
IBM Systems and Technology Group

© 2010 IBM Corporation

IRRXUTIL: Getting RACF profile data directly
into REXX programs without parsing

Mike Onghena – IBM

onghena@us.ibm.com

IBM Systems and Technology Group

© 2010 IBM Corporation2

The information contained in this document is distr ibuted on as "as is" basis, without any
warranty either express or implied. The customer is responsible for use of this
information and/or implementation of any techniques mentioned. IBM has reviewed the
information for accuracy, but there is no guarantee that a customer using the information
or techniques will obtain the same or similar resul ts in its own operational environment.

In this document, any references made to an IBM lic ensed program are not intended to
state or imply that only IBM's licensed program may be used. Functionally equivalent
programs that do not infringe IBM's intellectual pr operty rights may be used instead. Any
performance data contained in this document was det ermined in a controlled environment
and therefore, the results which may be obtained in other operating environments may
vary significantly. Users of this document should v erify the applicable data for their
specific environment.

It is possible that this material may contain refer ences to, or information about, IBM
products (machines and programs), programming, or s ervices that are not announced in
your country. Such references or information must n ot be construed to mean that IBM
intends to announce such IBM Products, programming or services in your country.

IBM retains the title to the copyright in this pape r as well as title to the copyright in all
underlying works. IBM retains the right to make der ivative works and to republish and
distribute this paper to whomever it chooses.

Disclaimer

IBM Systems and Technology Group

© 2010 IBM Corporation3

The following are trademarks of the International B usiness Machines Corporation in the United States a nd/or other countries.

The following are trademarks or registered trademar ks of other companies.

* Registered trademarks of IBM Corporation

* All other products may be trademarks or registered trademarks of their respective companies.

Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.

UNIX is a registered trademark of The Open Group in the United States and other countries.
SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.

Notes :
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput
improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance
characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business
contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

Trademarks

•z/OS
•RACF
•Tivoli

IBM Systems and Technology Group

© 2010 IBM Corporation4

Agenda

� IRRXUTIL – REXX interface to R_admin extract.

IBM Systems and Technology Group

© 2010 IBM Corporation5

Overview
� The R_admin callable service (IRRSEQ00) is an

assembler programming interface which allows for
management of RACF profiles and system wide
settings (SETROPTS)

� IRRXUTIL is a load module, callable by REXX
programs which calls R_admin and returns results
to REXX programs.

IBM Systems and Technology Group

© 2010 IBM Corporation6

R_admin functions

� Run a RACF command

– By providing a command image

– By providing tokenized data

� Extract user, group, general resource profile
information and SETROPTS settings. This is the
only function supported by IRRXUTIL.

� Retrieve a PKCS#7 password envelope

IBM Systems and Technology Group

© 2010 IBM Corporation7

What is IRRXUTIL?
� IRRXUTIL is a load module, shipped in z/OS V1R11

which is called by REXX programs to extract RACF
profile data.

� IRRXUTIL calls the R_admin extract functions to
extract USER, GROUP, CONNECT, RESOURCE and
SETROPTS data from RACF.

� The resulting profile data is then injected directly into
REXX variables.

� On successful return from IRRXUTIL, RACF profile
data is ready to use, just by referencing REXX
variables.

IBM Systems and Technology Group

© 2010 IBM Corporation8

What IRRXUTIL is not

� IRRXUTIL does not have any support for any of the
other function codes supported by R_admin.

� However, it is relatively simple to create a command
invocation and run it directly from REXX. Certainly
simpler than attempting to create any sort of REXX
data structure to map back the tokenized functions of
R_admin.

� Because R_admin does not support the extraction of
data from RACF DATASET profiles, IRRXUTIL does
not support RACF DATASET profiles.

IBM Systems and Technology Group

© 2010 IBM Corporation9

Super Simple Silly Sample
� Here is a simple program which retrieves a general

resource profile and dumps the access list.

�Note the complete lack
of parsing code. Just
retrieve the profile and
directly access the
required data.

