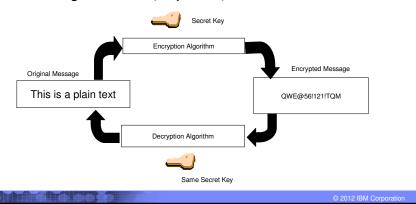
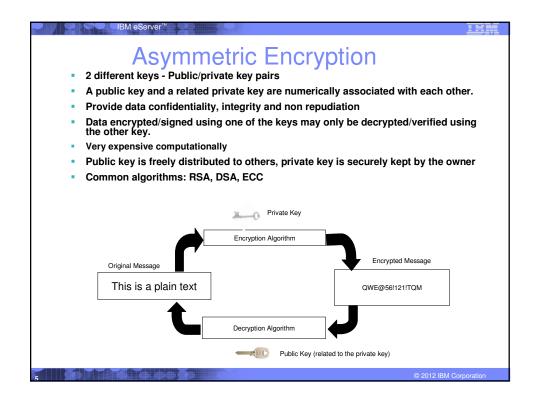
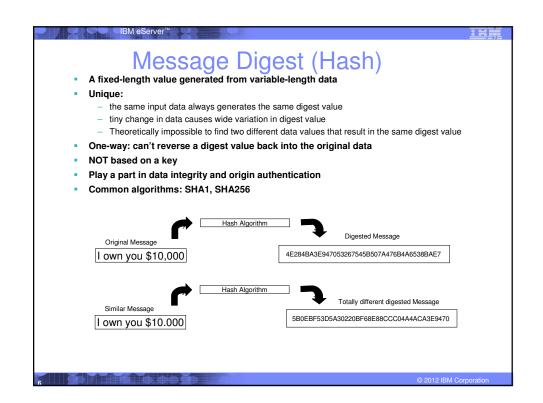


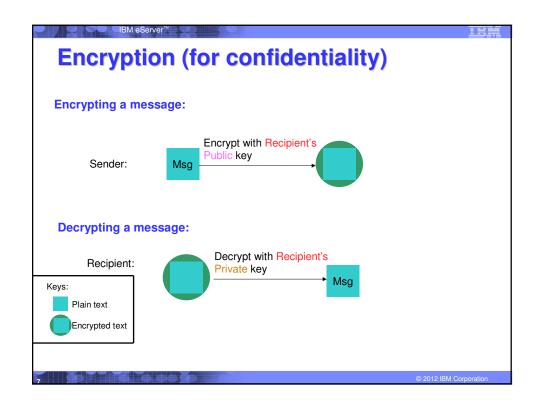
Agenda

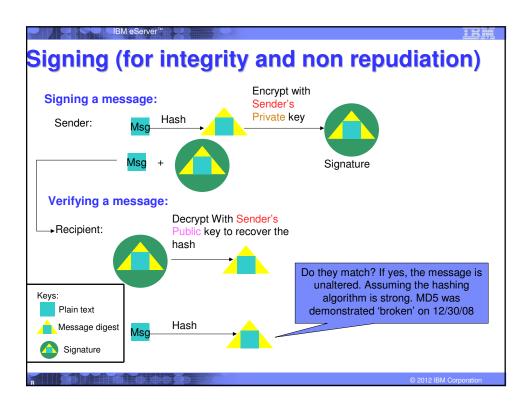
- Symmetric vs. Asymmetric Encryption
- What are digital certificates
- Certificate types and contents
- Overview of certificate utilities available on z/OS
- Certificate formats
- Summary


