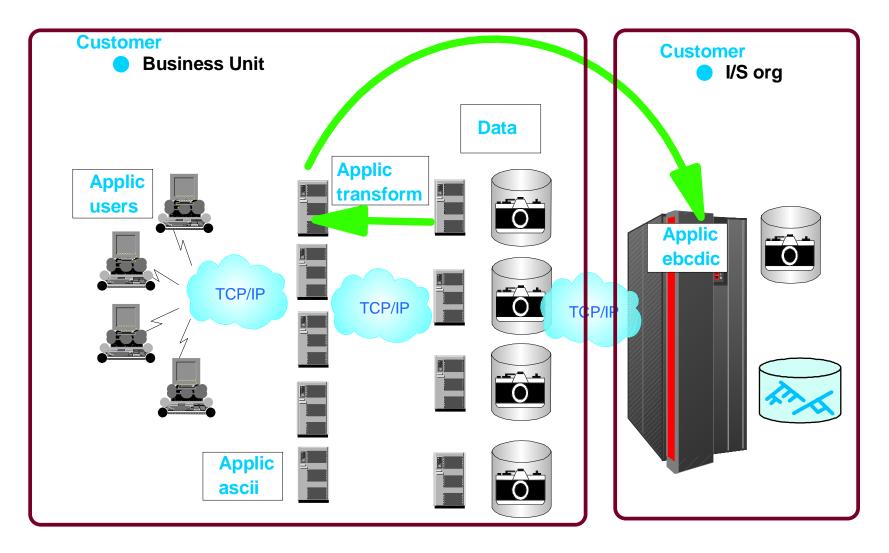
- Continuous Operations
- Consistent Performance
- Management Complexity
- Security
- Cost of Computing
- Economies of Scale
- Network Technology

Consolidation Indicators

92% of N.A. Corporations Now Have Hybrid or Centralized IS Models (Computerworld)

80% of Multinational Corporations are Recentralizing IS (The Research Board)

68% of Multinational Corporations are Recentralizing Finance Systems (The Conference Board)


72% of N.A. Corporations are Consolidating / Recentralizing PC/LAN Infrastructures (Computer Economics)

Inhibitors to Consolidation: Responsibility protection

S/390 and I/S must understand business unit requirements to ensure consolidation objectives can be met Customer

• Working together, optimal solution achievable

CFO - CIO

Technology Comparison:

Why S/390 Can perform Server Integration

Server Consolidation - Key Considerations

Scalability

- ► Performance
- ► Database
- Clients Supported
- ► Transactions
- Availability
 - Serviceability
 - ► Reliability
- Data Management
 - ► Database
 - ► Storage
 - Backup and Recovery

Systems Management

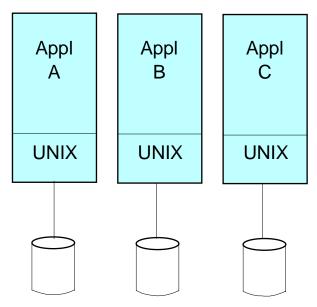
- Workload Management
- System Management
- Network Management

Security

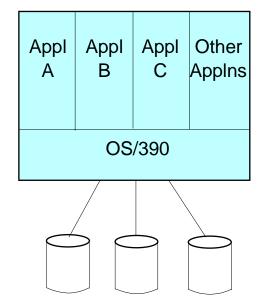
- ► System
- Network
- ► Internet
- ► Flexibility
 - Departmental Servers
 - Clients
 - Environments

Traditional UNIX Design

- Fast restart of system after failure
- Easy access to comprehensive program development environments and tools
- Restricted ability to comprehend data once access is granted
- Easy modification of operating system
- Workload management does not differentiate types of processing

