
+LHUDUFKLFDO�)LOH�6\VWHP�8QORDG�

8WLOLW\
Author: Bruce R. Wells

 z/OS Security Server RACF

brwells@us.ibm.com

Last updated: 3/29/2002

Updated (by Shozab Naqvi) to support Access Control Lists (ACLs)06/15/01
Changed source file extension from ‘.c’ to ‘.txt’07/20/2001
Introduction of irrhfsu10/20/2000

Change DescriptionChange Date

Background
RACF currently provides the IRRDBU00 utility to unload the contents of the RACF database
into a flat file suitable for viewing or loading into a relational database for querying. No such
capability exists for the security data contained within the Hierarchical File System (HFS). This
data is managed by RACF through a set of SAF callable services in a data area known as the File
Security Packet (FSP). Some examples of the data contained within the FSP are: file permission
bits, owning UID and GID, owner- and auditor-specified logging options, etc. This data, as well
as additional data (see below) can now be unloaded using the HFS Unload Utility!

RACF also provides the IRRRID00 utility to remove user and group references from the RACF
database. IRRRID00 can be used to delete references to specific user and groups, or can be run
to locate references to users and groups which no longer exist. The UNIX find command can be
used to locate files which are owned by a specific user or group, and can be used to locate files
whose owner cannot be mapped to a RACF user or group. Shell command substitution can be
used to issue a command, such as chown or rm, against the files located by find. Similarly, find
can locate files with access control lists (ACLs) containing entries for a specific user or group,
and command substitution can be used to remove these references using the setfacl command.
The find command can also locate files with ACLs containing “orphaned” ACL references; that is,
entries for UIDs ad GIDs which can not be mapped to RACF user or group profiles. However,
the find output is not useful for removing these references, because the UID or GID is not
reported as part of the output. In order to provide coverage for this feature of IRRRID00, the
HFS Unload Utility can be invoked with a parameter which results in deletion of orphaned ACL
entries.

Package Contents
This package contains

é This README file
é irrhfsu.c - the source code for the utility
é RACHFSTB - sample DB2 table definition statements
é RACHFSLD - sample DB2 load statements

Installation Instructions
Once the package has been downloaded from the web, you must transfer the source code to the
HFS in the directory of your choice and compile it. In the following examples, we use
/u/mydir/tools. The compiler options you specify will depend on what release level you are on.
From the shell, in current working directory /u/mydir/tools:

 c89 -o irrhfsu irrhfsu.c

If you are on z/OS V1R3 or later, then you need to specify an additional compiler option in order
to get the support for access control lists (ACLs):

 c89 -Wc,TARGET\(0x41030000\) -o irrhfsu irrhfsu.c

This creates the irrhfsu command. Set the permission bits for irrhfsu as appropriate.

Note: when transferring the file from your PC to the host, do so in text mode, not binary mode. If
you use IBM eNetwork Personal Communications for the file transfer, make sure the code page is
set to “1047 United States”, or the file may not compile on the host. In general, using ftp is
probably the simplest approach.

Disclaimers, etc.
This program contains code made available by IBM Corporation on an AS IS basis. Any one
receiving this program is considered to be licensed under IBM copyrights to use the
IBM-provided source code in any way he or she deems fit, including copying it, compiling it,
modifying it, and redistributing it, with or without modifications, except that it may be neither
sold nor incorporated within a product that is sold. No license under any IBM patents or patent
applications is to be implied from this copyright license.

The software is provided "as-is", and IBM disclaims all warranties, express or implied, including
but not limited to implied warranties of merchantibility or fitness for a particular purpose. IBM
shall not be liable for any direct, indirect, incidental, special or consequential damages arising out
of this agreement or the use or operation of the software.

A user of this program should understand that IBM cannot provide technical support for the
program and will not be responsible for any consequences of use of the program.

Introducing irrhfsu - the HFS Unload Utility
The irrhfsu utility will unload HFS file data in a manner which is complimentary to IRRDBU00.
It can report on files residing within the currently mounted file system structure. It runs in the
shell and creates a record for every file/directory in the HFS subtree (s) which is passed into the
utility as an argument. It will unload the FSP data, as mentioned above, plus additional data
provided by the C stat() routine (for example: creation date, last access date, inode, number of
links, etc), as well as the contents of any ACLs which may exist for the file or directory. See
below for specification of record format. The utility comes with sample load and table definitions
for use with DB2.