© 2012 IBM Corporation

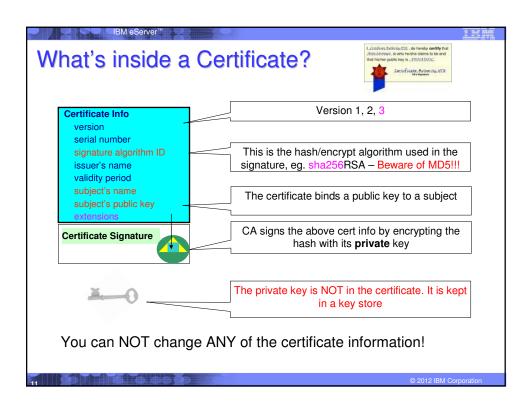

Symmetric Encryption

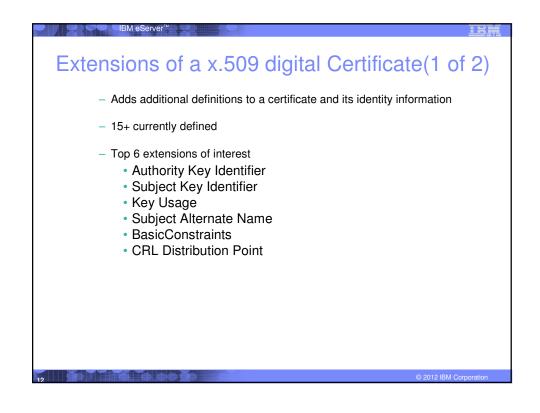

- Same key used for both encryption and decryption
- Provide data confidentiality

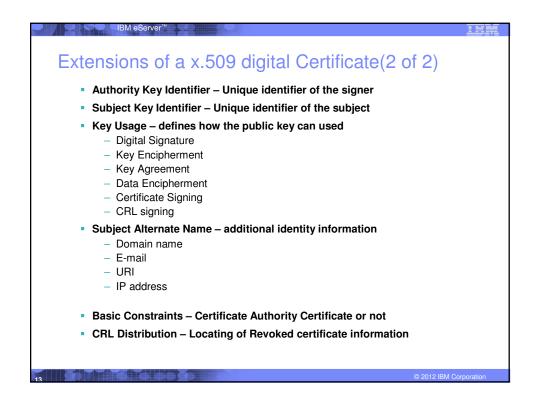

IBM eServer"

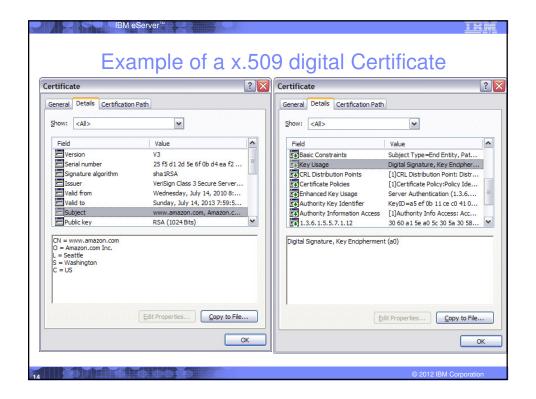

- Fast, used for bulk encryption/decryption
- Securely sharing and exchanging the key between both parties is a major issue
- Common algorithms: DES, Triple DES, AES

What is a Digital Certificate (1 of 2)


- Generally digital certificates provide identity to a person or a server
 - Person like an ID card
 - Server like a business license
- To establish an identity or credential to be used in electronic transactions
- It binds the public key to the identity to be used by applications that are based on public key protocols. (e.g. SSL/TLS)
- Issued by a trusted third party called Certificate Authority (CA) that can ensure validity


© 2012 IBM Corporation


What is a Digital Certificate(2 of 2)


- Packaging of the information is commonly known as the x.509 digital certificate. X.509 defines the format and contents of a digital certificate.
 - IETF RFC 5280
- Digital certificates been in existence for over 20 years
- Have evolved over time to not only bind basic identity information to the public key but also how public key can be used, additional identity data, revocation etc.

