
IBM Software Group

© 2007 IBM Corporation

z/OS Cryptography demystified

Lennie Dymoke-Bradshaw
IBM, SWG

Presented on

5th November at GSE UK Conference

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

Contents

! Why do we use cryptography?

! What is cryptography?

! What types of cryptography are there?

! How can cryptography be performed?

! What about cryptography on z/OS?

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

Why cryptography?

! Regulation and Compliance
–PCI – Payment Card Industry

• Standards for all organisations
• Debit Cards and Credit Cards

–Sarbanes-Oxley (SOX), etc. etc.
! Offsite backups

–Once data is offsite, RACF cannot protect it.
–Do tapes fall off your lorries?

! Secure messaging and Non-repudiation
–Needs certificate management system.
–Public Key Infrastructure (PKI).

! Money management
–ATMs, PINs, Chip & PIN cards.

! Banking and eCommerce on the internet
–Secure signon.

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

What is cryptography?

! Oxford English Dictionary says
–cryptography is,

“The art of writing or solving ciphers”
•From the Greek kryptós meaning hidden

–A cipher is
“a secret or disguised way of writing”

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

What is cryptography?

! In computing terms we associate cryptography with the use
of KEYs.

! Data is hidden by using
– A KEY
– An algorithm

! A KEY is a string of binary data used to modify the original
data via the algorithm.

! The aim is to disguise data so that only the chosen few can
access it.

! The algorithm is public, the key is private

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

Crypto example diagram

! In this case
– Message is “Lennie ” which is X’4C656E6E69652020’

– Algorithm is DES

– Key is X’0102030405060708’

– Encrypted message is X’71AC9B8B4BBBCE13’

Lennie
X’4C656E6E69652020’

X’4C656E6E69652020’ DES X’0102030405060708’ = X’71AC9B8B4BBBCE13’

X’71AC9B8B4BBBCE13’

Note: Text in this example is in ASCII, and is padded with 2 blanks

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

Types of cryptography

! Symmetric cryptography
–Such as DES, TDES, RC4, AES

! Asymmetric cryptography
–Such as DSA, RSA, Diffie-Hellman, ECDSA (Elliptic
Curve Digital Signature Algorithm)

! Can use both combined
–Used in Secure Sockets Layer(SSL)

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

Encrypt DecryptMessage Message
Encrypted
Message

Shared
Secret Key

Symmetric Cryptography

Examples:
Data Encryption Algorithm (DEA) also known as Data Encryption Standard (DES)
Triple DES (TDES), which uses DES three times.
Advanced Encryption Standard (AES)

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

Asymmetric Cryptography
Encrypt DecryptMessage Message

Encrypted
Message

Receiver's
Public Key

Receiver's
Private Key

Examples:
Rivest Shamir and Adelman (RSA)
Diffie-Hellman

Note: Asymmetric cryptography is much slower that symmetric cryptography

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

SSL

! Secure Sockets Layer

–Uses Asymmetric encryption to agree a Symmetric key
•Handshake process

–Can negotiate Asymmetric algorithms

–Can negotiate Symmetric algorithms

–Can have an “abbreviated” handshake for performance

–Once handshake is complete, the symmetric key is used to
encrypt all data that flows.

–Symmetric key is discarded after use

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

SSL

! Following slides are simplified

–Do not use client authentication

–Many different mechanisms supported by SSL

! SSL supports

– Authentication of partners

– Message privacy

– Message integrity

! Lots of options and encryption algorithms supported

! The following diagrams are vastly simplified

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

SSL flow - 01

ClientHello

I want a secure connection.

This is a list of the Hash
functions and Ciphers I can
support,

……

……

Client Server

Servers box of Goodies
1.Certificate with Public
key
2.Private key

Clients box of Goodies
…. Empty ….

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

SSL flow - 02

ServerHello

Sounds reasonable….

Here is,

1.My name

2.The CA for my certificate

3.My certificate

4.A random number

5.A session id

Client Server

Servers box of Goodies
1.Certificate with Public
key
2.Private key
3.Random Number
4.Session id

Clients box of Goodies
…. Empty ….

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

SSL flow - 03

ServerHelloDone

Sounds reasonable….

Here is,

1.My name

2.The CA for my certificate

3.My certificate

4.A random number

5.A session id

6.The ciphers and hash
method I chose

Client Server

Servers box of Goodies
1.Certificate with Public
key
2.Private key
3.Random Number
4.Session id
5.Ciphers and hash
method

Clients box of Goodies
1.Servers Certificate with
public key
2.Random Number
3.Session id
4.Ciphers and hash
method

Client may validate
the certificate

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

SSL flow - 04

ClientKeyExchange

Thanks….

