
MVS Open and Distributed Project
Opening and

What's New with OS/390 UNIX
Session 2904

March 6, 2000

Garth Godfrey
OS/390 UNIX Systems Services Development

IBM Poughkeepsie, NY
ggodfrey@us.ibm.com

http://www.ibm.com/s390/unix

What's New with OS/390 UNIX Session 2904 1

At the completion of this session, you will be
able to:

Identify OS/390 UNIX enhancements in
Releases 8 and 9

Shells & Utilities
File System
Kernel

State how the enhancements can be used to
benefit your installation

Session Objectives

What's New with OS/390 UNIX Session 2904 2

Overview - OS/390 V2R8 UNIX

Need Addressed Solution

Provide more function available
on other UNIX platforms

Magic number (#!) support
Shell support for [[...]]
Shell support for autoloaded functions

Interoperability with MVS
facilities.

cp, mv, pax, tar support of MVS dsn
tso command keywords

Better security and system
management

Superuser Granularity
User resource limits
Surrogate userid
vi temporary files
skulker (soon)
SETOMVS command options

Better diagnostic tools BPXBATCH return codes
dbx enhancements

What's New with OS/390 UNIX Session 2904 3

OS/390 V2R8 Magic Number

OS/390 UNIX now supports script files that
start with a line:
#! /usr/bin/shell

where /usr/bin/shell is the pathname of the
command interpreter to use to execute the
script
e.g. If you installed Perl in /usr/bin/Perl, start
your Perl scripts with:
#! /usr/bin/Perl

APAR back to R7 --- OW39467

What's New with OS/390 UNIX Session 2904 4

OS/390 V2R8 Shell Enhancements

[[WHVWBH[SU]]
Korn shell (ksh) syntax used for conditional tests
Reserved word command used frequently in ksh scripts for
flow control
 if [[-e file]]; then ...

Autoloaded functions
Shell function definitions are "loaded" (stored internally by the
shell)
Autoloaded functions are "loaded" from a directory the first
time they are called

What's New with OS/390 UNIX Session 2904 5

Double square brackets syntax is widely used in Korn shell scripts
These scripts are often part of UNIX applications
Reserved word commands are built into the shell
[[...]] can be used anywhere a shell command can be used
Shell functions are sequences of shell commands (like shell scripts)
Functions are stored in the shell, so they are faster than shell scripts
Typically, a user's .profile sets up ENV=setup , and the setup file contains all
function definitions the user wants available from the shell command line
This must be processed for login shells, and child shells running shell scripts
and background jobs
Compatible with Korn shell

Autoloaded function setup

Identify functions as autoloaded (undefined)
in user's ENV setup script

autoload func1 func2 func3 ...

Put function definitions in directories
administrators may define shared directories
with common functions

Define the FPATH shell variable to specify
the search path for functions

What's New with OS/390 UNIX Session 2904 6

autoload is an alias for "typeset -fu"

1st step is optional, but recommended for slightly better performance

FPATH has the same format as the PATH variable
FPATH=dir1:dir2:dir3

cp / mv support
copy / move between:

UNIX file <=> MVS seq ds
UNIX files <=> MVS PDS or PDSE members
MVS PDS or PDSE => UNIX dir
MVS PDS or PDSE member => MVS PDS or PDSE

cp/mv can create an MVS sequential dataset

support for text / binary / executables

syntax examples:
FS XQL[ILOH ���
JRGIUH\�ILOH�
�

FS I� I� I� ���
SRVL[�JRGIUH\�OLE
�

What's New with OS/390 UNIX Session 2904 7

To copy/move to a PDS or PDSE, the dataset must be allocated before the
copy/move. Examines file attributes to pick text/bin/exec, or user can
override with option.
-P can be used to specify the fopen() parms used to create the seq. ds,
including RECFM, SPACE, LRECL, BLKSIZE.
Example without quotes: //mylib\(pgm1\)
Compatibility issue: UNIX scripts that use cp /$x/file may resolve to //file.
Was treated as a /file.Now treated as an MVS dataset (Portable scripts
ensure ///file).
Considering adding a shell var for compatibility.

pax/tar support of MVS datasets

MVS datasets are only supported as the archive file

You cannot store MVS dataset members as component
files within an archive.
You cannot extract component files from an archive
directly into an MVS dataset

Syntax:
SD[�ZI ���
XVHU�OLE�DUFKLYH�
�

SD[�UI ���
XVHU�OLE�DUFKLYH�
�

What's New with OS/390 UNIX Session 2904 8

pax and tar package HFS directory trees into a single file called an
"archive". Archives can be moved to other systems or directories.
"Extracting files" means moving files from the archive into HFS files.
Avoids OPUT of archives from MVS ds to UNIX, and OGET of archives from
UNIX to MVS ds. (Often problems with forgetting to use binary, or space in
UNIX filesystem.) Archives are always treated as binary
When writing to a PDS member, the PDS must already exist
pax will automatically overwrite an existing archive (consistent with UNIX)

tso shell command

New allocation keywords
PATH('pathname') file in the HFS
PATHOPTS(pathopt[,pathopt]...) list of path options
PATHMODE(pathmode[,pathmode]...) list of modes

(permissions)
PATHDISP(KEEP|DELETE[,KEEP|DELETE]) normal,

abnormal file disposition

FILEDATA(TEXT|BINARY) data text or binary

What's New with OS/390 UNIX Session 2904 9

Superuser Granularity

UNIXPRIV Resource Names Supported:

CHOWN.UNRESTRICTED
SUPERUSER.FILESYS
SUPERUSER.FILESYS.CHOWN
SUPERUSER.FILESYS.MOUNT
SUPERUSER.IPC.RMID
SUPERUSER.FILESYS.PFSCTL
SUPERUSER.PROCESS.GETPSENT
SUPERUSER.PROCESS.KILL
SUPERUSER.PROCESS.PTRACE
SUPERUSER.SETPRIORITY
SUPERUSER.FILESYS.VREGISTER

