
WebSphere for Dummies
An introduction to WebSphere Application Server

Tom Hackett
IBM zSeries New Technology Center

thackett@us.ibm.com

Trademarks

WEBzTM1

Intel is a trademark of the Intel Corporation in the United States and other countries.
Java and all Java-related trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United
States and other countries.
Lotus, Notes, and Domino are trademarks or registered trademarks of Lotus Development Corporation.
Linux is a registered trademark of Linus Torvalds.
Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.
UNIX is a registered trademark of The Open Group in the United States and other countries.

* All other products may be trademarks or registered trademarks of their respective companies.

The following are trademarks of the International Business Machines Corporation in the United States and/or
other countries.

* Registered trademarks of IBM Corporation

AIX*
CICS*
DB2*
e-business logo*
HiperSockets
IBM*

IBM eServer
IBM logo*
IMS
OS/390*
Parallel Sysplex*
RACF*

Tivoli*
TotalStorage
WebSphere*
z/OS
z/VM
zSeries

Sea of Acronyms*

*Several acronyms expanded at end of presentation

Agenda

A Short History of Web Servers
Application Servers and how they work

WebSphere®

WebSphere and z/OS®

Recent developments

Note: This information is from the World Wide Web Consortium's "a Little History of the World Wide Web"

HTTP Servers
June-December of 1980

Tim Berners-Lee writes "Enquire-Within-Upon- Everything"
Written while consulting at CERN
Idea for linking arbitrary nodes

1989
Berners-Lee publishes "Information Management: A Proposal"

10/90
Started writing the first Web Browser program on a NeXT desktop
http://nxoc01.cern.ch/hypertext/WWW/TheProject.html (very first web
page 11/1990)

Don't bother trying it--it's not there any longer
October 1994

World Wide Web Consortium (W3C) Created
Web servers

Original CERN, NCSA
Now Apache, Netcape®, IIS, IHS (a.k.a. ICS, ICSS, DGW), Others

Documents stored in Hypertext Markup Language
client (browser) interprets the HTML

Hyper links can direct the browser to other documents (anywhere on the Web).
Supports Applications at the server, generating the output
Uses request/response model

stateless connection.
Request carries identity of document requested and other information

Identity is URL - Uniform Resource Locator
protocol://host:port/path/document name

e.g. http://www.share.org/events/Anaheim/speakerchair/presentation_template.cfm
Other information in request header

expiration time, requester info, cookies, etc.

Client/Server based model

HTML
Documents

HTTP
Server

HTTP Request

Response:
Document or error

HTTP Servers
One of the most important enablers is standards

W3C maintains the Standards
HTML for the markup language

Based on GML
Eventually leads to development of XML

Hypertext Transfer Protocol (HTTP) for the server
Anyone can write a server to provide the standard functions,
or a browser to process the standard HTML tags, using the
same TCP/IP protocol
Over time, application programming models were added

CGI's
API's (such as GWAPI)

Then an Application Server

CGI's
In the beginning there were CGI's and they were good

Fork/Exec model (spawn an address space) so the application ran in it's own
process, so you couldn't step on another program or the server itself
Request passed in a standard format, so that the application could get the
input request and the client information
Write in any supported language, based on the platform: Perl, C, C++, REXX,
PL/I, Cobol, Assembler, VB, etc.
Only problem cost (time and cycles) of initializing and terminating the process
(address space) for each request

And then there were API's and CGI's were still good
API's would run faster because they were local spawns in the same process.

 Each was a thread in the HTTP Server's (Web Server) process.
Loaded as .dll's, so it had to be C or C++ code (usually), or assembler for the
ambitious
Big Issue: No isolation or integrity

If one had a problem, all suffered
Lead to the need for an Application Server

A Web server is not an Application Server

Application Server
An Application Server usually supports the following

Common programming model based on a standard
Platform neutral application programming
JAVA based execution model, interpreted using a JVM

Some Available Application Servers
IBM WebSphere Application Server
BEATM WebLogic
iPLANET
Others: Tomcat, JRUN, JSERV etc.

