
1



2



3



4

A valid digital signature gives a recipient reason to believe that the message was
created by a known sender, such that the sender cannot deny having sent the
message (authentication and non-repudiation) and that the message was not
altered in transit (integrity). Digital signatures are commonly used for software
distribution, financial transactions, and in other cases where it is important to detect
forgery or tampering.



5



6



7

In a secret key system, it is critically important to maintain the secrecy of the shared
key.

CKDS = Cryptographic Key Data Set, used to store both DES and AES keys,
described in more detail later.



Secret key cryptography uses a conventional algorithm such as the Data Encryption
Standard (DES) algorithm or the Advanced Encryption Standard (AES) algorithm
that are supported by ICSF. Another term for secret key cryptography is symmetric
cryptography. To have intelligent cryptographic communications between two parties
who are using a conventional algorithm, this criteria must be satisfied: Both parties
must use the same cryptographic algorithm.

The cryptographic key that the sending party uses to encipher the data must be
available to the receiving party to decipher the data.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v
2r3.csfb500/csfb500_Secret_key_cryptography.htm

8



DES is an inherently less secure algorithm than AES, causing many in the industry
to move away from DES towards AES.

9



10

ICSF release HCR7770 was the last to require a DES Master Key be set.

Both public and private keys can be stored in PKDS.



Each party in a public key cryptography system has a pair of keys. One key is public
and is published, and the other key is private.

The sending party looks up the receiving party's public key and uses it to encipher
the data. The sender uses his or her private key to generate the associated digital
signature.

The receiving party then uses its private key to decipher the data. The receiver also
uses the sender's public key to verify the identity of the sender.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v
2r3.csfb500/csfb500_Public_key_cryptography.htm

11



Ideally, no human eyes should ever see clear contents of a private key! Create and
store encrypted on z/OS within ICSF.

Public key cryptography requires complex mathematical calculations and is
therefore minimally used in performance paths.

12



13



A protected key can be a DES, TDES or AES key. Once a key has been wrapped, it
can make use of CPACF directly, using the hardware to directly access a subset of
symmetric key operations.

14



15



All Key Data Sets (KDS) are VSAM data sets.

ICSF provides a KGUP utility to allow for loading of clear keys into a Key Data Set.

16



A cryptographic coprocessor allows keys stored within the KDS to be encrypted
under respective Master Key at all times, thus never being exposed in the clear. We
call these “Secure Keys”.

A cryptographic coprocessor is also known as a “card” or “crypto card”

17



The presence of CPACF with the SSL SPE APAR OA54127 applied will allow SSL
to make use of stronger symmetric algorithms, even when SSL Security Level 3
FMID not installed.

18



19

Additional information about TKEs can be found in the ICSF TKE Workstation
User’s Guide:
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v
2r3.csfb600/toc.htm



20



21



22

Here is a pictorial representation of how an application would call an ICSF API, and
how ICSF satisfies the request. Depending upon the API call being processed, ICSF
may need access to the KDS and/or crypto coprocessors.



Each application exploiting ICSF may have unique access requirements. Refer to
each application’s documentation to learn more.

23



24



More information can be found in the z/OS ICSF Administrator’s Guide, section
“Steps for SAF-protecting ICSF services and CCA keys”

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.2.0/com.ibm.zos.v2r
2.csfb300/csfb300_Steps_for_RACF-protecting_keys_and_services.htm

25



CHECKAUTH(YES) applies to both CSFSERV class and CSFKEYS class checks.

When YES is specified, LOG=ASIS is used.

26



27



z/OS 2.3 ICSF Administrator’s Guide Key Store Policy Overview:

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.
v2r3.csfb300/defksp.htm

28



Enabling any one of the following controls will activate Key Store Policy for a CKDS:

CSF.CKDS.TOKEN.CHECK.LABEL.WARN

CSF.CKDS.TOKEN.CHECK.LABEL.FAIL

CSF.CKDS.TOKEN.NODUPLICATES

Similar profiles for a PKDS.

29



More information can be found in the z/OS ICSF Administrator’s Guide, section
“Setting up profiles in the CSFSERV general resource class”
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.2.0/com.ibm.zos.v2r
2.csfb300/ctlserv.htm

Users can be permitted or denied access to the KGUP utility via the CSFKGUP
profile in the CSFSERV class.

30



More information can be found in the z/OS Writing PKCS#11 Applications manual,
Chapter 1 “Overview”:

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.2.0/com.ibm.zos.v2r
2.csfba00/token_overview.htm and definitions of

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.2.0/com.ibm.zo
s.v2r2.csfba00/control_access.htm

Reminder, PKCS#11 tokens live in the TKDS.

RACF calls in the CRYPTOZ class use LOG=NOFAIL.

31



These roles are defined here:

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.cs
fb300/racfprot.htm

32



More information can be found in the z/OS ICSF Administrator’s Guide, section
“Setting up profiles in the CSFKEYS general resource class”

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.2.0/com.ibm.zos.v2r
2.csfb300/ctlkey.htm

33



Granular Key Label Access checking only works when an ICSF service is passed a
key label.

Key Store Policy Information:
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.cs
fb300/defksp.htm

34



For a more robust solution, Key Store Policy should also be enabled for both CKDS
and PKDS to allow the increased authority checking when tokens are passed in, as
well. Key Store Policy can be turned on using:

CSF.CKDS.TOKEN.CHECK.LABEL.WARN /
CSF.CKDS.TOKEN.CHECK.LABEL.FAIL and
CSF.PKDS.TOKEN.CHECK.LABEL.WARN /
CSF.PKDS.TOKEN.CHECK.LABEL.FAIL

35



There may not be a label found for a given token. Perhaps the application is
managing its tokens independently.

36



This will prevent a single token from being associated with multiple key labels.

37



ICSF Admin Guide: “Increasing the level of authority needed to export
symmetric keys”:

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.cs
fb300/indksp.htm

38



A CSFKEYS profile can contain an ICSF segment, which specifies rules for key use.
Setting restrictions can help ensure that keys are used only for intended purposes,
regardless of who has access to the keys.

39



The ASYMUSAGE field enables you to restrict asymmetric keys covered by the
profile from being used in:

1. Secure import and export operations

2. Handshake operations

40



41



42



The SYMCPACFWRAP field of the ICSF segment enables the covered encrypted
key to be rewrapped (protected) using the CPACF wrapping key. The specification:

SYMCPACFWRAP(YES) indicates that encrypted keys covered by the profile can
be rewrapped.

SYMCPACFWRAP(NO), which is the default, indicates that encrypted keys
covered by the profile cannot be rewrapped.

* If your installation requires that a particular encrypted key must never exist
outside of the tamper-resistant hardware boundary, do not use the
SYMCPACFWRAP(YES) specification in the CSFKEYS profile that covers the key.

The SYMCPACFRET field is needed for CSNBKRR2 (Key Record Read 2) to allow
a protected key to be returned to the application.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.cs
fb300/enuenc.htm

43



More information about setup and usage can be found in the ICSF Administrator’s
Guide.

44



45



46