What's New with OS/390 UNIX Session 2904 10

CHOWN.UNRESTRICTED - Existence of profile allows user to change ownership of
his own file.
SUPERUSER.FILESYS - READ (or higher) allows a user to read any HFS file and
read/ search any HFS directory. UPDATE (or higher) allows a user to write to any HFS
file. CONTROL (or higher) allows a user to write to any directory
SUPERUSER.FILESYS.CHOWN - Allows user to change ownership of any file
SUPERUSER.FILESYS.MOUNT - Allows user to issue mount, unmount, quiesce, and
unquiesce requests. READ permission to mount NOSETUID. UPDATE permission:
full function mount points.
SUPERUSER.IPC.RMID - Allows user to do ipcrm calls to clean up leftover IPC
mechanisms
SUPERUSER.FILESYS.PFSCTL - Allows user to call pfsctl()
SUPERUSER.PROCESS.GETPSENT - Allows user to see all processes with
getpsent() (ps command)
SUPERUSER.PROCESS.KILL - Allows user to send signals to any process.
SUPERUSER.PROCESS.PTRACE - Allows user to dbx (ptrace) any process.
SUPERUSER.SETPRIORITY - Allows user to increase his priority. (setpriority(), nice())
SUPERUSER.FILESYS.VREGISTER - Allows user to issue vregister() to register as a
vfs file server

OS/390 UNIX User Limits

Stored in OMVS segment of user profile
 CPUTIMEMAX
 ASSIZEMAX
 FILEPROCMAX
 PROCUSERMAX
 THREADSMAX
 MMAPAREAMAX

ADDUSER ... OMVS(CPU(100) ASSIZEMAX(200M)
...)

What's New with OS/390 UNIX Session 2904 11

Up until this release, limits specified in BPXPRMxx applied to all processes. If one
user needed a particularly large region, lots of CPU time, 100's of processes or many
threads, it was necessary to set the system limit high enough for the largest user.
The BPXPRMxx system limits still apply, unless there is a specific limit value specified
in the OMVS segment for the user.
If the user has any of the limits (FILEPROCMAX, PROCUSERMAX, THREADSMAX or
MMAPAREAMAX) specified, these limits apply.
For MAXCPUTIME and MAXASSIZE, the limit is environment sensitive. For example,
if the address space is TSO or batch, then a region size and time limit are already
established and are not changed. Once dubbed, these limit values become the new
hard limit, which would allow the user to invoke the setrlimit function (or the ulimit
command) to raise their limit.
For the setuid/exec case which is typical of daemons (inetd, rlogin, telnet), the address
space will take on the new region size and CPU time limit when the exec function
completes.
You may be wondering why the RACF keywords are CPUTIMEMAX instead of
matching (MAXCPUTIME) the name of the limit in BPXPRMxx. The reason is to allow
abbreviations of the shortest possible length within the RACF commands that define
these keywords.

Surrogate Userid
Switch to userid without password
SETROPTS CLASSACT(SURROGAT)
RDEFINE SURROGAT BPX.SRV.JACK UACC(NONE)
PERMIT BPX.SRV.JACK CLASS(SURROGAT) ID(JILL)
ACCESS(READ)
SETROPTS RACLIST(SURROGAT) REFRESH

JILL running shell
su jack
FSUM5019 Enter the password for jack: <enter>

new shell started with userid JACK

su -s jack
new shell started with userid JACK

Support in setuid, seteuid, and __passwd to honor SURROGAT

What's New with OS/390 UNIX Session 2904 12

In the past, BPX.SUPERUSER FACILITY class profile that allowed UNIX
users to switch to superuser auhority without having to share the password
of some root userid.
The ability to have similar processing between different userids has been
added via the use of the SURROGAT class profiles. In this example, JILL
has been given surrogate authority to JACK. This allows JILL to enter the
su shell command to enter a new shell running under JACK without having
to provide a password.

vi editor temporary files

TMP_VI
New environment variable
Location of vi editor temporary files available for recovery
If /tmp is TFS,

TMP_VI=/var in /etc/profile
TMP_VI=/var
exrecover in /etc/rc (run at IPL)

set autoflush=n
n = number of seconds to flush buffers to temporary files
minimizes loss of vi editing when system crash

What's New with OS/390 UNIX Session 2904 13

TMP_VI Contains a directory pathname that can be specified by an
administrator as a location for vi's temporary files. This is useful if the
current default directory for these files (usually /tmp) is implemented as a
TFS. In this case, all vi's temporary files that the exrecover daemon uses for
recovery would be gone after a system crash.
We recommend that this environment variable be set by a system
administrator as opposed to a user setting it for their environment. The
exrecover command run during IPL must use the same directory as the
user's vi sessions.

skulker - new shell command

Coming soon via APAR OW42841

skulker [-irw] [-l logfile] directory days_old

removes files in directory older than specified number of days

shell script in /samples
copy to /bin/skulker or /usr/sbin/skulker
can be modified by installation
Protect it from hackers! (non-writable)

example:
skulker /tmp/ 100

use cron to schedule it to run regularly

What's New with OS/390 UNIX Session 2904 14

SETOMVS RESET=xx Operator cmd

BPXPRMxx

IPL Avoidance SETOMVS

Adjust HFS and socket parms dynamically
FILESYSTYPE
NETWORK
SUBFILESYSTYPE

Can IPL in min mode, then add HFS FILESYSTYPE and
mount a new ROOT.

Can add a new TCP/IP stack.

What's New with OS/390 UNIX Session 2904 15

Over time, our goal is to allow you to dynamically modify anything in the
BPXPRMxx parmlib member and have it take effect immediately. We are
biting off pieces at a time. This round was done to allow installations to add
new FILESYSTYPEs after IPL. This would most likely be used to add
something like NFS after the system is up and running.
One can also use it to add new TCP/IP stacks.

