
 1

Hierarchical File System Unload Hierarchical File System Unload Hierarchical File System Unload Hierarchical File System Unload

UtilityUtilityUtilityUtility

Author: Bruce R. Wells

 z/OS Security Server RACF

brwells@us.ibm.com

Last updated: 07/15/2013

Change Date Change Description

10/20/2000 Introduction of irrhfsu

07/20/2001 Changed source file extension from ‘.c’ to ‘.txt’

06/15/2001 Updated (by Shozab Naqvi) to support Access Control Lists (ACLs)

05/01/2003 Fixed the package description and setup instructions

03/29/2004 Updated to unload the security label (SECLABEL)

04/17/2006 Clarified applicability to tfs/zfs (it applies!) and fixed typo

09/18/2008 - Changed UID/GID fields of ACL definitions in DB2 samples from character

to integer

- Changed table space name in samples from IRRDBU00 to IRRHFSU

- Removed sequence numbers from the RACHFSTB.txt file

- Provide an executable version of the utility at the z/OS V1R7 level

- Made editorial changes to the README

10/19/2012 - Unload the containing file system data set name

- Unload the contents of a symbolic and external link

- Remove obsolete conditional compiler directives from source

- Fix return code error

- Support new type 0904 record for each mounted file system

07/15/2013 - Fix doc error regarding use of the –f option, and the STDOUT DD name in

BPXBATCH

- Describe how to run the executable from an MVS library

- Add FSACCESS requirement to authorization section

- Fixed the code to allow compile on an R12 system

 2

Disclaimers, etc.

This program contains code made available by IBM Corporation on an AS IS basis. Any one receiving

this program is considered to be licensed under IBM copyrights to use the IBM-provided source code in

any way he or she deems fit, including copying it, compiling it, modifying it, and redistributing it, with

or without modifications, except that it may be neither sold nor incorporated within a product that is

sold. No license under any IBM patents or patent applications is to be implied from this copyright

license.

The software is provided "as-is", and IBM disclaims all warranties, express or implied, including but not

limited to implied warranties of merchantibility or fitness for a particular purpose. IBM shall not be

liable for any direct, indirect, incidental, special or consequential damages arising out of this agreement

or the use or operation of the software.

A user of this program should understand that IBM cannot provide technical support for the program

and will not be responsible for any consequences of use of the program.

 3

Background

RACF currently provides the IRRDBU00 utility to unload the contents of the RACF database into a flat

file suitable for viewing or loading into a relational database for querying. No such capability exists

within the RACF product for the security data contained within the z/OS UNIX file system. This data is

managed by RACF through a set of SAF callable services in a data area known as the File Security

Packet (FSP). Some examples of the data contained within the FSP are: file permission bits, owning

UID and GID, owner- and auditor-specified logging options, etc. This data, as well as additional data

(see below) can be unloaded using the HFS Unload Utility!

Note: HFS Unload uses standard UNIX interfaces and works equally well on HFS, TFS, or z/FS file

systems, all of which are collectively referred to as HFS in this document.

RACF also provides the IRRRID00 utility to remove user and group references from the RACF

database. IRRRID00 can be used to delete references to specific user and groups, or can be run to locate

references to users and groups which no longer exist. The UNIX find command can be used to locate

files which are owned by a specific user or group, and can be used to locate files whose owner cannot be

mapped to a RACF user or group. Shell command substitution can be used to issue a command, such as

chown or rm, against the files located by find. Similarly, find can locate files with access control lists

(ACLs) containing entries for a specific user or group, and command substitution can be used to remove

these references using the setfacl command. The find command can also locate files with ACLs

containing “orphaned” ACL references; that is, entries for UIDs ad GIDs which can not be mapped to

RACF user or group profiles. However, the find output is not useful for removing these references,

because the UID or GID is not reported as part of the output. In order to provide coverage for this

feature of IRRRID00, the HFS Unload Utility can be invoked with a parameter which results in deletion

of orphaned ACL entries.

Package Contents
This package contains

� This README file

� irrhfsu.txt - the source code for the utility

� irrhfsu.o - an executable version of the utility compiled at the z/OS V1R7 level

� RACHFSTB - sample DB2 table definition statements

� RACHFSLD - sample DB2 load statements

 4

Installation Instructions

You have the choice of modifying the source to your liking and compiling it, or, if you don’t have

access to a C compiler, you can use the executable version provided.

