

# I10: Multilevel Security, z/OS R6, DB2, TCP/IP, and You

Walt Farrell, CISSP z/OS Security Design Telephone: (845) 435-7750 e-mail: wfarrell@us.ibm.com

IBM eServer<sup>™</sup>



© 2004 IBM Corporation



### **Table of Contents**

- □ Why Multilevel Security?
- □ What is Multilevel Security?
- **Commercial Exploitation**
- **General SECLABEL Considerations and Options**
- Multilevel Security with TCP/IP
- Multilevel Security with JES
- Multilevel Security with DB2
- References
- **Trademarks**

### Why Multilevel Security?

- □ Highly secure data
- □ Shared between people/organizations with different "need to know".
  - Multilevel Security provides a way to segregate users and their data from other users and their data regardless of access lists, UACC, etc.
- Must be
  - Manageable, Affordable, Resilient, Highly available
- Valuable to government agencies
  - Use of functions like name-hiding, write-down, \*-property (no write-down)
- □ Valuable to commercial clients (e.g. service bureau)
  - Can be set up using a small set of SECLABELs and a few SETROPTS options (MLACTIVE and SECLABELCONTROL)
  - Most SECLABEL-related SETROPTS options not needed for commercial use <u>Example</u>: MVS system with HTTP Server
    - Assign a "low" SECLABEL to external customers so they can access "external" data
    - Assign a "high" SECLABEL to employees so they can access both "internal" and "external" data

# What is Multilevel Security?

- A secure computing environment with two goals:
  - Controls to prevent unauthorized individuals from accessing information at a higher classification than their authorization
  - Controls to prevent individuals from declassifying information
- Controls
  - Classifies data using
    - Security Levels
    - Security categories
  - System controls access to resources
    - Labels all resources
    - Enforces accountability
    - Prevents 'declassifying' data
    - Does not allow reuse of data objects until purged



#### Multilevel Security on zSeries

#### **Commercial Exploitation**

- Application servers shared across multiple customer constituencies
  - Labeling allows data to be compartmentalized or isolated from other customers
    - Data protected for competitive, privacy and integrity reasons
  - Labeling of data and application identities provides the means for both the aggregation and compartmentalization of data.
- zSeries is able to host large databases on behalf of transaction programs or other application servers
  - Facilitates some database aggregation that reduces execution costs
- Database on demand capability
  - Functionality is provided by strength of security on z/OS and within DB2
  - DB2 z/OS V8 row-level security and z/OS V1R5 with RACF provide the operating system and security services that make database on demand capability whole

#### **Application serving on demand**

- Service business acquires a collection of servers and hosts a specific application and its associated data on that server infrastructure.
- Sells subscriptions for the application to other businesses
  - Subscribers need their data isolated from other businesses
- Make a subset of the information available by aggregating data using labels. Isolate sensitive data.
- Saves server and network costs associated with replicating data across business units.

#### Outsourcer running an application practice Common DB schema across customers Seclabel="customer\_name"

| DB2_SECURITY_<br>LABEL_EXT | COL1                     | COLS | COLS |
|----------------------------|--------------------------|------|------|
| Carbinal A                 | $\{ i_1, \ldots, i_n \}$ |      |      |
| Curitorian B               | (-1)                     |      |      |
| Custoria A                 |                          |      |      |
| Caltrie E                  |                          | S (8 |      |
| Customet C                 |                          |      |      |
| Cultorer D                 |                          | 1    |      |
| Cultimer E                 |                          |      |      |
| Culture 4                  | 1000                     |      |      |
| Curbiner E                 |                          |      |      |
| Cantorniar D               | 1                        |      |      |
| Custoria E                 | 1                        |      |      |

Figure 2 - Using security labels for application serving on demand

#### **Financial services on demand**

- Government regulations may inhibit one business unit from seeing personal , consumer information associated with another business unit.
- Subset of information may be valuable for data mining
  - Identifying trends
  - Developing new services
- Make a subset of the information available by aggregating data using labels. Isolate sensitive data.
- Saves server and network costs associated with replicating data across business units.

Large company managing HR for subsidiaries "corporate phone book" Seclabel="subsidiary\_name"

| DB2_SECURITY_<br>LABEL_EXT | COL1 | COL2 | COL3 |
|----------------------------|------|------|------|
| Subsidiary 1               |      |      |      |
| Subsidiary 2               |      |      |      |
| Subsidiary 3               |      |      |      |
| Subsidiary f               |      |      |      |
| Subsidiary 4               |      |      |      |
| Subsidiary 2               |      |      |      |
| Subsidiary 3               |      |      |      |
| Subsidiary 4               |      |      |      |
| Subsidiary 1               |      |      |      |
| Subsidiary 2               |      |      |      |
| Subsidiary 4               |      |      |      |

Figure 3 - Using security labels for financial services on demand

#### **Commercial on demand services summary**

- Security labeling of data and application identities
  - Provides both compartmentalization and aggregation of data
- Need to replicate or move data to provide a new security container or isolation point?
  - Consider labeling
    - ✓ Save on processor, network, storage and administrative expense
- Examine database organization and flow of data between application servers
  - Labeling may provide additional security and deployment savings to your business

## **Original SECLABEL support (before z/OS V1R5)**

- RACF and other evaluated system components support Security Labels (a.k.a. SECLABELs).
- □ SECLABELs have two components:
  - Level (a named number in the range 1-254)
    - Unclassified/1
    - Sensitive/25
    - Confidential/50
    - Secret/100
  - List of Categories (0 or more named categories)
    - Green
    - Yellow, Orange
    - Yellow, Orange, Red
- For commercial usage, the categories are probably more important than the level, and most SECLABELS may use the same level, but different sets of categories.

