Share Technical Conference San Francisco 2/99

Share Session 2591

Carl Parris

OS/390 Design and Performance Analysis Mid-Hudson Valley Programming Lab 914-435-6287 parris@us.ibm.com

Your Mileage May Vary Pt.1

The information contained in this presentation has not been submitted to any formal IBM test and is distributed on an "as is basis" without any warranty either expressed or implied. The use of this information or the implementation of any of these techniques is a customer responsibility and depends on the customer's ability to evaluate and integrate them into the customer's operational environment. While each item may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same results will be obtained elsewhere. Customers attempting to adapt these techniques

to their own environments do so at their own risk.

The information contained in this document represents the current views of IBM on the issues discussed as of the date of publication. IBM cannot guarantee the accuracy of any of the information presented after the date of publication.

Any performance data contained in this presentation was determined in a controlled

environment; and therefore, the results which may be obtained in other operating environments may vary significantly. Some measurements quoted in this presentation may have been made on development-level systems. There is no guarantee that these measurements wiill be the same on generally available systems continued on next page)

Your Mileage May Vary Pt.2

Some of the measurements quoted in this presentation may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company, Limited. Other company, product and service names may be trademarks or service marks of others.

Trademarks or Registered trademarks of International Business Machines Inc.

ACF/VTAM tm

CICS tm

DB2 tm

DFSMS tm

ESCON tm

IBM tm

IMS tm

MVS tm

OpenEdition tm

OS/390 tm

RACF tm

RMF tm

S/390 tm

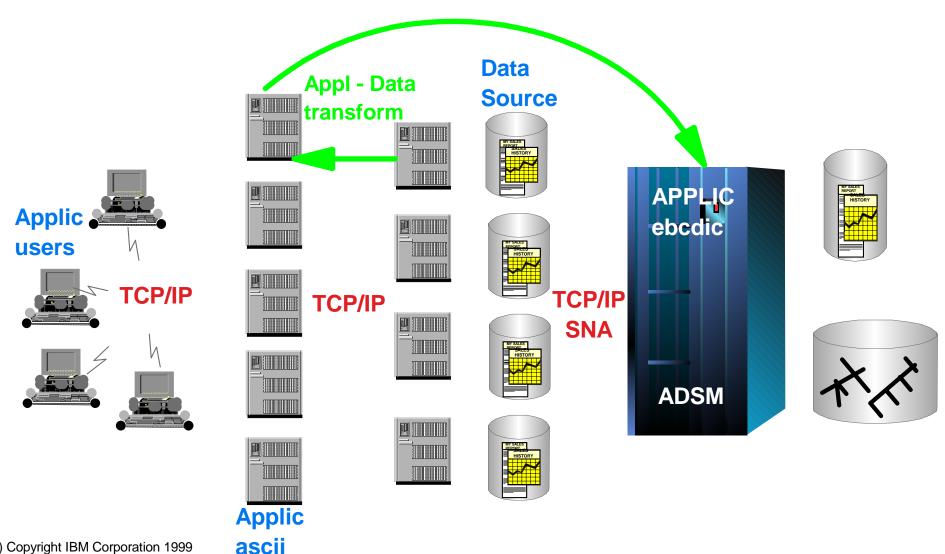
Your Mileage May Vary Pt.3

Unless otherwise noted all performance results

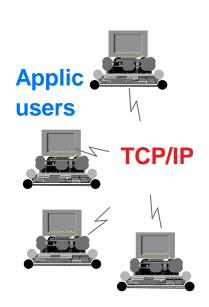
contained in this presentation are from IBM internal workload measurements.

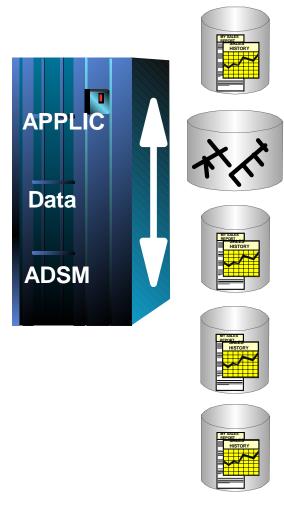
Agenda

- Why OS/390 UNIX' Overview
- Technical View of Performance
 - ► TCP/IP
 - File System
 - NFS
 - ► C/C++ Compiler
 - Kernel/RTL
 - ► DB2
 - Web
 - Net.commerce