HTTP Server

Web server plugin

Application Server

Some Application
Servers have
built-in HTTP
support

Extending the Web server
The Application Server has been thought of as an extension
to a Web server, consisting of 2 main components

A plugin for the Web server (HTTP Server) that will pass the
request to the actual Application Server.
 and
The Application Server itself

HTTP Server

Webserver plugin

Application Server

HTTP Server plugin
This plugin is usually a .dll or .so file
It is included in the webserver's configuration file as a plugin

(Service statement on z/OS)
It usually has it's own configuration, located in a file or some
other location.
It runs just like an API application, but the vendor you get it
from should support any problems.

*The original Servlet Express and WebSphere Application Server Standard Edition for OS/390 ran in the
same address space as the HTTP Server

HTTP Server

Web server plugin

Application Server

Machine 1

Machine 2

Application Server
Usually* runs as a separate process either on the same machine as the web server or on a different
machine

Can be one or more processes depending on how it was setup.
Plugin can communicate with the Application Server using several protocols depending on the
Application Server vendor

IBM uses HTTP and HTTPS.
Application Server uses a JavaTM environment to run the executables.

Interpretive model.
Needs a Java runtime environment (JRE) or Software Development kit (SDK)
Key element is Java virtual machine (JVM), the interpretive runtime

The Application Server runs components as threads in the Application Server.

Standards
Standards are key to platform neutral code
J2EETM (Java 2 Enterprise Edition) is the main standard all Application
Servers are measured against
Standard currently supported in WebSphere Application Server

V5 - J2EE 1.3
V6 - J2EE 1.4
Components that make up the J2EE standards also have version numbers
(just to confuse you)

Servlets
JSP's
EJB's (including Message Driven Beans)

Others, Java Mail, Java Messaging Service etc.
Standards maintained by Sun with many companies contributing

Components
These are Servlets, JSP's and EJB's with other Java
classes as helpers and utilities. These are executable.

Containers
This is where the components are executed. There are
two types of containers, Web containers (where servlets
and JSP's are executed) and EJB containers (where
EJB's are executed). A container on z/OS is not an
address space. You can have both a Web container and
an EJB container in the same server address space.
The difference is the services available to the
component.

Connectors
These are the adapters a developer uses to get to
databases and transactions. They include the CICS
Transaction Gateway, IMS Connect, JDBC drivers, and
JMS. In the past there were the CCF Connectors
(Common Connector Framework) for Servlets. The
J2EE standard now includes the J2CA (J2EE Connector
Architecture) connectors.

What's in J2EE

���������� � ���	
� ���	
 ������ ����� �����

This is not ISPF
Development is usually on a
desktop using

WebSphere Studio
Application Developer
Other products

The developer packages the
components into archives

WAR- Web archive for
HTML, Graphics and
JSP's
JAR- Java archive for
Servlets, EJB's, and
class files
EAR - Enterprise
application archive

The EAR file is
deployed and installed
using the
administrative console
or WSADMIN scripting
interface

Management is
through MVS operator
commands, the
administrative
console or vendor
products that use the
JMX API.
SMF records are
available as well.
A number of
performance
monitoring tools can
be employed.

WebSphere
Application Server on
OS/390 or z/OS

End to end environment

WebSphere Application Server
Runs as a threaded model
Supports a component based architecture

Servlets - Base component that extends a specific Java class HTTP Servlet.
All HTTP requests will be initially processed by a Servlet or a JSP. Should
contain minimal business logic. Acts as a controller to call EJB's and JSP's
Java Server Pages (JSP's) - The component that is used to dynamically build
the data sent back to the requester. This is usually dynamic HTML
Enterprise Java Beans (EJB's) - The component where the business logic and
data access is contained. There are three main types of EJB's

Session Beans
Can be stateful or stateless

Entity Beans
Can use container managed persistence (CMP) or bean managed persistence
(BMP)

Message Driven Beans
Get and process JMS messages from a queue

These components run in containers. Servlets and JSP's in a Web container
and EJB's in an EJB Container

WebSphere Application Server
W

eb
S

ph
er

e
A

pp
lic

at
io

n
S

er
ve

r
E

nt
er

pr
is

e

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

N
et

w
or

k
D

ep
lo

ym
en

t

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r Web-based Administration, Web Services

Deployment Manager, Node Agent, Clustering

Async Beans, Application Profiles, etc.