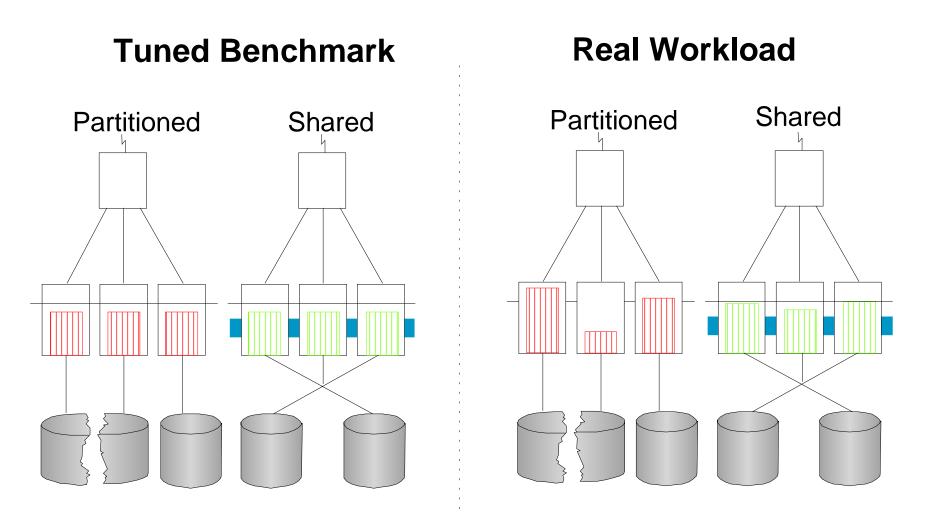

UNIX developed in universities and research establishments on small servers

S/390 Design


- Continue to operate after a failure if at all possible
- Prevent unauthorized access
- Control the level of authority once access is granted
- Do not allow modifications of the operating system
- Efficient use of all resources
- Workload management of different concurrent types of processing
 - Online, batch, query, data mining, Web serving

S/390 runs the large majority of commercial and government business

Traditional UNIX and S/390 Approaches



- Single application per server
- Separate/partitioned data bases
- Complex system management
- Complex to integrate applications

- Workload managed according to business priorities
- Multiple applications per server
- Data bases, shared with integrity
- Less complex system management
- Interoperability and integration between applications

Workload Management - Cluster

Coupling Technology

Scalability

Electronic Commerce Benchmark: Platform Configuration

Number of Users	S/390 Systems	MPP Servers	SMP Servers (12-way)
1,000	1 x 2	2 x 15	4
5,000	1 x 10	2 x 81	20
10,000	2 x 10	2 x 158	40
25,000	5 x 10	3 x 256	100
50,000	10 x 10	6 x 256	200
100,000	21 x 10	12 x 256	400
150,000	32 x 10	18 x 256	600

Source: Strategies for Scalability Management Brief International Technology Group, 1997

Response Time and Utilization

- In traditional UNIX, as processor utilization increases response time increases and becomes more variable
- With OS/390, utilization at which online response time became unacceptable:

Year	Maximum processor utilization for online workloads
1960s	60%
1970s	65%
1980s	75%
1990s	90% +

- Improvements with data in memory, system dispatcher, and workload management
- UNIX servers typical utilization is 50-70% now

Value of Availability

Industry	Avg Cost/hour downtime (US \$)	
Package Shipping	\$30K	
Cellular Services	\$45K	
Telephone Ticket Sales	\$70K	
Airline Reservations	\$85K	
Catalog Services	\$85K	
Home Shopping	\$120K	
Pay per View	\$150K	
800 number services	\$200K	
Credit Card	\$2600K	
Brokerage	\$6500K	

Levels of Availability

Class of 9s	Outage	COST Estimate (3 yr life)*	Examples**
99.999 %	5 min/year	\$9000	
99.99 %	53 min/year	\$99000	S390 Parallel Sysplex
99.9 %	8.8 hrs/year	\$950,000	S390 Single System
99.8 %	17.5 hrs/year	\$1,900,000	AS/400 Cluster
99.6 %	35 hrs/year	\$3,800,000	Unix Clusters
99 %	88 hrs/year	\$9,504,000	NT Clusters

* Merit Project study indicates avg cost of \$36000/Hour (Information Week 9/21/98) **Gartner 100 percent Application Availability study (12/97)

Availability Factor?