/* REXX */
myrc= IRRXUTIL ("EXTRACT", "FACILITY" , "BPX.DAEMON", "RACF" , "" , "FALSE")

say "Owner: " RACF.BASE.OWNER.1

Say "ACL:"

do a=1 to RACF.BASE.ACLCNT.REPEATCOUNT

Say " " ||RACF.BASE.ACLID.a|| ":" ||RACF.BASE.ACLACS.a

end

IBM Systems and Technology Group

© 2010 IBM Corporation10

What's the catch?
� The caller does need access to use R_admin extract via the appropriate

FACILITY class profile protecting the desired function.

� The caller must be allowed to retrieve the profile in question.

� The caller will only have fields they are allowed to view returned.

� R_admin will enforce all field-level-access-checking rules.

� This is all enforced by the R_admin extract function which IRRXUTIL calls.

Required FACILITY profileProfile Type

IRR.RADMIN.SETROPTS.LIST Setropts

IRR.RADMIN.RLIST General Resource

IRR.RADMIN.LISTGRP Group

IRR.RADMIN.LISTUSERUser, Connect

IBM Systems and Technology Group

© 2010 IBM Corporation11

How does it work?

� myrc=IRRXUTIL(function,type,profile,stem,prefix,generic)

– Function - “EXTRACT” or “EXTRACTN”

– Type – “USER”, “GROUP”, “CONNECT”, “_SETROPTS”, any general
resource class. DATASET not supported.

– Profile – Profile to extract. Case sensitive. Specify '_SETROPTS' for
SETROPTS data.

– Stem – REXX stem variable name to populate with results. Do not put the '.'
at the end.

– Prefix – Optional prefix for returned variable name parts (more later)

– Generic – Optional, 'TRUE' or 'FALSE' (uppercase). Applies to general
resource profiles only.

IBM Systems and Technology Group

© 2010 IBM Corporation12

IRRXUTIL return code
� myrc= IRRXUTIL(function,type,profile,stem,prefix,generic)

� MYRC is the return code from IRRXUTIL. It is a lis t of 5 numbers. If the
first=0, IRRXUTIL was successful and data has been returned.

0For IBM
support

For IBM support0=Rexx Error

4=R_admin
error

16Environmental error

R_admin
racfrsn

R_admin
racfrc

R_admin safrc1212R_admin failure

01=Bad length

2=Bad value

3=Imcompatible
with other parms

Index of bad
parameter

8Parameter Error

0Max
number
allowed

Min number
allowed

Number of
parms specified

4Bad number of parameters specified

00002Warning, stem contained '.'

00000Success

RC5RC4RC3RC2RC1Description

0

IBM Systems and Technology Group

© 2010 IBM Corporation13

Common return codes

� 0 0 0 0 0 = Success

� 12 12 4 4 4 = Profile Not found

� 12 12 8 8 24 = Not authorized to R_admin extract

IBM Systems and Technology Group

© 2010 IBM Corporation14

Return code checking
Check the first value in the return code string. If it is 0, the call was

successful.
/* REXX */

myrc= IRRXUTIL ("EXTRACT", "FACILITY" , "BPX.DAEMON", "RACF" , "" , "FALSE")

If (word(myrc,1)>0) then do

say "Error calling IRRXUTIL "||myrc

exit

end

say "Profile name: " ||RACF.profile

do a=1 to RACF.BASE.ACLCNT.REPEATCOUNT

Say " " ||RACF.BASE.ACLID.a|| ":" ||RACF.BASE.ACLACS.a

end

IBM Systems and Technology Group

© 2010 IBM Corporation15

2 ways to process IRRXUTIL results

� The variables which are set by IRRXUTIL can be
used in 2 ways, depending on the application
– Known data can be retrieved directly by simply referencing

REXX variables by segment and field.

– Programs with no knowledge of what segments and fields
exist are given enough information to find all of the
segments and fields returned by IRRXUTIL.