Workflow

JDK

EJB Container, Messaging

Web Container (Servlets, JSPs, XML)

E
xp

re
ss

W
eb

S
ph

er
e

B
us

in
es

s
In

te
gr

at
or

-F
ou

nd
at

io
n

S
er

ve
r

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

N
et

w
or

k
D

ep
lo

ym
en

t
(C

lu
st

er
ed

, m
ul

ti-
m

ac
hi

ne
)

E
xp

re
ss

(S
in

gl
e

S
er

ve
r)

Web-based Administration, Web Services

Deployment Manager, Node Agent, Clustering

Async Beans, Application Profiles, etc.

Workflow

JDK

EJB Container, Messaging

Web Container (Servlets, JSPs, XML)

Packaging changes
from WebSphere
5.x to 6.0

Packaging changes
from WebSphere
5.x to 6.0

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

E
nt

er
pr

is
e

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

N
et

w
or

k
D

ep
lo

ym
en

t

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r Web-based Administration, Web Services

Deployment Manager, Node Agent, Clustering

Async Beans, Application Profiles, etc.

Workflow

JDK

EJB Container, Messaging

Web Container (Servlets, JSPs, XML)

E
xp

re
ss

W
eb

S
ph

er
e

B
us

in
es

s
In

te
gr

at
or

-F
ou

nd
at

io
n

S
er

ve
r

W
eb

S
ph

er
e

A
pp

lic
at

io
n

S
er

ve
r

N
et

w
or

k
D

ep
lo

ym
en

t
(C

lu
st

er
ed

, m
ul

ti-
m

ac
hi

ne
)

E
xp

re
ss

(S
in

gl
e

S
er

ve
r)

Web-based Administration, Web Services

Deployment Manager, Node Agent, Clustering

Async Beans, Application Profiles, etc.

Workflow

JDK

EJB Container, Messaging

Web Container (Servlets, JSPs, XML)

Packaging changes
from WebSphere
5.x to 6.0

Packaging changes
from WebSphere
5.x to 6.0

Application Servers connect to
data/transactions

Access Databases using JDBC
Vendor Neutral interface
Requires a JDBC driver

DB2
Oracle
Merant

Access transactions
J2EE Model

J2EE Connector Architecture Connectors (IMS
Connect, CICS Transaction Gateway)
JMS (Java Message Service)

The basic execution environment for WebSphere on z/OS is a server. A server is a
Controller/Servant configuration. Each is an address space

For every Controller is one or more Servants

The Controller is the protocol entry point. Multiple protocols are supported: HTTP, HTTPS,
IIOP and JMS.

The Servant is where the components execute

With a WLM Queue between them

There can be multiple servers on a single z/OS image

Servants

Containers
����

����

����

����

����

����

����

����

����

����

����

����

Controller Server

Basic Runtime Structure on z/OS

WLM
Queue

WebSphere Application Server
for z/OS

Optimized for z/OS
that's why it requires RRS, Logger, WLM Goal mode

SMP/E installed with an ISPF dialog for the install
customization
Multiple processes (address spaces)

Controller - distributes the work among server regions
Servant - does the actual work

Has 2 types of containers, a Web Container and an EJB
Container

Other Daemons for control
Does not run under the USS Shell but does use some Unix
System Services
Configuration is performed with an administrative console
(browser based) or script (JACL, Python)

WebSphere Application Server is fully
Sysplex-enabled

You can have one or more Controller/Servant
configurations setup on each z/OS image in a

Sysplex.

