
��������	 �
���


��������������
��

Vanguard Security Expo 2008
Session RAA5
Bruce Wells - IBM
brwells@us.ibm.com



The information contained in this document is distributed on as "as is" basis, without any 
warranty either express or implied. The customer is responsible for use of this 
information and/or implementation of any techniques mentioned. IBM has reviewed the 
information for accuracy, but there is no guarantee that a customer using the information 
or techniques will obtain the same or similar results in its own operational environment.

In this document, any references made to an IBM licensed program are not intended to 
state or imply that only IBM's licensed program may be used. Functionally equivalent 
programs that do not infringe IBM's intellectual property rights may be used instead. Any 
performance data contained in this document was determined in a controlled environment 
and therefore, the results which may be obtained in other operating environments may 
vary significantly. Users of this document should verify the applicable data for their 
specific environment.

It is possible that this material may contain references to, or information about, IBM 
products (machines and programs), programming, or services that are not announced in 
your country. Such references or information must not be construed to mean that IBM 
intends to announce such IBM Products, programming or services in your country.

IBM retains the title to the copyright in this paper as well as title to the copyright in all 
underlying works. IBM retains the right to make derivative works and to republish and 
distribute this paper to whomever it chooses.

����������



The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

The following are trademarks or registered trademarks of other companies.

* Registered trademarks of IBM Corporation

* All other products may be trademarks or registered trademarks of their respective companies.

Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
UNIX is a registered trademark of The Open Group in the United States and other countries.
SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.

Notes:
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment.  The actual throughput that any user will experience will vary depending upon 
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed.  Therefore, no assurance can  be given that an individual user will achieve throughput 
improvements equivalent to the performance ratios stated here. 
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
All customer examples cited or described in this presentation are presented as illustrations of  the manner in which some customers have used IBM products and the results they may have achieved.  Actual environmental costs and performance 
characteristics will vary depending on individual customer configurations and conditions.
This publication was produced in the United States.  IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice.  Consult your local IBM business 
contact for information on the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements.  IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-
IBM products.  Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
Prices subject to change without notice.  Contact your IBM representative or Business Partner for the most current pricing in your geography.

����������

•z/OS
•RACF




�����

� API overview
� Description of each of the functions
� Documentation “demo”



��������

� The R_admin callable service (IRRSEQ00) is 
an assembler programming interface which 
allows for management of RACF profiles and 
system wide settings (SETROPTS)

� Easier to use than RACROUTE or ICHEINTY
� Documentation completely rewritten for z/OS 

V1R7



�����������������

� Run a RACF command
� By providing a command image
� By providing tokenized data

� Extract user or group profile information
� Extract SETROPTS settings
� Retrieve a PKCS#7 password envelope



������������� 
������������

� R_admin called by SAF router, subject to 
SAF exits

� But it is a highly RACF-specific interface
� Segment names, field names, data format

� Don’t expect this to be a general 
administrative interface which will work 
regardless of the underlying security product 



������������!�
�

� Consider using LDAP and the SDBM 
backend in order to retrieve and update 
RACF data
� Open, remote-able interface, callable by java, C, 

and REXX
� Restricted to users, groups and connections



�����"���������

CALL IRRSEQ00,(Work_area,            /* Common parms   */

ALET,SAF_return_code, /*  for all the   */ 

ALET,RACF_return_code,/*  RACF callable */ 

ALET,RACF_reason_code,/*  services      */ 

Function_code,        /* Requested fcn  */  

Parm_list,            /* Input p-list   */

RACF_userID,          /* “Run-as” user  */

ACEE_ptr,             /* “Run-as” ACEE  */

Out_message_subpool,  /* Output subpool */

Out_message_strings   /* Output anchor  */ 

),VL



��������#�������
����$����

� Caller specifies the function to perform and provides a 
function-specific parameter list

� Caller provides a subpool and address field for the 
output

� Supervisor state callers can specify an identity under 
whose authority the request will run

� Some functions are available to problem state callers, 
and are protected by FACILITY resources

� Most functions require the RACF subsystem address 
space.  Caller does not require a TSO environment.