### **SECLABEL Dominance**

- SECLABELs defined
  - > RED
    - SECLEVEL = SECRET
    - CATEGORY = PROJA, PROJB, PROJC, PROJD, PROJE
  - ORANGE
    - SECLEVEL = SENSITIVE
    - CATEGORY = PROJA, PROJB, PROJC, PROJE
  - > GREEN
    - SECLEVEL = SENSITIVE
    - CATEGORY = PROJC, PROJD, PROJE
  - > BLUE
    - SECLEVEL = UNCLASSIFIED
    - CATEGORY = PROJE
  - **RED** dominates all
  - ORANGE & GREEN dominate BLUE
  - □ ORANGE & GREEN are disjoint security labels

# **SECLABEL Hierarchy**



#### 151

#### **Session SECLABEL Assignment**

- Each user has a default SECLABEL
- A user may have access to other SECLABELs, too
- Some applications (TSO/E, batch jobs) support user requesting a specific SECLABEL
- Each port of entry (TERMINAL, TCP/IP security zone, ...) has a SECLABEL
- Each SECLABEL has a RACF profile
  - Access list
  - Universal access
  - Auditing
- During user authentication, depending on application, user may request a SECLABEL, or RACF may infer one from the port of entry or application, or assign the user's default
- RACF validates session SECLABEL
  - User must have access to that SECLABEL
  - SECLABEL must properly match the port of entry and application

#### **Some SECLABEL-related Options**

- □ MLACTIVE Requires users and some resources to have SECLABELs
- SECLABELCONTROL Restricts who can assign SECLABELs to resources
- SECLABELAUDIT Allows audit generation based on user SECLABEL or (new in z/OS R6) resource SECLABEL
  - Good for logging access to especially restricted data (privacy, financial)
- Possibly MLS Prevents "write down" (prevents, for example, a user running with SUNSET from writing to a file or data set with the RED SECLABEL.
- □ If using SETROPTS MLS, then you can also allow selected users to "write down" in a controlled fashion, via the RACPRIV command.



#### **Resource Access Checking & SECLABELs** (Commercial Use)

#### User tries to access resource

- RACF compares user's SECLABEL and resource's SECLABEL
- Reading: User SECLABEL > resource SECLABEL
- Updating: (without SETROPTS MLS, or if user has WRITEDOWN authority)

User SECLABEL > resource SECLABEL or Resource SECLABEL > User SECLABEL

Updating: (with SETROPTS MLS)

User SECLABEL = resource SECLABEL

- Administrator can define "security zones" representing IP subnetworks via TCP/IP configuration data
  - Specifies hostname, or address, or subnet range
  - > Any granularity desired, down to individual IP address if needed
  - Specifies a "zone" name. Example: INTERNAL, EXTERNAL, PARTNER1
- TCP/IP maps zone names to RACF SERVAUTH resource EZB.NETACCESS.sysname.stackname.zonename
  - Installation is responsible for network topology and protection of network links
    - IPSEC (VPN) can also be used to help this
- TCP/IP stack ensures that application on host can only send/receive packets if application and IP address have appropriate SECLABELs
  - Support for servers or daemons that understand MLS (FTP, TELNET, INET) or even HTTP for some usage
    - Assign SYSMULTI SECLABEL to server/daemon
    - Can then communicate with any of the subnetworks



- Consider USER1 with access to
  - SECLABELS A and B
  - Workstations on three LANs
    - LAN1 defined with SECLABEL A
    - LAN2 defined with SECLABEL B
    - LAN3 defined with SECLABEL C



The user's session will run with SECLABEL A



- Consider USER1 with access to
  - SECLABELS A and B
  - Workstations on three LANs
    - LAN1 defined with SECLABEL A
    - LAN2 defined with SECLABEL B
    - LAN3 defined with SECLABEL C



The user's session will run with SECLABEL B



- Consider USER1 with access to
  - SECLABELS A and B
  - Workstations on three LANs
    - LAN1 defined with SECLABEL A
    - LAN2 defined with SECLABEL B
    - LAN3 defined with SECLABEL C