REQUEST

Coupling Facility

z/OS

Workload Manager
Network

WAS
Servers

CICS
IMS
DB2

Locks Cache

z/OS
Sysplex services
Network services

Controller Servants

WLM Queue

Containers
����

����

����

����

����

����

����

����

����

����

����

����
Directory

Scaling

Basic Operation on z/OS
HTTP Traffic using a Web server on z/OS or another platform

The client Request comes into the HTTP Server and is processed by the WAS Plugin
The WAS Plugin redirects the request to WebSphere using HTTP
A Controller in WebSphere receives the request and puts the request on a Workload Manager queue
A Servant takes the request off the queue and starts the requested Servlet or JSP
The response is passed back through the Web server and to the client

HTTP Traffic using the HTTP Transport
The request comes directly into the Controller and is placed on the WLM queue and processed exactly like
the above HTTP method
The HTTP Transport is not a full Web server and there is usually a full Web server that acts as a proxy to get
the request to the HTTP Transport

IIOP Traffic
The client request is usually an RMI (remote Method Invocation) over IIOP to an EJB
The Request comes directly into a Controller and is placed on a WLM queue
A Servant takes the request off the queue and starts the EJB requested and the results are returned to the
client

JMS Traffic
The client puts a message on a message queue
The Controller connected to the message queue places the message on a WLM queue
A Servant takes the message off the queue and invokes an MDB EJB.
Results are not necessarily returned to the client

Security
Traditional security model

You have a userid that is connected to one or more RACF groups
Logon with userid and have access to applications and resources based on userid and group

WebSphere security model
Access can be controlled at the level of a component or specific methods within the
component

Might have authority to account.getBalance() but not account.makeWithdrawal()
Access is based on Roles

Roles are like RACF groups, each user could be in one or more roles
Principals are like userids

Each thread has Subject containing one or more principals
Principal contains information about caller's identity
Could be non-RACF as well as RACF identity

Works even if end user has no principles
Not the same as an ACEE

ACEE still controls access to non-Java resources (like datasets)

Security (cont.)
Additional concepts

RunAs - This option allows the application to "Run" as the identity of the caller, role,
or server.
sync-to-os-thread - This option causes the application to synch the thread of
execution (TCB's ACEE) to the RACF identity associated with the RunAs statement.

If RunAs is set to caller (the default), then the thread would have the callers RACF
id,
If RunAs is set to role, then the thread would have the RACF identity associated
with a particular role (using the EJBROLE profile)
if RunAs is set to server, then the thread would run under the servant's RACF
identity

which is the normal situation anyway
res-auth - This set for the application to identify who should control the resource
authentication setup.

If set to application the developer would have to code a
getConnection(<userid>,<password>)

JDBC (DB2) JMS (MQ) or J2CA (CICS, IMS)
If set to container, then WebSphere will pass the RunAs identity to the back end

To find out more, attend sessions 1744, 1745 and 1746 on Thursday

What's new in V6.0
Always new features and functions

SDK 1.4.1

Web Services enhancements

Programming model extension changes

Business process choreography enhancements

For more information, attend 2931 on Tuesday

Each of these three services requires a set of standards and
definitions that is commonly called Web Services. Some
development groups are using parts of the standard, i.e. XML or
SOAP over HTTP and they say they are using Web Services

Web Services
Say you were a store that wanted to sell pencils on the network but you
didn't want to setup the payment process. So you need to find someone
that will process the payments for you. In this case you'd be a Service
Requester. Your online application would have to

Lookup the name and location of the service you need to use
Say your a bank and you want to provide a service to anyone who needs
to accept payments, but you don't want to tie your service directly to
anyone. In this case you'd be a Service Provider. You would have to

Build you service and register it for someone to lookup
Both of the above need a middle man to handle the directory and support
the registration of services and the lookup. This would be the Service
Broker. You would have to

Make your service available to the providers and requesters

Service Provider
Owns a group of services
Provides applications as Web Service
Publishes their services