The irrhfsu utility can also be used to delete ACL entries containing UIDs and GIDs which cannot
be mapped to RACF user or group profiles (“orphaned” ACL entries). This ability corresponds
to the ability of RACF’s IRRRID00 utility to delete references to users and groups which no
longer exist in the RACF database.

Irrhfsu can be executed from within an interactive shell environment, or from JCL using the
BPXBATCH utility.

Authorization Required
The invoker must have read and search permission to each directory containing the files to
unload. Thus, a general user can use irrhfsu against her own files.

In order to run against files you do not own, you will require either
á UID 0
á READ access to the BPX.SUPERUSER profile in the FACILITY class so you can

switch to superuser mode via the “su” command before running the tool.
á READ access to the SUPERUSER.FILESYS profile in the UNIXPRIV class (only

available on V2R8 or above)
á The RACF AUDITOR attribute
á READ access to SUPERUSER.FILESYS.CHANGEPERMS if you are using irrhfsu to

delete orphaned ACL entries.

You will also require write access to the file or data set you are using for output.

Syntax
The syntax of irrhfsu is as follows:
irrhfsu [-c] [-f outputfile] dir1 [dir2 ...]
Where

- The name of the file you wish to contain the utility’s output. Either an HFS file or
an MVS data set can be specified. To specify an MVS data set, prefix it with two

outputfile

Indicates to cleanup (delete) orphaned ACL entries for the specified
files/directories. When -c is specified, irrhfsu unloads each orphaned ACL entry
before deleting it.

-c
- The name of the HFS Unload Utilityirrhfsu

- The name of the directory, or directories, whose contents you wish to unload.
You can also specify individual files.

Dir1
[dir2 ...]

slashes (//) and fully qualify the data set name. Do not enclose the data set name in
single quotes, and do not enclose the entire path name in double quotes.

If -f outputfile is not specified, then irrhfsu will write output to stdout by default. Thus, it is not
necessary to specify -f when output is directed to an HFS file (see Example 1 below). This is true
even when using BPXBATCH, as it allows you to define a DD name for STDOUT, as long as it
refers to an HFS file. The -f option is only required if you want output directed to an MVS data
set, or when you wish to append the output to an existing file.

When irrhfsu opens the output file specified with -f, it does so in append mode. So, you can
specify the MVS data set you use for IRRDBU00 output and the data from both utilities will be
combined and ready for use.

The output file is opened with recfm=vb and lrecl=4096. If the output file does not exist, it will
be created. If the output file is an MVS data set, and it has already been pre-allocated and
catalogued, then the data set attributes must be consistent with recfm=vb and lrecl=4096 or an
fopen() error will occur.

Examples
 In the following examples, it is assumed that the irrhfsu utility exists in the invoker’s current
working directory, when invoked from the shell, and in the user’s home directory when invoked
from batch. You can install it anywhere you wish.

Example 1 - From the shell, unload the contents of the entire file system to HfsuOutFile

 irrhfsu / > HfsuOutFile

Using the redirection operator (>) stdout is directed to the file HfsuOutFile in the user’s current
working directory. Note that when using “>” to redirect stdout to a file, if the file exists its
current contents will be overwritten. Use -f if you want to append output to an existing file.

Example 2 - From the shell, remove orphaned ACL entries from the entire file system

 irrhfsu -c / > /dev/null

Note that when using irrhfsu to delete orphaned ACL entries, it will still perform the unload of
security data. If you don’t care about the unload output, then redirect stdout to the ‘bit bucket’,
which is accomplished in UNIX by writing to the special file called /dev/null.

Example 3 - From the shell, unload two directories to an MVS data set

 irrhfsu -f //BRWELLS.HFSU.OUTPUT /u/brwells/dir1 dir2/subdir

 In this example, the first directory to be unloaded is specified as an absolute path name, and the
second directory is specified relative to the current working directory. Note that when specifying
a relative path name, the file name will be output as a relative path name. Thus, subsequent
queries may not be very helpful in identifying the files for which you are looking. Relative path
names may be sufficient for casual browsing of the output (such as in the following example), but
you probably want to use absolute path names if you intend to run relational queries against the
output.