Here is a random number I
thought of, encrypted under
your public key

Lets call this the “Pre-Master
Secret”.

Client Server

Servers box of Goodies
1.Certificate with Public
key
2.Private key
3.Random Number
4.Session id
5.Ciphers and hash
method

Clients box of Goodies
1.Servers Certificate with
public key
2.Random Number
3.Session id
4.Ciphers and hash
method
5.Pre-Master Secret

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

SSL flow - 05

Client Actions

Generate a Master
Secret using

• Random Number

• Pre-Master Secret

Generate an
encryption key from
the Master Secret

Client Server

Servers box of Goodies
1.Certificate with Public
key
2.Private key
3.Random Number
4.Session id
5.Ciphers and hash
method
6.Pre-Master Secret
7.Master Secret
8.Encryption Key

Clients box of Goodies
1.Servers Certificate with
public key
2.Random Number
3.Session id
4.Ciphers and hash
method
5.Pre-Master Secret
6.Master Secret
7.Encryption Key

Server Actions

Generate a Master
Secret using

• Random Number

• Pre-Master Secret

Generate an
encryption key from
the Master Secret

Actions take place simultaneously

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

SSL flow - 06
Client Server

Servers box of Goodies
1.Certificate with Public
key
2.Private key
3.Random Number
4.Session id
5.Ciphers and hash
method
6.Pre-Master Secret
7.Master Secret
8.Encryption Key

Clients box of Goodies
1.Servers Certificate with
public key
2.Random Number
3.Session id
4.Ciphers and hash
method
5.Pre-Master Secret
6.Master Secret
7.Encryption Key

ChangeCipherSpec

Everything I send after this
message will be encrypted with
the encryption key

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

SSL flow - 07
Client Server

Servers box of Goodies
1.Certificate with Public
key
2.Private key
3.Random Number
4.Session id
5.Ciphers and hash
method
6.Pre-Master Secret
7.Master Secret
8.Encryption Key

Clients box of Goodies
1.Servers Certificate with
public key
2.Random Number
3.Session id
4.Ciphers and hash
method
5.Pre-Master Secret
6.Master Secret
7.Encryption Key

ChangeCipherSpec

Everything I send after this
message will be encrypted with
the encryption key

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

SSL flow - 08

Servers box of Goodies
1.Certificate with Public
key
2.Private key
3.Random Number
4.Session id
5.Ciphers and hash
method
6.Pre-Master Secret
7.Master Secret
8.Encryption Key

Clients box of Goodies
1.Servers Certificate with
public key
2.Random Number
3.Session id
4.Ciphers and hash
method
5.Pre-Master Secret
6.Master Secret
7.Encryption Key

Data flow

Everything sent in each
direction is now encrypted
under the encryption key which
both client and server know.

Client Server

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

SSL flow – Session id reuse - 01

ClientHello

I want a secure connection.

This is a list of the Hash
functions and Ciphers I can
support,

……

……

…. and I have this Session id
from our last communication….

Client Server

Clients box of Goodies
1.Servers Certificate with
public key
2.Random Number
3.Session id
4.Ciphers and hash
method
5.Pre-Master Secret
6.Master Secret
7.Encryption Key

Servers box of Goodies
1.Certificate with Public
key
2.Private key
3.Random Number
4.Session id
5.Ciphers and hash
method
6.Pre-Master Secret
7.Master Secret
8.Encryption Key

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

SSL flow – Session id reuse - 02
Client Server

Clients box of Goodies
1.Servers Certificate with
public key
2.Random Number
3.Session id
4.Ciphers and hash
method
5.Pre-Master Secret
6.Master Secret
7.New encryption Key

Servers box of Goodies
1.Certificate with Public
key
2.Private key
3.Random Number
4.Session id
5.Ciphers and hash
method
6.Pre-Master Secret
7.Master Secret
8.New encryption Key

Client Actions

Generate a Master
Secret using

• Random Number

• Pre-Master Secret

Generate a new
encryption key from
the Master Secret

Server Actions

Generate a Master
Secret using

• Random Number

• Pre-Master Secret

Generate a new
encryption key from
the Master Secret

Actions take place simultaneously

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

SSL flow – Session id reuse - 03

Servers box of Goodies
1.Certificate with Public
key
2.Private key
3.Random Number
4.Session id
5.Ciphers and hash
method
6.Pre-Master Secret
7.Master Secret
8.New encryption Key

Clients box of Goodies
1.Servers Certificate with
public key
2.Random Number
3.Session id
4.Ciphers and hash
method
5.Pre-Master Secret
6.Master Secret
7.New encryption Key

Data flow

Everything sent in each
direction is now encrypted
under the new encryption key
which both client and server
know.