Service Requester
A client that requires a service
Finds a matching service
Invokes the service

Service Broker
Owns a searchable repository of service descriptions
Service Providers publish their services to the broker
Service requesters access broker to find services

Web Services: Key Functions

J2EE Standards: JSR 101, JSR 109
Web Services Gateway, UDDI

A structured way for exchanging information
XML - Extensible Markup Language
Provides a platform/vendor neutral way to structure data

A service access protocol
SOAP - Simple Object Access Protocol
Provides a platform/vendor neutral application communication
protocol

A way to catalog and describe services
WSDL - Web Services Description Language
Uses XML to describe a Web service

A way to advertise and find out about available services
UDDI - Universal Discovery Description and Integration
A structured directory or registry used for publishing and finding a
Web Service

Web Services: What Does It Take?

Programming model extensions

Advanced CMP
Container Managed Messaging (CMM)
Asynchronous beans
Activity sessions, last participant support
Startup beans
Business rule beans
I18N
etc.

Business process choreography

Activity Implementations

GUI

Process Container

Invoke

Invoke

Invoke

Invoke Invoke

Process

What is WebSphere?
IBM has branded several products under the WebSphere name. They tend to fall into 4
categories

1. Development Tools
Rational Application Developer (follow-on to VisualAge for Java and WebSphere
Studio, including WebSphere Studio Application Developer)

2. WebSphere Application Servers
Several editions
Some available on specific platforms

3. WebSphere Extensions
WebSphere Business Integration Server Foundation
WebSphere Commerce Suite
WebSphere Portal Server

4. Management and analysis tools
WebSphere Studio Application Monitor
WebSphere Studio Workload Simulator

The list is constantly changing!

Where do you go from here?
Back to Assembler/COBOL/REXX ?

 but we'd miss out on all capabilities that WebSphere
brings to the table, So...

You can get additional information on the internet
and in RedBooks (http://www.redbooks.ibm.com)

Make sure you bookmark
http://www-306.ibm.com/software/webservers/appserv/zos_os390/support/

Check out the online InfoCenter and books
http://www-306.ibm.com/software/webservers/appserv/was/library/

You can also use the Sun tutorial on Java
components at http://java.sun.com/learning/new2java/index.html

s
IBM Software Group | WebSphere software

1

WebSphere User Group Community – www.websphere.org
Where the WebSphere dummies hang out!

How to Get Involved!

� Register as a Virtual WebSphere User
Group member.

� Join a User Group in your area and
personally engage with other WebSphere
users and developers

� For IBMers, become an IBM liaison for a
User Group within your area

� Visit www.websphere.org or contact
info@groupintelligence.com

WebSphere User Groups
Global network of local activity of large and
small customers, developers, consultants,
vendors and IBM technical, support & sales
staff …. all endorsing, constantly
evaluating, learning and entrenching
WebSphere tools, product and solutions to
solve business problems

A community of over 8100
customers and business partners

(~90 WebSphere User Groups)

One of the largest collection of
WebSphere software users and business
partners enhancing their WebSphere
software skill base…

• communicating openly
• expressing ideas
• sharing experiences

Take advantage of …
• technical expertise
• education opportunities
• continuous WebSphere dialogue

Why is this significant?

NA 4600+ EMEA 1800+

AP 1500+
LA 250+

Caribbean 10+

Acronyms (in order of appearance)
CERN

Conseil European pour la Recherché Nucleaire (European Laboratory for Particle Physics; Geneva,
Switzerland)

NCSA
National Center for Supercomputing Applications

IIS
Internet Information Server (Microsoft)

ICS
IBM Connection Server

ICSS
IBM Connection Secure Server

DGW
Domino Go Web server

IHS
IBM HTTP Server

CGI
Common Gateway Interface

API
Application Programming Interface

GWAPI
Go Webserver API

The following foils are meant to provide a bridge in
understanding WebSphere. They are not meant to compare
the capabilities of CICS or REXX/ISPF to WebSphere