Example 4 - From the shell, unload a single file to the display

 irrhfsu myfile

The security data for a single file will be output to the display, which is the default for stdout.

Example 5 - From batch, unload the entire file system to the IRRDBU00 output data set

 //BRWELLSL JOB ’577018,B0011038’,’B.R.WELLS’,
 // CLASS=2,NOTIFY=BRWELLS,MSGLEVEL=(1,1),
 // MSGCLASS=H
 //**
 //HFSUNLD EXEC PGM=BPXBATCH,
 // PARM=’PGM irrhfsu -f //SYS1.IRRDBU00.OUTPUT /’
 //STDERR DD PATH='/u/brwells/hfsuerr',
 // PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
 // PATHMODE=SIRWXU

 The irrhfsu utility may create error messages. This example directs stderr to a file in the user’s
home directory.

 Note that this example represents just one way in which to combine the output of IRRDBU00
with that of irrhfsu. Another method would be to write irrhfsu output to an HFS file, and then
copy it to an MVS data set in another job step. You should implement the JCL in whatever
manner best fits with your current procedure.

UID and GID Name Mapping
For your convenience, each output record contains the UID and GID of the file owner, as well as
the RACF user ID and group name to which they map. Same for the contents of ACL entries.
The C routines getpwuid() and getgrgid() are used for this purpose. The irrhfsu program will
locally cache id/name mappings to reduce calls to RACF. However, if your HFS contains
UID/GID values which are unknown to RACF, then you should implement the UNIXMAP class,
or application identity mapping (AIM), in order to eliminate lengthy searches of the RACF
database. See z/OS Security Server RACF Security Administrator's Guide for instructions on
setting up the UNIXMAP class. If you are on OS/390 V2R10 or higher, you can use AIM

instead of the UNIXMAP class. This involves running a RACF utility program named IRRIRA00
to define database index aliases for UIDs and GIDs. This method is preferred over the
UNIXMAP class. See z/OS Security Server RACF System Programmer’s Guide for details.

If neither UNIXMAP nor AIM is implemented, the mapping service invoked by getgrgid() and
getpwuid() will scan USER and GROUP profiles until a match on the id is found, or the name
space is exhausted. (This information will be cached so that subsequent requests for this id can
bypass the RACF search. However, the caching algorithm by default only remembers the
previous 10 ids encountered in the HFS, so the unknown id can fall out of the cache, and the
exhaustive search will need to be performed again if that id is subsequently encountered. Note
that you can modify the “maxcache” variable in irrhfsu to increase the number of id/name pairings
maintained in the cache.) On the other hand, if UNIXMAP or AIM is active, RACF will stop
immediately after checking for existence of the appropriate profile, and if not found, irrhfsu will
leave blanks in the associated user ID or group name field.

As an alternative to implementing the UNIXMAP class or AIM, you can remove the mapping
code from the C source file and recompile it yourself.

Record Type 0900 - HFS File Basic Data record

The HFS File Basic Data record defines the basic information about an HFS file or directory within the
currently mounted file system structure. There is one record per file. This table is consistent with the
IRRDBU00 record formats documented in z/OS Security Server RACF Macros and Interfaces.

RACF audit id1,2501,219CharHFSBD_AUDIT_ID

What are the user audit options for EXECUTE

actions? Valid values are ALL, SUCCESS, FAIL,

and NONE.

1,2171,210CharHFSBD_UAUD_EXEC

What are the user audit options for WRITE

actions? Valid values are ALL, SUCCESS, FAIL,

and NONE.

1,2081,201CharHFSBD_UAUD_WRITE

What are the user audit options for READ actions?
Valid values are ALL, SUCCESS, FAIL, and

NONE.

1,1991,192CharHFSBD_UAUD_READ

What are the auditor audit options for EXECUTE

actions? Valid values are ALL, SUCCESS, FAIL,

and NONE.

1,1901,183CharHFSBD_AAUD_EXEC

What are the auditor audit options for WRITE

actions? Valid values are ALL, SUCCESS, FAIL,

and NONE.

1,1811,174CharHFSBD_AAUD_WRITE

What are the auditor audit options for READ

actions? Valid values are ALL, SUCCESS, FAIL,

and NONE.

