
© Copyright IBM Corp. 2010, 2014 Page 1 of 10

IRRXUTIL Sample ProgramsIRRXUTIL Sample ProgramsIRRXUTIL Sample ProgramsIRRXUTIL Sample Programs

 z/OS® Security Server RACF®

Authors: Michael Onghena and Bruce R. Wells

brwells@us.ibm.com

onghena@us.ibm.com

IBM® Corporation

Last updated: 10/16/2014

Change Date Change Description

01/13/2010 Introduction of samples

10/16/2014 Addition of XSTARTED and update to XSETRPWD for OA43999

1 Introduction ...2
2 Package Contents...2
3 IRRXUTIL Overview..3

3.1 How to invoke it ..3
3.2 How to interpret the return codes ..3
3.3 The variable names that are set ...3

4 Installation Instructions ...7
5 The Samples ..8

5.1 XDUPACL – Search for duplicate USER entries in Access Control Lists ...8
5.2 XLGRES – Resume all users in a group ...8
5.3 XLISTGRP – Display group members alphabetically ..8
5.4 XLISTUSR – Display a user’s connected groups alphabetically ..9
5.5 XRACSEQ – Re-Implementation of RACSEQ in REXX ..9
5.6 XRLIST – Display sorted standard access list of a general resource profile...9
5.7 XSETRPWD – Display only the password-related SETROPTS options..9
5.8 XWHOCAN – Display the users who can modify a given profile..10
5.9 XSTARTED – “Health Check” the STARTED class ...10

6 References ...10
7 Disclaimers, etc. ..10

© Copyright IBM Corp. 2010, 2014 Page 2 of 10

1 Introduction

In z/OS V1R11 a REXX interface called IRRXUTIL was officially introduced in RACF. It acts

as a front-end to the R_admin callable service (IRRSEQ00) for the purpose of extracting profile

and SETROPTS information and places the information into a REXX stem for consumption by

the caller.

IRRXUTIL is fully documented in RACF Macros and Interfaces, and we do not intend to repeat

that documentation here. Having said that, we will provide a 20,000 foot view of the interface

below.

2 Package Contents

This package contains

� This README file

� Xname.txt – the individual samples (documented below) in text format for casual

viewing

� IRRXUTIL.xmit – All of the sample programs in TSO XMIT format, for your

convenience to get these samples into a PDS on z/OS.

© Copyright IBM Corp. 2010, 2014 Page 3 of 10

3 IRRXUTIL Overview

There are essentially three things you need to know about IRRXUTIL:

• how to invoke it

• how to interpret the return codes

• the variable names that are set

3.1 How to invoke it

IRRXUTIL is invoked from a REXX program as follows:

myrc=IRRXUTIL(command,type,profile,stem,prefix,generic)

You tell IRRXUTIL what function (command) to perform (extract or extract-next), the type (or

class) of profile to extract, the profile name, and the name of a stem variable (without the trailing

period) in which to return the information. The final two parameters are optional: a prefix to

apply to the generated variable names in order to reduce collisions with existing variable names

in a REXX program, and a generic flag that tells RACF to extract from a matching generic

general resource profile if a discrete profile does not exist.

3.2 How to interpret the return codes

There is not a single return code, but a string of five return codes separated by a blank. These are

documented in Macros and Interfaces, and there isn’t much sense repeating them here. For the

most part, you will only need to know whether the first value (“return code 1” in the

documentation) is zero or not. For example,

if (word(myrc,1)=0) then …

If it is not zero, then the remaining values will help you determine exactly what the error is.

Keep in mind the special value of 2 for “return code 1”. This also means that everything was

OK, but you specified a stem value which contained a period. If you did not mean to do this,

then the value of 2 serves as a warning. If you meant to do this, you should treat a value of 2 as

successful.

3.3 The variable names that are set

Most often, you will probably extract a profile knowing exactly which field(s) you want. In this

case, the fields can be access directly once you understand the naming convention.

• stem.segment.field.0 contains the number of values for the field. For a normal field, this

value will be 1. It will only be greater for repeating data.

• stem.segment.field.n contains the nth value for the field. For most fields, n will be 1.

© Copyright IBM Corp. 2010, 2014 Page 4 of 10

If you specify a prefix, this naming will be altered somewhat.