Note: IRRPCOMP macro provides some mappings and constants



�����������



���%�������

� Caller provides RACF command image as 
function-specific parameter list

� R_admin sends command to RACF address 
space for execution

� Command output is returned to caller
� Amount of output is restricted to 4096 lines 

(not bytes) of output

Yes�Command processor authorization
�FACILITY - IRR.RADMIN.<cmd-name> (READ)

5

RACF address space requiredAuthorizationFunction code



������������	 ��"���������

Length (2 bytes)    Left-justified RACF command image …

For example

41                ALTUSER GEORGE REVOKE NOSPECIAL NAME(MUD)

Parm_list



������������	 ���"���������

Out_message_strings

“RMSG”

SP length Offset to 1st

Unused byte

length Line of output

length Line of output

… …

“RMSG”

SP length Offset to 1st

Unused byte

length Line of output

length Line of output

… …

@(NEXT) @(NEXT)



������������% ������&��

� Caller provides architected input structure
� Add, alter, delete, and list commands supported 

for each of the profile types
� Including CONNECT, REMOVE, PERMIT

� SETROPTS also supported
� R_admin creates the command image internally 

from input parameter list
� Command output returned same as for run-cmd

Yes�Supervisor state
�Command processor authorization

1-4, 6-21

RACF address space requiredAuthorizationFunction codes



������&�����"���������

Parm_list Request Header

Segment Entry 1

Segment Entry y

Field Entry 1
... ... ...

Field Entry n

Field Entries ...

Segment Entry 2
Field Entries ...



�����������""��������' (����)����

Field name

Field data … … …Length of 
field data

Flag 
byte

Number of 
field entries

Flag 
byte

Segment name

Number of 
segment entries

Offset to 
entry in error

rsvd…

User idUser 
length

h
e
a
d
e
r

s
e
g
m
e
n
t

e
n
t
r
y

f
i
e
l
d

e
n
t
r
y



�����������""����* ��+��"��

DFLTGRP

RACFDEV7Y

1Y

BASE

1

BRUCE5h
e
a
d
e
r

s
e
g
m
e
n
t

e
n
t
r
y

f
i
e
l
d

e
n
t
r
y



�����(+��"��,�
��������-�'�(�

HEADER DC AL1(5),CL8’BRUCE’,AL1(0),AL2(0),AL2(2) 
BSEG   DC CL8’BASE’,CL1’Y’,AL2(3) 
BFLD1  DC CL8’NAME’,CL1’Y’,AL2(13),CL13’’’BRUCE WELLS’’’ 
BFLD2  DC CL8’OWNER’,CL1’Y’,AL2(7),CL7’RACFDEV’ 
BFLD3  DC CL8’SPECIAL’,CL1’Y’,AL2(0) 
OSEG   DC CL8’OMVS’,CL1’Y’,AL2(3) 
OFLD1  DC CL8’UID’,CL1’Y’,AL2(4),CL4’3500’ 
OFLD2  DC CL8’HOME’,CL1’Y’,AL2(10),CL10’/u/brwells’ 
OFLD3  DC CL8’PROGRAM’,CL1’Y’,AL2(7),CL7’/bin/sh’ 

Is the equivalent of:

ADDUSER BRUCE NAME(‘BRUCE WELLS’) OWNER(RACFDEV) SPECIAL
OMVS(UID(3500) HOME(/u/brwells) PROGRAM(/bin/sh))



��������(+���������������



���������+���������������

� Extract User, Group and Connect information 
from the RACF database in an architected 
format which is a programming interface

� No limit imposed on output size
� Requires same authority as LISTUSER/GRP
� All (authorized) profile data returned

No�Command processor authorization
�FACILITY - IRR.RADMIN.<cmd-name> (READ)

25-29

RACF address space requiredAuthorizationFunction codes



���������+�����������./$���������!� �' (�0#���

�������������
���'�(��(1'( �2(3��
��

Suppresses fields not displayed 
by LISTUSER or LISTGRP

Can iteratively cycle through 
profiles

Problem state enabled – requires 
same authorization as command

Runs in caller’s address space 
(much faster than run-command)

Returned data is ‘symmetric’ Supervisor state caller can 
bypass authorization

Returned data is character 
(EBCDIC)

Format is architected (i.e. 
supported, unlike command 
output)

Like a command
(tastes great)

Like RACROUTE
(less filling)



���������+���������"���������

Parm_list (input)
and

Out_message_strings
(output)

... ... ...

