
z/OS

Cryptographic Services

System Secure Sockets Layer

Programming - OA22451 - R9

SC24-5901

���

z/OS

Cryptographic Services

System Secure Sockets Layer

Programming - OA22451 - R9

SC24-5901

���

ii System SSL Programming - APAR OA22451 - R9

Contents

Figures . v

Tables . vii

Chapter 1. Introduction . 1

Chapter 2. Certificate/Key Management . 3

Manage Keys and Certificates . 3

Create a Self-Signed Certificate . 5

Creating a Self-Signed Server or Client Certificate . 5

gskkyman Command Line Mode Examples . 8

Chapter 3. Certificate Management Services (CMS) API Reference 11

gsk_construct_renewal_request() . 12

gsk_construct_self_signed_certificate() . 14

gsk_construct_signed_certificate() . 16

gsk_create_certification_request() . 19

gsk_create_database_renewal_request() . 22

gsk_create_database_signed_certificate() . 24

gsk_create_self_signed_certificate() . 28

gsk_create_signed_certificate_record() . 31

gsk_create_signed_crl_record() . 34

gsk_make_signed_data_content() . 37

gsk_make_signed_data_content_extended() . 39

gsk_make_signed_data_msg() . 42

gsk_make_signed_data_msg_extended() . 44

gsk_read_signed_data_content() . 47

gsk_read_signed_data_content_extended() . 49

gsk_read_signed_data_msg() . 52

gsk_read_signed_data_msg_extended() . 54

gsk_sign_certificate() . 57

gsk_sign_crl() . 59

gsk_sign_data() . 61

gsk_verify_certificate_signature() . 63

gsk_verify_crl_signature() . 65

gsk_verify_data_signature() . 67

Chapter 4. Using Hardware Cryptographic Features with System SSL 69

Chapter 5. Messages and Codes . 73

CMS Status Codes (03353xxx) . 73

Chapter 6. Environment Variables . 75

Index . 77

© Copyright IBM Corp. 1999, 2008 iii

||
||

||
||

iv System SSL Programming - APAR OA22451 - R9

Figures

1. Key and Certificate Menus . 3

2. Creating a Self-Signed Certificate . 6

3. Creating a Self-Signed Certificate . 7

© Copyright IBM Corp. 1999, 2008 v

||

vi System SSL Programming - APAR OA22451 - R9

Tables

1. Hardware cryptographic functions exploited by System SSL 69

2. Hardware cryptographic functions used by System SSL 70

3. SSL-Specific Environment Variables . 75

© Copyright IBM Corp. 1999, 2008 vii

viii System SSL Programming - APAR OA22451 - R9

Chapter 1. Introduction

This book update contains alterations to information previously presented in z/OS System Secure Sockets

Layer Programming, SC24-5901-06, which supports z/OS Version 1 Release 9.

Technical changes or additions to the text and illustrations are indicated by a vertical line to the left of the

change.

The updates relate to changes made to the System SSL product by the application of APAR OA22451,

which introduces full support for creating and using X.509 certificates that make use of the SHA-2 suite of

digest algorithms in the certificate signature. In particular, APAR OA22451 introduces support for the

generation of SHA-224, SHA-256, SHA-384 and SHA-512 digests in hardware or software, and adjusts

System SSL, the gskkyman utility and the CMS API set to take advantage of the new function.

This book contains updates for the following chapters:

v Chapter 3. Using Hardware Cryptographic Features with System SSL with details of SHA-2 hardware

support on the latest available hardware.

v Chapter 7. Certificate Management Services (CMS) API Reference with 4 new APIs and adjustments to

existing APIs to support the new function

v Chapter 9. Certificate/Key Management with changes to the gskkyman utility to allow creation of SHA-2

based certificates

v Chapter 12. Messages and Codes with changes and additions to CMS status codes

v Appendix A. Environment Variables with changes to the GSK_HW_CRYPTO environment variable

© Copyright IBM Corp. 1999, 2008 1

2 System SSL Programming - APAR OA22451 - R9

Chapter 2. Certificate/Key Management

Manage Keys and Certificates

This option manages certificates with private keys. A list of key labels is displayed. Pressing the ENTER

key without making a selection will display the next set of labels. Selecting one of the label numbers will

display this menu:

 Key and Certificate Menu

 Label: Certificate_label_name

 1 - Show certificate information

 2 - Show key information

 3 - Set key as default

 4 - Set certificate trust status

 5 - Copy certificate and key to another database

 6 - Export certificate to a file

 7 - Export certificate and key to a file

 8 - Delete certificate and key

 9 - Change label

 10 - Create a signed certificate and key

 11 - Create a certificate renewal request

 0 - Exit program

Enter option number (press ENTER to return to

previous menu):

 ===>

 Token Key and Certificate Menu

 Label: Certificate_label_name

 1 - Show certificate information

 2 - Show key information

 3 - Set key as default

 4 - Set certificate trust status

 5 - Copy certificate and key to another

 database/token

 6 - Export certificate to a file

 7 - Export certificate and key to a file

 8 - Delete certificate and key

 9 - Change label

 10 - Create a signed certificate and key

 11 - Create a certificate renewal request

 0 - Exit program

Enter option number (press ENTER to return to

previous menu):

===>

Show certificate information

This option displays information about the X.509 certificate associated with the private key.

Show key information

This option displays information about the private key.

Set key as default

This option makes the current key the default key for the database.

Set certificate trust status

This option sets or resets the trusted status for the X.509 certificate. A certificate cannot be used

for authentication unless it is trusted.

Note: All z/OS PKCS #11 token certificates are automatically created with the status set to

trusted. Changing of the trust status is not supported for z/OS PKCS #11 token certificates.

Copy certificate and key to another database/token

This option copies the certificate and key to another token or a database. An error is returned if

the certificate is already in the token/database or if the label is not unique.

Export certificate to a file

This option exports just the X.509 certificate to a file. The supported export formats are ASN.1

Distinguished Encoding Rules (DER) and PKCS #7 (Cryptographic Message Syntax)

Export certificate and key to a file

This option exports the X.509 certificate and its private key to a file. The private key is encrypted

when it is written to the file. The password you select will be needed when you import the file. The

Figure 1. Key and Certificate Menus

© Copyright IBM Corp. 1999, 2008 3

supported export formats for a key database file are PKCS #12 Version 1 (obsoleted) and PKCS

#12 Version 3. For z/OS PKCS #11 tokens, the export format supported is PKCS #12 Version 3.

The strong encryption option uses Triple DES to encrypt the private key while the export

encryption option uses 40-bit RC2. The export file will contain the requested certificate and its

certification chain.

Delete certificate and key

The certificate and its associated private key are deleted.

Change label

This option will change the label for the database record.

Create a signed certificate and key

This option will create a new certificate and associated public/private key pair. The new certificate

will be signed using the certificate in the current record and then stored in either the key database

file or z/OS PKCS #11 token.

 DSS and DH based certificates are only supported in key database files. The key generation

parameters must be compatible with the requested key type and key size.

Keys are in the same domain if they have the same set of key generation parameters. Refer to

FIPS 186-2 (Digital Signature Standard) and RFC 2631 (Diffie-Hellman Key Agreement Method)

for more information on the key generation parameters. The subject name and one or more

subject alternate names can be specified for the new certificate.

The subject name is always an X.500 directory name while a subject alternate name can be an

X.500 directory name, a domain name, an e-mail address, an IP address, or a uniform resource

identifier. An X.500 directory name consists of common name, organization, and country attributes

with optional organizational unit, city/locality, and state/province attributes. A domain name is one

or more tokens separated by periods. An e-mail address consists of a user name and a domain

name separated by ’@’. An IP address is an IPv4 address (nnn.nnn.nnn.nnn) or an IPv6 address

(nnnn:nnnn:nnnn:nnnn:nnnn:nnnn:nnnn:nnnn). A uniform resource identifier consists of a scheme

name, a domain name, and a scheme-specific portion.

The signature algorithm used when signing the certificate is derived from the key algorithm of the

signing certificate. The digest type used when signing the certificate will match the digest type

used in the signature algorithm of the signing certificate. If the signing certificate’s key algorithm is

DSA, or the digest type used by the signing certificate is not a SHA-based digest, then the digest

type used will be SHA-1. Possible signature algorithms are:

v x509_alg_sha1WithRsaEncryption

v x509_alg_sha224WithRsaEncryption

v x509_alg_sha256WithRsaEncryption

v x509_alg_sha384WithRsaEncryption

v x509_alg_sha512WithRsaEncryption

v x509_alg_dsaWithSha1

Create a certificate renewal request

This option will create a certification request using the subject name and public/private key pair

from an existing certificate. The certificate request will be exported to a file in Base64 format. This

file can then be sent to a certification authority for processing. The certificate returned by the

certification authority can then be processed using option 5 (Receive requested certificate or a

renewal certificate) on the Key Management Menu or Token Management Menu. The new

certificate will replace the existing certificate.

4 System SSL Programming - APAR OA22451 - R9

|
|
|
|
|

|

|

|

|

|

|

Create a Self-Signed Certificate

This option will create a self-signed certificate using either RSA or DSA encryption for the public and

private keys and a certificate signature based on a SHA digest algorithm of the user's choice (if an RSA

certificate is requested). Possible signature algorithms are:

v x509_alg_sha1WithRsaEncryption

v x509_alg_sha224WithRsaEncryption

v x509_alg_sha256WithRsaEncryption

v x509_alg_sha384WithRsaEncryption

v x509_alg_sha512WithRsaEncryption

v x509_alg_dsaWithSha1

The certificate can be created for use by a certification authority or an end user. A CA certificate can be

used to sign other certificates and certificate revocation lists while an end user certificate can be used for

authentication, digital signatures, and data encryption.

Note: DSA certificates are only supported in key database files.

For key databases:

The label has a maximum length of 127 characters and is used to reference the certificate in the

request database. The label will also be used when the certificate is received, so it must be unique

in both the request and key databases. It must consist of characters which can be represented as

7-bit ASCII characters (letters, numbers, and punctuation) in the ISO8859-1 code page.

For tokens:

The label has a maximum length of 32 characters and is used to reference the certificate request.

The label will also be used when the certificate is received, so it must be unique in the token. It

must consist of characters which can be represented in the IBM1047 code page.

 The number of days until the certificate expires must be between 1 and 9999.

The subject name and one or more subject alternate names can be specified for the new certificate. The

subject name is always an X.500 directory name while a subject alternate name can be an X.500 directory

name, a domain name, an e-mail address, an IP address, or a uniform resource identifier. An X.500

directory name consists of common name, organization, and country attributes with optional organizational

unit, city/locality, and state/province attributes. A domain name is one or more tokens separated by

periods. An e-mail address consists of a user name and a domain name separated by ’@’. An IP address

is an IPv4 address (nnn.nnn.nnn.nnn) or an IPv6 address (nnnn:nnnn:nnnn:nnnn:nnnn:nnnn:nnnn:nnnn). A

uniform resource identifier consists of a scheme name, a domain name, and a scheme-specific portion (for

example, http://www.endicott.ibm.com/main.html).

Note: A self-signed end-entity certificate (server or client certificate) is not recommended for use in

production environments and should only be used to facilitate test environments prior to production.

Self-signed certificates do not imply any level of security or authenticity of the certificate because,

as their name implies, they are signed by the same key that is contained in the certificate. On the

other hand, certificates that are signed by a certificate authority indicate that, at least at the time of

signature, the certificate authority approved the information contained in the certificate.

Creating a Self-Signed Server or Client Certificate

If your organization does not use a certificate authority (within the organization or outside the

organization), a self-signed certificate can be generated for use by the program acting as an SSL server or

client. In addition, since root CA certificates are also self signed certificates that are permitted to be used

to sign other certificates (certificate requests), these procedures can also be used to create a root CA

certificate. See z/OS Cryptographic Services System SSL Programming.

Chapter 2. Certificate/Key Management 5

|
|
|

|

|

|

|

|

|

Programs acting as SSL servers (i.e. acting as the server side of the SSL handshake protocol) must have

a certificate to use during the handshake protocol. A program acting as an SSL client requires a certificate

when the SSL server requests client authentication as part of the SSL handshake.

Note: This is not recommended for production environments and should only be used to facilitate

test environments prior to production. Self-signed certificates do not imply any level of

security or authenticity of the certificate because, as their name implies, they are signed by

the same key that is contained in the certificate. On the other hand, certificates that are

signed by a certificate authority indicate that, at least at the time of signature, the certificate

authority approved the information contained in the certificate.

Note: gskkyman supports the creation of X.509 Version 3 certificates.

When creating a self-signed certificate to be used to identify a server or client, from the Key Management

Menu or Token Management Menu, enter 6. You will be prompted for a number of items to define the

certificate. First you will be asked to select the type of certificate to be created.

 Certificates that are intended to be used directly by a server or client are considered to be end-user

certificates. Certificates intended to be used to sign other certificates are considered to be CA certificates.

RSA key certificates are the most common. DSA key certificates represent certificates that follow the

FIPS-186 government standard. The larger the key size, the more secure the generated key will be. The

most commonly used size is 1024. Note that CPU usage increases as the key size increases. For

example, CPU usage will increase by a factor of 6 when the key size is doubled.

If an RSA-based certificate is selected, you will be prompted to select the digest type for the signature

algorithm from a list of SHA-based digest types, which includes SHA-1, SHA-224, SHA-256, SHA-384 and

SHA-512. SHA digests range from 160 bits in length (SHA-1) to 512 bits (SHA-512), and provide

increasing security accordingly. However, care should be taken to ensure that peer SSL implementations

 Key Management Menu

 Database: /home/sufwl1/ssl_cmd/mykey.kdb

 Expiration Date: 2008/12/02 10:11:12

 1 - Manage keys and certificates

 2 - Manage certificates

 3 - Manage certificate requests

 4 - Create new certificate request

 5 - Receive requested certificate or a

 renewal certificate

 6 - Create a self-signed certificate

 7 - Import a certificate

 8 - Import a certificate and a private key

 9 - Show the default key

 10 - Store database password

 11 - Show database record length

 0 - Exit program

Enter option number (press ENTER to return to

previous menu): 6 <enter>

 ===>

 Token Management Menu

 Token: TOKEN1

 Manufacturer: z/OS PKCS11 API

 Model: HCR7750

 Flags: 0x00000509 (INITIALIZED, PROT AUTH

 PATH,USER PIN INIT, RNG)

 1 - Manage keys and certificates

 2 - Manage certificates

 3 - Manage certificate requests

 4 - Create new certificate request

 5 - Receive requested certificate or a renewal

 certificate

 6 - Create a self-signed certificate

 7 - Import a certificate

 8 - Import a certificate and a private key

 9 - Show the default key

 10 - Delete token

 0 - Exit program

Enter option number (press ENTER to return to

previous menu): 6 <enter>

Figure 2. Creating a Self-Signed Certificate

6 System SSL Programming - APAR OA22451 - R9

|
|
|
|

support the chosen digest type. The default, if you press enter, is SHA-1. Figure 3 is an example using the

default. Previous releases of gskkyman created certificates using the SHA-1 digest type.