Overview

Today's Distributed Environment


Major Data Moves


- End users access application (and data) via distributed process
- OS/390 and other servers transform data when both process it
- ADSM / MVS backsup data from LAN file/database servers

Application Consolidation - End Step

End User

• no change

Application Developer

- Base application ported to OS/390
 - Add ASCII/EBCDIC tolerance
 - ► RAS, scalability
- transform applications ported to OS/390

Systems Management

- data management now on OS/390
- network management bandwidth reduced

Major Data Moves

End users access applications (and data) via distributed protocols

Data Moves Avoided

- ADSM / MVS backups from LAN file/database server
- OS/390 and other servers transform data when both process it
- Application to Data move now occurs within OS/390

Configuration Strategies

Application and Data Consolidation

Application migration using OS/390 to eliminate tiers of servers to Reduce:

- movement of data
- protocol handshakes
- data transforms
- points of failure
- complexity
- system management costs

and provide Improved:

- large scale deployment
- price/performance
- availability
- security
- resource balancing and management
- configuration management

Technical View

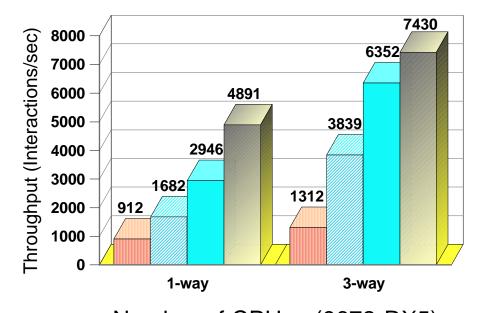
Development Emphasis

- OS/390 UNIX implementation is highly integrated in base operating system
- UNIX 95 Branding is functionally robust
- Performance Improvements coming regularly
- Development organization view performance as 'key' focus area
- Significant performance gains in '97, '98,'99

CS for OS/390 V2R6 for TCP/IP

- Protocol stack re-written for performance
- Improved SMP scalability
- RAS improvements

CS OS/390 V2R5 & V2R6 performance compared to MVS TCP/IP V3R2 on S/390 MP 3-way and 10-way configurations:


Interactive Workload

9672-RX53-Way:

Workload	CS OS/390 V2R5	CS OS/390 V2R6
Interactive	4.84X	5.66X
Web	4.16X	7.40X
File Tfr	1.64X	2.35X

9672-RY5 10-Way:

Workload	OS/390 V2R5	OS/390 V2R6
Interactive	11.51X	14.97X
Web	9.72X	14.22X
File Tfr	2.89X	5.31X

Number of CPUs (9672-RX5)

TCP/IP V3R2*

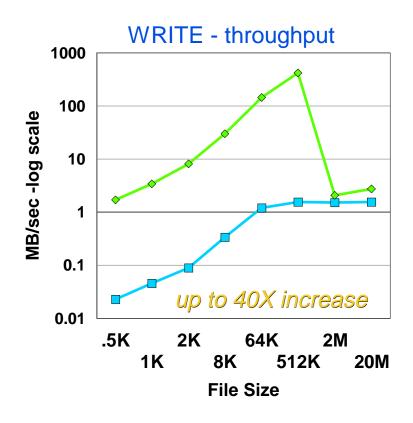
CS OS/390 V2R4

CS OS/390 V2R5

CS OS/390 V2R6

*Note: TCP/IP V3R2 tests were with performance enhancement PTFs applied. The performance difference would have been even greater without them.