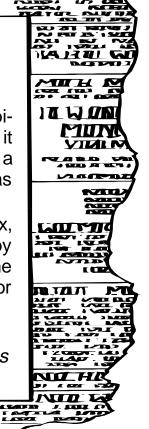
Man shoots computer

LALET AVIO

ISSAQUAH, Wash. - A man was coaxed out of his home by police after he pulled a gun and shot his personal computer, apparently in frustration.

"We don't know if it wouldn't boot up or what," Sgt. Keith Moon said Thursday.

The computer, in a home office on the second floor of the town house, had four bullet holes in the hard drive and one in the monitor.


One bullet struck a filing cabinet, while another made it through a wall and into a neighboring unit. No one was hurt.

Police evacuated the complex, contacted the 43-year-old man by telephone and got him to come out. He was taken to a hospital for a mental evaluation.

A TEAL DATE AT AN AUTOR

- The Associated Press

G WAELAN O

Flexibility

Low risk

- There is lots of experience of running mission-critical applications on S/390 with
 - Availability
 - Security
 - Performance
 - Recoverability

Flexibility in deploying new applications

- Data can all be on one platform
 - -No data movement issues
- New applications can interface to current applications
- Large batch processes can be run

Flexible growth

- Very large capacity there if you need it
- LPAR to segment, vary, and control capacity
- Continuous availability with Parallel Sysplex

System Integrity and Security

System integrity

- OS/390 system integrity warranty since MVS/370 in 1974
 - Has affected how OS/390 has been written ever since
- Facilities in OS/390:
 - Storage protection keys
 - Subsystem storage protection
 - Clearing storage
 - Parity bit checking
 - Storage locks for multiple systems updating data
 - Transaction and data base managers

Security

- SAF interface and RACF
- LPAR
- Auditability, even of superuser
- 9672 Generation 3 Cryptographic Coprocessor Feature
- Physical security easier within a data center

Data Management

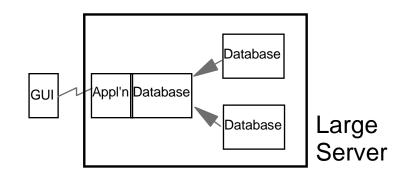
GUI

Appl'n

Move data for

- Backup
- Data extract
- Distributed data

Distributed solution


- Move data across I/O channel or network
- Best data rate 2 3 MB/sec
- Needs sophisticated tools to manage

Centralized solution

- Move data within data center
- 12 MB/sec per channel
- Simple tools needed

Issues to consider

- Timeliness of data
- Backing up the extracted data
- Managing multiple data base managers
- Performance
- Availability

Database Database Database Large Server

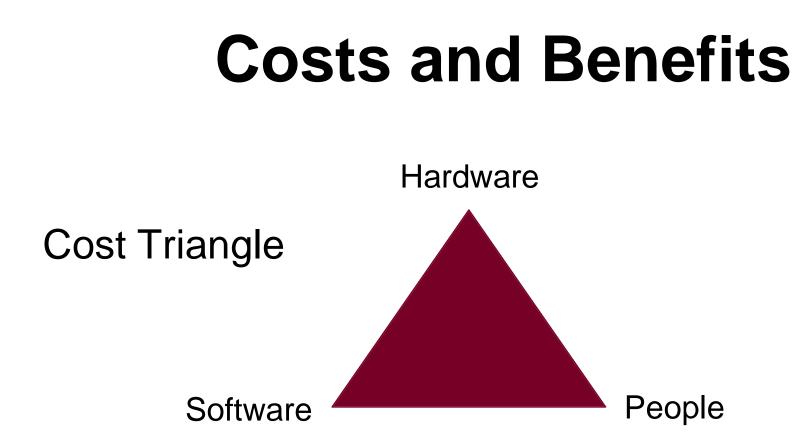
Validation of Conclusions

Consultant reports

User study of S/390 and traditional UNIX servers for a specific application

• UNIX vendor cost saving claims

Typically centralized UNIX against old-style S/390

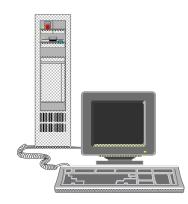

• UNIX vendor direction

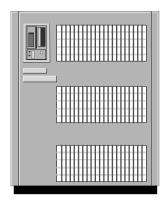
- Centralized UNIX
- "Mainframe" class servers
- Major thrust to add system management functions