Once the certificate type is determined, you will be prompted to enter:

v a label to uniquely identify the key and certificate within the key database

v the individual fields within the subject name

v certificate expiration. The valid expiration range is 1 to 9999 days. The default value is 365 days.

v the subject alternate names (optional)

Figure 3 shows the creation of a self-signed certificate to be used as a server or client certificate in a key

database file or z/OS PKCS #11 token. If creating a server or client certificate in a z/OS PKCS #11 token,

the certificate type list will consist of supported options 1, 2, 5 and 6.

 Once the certificate is created, the next step is to determine whether the certificate should be marked as

the database’s or z/OS PKCS #11 token's default certificate. Setting the certificate as the default certificate

allows the certificate to be used by the SSL APIs without having to specify its label. For more information

on setting the default certificate, see z/OS Cryptographic Services System SSL Programming.

In order for the SSL handshake to successfully validate the use of the self-signed certificates, the partner

application needs to know about the signer of the certificate. For self-signed certificates, this means the

 Certificate Type

 1 - CA certificate with 1024-bit RSA key

 2 - CA certificate with 2048-bit RSA key

 3 - CA certificate with 4096-bit RSA key

 4 - CA certificate with 1024-bit DSA key

 5 - User or server certificate with 1024-bit RSA key

 6 - User or server certificate with 2048-bit RSA key

 7 - User or server certificate with 4096-bit RSA key

 8 - User or server certificate with 1024-bit DSA key

Select certificate type (press ENTER to return to menu): 5 <enter>

 Signature Digest Type

 1 - SHA-1

 2 - SHA-224

 3 - SHA-256

 4 - SHA-384

 5 - SHA-512

Select digest type (default SHA-1): <enter>

Enter label (press ENTER to return to menu): Server Cert <enter>

Enter subject name for certificate

 Common name (required): My Server Certificate <enter>

 Organizational unit (optional): ID <enter>

 Organization (required): IBM <enter>

 City/Locality (optional): Endicott <enter>

 State/Province (optional): NY <enter>

 Country/Region (2 characters - required): US <enter>

Enter number of days certificate will be valid (default 365): 244 <enter>

Enter 1 to specify subject alternate names or 0 to continue: 0 <enter>

Please wait

Certificate created.

Press ENTER to continue.

 ===>

Figure 3. Creating a Self-Signed Certificate

Chapter 2. Certificate/Key Management 7

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|

|
|

self-signed certificate must be imported into the partner’s database or z/OS PKCS #11 token. For more

information on importing certificates, see z/OS Cryptographic Services System SSL Programming.

gskkyman Command Line Mode Examples

Command mode is entered when the gskkyman command is entered with parameters. The requested

token/database function will be performed and then the command will exit.

v Store the database password in the stash file

gskkyman -s -k filename

The database password is masked and written to the key stash file. The file name is the same as the

key database file name but has an extension of ’.sth’. You will be prompted for the key database file

name if the ’-k’ option is not specified. The '-t' option is invalid for the '-s' function.

v Export a certificate and the associated private key

gskkyman -e -k filename -l label -p filename

The certificate and associated private key identified by the record label are exported to a file in PKCS

#12 Version 3 format using strong encryption. The default key will be exported if the ’-l’ option is not

specified. You will be prompted for the key database file name if the ’-k’ and the '-t' option is not

specified. You will be prompted for the export file name if the ’-p’ option is not specified.

v Import a certificate and associated private key

gskkyman -i -t token-name -l label -p filename

A certificate and associated private key are imported from a file in PKCS #12 format. You will be

prompted for the label if the ’-l’ option is not specified. You will be prompted for the key database file

name if the ’-k’ and the '-t' option is not specified. You will be prompted for the import file name if the ’-p’

option is not specified.

v Create a signed certificate for a certificate request

gskkyman -g -x days -cr filename -ct filename -k filename -l label -ca -ic

The certificate request identified by the -cr parameter is processed and a signed certificate is created

and written to the certificate file identified by the -ct parameter. The -x parameter specifies the number

of days until the certificate expires and defaults to 365 days. The certificate is signed using the default

key if the -l parameter is not specified. You will be prompted for the key database file name if the ’-k’

option is not specified. You will be prompted for the certificate request file name if the ’-cr’ option is not

specified. You will be prompted for the signed certificate file name if the ’-ct’ option is not specified.

The signed certificate will be an end user certificate unless the -ca option is specified. A certification

authority certificate will have basic constraints and key usage extensions which allow the certificate to

be used to sign other certificates and certificate revocation lists. An end user certificate will have basic

constraints and key usage extensions which allow the certificate to be used for authentication, digital

signatures, and data encryption (a DSA key cannot be used for data encryption).

Any certificate can be used to sign the new certificate as long as the certificate has a private key, the

basic constraints certificate extension (if present) has the CA indicator set, and the key usage certificate

extension (if present) allows signing certificates. However, depending upon how the new certificate is

subsequently used, it may fail the validation checking if the signing certificate is not a valid certification

authority certificate.

The signing algorithm that will be used to sign the new certificate is derived from the key algorithm of

the signing certificate and the most secure and compatible SHA-based hash in use in either the signing

certificate or the certificate request. Possible signing algorithms are:

– x509_alg_sha1WithRsaEncryption

– x509_alg_sha224WithRsaEncryption

– x509_alg_sha256WithRsaEncryption

– x509_alg_sha384WithRsaEncryption

– x509_alg_sha512WithRsaEncryption

– x509_alg_dsaWithSha1

8 System SSL Programming - APAR OA22451 - R9

|
|
|

|

|

|

|

|

|

The certificate file will contain the generated X.509 certificate in DER-encoded Base64 format if the -ic

option is not specified. The certificate file will contain the generated X.509 certificate and the certification

chain certificates as a PKCS #7 message in Base64 format if the -ic option is specified.

Chapter 2. Certificate/Key Management 9

10 System SSL Programming - APAR OA22451 - R9

Chapter 3. Certificate Management Services (CMS) API

Reference

This topic describes the Certificate Management Services (CMS) APIs. These APIs can be used to

create/manage your own key database files in a similar function to the SSL gskkyman utility, use

certificates stored in the key database file or key ring for purposes other than SSL, and basic PKCS #7

message support.

This is a list of the Certificate Management Services (CMS) APIs:

v gsk_construct_renewal_request() (see page 12)

v gsk_construct_self_signed_certificate() (see page 14)

v gsk_construct_signed_certificate() (see page 16)

v gsk_create_certification_request() (see page 19)

v gsk_create_database_renewal_request() (see page 22)

v gsk_create_database_signed_certificate() (see page 24)

v gsk_create_self_signed_certificate() (see page 28)

v gsk_create_signed_certificate_record() (see page 31)

v gsk_create_signed_crl_record() (see page 34)

v gsk_make_signed_data_content() (see page 37)

v gsk_make_signed_data_content_extended() (see page 39)

v gsk_make_signed_data_msg() (see page 42)

v gsk_make_signed_data_msg_extended() (see page 44)

v gsk_read_signed_data_content() (see page 47)

v gsk_read_signed_data_content_extended() (see page 49)

v gsk_read_signed_data_msg() (see page 52)

v gsk_read_signed_data_msg_extended() (see page 54)

v gsk_sign_certificate() (see page 57)

v gsk_sign_crl() (see page 59)

v gsk_sign_data() (see page 61)

v gsk_verify_certificate_signature() (see page 63)

v gsk_verify_crl_signature() (see page 65)

v gsk_verify_data_signature() (see page 67)

© Copyright IBM Corp. 1999, 2008 11

|

|

|

|

gsk_construct_renewal_request()

Constructs a certification renewal request as described in PKCS #10.

Format

 #include <gskcms.h>

 gsk_status gsk_construct_renewal_request (

 x509_public_key_info * public_key,

 pkcs_private_key_info * private_key,

 x509_algorithm_type signature_algorithm,

 const char * subject_name,

 x509_extensions * extensions,

 pkcs_cert_request * request)

Parameters

public_key

Specifies the public key for the certification request.

private_key

Specifies the private key for the certification request.

signature_algorithm

Specifies the signature algorithm used to sign the constructed request.

subject_name

Specifies the distinguished name for the certificate subject. The distinguished name is specified in the

local code page and consists of one or more relative distinguished name components separated by

commas.

extensions

Specifies certificate extensions to be included in the certification request. Specify NULL for this

parameter if no certificate extensions are provided.

request

Returns the certification renewal request as a pkcs_cert_request structure.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one of the return codes

listed in the gskcms.h include file. These are some possible errors:

[ASN_X500_NO_AVA_SEP]

An attribute value separator is missing.

[CMSERR_ALG_NOT_SUPPORTED]

The signature algorithm is not valid.

[CMSERR_KEY MISMATCH]

The signing key type is not supported by the requested signature algorithm.

[CMSERR_NO_MEMORY]

Insufficient storage is available.

Usage

The gsk_construct_renewal_request() function constructs a certification request as described in PKCS

#10 (Certification Request Syntax Standard) and returns the constructed request in the pkcs_cert_request

structure request.

gsk_construct_renewal_request()

12 System SSL Programming - APAR OA22451 - R9

The gsk_encode_export_request() function can be called to create an export file containing the request

for transmission to the certification authority.

The certification request will be signed using the key specified by the private_key parameter and the

signature algorithm specified by the signature_algorithm parameter.

These signature algorithms are supported:

x509_alg_md2WithRsaEncryption

RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption

RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption

RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption

RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption

RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption

RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption

RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1

Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

The extensions parameter can be used to provide certificate extensions for inclusion in the certification

request. Whether or not a particular certificate extension will be included in the new certificate is

determined by the certification authority.

gsk_construct_renewal_request()

Chapter 3. Certificate Management Services (CMS) API Reference 13

|
|

|
|

|
|

|
|

gsk_construct_self_signed_certificate()

Constructs a self-signed certificate and returns it to the caller.

Format

 #include <gskcms.h>

 gsk_status gsk_construct_self_signed_certificate (

 x509_algorithm_type signature_algorithm,

 const_char * subject_name,

 int num_days,

 gsk_boolean ca_certificate,

 x509_extensions * extensions,

 x509_public_key_info * public_key,

 pkcs_private_key_info * private_key,

 x509_certificate * subject_certificate)

Parameters

signature_algorithm

Specifies the signature algorithm used to sign the constructed certificate.

subject_name

Specifies the distinguished name for the certificate subject. The distinguished name is specified in the

local code page and consists of one or more relative distinguished name components separated by

commas.

num_days

Specifies the number of days for the certificate validity period as a value between 1 and 9999 (the

maximum of 9999 will be used if a larger value is specified and the minimum of 1 will be used if a

smaller value is specified).

ca_certificate

Specify TRUE if this is a certification authority certificate or FALSE if this is an end user certificate.

extensions

Specifies the certificate extensions for the new certificate. Specify NULL for this parameter if no

certificate extensions are supplied.

public_key

Specifies the public key for the constructed certificate.

private_key

Specifies the private key for the constructed certificate.

subject_certificate

Contains the constructed certificate.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one of the return codes

listed in the gskcms.h include file. These are some possible errors:

[CMSERR_ALG_NOT_SUPPORTED]

The signature algorithm is not valid.

[CMSERR_BAD_SUBJECT_NAME]

The subject name is not valid.

[CMSERR_NO_MEMORY]

Insufficient storage is available.

gsk_construct_self_signed_certificate()

14 System SSL Programming - APAR OA22451 - R9

Usage

The gsk_construct_self_signed_certificate() routine will construct an X.509 certificate as described in

RFC 2459 (X.509 Public Key Instrastructure). A certification authority certificate will have basic constraints

and key usage extensions which allow the certificate to be used to sign other certificates and certificate

revocation lists. An end user certificate will have no basic constraints limitations or key usage limitations.

The constructed certificate is then returned in the 509_certificate structure subject_certificate.

These signature algorithms are supported:

x509_alg_md2WithRsaEncryption

RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption

RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption

RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption

RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption

RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption

RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption

RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1

Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

An RSA key size must be between 512 and 4096 bits and will be rounded up to a multiple of 16 bits. A

DSA key size must be between 512 and 1024 bits and will be rounded up to a multiple of 64 bits.

Note: A self-signed end-entity certificate (server or client certificate) is not recommended for use in

production environments and should only be used to facilitate test environments prior to production.

Self-signed certificates do not imply any level of security or authenticity of the certificate because,

as their name implies, they are signed by the same key that is contained in the certificate. On the

other hand, certificates that are signed by a certificate authority indicate that, at least at the time of

signature, the certificate authority approved the information contained in the certificate.

gsk_construct_self_signed_certificate()

Chapter 3. Certificate Management Services (CMS) API Reference 15

|
|

|
|

|
|

|
|

gsk_construct_signed_certificate()

Constructs a signed certificate for a certificate request.

Format

 #include <gskcms.h>

 gsk_status gsk_construct_signed_certificate (

 pkcs_cert_key * signer_certificate,

 pkcs_cert_request * request,

 x509_algorithm_type signature_algorithm,

 int num_days,

 gsk_boolean ca_certificate,

 x509_extensions * extensions,

 x509_certificate * certificate)

Parameters

signer_certificate

Specifies the signing certificate with private key.

request

Specifies the PKCS #10 certification request stream in either binary DER-encoded format or in Base64

format. A Base64 stream is in the local code page.

signature_algorithm

Specifies the signature algorithm used to sign the constructed certificate.

num_days

Specifies the number of days for the certificate validity period as a value between 1 and 9999 (the

maximum of 9999 will be used if a larger value is specified and the minimum of 1 will be used if a

smaller value is specified).

ca_certificate

Specify TRUE if this is a certification authority certificate or FALSE if this is an end user certificate.

extensions

Specifies the certificate extensions for the new certificate. Specify NULL for this parameter if no

certificate extensions are supplied.

certificate

Contains the constructed signed certificate.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one of the return codes

listed in the gskcms.h include file. These are some possible errors:

[CMSERR_ALG_NOT_SUPPORTED]

The key algorithm or the signature algorithm is not valid.

[CMSERR_BAD_ENCODING]

The certificate request stream is not valid.

[CMSERR_BAD_SIGNATURE]

The request signature is not correct.

CMSERR_CA_NOT_SUPPLIED[]

CA certificate is not supplied.

[CMSERR_EXPIRED]

The signer certificate is expired.

gsk_construct_signed_certificate()

16 System SSL Programming - APAR OA22451 - R9

[CMSERR_INCORRECT_KEY_USAGE]

The signer certificate key usage does not allow signing certificates.

[CMSERR_ISSUER_NOT_CA]

The signer certificate is not for a certification authority.

[CMSERR_KEY_MISMATCH]

The signer certificate key cannot be used to sign a certificate or the key type is not supported for

the requested signature algorithm.

[CMSERR_NO_MEMORY]

Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]

The signer certificate does not have a private key.

[CMSERR_REQUEST_NOT_SUPPLIED]

Certificate request not supplied.

[CMSERR_SUBJECT_IS_CA]

The requested subject name is the same as the signer name.

Usage

The gsk_construct_signed_certificate() routine will construct an X.509 certificate as described in RFC

2459 (X.509 Public Key Infrastructure). The new certificate will be signed using the certificate specified by

the signer_certificate parameter. A certification authority certificate will have basic constraints and key

usage extensions which allow the certificate to be used to sign other certificates and certificate revocation

lists. An end user certificate will have basic constraints and key usage extensions which allow the

certificate to be used for authentication, digital signatures, and data encryption (except for a DSA key

which cannot be used for data encryption). The certificate expiration will be set to the earlier of the

requested expiration date and the expiration date of the signing certificate.