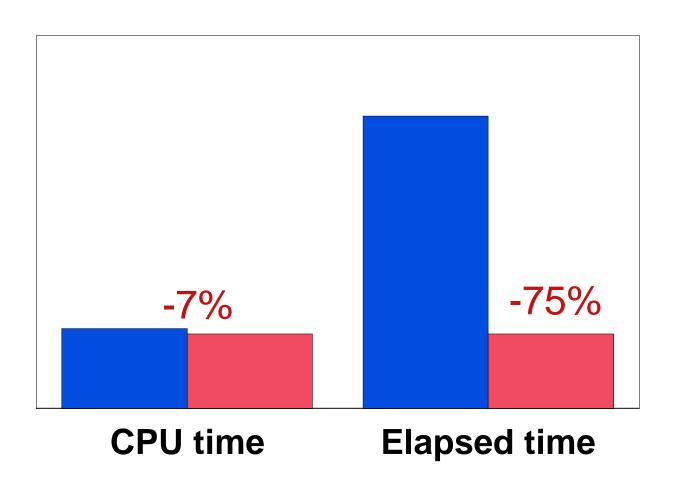
HFS Performance

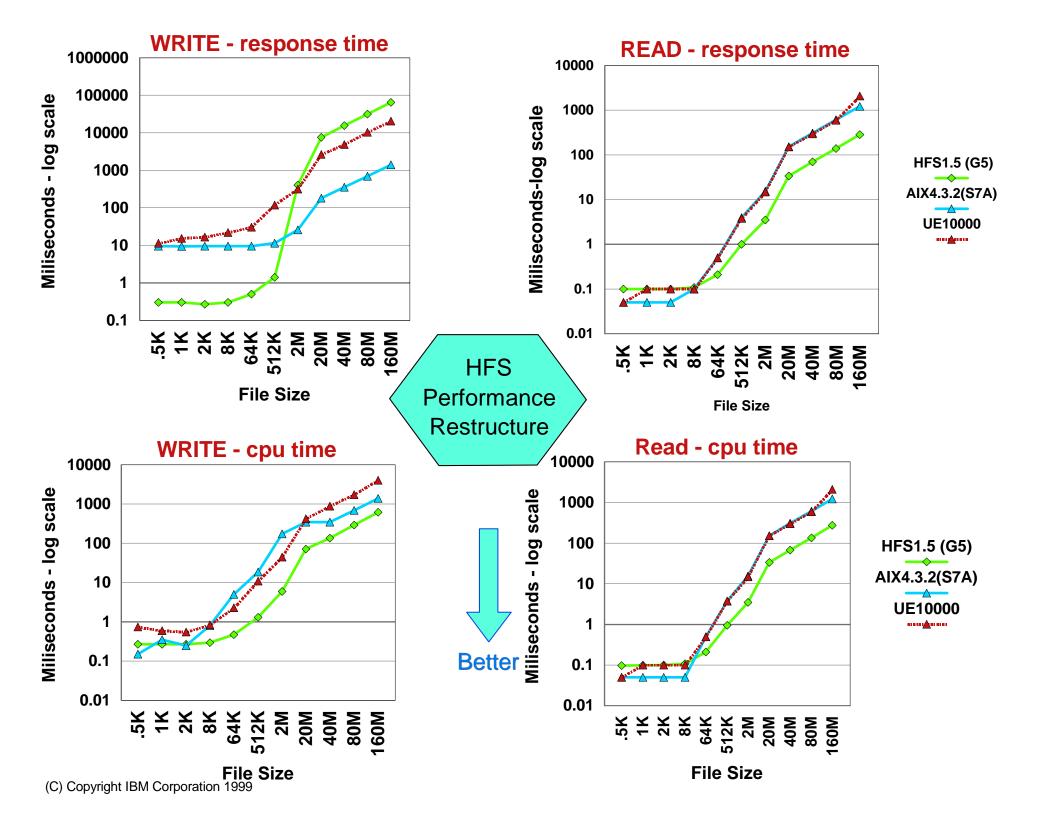

- UNIX Byte File Expectations
 - Large numbers of small files opened and closed frequently
 - Metadata I/O written on every file access
 - Synch daemon for deferred/asynchronous write
- Original HFS Implementation
 - Hardened all File Writes
 - File I/O synchronous
- New HFS Implementation
 - Deferred/asynchronous I/O metadata and file data
 - Index manager cache for index pages
 - Large fixed file data buffers
 - Pathlength reductions


	3/96	9/96	3/97	3/99
DF/SMS 1.2	DF/SMS 1.3 large file synch read	1.3 with SPE large file synch write	Perf PTF Cached File Read	HFS Re-structure
	·	·	85% less cpu Large resp. time reduction	60-80% less cpu for most read/write ops Large resp. time reduction