© 2012 IBM Corporation

Relationship between Certificate and Certificate Store

 Certificate must be placed in a certificate store before it can be used by an application to perform identification or validation

- The application needs to retrieve the certificate and/or its corresponding private key from the store
- On z/OS, many components like Communication Server, HTTP Server call System SSL APIs to access the store
- Certificate store = key ring = key file

© 2012 IBM Corporation

Types of digital certificates - who issues it

Self signed

- Self-issued
- Issuer and subject names identical
- Signed by itself using associated private key

Signed Certificate

- Signed/issued by a trusted Certificate Authority Certificate using its private key.
- By signing the certificate, the CA certifies the validity of the information. Can be a well-known commercial organization or local/internal organization.

Types of digital certificates – what is the usage

Secure Socket Layer (SSL) certificate

 Install on a server that needs to be authenticated, to ensure secure transactions between server and client

Code Signing certificate

 Sign software to assure to the user that it comes from the publisher it claims

Personal certificate

 Identify an individual, enable secure email – to prove that the email really comes from the sender and /or encrypt the email so that only the receiver can read it

More (name it whatever you want)...

- wireless certificate, smart card certificate...

Certificate Authority (CA) certificate

- Used to sign other certificates
- Root CA: the top

IBM eServer™

- Intermediate CA: signed by root CA or other intermediate CA

© 2012 IBM Corporation

Types of digital certificates – what is the usage

Site certificate (in RACF)

- The usage assigned to a certificate when it is connected to a RACF key ring indicates its intended purpose
- There may be a few certificate validation applications which treat a certificate that is connected to a key ring with usage site as a valid certificate authority certificate to bypass the normal certificate verification tests during SSL handshake, for example, an expired certificate can be considered trusted
- Having a SITE certificate in RACF does not benefit you if the validation application does not make use of it

Certificate Store Protection

- gskkyman key database files
 - Protected by the file system's permission bits and password
 - •Upon creation, permission bits are 700 giving the issuer of gskkyman read and write to the file only.
 - Applications using these files need at least read to the file
- ■RACF Key Rings
 - •RACF key rings are protected by resource profiles.
 - •Users rings need read access to IRR.DIGTCERT.LISTRING or <ring owner>.<ring name>.LST to be able to read the contents of their key ring
 - ■IRR.DIGTCERT.LISTRING Global control
 - <ring owner>.<ring name>.LST Granular control

Certificate Utilities

- •gskkyman is a Unix based utility shipped as part of the System SSL product in the z/OS Cryptographic Services Element
- RACDCERT is a TSO command shipped as part of RACF
- ■Provide basic certificate functions
 - ▶ Create/delete certificate store (HFS key database file / SAF key ring)
 - ▶ Create certificate requests (to be signed by trusted Certificate Authority)
 - ▶ Import/Export certificates (with and without private keys)
 - ▶ Create self-signed certificates
- Do not have all the functions of a real Certificate Authority

© 2012 IBM Corporation

Certificate Authority on z/OS

- ■PKI Services provides full certificate life cycle management
 - ▶ Request, create, renew, revoke certificate
 - ▶ Provide certificate status through Certificate Revocation List(CRL) and Online Certificate Status Protocol (OCSP)
 - ▶ Generation and administration of certificates via customizable web pages
 - ▶ Support Simple Certificate Enrollment Protocol (SCEP) for routers to request certificates automatically
 - ▶ Automatic notification or renewal of expiring certificates

Defining a Certificate

- How will the certificate be used?
- What certificate store is to be used?
- Who will be the certificate authority?
- What is the size of the public/private keys?
- What subject name to use?
- Need additional identity information and extensions?