The signing certificate must have an associated private key, the Basic Constraints extension must either

be omitted or must have the CA indicator set, and the KeyUsage extension must either be omitted or must

allow signing certificates. The subject key identifier from the signing certification will be copied to the

signed certificate as the authority key identifier.

A CA certificate will have SubjectKeyIdentifier, KeyUsage and BasicConstraints extensions while an end

user certificate will have SubjectKeyIdentifier and KeyUsage extensions. An end user certificate will also

have an AuthorityKeyIdentifier extension if the signing certificate has a SubjectKeyIdentifier extension. The

application can supply additional extensions through the extensions parameter. An AuthorityKeyIdentifier,

KeyUsage or BasicConstraints extension provided by the application will replace the default extension

created for the certificate. A SubjectKeyIdentifier extension provided by the application will be ignored.

Certificate extensions can also be contained within the certification request. A certificate extension supplied

by the application will override a certificate extension of the same type contained in the certification

request. The certificate extension found in the certification request will be copied unmodified to the new

certificate with these exceptions:

v The AuthorityInfoAccess, AuthorityKeyIdentifier, BasicConstraints, CrlDistributionPoints, IssuerAltName,

NameConstraints, PolicyConstraints, PolicyMappings, and PrivateKeyUsagePeriod extensions will not

be copied.

v The keyCertSign and crlSign flags in the KeyUsage extension will be modified based upon the value of

the ca_certificate parameter.

These signature algorithms are supported:

x509_alg_md2WithRsaEncryption

RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

gsk_construct_signed_certificate()

Chapter 3. Certificate Management Services (CMS) API Reference 17

x509_alg_md5WithRsaEncryption

RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption

RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption

RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption

RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption

RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption

RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1

Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

No certification path validation is performed by the gsk_construct_signed_certificate() routine. An error

will be returned if the requested subject name is the same as the subject name in the signing certificate.

gsk_construct_signed_certificate()

18 System SSL Programming - APAR OA22451 - R9

|
|

|
|

|
|

|
|

gsk_create_certification_request()

Creates a PKCS #10 certification request.

Format

 #include <gskcms.h>

 gsk_status gsk_create_certification_request (

 gsk_handle db_handle,

 const char * label,

 x509_algorithm_type signature_algorithm,

 int key_size,

 const char * subject_name,

 x509_extensions * extensions)

Parameters

db_handle

Specifies the database handle returned by the gsk_create_database() routine or the

gsk_open_database() routine. This must be a request database and not a key database.

label

Specifies the label for the new database record. The label is specified in the local code page.

signature_algorithm

Specifies the signature algorithm for the certificate.

key_size

Specifies the key size in bits.

subject_name

Specifies the distinguished name for the certificate subject. The distinguished name is specified in the

local code page and consists of one or more relative distinguished name components separated by

commas.

extensions

Specifies certificate extensions to be included in the certification request. Specify NULL for this

parameter if no certificate extensions are provided.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one of the return codes

listed in the gskcms.h include file. These are some possible errors:

[CMSERR_ALG_NOT_SUPPORTED]

The signature algorithm is not supported.

[CMSERR_BACKUP_EXISTS]

The backup file already exists.

[CMSERR_BAD_HANDLE]

The database handle is not valid.

[CMSERR_BAD_KEY_SIZE]

The key size is not valid.

[CMSERR_BAD_LABEL]

The record label is not valid.

[CMSERR_INCORRECT_DBTYPE]

The database type does not support certification requests.

gsk_create_certification_request()

Chapter 3. Certificate Management Services (CMS) API Reference 19

|
|

[CMSERR_IO_ERROR]

Unable to write record.

[CMSERR_LABEL_NOT_UNIQUE]

The record label is not unique.

[CMSERR_NO_MEMORY]

Insufficient storage is available.

[CMSERR_RECORD_TOO_BIG]

The record is larger than the database record length.

[CMSERR_UPDATE_NOT_ALLOWED]

Database is not open for update.

Usage

The gsk_create_certification_request() routine creates a request for a new certificate as described in

PKCS #10 (Certification Request Syntax Standard). The request is then stored in the request database.

The gsk_export_certification_request() routine can be called to create an export file containing the

request for transmission to the certification authority.

The gsk_create_certification_request() routine is similar to the gsk_create_renewal_request() routine.

Both routines create a PKCS #10 certification request. The difference is the

gsk_create_certification_request() routine generates a new public/private key pair while the

gsk_create_renewal_request () routine uses the public/private key pair provided by the application.

These signature algorithms are supported:

x509_alg_md2WithRsaEncryption

RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption

RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption

RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption

RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption

RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption

RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption

RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1

Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

An RSA key size must be between 512 and 4096 bits and will be rounded up to a multiple of 16 bits. A

DSA key size must be between 512 and 1024 bits and will be rounded up to a multiple of 64 bits.

The record label is used as a friendly name for the database entry. It can be any value and consists of

characters which can be represented using 7-bit ASCII (letters, numbers, and punctuation). It may not be

an empty string.

gsk_create_certification_request()

20 System SSL Programming - APAR OA22451 - R9

|
|

|
|

|
|

|
|

The extensions parameter can be used to provide certificate extensions for inclusion in the certification

request. Whether or not a particular certificate extension will be included in the new certificate is

determined by the certification authority.

The database must be open for update in order to add the new request. The database file is updated as

part of the gsk_create_certification_request() processing. A temporary database file is created using the

same name as the database file with ″.new″ appended to the name. The database file is then overwritten

and the temporary database file is deleted. The temporary database file will not be deleted if an error

occurs while rewriting the database file.

gsk_create_certification_request()

Chapter 3. Certificate Management Services (CMS) API Reference 21

gsk_create_database_renewal_request()

Creates a PKCS #10 certification renewal request.

Format

 #include <gskcms.h>

 gsk_status gsk_create_database_renewal_request (

 gsk_handle db_handle,

 const char * label,

 x509_public_key_info * public_key,

 pkcs_private_key_info * private_key,

 x509_algorithm_type signature_algorithm,

 const char * subject_name,

 x509_extensions * extensions)

Parameters

db_handle

Specifies the database handle returned by the gsk_create_database() routine or the

gsk_open_database() routine. This must be a request database and not a key database.

label

Specifies the label for the request database record. The label is specified in the local code page.

public_key

Specifies the public key for the certification request.

private_key

Specifies the private key for the certification request.

signature_algorithm

Specifies the signature algorithm to be used for the request signature.

subject_name

Specifies the distinguished name for the certificate subject. The distinguished name is specified in the

local code page and consists of one or more relative distinguished name components separated by

commas.

extensions

Specifies certificate extensions to be included in the certification request. Specify NULL for this

parameter if no certificate extensions are provided.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one of the return codes

listed in the gskcms.h include file. These are some possible errors:

[CMSERR_ALG_NOT_SUPPORTED]

The signature algorithm is not valid.

[CMSERR_BACKUP_EXISTS]

The backup file already exists.

[CMSERR_BAD_HANDLE]

The database handle is not valid.

[CMSERR_BAD_LABEL]

The record label is not valid.

[CMSERR_INCORRECT_DBTYPE]

The database type does not support certification requests.

gsk_create_database_renewal_request()

22 System SSL Programming - APAR OA22451 - R9

|
|

|

|

|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

[CMSERR_IO_ERROR]

Unable to write record.

[CMSERR_KEY_MISMATCH]

The supplied private key cannot be used to sign a certificate or the private key type is not

supported for the requested signature algorithm.

[CMSERR_LABEL_NOT_UNIQUE]

The record label is not unique.

[CMSERR_NO_MEMORY]

Insufficient storage is available.

[CMSERR_RECORD_TOO_BIG]

The record is larger than the database record length.

[CMSERR_UPDATE_NOT_ALLOWED]

Database is not open for update.

Usage

The gsk_create_database_renewal_request() routine creates a certification request as described in

PKCS #10 (Certification Request Syntax Standard). The request is then stored in the request database.

The gsk_export_certification_request() routine can be called to create an export file containing the

request for transmission to the certification authority.

The gsk_create_database_renewal_request() routine is similar to the

gsk_create_certification_request() routine. Both routines create a PKCS #10 certification request. The

difference is the gsk_create_certification_request() routine generates a new public/private key pair while

the gsk_create_database_renewal_request() routine uses the public/private key pair provided by the

application.

The renewal request will be signed using the key specified by the private_key parameter and the signature

algorithm specified by the signature_algorithm parameter.

These signature algorithms are supported:

x509_alg_md2WithRsaEncryption

RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption

RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption

RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption

RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption

RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption

RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption

RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1

Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

gsk_create_database_renewal_request()

Chapter 3. Certificate Management Services (CMS) API Reference 23

|
|

|
|
|

|
|

|
|

|
|

|
|

|

|
|
|
|

|
|
|
|
|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

gsk_create_database_signed_certificate()

Creates a signed certificate as part of a set of certificates.

Format

 #include <gskcms.h>

 gsk_status gsk_create_database_signed_certificate (

 gsk_handle db_handle,

 const char * ca_label,

 const char * record_label,

 x509_algorithm_type key_algorithm,

 int key_size,

 gsk_buffer * key_parameters,

 x509_algorithm_type signature_algorithm,

 const char * subject_name,

 int num_days,

 gsk_boolean ca_certificate,

 x509_extensions * extensions)

Parameters

db_handle

Specifies the database handle returned by the gsk_create_database() routine or the

gsk_open_database() routine. This must be a key database and not a request database.

ca_label

Specifies the label of the certificate to be used to sign the new certificate. The key usage for the

certificate must allow certificate signing. The label is specified in the local code page.

record_label

Specifies the label for the new database record. The label is specified in the local code page.

key_algorithm

Specifies the certificate key algorithm.

key_size

Specifies the certificate key size in bits.

key_parameters

Specifies the key generation parameters. Specify NULL for this parameter if the key algorithm does

not require any key parameters.

signature_algorithm

Specifies the signature algorithm used for the certificate signature.

subject_name

Specifies the distinguished name for the certificate subject. The distinguished name is specified in the

local code page and consists of one or more relative distinguished name components separated by

commas.

num_days

Specifies the number of days for the certificate validity period as a value between 1 and 9999 (the

maximum of 9999 will be used if a larger value is specified and the minimum of 1 will be used if a

smaller value is specified).

ca_certificate

Specify TRUE if this is a certification authority certificate or FALSE if this is an end user certificate.

extensions

Specifies the certificate extensions for the new certificate. Specify NULL for this parameter if no

certificate extensions are supplied.

gsk_create_database_signed_certificate()

24 System SSL Programming - APAR OA22451 - R9

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|
|
|

|
|
|
|

|
|

|
|
|

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one of the return codes

listed in the gskcms.h include file. These are some possible errors:

[CMSERR_ALG_NOT_SUPPORTED]

The key algorithm or the signature algorithm is not valid.

[CMSERR_BACKUP_EXISTS]

The backup file already exists.

[CMSERR_BAD_HANDLE]

The database handle is not valid.

[CMSERR_BAD_KEY_SIZE]

The key size is not valid.

[CMSERR_BAD_LABEL]

The record label or CA certificate label is not valid.

[CMSERR_BAD_SUBJECT_NAME]

The subject name is not valid.

[CMSERR_EXPIRED]

The signer certificate is expired.

[CMSERR_INCORRECT_DBTYPE]

The database type does not support certificates.

[CMSERR_INCORRECT_KEY_USAGE]

The signer certificate key usage does not allow signing certificates.

[CMSERR_IO_ERROR]

Unable to read or write a database record.

[CMSERR_ISSUER_NOT_CA]

The signer certificate is not for a certification authority.

[CMSERR_KEY_MISMATCH]

The signer certificate key cannot be used to sign a certificate.

[CMSERR_LABEL_NOT_UNIQUE]

The record label is not unique.

[CMSERR_NO_MEMORY]

Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]

The signer certificate does not have a private key.

[CMSERR_RECORD_TOO_BIG]

The record is larger than the database record length.

[CMSERR_SUBJECT_IS_CA]

The requested subject name is the same as the signer name.

[CMSERR_UPDATE_NOT_ALLOWED]

Database is not open for update.

Usage

The gsk_create_database_signed_certificate() routine will generate an X.509 certificate as described in

RFC 2459 (X.509 Public Key Infrastructure). The certificate will be signed using an existing certificate as

specified by the ca_label parameter and the signature algorithm specified by the signature_algorithm

parameter.

gsk_create_database_signed_certificate()

Chapter 3. Certificate Management Services (CMS) API Reference 25

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|
|
|

These signature algorithms are supported:

x509_alg_md2WithRsaEncryption

RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption

RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption

RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption

RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption

RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption

RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption

RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1

Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

A certification authority (CA) certificate will have basic constraints and key usage extensions which allow

the certificate to be used to sign other certificates and certificate revocation lists. An end user certificate

will have basic constraints and key usage extensions as follows:

v An RSA key can be used for authentication, digital signature, and data encryption.

v A DSS key can be used for authentication and digital signature.

v A Diffie-Hellman key can be used for key agreement.

The new certificate will be stored in the key database using the supplied record label. The

gsk_export_certificate() routine can be called to create an export file containing the certificate for

transmission to another system.

The following key algorithms are supported:

x509_alg_rsaEncryption

RSA encryption - {1.2.840.113549.1.1.1}

x509_alg_idDsa

Didital Signature Standard (DSS) - {1.2.840.10040.4.1}

x509_alg_idPublicNumber

Diffie-Hellman (DH) - {1.2.840.10046.2.1}

RSA keys

v Can be used for both CA certificates and end user certificates

v Key size between 512 and 4096 bits rounded up to a multiple of 16

v No key parameters

DSS keys

v Can be used for both CA certificates and end user certificates

v Key size between 512 and 1024 bits rounded up to a multple of 64

v Key parameters encoded as an ASN.1 sequence consisting of the prime P, the subprime Q and the

base G. Refer to FIPS 186-2 (Digital Signature Standard) for more information on the key parameters.

The gsk_generate_key_parameters() routine can be used to generate the key parameters.

gsk_create_database_signed_certificate()

26 System SSL Programming - APAR OA22451 - R9

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|

|

|

|
|
|

|

|
|

|
|

|
|

|

|

|

|

|

|

|

|
|
|

DH keys

v Can be used only for end user certificates

v Key size between 512 and 2048 bits rounded up to a multiple of 64

v Key parameters encoded as an ASN.1 sequence consisting of the prime P, the base G, the subprime Q

and the subgroup factor J. Refer to RFC 2631 (Diffie-Hellman Key Agreement Method) for more

information on the key parameters. The gsk_generate_key_parameters() routine can be used to

generate the key parameters.

The record label is used as a friendly name for the database entry. It can be any value and consists of

characters which can be represented using 7-bit ASCII (letters, numbers, and punctuation). It may not be

an empty string.

A CA certificate will have SubjectKeyIdentifier, KeyUsage and BasicConstraints extensions while an end

user certificate will have SubjectKeyIdentifier and KeyUsage extensions. The application can supply

additional extensions through the extensions parameter. A KeyUsage or BasicContraints extension

provided by the application will replace the default extension created for the certificate. A

SubjectKeyIdentifier extension provided by the application will be ignored. An AuthorityKeyIdentifier

extension will be created if the signing CA certificate has a SubjectKeyIdentifier extension.