There is a whole lot more information returned, however. The stem variables returned are

designed in such a way that, knowing nothing about the contents of a given RACF profile, all the

defined segments, the fields they contain, and the values of those fields can be systematically

accessed. This could be helpful when simply dumping out the contents of a profile to the screen,

or populating a table.

stem.0 contains the number of segments returned. stem.n contains the name of the nth segment.

Using REXX substitution, you can then access stem.segment.0 which contains the number of

fields. stem.segment.n contains the name of the nth field. You can then access

stem.segment.field.0 which contains the number of values for the field. stem.segment.field.n

contains the nth value of the field. For repeating fields, you can determine the names of the

subfields, and how many instances of the field are present.

But wait, there’s more! There is a set of stem variables at the profile, segment, and field level

which provide additional information.

The following picture shows how the variable names are organized.

stem.0 = 4

.1 = “BASE”

.2 = “TSO”

.3 = “OMVS”

.4 = “CICS”

.0 = 30

.1 = “NAME”

.2 = “SPECIAL”

.3 = “CLAUTH”

.4 = … … …

.0 = 1

.1 = “BRUCE WELLS”

.0 = 1

.1 = “FALSE”

.0 = 3

.1 = “USER”

.2 = “FACILITY”

.3 = “UNIXPRIV”

stem.BASE
stem.BASE.NAME

stem.BASE.SPECIAL

stem.BASE.CLAUTH
.PROFILE = “BRWELLS”

.CLASS = “USER”

.GENERIC = “FALSE”

.VERSION = 0

.FLAGS = “00000000”

.BOOLEAN = “FALSE”

.OUTPUTONLY = “FALSE”

.REPEATING = “TRUE”

Repeating fields have a “summary” field (called a “header” field in R_admin documentation)

which contains stem variables that indicate the number of occurrences of the field, and the names

of the subfields. The subfield names are enumerated in a similar fashion as the other stem

variables we have already seen. stem.segment.field.SUBFIELD.0 contains the number of

subfields, and stem.segment.field.SUBFIELD.n contains the name of the nth subfield.

stem.segment.field.REPEATCOUNT contains the number of occurrences of the repeating field.

© Copyright IBM Corp. 2010, 2014 Page 5 of 10

And the “summary” field and each subfield have the same set of field-level attributes we have

already seen. The interface may seem a bit cluttered here as the attribute fields are defined for

every field even if they aren’t relevant. For example, the summary field has a BOOLEAN

indicator which will always be FALSE. But no matter, just pretend these fields don’t exist if you

don’t care about them.

Here’s an example of a simple repeating field: a user’s class authority (CLAUTH). It has a

header field named CLCNT, and then a single subfield named CLAUTH which contains all the

values.

.0 = 30

.1 = “NAME”

.2 = “SPECIAL”

.3 = “CLCNT”

.4 = “CLAUTH”

.5 = “CONNECTS”

.6 = “CGROUP”

.7 = “CAUTHDA”

.8 = “COWNER”

.n = … … …

.0 = 3

.1 = “USER”

.2 = “FACILITY”

.3 = “UNIXPRIV”

stem.BASE

stem.BASE.CLCNT

.REPEATCOUNT = 3

.SUBFIELD.0 = 1

.SUBFIELD.1 = “CLAUTH”

stem.BASE.CLAUTH

.REPEATING = “TRUE”

.OUTPUTONLY = “FALSE”

.BOOLEAN = “FALSE”

.REPEATING = “FALSE”

.OUTPUTONLY = “TRUE”

.BOOLEAN = “FALSE”

© Copyright IBM Corp. 2010, 2014 Page 6 of 10

The repeat field stuff makes more sense (as to why it’s needed) when you consider a complex

field like an access list or a list of group connections. In the following example, a user’s group

connections are shown. The header field named CONNECTS is associated with no less than 15

subfields (not all of which are shown).