Client Server

IBM Software Group

© 2007 IBM Corporation

Cryptography on z/OS
(including some new stuff!)

A basic primer

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

Cryptography on z/OS

1. Can be performed in software
– SSL uses software crypto in some cases
– Java crypto packages

2. Can used specialised machine instructions
– CPACF assembler instructions
– z990 processors onwards

3. Can use specialised crypto processors
– PCIXCC or Crypto Express 2
– Follow “Common Cryptographic Architecture”
– Managed using ICSF
– Can be used from JAVA

4. Can be used in peripherals
– TS1120 and TS1130tape drives
– DS8000 FDE

5. Can use 3rd party devices
– Thales, Atalla, etc.

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

Cryptography on z/OS

z10 EC, Z9 EC, z10 BC and z9 BC use
–CPACF (CP Assist for Cryptographic Functions)

• CPACF has more functions on later processors

–Crypto Express 2 configured as
• Crypto Engine (CEX2C), or
• Crypto Accelerator (CEX2A)

–Crypto Express 3 configured as
• Crypto Engine (CEX3C), or
• Crypto Accelerator (CEX3A)

–Software
•System SSL
•RACF
•PKI Services

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

Cryptography on z/OS

! CPACF
–Set of machine instructions available on every GP and
speciality engine

–Also known as “Message Security Assist” or MSA instructions

–Perform
•DES and AES encryption
•Hashing
•Random Number Generation
•MAC generation

–Clear key Operations

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

Cryptography on z/OS

Crypto Express 2
! Feature Code 0863
! Uses 4764 processor

– Linux operating system
! Top hardware rating

– FIPS 140-2 Level 4 certified
! Each feature contains 2 crypto processors
! Connects in I/O cage
! Contains signed code with certificate
! Tamper-proof hardware

– Destroys keys if attacked
! Conforms to IBM’s CCA

– Common Cryptographic Architecture
! Can be configured as crypto accelerator

(CEX2A)

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

Crypto Express 3
! Feature Code 0864
! Uses 4765 processor

– Linux operating system
! Top hardware rating

– FIPS 140-2 Level 4 certified
! Each feature contains 2 crypto processors

– Also can get a Crypto Express 3 1-p
! Connects in I/O cage
! Contains signed code with certificate
! Tamper-proof hardware

– Destroys keys if attacked
! Conforms to IBM’s CCA

– Common Cryptographic Architecture
! Can be configured as crypto accelerator

(CEX3A)

Cryptography on z/OS – NEW!

Major Changes
! 32 domains (up from 16)
! Protected key support
! Enhanced temperature tolerance
! PCI-e interface (previously PCI-x)
! Improved RAS features
! Improved performance
! Concurrent code updates

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

Cryptography on z/OS

! Clear Key
–Key is exposed in the
storage of processor

–Can be viewed in dump of
storage

–If correctly interpreted can
expose data

–Sometimes acceptable
• for short-lived keys
•with other constraints

! Secure Key
–Key is only ever exposed in
bounds of secure processor

–Can never be seen in
storage

–Dump will not reveal key

–Key is held encrypted under
Master key

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

NEW – Protected keys (z10 only)

! Clear Key
– Key is exposed in the

storage of processor

– Can be viewed in dump
of storage

– If correctly interpreted
can expose data

– Sometimes acceptable
• for short-lived keys
• with other constraints

! Secure Key
– Key is only ever

exposed in bounds of
secure processor

– Can never be seen in
storage

– Dump will not reveal
key

– Key is held encrypted
under Master key

! Protected Key
– Key is not exposed in

the storage of processor
– Key is in clear outside

of tamper-proof device
– Can never be seen in

dump of storage
– Dump will not reveal

key
– Key is held in storage

encrypted under a
Wrapping Key

– Hence called a
Wrapped key.

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

Cryptography on z/OS

! z10 Processor view
–Each LPAR has own set of
Master keys

–Requests for Crypto
processing queued into
processor

–Crypto Express services
requests on FIFO basis.