Segment Desc. 1

Field Descriptor 1-1
Field Descriptor 1-x

Field Data 1-1

Header

Segment Desc. 2
Segment Desc. n

Field Descriptor 2-1
Field Descriptor 2-y
Field Descriptor n-1
Field Descriptor n-z

Field Data 1-x
Field Data 2-1

Field Data n-z

Profile Name



��"���"����������������""���

Profile name

Flags
1… Bypass authorization
.1…BASE segment only

Profile name length

version

0

8

16

24

32

40

48

56



���"���"����������������""����% .�����

0

8

16

24

32

40

48

56 Profile name

Number of segments

Flags – cleared!

Profile name length… name

… ClassversionSP

Length of output buffer“PXTR” eye catcher



���"���"����������������""����	 ��������

������"���

0

8

16

24

32

40

Offset to 1st field descriptor

Number of fieldsFlags (none currently)

Segment name (e.g. “BASE”, “TSO”, etc) padded

Start of next segment descriptor, or, if this is the final 
segment descriptor, then start of the first field descriptor



���"���"����������������""����	 ������

������"���

0

8

16

24

32

40

Start of next field descriptor, or, if this is the final field 
descriptor, then start of field data

Offset to field data

Length of data

FlagsField type

Field name, padded



��"����������

� N-dimensional repeating data fields.  E.G.
� Class authority (CLAUTH) – 1-dimensional
� Group connection in user profile – 15-dimensional

� Header field descriptor with unique name 
identifies
� Number of occurrences of repeat field
� Number of elements (dimension) in field 

� Subsequent field descriptors for each 
constituent field, repeated as necessary



���"���"����������������""����	 ��"����

������.������������"���

0

8

16

24

32

40 Start of first subfield descriptor

Number of elements 
(subfields) in repeat field

Number of repeat field 
occurrences

FlagsField type

Field name, padded



��"���������� �.�������(+��"���4,�

���������.����/

Offset to 3rd class8 bytesCLAUTH

Offset to 2nd class4 bytesCLAUTH

Offset to 1st class8 bytesCLAUTH

3 occurrences1-DCLCNT

Data: FACILITY USER UNIXPRIV



��"���������� �.�������(+��"���5,�

#���"�"����������$�������

Offset to 3rd user ID3 bytesGUSERID

Offset to 3rd authority6 bytesGAUTH

Offset to 2nd authority3 bytesGAUTH

Offset to 2nd user ID5 bytesGUSERID

Offset to 1st authority4 bytesGAUTH

Offset to 1st user ID5 bytesGUSERID

3 occurrences2-DCONNECTS

Data: LARRY JOIN CURLY USE MOE CREATE



�
� (1�	  ��"���� ���������

� Uses R_admin extract functions to display 
user, group, or connection attributes

� Structured output format lends itself to use 
with REXX OUTTRAP

� Syntax: 
� RACSEQ CLASS(class) PROFILE(profile)