BPXBATCH / dbx
BPXBATCH passes back ending status
from requested program
dbx: new subcommands

args displays the argument count and a list of
arguments that are passed to the user's program

listfiles displays the list of files associated with each
module in the load map

listfuncs displays a list of functions associated with each file
in the program

record appends the user's command lines to the specified
file

dbx: new -f command option
 allows dbx to run in super lazy read mode, which speeds up
the reading of symbols for large programs and DLLs.

What's New with OS/390 UNIX Session 2904 16

BPXBATCH can be run in 2 ways. It can be run from JCL, in which case, no
change to return code processing occurs.
The other way it can be invoked is via calls from TSO, CLISTS, REXX, or
any other program. In these cases, the old way was for BPXBATCH to pass
back a return code saying how well BPXBATCH did. The program which
was run could have failed miserably, but BPXBATCH was successful
(RC=0).
The logic is changed to pass back the ending status of the program which
BPXBATCH ran.

Overview - OS/390 V2R9 UNIX

Need Addressed Solution

Provide more function available
on other UNIX platforms

tcsh C-shell
fuser
Shared library support
Queued signals

Interoperability with MVS
facilities.

sysvar
Shared HFS in a SYSPLEX
Megabyte Map services

Better system management

D OMVS operands
BPXBATSL
pax / tar support long link names
PFS recycle

Better diagnostic tools
BPXPRMxx syntax checker
JOBLOG to stderr
dbx enhancements

What's New with OS/390 UNIX Session 2904 17

Numerous customer requests have been made for these functions to
improve the portability of applications, shell scripts, and users from other
UNIX platforms

C-shell, fuser, and shared libraries are typically provided by other UNIX
platforms. The following utilities provide shared library support:

extattr
ls
cp
mv
pax
tar

sysvar provides shell script access to an MVS system variable

pax/tar change solves a long-standing UNIX restriction.

tcsh - An enhanced C-shell

Superset of BSD C-shell function

Advantages
Portability of C-shell scripts from other UNIX platforms
Interactive C-shell users get familiar look and feel,
including:

command-line editor
programmable word-completion
spelling correction

What's New with OS/390 UNIX Session 2904 18

Numerous customers and vendors have applications with C-shell scripts,
and/or have users familiar with a C-shell.

Since Berkeley source code has been freely available, there are numerous
versions of C-shell in use. tcsh is based on the Berkeley C-shell, but is
legally "clean", and is freely available from the internet. We've invested a lot
in porting this code, customizing it for OS/390 and extensive testing. It is
fully-supported through the normal IBM service channels.

It is completely compatible with the Berkeley C-shell, with enhancements
that provide advantages for interactive use.

Many customers have requested tcsh by name.

tcsh word completion

tcsh completes words anywhere in the line, given a unique

abbreviation for filenames, commands, and variables.

filename examples:
> ls
j k l ldir lost+found m
> ls -l lost<TAB>
> ls -l lost+found
-rw-rw-rw- 1 WELLIEA SYS1 5 Sep 24 14:42 lost+found
> ls -l ld<TAB>
> ls -l ldir/
total 24
-rw-rw-rw- 1 WELLIEA SYS1 5 Sep 24 14:52 file1
-rw-rw-rw- 1 WELLIEA SYS1 4 Sep 24 14:52 file2
-rw-rw-rw- 1 WELLIEA SYS1 13 Sep 24 14:52 file3

command examples:
> pass<TAB>
> passwd

> ggg<TAB>
> ggg-ridiculously-long-command
This command does nothing but print this message.

What's New with OS/390 UNIX Session 2904 19

A word is basically any set of characters separated from other characters by whitespace
(blank, tab) or shell special characters.

The shell treats words as commands at the beginning of a shell line or following `;', `|', `|&',
`&&' or `||'

The shell treats words as variables when they start with $

All other words are completed as filenames

In the examples, lost is replaced with lost+found on the command input line
 ld is replaced with ldir/ / put after a directory name

Note: sh also supports filename completion within command-line-editing
Esc\ in vi mode

Command examples - good for commonly misspelled commands and long command
names that start with something unique

tcsh word completion listing

tcsh lists possible word completions when Ctrl-D is typed

filename example:
> ls
j k l ldir lost+found m
> ls l<^D>
l ldir/ lost+found
> ls l

command example:
> com<^D>
comm command complete compress
> com

What's New with OS/390 UNIX Session 2904 20

Word completion listing shows possible completions, but does not change
the command input line.

Command completion listing uses the value of the path shell variable.

Spelling correction prompts:
y or space = execute the corrected line
n = execute the line unchanged
e = leave the uncorrected command in the input buffer
a = abort (like ^C)

tcsh word completion

tcsh has lots of shell variables and editor
commands to customize word completion

The complete built-in command can be used to
customize completion and spelling correction.

What's New with OS/390 UNIX Session 2904 21

The ability to custom tailor the completions via user complete commands is
one of the strengths of tcsh.

IBM ships a /samples/complete.tcsh (to be copied over to
/etc/complete.tcsh) which is customized for many of the OS/390 UNIX shell
commands.

shell feature comparison
OS/390 sh tcsh

Job control Y Y
Aliases Y Y
Shell functions Y N
Full I/O redirection Y N
Directory stack N Y
Command History Y Y
Command-line editing Y Y
Rebindable command-line editing N Y
User name lookup Y Y
Filename completion Y Y
History completion N Y
Programmable completion N Y
Periodic command execution N Y
Spelling correction N Y
User-specifiable startup file Y N
Full signal trap handling Y N

What's New with OS/390 UNIX Session 2904 22

While this is not a complete chart of shell features, it is intended to show
that both sh and tcsh have a rich set of function.

sh (which includes many Korn shell features) is generally superior for
programming shell scripts.

tcsh has some powerful unique features for interactive use.

tcsh files

File Description Samples
/etc/csh.cshrc System-wide .cshrc Yes

/etc/csh.login System-wide .login (only for login tcsh shell) Yes

$HOME/.tcshrc User's setup. Read instead of $HOME/.cshrc
if it exists (tcsh only) Yes

$HOME/.cshrc User's setup. Read at startup (if no .tcshrc) No

$HOME/.history Read by login shells at startup to initialize the
history list No

$HOME/.login Read by login shells at startup Yes

$HOME/.cshdirs Read by login shells at startup to initialize the
directory stack No

/etc/complete.tcsh Completion rules. Read by $HOME/.tcshrc (in
sample) Yes

/etc/csh.logout System-wide .logout No
$HOME/.logout Read by login shells at termination No

What's New with OS/390 UNIX Session 2904 23

The tc shell reads one or more files (if they exist) when it is invoked
(and before displaying the first prompt). These files collectively alter:
 terminal settings
 variable values
 aliases
 key bindings for the command-line editor
 programmed completions

It also provides the ability to perform actions at logout time.