.0 = 30

.1 = “NAME”

.2 = “SPECIAL”

.3 = “CLCNT”

.4 = “CLAUTH”

.5 = “CONNECTS”

.6 = “CGROUP”

.7 = “CAUTHDA”

.8 = “COWNER”

.9 = “CLJTIME”

.10= “CLJDATE”

.n = … … …

stem.BASE

stem.BASE.CONNECTS

.REPEATCOUNT = 3

.SUBFIELD.0 = 15

.SUBFIELD.1 = “CGROUP”

.SUBFIELD.2 = “CAUTHDA”

.SUBFIELD.3 = “COWNER”

.SUBFIELD.n = … … …

.0 = 3

.1 = “SYS1”

.2 = “RACFDEV”

.3 = “IBMPOK”

stem.BASE.CGROUP

.0 = 3

.1 = “07/06/87”

.2 = “03/12/91”

.3 = “08/21/94”

stem.BASE.CAUTHDA

.0 = 3

.1 = “IBMUSER”

.2 = “ADMIN1”

.3 = “ADMIN2”

stem.BASE.COWNER

stem.BASE.CLJTIME

… … …
stem.BASE.CLJDATE

… … …

stem.BASE.Cxxxxx

… … …

And that’s it in a nutshell! (So maybe the nut is on the large side, like a coconut perhaps.) You

will get the hang of it pretty quickly.

© Copyright IBM Corp. 2010, 2014 Page 7 of 10

4 Installation Instructions

1. Download the source code (IRRXUTIL.xmit) to your workstation using a browser. Then

transfer it to your z/OS system using FTP in binary mode. You must transfer it into a fixed-

block 80 data set. For example, on Windows, this can be accomplished by specifying the

following FTP client command before initiating the transfer

quote site lrecl=80 recfm=fb blksize=0

2. From a TSO session on z/OS, issue the RECEIVE command to unpackage the file. The

syntax of the RECEIVE command is:

 RECEIVE INDATASET(dsname)

RECEIVE prompts you for a target data set name.

Note: If you receive a message from the RECEIVE command that indicates the input data set

is in an incorrect format, verify that:

 - The files were FTP'd in binary format

 - The input files are in fixed block format

3. Inspect the sample code, and modify it if desired.

4. Run it!

© Copyright IBM Corp. 2010, 2014 Page 8 of 10

5 The Samples

In the interests of brevity and clarity, the samples do not include full parameter validation and

error checking. Their intent is to demonstrate various aspects of IRRXUTIL and not intended to

be used out of the box as ready to deploy applications. If you have questions or concerns about

the samples, please post to racf-l. Please do not contact IBM support.

5.1 XDUPACL – Search for duplicate USER entries in Access Control Lists

Given a RACF class name and a number of profiles, search these profiles for possibly redundant

USER entries. That is, search the access list and identify all user ids which are granted access

because the user id is explicitly on the access list, and is again on the access list by virtue of

membership in a group which is also present on the resource access list.

The sample demonstrates the use of ‘period in a stem’ processing to build and organize a list of

user id profiles in a single REXX stem variable which can be easily accessed repeatedly. This is

done in the ‘indexID’ subroutine. We save the user ids to reduce read operations to the RACF

database in the event that we check more than one profile.

This sample is limited for simplicity, and to reduce the amount of irrelevant parsing code. It

could be easily expanded to handle more than one class, possibly by specifying the list of

resources in a CLASS(resource [resource]..) or CLASS.RESOURCE format.

Another enhancement would be to accept a list of user ids to check. If such a list of user ids was

included (again, just a matter of more parsing and a little tweaking of the code), XDUPACL

could check to see if there were any redundancies based solely on group membership. Without

direct specification of the user ids, this is not possible due to the existence of universal groups.

The sample only processes the standard access list and NOT the conditional access list. Again,

this could be added if desired.

ftp://public.dhe.ibm.com/eserver/zseries/zos/racf/irrxutil/XDUPACL.txt

5.2 XLGRES – Resume all users in a group

This sample was inspired by a racf-l posting. Note that if the group is a universal group, only

the users connected with some sort of extra privilege will be processed.

ftp://public.dhe.ibm.com/eserver/zseries/zos/racf/irrxutil/XLGRES.txt

5.3 XLISTGRP – Display group members alphabetically

This sample was inspired by a customer requirement. It takes a group name and displays the list

of connected users in alphabetic order, with each user's name and group authority. Note that if

© Copyright IBM Corp. 2010, 2014 Page 9 of 10

the group is a universal group, only the users connected with some sort of extra privilege will be

processed. ISPF tables are used for sorting, and so this sample must be run from within an ISPF

environment.