Using the executable

Simply download the executable from the web, and transfer it in binary mode to the HFS directory of

your choice. Feel free to rename it. For example, remove the “.o” file extension:

mv irrhfsu.o irrhfsu

Using the source code

Once the package has been downloaded from the web, you must transfer the source code to the HFS in

the directory of your choice and compile it. (Before compiling, rename the file from irrhfsu.txt to

irrhfsu.c.) In the following examples, we use /u/mydir/tools. The compiler options you specify will

depend on what release level you are on. From the shell, in current working directory /u/mydir/tools:

 c89 -o irrhfsu irrhfsu.c

If you are compiling on one system, but plan to execute the utility on another, make sure you are

compiling correctly for the target system. This is a consideration when compiling on a higher release

and executing on a lower release, on which a certain function of this utility may not be supported, as

function is added over time. To accomplish this, you must specify the target release when you invoke

the compiler. For example, the HFMFS_MUID field in the type 0904 record is only supported starting

with z/OS V1R13. If you are compiling irrhfsu.c on R13 for execution on an R12 system, you would

compile it as follws:

 c89 -Wc,TARGET\(zosv1r12\) -o irrhfsu irrhfsu.c

The z/OS XL C/C++ User’s Guide documents the valid target values.

(Note that you sometimes can’t compile on a lower release for execution on a higher release. For

example, the converse of the preceding example may not work, because the header files on your

downlevel system may not have some necessary updates, and your compile would fail.)

If you want the executable to reside in an MVS library, you can simply copy the executable generated as

shown above into an MVS library using the shell cp command:

 cp irrhfsu “//’SYS1.MYLIB(IRRHFSU)’”

Or, you can bind directly into the library using the c89 command:

 5

 c89 -o “//’SYS1.MYLIB(IRRHFSU)’” irrhfsu.c

See example 8 below for a sample invocation of this executable.

Note: Do not use to OGET/OGETX commands to copy the executable. There seems to be some magic

in the cp command.

Now you have created the irrhfsu command. Set the permission bits for irrhfsu as appropriate.

Note: when transferring the file from your PC to the host, do so in text mode, not binary mode. If you

use IBM eNetwork Personal Communications for the file transfer, make sure the code page is set to

“1047 United States”, or the file may not compile on the host. In general, using ftp is probably the

simplest approach.

 6

irrhfsu - the HFS Unload Utility

The irrhfsu utility will unload HFS file data in a manner which is complimentary to IRRDBU00. It can

report on files residing within the currently mounted file system structure. It runs in the shell and

creates a record for every file/directory in the HFS sub-tree(s) which is passed into the utility as an

argument. It will unload the FSP data, as mentioned above, plus additional data provided by the C stat()

routine (for example: creation date, last access date, inode, number of links, etc), as well as the contents

of any ACLs which may exist for the file or directory. See below for specification of record format. The

utility comes with sample load and table definitions for use with DB2.

The irrhfsu utility can optionally create a record for each mounted file system, containing security

information about the file system (for example, the data set name and type, whether it was mounted R/O

or R/W, whether setuid bits re being honored, etc). You can choose to unload only these types of

records, or you can choose to unload them in addition to the file/directory records.

The irrhfsu utility can also be used to delete ACL entries containing UIDs and GIDs which cannot be

mapped to RACF user or group profiles (“orphaned” ACL entries). This ability corresponds to the

ability of RACF’s IRRRID00 utility to delete references to users and groups which no longer exist in the

RACF database.

Irrhfsu can be executed from within an interactive shell environment, or from JCL using the

BPXBATCH utility. The executable can also be run from an MVS library using EXEC PGM=.

Authorization Required
The invoker must have read and search permission to each directory containing the files to unload.

Thus, a general user can use irrhfsu against her own files.

In order to run against files you do not own, you will require either

� UID 0

� READ access to the BPX.SUPERUSER profile in the FACILITY class so you can switch to

superuser mode via the “su” command before running the tool.

� READ access to the SUPERUSER.FILESYS profile in the UNIXPRIV class

� The RACF AUDITOR attribute

� READ access to SUPERUSER.FILESYS.CHANGEPERMS if you are using irrhfsu to delete

orphaned ACL entries.

If the FSACCESS class is implemented, and you do not have the AUDITOR attribute, you will, in

addition, require UPDATE access to the FSACCESS profile protecting a given file system data set in

order to unload files within it.

You will also require write access to the file or data set you are using for output.