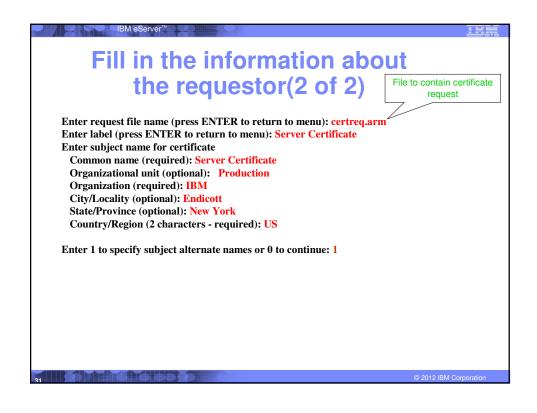
© 2012 IBM Corporation

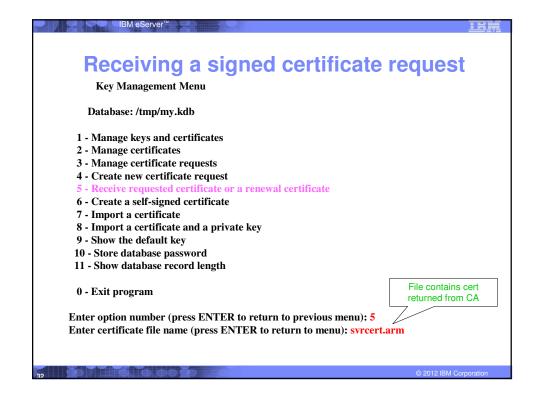
Defining a Certificate Request to be signed by a CA

- A certificate signing request (also CSR) is a message sent from the certificate requestor to a certificate authority to obtain a signed digital certificate
- Contains identifying information and public key for the requestor
- Corresponding private key is not included in the CSR, but is used to digitally sign the request to ensure the request is actually coming from the requestor
- CSR may be accompanied by other credentials or proofs of identity required by the certificate authority, and the certificate authority may contact the requestor for further information.
- If the request is successful, the certificate authority will send back an identity certificate that has been digitally signed with the private key of the certificate authority.

Importing a signing Certificate Authority Certificate Key Management Menu

- Database: /tmp/my.kdb
- 1 Manage keys and certificates
- 2 Manage certificates
- 3 Manage certificate requests
- 4 Create new certificate request
- 5 Receive requested certificate or a renewal certificate
- 6 Create a self-signed certificate
- 7 Import a certificate
- 8 Import a certificate and a private key
- 9 Show the default key
- 10 Store database password
- 11 Show database record length
- 0 Exit program


Enter option number (press ENTER to return to previous menu): 7


© 2012 IBM Corporation

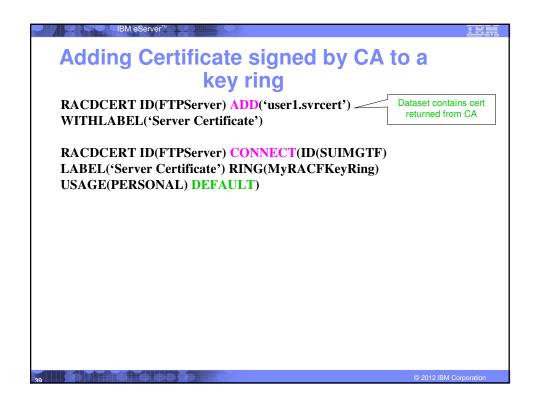
Importing a signing Certificate Authority Certificate Continued File contains the CA certificate Enter import file name (press ENTER to return to menu): cacert.b64 Enter label (press ENTER to return to menu): CA Certificate Certificate imported.

Creating a new certificate request Key Management Menu Database: /tmp/my.kdb 1 - Manage keys and certificates 2 - Manage certificates 3 - Manage certificate requests 4 - Create new certificate request 5 - Receive requested certificate or a renewal certificate 6 - Create a self-signed certificate 7 - Import a certificate 8 - Import a certificate and a private key 9 - Show the default key 10 - Store database password 11 - Show database record length 0 - Exit program Enter option number (press ENTER to return to previous menu): 4

Fill in the information about the requestor (1 of 2) **Certificate Key Algorithm** 1 - Certificate with an RSA key 2 - Certificate with a DSA key 3 - Certificate with an ECC key Select certificate key algorithm (press ENTER to return to menu): 1 **RSA Key Size** 1 - 1024-bit key 2 - 2048-bit key 3 - 4096-bit key Select RSA key size (press ENTER to return to menu): 2 Signature Digest Type 1 - SHA-1 2 - SHA-224 3 - SHA-256 4 - SHA-384 5 - SHA-512 Select digest type (press ENTER to return to menu): 2