1,1721,165CharHFSBD_AAUD_READ
Is the SHAREAS bit on for this file? 1,1631,160Yes/NoHFSBD_SHAREAS
Is the program-control bit on for this file?1,1581,155Yes/NoHFSBD_PROGRAM
Is the APF bit on for this file?1,1531,150Yes/NoHFSBD_APF
Is the other execute bit on for this file?1,1481,145Yes/NoHFSBD_OTH_EXEC
Is the other write bit on for this file?1,1431,140Yes/NoHFSBD_OTH_WRITE
Is the other read bit on for this file?1,1381,135Yes/NoHFSBD_OTH_READ
Is the group execute bit on for this file?1,1331,130Yes/NoHFSBD_GRP_EXEC
Is the group write bit on for this file?1,1281,125Yes/NoHFSBD_GRP_WRITE
Is the group read bit on for this file?1,1231,120Yes/NoHFSBD_GRP_READ
Is the owner execute bit on for this file?1,1181,115Yes/NoHFSBD_OWN_EXEC
Is the owner write bit on for this file?1,1131,110Yes/NoHFSBD_OWN_WRITE
Is the owner read bit on for this file?1,1081,105Yes/NoHFSBD_OWN_READ
Is the S_ISVTX (sticky) bit on for this file?1,1031,100Yes/NoHFSBD_S_ISVTX
Is the S_ISUID (set-uid) bit on for this file?1,0981,095Yes/NoHFSBD_S_ISGID
Is the S_ISGID (set-gid) bit on for this file?1,0931,090Yes/NoHFSBD_S_ISUID
The RACF group name corresponding to this GID1,0881,081CharHFSBD_OWN_GNAME

The owner z/OS UNIX group identifier (GID)
associated with the file.

1,0791,070IntHFSBD_OWN_GID
The owner’s RACF user ID1,0681,061CharHFSBD_OWN_UNAME

The owner’s z/OS UNIX user identifier (UID)
associated with the file.

1,0591,050IntHFSBD_OWN_UID

What type of file is this? Valid values are FILE,
DIR, SOCKET, EXTLINK, SYMLINK, FIFO,
BLOCK, and CHAR.

1,0481,041CharHFSBD_FILE_TYPE
Inode (file serial number)1,0391,030IntHFSBD_INODE
Path name of file or directory 1,0286CharHFSBD_NAME
Record type of the HFS Basic Data record (0900)41IntHFSBD_RECORD_TYPE

CommentsEndStartTypeField Name

Does a directory default ACL exist for this
directory?

1,3781,375Yes/NoHFSBD_DIRMOD_ACL
Does a file default ACL exist for this directory?1,3731,370Yes/NoHFSBD_FILEMOD_ACL
Does an access ACL exist for this file or directory?1,3681,365Yes/NoHFSBD_ACCESS_ACL

Is the shared library extended attribute bit on for
this file?

1,3631,360Yes/NoHFSBD_SHARELIB
Number of links1,3581,349IntHFSBD_NUMBER_LINKS
Time of last data modification1,3471,340TimeHFSBD_LASTDAT_TIME
Date of last data modification1,3381,329DateHFSBD_LASTDAT_DATE
Time of last file status change1,3271,320TimeHFSBD_LASTCHG_TIME
Date of last file status change1,3181,309DateHFSBD_LASTCHG_DATE
Time of last access1,3071,300TimeHFSBD_LASTREF_TIME
Date of last access1,2981,289DateHFSBD_LASTREF_DATE
Time the file was created.1,2871,280TimeHFSBD_CREATE_TIME
Date the file was created.1,2781,269DateHFSBD_CREATE_DATE
FID1,2671,252CharHFSBD_FID

Record Type 0901 - HFS File Access record

The HFS File Access record defines the users or groups who have specific access to HFS files via an
access ACL. There is one record per file/authorization combination.

Does the user or group have search/execute
access to this file?

1,0831,080Yes/NoHFACC_EXEC

Does the user or group have write access to this
file?

1,0781,075Yes/NoHFACC_WRITE

Does the user or group have read access to this
file?