– Sadly, there is no mechanism to find out all potential
segments/field which could exist. It only returns what
exists for a given profile.

IBM Systems and Technology Group

© 2010 IBM Corporation16

Direct retrieval of data by segment and field
� Stem variables have the form:

– stem.segment-name.field-name.0 = number of values

– stem.segment-name.field-name.n = nth value of field

� For a simple non-repeating field:
– stem.segment-name.field-name.0 = 1

– stem.segment-name.field-name.1 = value

� A repeating field may have more than 1 value:
– stem.segment-name.field-name.0 = 2

– stem.segment-name.field-name.1 = value1

– stem.segment-name.field-name.2 = value2

� Examples (where stem = RACF)
– RACF.BASE.SPECIAL.0 = 1

– RACF.BASE.SPECIAL.1 = TRUE

– RACF.OMVS.UID.0 = 1

– RACF.OMVS.UID.1 = 555

IBM Systems and Technology Group

© 2010 IBM Corporation17

Additional control information for fields
ExampleDescriptionName

PROF.BASE.CONNECTS.REPEATCOUNT=5

PROF.BASE.SPECIAL.REPEATCOUNT=0

Number of
occurrences of
repeat group.

Repeat header
field only.

stem.segname.
fieldname.REPEATCOUNT

PROF.BASE.UAUDIT.REPEATING=”FALSE”

PROF.BASE.CGROUP.REPEATING=”TRUE”

TRUE or FALSE
– Does this field
have more than
1 value?

stem.segname.
fieldname.REPEATING

PROF.BASE.SPECIAL.BOOLEAN=”TRUE”

PROF.BASE.NAME.BOOLEAN=”FALSE”

TRUE or FALSEstem.segname.
fieldname.BOOLEAN

PROF.BASE.CREATDAT.OUTPUTONLY=”TRUE”

PROF.BASE.SPECIAL.OUTPUTONLY=”FALSE”

TRUE or FALSEstem.segname.
fieldname.OUTPUTONLY

PROF.GENERIC=”FALSE”TRUE or FALSEstem.GENERIC

PROF.PROFILE=”IBMUSER”Profile Namestem.PROFILE

PROF.CLASS = “USER"Class Namestem.CLASS

A complete table appears in the Macros and Interfaces Book.

IBM Systems and Technology Group

© 2010 IBM Corporation18

Retrieving unknown data
A number of variables are set which define which

segments and fields have been retrieved.

� Stem.0 = number of segments

� Stem.1-n = names of segments

� Stem.segment.0 = Number of fields in a segment

� Stem.segment.1-n = Field names in that segment

� Stem.segment.field.0 = # values for field

� Stem.segment.field.0 = Field values

Much needed example on next page

IBM Systems and Technology Group

© 2010 IBM Corporation19

Retrieving unknown data example

stem.0 = 4
.1 = “BASE”
.2 = “TSO”
.3 = “OMVS”
.4 = “CICS”

.0 = 30

.1 = “NAME”

.2 = “SPECIAL”

.3 = “CLAUTH”

.4 = … … …

.0 = 1

.1 = “BRUCE WELLS”

.0 = 1

.1 = “FALSE”

.0 = 3

.1 = “USER”

.2 = “FACILITY”

.3 = “UNIXPRIV”

stem.BASE
stem.BASE.NAME

stem.BASE.SPECIAL

stem.BASE.CLAUTH
.PROFILE = “BRWELLS”
.CLASS = “USER”
.GENERIC = “FALSE”
.VERSION = 0

.FLAGS = “00000000”

.BOOLEAN = “FALSE”

.OUTPUTONLY = “FALSE”

.REPEATING = “TRUE”

IBM Systems and Technology Group

© 2010 IBM Corporation20

Retrieving repeating data
Repeating fields have some additional control

information stored in the 'repeat header' field.

� Stem.segment.field.repeatCount. Non-zero value
indictates field is a repeat header. This is the number of
repeat groups for this field.