Marking a certificate as the default **Key and Certificate Menu Label: Server Certificate** 1 - Show certificate information 2 - Show key information 3 - Set key as default 4 - Set certificate trust status 5 - Copy certificate and key to another database 6 - Export certificate to a file 7 - Export certificate and key to a file 8 - Delete certificate and key 9 - Change label 10 - Create a signed certificate and key 11 - Create a certificate renewal request 0 - Exit program Enter option number (press ENTER to return to previous menu): 3



IBM eServer*	<u>lew</u>
RACDCERT Panel on Key Ring	
RACF - Digital Certificate Key Rin OPTION ===> _	g Services
For user:	
Enter one of the following at the OPTION line:	
1 Create a new key ring2 Delete an existing key ring	
3 List existing key ring(s)	
 4 Connect a digital certificate to a key ri 5 Remove a digital certificate from a key r 	
5 Remove a digital certificate from a key f	Ing
35	© 2012 IBM Corporation

Certificate Formats

- X.509 certificates can exist in many different forms
 - -Single certificate
 - -PKCS #7 certificate package
 - · Contains 1 or more certificates
 - PKCS #12 certificate package
 - A password encrypted package containing 1 or more certificates and the private key associated with the endentity certificate.
 - Only package type that contains a private key
- Can be in binary or Base64 encoded format

© 2012 IBM Corporation

Base64 encoding

 Converting binary data to displayable text for easy cut and paste.

----BEGIN CERTIFICATE----

MIICPTCCAaagAwIBAgIIR49S4QANLvEwDQYJKoZIhvcNAQEFBQAwNzELMAkGA1UE
BhMCVVMxDTALBgNVBAoTBFR1c3QxGTAXBgNVBAMMEFR1c3Rfc2VsZ19zaWduZWQw
HhcNMDgwMTE3MTMwNjQxWhcNMDkwMTE2MTMwNjQxWjA3MQswCQYDVQQGEwJVUzEN
MASGA1UEChMEVGVzdDEZMBcGA1UEAwwQVGVzdF9zZWxmX3NpZ251ZDCBnzANBgkq
hkiG9w0BAQEFAAOBjQAwgYkCgYEA9tKOv5gLaceozMfMeVd891fCjBVoR+dpzhwK
R2B/QcQYBGLfgS4YM/wGSh6YrmVygO0VxocriySbcxRuBayw3pE4/3J12myINmLp
bFIdPCnqk/qvFK+1N+nrEnBK9yls7NmxDIuQQfFsX/o/DpoxwxzwXf+JbWDwirQR
NyLiTGMCAwEAAaNSMFAwHQYDVROOBBYEFAwDFLjOUCRa62BVs3jVyHewuOWEMB8G
AlUdIwQYMBaAFAwDFLjOUCRa62BVs3jVyHewuOWEMA4GA1UdDwEB/wQEAwIE8DAN
BgkqhkiG9w0BAQUFAAOBgQAC5sW1f3EdE0k9zc8wKNt1sczWkQBrVy4Rdr17ERqN
D20fkBJQuXiNwN18pF6WPWfYG80MNwhP4oJSVePnzElh4Wzi2w1/z18rINSW7px3
w161z+8jE184q/N0q0toPTAtEb6fIzwjkLtctt3oF+IjunvE5QoRsXRJbbTMD/EG
jw==

-----END CERTIFICATE-----

© 2012 IBM Corporatio

Exporting Certificates through gskkyman **Key and Certificate Menu Label: Server Certificate** 1 - Show certificate information 2 - Show key information 3 - Set key as default 4 - Set certificate trust status 5 - Copy certificate and key to another database 6 - Export certificate to a file 7 - Export certificate and key to a file 8 - Delete certificate and key 9 - Change label 10 - Create a signed certificate and key 11 - Create a certificate renewal request 0 - Exit program Enter option number (press ENTER to return to previous menu):