ftp://public.dhe.ibm.com/eserver/zseries/zos/racf/irrxutil/XLISTGRP.txt

5.4 XLISTUSR – Display a user’s connected groups alphabetically

This sample was inspired by a customer requirement. ISPF tables are used for sorting, and so

this sample must be run from within an ISPF environment.

ftp://public.dhe.ibm.com/eserver/zseries/zos/racf/irrxutil/XLISTUSR.txt

5.5 XRACSEQ – Re-Implementation of RACSEQ in REXX

This sample re-implements the RACSEQ utility in REXX. RACSEQ is another RACF web page

sample download. It is a utility, written in Assembly Language which calls the R_admin service

to extract user and group profiles and display their contents to the screen. The intent was that the

output could be captured by REXX programs using OUTTRAP() and be easier to parse than the

output of the LISTUSER and LISTGRP commands. Of course, this means that a REXX re-

implementation of RACSEQ is somewhat pointless as use of IRRXUTIL already makes profile

data accessible to REXX programs. However, the intent of this sample is to demonstrate how a

program can use the output of IRRXUTIL to figure out and organize the segment and field data

of any profile returned by IRRXUTIL, without having any previous notion of what data will be

returned.

ftp://public.dhe.ibm.com/eserver/zseries/zos/racf/irrxutil/XRACSEQ.txt

5.6 XRLIST – Display sorted standard access list of a general resource profile

This sample was inspired by a customer requirement. The standard access list is sorted into user

and group entries. The user entries are displayed first, in alphabetic order, with their names.

Then the group entries are displayed in alphabetic order. ISPF tables are used for sorting, and so

this sample must be run from within an ISPF environment.

ftp://public.dhe.ibm.com/eserver/zseries/zos/racf/irrxutil/XRLIST.txt

5.7 XSETRPWD – Display only the password-related SETROPTS options

This was inspired by a customer requirement for a more granular SETROPTS LIST. Only the

password-related SETROPTS options are displayed. This output is augmented by an indication

of whether password or password phrase enveloping is active. You can modify this program to

display any old subset of SETROPTS LIST output: auditing options, Multi-Level Security

options, data set options, etc.

© Copyright IBM Corp. 2010, 2014 Page 10 of 10

ftp://public.dhe.ibm.com/eserver/zseries/zos/racf/irrxutil/XSETRPWD.txt

5.8 XWHOCAN – Display the users who can modify a given profile

This sample takes a class and a profile name and indicates certain users who can modify the

profile. Its main intent is to demonstrate the RACF group tree, but it checks for additional non-

system-wide attributes as well. It is by no means exhaustive, nor is the output particularly pretty,

but we wouldn’t want to put Tivoli® zSecure out of business now, would we?

ftp://public.dhe.ibm.com/eserver/zseries/zos/racf/irrxutil/XWHOCAN.txt

5.9 XSTARTED – “Health Check” the STARTED class

This sample examines all profiles in the STARTED class to make sure they are defined correctly

with no references to undefined users or groups. See the file for all the details.

ftp://public.dhe.ibm.com/eserver/zseries/zos/racf/irrxutil/XSTARTED.txt

6 References

For documentation on the IRRXUTIL interface, see z/OS Security Server RACF Macros and

Interfaces.

For documentation on the R_admin (IRRSEQ00) callable service, see z/OS Security Server

RACF Callable Services.

7 Disclaimers, etc.
This program contains code made available by IBM® Corporation on an AS IS basis. Any one

receiving this program is considered to be licensed under IBM copyrights to use the IBM-

provided source code in any way he or she deems fit, including copying it, compiling it,

modifying it, and redistributing it, with or without modifications, except that it may be neither

sold nor incorporated within a product that is sold. No license under any IBM patents or patent

applications is to be implied from this copyright license.

The software is provided "as-is", and IBM disclaims all warranties, express or implied, including

but not limited to implied warranties of merchantability or fitness for a particular purpose. IBM

shall not be liable for any direct, indirect, incidental, special or consequential damages arising

out of this agreement or the use or operation of the software.

A user of this program should understand that IBM cannot provide technical support for the

program and will not be responsible for any consequences of use of the program.