The database must be open for update in order to add the new certificate. The database file is updated as

part of the gsk_create_database_signed_certificate() processing. A temporary database file is created

using the same name as the database file with ″.new″ appended to the name. The database file is then

overwritten and the temporary database file is deleted. The temporary database file will not be deleted if

an error occurs while rewriting the database file.

gsk_create_database_signed_certificate()

Chapter 3. Certificate Management Services (CMS) API Reference 27

|

|

|

|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

gsk_create_self_signed_certificate()

Creates a self-signed certificate.

Format

 #include <gskcms.h>

 gsk_status gsk_create_self_signed_certificate (

 gsk_handle db_handle,

 const char * label,

 x509_algorithm_type signature_algorithm,

 int key_size,

 const char * subject_name,

 int num_days,

 gsk_boolean ca_certificate,

 x509_extensions * extensions)

Parameters

db_handle

Specifies the database handle returned by the gsk_create_database() routine or the

gsk_open_database() routine. This must be a key database and not a request database.

label

Specifies the label for the new database record. The label is specified in the local code page.

signature_algorithm

Specifies the certificate signature algorithm.

key_size

Specifies the key size in bits.

subject_name

Specifies the distinguished name for the certificate subject. The distinguished name is specified in the

local code page and consists of one or more relative distinguished name components separated by

commas.

num_days

Specifies the number of days for the certificate validity period as a value between 1 and 9999 (the

maximum of 9999 will be used if a larger value is specified).

ca_certificate

Specify TRUE if this is a certification authority certificate or FALSE if this is an end user certificate.

extensions

Specifies the certificate extensions for the new certificate. Specify NULL for this parameter if no

certificate extensions are supplied.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one of the return codes

listed in the gskcms.h include file. These are some possible errors:

[CMSERR_ALG_NOT_SUPPORTED]

The signature algorithm is not valid.

[CMSERR_BACKUP_EXISTS]

The backup file already exists.

[CMSERR_BAD_HANDLE]

The database handle is not valid.

gsk_create_self_signed_certificate()

28 System SSL Programming - APAR OA22451 - R9

[CMSERR_BAD_KEY_SIZE]

The key size is not valid.

[CMSERR_BAD_LABEL]

The record label is not valid.

[CMSERR_BAD_SUBJECT_NAME]

The subject name is not valid.

[CMSERR_INCORRECT_DBTYPE]

The database type does not support certificates.

[CMSERR_IO_ERROR]

Unable to write record.

[CMSERR_LABEL_NOT_UNIQUE]

The record label is not unique.

[CMSERR_NO_MEMORY]

Insufficient storage is available.

[CMSERR_RECORD_TOO_BIG]

The record is larger than the database record length.

[CMSERR_UPDATE_NOT_ALLOWED]

Database is not open for update.

Usage

The gsk_create_self_signed_certificate() routine will generate a self-signed X.509 certificate as

described in RFC 2459 (X.509 Public Key Infrastructure). A certification authority certificate will have basic

constraints and key usage extensions which allow the certificate to be used to sign other certificates and

certificate revocation lists. An end user certificate will have no basic constraints or key usage limitations.

The new certificate is then stored in the key database. The gsk_export_certificate() routine can be called

to create an export file containing the certificate for transmission to another system.

These signature algorithms are supported:

x509_alg_md2WithRsaEncryption

RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption

RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption

RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption

RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption

RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption

RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption

RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1

Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

An RSA key size must be between 512 and 4096 bits and will be rounded up to a multiple of 16 bits. A

DSA key size must be between 512 and 1024 bits and will be rounded up to a multiple of 64 bits.

gsk_create_self_signed_certificate()

Chapter 3. Certificate Management Services (CMS) API Reference 29

|
|

|
|

|
|

|
|

The record label is used as a friendly name for the database entry. It can be any value and consists of

characters which can be represented using 7-bit ASCII (letters, numbers, and punctuation). It may not be

an empty string.

A CA certificate will have SubjectKeyIdentifier, KeyUsage and BasicConstraints extensions while an end

user certificate will have a SubjectKeyIdentifier and a CA BasicConstraints extension. The application can

supply additional extensions through the extensions parameter. A KeyUsage or BasicContraints extension

provided by the application will replace the default extension created for the certificate. A

SubjectKeyIdentifier extension provided by the application will be ignored. The database must be open for

update in order to add the new certificate. The database file is updated as part of the

gsk_create_self_signed_certificate() processing. A temporary database file is created using the same

name as the database file with ″.new″ appended to the name. The database file is then overwritten and

the temporary database file is deleted. The temporary database file will not be deleted if an error occurs

while rewriting the database file.

Note: A self-signed end-entity certificate (server or client certificate) is not recommended for use in

production environments and should only be used to facilitate test environments prior to production.

Self-signed certificates do not imply any level of security or authenticity of the certificate because,

as their name implies, they are signed by the same key that is contained in the certificate. On the

other hand, certificates that are signed by a certificate authority indicate that, at least at the time of

signature, the certificate authority approved the information contained in the certificate.

gsk_create_self_signed_certificate()

30 System SSL Programming - APAR OA22451 - R9

gsk_create_signed_certificate_record()

Creates a signed certificate.

Format

 #include <gskcms.h>

 gsk_status gsk_create_signed_certificate_record (

 gsk_handle db_handle,

 const char * label,

 int num_days,

 gsk_boolean ca_certificate,

 x509_algorithm_type signature_algorithm,

 x509_extensions * extensions,

 gsk_buffer * cert_request,

 gsk_buffer * signed_certificate)

Parameters

db_handle

Specifies the database handle returned by the gsk_create_database() routine, the

gsk_open_database() routine, or the gsk_open_keyring() routine. This must be a key database and

not a request database.

label

Specifies the label for the certificate to be used to sign the new certificate. The label is specified in the

local code page.

num_days

Specifies the number of days for the certificate validity period as a value between 1 and 9999 (the

maximum of 9999 will be used if a larger value is specified).

ca_certificate

Specify TRUE if this is a certification authority certificate or FALSE if this is an end user certificate.

signature_algorithm

Specifies the signature algorithm to be used for the certificate signature.

extensions

Specifies the certificate extensions for the new certificate. Specify NULL for this parameter if no

certificate extensions are supplied.

cert_request

Specifies the PKCS #10 certification request stream in either binary DER-encoded format or in Base64

format. A Base64 stream is in the local code page.

signed_certificate

Returns the signed certificate in Base64 format. The Base64 stream will be in the local code page.

The application should call the gsk_free_buffer() routine to release the certificate stream when it is no

longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one of the return codes

listed in the gskcms.h include file. These are some possible errors:

[CMSERR_ALG_NOT_SUPPORTED]

The signature algorithm is not valid.

[CMSERR_BACKUP EXISTS]

The backup file already exists.

gsk_create_signed_certificate_record()

Chapter 3. Certificate Management Services (CMS) API Reference 31

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|

|

|
|

|
|

|
|

[CMSERR_BAD_HANDLE]

The database handle is not valid.

[CMSERR_BAD_KEY_SIZE]

The key size is not valid.

[CMSERR_BAD_LABEL]

The record label is not valid.

[CMSERR_BAD_SUBJECT_NAME]

The subject name is not valid.

[CMSERR_INCORRECT_DBTYPE]

The database type does not support certificates.

[CMSERR_INCORRECT_KEY_USAGE]

The signer certificate key usage does not allow signing certificates

[CMSERR_IO_ERROR]

Unable to write record.

[CMSERR_KEY_MISMATCH]

The signer certificate key cannot be used to sign a certificate or the signer's key type is not

supported for the requested signature algorithm.

[CMSERR_LABEL_NOT_UNIQUE]

The record label is not unique.

[CMSERR_NO_MEMORY]

Insufficient storage is available.

[CMSERR_RECORD_TOO_BIG]

The record is larger than the database record length.

[CMSERR_UPDATE_NOT_ALLOWED]

Database is not open for update.

Usage

The gsk_create_signed_certificate_record() routine will generate an X.509 certificate as described in

RFC 2459 (X.509 Public Key Infrastructure). The new certificate will be signed using the certificate

specified by the label parameter and the signature algorithm specified by the signature_algorithm

parameter.

The following signature algorithms are supported:

x509_alg_md2WithRsaEncryption

RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption

RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption

RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption

RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption

RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption

RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

gsk_create_signed_certificate_record()

32 System SSL Programming - APAR OA22451 - R9

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|

|
|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

x509_alg_sha512WithRsaEncryption

RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1

Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

A certification authority certificate will have basic constraints and key usage extensions which allow the

certificate to be used to sign other certificates and certificate revocation lists. An end user certificate will

have basic constraints and key usage extensions which allow the certificate to be used for authentication,

digital signatures, and data encryption (except for a DSA key which cannot be used for data encryption).

The certificate expiration date will be set to the earlier of the requested expiration date and the expiration

date of the signing certificate.

The signing certificate must have an associated private key, the BasicConstraints extension must either be

omitted or must have the CA indicator set, and the KeyUsage extension must either be omitted or must

allow signing certificates. The subject key identifier from the signing certificate will be copied to the signed

certificate as the authority key identifier.

A CA certificate will have SubjectKeyIdentifier, KeyUsage and BasicConstraints extensions while an end

user certificate will have SubjectKeyIdentifier and KeyUsage extensions. An end user certificate will also

have an AuthorityKeyIdentifier extension if the signing certificate has a SubjectKeyIdentifier extension. The

application can supply additional extensions through the extensions parameter. An AuthorityKeyIdentifier,

KeyUsage or BasicContraints extension provided by the application will replace the default extension

created for the certificate. A SubjectKeyIdentifier extension provided by the application will be ignored.

Certificate extensions can also be contained within the certification request. A certificate extension supplied

by the application will override a certificate extension of the same type contained in the certification

request. The certificate extensions found in the certification request will be copied unmodified to the new

certificate with these exceptions:

v The AuthorityInfoAccess, AuthorityKeyIdentifier, BasicConstraints, CrlDistributionPoints, IssuerAltName,

NameConstraints, PolicyConstraints, PolicyMappings, and PrivateKeyUsagePeriod extensions will not

be copied

v The keyCertSign and crlSign flags in the KeyUsage extension will be modified based upon the value of

the ca_certificate parameter.

No certification path validation is performed by the gsk_create_signed_certificate_record() routine. An

error will be returned if the requested subject name is the same as the subject name in the signing

certificate.

gsk_create_signed_certificate_record()

Chapter 3. Certificate Management Services (CMS) API Reference 33

|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|

gsk_create_signed_crl_record()

Creates a signed certificate revocation list.

Format

 #include <gskcms.h>

 gsk_status gsk_create_signed_crl_record (

 gsk_handle db_handle,

 const char * label,

 x509_algorithm_type signature_algorithm,

 gsk_int32 crl_number,

 int num_days,

 x509_revoked_certificates * revoked_certificates,

 x509_extensions * extensions,

 gsk_buffer * signed_crl)

Parameters

db_handle

Specifies the database handle returned by the gsk_create_database() routine, the

gsk_open_database() routine, or the gsk_open_keyring() routine. This must be a key database and

not a request database.

label

Specifies the label for the certificate to be used to sign the certificate revocation list. The label is

specified in the local code page.

signature_algorithm

Specifies the signature algorithm to be used for the crl signature.

crl_number

Specifies the CRL number. Each CRL is numbered with each successive revocation list having a larger

CRL number than all previous revocation lists.

num_days

Specifies the number of days until the next CRL will be issued and is specified as a value between 1

and 9999 (the maximum of 9999 will be used if a larger value is specified).

revoked_certificates

Specifies the revoked list of certificates to be included in the CRL. This list consists of the certificate

serial numbers and not the actual certificates.

extensions

Specifies the CRL extensions for the new CRL. Specify NULL for this parameter if no CRL extensions

are supplied.

signed_crl

Returns the signed certificate revocation list in Base64 format. The Base64 stream will be in the local

code page. The application should call the gsk_free_buffer() routine to release the stream when it is

no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one of the return codes

listed in the gskcms.h include file. These are some possible errors:

[CMSERR_ALG_NOT_SUPPORTED]

The signature algorithm is not supported.

[CMSERR_BAD_HANDLE]

The database handle is not valid.

gsk_create_signed_crl_record()

34 System SSL Programming - APAR OA22451 - R9

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|

|
|

|
|

|
|

[CMSERR_BAD_LABEL]

The record label is not valid.

[CMSERR_BAD_SIGNATURE]

The request signature is not correct.

[CMSERR_EXPIRED]

The signer certificate is expired.

[CMSERR_INCORRECT_DBTYPE]

The database type does not support certificates.

[CMSERR_INCORRECT_KEY_USAGE]

The signer certificate key usage does not allow signing a CRL.

[CMSERR_ISSUER_NOT_CA]

The signer certificate is not for a certification authority.

[CMSERR_NO_MEMORY]

Insufficient storage is available.

[CMSERR_NO_PRIVATE_KEY]

The signer certificate does not have a private key.

[CMSERR_RECORD_NOT_FOUND]

The signer certificate is not found in the key database.

Usage

The gsk_create_signed_crl_record() routine will generate an X.509 certificate revocation list (CRL) as

described in RFC 2459 (X.509 Public Key Infrastructure). The new CRL will be signed using the certificate

specified by the label parameter and the signature algorithm specified by the signature_algorithm

parameter.

The following signature algorithms are supported:

x509_alg_md2WithRsaEncryption

RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption

RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption

RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption

RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption

RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption

RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption

RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1

Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

The number of days until the next CRL is issued will be set to the earlier of the requested date and the

expiration of the signing certificate.

gsk_create_signed_crl_record()

Chapter 3. Certificate Management Services (CMS) API Reference 35

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|

|
|
|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

The signing certificate must have an associated private key, the BasicConstraints extension must either be

omitted or must have the CA indicator set, and the KeyUsage extension must either be omitted or must

allow signing certificate revocation lists. The subject key identifier from the signing certification will be

copied to the signed CRL as the authority key identifier.

The CRL will have a CRLNumber extension containing the value specified by the crl_number parameter. It

will also have an AuthorityKeyIdentifier extension if the signing certificate has a SubjectKeyIdentifier

extension. The application can supply additional extensions through the extensions parameter. An

AuthorityKeyIdentifier or CRLNumber extension provided by the application will replace the default

extension created for the CRL.

No certification path validation is performed by the gsk_create_signed_crl_record() routine.

gsk_create_signed_crl_record()

36 System SSL Programming - APAR OA22451 - R9

|
|
|
|

|
|
|
|
|

|

gsk_make_signed_data_content()

Creates PKCS #7 SignedData content information.