• User experience

Spending more on distributed UNIX and LAN servers than on S/390 Enterprise servers

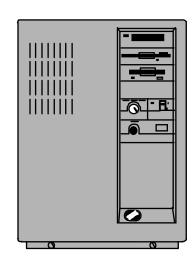
Creating a Business Case




- You can make different tradeoffs
- Different platforms make different tradeoffs
- Add in <u>ALL</u> costs
- Attempt to quantify business benefits for availability:
 - How much does it cost if your LAN or UNIX server is down?
 - How long does it take to recover?
- Business value of different platforms may be different

Server and Application Inventory

Gather Characteristics


- In House Name
- Workload type (e.g. OLTP)
- Software Dependencies
- Location
- Hardware used
- Network Connections
- Server to Server Communication
- Original Source of Data
- High Availability Req'd



Collect Performance Attributes

- # of Users
- Disk space required (GB)
- Memory required
- # of Tx/day
- CPU Utilization (Avg, & Peak)
- Backup Resource(s)

The Life of A Project

- Identify ongoing costs versus one time costs
- Multiply ongoing costs over the projected time frame

Hardware Cost Comparison

CPU

- Not a fixed ratio Vendor A Model X = S/390 Model Y
- Varies with workload type and other factors
- → UNIX
 - utilization %
 - duplicate hardware backup for high availability
- → S/390
 - Parallel Sysplex and LPAR for high availability
 - Contact IBM and provide info for comparable system estimate

Disk

- UNIX duplicate disk/data:
 - -Backup
 - Multiple Application access
 - Multiple access paths for performance

Tape Backup Systems

Network Bandwidth

- Channel Connectivity
- Reduced data flows

Additional Cost Comparisons

Software

- Consult Licensing
- E.g. Price * Number of payments * Number of Systems or Enterprise license or User based license or ...

Support (ongoing costs)

- Administrators / Operators
- System Management
- Maintenance
- Security
- Backups
- Training / user support

Development/Conversion (one time costs)

- → Tools
- Project personnel
- Test and Test Environment
- Procedure Changes

Estimating Added Value

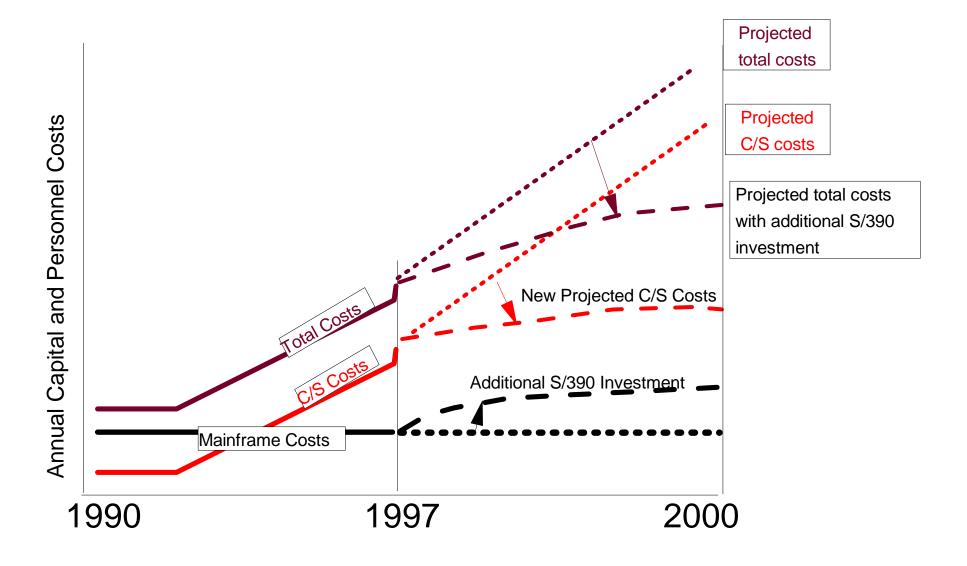
Eliminated Efforts

Single copy of shared data vs. Data replication and synchronization

Business Units reduced performance of I/T tasks (Server Admin)

Growth

- Hardware scalability or duplication?
- Software another copy? change management?
- Personnel Numbers of servers/Administrator?