The /samples files can be modified OR
profiles from a UNIX platform can be converted to EBCDIC & modified.

fuser - new shell command

fuser - List process IDs of processes with open files
UNIX98 conformant
Useful for finding the current users of a file, or a
filesystem (e.g. before unmount)

fuser [-cfku] file ...
-c report on filesystem containing file
-k kills the process (superuser only)
-u user name

What's New with OS/390 UNIX Session 2904 24

UNIX98 (Single UNIX Specification, V2) is the industry-wide specification of
common UNIX interfaces

fuser writes to standard output the process IDs of processes running on the
local system that have one or more named files open.

Additional information (e.g. pathname, user names) is written to standard
error.

-f is the default (report on only the specified files)

-k is an extension to the UNIX98 spec
allowed for users with READ access to SUPERUSER.PROCESS.KILL
facility class profile

fuser

examples:
fuser -u /g/welliea/file.c
/g/welliea/file.c: 50331660(WELLIEA)

fuser -u /g/welliea
/g/welliea: 83886092c(WELLIEA)
 c indicates in use as cwd

fuser -cu /usr/lpp/dfs
/usr/lpp: 50331655(BPXROOT)

fuser -uk /g/welliea/junk
/g/welliea/junk: 33554447(WELLIEA)
 k kills the process!

What's New with OS/390 UNIX Session 2904 25

Examples assume that stdout and stderr are both directed to the terminal.

c following the pid indicates the file is a user's current working directory
(cwd)

r would indicate a user's root

-c option is useful when you want to unmount a filesystem

Shared Libraries

Support Shared Library Objects in a manner consistent
with other UNIX implementations

Used by multi-process server applications

Optimizes Sharing of HFS programs across the
system in two flavors:

System Shared Libraries most optimal for heavy sharing
of large HFS executables

User Shared Libraries most optimal for moderate sharing
of smaller HFS executables

What's New with OS/390 UNIX Session 2904 26

Shared Library support provides for optimal sharing of HFS executables
without requiring the usage of LPA or CSA for the module storage, as is the
case today. Any DLL that is loaded from a C program, for example, can be
identified as a shared library program.
Two different types of Shared Library Programs are supported. System
Shared Library Programs are intended for large executables that are shared
by many address spaces across the system. User Shared Library
Programs are intended for smaller programs that are shared by a smaller set
of user address spaces.

System Shared libraries
A.S. 1 A.S. 2

SHARED
LIBRARY
REGION

MOD1
MOD2

MOD2

MOD1
0

2G

SHARED
PGTs

MOD1

Intended for Large HFS Executables
Modules Shared on a megabyte boundary
Maps into high end private storage

What's New with OS/390 UNIX Session 2904 27

 System Shared Library Programs are the most optimal way to share large
HFS executables across many address spaces in the system.
These executables are shared on a megabyte boundary to allow for the
sharing of a single page table (similar to LPA). A mapping is established
between the using address space and the Shared Library Region that the
kernel maintains. The storage used in the user address space to establish
the mapping is from the high end of private storage so that it does not
interfere with the virtual storage used by the application program. To tag a
HFS executable file as a System Shared Library Program you need to turn
on a new extended attribute for the file. Using the shell command extattr +l
fn to turn it on requires permission to BPX.FILEATTR.SHARELIB. extattr -l
fn or file modification turns off the attribute.
Once a HFS executable is loaded into the shared library region reloads of
the executable will see improved performance due to the elimination of I/O.

User Shared libraries

A.S. 1 A.S. 2

SHARED
LIBRARY
REGION

MOD1

MOD1
0

2G

Intended for smaller HFS Executables
DLLs with .so suffix

Modules Shared on a page boundary
Mapped into low end storage in the
user region

MOD1

What's New with OS/390 UNIX Session 2904 28

User shared libraries allow anyone to define and use shared libraries up to a
system limit. This level of sharing does not use the shared page table
approach, which causes it to consume ESQA to create the sharing of
module storage. User shared libraries are shared on a page boundary.
User shared library programs are identified by the .so suffix in the file name.
When a particular DLL with the .so suffix is loaded from a C program the
DLL is treated as a user shared library program. If the user shared library
program is already loaded into the Shared Library Region, a mapping is
established between the user address space and the Shared Library Region
copy of the module without requiring the actual load of the program.