Format

#include <gskcms.h>

gsk_status gsk_make_signed_data_content (

 int version,

 x509_algorithm_type digest_algorithm,

 gsk_boolean include_certificates,

 pkcs_cert_keys * signer_certificates,

 pkcs_certificates * ca_certificates,

 pkcs_content_info * content_data,

 pkcs_content_info * content_info)

Parameters

version

Specifies the PKCS #7 SignedData version number. Specify 0 to create SignedData content

information as described in PKCS #7 Version 1.4, specify 1 to create SignedData content information

as described in PKCS #7 Version 1.5, or specify 2 to create SignedData content information as

described in PKCS #7 Version 1.6.

digest_algorithm

Specifies the digest algorithm.

include_certificates

Specify TRUE if the signer and certification authority certificates are to be included in the SignedData

content information. Specify FALSE if the certificates are not to be included.

signer_certificates

Specifies the certificates and associated private keys for the message signers. There must be at least

one signer.

ca_certificates

Specifies the certification authority certificates. Zero or more certification authority certificates can be

included in the SignedData content information. This parameter is ignored if the include_certificates

parameter is set to FALSE. NULL can be specified for this parameter if no CA certificates are to be

included in the message.

content_data

Specifies the SignedData content. This must be one of the content information types defined in PKCS

#7.

content_info

Returns the SignedData content information. The application should call the gsk_free_content_info()

routine to release the content information when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one of the return codes

listed in the gskcms.h include file. These are some possible errors:

[CMSERR_ALG_NOT_SUPPORTED]

The digest algorithm is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]

The content type is not supported.

gsk_make_signed_data_content()

Chapter 3. Certificate Management Services (CMS) API Reference 37

[CMSERR_DIGEST_KEY_MISMATCH]

The digest algorithm is not supported for the private key type.

[CMSERR_INCORRECT_KEY_USAGE]

A signer certificate does not allow digital signature.

[CMSERR_NO_CONTENT_DATA]

The content data length is zero.

[CMSERR_NO_MEMORY]

Insufficient storage is available.

[CMSERR_SIGNER_NOT_FOUND]

No signer certificate provided or the certificate is not valid.

[CMSERR_VERSION_NOT_SUPPORTED]

The version is not valid

Usage

The gsk_make_signed_data_content() routine creates PKCS #7 (Cryptographic Message Syntax)

SignedData content information. The data content type must be one of the types defined by PKCS #7. The

gsk_read_signed_data_content() routine can be used to extract the content data from the SignedData

content information. The key usage for the signer certificates must allow digital signature. No validity

checking will be performed on the signer certificates. It is assumed that the application has already

validated the signer certificates.

A signature is included for each signer provided by the signer_certificates parameter. The X.509

certificates used to sign the message will be included in the SignedData content information if the

include_certificates parameter is set to TRUE. The message receiver will need to provide the signer

certificates if the include_certificates parameter is set to FALSE.

You can optionally include certification authority certificates in the SignedData content information. These

certificate can then be used by the message receiver to validate the signer certificates.

These digest algorithms are supported:

x509_alg_md2Digest

MD2 digest (RSA keys only) - {1.2.840.113549.2.2}

x509_alg_md5Digest

MD5 digest (RSA keys only) - {1.2.840.113549.2.5}

x509_alg_sha1Digest

SHA-1 digest (RSA and DSA keys only) - {1.3.14.3.2.26}

x509_alg_sha224Digest

SHA-224 digest (RSA keys only) - {2.16.840.1.101.3.4.2.4}

x509_alg_sha256Digest

SHA-256 digest (RSA keys only) - {2.16.840.1.101.3.4.2.1}

x509_alg_sha384Digest

SHA-384 digest (RSA keys only) - {2.16.840.1.101.3.4.2.2}

x509_alg_sha512Digest

SHA-512 digest (RSA keys only) - {2.16.840.1.101.3.4.2.3}

gsk_make_signed_data_content()

38 System SSL Programming - APAR OA22451 - R9

|
|

|
|

|
|

|
|

|
|

gsk_make_signed_data_content_extended()

Creates PKCS #7 SignedData content information.

Format

#include <gskcms.h>

gsk_status gsk_make_signed_data_content_extended (

 gsk_process_option option_flag,

 int version,

 x509_algorithm_type digest_algorithm,

 gsk_boolean include_certificates,

 pkcs_cert_keys * signer_certificates,

 pkcs_certificates * ca_certificates,

 pkcs_content_info * content_data,

 gsk_attributes_signers * attributes_signers,

 pkcs_content_info * content_info,)

Parameters

option_flag

Specifies process options to customize process behavior.

v Enforce signing certificate has digital signing capabilities. That is, the purpose of the certificate key

as reflected by the key usage extension must indicate digitalSignature.

v Don’t allow zero-length content data

version

Specifies the PKCS #7 SignedData version number. Specify 0 to create SignedData content

information as described in PKCS #7 Version 1.4, specify 1 to create SignedData content information

as described in PKCS #7 Version 1.5, or specify 2 to create SignedData content information as

described in PKCS #7 Version 1.6.

digest_algorithm

Specifies the digest algorithm.

include_certificates

Specify TRUE if the signer and certification authority certificates are to be included in the SignedData

content information. Specify FALSE if the certificates are not to be included.

signer_certificates

Specifies the certificates and associated private keys for the message signers. There must be at least

one signer.

ca_certificates

Specifies the certification authority certificates. Zero or more certification authority certificates can be

included in the SignedData content information. This parameter is ignored if the include_certificates

parameter is set to FALSE. NULL can be specified for this parameter if no CA certificates are to be

included in the message.

content_data

Specifies the SignedData content. This must be one of the content information types defined in PKCS

#7.

attributes_signers

Specifies the authenticated attributes per signer to be added to the message. Specify NULL for this

parameter if there are no authenticated attributes to be included in the message. If specified, the set of

authenticated attributes must NOT include content-type or message-digest authenticated attributes as

these are automatically provided by gsk_make_signed_data_content_extended(). If the set of

authenticated attributes includes signing-time, then this will override the signing-time attribute

gsk_make_signed_data_content_extended()

Chapter 3. Certificate Management Services (CMS) API Reference 39

generated by gsk_make_signed_data_content_extended(). The digestAlgorithm field within each

gsk_attributes_signer structure is ignored - the digest algorithm is specified by the digest_algorithm

parameter.

content_info

Returns the SignedData content information. The application should call the gsk_free_content_info()

routine to release the content information when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one of the return codes

listed in the gskcms.h include file. These are some possible errors:

[CMSERR_ALG_NOT_SUPPORTED]

The digest algorithm is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]

The content type is not supported.

[CMSERR_DIGEST_KEY_MISMATCH]

The digest algorithm is not supported for the private key type.

[CMSERR_INCORRECT_KEY_USAGE]

A signer certificate does not allow digital signature.

[CMSERR_NO_CONTENT_DATA]

The content data length is zero.

[CMSERR_NO_MEMORY]

Insufficient storage is available.

[CMSERR_SIGNER_NOT_FOUND]

No signer certificate provided or the certificate is not valid.

[CMSERR_VERSION_NOT_SUPPORTED]

The version is not valid

[CMSERR_CONTENTTYPE_NOT_ALLOWED]

The content-type authenticated attribute is not allowed in attributes_signers.

[CMSERR_MESSAGEDIGEST_NOT_ALLOWED]

The message-digest authenticated attribute is not allowed in attributes_signers

Usage

The gsk_make_signed_data_content_extended() routine creates PKCS #7 (Cryptographic Message

Syntax) SignedData content information. The data content type must be one of the types defined by PKCS

#7. Processing is similar to gsk_make_signed_data_content() except for the presence of the option_flag

and authenticated_attributes parameters. The gsk_read_signed_data_content() routine or the

gsk_read_signed_data_content_extended() routine can be used to extract the content data from the

SignedData content information. The key usage for the signer certificates can be optionally specified as to

whether digital signature must be allowed. No validity checking is performed on the signer certificates. It is

assumed that the application has already validated the signer certificates.

A signature is included for each signer provided by the signer_certificates parameter. The X.509

certificates used to sign the message will be included in the SignedData content information if the

include_certificates parameter is set to TRUE. The message receiver will need to provide the signer

certificates if the include_certificates parameter is set to FALSE.

You can optionally include certification authority certificates in the SignedData content information. These

certificates can then be used by the message receiver to validate the signer certificates.

gsk_make_signed_data_content_extended()

40 System SSL Programming - APAR OA22451 - R9

|
|

These digest algorithms are supported:

x509_alg_md2Digest

MD2 digest (RSA keys only) - {1.2.840.113549.2.2}

x509_alg_md5Digest

MD5 digest (RSA keys only) - {1.2.840.113549.2.5}

x509_alg_sha1Digest

SHA-1 digest (RSA and DSA keys only) - {1.3.14.3.2.26}

x509_alg_sha224Digest

SHA-224 digest (RSA keys only) - {2.16.840.1.101.3.4.2.4}

x509_alg_sha256Digest

SHA-256 digest (RSA keys only) - {2.16.840.1.101.3.4.2.1}

x509_alg_sha384Digest

SHA-384 digest (RSA keys only) - {2.16.840.1.101.3.4.2.2}

x509_alg_sha512Digest

SHA-512 digest (RSA keys only) - {2.16.840.1.101.3.4.2.3}

If authenticated attributes are provided via the attributes_signers parameter, then signing certificates for all

signers represented within the gsk_attributes_signers structure must be provided via the signer_certificates

parameter.

gsk_make_signed_data_content_extended()

Chapter 3. Certificate Management Services (CMS) API Reference 41

|
|

|
|

|
|

|
|

gsk_make_signed_data_msg()

Creates a PKCS #7 SignedData message from application data.

Format

#include <gskcms.h>

gsk_status gsk_make_signed_data_msg (

 int version,

 x509_algorithm_type digest_algorithm,

 gsk_boolean include_certificates,

 pkcs_cert_keys * signer_certificates,

 pkcs_certificates * ca_certificates,

 gsk_buffer * data,

 gsk_buffer * stream)

Parameters

version

Specifies the PKCS #7 SignedData version number. Specify 0 to create a SignedData message as

described in PKCS #7 Version 1.4, specify 1 to create a SignedData message as described in PKCS

#7 Version 1.5, or specify 2 to create a SignedData message as described in PKCS #7 Version 1.6.

digest_algorithm

Specifies the digest algorithm.

include_certificates

Specify TRUE if the signer and certification authority certificates are to be included in the SignedData

message. Specify FALSE if the certificates are not to be included.

signer_certificates

Specifies the certificates and associated private keys for the message signers. There must be at least

one signer.

ca_certificates

Specifies the certification authority certificates. Zero or more certification authority certificates can be

included in the SignedData message. This parameter is ignored if the include_certificates parameter is

set to FALSE. NULL can be specified for this parameter if no CA certificates are to be included in the

message.

data

Specifies the application data for the SignedData message.

stream

Returns the ASN.1 DER-encoded stream. The application should call the gsk_free_buffer() routine to

release the stream when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one of the return codes

listed in the gskcms.h include file. These are some possible errors:

[CMSERR_ALG_NOT_SUPPORTED]

The digest algorithm is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]

The content type is not supported.

[CMSERR_DIGEST_KEY_MISMATCH]

The digest algorithm is not supported for the private key type.

gsk_make_signed_data_msg()

42 System SSL Programming - APAR OA22451 - R9

|
|

[CMSERR_INCORRECT_KEY_USAGE]

A signer certificate does not allow digital signature.

[CMSERR_NO_CONTENT_DATA]

The content data length is zero.

[CMSERR_NO_MEMORY]

Insufficient storage is available.

[CMSERR_SIGNER_NOT_FOUND]

No signer certificate provided or the certificate is not valid.

[CMSERR_VERSION_NOT_SUPPORTED]

The version is not valid.

Usage

The gsk_make_signed_data_msg() routine creates a PKCS #7 (Cryptographic Message Syntax)

SignedData message and returns the ASN.1 DER-encoded ContentInfo sequence. The signed data

content type will be Data. The gsk_read_signed_data_msg() routine can be used to extract the

application data from the stream. The key usage for the signer certificates must allow digital signature. No

validity checking will be performed on the signer certificates. It is assumed that the application has already

validated the signer certificates.

Calling the gsk_make_signed_data_msg() routine is equivalent to calling the gsk_make_data_content()

routine, the gsk_make_signed_data_content() routine, and the gsk_make_content_msg() routine.

A signature is included for each signer provided by the signer_certificates parameter. The X.509

certificates used to sign the message will be included in the SignedData message if the

include_certificates parameter is set to TRUE. The message receiver will need to provide the signer

certificates if the include_certificates parameter is set to FALSE.

You can optionally include certification authority certificates in the SignedData message. These certificates

can then be used by the message receiver to validate the signer certificates.

These digest algorithms are supported:

x509_alg_md2Digest

MD2 digest (RSA keys only) - {1.2.840.113549.2.2}

x509_alg_md5Digest

MD5 digest (RSA keys only) - {1.2.840.113549.2.5}

x509_alg_sha1Digest

SHA-1 digest (RSA and DSA keys only) - {1.3.14.3.2.26}

x509_alg_sha224Digest

SHA-224 digest (RSA keys only) - {2.16.840.1.101.3.4.2.4}

x509_alg_sha256Digest

SHA-256 digest (RSA keys only) - {2.16.840.1.101.3.4.2.1}

x509_alg_sha384Digest

SHA-384 digest (RSA keys only) - {2.16.840.1.101.3.4.2.2}

x509_alg_sha512Digest

SHA-512 digest (RSA keys only) - {2.16.840.1.101.3.4.2.3}

gsk_make_signed_data_msg()

Chapter 3. Certificate Management Services (CMS) API Reference 43

|
|

|
|

|
|

|
|

gsk_make_signed_data_msg_extended()

Creates a PKCS #7 SignedData message from application data.

Format

#include <gskcms.h>

gsk_status gsk_make_signed_data_msg_extended (

 gsk_process_option option_flag,

 int version,

 x509_algorithm_type digest_algorithm,

 gsk_boolean include_certificates,

 pkcs_cert_keys * signer_certificates,

 pkcs_certificates * ca_certificates,

 gsk_buffer * data,

 gsk_attributes_signers * attributes_signers,

 gsk_buffer * stream)

Parameters

option_flag

Specifies process options to customize process behavior.

v Enforce signing certificate has digital signing capabilities. That is, the purpose of the certificate key

as reflected by the key usage extension must indicate digitalSignature.

v Don’t allow zero-length content data

version

Specifies the PKCS #7 SignedData version number. Specify 0 to create a SignedData message as

described in PKCS #7 Version 1.4, specify 1 to create a SignedData message as described in PKCS

#7 Version 1.5, or specify 2 to create a SignedData message as described in PKCS #7 Version 1.6.

digest_algorithm

Specifies the digest algorithm.

include_certificates

Specify TRUE if the signer and certification authority certificates are to be included in the SignedData

message. Specify FALSE if the certificates are not to be included.

signer_certificates

Specifies the certificates and associated private keys for the message signers. There must be at least

one signer.

ca_certificates

Specifies the certification authority certificates. Zero or more certification authority certificates can be

included in the SignedData message. This parameter is ignored if the include_certificates parameter is

set to FALSE. NULL can be specified for this parameter if no CA certificates are to be included in the

message.

data

Specifies the application data for the SignedData message.

attributes_signers

Specifies the authenticated attributes per signer to be added to the message. Specify NULL for this

parameter if there are no authenticated attributes to be included in the message. If specified, then the

set of authenticated attributes must NOT include content-type or message-digest authenticated

attributes as these are automatically provided by gsk_make_signed_data_msg_extended(). If the set

of authenticated attributes includes signing-time, then this will override the signing-time attribute

generated by gsk_make_signed_data_msg_extended(). The digest_algorithm field within each

gsk_attributes_signer structure is ignored - the digest algorithm is specified by the digest_algorithm

parameter.

gsk_make_signed_data_msg_extended()

44 System SSL Programming - APAR OA22451 - R9

stream

Returns the ASN.1 DER-encoded stream. The application should call the gsk_free_buffer() routine to

release the stream when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one of the return codes

listed in the gskcms.h include file. These are some possible errors:

[CMSERR_ALG_NOT_SUPPORTED]

The digest algorithm is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]

The content type is not supported.