� Stem.segment.field.subfield.0 = Number of subfields in
this repeat group.

� Stem.segment.field.subfield.1-n = subfield names

� Stem.segment.subfieldname.0 = same as
Stem.segment.field.repeatCount. Number of values.

� Stem.segment.subfieldname.1-n = subfield values

Much needed example on next page

IBM Systems and Technology Group

© 2010 IBM Corporation21

Stem structure – simple repeating field

.0 = 30

.1 = “NAME”

.2 = “SPECIAL”

.3 = “CLCNT”

.4 = “CLAUTH”

.5 = “CONNECTS”

.6 = “CGROUP”

.7 = “CAUTHDA”

.8 = “COWNER”

.n = … … …
.0 = 3
.1 = “USER”
.2 = “FACILITY”
.3 = “UNIXPRIV”

stem.BASE

stem.BASE.CLCNT

.REPEATCOUNT = 3

.SUBFIELD.0 = 1

.SUBFIELD.1 = “CLAUTH”

stem.BASE.CLAUTH

.REPEATING = “TRUE”

.OUTPUTONLY = “FALSE”

.BOOLEAN = “FALSE”

.REPEATING = “FALSE”

.OUTPUTONLY = “TRUE”

.BOOLEAN = “FALSE”

IBM Systems and Technology Group

© 2010 IBM Corporation22

Stem structure – complex repeating field

.0 = 30

.1 = “NAME”

.2 = “SPECIAL”

.3 = “CLCNT”

.4 = “CLAUTH”

.5 = “CONNECTS”

.6 = “CGROUP”

.7 = “CAUTHDA”

.8 = “COWNER”

.9 = “CLJTIME”

.10= “CLJDATE”

.n = … … …

stem.BASE

stem.BASE.CONNECTS

.REPEATCOUNT = 3

.SUBFIELD.0 = 15

.SUBFIELD.1 = “CGROUP”

.SUBFIELD.2 = “CAUTHDA”

.SUBFIELD.3 = “COWNER”

.SUBFIELD.n = … … …

.0 = 3

.1 = “SYS1”

.2 = “RACFDEV”

.3 = “IBMPOK”

stem.BASE.CGROUP

.0 = 3

.1 = “07/06/87”

.2 = “03/12/91”

.3 = “08/21/94”

stem.BASE.CAUTHDA

.0 = 3

.1 = “IBMUSER”

.2 = “ADMIN1”

.3 = “ADMIN2”

stem.BASE.COWNER

stem.BASE.CLJTIME
… … …

stem.BASE.CLJDATE
… … …

stem.BASE.Cxxxxx
… … …

IBM Systems and Technology Group

© 2010 IBM Corporation23

Prefix, why it is important
� Consider the following program which determines if the

OMVS UID of the supplied user id matches a supplied
UID value.

/* REXX */
arg user idNum
myrc= IRRXUTIL ("EXTRACT", "USER",user, "RACF")
uid=idNum
if (RACF.OMVS.UID.1= uid) then

say "Uid matches"
else

say "No match"

The problem is that REXX variable UID is overused. It is used as a
variable, and also set by IRRXUTIL as part of a variable. The uses
conflict. Because we cannot expect REXX programs to anticipate all
possible future segment and field names, IRRXUTIL has a 'prefix'
option.

IBM Systems and Technology Group

© 2010 IBM Corporation24

Prefix, why it is important
� Lets fix the program using prefix.
//* REXX */
arg user idNum
myrc= IRRXUTIL ("EXTRACT", "USER",user, "RACF" , "R_")
uid=idNum
if (RACF. R_OMVS. R_UID.1=uid) then

say "Uid matches"
else

say "No match"

The specified prefix is added to all variable name parts as the REXX
variables are created. Specifying a prefix which you know will never be
used in your program variables guarantees that there will be no name
collisions. As long as the above program does not use any variables
starting with 'R_', it is safe.

IBM Systems and Technology Group

© 2010 IBM Corporation25

Extract Next

� The extract next function returns the profile follo wing
the specified profile.