Shared libraries - new BPXPRMxx statements

SHRLIBRGNSIZE()

limits the size of the system shared library region
 range 16MB - 1.5GB
 default value - 64MB

SHRLIBMAXPAGES()
Limits the amount of data space storage pages that can be allocated
for user shared library modules

range 1-16777216
default value - 4096

What's New with OS/390 UNIX Session 2904 29

Shared libraries - shell commands

new extended attribute for executable files to be loaded from the

system shared library region
H[WDWWU �O sets the sharedlib attribute (BPX.FILEATTR.SHARELIB)

 �O turns it off

OV �(displays the extended attributes (now 4 characters)
$ ls -E pgm*
-rwxr-xr-x --s- 1 WELLIEA SYS1 794624 Sep 26 22:30 pgmo
-rwxr-xr-x -p-- 1 WELLIEA SYS1 802816 Sep 23 10:00 pgmp
-rwxr-xr-x ---l 1 WELLIEA SYS1 73728 Aug 24 12:03 pgmshr

FS �S or PY preserves the extended attributes
SD[�SH (or �S[) preserves the extended attributes
 �(displays ext attr
WDU �S preserves the extended attributes

 �(displays ext attr

What's New with OS/390 UNIX Session 2904 30

The shared library region attribute is treated like other extended attributes in
S&U

PROCESS

sigaction(sig...)

catcher

LE SIGRTN

LE SIGRTN
LE SIGRTN

QUEUED SIGNALS
SENT WITH
sigqueue()

Queued signals

sigqueue()
UNIX98 conformant
APARs made available on R6, R7, R8

BPXPRMxx statement (or SETOMVS)
MAXQUEUEDSIGS

 maximum number of signals that can be concurrently queued within a single
process (1 - 100000)

What's New with OS/390 UNIX Session 2904 31

Sigqueue() is a UNIX 98 function which allows a process to send a signal
which will be queued to the target. In the past, multiple signals of the same
signal number would result in a single delivery of that signal. With sigqueue,
the signal will be delivered as many times as it is sent. Sigqueue allows the
caller to provide 1 word of data to pass to the target. This could be an
address in shared memory.
This service is useful to applications that want to be asynchronously notified
of an event, for example the completion of an I/O request (Lotus R5 uses
this)
A new keyword is added to BPXPRMxx to allow the installation to set a limit
on the number of signals that can be queued.

sysvar - new shell command
Display static system symbols
sysvar var

obtain the value of a system variable defined in
IEASYMxx or IPL parms
output to stdout may be easily captured in a shell
variable for use in a shell script

examples:
sysvar SYSNAME
MVS1

system_name=$(sysvar SYSNAME)
echo "Creating logfile $system_name.logfile"
create_log_file >$system_name.logfile

What's New with OS/390 UNIX Session 2904 32

Allows shell scripts to be used without change on different systems.

2nd example shows this.

Allow R/W data to be shared across the sysplex the way R/O data
is shared today.

Utilize XCF messaging services to communicate data from system
to system.

Couple Data set for Sysplex wide mount table & serialization

SETOMVS support for manipulating the file hierarchy in the
sysplex.

Recovery for transferring dead system file systems to another
server

Shared HFS in a Sysplex

What's New with OS/390 UNIX Session 2904 33

Today, file systems can be mounted Read Only to all systems in the
sysplex. In R9 a R/W file system is accesssible to all systems in a sysplex.
 XCF message services are used to communicate between systems in the
sysplex. This allows meta data such as mount structure, for example, to be
maintained in a couple data set to allow each system to know where it must
communicate to access a file.
Recovery is provided, such that, If one system fails, another system in the
sysplex will take over the file sharing responsibilities for the failing system.
This will be invisible to the application

Scenario 1- Single Standalone System, Today

The directories in the Root HFS represent the "first level" directories created by IBM.
The directories in Red are used as mountpoints for other HFS data sets.

/bin

/dev

/...

/bin

/dev

/...

/bin

/dev

/...

/bin

/dev

/...

/bin

/dev

/...

/bin

/dev

/...

/lib

//usr

/

/var

/opt
/tmp

/u

/etc

Automount
Managed

 OMVS.ROOT.HFS OMVS.ROOT.HFS

 OMVS.DEV.HFS

 OMVS.VAR.HFS

 OMVS.TMP.HFS

 OMVS.ETC.HFS

BPXPRMxx
ROOT
FILESYSTEM('OMVS.ROOT.HFS')
TYPE (HFS) MODE(RDWR)

MOUNT
FILESYSTEM('OMVS.DEV.HFS')
TYPE(HFS) MODE(RDWR)
MOUNTPOINT('/dev')

.

.

.

/

/samples

What's New with OS/390 UNIX Session 2904 34

Today, each system defines via Parmlib its own standalone HFS
infrastructure. IBM provides "first level" directories in the root HFS data set
for directories such as /bin, /usr, etc.. Mount points are set up for
directories /dev, /var, /tmp and /etc.

Scenario 2 - Multiple systems in Sysplex - all using same
Version HFS

/bin

/usr

/bin/bin/bin/bin/bin

//opt

/var

/tmp

/u

/etc

Automount
Managed

$VERSION/bin

symlink

symlink

symlink

symlink

symlink

/libsymlink

$VERSION/usr

$VERSION/lib

$VERSION/opt

/devsymlink

/...directory

directory

$SYSNAME/dev

$SYSNAME/tmp

$SYSNAME/var

$SYSNAME/etc

$VERSIONsymlink

$SYSNAMEsymlink $SYSNAME/

$VERSION/

symlink

/SY2

/V2R9

/

 OMVS.SYSPLEX.ROOT

/SY1

symlink $VERSION/samples/samples

/dev

//var

/opt

/lib

/samples

$SYSNAME/etc

directory

directory

symlink

symlink

symlink

/tmpsymlink

$SYSNAME/dev

$SYSNAME/tmp

$SYSNAME/var

/usrdirectory

directory

/etc

/bindirectory

/udirectory

/SYSTEMdirectory

dev

var
tmp

etc

directory
directory

directory
directory

usr

lib
optsymlink

symlink

symlink
symlink bin /bin

/usr

/opt
/lib

VERSION HFS

Not used in
sysplex
environment

directory /...

symlink /samplessamples

bin

usr

var

tmp

etc

/bin

directory

directory

symlink

symlink
symlink

libsymlink

/usr

/lib

/opt

devdirectory

directory

opt

SYSTEM HFS

symlink /samplessamples

bin

usr

var

tmp

etc

/bin

directory

directory

symlink

symlink
symlink

libsymlink

/usr

/lib

/opt

devdirectory

directory

opt

SYSTEM HFS

symlink /samplessamples

OMVS.SY2.ETC

OMVS.SY2.VAR

OMVS.SY2.TMP

OMVS.SY2.DEV

OMVS.SY1.ETC

OMVS.SY1.VAR

OMVS.SY1.TMP

OMVS.SY1.DEV

OMVS.SY1.SYSTEM.HFS

OMVS.SY2.SYSTEM.HFS

OMVS.ROOT.HFS

What's New with OS/390 UNIX Session 2904 35

In this scenario, systems SY1 and SY2 have their own System HFS data
sets defined with symbolic links into the Version HFS for V2.R9. For
example, when a reference is made from system SY1 for the bin directory it
actually causes a reference in the Version HFS data set that is shared
across the Sysplex. Any changes to this directory caused by system SY1
will be reflected to the other systems in the Sysplex.