� Profile is case-sensitive

� See RACF web page



RACSEQ CLASS(GROUP) PROFILE(RAPTORS)
Displaying profile RAPTORS in class GROUP. Segments:02
Segment: BASE Fields:08
SUPGROUP:SYS1
CREATDAT:04/18/06
OWNER :IBMUSER
TERMUACC:FALSE
DATA :BIRDS OF PREY KNOW THEY'RE COOL
Repeat field:SUBGRPCT Subfields:01 Occurrences:0004
SUBGROUP:HAWKS
---------------------------------------------
SUBGROUP:FALCONS
---------------------------------------------
SUBGROUP:EAGLES
---------------------------------------------
SUBGROUP:OWLS
---------------------------------------------
Repeat field:CONNECTS Subfields:02 Occurrences:0007
GUSERID :BRUCE
GAUTH :CONNECT
---------------------------------------------
GUSERID :KESTREL
GAUTH :USE
---------------------------------------------
GUSERID :OSPREY
GAUTH :USE
---------------------------------------------
GUSERID :REDTAIL
GAUTH :JOIN
---------------------------------------------
GUSERID :SAWWHET
GAUTH :CREATE
---------------------------------------------
GUSERID :HARRIER
GAUTH :USE
---------------------------------------------
GUSERID :SNOWY
GAUTH :USE
---------------------------------------------
UNIVERSL:FALSE
Segment: OMVS Fields:01
GID :4

RACSEQ – Sample output



67�+�8���)�����

� For users and groups (not connections), you 
can iterate through the profiles by providing a 
starting value for profile name
� Next name is returned, similar to ICHEINTY NEXT 

or RACROUTE REQUEST=EXTRACT 
TYPE=EXTRACTN

� The output of the nth request can be used as 
the input of the n+1th request
� You need only re-specify flags, if desired



67�+�8�"���������

1. Build the plist header.  Specify a profile name of a 
single blank to start at the top.

2. Call IRRSEQ00 passing the plist in the Parm_list
parameter.  Output returned in 
Out_message_strings parameter.

3. Free original (or n-1) plist.
4. Process the output as appropriate.
5. (Re)set header flags, as appropriate
6. Call IRRSEQ00 with n-1 output as n input.
7. Iterate at step 3 until finished (RC 4/4/4).



67�+�8������������9���.�"�������:

Profile name

Build Plist header CALL IRRSEQ00,(Work_area,            

ALET,SAF_return_code, 

ALET,RACF_return_code,

ALET,RACF_reason_code, 

Function_code,        

Parm_list,            

RACF_userID,          

ACEE_ptr,             

Out_message_subpool,  

Out_message_strings

),VL

Call R_admin

Process output

Free previous storage
Profile name

Header

Until done (SAF RC4, RACF RC4, RACF reason code 4 means no more profiles)

Profile name
Header



 (����� ���"����������������



 (����� ���"����������������

� Retrieve SETROPTS settings in one of two 
formats
� SMF Unload (Type 81)
� SETROPTS input format (tokenized) 

� Not the same as R7 extract format
� Sorry!

� Very simple: no input parameter list required

No�Supervisor state 
�SETROPTS LIST authority *not* checked

22, 23

RACF address space requiredAuthorizationFunction codes



 (����� ��������������

Out_message_strings

record data … … …

reserved

# of recordsrecord length

SMF record type

# of SMF 
record types

reserved

length“RUNL”

Repeated for number 
of record types (2)

Overall output header



 (����� ��������������,�(+��"��

Out_message_strings

RACFINIT ... SYS1.RACF20 ... ... ...

12ED

RACFINIT

2

54CF“RUNL”

Repeated for number 
of record types (2)

Overall output header



���������(�����"�����������



���������������"�����������

� Rather specialized (and sensitive) little 
function to extract a specified user’s PKCS#7 
password envelope
� From which the clear-text can be recovered

� Intended for password synchronization 
applications
� Exploited by Tivoli Directory Integrator

Yes�Supervisor state
�FACILITY - IRR.RADMIN.EXTRACT.PWENV (READ)

24

RACF address space requiredAuthorizationFunction code



���������������"��������

Out_message_strings

“RXPW” SP length

PKCS#7 
Envelope
PKCS#7 
Envelope



����"

� API overview
� Description of each of the functions

� Run a RACF command
� Extract user or group profile information
� Extract SETROPTS settings
� Retrieve a password envelope



����������

� RACF Callable Services 
� Command Language Reference

� http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves/ICHZBK80

� RACF Downloads page – Sample R_admin 
extract program (RACSEQ)
� http://www-03.ibm.com/servers/eserver/zseries/zos/racf/goodies.html