[CMSERR_DIGEST_KEY_MISMATCH]

The digest algorithm is not supported for the private key type.

[CMSERR_INCORRECT_KEY_USAGE]

A signer certificate does not allow digital signature.

[CMSERR_NO_CONTENT_DATA]

The content data length is zero.

[CMSERR_NO_MEMORY]

Insufficient storage is available.

[CMSERR_SIGNER_NOT_FOUND]

No signer certificate provided or the certificate is not valid.

[CMSERR_VERSION_NOT_SUPPORTED]

The version is not valid.

[CMSERR_CONTENTTYPE_NOT_ALLOWED]

The content-type authenticated attribute is not allowed in attributes_signers.

[CMSERR_MESSAGEDIGEST_NOT_ALLOWED]

The message-digest authenticated attribute is not allowed in attributes_signers

Usage

The gsk_make_signed_data_msg_extended() routine creates a PKCS #7 (Cryptographic Message

Syntax) SignedData message and returns the ASN.1 DER-encoded ContentInfo sequence. The signed

data content type will be Data. The gsk_read_signed_data_msg() or the

gsk_read_signed_data_msg_extended() routine can be used to extract the application data from the

stream. The key usage for the signer certificates can be optionally specified as to whether digital signature

must be allowed. No validity checking will be performed on the signer certificates. It is assumed that the

application has already validated the signer certificates.

Calling the gsk_make_signed_data_msg_extended() routine is equivalent to calling the

gsk_make_data_content() routine, the gsk_make_signed_data_content_extended() routine, and the

gsk_make_content_msg() routine.

A signature is included for each signer provided by the signer_certificates parameter. The X.509

certificates used to sign the message will be included in the SignedData message if the

include_certificates parameter is set to TRUE. The message receiver will need to provide the signer

certificates if the include_certificates parameter is set to FALSE.

You can optionally include certification authority certificates in the SignedData message. These certificates

can then be used by the message receiver to validate the signer certificates.

 These digest algorithms are supported:

gsk_make_signed_data_msg_extended()

Chapter 3. Certificate Management Services (CMS) API Reference 45

|
|

x509_alg_md2Digest

MD2 digest (RSA keys only) - {1.2.840.113549.2.2}

x509_alg_md5Digest

MD5 digest (RSA keys only) - {1.2.840.113549.2.5}

x509_alg_sha1Digest

SHA-1 digest (RSA and DSA keys only) - {1.3.14.3.2.26}

x509_alg_sha224Digest

SHA-224 digest (RSA keys only) - {2.16.840.1.101.3.4.2.4}

x509_alg_sha256Digest

SHA-256 digest (RSA keys only) - {2.16.840.1.101.3.4.2.1}

x509_alg_sha384Digest

SHA-384 digest (RSA keys only) - {2.16.840.1.101.3.4.2.2}

x509_alg_sha512Digest

SHA-512 digest (RSA keys only) - {2.16.840.1.101.3.4.2.3}

If authenticated attributes are provided via the attributes_signers parameter, then signing certificates for all

signers represented within the gsk_attributes_signers structure must be provided via the signer_certificates

parameter.

gsk_make_signed_data_msg_extended()

46 System SSL Programming - APAR OA22451 - R9

|
|

|
|

|
|

|
|

gsk_read_signed_data_content()

Processes PKCS #7 SignedData content information.

Format

#include <gskcms.h>

gsk_status gsk_read_signed_data_content (

 pkcs_certificates * local_certificates,

 pkcs_content_info * content_info,

 gsk_boolean * used_local,

 pkcs_certificates * msg_certificates,

 pkcs_certificates * signer_certificates,

 pkcs_content_info * content_data)

Parameters

local_certificates

Specifies zero or more X.509 certificates to use when verifying the message signatures. NULL can be

specified for this parameter if no local certificates are provided.

content_info

Specifies the content information to be processed.

used_local

This parameter will be set to TRUE if the signatures were verified using just the certificates supplied

by the local_certificates parameter. This parameter will be set to FALSE if any of the signatures were

verified using certificates contained within the message.

msg_certificates

Returns the X.509 certificates contained within the message. The application should call the

gsk_free_certificates() routine to release the certificates when they are no longer needed. Specify

NULL for this parameter if the message certificates are not needed.

signer_certificates

Returns the certificates used to sign the message. The application should call the

gsk_free_certificates() routine to release the certificates when they are no longer needed. Specify

NULL for this parameter if the signer certificates are not needed.

content_data

Returns the SignedData content data. The application should call the gsk_free_content_info() routine

to release the data when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one of the return codes

listed in the gskcms.h include file. These are some possible errors:

[CMSERR_ALG_NOT_SUPPORTED]

The digest algorithm is not supported.

[CMSERR_BAD_SIGNATURE]

Signature is not correct.

[CMSERR_CONTENT_NOT_SUPPORTED]

The content type is not SignedData.

[CMSERR_DIGEST_KEY_MISMATCH]

The digest algorithm is not supported for the private key type.

[CMSERR_INCORRECT_KEY_USAGE]

A signer certificate does not allow digital signature.

gsk_read_signed_data_content()

Chapter 3. Certificate Management Services (CMS) API Reference 47

|
|

[CMSERR_NO_CONTENT_DATA]

The content data length is zero.

[CMSERR_NO_MEMORY]

Insufficient storage is available.

[CMSERR_SIGNER_NOT_FOUND]

Signer certificate not found.

Usage

The gsk_read_signed_data_content() routine processes PKCS #7 (Cryptographic Message Syntax)

SignedData message created by the gsk_make_signed_data_content() routine and returns the content

data.

The local_certificates parameter can supply the signer certificates used to verify the message signatures. If

a certificate is not found for a message signer, the gsk_read_signed_data_content() routine will attempt

to locate the signer certificate in the SignedData message. An error will be returned if the signer certificate

cannot be found or if the certificate key usage does not allow digital signature.

No certificate validation is performed by the gsk_read_signed_data_content() routine. It is assumed that

the application has already validated the local certificates. The certificates contained in the SignedData

message will be returned in the msg_certificates parameter and the used_local parameter will be set to

FALSE if any of these certificates were used to verify the message signatures. It is the responsibility of the

application to validate the message certificates (for example, by calling the gsk_validate_certificate()

routine for each of the signer certificates).

These digest algorithms are supported:

x509_alg_md2Digest

MD2 digest (RSA keys only) - {1.2.840.113549.2.2}

x509_alg_md5Digest

MD5 digest (RSA keys only) - {1.2.840.113549.2.5}

x509_alg_sha1Digest

SHA-1 digest (RSA and DSA keys only) - {1.3.14.3.2.26}

x509_alg_sha224Digest

SHA-224 digest (RSA keys only) - {2.16.840.1.101.3.4.2.4}

x509_alg_sha256Digest

SHA-256 digest (RSA keys only) - {2.16.840.1.101.3.4.2.1}

x509_alg_sha384Digest

SHA-384 digest (RSA keys only) - {2.16.840.1.101.3.4.2.2}

x509_alg_sha512Digest

SHA-512 digest (RSA keys only) - {2.16.840.1.101.3.4.2.3}

gsk_read_signed_data_content()

48 System SSL Programming - APAR OA22451 - R9

|
|

|
|

|
|

|
|

gsk_read_signed_data_content_extended()

Processes PKCS #7 SignedData content information.

Format

#include <gskcms.h>

gsk_status gsk_read_signed_data_content_extended (

 gsk_process_option option_flag

 pkcs_certificates * local_certificates,

 pkcs_content_info * content_info,

 gsk_boolean * used_local,

 pkcs_certificates * msg_certificates,

 pkcs_certificates * signer_certificates,

 gsk_attributes_signers * attributes_signers,

 pkcs_content_info * content_data)

Parameters

option_flag

Specifies process options to customize process behavior.

v Enforce signing certificate has digital signing capabilities. That is, the purpose of the certificate key

as reflected by the key usage extension must indicate digitalSignature.

v Don’t allow zero-length content data.

local_certificates

Specifies zero or more X.509 certificates to use when verifying the message signatures. NULL can be

specified for this parameter if no local certificates are provided.

content_info

Specifies the content information to be processed.

used_local

This parameter will be set to TRUE if the signatures were verified using just the certificates supplied

by the local_certificates parameter. This parameter will be set to FALSE if any of the signatures were

verified using certificates contained within the message.

msg_certificates

Returns the X.509 certificates contained within the message. The application should call the

gsk_free_certificates() routine to release the certificates when they are no longer needed. Specify

NULL for this parameter if the message certificates are not needed.

signer_certificates

Returns the certificates used to sign the message. The application should call the

gsk_free_certificates() routine to release the certificates when they are no longer needed. Specify

NULL for this parameter if the signer certificates are not needed.

attributes_signers

Returns the authenticated attributes per signer contained within the message. The application should

call the gsk_free_attributes_signers() routine to release the gsk_attributes_signers structure when it

is no longer needed. Specify NULL for this parameter if the authenticated attributes per signer are not

needed. The set of authenticated attributes returned, omits the content-type and message-digest

authenticated attributes as these authenticated attributes must always be present, if any authenticated

attributes are present, and are automatically verified by gsk_read_signed_data_content_extended().

The digestAlgorithm field within each gsk_attributes_signer structure returns the digest algorithm

originally used for the signer.

content_data

Returns the SignedData content data. The application should call the gsk_free_content_info() routine

to release the data when it is no longer needed.

gsk_read_signed_data_content_extended()

Chapter 3. Certificate Management Services (CMS) API Reference 49

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one of the return codes

listed in the gskcms.h include file. These are some possible errors:

[CMSERR_ALG_NOT_SUPPORTED]

The digest algorithm is not supported.

[CMSERR_BAD_SIGNATURE]

Signature is not correct.

[CMSERR_CONTENT_NOT_SUPPORTED]

The content type is not SignedData.

[CMSERR_DIGEST_KEY_MISMATCH]

The digest algorithm is not supported for the private key type.

[CMSERR_INCORRECT_KEY_USAGE]

A signer certificate does not allow digital signature.

[CMSERR_NO_CONTENT_DATA]

The content data length is zero.

[CMSERR_NO_MEMORY]

Insufficient storage is available.

[CMSERR_SIGNER_NOT_FOUND]

Signer certificate not found.

Usage

The gsk_read_signed_data_content_extended() routine processes PKCS #7 (Cryptographic Message

Syntax) SignedData message created by the gsk_make_signed_data_content_extended() routine and

returns the content data and authenticated attributes per signed (if present).

Processing is equivalent to gsk_read_signed_data_content(), with these differences:

v The signing certificate key usage need not assert digital signing capabilities depending on option_flag.

v Zero length content is acceptable depending on option_flag.

v Authenticated attributes and the digest algorithm used to create the signed data per signer, if present,

are returned.

The local_certificates parameter can supply the signer certificates used to verify the message signatures. If

a certificate is not found for a message signer, the gsk_read_signed_data_content_extended() routine

will attempt to locate the signer certificate in the SignedData message. An error will be returned if the

signer certificate cannot be found. An error may optionally be returned if the certificate key usage does not

allow digital signature.

No certificate validation is performed by the gsk_read_signed_data_content_extended() routine. It is

assumed that the application has already validated the local certificates. The certificates contained in the

SignedData message will be returned in the msg_certificates parameter and the used_local parameter will

be set to FALSE if any of these certificates were used to verify the message signatures. It is the

responsibility of the application to validate the message certificates (for example, by calling the

gsk_validate_certificate() routine for each of the signer certificates).

These digest algorithms are supported:

x509_alg_md2Digest

MD2 digest (RSA keys only) - {1.2.840.113549.2.2}

x509_alg_md5Digest

MD5 digest (RSA keys only) - {1.2.840.113549.2.5}

gsk_read_signed_data_content_extended()

50 System SSL Programming - APAR OA22451 - R9

|
|

x509_alg_sha1Digest

SHA-1 digest (RSA and DSA keys only) - {1.3.14.3.2.26}

x509_alg_sha224Digest

SHA-224 digest (RSA keys only) - {2.16.840.1.101.3.4.2.4}

x509_alg_sha256Digest

SHA-256 digest (RSA keys only) - {2.16.840.1.101.3.4.2.1}

x509_alg_sha384Digest

SHA-384 digest (RSA keys only) - {2.16.840.1.101.3.4.2.2}

x509_alg_sha512Digest

SHA-512 digest (RSA keys only) - {2.16.840.1.101.3.4.2.3}

If authenticated attributes are returned via the attributes_signers parameter, then it is recommended that

signing certificates for all signers represented within the gsk_attributes_signers structure should be

requested via the signer_certificates parameter.

gsk_read_signed_data_content_extended()

Chapter 3. Certificate Management Services (CMS) API Reference 51

|
|

|
|

|
|

|
|

gsk_read_signed_data_msg()

Processes a PKCS #7 SignedData message.

Format

#include <gskcms.h>

gsk_status gsk_read_signed_data_msg (

 pkcs_certificates * local_certificates,

 gsk_buffer * stream,

 gsk_boolean * used_local,

 pkcs_certificates * msg_certificates,

 pkcs_certificates * signer_certificates,

 gsk_buffer * data)

Parameters

local_certificates

Specifies zero or more X.509 certificates to use when verifying the message signatures. NULL can be

specified for this parameter if no local certificates are provided.

stream

Specifies the ASN.1 DER-encoded stream to be processed.

used_local

This parameter will be set to TRUE if the signatures were verified using just the certificates supplied

by the local_certificates parameter. This parameter will be set to FALSE if any of the signatures were

verified using certificates contained within the message.

msg_certificates

Returns the X.509 certificates contained within the message. The application should call the

gsk_free_certificates() routine to release the certificates when they are no longer needed. Specify

NULL for this parameter if the message certificates are not needed.

signer_certificates

Returns the certificates used to sign the message. The application should call the

gsk_free_certificates() routine to release the certificates when they are no longer needed. Specify

NULL for this parameter if the signer certificates are not needed.

data

Returns the content of the SignedData message. The application should call the gsk_free_buffer()

routine to release the data when it is no longer needed.

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one of the return codes

listed in the gskcms.h include file. These are some possible errors:

[ASN_NO_MEMORY]

Insufficient storage is available.

[ASN_SELECTION_OUT_OF_RANGE]

Certificate type or version number is not valid.

[CMSERR_ALG_NOT_SUPPORTED]

The digest algorithm is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]

The message content type is not SignedData or the content of the SignedData message is not

Data.

gsk_read_signed_data_msg()

52 System SSL Programming - APAR OA22451 - R9

[CMSERR_BAD_SIGNATURE]

Signature is not correct.

[CMSERR_DIGEST_KEY_MISMATCH]

The digest algorithm is not supported for the private key type.

[CMSERR_INCORRECT_KEY_USAGE]

A signer certificate does not allow digital signature.

[CMSERR_NO_CONTENT_DATA]

The content data length is zero.

[CMSERR_NO_MEMORY]

Insufficient storage is available.

[CMSERR_SIGNER_NOT_FOUND]

Signer certificate not found.