Cost of Failure

- Cost per minute per outage ... History of outages?
- Reliable and automated backups ... Can you do a Restore?
- Data Integrity

Flexibility

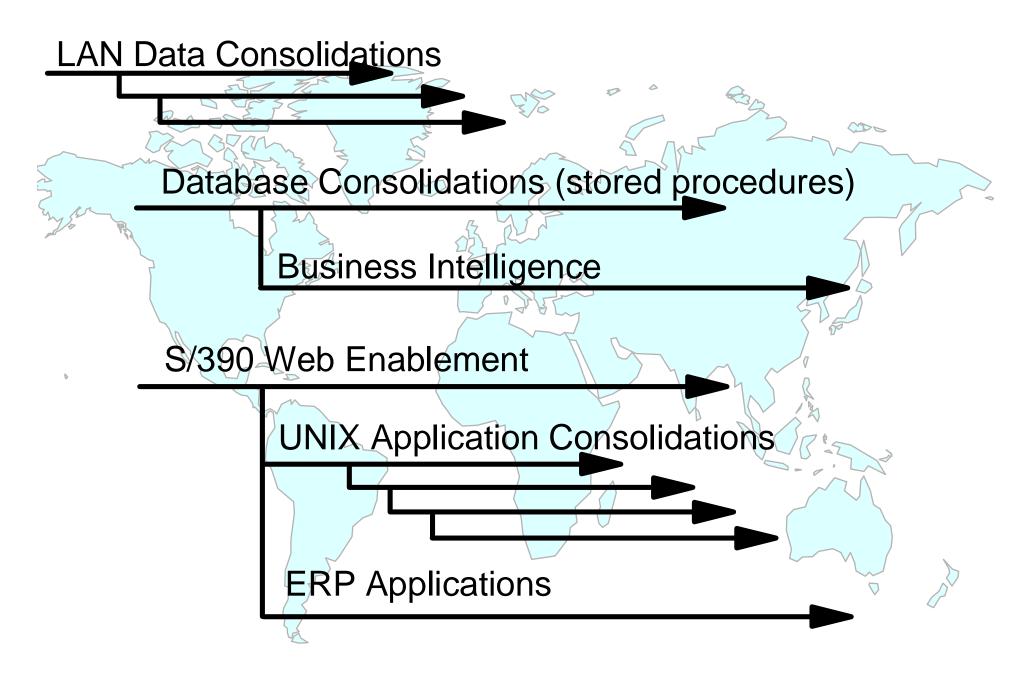
- Workload management and fully utilized resources
- LPAR to vary capacity

Cost / Savings Projection

Evolution or Revolution?

Revolution

- Make a major change in one step
- May be cheapest and fastest, if it works
- Many changes so high risk of failure


Evolution

- Take smaller steps
- Lower risk
- Each step is more manageable

Change involves risk

- Manage the risks
- Minimize them where they do not materially affect the value

S/390 Server Integration Roadmap

Summary

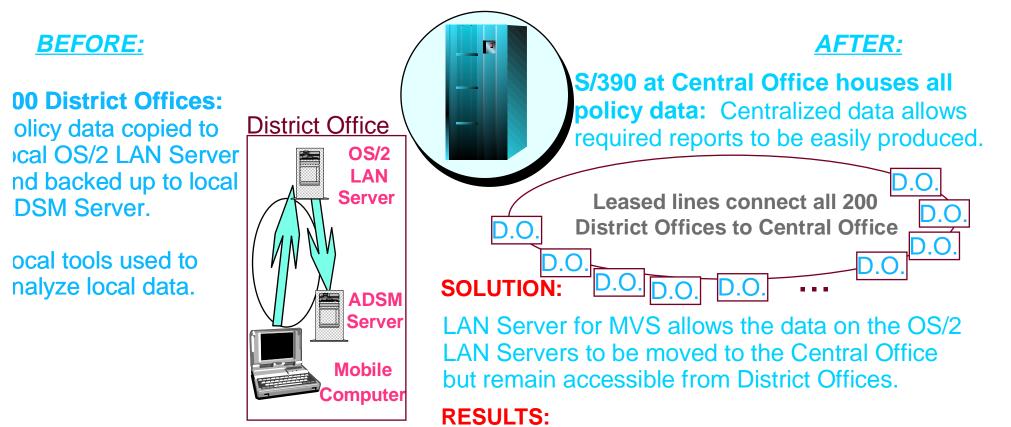
LANRES Efficiently Connects LANs to Direct Marketing Company