HFS Performance Restructure

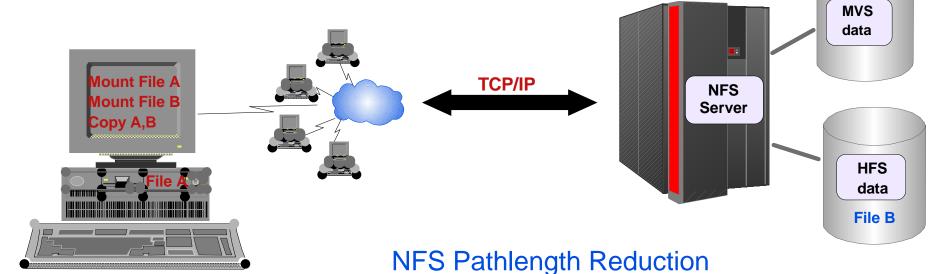
DFSMS1.5 GA- 3/99 Runs on OS/390 R5,R6,R7





- ➤ Up to 85% reduction in CPU time
- ➤ Order of magnitude improvement in throughput for files < 512KB
- Optimized for multi-user access
- Make time improved by 75% (C) Copyright IBM Corporation 1999

Make test



NFS Performance Improvements

- Pathlength reduction R6,R7
- Improved scaleability R6,R7
- Full multi-tasking R7 SPE

OS/390 Rel	R3	R6	R7(SPE)
Pathlength	Base	80%	90%

NFS Throughput Gains - R6 only

File Size	48K	256k	20MB	100MB
Single Client Read	55%	70%	85%	30%
Single Client Write	70%	10%	5%	30%
Multi-client Read	*	*	180%	*
Multi-client Write	*	*	50%	*

* not measured

C/C++ Compiler Improvements

Run Time

96 97 98 99

OS/390 R2

C Compiler Run Time Improvements 15-30%

- Larger benefits to application intensive code with multiple compile units
 Improved optimizer logic
 - Enablement for new hardware-5% improvement

OS/390 R3

C++ Compiler Run Time Improvements 15-30%

 Larger benefits to application intensive code with multiple compile units
 Improved optimizer logic

OS/390 R4

Aggressive DLL loading 25% potential run time improvement

OS/390 R6

Binary Coded Decimal perf enhancements for C++

OS/390 R6 PTF

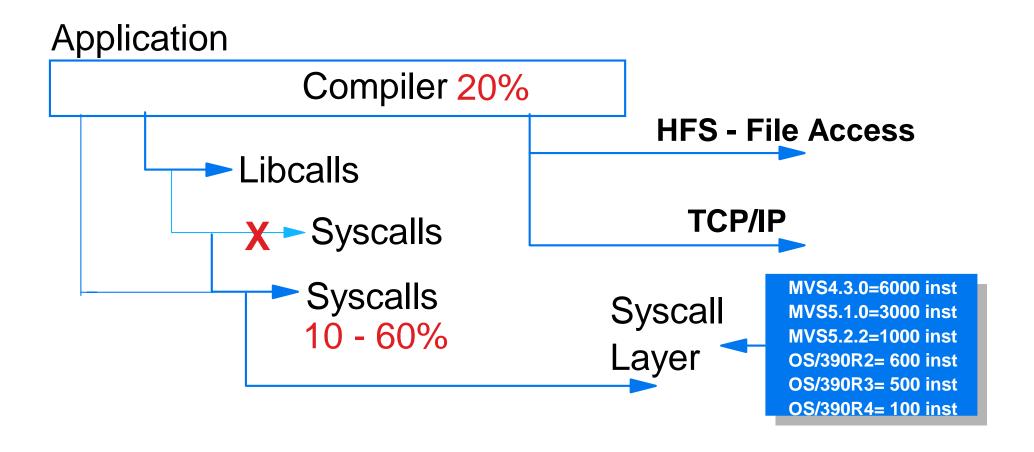
IEEE Floating Point

OS/390 R10

Reduce linkage overhead
Up to 20% run time improvement
Smaller load modules

IPA build

Compile Time


96 97 98 99 OS/390 R7 OS/390 R2 **OS/390 R3 PTF** OS/390 R6 Pre-compiled headers Metadata I/O **New HFS** - C/C++ Compiler built 30%+ HFS fix with IPA - Improved utilities through

New Processor architecture on CMOS for C compiler

State of the Art Optimizer Technology Now!