Shared HFS in a SYSPLEX

New sample jobs to create new HFS structures

BPXPRMxx parameters
SYSPLEX(YES|NO)
VERSION('nnnn')
ROOT and MOUNT ... new keywords

SYSNAME(sysname)
AUTOMOVE|NOAUTOMOVE

TSO MOUNT command
SYSNAME(sysname)
AUTOMOVE|NOAUTOMOVE

What's New with OS/390 UNIX Session 2904 36

SYSPLEX(YES) indicates whether a system is to be initialized in a sysplex
environment or operate in local mode. The first system entering the sysplex
with SYSPLEX(yes) initializes a Couple Data Set (CDS), which controls shared
HFS mounts. The value of this parameter cannot be changed dynamically.
VERSION('nnnn') indicates the release or version of root HFS.
New BPXPRMxx optional keywords on the ROOT and MOUNT parameters:
SYSNAME(sysname) and AUTOMOVE|NOAUTOMOVE. .
 On the ROOT parameter, SYSNAME(sysname) is the name of a system in a
sysplex that was IPLed with SYSPLEX(YES)
AUTOMOVE|NOAUTOMOVE parameters indicate whether, if the specified
root file system owner goes down, the root file system can be automatically
moved to another system, which then becomes the owner for that root.
On the MOUNT parameter, SYSNAME(sysname) specifies the particular
system on which a mount should be performed.
 SYSNAME(system_name) specifies the specific system on which a mount
should be performed (this system must be IPLed with SYSPLEX(YES)).
 AUTOMOVE|NOAUTOMOVE keywords indicate whether the ownership of a
file system is to be transferred if the file system's owner goes down.

Shared HFS - shell commands

df -v display new filesys fields
file system ID (owner/mounted file system server)
file system ID issuing a quiesce request

New shell commands in /usr/sbin
mount - mounts a file system or lists all mounts over a file system
chmount - changes the mount attributes of a specified file system in a
sysplex
unmount - removes file systems from the file hierarchy

Require UID 0 or READ access to SUPERUSER.FILESYS.MOUNT
resource in the UNIXPRIV class

What's New with OS/390 UNIX Session 2904 37

mount [-t fstype] [-o fsoptions] [-d destsys [-a yes|no]
[-s nosecurity|nosetuid] -f fsname pathname
mount -q [-v] [-d destsys] pathname...
chmount [-DR] [-d sysname] [-a yes|no] path
unmount [-Rv] [-o unmount_option] pathname

Shared HFS Sessions

Session 2927 OS/390 UNIX Filesystem Sysplex Support
(Shared HFS) - Part 1

 Marriott - Ground Level - Grand Ballroom Salon E
 03/09/2000 (Thu) - 1:30 PM

Session 2928 - Part 2
 03/09/2000 (Thu) - 3:00 PM

What's New with OS/390 UNIX Session 2904 38

Megabyte Map Services

Map blocks >2Gig of virtual
Connects done using shared page tables.
Fast access to large virtual

__map_init()
Define Map Area size
Define size of Map Blocks
Map Area recreated on fork
Map cleanup when caller terminates
Must have BPX.MAP FACILITY class access

__map_service()
Connect New/Old block to map area
Disconnect a block from map area
Delete a map block
Change access R/O or R/W

What's New with OS/390 UNIX Session 2904 39

The map services give the ability to manage greater than 2 gig of virtual and
selective access blocks of this storage from multiple address spaces.
A first process does a call to __map_init(). This process must be superuser
or permitted to BPX.MAP FACILITY class profile. This process then can do
fork and each child gets its own map area at the same virtual address as the
parent.
Any of these processes can now do __map_service calls.
A CONNECT request will map a block of virtual in the caller's map area to a
block of storage in a kernel data space and return a token for this block of
storage. Other processes can connect to this same block of storage in other
address spaces. The intent is to always connect a block at the same virtual
address in the map area so that pointers can be used.
Any virtual in the map area that is not connected to a block is hidden (0C4 is
read or write).
Applications can keep many gigabytes of virtual in the map blocks and only
connect to what they need. The connection process involves manipulation
of the user segment table to point to shared page tables, thus avoiding any
movement of data.

KERNEL
DATA SPACES

MAP
BLOCK

MAP
BLOCK

Shared
Page
Tables
PGT

PGT

USER PROCESS

MAP
BLOCK

MAP
BLOCK

MAP AREA

__map_init
map area recreated on fork

__map_service
Process term of __map_init process cleans up
the map.

Megabyte Map services

What's New with OS/390 UNIX Session 2904 40

D OMVS,PFS

Enhance DISPLAY OMVS to show the current PFS
configuration.

FILESYSTYPE
SUBFILESYSTYPE
NETWORK

Common INET Routing tables

What's New with OS/390 UNIX Session 2904 41

There was no way to display the current configuration of started Physical
File Systems, i.e. HFS, TCP/IP, NFS Client, etc.

Support in Rel 8 for dynamically starting PFSes via SETOMVS RESET=
made it harder to keep track of what was started.

