
1

2

3

4

Secure Connections

We must discuss the security layer in conjunction with X.509 v3 certificates.

The certificate is a way to deliver the Public Key that is used in the SSL negotiation (called

the SSL handshake) prior to the sending of encrypted data.

For more on SSL and TLS, see links in appendix.

5

Digital Cryptography

These are some of the terms we will use in the rest of this presentation.

Ciphers include some like DES, 3DES, etc.

Keys are the numbers used by the algorithms in the different ciphers.

The keys have varied lengths (the larger the more secure).

The Symmetric Keys are the ones used to do the real encrypting and decrypting of data in a

secure connection.

The Asymmetric Keys are part of the Public-Key Infrastructure.

In PKI used by SSL/TLS, the asymmetric keys are pairs:

A Public Key (part of the certificate) and a Private Key – kept secret by the certificate

owner.

Digital Signature is created by ‘hashing’ the certificate body to a fixed message digest

length and then encoding this hash or checksum with the private key of the signing

certificate.

6

Digital certificates

Certificates provide a way of authenticating users. Instead of requiring each participant in

an application to authenticate every user, third-party authentication relies on the use of

digital certificates.

A digital certificate is equivalent to an electronic ID card. The certificate serves two

purposes:

� Establishes the identity of the owner of the certificate

� Distributes the owner's public key

Certificates are issued by trusted parties, called certificate authorities (CAs). These

authorities can be commercial ventures ($$) or they can be local entities, depending on the

requirements of your application. Regardless, the CA is trusted to adequately authenticate

users before issuing certificates. A CA issues certificates with digital signatures. When a

user presents a certificate, the recipient of the certificate validates it by using the digital

signature. If the digital signature validates the certificate, the certificate is recognized as

intact and authentic. Participants in an application need to validate certificates only; they do

not need to authenticate users. The fact that a user can present a valid certificate proves that

the CA has authenticated the user. The descriptor, trusted third-party, indicates that the

system relies on the trustworthiness of the CAs.

7

8

A Root CA is self-signed, while an Intermediate CA is signed by another CA.

9

The Certificate body encompasses all parts of the certificate except for the Signature.

10

Signature Validation is done by the RECEIVING side of a certificate – not by the

SENDING side.

11

There are 2 symmetric keys created in the process – one for server data encrypt/decrypt

and one for client data encrypt/decrypt.

They are first tested during the SSL handshake in the FINISHED message sent by the

client and the FINISHED message sent by the server.

12

The certificate chain / hierarchy is a structure of certificates that allows individuals to

verify the validity of a certificate's issuer.

The chain begins with an End User / End Entity Certificate , and is followed by his

signing certificate, and so on, until the Self-Signed Root is reached.

13

This charts shows the different communication elements that are transferred between a

client and a server when setting up an SSL connection.

During the handshake, the client initiates the handshake by sending a hello message

(ClientHello) containing the authentication/encryption ciphers it supports.

The server then sends the authentication/encryption cipher to be used (ServerHello)

followed by its identity/certificate (Certificate) to the client.

After the Server has finished sending any optional messages, Server then sends

ServerHelloDone.

The client will validate the server’s certificate chain and look for its root CA cert on the

client’s “certificate repository” (keyring / kdb / etc).

(Alternately, it could find a “Trust Anchor” instead of the root. This is rarely used and we

will not talk about it.)

This is where errors occur most often.

Once the cert is validated, the client generates "key material" (called the ‘pre-master

secret’), encrypts it with the server's public key, and sends it to the server

(ClientKeyExchange).

Client uses “key material” to generate both session keys and notifies Server it is ready to

switch to symmetric encryption of data (ChangeCipherSpec).

The first message the client sends using its session key and the agreed upon cipher is the

Finished message.

Server decrypts the "key material" using its private key, and also uses it to generate the same

session keys.

Upon receiving the Finished message from client, and correctly decrypting it using the

generated client session key, the server sends its own ChangeCipherSpec and Finished

messages.

If the client correctly decrypts the Finished message from the server using the generated

server session key, the handshake is complete.

Application data is now encrypted for this connection using symmetric encryption (via client

and server session keys).

Handshake messages can be "stacked". “Stacked" means multiple messages can be sent in a

single message to the partner application.

13

14

For the purposes of this presentation, we will only be showing RACF-related examples.

15

16

Red text represents the CA.

Green text represents the End Entity.

17

18

The default FORMAT value is Base 64 encoding. If this default is overridden, you may

have to FTP the file in BINARY mode.

19

This is a certificate file in Base64 format.

20

21

Green text represents the End Entity.

22

23

24

25

26

27

System SSL usage of RACF keyrings is through the SAF interfaces (R_datalib). This

allows System SSL to work with any external security manager that supports the SAF

calls.