� To return the user following 'BOB', issue the follo wing:
myrc= IRRXUTIL ("EXTRACTN", "USER", "BOB" , "RACF")

� Repeatedly calling IRRXUTIL(EXTRACTN…) with the
previously retrieved profile is a way to iterate th rough
all profiles in a class.

IBM Systems and Technology Group

© 2010 IBM Corporation26

Extract NEXT for general resources

� When extracting General Resources with
EXTRACTN, start out with non generic profiles, by
specifying 'FALSE' for the GENERIC parameter.

� Every time IRRXUTIL(EXTRACTN…) is called, pass in
the returned 'generic' indicator (stem.GENERIC),
along with the returned profile name.

� IRRXUTIL(EXTRACTN..) will automatically switch
over to GENERIC profiles when it has gone through
all discrete profiles.

IBM Systems and Technology Group

© 2010 IBM Corporation27

Extract NEXT for general resources
� When extracting General Resources with

EXTRACTN, start out with non generic profiles, by
specifying 'FALSE' for the GENERIC parameter.

/* REXX */
class = 'FACILITY'
RACF.R_PROFILE = ' '
RACF.R_GENERIC= 'FALSE'
Do Forever

myrc= IRRXUTIL ("EXTRACTN",class,RACF.R_PROFILE, "RACF" , "R_" ,RACF.R_GENERIC)

If (Word(myrc, 1) <> 0) Then Do
Say myrc
Leave

End
Say RACF.R_PROFILE /* print profile name */

End

IBM Systems and Technology Group

© 2010 IBM Corporation28

Specifying '.' as part of stem name

� IRRXUTIL resets the entire supplied stem to '' (nul l)
before populating any values. This means that each call
to IRRXUTIL has new data and no residual data is le ft
over from previous calls.

� If the stem variable contains a '.' (period) charac ter, this
is not possible, and IRRXUTIL does not clean anythi ng.
Return code '2' is returned as a warning that resid ual
data has not been cleared.

� However, this quirk can be useful, as long as the R EXX
programmer is careful.

IBM Systems and Technology Group

© 2010 IBM Corporation29

Specifying '.' as part of stem name
� This small program creates a small 'database' of us er

profile data, which is easily referenced by user id .
/* REXX */
arg IDS
USERS.="" /* only init to "", never 0 */
do i= 1 to words (IDS) /* populate specified users into USERS. stem */

ID= word (IDS,i) /* Get next user */
myrc= IRRXUTIL ("EXTRACT", "USER" ,ID, "USERS." ||ID)

end
/* We now have all specified users saved, process t hem */
do i= 1 to words (IDS) /* Retrieve data from multiple users without */

ID= word (IDS,i) /* extracting them again */
say ID|| " Owner=" ||USERS.ID.BASE.OWNER.1

end

� A silly example, but it does illustrate extracting multiple users and indexing them nicely by
user id. By placing the user id as part of the stem, we can organize all extracted data by
user id. In this example, myrc is set to '2 0 0 0 0' when successful.

IBM Systems and Technology Group

© 2010 IBM Corporation30

Specifying '.' as part of stem name, be careful
� This small program shows the wrong way to use a '.' i n the stem.

/* REXX */
say "Extract users with no '.' in stem"
myrc= IRRXUTIL ("EXTRACT", "USER", "MEGA", "RACF" , "")
say "MEGA UID is " RACF.OMVS.UID.1
myrc= IRRXUTIL ("EXTRACT", "USER", "ELVIS" , "RACF" , "")
say "ELVIS UID is " RACF.OMVS.UID.1
say "Extract users with '.' in stem to demonstrate erro r"
myrc= IRRXUTIL ("EXTRACT", "USER", "MEGA", "RACF.A" , "")
say "MEGA UID is " RACF.A.OMVS.UID.1
myrc= IRRXUTIL ("EXTRACT", "USER", "ELVIS" , "RACF.A" , "")
say "ELVIS UID is " RACF.A.OMVS.UID.1

� This example demonstrates how specification of a '.' in the STEM allows residual data to
remain after an new extract operation.