The user's session will fail, since the user cannot use SECLABEL C

### **Multilevel Security with JES**

- Consider a Service Bureau with multiple customers
- Customer A does not want their output printed on Customer B's printers
- Create disjoint SECLABELs A and B
- Create WRITER profiles for customer A printers; assign SECLABEL A
- Create WRITER profiles for customer B printers; assign SECLABEL B
- Customer A users (with SECLABEL A) cannot print to wrong printers
- □ Customer B users (with SECLABEL B) cannot print to wrong printers
- System operators cannot misdirect the output, either

#### Multilevel Security on z/OS V1R5 and DB2 V8

Data

Single Data

**Store** 

DBMS

Server

- Multilevel Security on z/OS V1R5 with DB2 V8
  - Labeled security allows sharing of resources with mixed levels of security in a single image
  - Example: Single image of data sharable by multiple enterprise departments with different need to know

| SECURITY   | Col 1 | Col 2   | Col 3 |
|------------|-------|---------|-------|
| LABEL      |       |         |       |
| Personnel  | 234   | USA     | 50%   |
| Finance    | 198   | France  | 23%   |
| Personnel  | 2     | UK      | 9%    |
| Finance    | 234   | USA     | 11%   |
| Personnel  | 22    | Germany | 9%    |
| IT         | 87    | USA     | 14%   |
| Contractor | 23    | UK      | 20%   |
| Personnel  | 34    | Germany | 43%   |
| Finance    | 981   | USA     | 12%   |
| IT         | 223   | USA     | 10%   |
| Contractor | 45    | Canada  | 29%   |
|            |       |         |       |

#### **Multilevel Security on zSeries**

Finance

IT

Personnel

Contractor

Web Ser

Clus

b erve Juster

Web Serve

Web Server Cluster

# **SECLABEL Hierarchy**



#### **Row Granularity Multilevel Security**



Table column defined AS SECURITY LABEL
Check for each new SECLABEL value accessed
Mandatory access control: run time user to data

Multilevel Security with Row Level Granularity

#### □ Use RACF for MAC

- Use SECLABELs
- Key advantage is consistent, integrated security
- Table has a column defined as a security label
  - Each row value has a specific security label
  - Get user security label from RACF
  - Save in rows for INSERT, UPDATE, LOAD, ...
- □ Compare SECLABEL in row to SECLABEL for the DB2 users
  - If access is allowed, then normal access
  - If access is not allowed, data not returned
- Runtime user to data checking
- Seclabel values are cached to minimize processing time

#### CREATE TABLE / ALTER TABLE statements

- □ Use to enable the row level security
  - Table must have a column to store the SECLABEL
- To define the security label column
  - Specify "AS SECURITY LABEL" in the column-options in the "create table / alter table" column-definition
- □ Table once created with SECLABEL cannot be disabled
- Audit record produced if the table with security label is created, altered or dropped

Using SECLABELs with Row operations:

#### **SELECT**

- □ User's SECLABEL compared to SECLABEL of row
  - ➢ If user SECLABEL dominates the data SECLABEL
    - Row is returned
  - ➢ If user SECLABEL does not dominate the data SECLABEL
    - Row is not returned, but no error is reported



Using SECLABELs with Row operations:

#### **INSERT**

- Value of the SECLABEL column for inserted row is set to the value of the user's SECLABEL.
  - If user has authority for Write-Down,
    - The user is allowed to set the SECLABEL field to any value.
  - If user does not have authority for Write-Down,
    - The SECLABEL of the inserted rows will be set to current SECLABEL.

Using SECLABELs with Row operations:

#### **UPDATE**

- □ User's SECLABEL compared with the SECLABEL of the row to be updated.
  - ➢ If the SECLABELs are equivalent,
    - Row is updated.
    - The SECLABEL in updated row is set to the user SECLABEL.
  - If user has Write-Down authority,
    - Rows with lower SECLABELs can be accessed and updated.



Using SECLABELs with Row operations:

#### DELETE

- User's SECLABEL compared with the SECLABEL of the row to be deleted.
  - ➢ If the SECLABELs are equivalent,
    - Row is deleted.
  - If user has Write-Down authority,
    - Rows with lower SECLABELs can be accessed and deleted.

#### References

- **Given Security Server (RACF) publications:** 
  - RACF Command Language Reference (SC28-1919)
  - RACF Security Administrator's Guide (SC28-1915)
  - RACF Callable Services Guide (SC28-1921)
- **z/OS publications:** 
  - Planning for Multilevel Security (GA22-7509-00)
- Communications Server Publications:
  - IP Configuration Guide (SC31-8775-04)
  - IP Configuration Reference (SC31-8776-05)
- □ RACF web site:

http://www.ibm.com/servers/eserver/zseries/zos/racf

**DB2 web site:** 

http://www.ibm.com/software/db2zos

Related publications / presentations: <u>http://www.ibm.com/software/db2zos/db2zosv8.html</u> <u>http://www.ibm.com/software/db2zos/presentations.html</u> <u>http://www.ibm.com/software/db2zos/support.html</u>

#### **Trademarks**

- □ The following are trademarks or registered trademarks of the International Business Machines Corporation:
  - > DB2
  - > RACF
  - > z/OS