ANs Isolated from S/390 - Contains Client's Data Used in Marketing Campaigns RESULTS:

ROBLEM:

ligh cost of manual processing of tapes for ansporting data between LANs and S/390.

¡OAL:


\utomate the process

Eliminate over 200 tapes per week and over 52,000 man-hours per year.

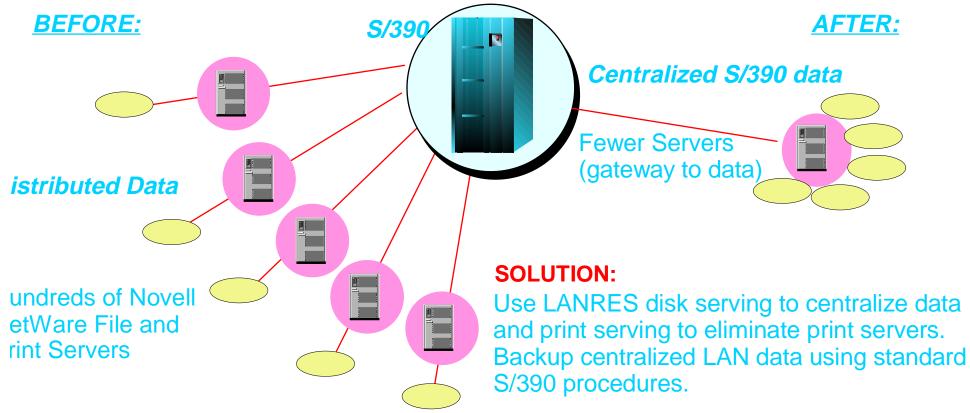
BENEFITS:

A more Efficient Process resulting in Reduced Costs and the potential to use S/390 to back up LAN data.

LAN Server for MVS Saves Business at European Insurance Company

ROBLEM:

IK government requires insurance ompanies to comply to new reporting egulations to continue to sell policies. OAL:


Consolidate data from 200 District Offices to produce required reports

Reports are produced from centralized data, while District Office tools continue to analyze D.O. data.

BENEFITS:

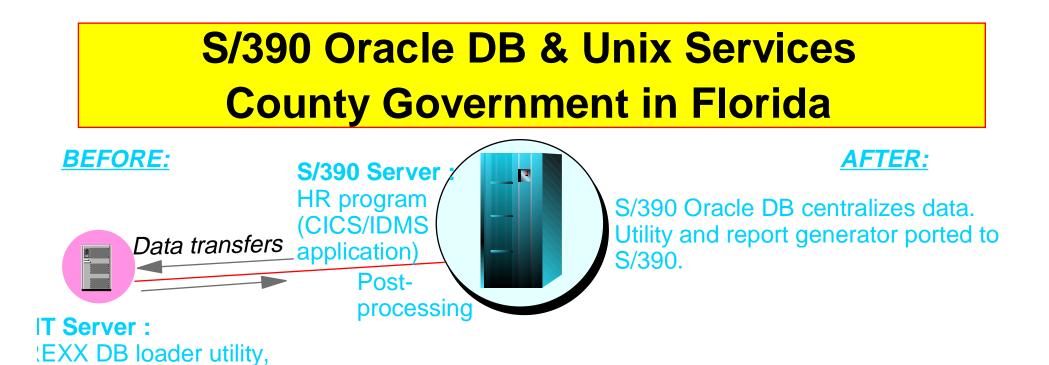
Swift implementation allowed the customer to Continue to Sell policies, as well as Save Time and Money by backing up data with ADSM at the Central Office.