–Link to Crypto Express 3 is
asynchronous

–32 domains per crypto engine
–Can have multiple engines per
LPAR

LPAR 1 LPAR2 LPAR3

Master Keys 1 Master Keys 2 Master Keys 3

Crypto Express 3

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

Cryptography on z/OS

CKDS

PKDS

PC interface

Symmetric Key
store

Asymmetric Key
store

LPAR 1

Crypto Express 2

Special
Interface

OSA-Express

TKE Workstation

Unsecured
Network

Address
Space

Address
Space

TC
P/IP

Crypto
App

(e.g. CICS)

ICSF

! LPAR View
–Crypto application communicates
with ICSF

–ICSF does I/O to key stores

–ICSF manages Crypto engines

–Crypto express 2 communicates
with TKE via ICSF

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

Cryptography on z/OS

! Master keys
–Symmetric master key
–Asymmetric master key
–Both are TDES
–Used to encrypt keys held on
CKDS and PKDS

–CKDS and PKDS are VSAM
datasets

–Programs refer to keys by
labels

–Keys only ever exposed with
Crypto Express 2

CKDS

Symmetric Key
store

Label Key
MYDESKEY01 Value of key – (Encrypted using

Symmetric Master key)

YOURDESKEY01 Value of key – (Encrypted using
Symmetric Master key)

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

Protected keys – How do they work?

! Wrapping key is derived
– At each LPAR activation

! ICSF provides
– New API to extract a Secure key from CKDS,

and
– Converts to a Wrapped key
– Needs Crypto Express 3

! System z firmware
– Is part of HSA
– Hold Wrapping key
– Holds clear key value
– Not visible to operating system or applications

! CPACF
– New Function codes
– New instruction PKCMO (privileged)

System z Firmware

Protected area
Wrapping Key

Clear key

Application

Wrapped key

CPACF Instruction

LPAR

Wrapped Key

Data

KM (inst)Key
TLB

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

Cryptography on z/OS

! Key Separation
–Each key in the CKDS and PKDS is encrypted by a master key
–Before the master key is used to encrypt it a “Control Vector” is
applied to the master key.

–Control Vectors allow us to enforce specific “roles” for keys. e.g.
• Data keys – for encrypting data
• MAC keys – for producing Message Authentication Codes
• Transport keys – used to exchange keys with other systems
• PIN generation keys – used to generate PIN numbers

Control Vector
for key type

XOR Symmetric
Master Key

Symmetric Master
Key Variant

Clear Key
Value

Operational
KeyTDESSymmetric Master

Key Variant

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

Cryptography on z/OS

! ICSF does the following
–manages Crypto engines

•Online & Offline status
•Reports status
•Provides RMF data

–Provides access to the keys stores
•CKDS and PKDS

–Provides the APIs for crypto services
•Many and varied!

–Interfaces with Trusted Key Entry (TKE) workstation

ICSF runs as a started task on
each MVS system in the sysplex

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

Cryptography on z/OS

! ICSF APIs
–Symmetric Key management

• Creating, exporting, importing, storing, etc.
–Protecting data

• Encipher, Decipher, etc.
–Verifying data

• Hash processing
• MAC processing

–Financial processing
• PIN manipulation to industry standards

–Digital Signatures
–PKA (Asymmetric) Key management

• Creating, exporting, importing, storing, etc.

Note: There are over 100 APIs, each with many parameters. (Min 6, Max 21)

Most ICSF APIs are callable
services with names starting

CSNB…..
CSND…..

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

RACF checks in ICSF – basic checks

! Check access to each service (API)
–Issues a RACF check in CSFSERV class

–All APIs have a CSF…. resource name

–Can protect sensitive APIs

! Check access to each KEY
–Uses LABEL as a resource name in CSFKEYS class

–Each label is a 64 byte name

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

RACF checks in ICSF – New with HCR7751

! Key store policies
–New resources in XFACILIT class to enable new function
–Access checked when token in place of label
–Duplicate token checking

•Prevents storing of same key under duplicate labels
–Default token

•Used for a token which has no matching label
–Granular key access

•Uses an access level (READ, UPDATE, CONTROL) when checking
access to a key

–Controls on key export
•Uses XCSFKEY class

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

New ICSF for 2009 – HCR7770

! Crypto Express 3 support
! Protected key support

– Also needs z10 GA3

! Elliptical Curve cryptography
– designed to comply with NIST requirements to support a FIPS 140-2 mode of

operation for IPSEC.

! Extended PKCS#11 support
– new software cryptographic engine embedded in ICSF will allow PKCS11

processing even if no cryptographic coprocessors are available.

! Performance improvements
– and ICSF now runs non-swappable and non-cancellable

! New Query algorithm
– Supplies details on supported cryptography algorithms

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

Summary

! Cryptography can “hide” data
! Cryptography uses “Keys”
! Keys can be Clear, Protected or Secure

–Secure is better, but slower
! Symmetric and Asymmetric crypto

–Symmetric is faster
! SSL uses both types of cryptography
! Crypto can be hardware or software driven
! Crypto Express 3 is the current secure key processor for System z
! ICSF performs 3 major functions

–manages crypto devices on z/OS
–provides keys stores on z/OS
–provides the cryptographic APIs on z/OS

Lennie Dymoke-Bradshaw, IBM Software Group

© 2007 IBM Corporation