Usage

The gsk_read_signed_data_msg() routine processes a PKCS #7 (Cryptographic Message Syntax)

SignedData message created by the gsk_make_signed_data_msg() routine and returns the message

content. The signed data content type must be Data.

Calling the gsk_read_signed_data_msg() routine is equivalent to calling the gsk_read_content_msg()

routine, the gsk_read_signed_data_content() routine, and the gsk_read_data_content() routine.

The local_certificates parameter can supply the signer certificates used to verify the message signatures. If

a certificate is not found for a message signer, the gsk_read_signed_data_msg() routine will attempt to

locate the signer certificate in the SignedData message. An error will be returned if the signer certificate

cannot be found or if the certificate key usage does not allow digital signature.

No certificate validation is performed by the gsk_read_signed_data_msg() routine. It is assumed that the

application has already validated the local certificates. The certificates contained in the SignedData

message will be returned in the msg_certificates parameter and the used_local parameter will be set to

FALSE if any of these certificates were used to verify the message signatures. It is the responsibility of the

application to validate the message certificates (for example, by calling the gsk_validate_certificate()

routine for each of the signer certificates).

These digest algorithms are supported:

x509_alg_md2Digest

MD2 digest (RSA keys only) - {1.2.840.113549.2.2}

x509_alg_md5Digest

MD5 digest (RSA keys only) - {1.2.840.113549.2.5}

x509_alg_sha1Digest

SHA-1 digest (RSA and DSA keys only) - {1.3.14.3.2.26}

x509_alg_sha224Digest

SHA-224 digest (RSA keys only) - {2.16.840.1.101.3.4.2.4}

x509_alg_sha256Digest

SHA-256 digest (RSA keys only) - {2.16.840.1.101.3.4.2.1}

x509_alg_sha384Digest

SHA-384 digest (RSA keys only) - {2.16.840.1.101.3.4.2.2}

x509_alg_sha512Digest

SHA-512 digest (RSA keys only) - {2.16.840.1.101.3.4.2.3}

gsk_read_signed_data_msg()

Chapter 3. Certificate Management Services (CMS) API Reference 53

|
|

|
|

|
|

|
|

|
|

gsk_read_signed_data_msg_extended()

Processes a PKCS #7 SignedData message.

Format

#include <gskcms.h>

gsk_status gsk_read_signed_data_msg_extended (

 gsk_process_option option_flag

 pkcs_certificates * local_certificates,

 gsk_buffer * stream,

 gsk_boolean * used_local,

 pkcs_certificates * msg_certificates,

 pkcs_certificates * signer_certificates,

 gsk_attributes_signers * attributes_signers,

 gsk_buffer * data)

Parameters

option_flag

Specifies process options to customize process behavior.

v Enforce signing certificate has digital signing capabilities. That is, the purpose of the certificate key

as reflected by the key usage extension must indicate digitalSignature.

v Don’t allow zero-length content data.

local_certificates

Specifies zero or more X.509 certificates to use when verifying the message signatures. NULL can be

specified for this parameter if no local certificates are provided.

stream

Specifies the ASN.1 DER-encoded stream to be processed.

used_local

This parameter will be set to TRUE if the signatures were verified using just the certificates supplied

by the local_certificates parameter. This parameter will be set to FALSE if any of the signatures were

verified using certificates contained within the message.

msg_certificates

Returns the X.509 certificates contained within the message. The application should call the

gsk_free_certificates() routine to release the certificates when they are no longer needed. Specify

NULL for this parameter if the message certificates are not needed.

signer_certificates

Returns the certificates used to sign the message. The application should call the

gsk_free_certificates() routine to release the certificates when they are no longer needed. Specify

NULL for this parameter if the signer certificates are not needed.

attributes_signers

Returns the authenticated attributes per signer contained within the message. The application should

call the gsk_free_attributes_signers() routine to release the gsk_attributes_signers structure when it

is no longer needed. Specify NULL for this parameter if the authenticated attributes per signer are not

needed. The set of authenticated attributes returned, omits the content-type and message-digest

authenticated attributes as these authenticated attributes must always be present, if any authenticated

attributes are present, and are automatically verified by gsk_read_signed_data_msg_extended().

The digestAlgorithm field within each gsk_attributes_signer structure returns the digest algorithm

originally used for the signer.

data

Returns the content of the SignedData message. The application should call the gsk_free_buffer()

routine to release the data when it is no longer needed.

gsk_read_signed_data_msg_extended()

54 System SSL Programming - APAR OA22451 - R9

Results

The function return value will be 0 if no error is detected. Otherwise, it will be one of the return codes

listed in the gskcms.h include file. These are some possible errors:

[ASN_NO_MEMORY]

Insufficient storage is available.

[ASN_SELECTION_OUT_OF_RANGE]

Certificate type or version number is not valid.

[CMSERR_ALG_NOT_SUPPORTED]

The digest algorithm is not supported.

[CMSERR_CONTENT_NOT_SUPPORTED]

The message content type is not SignedData or the content of the SignedData message is not

Data.

[CMSERR_BAD_SIGNATURE]

Signature is not correct.

[CMSERR_DIGEST_KEY_MISMATCH]

The digest algorithm is not supported for the private key type.

[CMSERR_INCORRECT_KEY_USAGE]

A signer certificate does not allow digital signature.

[CMSERR_NO_CONTENT_DATA]

The content data length is zero.

[CMSERR_NO_MEMORY]

Insufficient storage is available.

[CMSERR_SIGNER_NOT_FOUND]

Signer certificate not found.

Usage

The gsk_read_signed_data_msg_extended() routine processes a PKCS #7 (Cryptographic Message

Syntax) SignedData message created by the gsk_make_signed_data_msg_extended() routine and

returns the message content and all authenticated attributes (if present). The signed data content type

must be Data.

Processing is equivalent to gsk_read_signed_data_msg(), with these differences:

v The signing certificate key usage need not assert digital signing capabilities depending on option_flag.

v Zero length content is acceptable depending on option_flag.

v Authenticated attributes and the digest algorithm used to create the signed data per signer, if present,

are returned.

Calling the gsk_read_signed_data_msg_extended() routine is equivalent to calling the

gsk_read_content_msg() routine, the gsk_read_signed_data_content_extended() routine, and the

gsk_read_data_content() routine.

The local_certificates parameter can supply the signer certificates used to verify the message signatures. If

a certificate is not found for a message signer, the gsk_read_signed_data_msg_extended() routine will

attempt to locate the signer certificate in the SignedData message. An error will be returned if the signer

certificate cannot be found. An error may optionally be returned if the certificate key usage does not allow

digital signature.

No certificate validation is performed by the gsk_read_signed_data_msg_extended() routine. It is

assumed that the application has already validated the local certificates. The certificates contained in the

gsk_read_signed_data_msg_extended()

Chapter 3. Certificate Management Services (CMS) API Reference 55

|
|

SignedData message will be returned in the msg_certificates parameter and the used_local parameter will

be set to FALSE if any of these certificates were used to verify the message signatures. It is the

responsibility of the application to validate the message certificates (for example, by calling the

gsk_validate_certificate() routine for each of the signer certificates).

These digest algorithms are supported:

x509_alg_md2Digest

MD2 digest (RSA keys only) - {1.2.840.113549.2.2}

x509_alg_md5Digest

MD5 digest (RSA keys only) - {1.2.840.113549.2.5}

x509_alg_sha1Digest

SHA-1 digest (RSA and DSA keys only) - {1.3.14.3.2.26}

x509_alg_sha224Digest

SHA-224 digest (RSA keys only) - {2.16.840.1.101.3.4.2.4}

x509_alg_sha256Digest

SHA-256 digest (RSA keys only) - {2.16.840.1.101.3.4.2.1}

x509_alg_sha384Digest

SHA-384 digest (RSA keys only) - {2.16.840.1.101.3.4.2.2}

x509_alg_sha512Digest

SHA-512 digest (RSA keys only) - {2.16.840.1.101.3.4.2.3}

If authenticated attributes are returned via the attributes_signers parameter, then it is recommended that

signing certificates for all signers represented within the gsk_attributes_signers structure should be

requested via the signer_certificates parameter.

gsk_read_signed_data_msg_extended()

56 System SSL Programming - APAR OA22451 - R9

|
|

|
|

|
|

|
|

gsk_sign_certificate()

Signs an X.509 certificate.

Format

#include <gskcms.h>

gsk_status gsk_sign_certificate (

 x509_certificate * certificate,

 pkcs_private_key_info * private_key)

Parameters

certificate

Specifies the X.509 certificate.

private_key

Specifies the private key.

Results

The return status will be zero if the signature is successfully generated. Otherwise, it will be one of the

return codes listed in the gskcms.h include file. These are some possible errors:

[CMSERR_ALG_NOT_SUPPORTED]

The signature algorithm is not supported.

[CMSERR_KEY_MISMATCH]

The supplied key does not match the signature algorithm.

[CMSERR_NO_MEMORY]

Insufficient storage is available.

Usage

The gsk_sign_certificate() routine will sign an X.509 certificate using the supplied private key. The private

key can be an RSA key or a DSA key. The private key can be an ASN.1-encoded value contained in the

privateKey field or an ICSF key label contained in the keyToken field. In either case, the key type must be

specified by the privateKeyAlgorithm field.

The signature algorithm is obtained from the signature field of the x509_tbs_certificate structure contained

within the x509_certificate structure. The generated signature will be placed in the signatureAlgorithm and

signatureValue fields of the x509_certificate structure.

The following signature algorithms are supported:

x509_alg_md2WithRsaEncryption

RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption

RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption

RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption

RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption

RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

gsk_sign_certificate()

Chapter 3. Certificate Management Services (CMS) API Reference 57

|
|

x509_alg_sha384WithRsaEncryption

RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption

RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1

Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

gsk_sign_certificate()

58 System SSL Programming - APAR OA22451 - R9

|
|

|
|

gsk_sign_crl()

Signs an X.509 certificate revocation list.

Format

#include <gskcms.h>

gsk_status gsk_sign_crl (

 x509_crl * crl,

 pkcs_private_key_info * private_key)

Parameters

crl Specifies the X.509 certificate revocation list.

private_key

Specifies the private key.

Results

The return status will be zero if the signature is successfully generated. Otherwise, it will be one of the

return codes listed in the gskcms.h include file. These are some possible errors:

[CMSERR_ALG_NOT_SUPPORTED]

The signature algorithm is not supported.

[CMSERR_KEY_MISMATCH]

The supplied key does not match the signature algorithm.

[CMSERR_NO_MEMORY]

Insufficient storage is available.

Usage

The gsk_sign_crl() routine will sign an X.509 certificate revocation list using the supplied private key. The

private key can be an RSA key or a DSA key. The private key can be an ASN.1-encoded value contained

in the privateKey field or an ICSF key label contained in the keyToken field. In either case, the key type

must be specified by the privateKeyAlgorithm field.

The signature algorithm is obtained from the signature field of the x509_tbs_crl structure contained within

the x509_crl structure. The generated signature will be placed in the signatureAlgorithm and

signatureValue fields of the x509_crl structure.

The following signature algorithms are supported:

x509_alg_md2WithRsaEncryption

RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption

RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption

RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption

RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption

RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption

RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

gsk_sign_crl()

Chapter 3. Certificate Management Services (CMS) API Reference 59

|
|

|
|

x509_alg_sha512WithRsaEncryption

RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1

Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

gsk_sign_crl()

60 System SSL Programming - APAR OA22451 - R9

|
|

gsk_sign_data()

Signs a data stream.

Format

#include <gskcms.h>

gsk_status gsk_sign_data (

 x509_algorithm_type sign_algorithm,

 pkcs_private_key_info * private_key,

 gsk_boolean is_digest,

 gsk_buffer * data,

 gsk_buffer * signature)

Parameters

sign_algorithm

Specifies the signature algorithm.

private_key

Specifies the private key.

is_digest

Specify TRUE if the data stream digest has been computed or FALSE if the data stream digest needs

to be computed.

data

Specifies either the data stream digest (is_digest is TRUE) or the data stream (is_digest is FALSE).

signature

Returns the generated signature. The caller should release the signature buffer when it is no longer

needed by calling the gsk_free_buffer() routine.

Results

The return status will be zero if the signature is successfully generated. Otherwise, it will be one of the

return codes listed in the gskcms.h include file. These are some possible errors:

[CMSERR_ALG_NOT_SUPPORTED]

The signature algorithm is not supported.

[CMSERR_BAD_DIGEST_SIZE]

The digest size is not correct.

[CMSERR_KEY_MISMATCH]

The supplied key does not match the signature algorithm.

[CMSERR_NO_MEMORY]

Insufficient storage is available.

Usage

The gsk_sign_data() routine will generate the signature for a data stream using the supplied private key.

The private key can be an RSA key or a DSA key. The private key can be an ASN.1-encoded value

contained in the privateKey field or an ICSF key label contained in the keyToken field. In either case, the

key type must be specified by the privateKeyAlgorithm field.

The application can either provide the message digest or have the gsk_sign_data() routine compute the

message digest.

When the application provides the message digest, the digest length must be correct for the specified

signature algorithm. Digest lengths: MD2 and MD5 are 16 bytes; SHA-1 is 20 bytes; SHA-224 is 28 bytes;

gsk_sign_data()

Chapter 3. Certificate Management Services (CMS) API Reference 61

|

SHA-256 is 32 bytes; SHA-384 is 48 bytes and SHA-512 is 64 bytes. The supplied digest will be used

as-is without any further processing (specifically, for an RSA encryption key, the digest will not be encoded

as an ASN.1 DigestInfo sequence before generating the signature)

The following signature algorithms are supported:

x509_alg_md2WithRsaEncryption

RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption

RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption

RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption

RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption

RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption

RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption

RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1

Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

x509_alg_md5Sha1WithRsaEncryption

RSA encryption with combined MD5 and SHA-1 digests

gsk_sign_data()

62 System SSL Programming - APAR OA22451 - R9

|

|
|

|
|

|
|

gsk_verify_certificate_signature()

Verifies the signature for an X.509 certificate.

Format

#include <gskcms.h>

gsk_status gsk_verify_certificate_signature (

 x509_certificate * certificate,

 x509_public_key_info * key)

Parameters

certificate

Specifies the decoded certificate returned by the gsk_decode_certificate() routine.

key

Specifies the public key for the Certification Authority that signed the certificate.

Results

The return status will be zero if the signature is correct. Otherwise, it will be one of the return codes listed

in the gskcms.h include file. These are some possible errors:

[CMSERR_ALG_NOT_SUPPORTED]

The signature algorithm is not supported.

[CMSERR_BAD_SIGNATURE]

The signature is not correct.

[CMSERR_KEY_MISMATCH]

The supplied key does not match the signature algorithm.

Usage

The gsk_verify_certificate_signature() routine validates an X.509 certificate by computing its signature

and then comparing the result to the signature contained in the certificate.

The following signature algorithms are supported:

x509_alg_md2WithRsaEncryption

RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption

RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption

RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption

RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption

RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption

RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption

RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1

Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

gsk_verify_certificate_signature()

Chapter 3. Certificate Management Services (CMS) API Reference 63

|

|
|

|
|

|
|

x509_alg_md5Sha1WithRsaEncryption

RSA encryption with combined MD5 and SHA-1 digests

gsk_verify_certificate_signature()

64 System SSL Programming - APAR OA22451 - R9

gsk_verify_crl_signature()

Verifies the signature for an X.509 certificate revocation list.