Understanding the Transition
The J2EE space is introducing many new acronyms and concepts, but
many have parallels to those environments you are used to.
CICS applications have an entry point Usually a (Terminal Owning Region
or TOR), 3270 screens (using BMS maps), and services to support file
access (File Owning Regions). These modules or components run within
CICS Regions that manage the environment.
REXX End User Applications on z/OS normally use ISPF Screens for
display and ISPF Dialog Manager to display the screens and to put data
into them. They also use EXECIO for file IO and other connectors to do
DB2 and CICS.

3270

D
B

2

CICSCICS

V
TA

M

TOR - Terminal Owning
Region
AOR - Application
Owning Region
App 1- Main Application
module
Fn 1- Business Logic
Module
Fn 2- Data Access
Module
Scr 1- Presentation
Screen module BMS
mapping

TOR Region owns the connection to the 3270
AOR Region is where the application (transaction) runs,
Application is broken up into separate modules and connected
using DLP calls,

TOR AOR

AOR

App1
Fn 1

Fn 1
Scr 1

App1
Fn 1

Fn 1
Scr 1

Traditional CICS Application

3270

D
B

2

CICSCICS

TOR - Terminal Owning
Region
AOR - Application
Owning Region
App 1- Main Application
module
Fn 1- Business Logic
Module
Fn 2- Data Access
Module
Scr 1- Presentation
Screen module BMS
mapping

Browser
TOR AOR

AOR

App1
Fn 1

Fn 2
Scr 1

App1
Fn 1

Fn 2

WebSphere

Controller

Scr 1

Controller

Servant
Servlet
JSP- Java Server
Page
EJB

Session
Entity
MDB

Controller is the entry point, from Browsers or other Clients
Servant is where the actual application and executables are run
Application is composed of components which use standard J2EE
interfaces to communicate

Servant

Servant

Servlet EJB
EJBJSP

Servlet EJB
EJBJSP

WebSphere Application

TC
P

/I P

Analogies with CICS Application
TOR-Terminal Owning Region => WebSphere Controller

This is where WebSphere handles the incoming protocol. This
can be:

HTTP/HTTPS - Normal browser traffic, customers are now
doing XML over HTTP by having an application simulate a
browser
IIOP - For remote EJB execution
JMS Java Message Service - For Message driven beans

AOR-Application Owning Region => WebSphere Servant
CICS Main Application => Java Servlet
Modules for Business Logic or Data Access => EJB
BMS Map => Java Server Page

3270

D
B

2

V
TA

M

ISPF Dialog Manager
App - Main REXX
Application Exec
Fn 1- REXX Function
with Business Logic
Fn 2- REXX Function
for Data Access
Scr 1- REXX Function
to setup dynamic
screen data and call
ISPF to display the 320
panel

ISPF Dialog Manager owns the connection to the 3270
Application is broken up into separate EXECS and functions and
connected using normal function calls

ISPF
Dialog
Manager

REXX
Application

App

Fn 1

Fn 1
Scr 1

Application
ISPF
Panels

Traditional REXX ISPF
Application

3270

D
B

2

CICSCICS

TOR - Terminal Owning
Region
AOR - Application
Owning Region
App 1- Main Application
module
Fn 1- Business Logic
Module
Fn 2- Data Access
Module
Scr 1- Presentation
Screen module BMS
mapping

Browser
TOR AOR

AOR

App1
Fn 1

Fn 2
Scr 1

App1
Fn 1

Fn 2

WebSphere

Controller

Scr 1

Controller

Servant
Servlet
JSP- Java Server
Page
EJB

Session
Entity
MDB

Controller is the entry point, from Browsers or other Clients
Servant is where the actual application and executables are run
Application is composed of components which use standard J2EE
interfaces to communicate

Servant

Servant

Servlet EJB
EJBJSP

Servlet EJB
EJBJSP

WebSphere Application

TC
P

/I P