A typical display looks like:

d omvs,p
BPXO046I 10.15.15 DISPLAY OMVS 135
OMVS 000E ACTIVE OMVS=(33)
PFS CONFIGURATION INFORMATION
 PFS TYPE DESCRIPTION ENTRY MAXSOCK OPNSOCK
 TCP SOCKETS AF_INET EZBPFINI 50000 234
 UDS SOCKETS AF_UNIX BPXTUINT 64 0
 NFS REMOTE FILE SYSTEM GFSCINIT
 TFS LOCAL FILE SYSTEM BPXTFS
 HFS LOCAL FILE SYSTEM GFUAINIT
 BPXFTCLN CLEANUP DAEMON BPXFTCLN
 BPXFTSYN SYNC DAEMON BPXFTSYN
 BPXFPINT PIPES BPXFPINT
 BPXFCSIN CHARACTER SPECIAL BPXFCSIN

 PFS TYPE PARAMETER INFORMATION
 NFS biod(3)
 HFS CURRENT VALUES: FIXED(0) VIRTURAL(3)

D OMVS,PFS

What's New with OS/390 UNIX Session 2904 42

A typical display with Cinet looks like:

d omvs,p
BPXO046I 11.33.59 DISPLAY OMVS 561
OMVS 0045 ACTIVE OMVS=(CI)
PFS CONFIGURATION INFORMATION
 PFS TYPE DESCRIPTION ENTRY MAXSOCK OPNSOCK
 CINET SOCKETS AF_INET BPXTCINT 64000 2
 IBMUDS SOCKETS AF_UNIX BPXTUINT 64 0
 HFS LOCAL FILE SYSTEM GFUAINIT
 BPXFTCLN CLEANUP DAEMON BPXFTCLN
 BPXFTSYN SYNC DAEMON BPXFTSYN
 BPXFPINT PIPES BPXFPINT
 BPXFCSIN CHARACTER SPECIAL BPXFCSIN

 PFS NAME DESCRIPTION ENTRY STATUS FLAGS
 TCPIP SOCKETS EZBPFINI ACT SC
 TCP2 SOCKETS EZBPFINI INACT
 ANYNET SOCKETS ISTOEPIT INACT

 PFS TYPE PARAMETER INFORMATION
 HFS CURRENT VALUES: FIXED(0) VIRTUAL(32)

D OMVS,PFS

What's New with OS/390 UNIX Session 2904 43

The Cinet display shows the routing tables that are used to select a
stack for outbound data and connections.

d omvs,cinet
BPXO047I 15.23.12 DISPLAY OMVS 956
OMVS 0045 ACTIVE OMVS=(CI)
HOME INTERFACE INFORMATION
 TP NAME HOME ADDRESS FLAGS
 TCPIP 127.116.117.233 DRS
 TCPIP 127.116.118.234
 TCP2 127.116.119.235

HOST ROUTE INFORMATION
 TP NAME HOST DESTINATION
 TCPIP 127.117.194.234
 TCPIP 127.117.195.234

NETWORK ROUTE INFORMATION
 TP NAME NET DESTINATION NET MASK METRIC
 TCPIP 127.111.000.000 255.255.000.000 10
 TCPIP 127.113.000.000 255.255.000.000 0
 TCPIP 197.119.119.000 255.255.255.000 F
 TCP2 009.000.000.000 255.000.000.000 F

D OMVS,CINET

What's New with OS/390 UNIX Session 2904 44

 BPXBATSL

New entry point into BPXBATCH that will always spawn within
the BPXBATCH Address Space

Invokes spawn with the "must be local" bit set.

Support provided in APAR OW38618 for
HBB6606 (OS/390 V2R6)
JBB6607 (OS/390 V2R7)
HBB6608 (OS/390 V2R8)

What's New with OS/390 UNIX Session 2904 45

Previously, with BPXBATCH, the user needed to set up the environment
variable _BPX_SHAREAS.

//UNIXBATC JOB ...
//S1 EXEC PGM=BPXBATSL,PARM='...'
//STDIN DD PATH=...
//STDOUT DD PATH=...
//STDERR DD PATH=...
//STDENV DD *
ENV VAR SETTINGS
/*
//OTHERDD1 DD DSN=...
//OTHERDD2 DD PATH=

User Program always in same
Address Space, with STDIN,OUT,ERR,
regardless of setting of _BPX_SHAREAS.
Other DDs accessible.

spawn()

 BPXBATSL

What's New with OS/390 UNIX Session 2904 46

BPXBATSL is a clone of BPXBATCH. This new version of BPXBATCH will
create a local spawn to create the process which runs the requested
program.

If you want a local spawn of their program from BPXBATCH
but do not want continued local spawns from their program.

BPXBATCH: The _BPX_SHAREAS and other variables needed
by BPXBATCH (w/spawn) will be propagated through each
environment causing continued local spawns.
see Fig1.

BPXBATSL: The environment is not set up for local spawns, yet
BPXBATSL will force itself to spawn your program. Now all
subsequent spawns will be non-local as requested.
see Fig 2.

Why use BPXBATSL over BPXBATCH (w/spawn
environment)?

What's New with OS/390 UNIX Session 2904 47

BPXBATCH with
spawn environment

BPXBATSL

BPXBATSL

Application

child child

child

BPXBATCH

Application

child

child

child

Fig 1.
Fig 2.

What's New with OS/390 UNIX Session 2904 48

Fig 1. is what the address space configuration looks like when BPXBATCH
is invoked and local spawn is requested. As you can see here, the local
spawn request is propagated throughout.
Fig 2. with BPXBATSL you get exactly what the user wanted. The main
application is spawned locally but not any of the child processes.

pax / tar enhancement

pax and tar now support link names greater than
100 bytes
pax:

saved in USTAR (default) format archive
only restored on OS/390 R9+

tar:
saved in USTAR (must be specified by -U) format archive
only restored on OS/390 R9+

When unwound on non-OS/390 platforms, or earlier releases, all files will be
restored except the long hard links

What's New with OS/390 UNIX Session 2904 49

pax and tar are utilities used to package a directory tree into a single archive
file.