IBM Systems and Technology Group

© 2010 IBM Corporation31

Where do you find field names?
� z/OS Security Server RACF Callable Services contain s

tables which document every segment and field name
supported by R_admin in appendix A.2

� Fields which are 'Returned on Extract Requests' are
supported by IRRXUTIL.

Segment

Field

Extract?

IBM Systems and Technology Group

© 2010 IBM Corporation32

Gotchas
� IRRXUTIL sets the entire stem to "" (null) before set ting new data.

Fields which do not exist in the extracted profile r emain null.
This can cause problem in fields which are usually returned as numeric

fields because they also remain "", and not 0. So, care must be taken
before referencing numeric fields as numbers.

/* REXX */
arg group
myrc=IRRXUTIL("EXTRACT","GROUP",group,"RACF","")
do i=1 to RACF.BASE.SUBGROUP.0

say "Subgroup: "RACF.BASE.SUBGROUP.i
end

The above program fails if the specified group has no SUBGROUPs
because RACF.BASE.SUBGROUP.0="" which is not a number.

� Discrete profiles which contain generic characters wi ll cause the
underlying R_admin service to fail if they are encount ered during an
EXTRACTN call. This causes IRRXUTIL to fail too. The only solution
is to RDELETE these erroneous profiles. There are few cases where
discrete profiles are expected to contain generic chara cters and
R_admin handles these properly.

IBM Systems and Technology Group

© 2010 IBM Corporation33

Gotchas
� Universal Groups. Although not a direct issue with

IRRXUTIL, the presence of universal groups makes certain
types of problem much harder to solve. A Universal group is
a RACF group which does not contain a list of the user ids
connected to the group. The connection information is stored
solely in the user id profiles. This makes for more efficient
operation, but any program which relies on running the list of
users in the group will not work for Universal groups.

� Do not beat on the RACF database. For example, do not
EXTRACT-NEXT all users in an attempt to find all users
which belong to a given Universal Group.

IBM Systems and Technology Group

© 2010 IBM Corporation34

References
� RACF Callable Services – R_admin documentation
� Command Language Reference

– http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves/ICHZBKA0

� Macros and Interfaces – IRRXUTIL, including an
exhaustive list of all REXX variables set by IRRXUT IL.

– http://publibz.boulder.ibm.com/cgi-
bin/bookmgr_OS390/BOOKS/ichza3a0/14.0?SHELF=EZ2ZBK0H.bks&DT=20090610215513

� RACF Downloads page – Sample R_admin extract
program (RACSEQ)

– http://www-03.ibm.com/servers/eserver/zseries/zos/racf/downloads/racseq.html

� RACF Downloads page – IRRXUTIL examples.
– http://www-03.ibm.com/servers/eserver/zseries/zos/racf/downloads/irrxutil.html

IBM Systems and Technology Group

© 2010 IBM Corporation35

IRRXUTIL Samples, from RACF downloads page.
� XDUPACL.txt - A program which looks for user ACL entries which m ay be

redundant with existing group ACL entries

� XLGRES.txt - A program which resumes the group connection of ev ery member
of a group

� XLISTGRP.txt - A program which displays a group's connected users in
alphabetic order, with each user's name and connect authority

� XLISTUSR.txt - A program which displays a user's connect groups i n alphabetic
order

� XRACSEQ.txt - A program which re-implements the RACSEQ download to
demonstrate features of IRRXUTIL

� XRLIST.txt - A program which displays the standard access list of a general
resource profile with the users listed first, in al phabetic order, with the user's
name, followed by the groups, in alphabetic order

� XSETRPWD.txt - A program which displays only the password-related
SETROPTS options, and indicates whether password an d password phrase
enveloping is active

� XWHOCAN.txt - A program which displays certain users who can mod ify the
specified profile