Format

#include <gskcms.h>

gsk_status gsk_verify_crl_signature (

 x509_crl * crl,

 x509_public_key_info * key)

Parameters

crl Specifies the decoded certificate revocation list returned by the gsk_decode_crl() routine.

key

Specifies the public key for the Certification Authority that signed the certificate revocation list.

Results

The return status will be zero if the signature is correct. Otherwise, it will be one of the return codes listed

in the gskcms.h include file. These are some possible errors:

[CMSERR_ALG_NOT_SUPPORTED]

The signature algorithm is not supported.

[CMSERR_BAD_SIGNATURE]

The signature is not correct.

[CMSERR_KEY_MISMATCH]

The supplied key does not match the signature algorithm.

Usage

The gsk_verify_crl_signature() routine validates an X.509 certificate revocation list (CRL) by computing

its signature and then comparing the result to the signature contained in the CRL.

The following signature algorithms are supported:

x509_alg_md2WithRsaEncryption

RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption

RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption

RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption

RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption

RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption

RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption

RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1

Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

gsk_verify_crl_signature()

Chapter 3. Certificate Management Services (CMS) API Reference 65

|
|

|
|

|
|

x509_alg_md5Sha1WithRsaEncryption

RSA encryption with combined MD5 and SHA-1 digests

gsk_verify_crl_signature()

66 System SSL Programming - APAR OA22451 - R9

gsk_verify_data_signature()

Verifies the signature for a data stream.

Format

#include <gskcms.h>

gsk_status gsk_verify_data_signature (

 x509_algorithm_type sign_algorithm,

 x509_public_key_info * key,

 gsk_boolean is_digest,

 gsk_buffer * data,

 gsk_buffer * signature)

Parameters

sign_algorithm

Specifies the signature algorithm.

key

Specifies the public key.

is_digest

Specify TRUE if the data stream digest has been computed or FALSE if the data stream digest needs

to be computed.

data

Specifies either the data stream digest (is_digest is TRUE) or the data stream (is_digest is FALSE).

signature

Specifies the data stream signature.

Results

The return status will be zero if the signature is correct. Otherwise, it will be one of the return codes listed

in the gskcms.h include file. These are some possible errors:

[CMSERR_ALG_NOT_SUPPORTED]

The signature algorithm is not supported.

[CMSERR_BAD_DIGEST_SIZE]

The digest size is not correct.

[CMSERR_BAD_SIGNATURE]

The signature is not correct.

[CMSERR_KEY_MISMATCH]

The supplied key does not match the signature algorithm.

Usage

The gsk_verify_data_signature() routine validates the signature for a data stream. The public key can be

an RSA key or a DSA key.

The application can either provide the message digest or have the gsk_verify_signed_data() routine

compute the message digest.

When the application provides the message digest, the digest length must be correct for the specified

signature algorithm. Digest lengths: MD2 and MD5 are 16 bytes; SHA-1 is 20 bytes; SHA-224 is 28 bytes;

SHA-256 is 32 bytes; SHA-384 is 48 bytes and SHA-512 is 64 bytes. The supplied digest will be used

as-is without any further processing (specifically, for an RSA encryption key, the digest will not be encoded

as an ASN.1 DigestInfo sequence before comparing it with the digest in the signature)

gsk_verify_data_signature()

Chapter 3. Certificate Management Services (CMS) API Reference 67

|
|

The following signature algorithms are supported:

x509_alg_md2WithRsaEncryption

RSA encryption with MD2 digest - {1.2.840.113549.1.1.2}

x509_alg_md5WithRsaEncryption

RSA encryption with MD5 digest - {1.2.840.113549.1.1.4}

x509_alg_sha1WithRsaEncryption

RSA encryption with SHA-1 digest - {1.2.840.113549.1.1.5}

x509_alg_sha224WithRsaEncryption

RSA encryption with SHA-224 digest - {1.2.840.113549.1.1.14}

x509_alg_sha256WithRsaEncryption

RSA encryption with SHA-256 digest - {1.2.840.113549.1.1.11}

x509_alg_sha384WithRsaEncryption

RSA encryption with SHA-384 digest - {1.2.840.113549.1.1.12}

x509_alg_sha512WithRsaEncryption

RSA encryption with SHA-512 digest - {1.2.840.113549.1.1.13}

x509_alg_dsaWithSha1

Digital Signature Standard with SHA-1 digest - {1.2.840.10040.4.3}

x509_alg_md5Sha1WithRsaEncryption

RSA encryption with combined MD5 and SHA-1 digests

The x509_alg_md5Sha1WithRsaEncryption algorithm is a special algorithm used by the SSL protocol. The

data signature consists of the MD5 digest over the data followed by the SHA-1 digest over the data for a

total digest length of 36 bytes. The digest is encrypted as-is without any further processing.

gsk_verify_data_signature()

68 System SSL Programming - APAR OA22451 - R9

|
|

|
|

|
|

Chapter 4. Using Hardware Cryptographic Features with

System SSL

System SSL uses the Integrated Cryptographic Service Facility (ICSF) if it is available. ICSF provides

hardware cryptographic support which will be used instead of the System SSL software algorithms.

System SSL checks for the hardware support during its runtime initialization processing and will use the

hardware support if available.

In order for System SSL to use the hardware support provided through ICSF, the ICSF started task must

be running prior to the application and the application userid must be authorized to the appropriate

resources in the RACF CSFSERV class (when the class is defined), either explicitly or through a generic

resource profile. See Table 1 and Table 2 for supported crypto algorithms and required RACF classes for

each hardware processor. In addition to the CSFSERV class, the application userid needs access to the

RACF CSFKEYS class when SAF key rings are being used and the application's certificate keys are

stored in ICSF. For more information on access to CSFKEYS, see the RACDCERT command in z/OS

Security Server RACF Command Language Reference.

If a severe ICSF error occurs during a cryptographic operation, System SSL will stop using the hardware

support and will revert to using the software algorithms when applicable. In this event, hardware failure

notification will be available through the SSL Started Task or SSL trace output, if either facility is enabled.

The SSL Started Task will output an error message to the console on the first occurrence of the hardware

failure and to the system log on any subsequent events. A message showing the failing encryption

algorithm will appear in the system log only. Any future cryptographic operations for the current SSL

application that attempt to use this algorithm will be performed in software.

System SSL will also take advantage of the CP Assist for Cryptographic Function (CPACF) when available.

CPACF is a set of cryptographic instructions available on all CPs of a z990, z890, z9 EC, z9 BC and

System z10 EC processors. The SHA-1 algorithm is always available. The SHA-224 and SHA-256

algorithms are available on the z9 EC, z9 BC and System z10 EC. The SHA-384 and SHA-512 algorithms

are available on System z10 EC.

CP Assist for Cryptographic Functions (CPACF) DES/TDES Enablement, feature 3863, provides for clear

key DES and TDES instructions. On the z9 EC, z9 BC and System z10 EC, this feature also includes

clear key AES for 128-bit keys. ICSF is not required in order for System SSL to use the CPACF.

Table 1 describes the cryptographic function exploited through ICSF and the required CSFSERV resource

class accesses. For more information, refer to Controlling Who Can Use Cryptographic Keys and Services

in z/OS Cryptographic Services ICSF Administrator’s Guide.

 Table 1. Hardware cryptographic functions exploited by System SSL

Function z800, z900

z890, z990, z9 EC, z9 BC and

System z10 EC

DES CSFCKI, CSFDEC, CSFENC

TDES CSFCKM, CSFDEC, CSFENC

PKA (RSA) Decrypt CSFPKD CSFPKD

PKA (RSA) Encrypt CSFPKE CSFPKE

Digital Signature Generate CSFPKI, CSFDSG CSFPKI, CSFDSG

Digital Signature Verify CSFDSV CSFDSV

Table 1 describes the hardware cryptographic functions that will be exploited by System SSL.

© Copyright IBM Corp. 1999, 2008 69

|
|
|
|

|

|
|

Note: Cryptographic function being performed against RSA keys with sizes greater than 2048 will be done

in software. Encrypt/decrypt using the CCF is independent on the size of the data. For DES, when

the data is less than or equal to 256 bytes, DES is performed in software. For TDES, when the

data is less than or equal to 64 bytes, TDES is performed in software.

System SSL contains software implementations for algorithms in Table 2.

 Table 2. Hardware cryptographic functions used by System SSL

z800, z900 z890, z990 z9 EC, z9 BC and System z10 EC

Algorithm CCF(s) CPACF

PCIXCC/

CEX2C CPACF (z9)

CPACF

(System z10

EC) CEX2C CEX2A

DES X X X X

TDES X X X X

AES 128-bit X X

AES 256-bit X

SHA-1 X X X

SHA-2

(SHA-224)

X X

SHA-2

(SHA-256)

X X

SHA-2

(SHA-384)

X

SHA-2

(SHA-512)

X

PKA (RSA)

Decrypt

X X X X

PKA (RSA)

Encrypt

X X X X

Digital

Signature

Generate

X X X

Digital

Signature

Verify

X X X X

System SSL handshake processing utilizes both the RSA and digital signature functions that are very

expensive functions when performed in software. For installations that have high volumes of SSL

handshake processing, utilizing the capabilities of the hardware will provide maximum performance and

throughput. For example, on a z9 EC, z9 BC and System z10 EC, having both CEX2C and CEX2A will

result in the maximum clear key RSA and digital signature processing being done in hardware.

For installations that are more concerned with the transfer of encrypted data than SSL handshakes,

moving the encrypt/decrypt processing to hardware will provide maximum performance. The encryption

algorithm is determined by the SSL cipher value. To utilize hardware, the cipher's symmetric algorithm

must be available in hardware. For example, on z9 EC, z9 BC and System z10 EC, an application

encrypting/decrypting data using the symmetric algorithm TDES would benefit from the processing being

done in the hardware (CPACF).

For maximum performance and throughput, it is recommended that hardware be used for both the SSL

handshake and data encrypt/decrypt.

Using Hardware Cryptographic Features with System SSL

70 System SSL Programming - APAR OA22451 - R9

|

|
|
|||||||

|
|
|||||||

|
|
|||||||

|

|

For information on the types of hardware cryptographic features supported by ICSF, refer to z/OS

Cryptographic Services ICSF Overview. For information on configuring and using ICSF, refer to z/OS

Cryptographic Services ICSF Administrator’s Guide and z/OS Cryptographic Services ICSF System

Programmer’s Guide.

Several products use System SSL. Please check the specific product publications to see if there is

information on System SSL and ICSF considerations.

Note that access to ICSF cryptographic services can be controlled by the z/OS Security Server (RACF).

For further information, refer to the topic about controlling who can use cryptographic keys and services in

the z/OS Cryptographic Services ICSF Administrator’s Guide.

Using Hardware Cryptographic Features with System SSL

Chapter 4. Using Hardware Cryptographic Features with System SSL 71

72 System SSL Programming - APAR OA22451 - R9

Chapter 5. Messages and Codes

CMS Status Codes (03353xxx)

0335303D Digest data size is not correct.

Explanation: The length of the digest data is not

correct. Digest data size by algorithm is:

v MD2 – 16 bytes

v MD5 – 16 bytes

v SHA-1 – 20 bytes

v SHA-224 – 28 bytes

v SHA-256 – 32 bytes

v SHA-384 – 48 bytes

v SHA-512 – 64 bytes

User response: Verify that the data has not been

truncated. Contact your service representative if the

error persists.

03353064 Digest type and key type are

incompatible.

Explanation: The specified digest algorithm and the

key algorithm are incompatible.

User response: Specify a digest algorithm that is

compatible with the signing key algorithm.

© Copyright IBM Corp. 1999, 2008 73

|

|

|

|

|

|

|

||
|

|
|

|
|

74 System SSL Programming - APAR OA22451 - R9

Chapter 6. Environment Variables

These tables contain all the environment variables used by the system application and read during the

startup of the application.

 Table 3. SSL-Specific Environment Variables

Environment Variables Usage Valid Values

GSK_HW_CRYPTO Specifies whether the hardware

cryptographic support will be used. Note that

ICSF (Integrated Cryptographic Service

Facility) must be configured and running in

order for System SSL to use the hardware

cryptographic support.

SHA-1, SHA-2, DES, Triple DES and AES

hardware functions can be used without

ICSF if the zArchitecture message-security

assist is installed.

For more information on hardware

cryptographic support, refer to Chapter 4,

“Using Hardware Cryptographic Features

with System SSL,” on page 69.

Selected hardware cryptographic functions

can be disabled by setting the appropriate

bits to zero in the GSK_HW_CRYPTO value.

The corresponding software algorithms will

be used when a hardware function is

disabled. These bit assignments are defined:

 1 = SHA-1 digest generation

 2 = 56-bit DES encryption/decryption

 4 = 168-bit Triple DES

encryption/decryption

 8 = Public key encryption/decryption

 16 = AES 128-bit encryption/decryption

 32 = SHA-256 digest generation

 64 = AES-256-bit encryption/decryption

 128 = SHA-224 digest generation

 256 = SHA-384 digest generation

 512 = SHA-512 digest generation

Note: If a hardware function bit is set on

and the hardware function is unavailable,

processing will take place in software.

A value of ’0’ will disable

the use of the hardware

support while a value of

’65535’ will enable the use

of the hardware support.

Available hardware support

will be used if this

environment variable is not

defined.

© Copyright IBM Corp. 1999, 2008 75

|

|

|

76 System SSL Programming - APAR OA22451 - R9

Index

C
certificate

self-signed, creating 5

E
environment variables 75

G
gskkyman utility

certificate, self signed
creating 5

S
System SSL

environment variables 75

using hardware cryptographic features 69

U
using hardware cryptographic features with System

SSL 69

© Copyright IBM Corp. 1999, 2008 77

78 System SSL Programming - APAR OA22451 - R9

����

Program Number: 5694-A01

Printed in USA

	Contents
	Figures
	Tables
	Chapter 1. Introduction
	Chapter 2. Certificate/Key Management
	Manage Keys and Certificates
	Create a Self-Signed Certificate
	Creating a Self-Signed Server or Client Certificate
	gskkyman Command Line Mode Examples

	Chapter 3. Certificate Management Services (CMS) API Reference
	gsk_construct_renewal_request()
	gsk_construct_self_signed_certificate()
	gsk_construct_signed_certificate()
	gsk_create_certification_request()
	gsk_create_database_renewal_request()
	gsk_create_database_signed_certificate()
	gsk_create_self_signed_certificate()
	gsk_create_signed_certificate_record()
	gsk_create_signed_crl_record()
	gsk_make_signed_data_content()
	gsk_make_signed_data_content_extended()
	gsk_make_signed_data_msg()
	gsk_make_signed_data_msg_extended()
	gsk_read_signed_data_content()
	gsk_read_signed_data_content_extended()
	gsk_read_signed_data_msg()
	gsk_read_signed_data_msg_extended()
	gsk_sign_certificate()
	gsk_sign_crl()
	gsk_sign_data()
	gsk_verify_certificate_signature()
	gsk_verify_crl_signature()
	gsk_verify_data_signature()

	Chapter 4. Using Hardware Cryptographic Features with System SSL
	Chapter 5. Messages and Codes
	CMS Status Codes (03353xxx)

	Chapter 6. Environment Variables
	Index