The header records contained within the archive are defined by UNIX
standards (for portability between different UNIX platforms). The current
definition for a link name (hard link or symbolic link) is max 100 characters.

This is an OS/390 extension, as explicitly allowed in the standards.

Maintains portability with other UNIX platforms. The other platforms will
ignore the OS/390 unique headers.

ReIPL Avoidance

Provide a coordinated method for a product's Kernel resident module to
be deleted and reloaded by the product code

Decreases the need for IPL for some APAR maintenance

No externals or changes needed by the customer

TCP/IP uses this feature for their service

What's New with OS/390 UNIX Session 2904 50

The Kernel resident part of these products is called a Physical File System
(PFS) and this bridges between the Unix Kernel and a product such as
TCP/IP or HFS.
The PFS load module can be deleted by recycling the PFS which is done
with two calls to pfsctl(BPX1PCT): PC#RecyclePFS is issued when the
product is being stopped. This Quiesces the PFS and when all calls in
progress have finished the PFS is terminated. PC#RestartPFS is issued
when the product is restarted. This causes the PFS to be reattached and it
goes through a normal initialization sequence.
 * NETWORK satements from BPXPRMxx are replayed
 * MOUNT statements from BPXPRMxx are NOT replayed
A dormant PFS is not easily observable as being any different from when
TCP/IP was stopped before. There is only a difference in the Reason_code
issued if one attempts to create a new socket, or to use an old socket, after
TCP/IP is stopped..

Provide an option on the SETOMVS command to
syntax check a BPXPRMxx parmlib member
before IPL

Avoids OMVS initialization in minimum-mode for
syntax errors

BPXPRMxx Parmlib Member
Syntax Checker

What's New with OS/390 UNIX Session 2904 51

Many customers have complained that it is too late in IPL when they find out
if they have a syntax error in their BPXPRMxx member. Message BPXI029I
is issued - OMVS= parmlib member not found or is in error.
Error messages are sent to the log which are not available at this point in
the IPL. If customer just continues, OMVS comes up in min-mode and a
re-ipl is needed to change any of the parms not changeable via the
SETOMVS command.

BPXPRMxx syntax checker

SETOMVS SYNTAXCHECK=(xx)

Runs the same logic which is used at IPL
or via SETOMVS

Any errors cause the same error
messages to be written to the syslog.

BPXO039I SETOMVS SYNTAXCHECK
COMMAND SUCCESSFUL.

BPXO023I THE PARMLIB MEMBER
BPXPRMXX CONTAINS SYNTAX ERRORS.
REFER TO HARD COPY LOG FOR
MESSAGES.

What's New with OS/390 UNIX Session 2904 52

Customer complaints about the disasterous effects of a bad BPXPRMxx
parmlib member at IPL, especially in a sysplex have triggered the addition of
syntax checker support. Simply point the SETOMVS command at a
BPXPRMxx parmlib member and it will perform validity checking. This will
only catch syntax errors and will not identify problems with FILESYS or
MOUNT statements which point to modules or file names which do not exist.

Joblog to stderr

Improve diagnostics for UNIX user program abends

Provides the ability to capture WTO messages into an
open file

Messages captured in the file include
ABEND symptom dump messages
Allocation messages
Other system status messages
New messages from the kernel for on kill -9 exit status
causes and fork/spawn child errors

Capture only works for forked address spaces (BPXAS)

What's New with OS/390 UNIX Session 2904 53

There have been many instances where an OS/390 UNIX user program fails
(abends), the task terminates and the kernel sets up the ending status to
say that the process was killed. The end shell user is simply told that the
process received a SIGKILL signal which is not true. All MVS diagnostic
information that was written to the user JOBLOG is in the bit
bucket. These users frequently have to resort to guessing and printfs to
figure out what went wrong.

Joblog to stderr
New environment variable _BPXK_JOBLOG

_BPXK_JOBLOG=fd
where fd is an open file descriptor where messages written

_BPXK_JOBLOG=STDERR
Messages written to file descriptor 2, fd 2 must be open for
message capture to occur

_BPXK_JOBLOG=NONE
_BPXK_JOBLOG=
unset _BPXK_JOBLOG

Will terminate message capture

Environment variable will be propagated on fork and spawn
Environment variable can be overridden on exec and spawn

What's New with OS/390 UNIX Session 2904 54

exec 3>>myjoblog
export _BPXK_JOBLOG=3

dbx Enhancements

 Support debugging with r/w locks and shared
mutexes

 dbx debugging of programs with long long (64
bit) data types

What's New with OS/390 UNIX Session 2904 55

dbx will modify the existing mutex objects "$mX" add new information for
shared mutexes.
For read/write locks, dbx will create a new object "$lX" to contain the
read/write lock information. A new set flag "$lv_events" will turn/off tracing
of events to the object. A new command "readwritelock" will display the
read/write lock information. The "readwritelock" command will
have a new dbx alias "rwl".
The C compiler has added symbolic support for long long primary data types
since 2.6 which includes a software simulation of the 64 bit data types. dbx
needs to allow users to debug C/C++ programs that include long long and
unsigned long long data types.

Migration Actions for V2R9

File attributes of mesg, talk, write, and uucp utilities must be
set

After defining userid: UUCP
and groupids: UUCPG, TTY

Define with same UID / GID in every security database

Previously set in /etc/rc
Must be removed from /etc/rc to allow root to be mounted read-only

New sample job: FOMISCHO
Invokes FOMISCH1
Run during customization

What's New with OS/390 UNIX Session 2904 56

References

OS/390 V2R9.0 UNIX System Services
Planning (SC28-1890-09)

OS/390 V2R9.0 UNIX System Services
Command Reference (SC28-1892-08)

OS/390 V2R9.0 UNIX System Services
User's Guide (SC28-1891-08)

http://www.ibm.com/s390/unix

What's New with OS/390 UNIX Session 2904 57