Exporting Certificates through gskkyman Option 6 – Public Certificate Information Export File Format 1 - Binary ASN.1 DER 2 - Base64 ASN.1 DER 3 - Binary PKCS #7 4 - Base64 PKCS #7 Option 7 – Public Certificate Information and Private Key Export File Format 1 - Binary PKCS #12 Version 1 2 - Base64 PKCS #12 Version 1 3 - Binary PKCS #12 Version 3 4 - Base64 PKCS #12 Version 3

Exporting Certificates through RACDCERT(1 of 2)

RACDCERT ID(userid) EXPORT

(LABEL('label-name'))

IBM eServer™

DSN(output-data-set-name)

FORMAT(CERTDER | CERTB64 | PKCS7DER | PKCS7B64 | PKCS12DER | PKCS12B64)

PASSWORD('pkcs12-password')

- Example Export Server Certificate with its private key
 - RACDCERT ID(FTPServer) EXPORT LABEL('Server Certificate') DSN('USER1.SERVER.CERT') FORMAT(PKCS12DER) PASSWORD('passwd')

© 2012 IBM Corporation

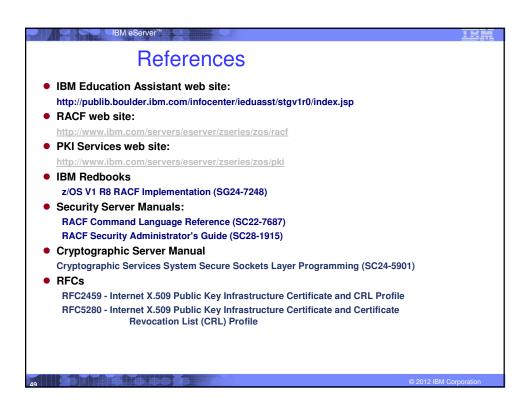
Exporting Certificates through RACDCERT(2 of 2)

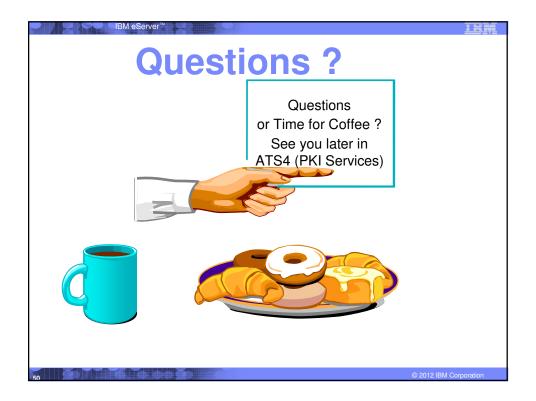
- Precaution needed for CERTAUTH certificate when you plan to preserve the certificate and the private key by exporting them in a pkcs12 package
 - If the original CERTAUTH certificate got deleted and you re-add this package, the field that used for recording serial numbers that it has issued is not reserved
 - For example, if this CA certificate has issued 100 certificates, the next certificate to be issued should have serial number 101; but after re-adding it, the certificate to be issued will have serial number 1, which is already used – all the certificates issued by the same CA should have a unique serial number!
- Before deleting CERTAUTH certificate, find out the last certificate's serial number it issued
- After re-adding, use r_datalib to bump up the serial number field to the appropriate number

Summary

- Digital certificates provide electronic identity and public key information to be utilized through public key protocols (ie. SSL/TLS)
- Utilizing trusted CAs is key to ensure validity of the digital certificate
- Protect the private key!!!

IBM eServer™


 Larger the public/private key pair size, greater security, but more computation intense


© 2012 IBM Corporation

Summary

- When transferring certificates, use a format acceptable to the receiving side.
- When transferring certificates, be sensitive to binary and text modes to ensure proper transfer

© 2012 IBM Corporation

