

Session 134

Laura Jeanne Knapp IBM Technical Evangelist 1-919-224-2205 Iaura@lauraknapp.com

Networking - Connecting people to information through technology

Technology Convergence

What about Network convergence?

Networking - Connecting people to information through technology

Voice and Data Networks

Voice and Data Switch Similarities

Handset aggregator

All telephones get a single analog/digital line

All devices have a phone number defined on the switch

Traffic engineering provides non-blocking

Path selection based on static least cost routing

Multilayer Switch

Computer aggregator

All devices get dedicated bandwidth

All devices have an IP address defined on the host

Non-blocking devices available

Path selection based on dynamic routing protocol

Providing Voice Functions

Choice of Solutions

H.323

SIP - Session Initiation Protocol

MGCP - Media Gateway Control Protocol

You need to understand what technologies vendors support as you make your decisions

What do their endpoints support for signaling? What do their gateways support for signaling? (What do their call centers support for signaling?

H.323 Structure and IP

IP Layered Model

User		
Application		
Presentation		
Session		
ТСР	UDP	
IP		
Data Link		
Physical		

H.323 VoIP Model

Caller

Email ID E.164 Phone Number Audio Codec (G.711, G.729, G.723.1,..) H.225, H.245, RTP, RTCP UDP Port Number IP Address

Frame Relay DLCI, 802.3 MAC, ATM VPI/VCI

V.35, T1, T3

H.323 Infrastructure

H.323 Components

Address translation Admissions control Bandwidth control Zone management Optional Call control signaling Call authorization Bandwidth and call management Directory services

H.323 Terminal

Microsoft Netmeeting is often used H.323 compliant client H.261 and H.263 provide video access

Gateway

Converts between IP world and other networks

Multipoint Conference Unit

Can control resources in multicast operation

Networking - Connecting people to information through technology

H.323 Registration

Gateways register with gatekeeper

(Knew gatekeepers address via either static or auto configuration)

Gateway A makes request to place a call, receives confirmation and receives IP address of gateway B

Gateway A places call to gateway B

H.323 Signaling

IP Telephony Application

IP Telephony Application

IBM

Networking - Connecting people to information through technology

Real Time Protocol with Compression

Provides feedback on quality of data distribution

Tracks participants in an RTP session

Limits feedback send rate

Conveys minimal session control information

Header compression: requires 20 byte payload (20 ms @ 8kbps yields 20 byte payload) (IP header =20; UDP header=8; RTP header=12)

IP Telephone

IP Telephone Call Setup

Phone makes DHCP request for IP information

Phone makes TFTP boot file request to get gatekeeper

Phone registers with gatekeeper

Phone displays gatekeeper time/date

Phone is now ready to receive/place calls

IP Telephone Control

Calling phone sends off-hook message to gatekeeper

Gatekeeper directs phone to play dial-tone

Phone sends dialed digits to Gatekeeper

Gatekeeper rings called phone and accepts off-hook message

Calling phone initiates VOIP RTP session

Gatekeeper is notified of disconnect and records call details

H.323 and Other Advances

H.323 originally designed for LAN

No concept of Internet wide area addressing loop cancellation call setup time

H.323v2

fast connect call waiting RAS call transfer

H.323v3

maintain and reuse multiplexing interdomain transfers call hold park pick-up message waiting

Session Initiation Protocol

SIP - Session Initiation Protocol RFC 2543

SIP defined by IETF RFC 2543

Defines transactions between clients and servers Uses URL style addresses and syntax via E.164, E-mail, DNS Simple extensible protocol

Works with both UDP and TCP (most implementations use UDP)

SIP - Phone

MGCP - Media Gateway Control Protocol

Networking - Connecting people to information through technology

VOIP 200

H.323 or SIP or MGCP: Confused?

	H.323	SIP	MGCP
Scope	Intelligent devices	Intelligent device	Non-intelligent devices
Call set-up	2 round trips*	1 round trip	2 round trips
Call control	Control multiple elements	Session control	Device control
Transport	ТСР	UDP	UDP
Complexity	High	Low	Medium
Functionality	High	Low	Medium
Billing/Security	High	Low	Medium

Internet FAX

Voice Numbers and DNS Convergence

ENUM: Phone Numbers Meet the Net

DNS modified by RFC 2915 to add NAPTR field

Input to DNS: 5.0.2.2.4.2.2.9.1.9.1.e164.arpa

```
Output from DNS
IN NAPTR 102 10 "u" "fax-t37+E2U" "!^."$!tel+18002495324!".
IN NAPTR 102 10 "u" "tel+E2U"
```

IN NAPTR 102 10 "u" "sip+E2U" "!^."\$!sip:laura@lauraknapp.com!". IN NAPTR 102 10 "u" "mailto+E2U" "!^."\$!mailto:ljknapp@us.ibm.com!". "!^."\$!tel:+19192242205!".

Voice Over IP Vocoders

Bandwidth in K bps

Multimedia Delay Breakdown

Humans will tolerate only about 200 millisecond delay before hearing the response from the other person Why everyone is talking about QOS (Quality of Service) on the Internet!

Quality of Service

Let application request resources bandwidth latency priority

Applications need to reserve bandwidth prioritize packets

Network administrators police network usage provide service guarantees

DiffServ, RSVP, and MPLS will be used to provide QoS for IP data

Protocol Advances

DiffServ Differentiated Services

Use bits in IP header to identify packet's level of service

Packets can be marked at source or other parts of network

IP network

9.16.0.0

I need to get to 9.46.96.8

Ingress

Does require routers and switches that are Differentiated Services enabled

Does not require end-to-end signaling

Does not require per-flow state

RSVP Resource Reservation Protocol

End user applications Reserve bandwidth Lock in quality of service

Software for routers, hosts and applications

Quality of service requests repeated or reservation will lapse

Changes in network topology will revoke reservation

Applications must re-establish service levels

Reservations Shared (audio) Non-shared (video)

> Quality of Service Guaranteed Controlled load

Switch/router

Multiprotocol Label Swapping

MPLS

Routin

Modul

Switch/router

Networking - Connecting people to information through technology

outing

Modul

What to Look for in Products

Form factor

Architecture

Circuit switched interface

Max phone ports

H.323/H.323 gatekeeper

Prioritization scheme

Encoding scheme

Maximum compression

Sooner or Later !!!

Pieces emerging to finally allow for converged voice/data networks?

Complex

How will billing be handled?

QoS still a major stumbling block

Many application issues still to be resolved

Interoperability issues being resolved, but it will take time

Increasing government regulation

Over time.....should change our communications significantly

Background Information

SIP www.cs.columbia.edu/~hgs/sip/ SIP www.ietf.org SIP www.greycouncil.com/sipug SIP www.sipcenter.com H.323 www.sipcenter.com H.323 www.itu.int H.323 www.intc.org H.323 www.packetizer.com MGCP.... www.packetizer.com MGCP.... www.sofswitch.org All www.etsi.org ENUM.... www.etsi.org ENUM.... www.enum.org ENUM.... www.enum.org ENUM.... www.enumworld.com ENUM.... www.netnumber.com