28

* Note: Certificates that are not owned by a userid do not usually have their private key

associated with them. This means they cannot be used as client/server certificates; they can

only be used in the certificate validation process.

Access to a private key was limited to just your own, or to one loaded into SITE or

CERTAUTH (with additional permissions).

Now, the new RDATALIB Class protection allows access to another user’s private

key. This protection is very specific via the keyring; it is not a global access like the

FACILITY Class profiles.

29

OLD WAY

To obtain the private key of a SITE or CERTAUTH certificate, the user must CONNECT

the SITE certificate with USAGE PERSONAL and the user must have CONTROL on

IRR.DIGTCERT.GENCERT .

Only certificates marked as TRUST will be returned on the IRRSDL00 (R_DataLib)

interface.

30

OLD WAY

These are all of the defined FACILITY CLASS resources used to grant access to all the

RACDCERT subcommands:

RDEFINE FACILITY IRR.DIGTCERT.ADD UACC(NONE)

RDEFINE FACILITY IRR.DIGTCERT.ADDRING UACC(NONE)

RDEFINE FACILITY IRR.DIGTCERT.DELRING UACC(NONE)

RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)

RDEFINE FACILITY IRR.DIGTCERT.CONNECT UACC(NONE)

RDEFINE FACILITY IRR.DIGTCERT.REMOVE UACC(NONE)

RDEFINE FACILITY IRR.DIGTCERT.LIST UACC(NONE)

RDEFINE FACILITY IRR.DIGTCERT.ALTER UACC(NONE)

RDEFINE FACILITY IRR.DIGTCERT.DELETE UACC(NONE)

RDEFINE FACILITY IRR.DIGTCERT.GENCERT UACC(NONE)

RDEFINE FACILITY IRR.DIGTCERT.GENREQ UACC(NONE)

RDEFINE FACILITY IRR.DIGTCERT.EXPORT UACC(NONE)

RDEFINE FACILITY IRR.DIGTCERT.EXPORTKEY UACC(NONE)

RDEFINE FACILITY IRR.DIGTCERT.MAP UACC(NONE)

RDEFINE FACILITY IRR.DIGTCERT.ALTMAP UACC(NONE)

RDEFINE FACILITY IRR.DIGTCERT.DELMAP UACC(NONE)

RDEFINE FACILITY IRR.DIGTCERT.LISTMAP UACC(NONE)

RDEFINE FACILITY IRR.DIGTCERT.REKEY UACC(NONE)

RDEFINE FACILITY IRR.DIGTCERT.ROLLOVER UACC(NONE)

30

31

NEW WAY

To obtain the private key of another user’s certificate, the user must have UPDATE on

ringowner.ring.LST .

To obtain the private key of a SITE or CERTAUTH certificate, the user must CONNECT

the SITE or CERTAUTH certificate with USAGE PERSONAL and the user must

have CONTROL on ringowner.ring.LST .

Only certificates marked as TRUST will be returned on the IRRSDL00 (R_DataLib)

interface.

32

NEW WAY – the RDATALIB Class

RDEFINE RDATALIB user.ring.LST UACC(NONE)

There are other functions for R_datalib that use:

RDEFINE RDATALIB user.ring.UPD UACC(NONE)

32

33

34

If RDATALIB and FACILITY profiles both exist, the RDATALIB profiles take precedence.

35

36

37

DO NOT SPECIFY GSKSRVR IN THE JOBNAME= PARM!

Chapters 11 and 12 in the System SSL Programming book describe how to get the trace.

Here is the URL to the System SSL book:

http://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.gska100/s

ssl2srt1000643.htm (z/OS 2.2)

Chapter 11 describes the configuring the SSL started task, GSK Server. When you get to

chapter 12, start with the section called "Capturing Component Trace Data".

38

39

The situation:

The Server is starting, has sent its SERVER_HELLO and is now trying to read its own

certificate. Whether it was explicitly listed in the app’s config file, or obtained as the

default on the ring/kdb,

it appears that the private key was not given to SSL upon retrieval.

The error is 428 (GSK_ERR_NO_PRIVATE_KEY). It becomes Alert 80

(INTERNAL_ERROR) which is sent to the peer (Client).

40

41

The situation:

Here, the Server sent its SERVER_HELLO with the Server’s Certificate Chain.

It immediately receives Alert 48 (UNKNOWN_CA).

This is turned into Return Code 435 (GSK_ERR_UNKNOWN_CA).

They both mean: Unknown CA.

The Client could not validate the Server’s certificate down to a root (or trusted base).

42

The situation continued:

Earlier in the Server Ctrace, we can see the certs that were pulled together to be sent in the

SERVER_HELLO.

Compile this list of names and review associated cert data in RACF. In fact, later in the

trace (not shown), one can also find the actual certs in DER format, which can be used to

derive DN information such as Subject and Issuer.

43

44

45

46

47

48