Kernel/RTL Improvements

Focus on Pathlength Reduction for High Frequency Services

Other Kernel Performance Improvements

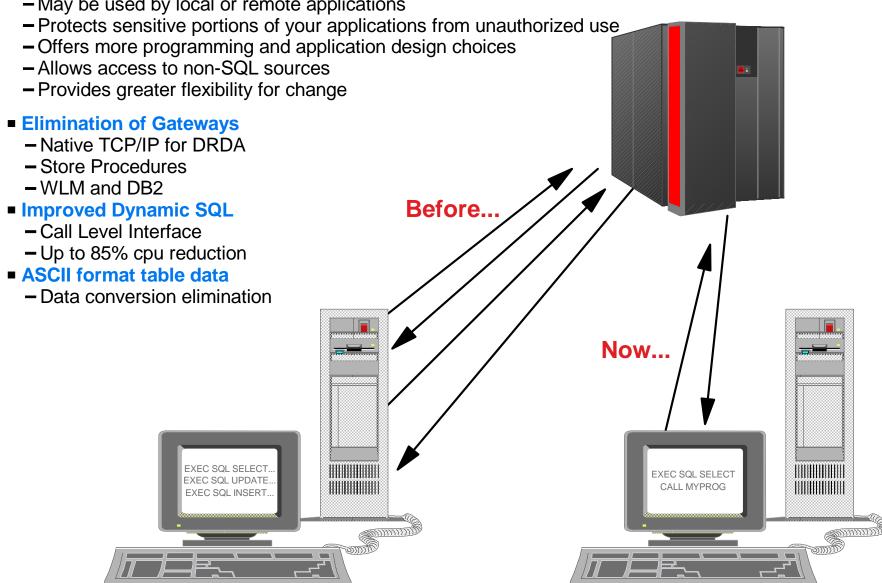
- Multiproc/Multiuser Support
 - Improves performance for DB2 Stored Procedures and Web
 - ► R6 with support back to R4
- Binary Semaphores using the PLO instruction
 - improved locking performance where GRS lock contention existed
 - ► R6 with support back to R4
- File system bundled syscalls reduces pathlength
 - _open_stat()
 - _accept_and_recv() benefits the web
 - send_file() benefits the web and ftp type serversR6
- Improved shared memory processing
 - greatly reduced ESQA and LSQA memory usage
 - ► R6
- Signaling performance enhancements
 - ► R6
- Optimized security checking in perf. sensative syscalls
 - Mesage queues, semaphores, File system(stat,open, lookups), ps cmd
 R7
- Fast CGI Support for Web
 - ► R7

Other Kernel Perf Improvements cont...

- Asynch I/O for sockets
 - multiple socket read/writes w/o waiting for I/O complete
 R7
- Shell and Utilities
 - recompiled with OPT(2) and IPA highest levels of optimization
 - performance tune up: vi, find, pax, tar, cpio, compress, uncompress,
 - zcat, grep, ar, ls, du
 - ► **R7**
- Message Queues using the PLO instruction
 - potential performance benefit depending on GRS latch contention rate
 R8
- Additional asynch I/O support
 - avoids the inefficiency of SELECT benefits Lotus
 R8
- Major improvement in DBX performance
 - use of local spawn instead of fork/execR8

For more detail see Don Ault's presentation:

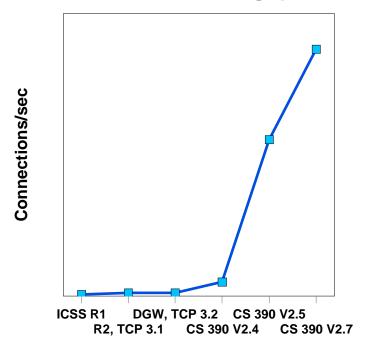
OS/390 Unix System Services Update for OS/390 V2R6, V2R7, and V2R8


http://www.s390.ibm.com/unix/

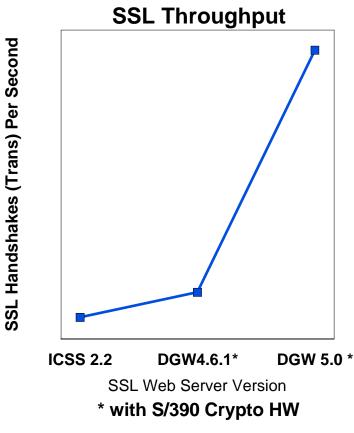
Focus on DB2 Connectivity

Stored Procedures:

- Decreases costs with less network traffic
- May be used by local or remote applications



Web Serving Performance



 Websphere Application Server, TCP/IP, Unix/kernel services, and Crypto HW improvements combine to provide large reductions in WEB serving pathlength

Webstone Throughput

- 99% reduction in pathlength
- 170X increase in connections/sec

- 80% reduction in pathlength
- 6X increase in connections/sec

SPECWeb96 Published Results - 2/16/99

Rank	Company	System	Result	HTTP Version	# CPU
্রগ	IBM Corporation	S/390 9672-YX6 G5	21591	IBM HTTP Server V5.1 for OS/390	10
2	Compaq	Compaq AlphaServer GS140 6/575	14263	Zeus 1.3.0	10
3	Hewlett-Packard	HP 9000 V2250	13811	Zeus 1.3.3	16
(4 88	IBM	RS/6000 S70	12031	Zeus 1.3.3	12
5	Siemens	Primergy 870-40	10212	SWS 2.1 and SNCA	4
6	Siemens	Primergy 870-40	9199	SWS 2.1 and SNCA	4
70	Sun Microsystems Inc	Sun Enterprise 450	9115	SWS 2.1 and SNCA	4
8	IBM	RS/6000 S70 RS64-2	9081	Zeus 1.3.0	12
9	NCR Corporation	4400	9046	SWS 2.1 and SNCA	4
10	IBM	RS/6000 S70 RS64-2	8301	Zeus 1.3.0	12
11	IBM	Netfinity 7000 M10	7818	IBM HTTP Server 1.3.3	4
12	NCR Corporation	4400-4000-8090	7800	SWS 2.1 and SNCA	4
13	Hewlett-Packard	NetServer LXr 8000	7531	IIS 4.0 and SWC 1.1	4
14	Silicon Graphics	Origin 2000	7214	FastTrack 3.02	8
15	IBM	Netfinity 7000 M10	7180	IBM HTTP Server 1.3.3	4
16	IBM Austin	RS/6000 Model S70 RS642 Upgrade	7013	Zeus 1.3.0	12
17	Hewlett-Packard	NetServer LXr 8000	7006	Microsoft SWC 1.1 and IIS 4.0	4
18	Hewlett-Packard	9000/K580	6265	Zeus 1.3.3	4
19	Silicon Graphics	Origin 2000	6200	Zeus 1.3	8
20	IBM	Netfinity 7000 M10	5996	IBM HTTP Server 1.3.3	2

S/390 Results 50% better than previous BoB

Results from IDEAS International: www.ideasinternational.com

also check the SPEC Corp: www.specbench.org

Java Performance

• JDK 1.1.4

- Single thread performance 85% improvement
- Multithread performance 10X improvement
 - -available 5/98

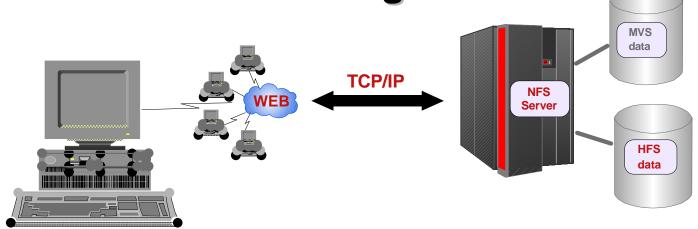
• JDK 1.1.6

- 2X increase in throughput for many applications vs JDK1.1.4
- ► 100X increase in throughput for floating point intensive applications when using G5 IEEE FP hardware
 - -available 12/98

• JDK 1.1.6p

- significant additional performance improvements
 - -available 3/99

• JDK 1.1.8


- projected 2X performance improvement vs JDK1.1.6
 - available summer '99

Watch this space !!!

OS/390 Unix Performance

Dramatic Improvements
Competitive Performance
More coming.....

► TCP/IP	2.3X-15X transactions /sec		
► NFS	up to 2.8X multiple client file processing		
► HFS	up to 40X file throughput processing		
► Web serving	up to 170X connections/sec BoB SPECWeb96 results		
► JAVA	up to 100X IEEE F.Pt. operations		