OS/390 LANRES Consolidates Servers at Large National Bank

ROBLEM:

ligh cost of managing distributed data.

OAL:


centralize data to reduce costs.

RESULTS:

Eliminate over 100 servers.

BENEFITS:

Reduced Total Cost of Ownership due to substantial savings from managing centralized data.

ROBLEM:

enerator

)racle DB, and report

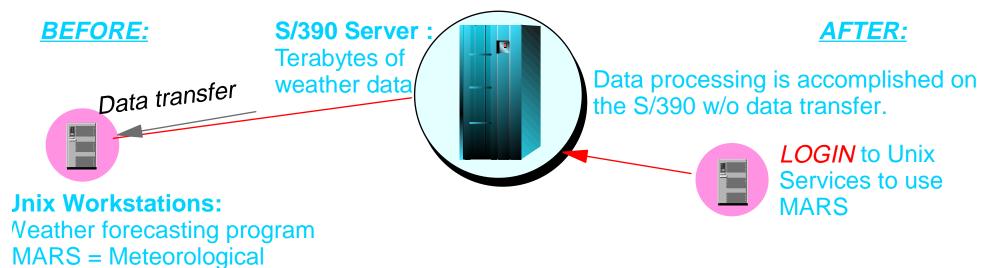
nadequate performance. Concern that NT server won't easily cale with increased load.

OAL:

centralize data AND processing to treamline the process.

SOLUTION:

Replace Oracle on NT w/ Oracle on S/390. Recompile utility for MVS REXX. Use vendor port of report generator with OS/390 Unix Services.


RESULTS:

Data transfers and NT Server are eliminated.

BENEFITS:

Decreased Costs and Increased Performance and Scalability.

S/390 Unix Port Boosts Productivity at European Weather Forecaster

ROBLEM:

nadequate performance due o long data transfer times.

Archive And Retrieval System)

JOAL:

Nove processing to the data WITHOUT equiring users to learn new tools.

SOLUTION:

The customer ported MARS to OS/390 Unix Services.

RESULTS:

Data transfers are eliminated.

BENEFITS:

Increased Productivity for forecasters using familiar tool w/o requiring additional skills.

OS/390 Unix & Web Server Improve University Communications

ROBLEM:

refficient distributed web serving process.

OAL:

combine data and web serving for efficient rocessing.

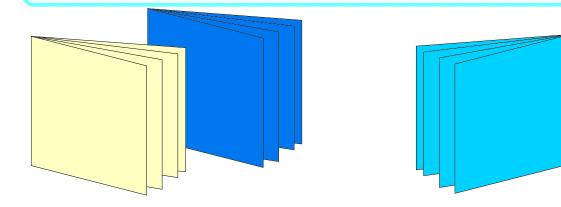
OLUTION:

Ise OS/390 Internet Connection Secure Server CSS) and an Adabase web gateway created
ith the help of Motrice Kern Systems. The
i++ web gateway utilizes OS/390 Unix Services
allow ICSS direct access of the database.

RESULTS:

Eliminate Non-S/390 Web Server and nightly data transfer.

BENEFITS:


Efficient & Secure Web Serving of Alumni Communications to local and remote users. (C) Copyright IBM Corporation 1997

Conclusions

- Avoid a technology focus
- Take a business view
- Understand the business requirements
 - Not just short term cost and implementation speed
 - Consider long term cost and benefit
 - Flexibility
 - Data access and protection
 - Performance
 - Availability
 - Management cost and effort
- You generally have a choice of solutions and servers
- Select a platform based on your business needs

Additional Information

http://www.s390.ibm.com/unix - OpenEdition home page http://www.gartner.com - Gartner Group http://www.itgcorp.com - International Technology Group http://www.nnc.kpmg.nl - Nolan, Norton, and Co. http://www.idcresearch.com/idc.htm - International Data Corp. http://www.metagroup.com - Meta Group http://www.metagroup.com - Meta Group http://www.mckinsey.com - McKinsey Corp. http://www.computerworld.com - Computerworld http://www.researchboard.com - The Research Board http://www.computereconomics.com - Computer Economics http://www.datamation.com - Datamation