1,0731,070Yes/NoHFACC_READ
RACF user ID or group name 1,0681,061CharHFACC_ID_NAME
UID or GID1,0591,050IntHFACC_ID
‘USER’ or ‘GROUP’1,0481,041CharHFACC_TYPE
Inode (file serial number)1,0391,030IntHFACC_INODE
Path name of file or directory 1,0286CharHFACC_NAME
Record type of the HFS File Access record (0901)41IntHFACC_RECORD_TYPE

CommentsEndStartTypeField Name

Record Type 0902 - HFS File Default Access record

The HFS File Default Access record defines the users or groups who are defined in a file default ACL, if
one exists for a directory. There is one record per file/authorization combination. The mapping is the
same as for record type 0901, except that the field name prefix is “HFACF_”.

Record Type 0903 - HFS Directory Default Access record

The HFS Directory Default Access record defines the users or groups who are defined in a directory
default ACL, if one exists for a directory. There is one record per directory/authorization combination.
The mapping is the same as for record type 0901, except that the field name prefix is “HFACD_”.

Messages Created by irrhfsu

The following error messages can be issued by irrhfsu. They will be directed to stderr.

IRR67700I

IRR67700I fopen() error on output file: message-text

Explanation: The irrhfsu utility was unable to open the output file specified in the -f option.

System Action: The utility stops processing.

User Response: Use the message-text to perform problem determination. If your output file is
an MVS data set, and the message text says “An I/O abend was trapped”, make sure the user
running the utility has RACF access to the output data set.

IRR67701I

IRR67701I ftw() error

Explanation: The irrhfsu utility encountered an error using the C function ftw().

System Action: The utility stops processing.

User Response: Look up the error code.

IRR67702I

IRR67702I stat() could not be executed on file. Possible search error on parent directory.

System Action: The utility continues processing the next file.

User Response: If you wish irrhfsu to report on the failed file, then contact the directory owner
to grant you search (execute) access, and rerun the utility against the directory.

IRR67703I

IRR67703I Unable to read directory directory

System Action: The utility continues processing the next directory.

User Response: If you wish irrhfsu to report on the failed directory, then contact the directory
owner to grant you read access, and rerun the utility against the directory.

IRR67704I

IRR67704I fprintf() error while writing to output file

System Action: The utility terminates. The output file will contain records for files which were
processed prior to this error.

User Response: Check the system console for message IEC031I indicating an abend D37 with
reason code 04. This means you have run out of space in your output file. You need to either
allocate a larger output file, or run irrhfsu against a smaller portion of the file system.

For errors other than D37-04, look up the number of the error message which is displayed after
this one, and check the operator console for other indicators.

IRR67705I

IRR67705I acl_get_file() error: message-text

Explanation: The irrhfsu utility encountered an error using the C function acl_get_error(). The
UNIX error message is displayed in message-text.

System Action: The utility continues with the next file.

User Response: An IRR67706I message will immediately follow this one. See the
documentation for IRR67706I.

IRR67706I

IRR67706I Error received from acl_get_file while retrieving the type ACL for the file file

Explanation: The irrhfsu utility encountered an unexpected error trying to retrieve an ACL from
the file system using the acl_get_file function. The error code is displayed in the IRR67705I
message immediately preceding this one. The ACL type can be access ACL, file default ACL, or
directory default ACL. The file name is displayed in file.

System Action: The utility continues with the next ACL, if another one exists, and then on to the
next file. The ACL will not be unloaded for this file, nor will orphan ACL entries be deleted from
it if the -c option was specified.

User Response: Try using the UNIX getfacl command to display the ACL in question. If an
error is encountered, follow the instructions documented for that error message. The message-text
in the IRR67705I message immediately preceding this one may also be of help.

IRR67707I

IRR67707I error opening /dev/tty

Explanation: The -c option was specified to remove orphan ACL entries. The irrhfsu utility
attempted to issue message IRR67708I to the terminal, but encountered an error opening the
terminal. This is probably because irrhfsu was invoked using the BPXBATCH utility. This is not
a problem.

System Action: The utility writes the IRR67708I message to stderr instead of to the terminal.

User Response: Look in stderr to see the IRR67708I message.

IRR67708I

IRR67708I There were number extended ACL entries deleted as a result of specifying
 the -c option

Explanation: The -c option was specified to remove orphan ACL entries. This informational
message simply reports the number of ACL entries which were actually deleted.

System Action: The utility completes successfully.

User Response: Bask in the warm glow resulting from your successful use of irrhfsu.