 7

Syntax

The syntax of irrhfsu is as follows:

irrhfsu [-c] [-m | -M] [-f outputfile] dir1 [dir2 ...]

Where

irrhfsu - The name of the HFS Unload Utility

-c - Indicates to clean up (delete) orphaned ACL entries for the specified files/directories.

When -c is specified, irrhfsu unloads each orphaned ACL entry before deleting it.

-m - Indicates to create a type 0904 record for each mounted file system, in addition to the

type 0900-0903 records created for file system objects.

-M - Indicates to create only type 0904 records for mounted file systems. When –M is

specified dir1 [dir2 …] are ignored if specified.

-f outputfile - The name of the file you wish to contain the utility’s output. Either an HFS file or an

MVS data set can be specified. To specify an MVS data set, prefix it with two slashes (//)

and fully qualify the data set name. Do not enclose the data set name in single quotes, and

do not enclose the entire path name in double quotes.

Dir1 [dir2

...]

- The name of the directory, or directories, whose contents you wish to unload. You can

also specify individual files.

If -f outputfile is not specified, then irrhfsu will write output to stdout by default. Thus, it is not

necessary to specify -f when output is directed to an HFS file (see Example 1 below). When irrhfsu is

invoked from the shell, the -f option is only required if you want output directed to an MVS data set, or

when you wish to append the output to an existing UNIX file. Note that when invoked from

BPXBATCH, the STDOUT DD statement can be used in lieu of the –f option and can name either a

UNIX file or an MVS data set as the output file.

When irrhfsu opens the output file specified with -f, it does so in append mode. So, you can specify the

MVS data set you use for IRRDBU00 output and the data from both utilities will be combined and ready

for use.

The output file is opened with recfm=vb and lrecl=4096. If the output file does not exist, it will be

created. If the output file is an MVS data set, and it has already been pre-allocated and catalogued, then

the data set attributes must be consistent with recfm=vb and lrecl=4096 or an fopen() error will occur.

Examples
 In the following examples, it is assumed that the irrhfsu utility exists in the invoker’s current working

directory, when invoked from the shell, and in the user’s home directory when invoked from batch. You

can install it anywhere you wish.

Example 1 - From the shell, unload the contents of the entire file system to HfsuOutFile

 irrhfsu / > HfsuOutFile

 8

Using the redirection operator (>) stdout is directed to the file HfsuOutFile in the user’s current working

directory. Note that when using “>” to redirect stdout to a file, if the file exists its current contents will

be overwritten. Use -f if you want to append output to an existing file.

Example 2 - From the shell, remove orphaned ACL entries from the entire file system

 irrhfsu -c / > /dev/null

Note that when using irrhfsu to delete orphaned ACL entries, it will still perform the unload of security

data. If you don’t care about the unload output, then redirect stdout to the ‘bit bucket’, which is

accomplished in UNIX by writing to the special file called /dev/null.

Example 3 - From the shell, unload two directories to an MVS data set

 irrhfsu -f //BRWELLS.HFSU.OUTPUT /u/brwells/dir1 dir2/subdir

 In this example, the first directory to be unloaded is specified as an absolute path name, and the second

directory is specified relative to the current working directory. Note that when specifying a relative path

name, the file name will be output as a relative path name. Thus, subsequent queries may not be very

helpful in identifying the files for which you are looking. Relative path names may be sufficient for

casual browsing of the output (such as in the following example), but you probably want to use absolute

path names if you intend to run relational queries against the output.

Example 4 - From the shell, unload a single file to the display

 irrhfsu myfile

The security data for a single file will be output to the display, which is the default for stdout.

Example 5 - From batch, unload the entire file system to the IRRDBU00 output data set

 //BRWELLSL JOB '577018,B0011038','B.R.WELLS',
 // CLASS=2,NOTIFY=BRWELLS,MSGLEVEL=(1,1),

 // MSGCLASS=H

 //**

 //HFSUNLD EXEC PGM=BPXBATCH,

 // PARM='PGM irrhfsu -f //SYS1.IRRDBU00.OUTPUT /’

 //STDERR DD PATH='/u/brwells/hfsuerr',

 // PATHOPTS=(OWRONLY,OCREAT,OTRUNC),

 // PATHMODE=SIRWXU

 The irrhfsu utility may create error messages. This example directs stderr to a file in the user’s home

directory.

 9

 Note that this example represents just one way in which to combine the output of IRRDBU00 with that

of irrhfsu. Another method would be to write irrhfsu output to an HFS file, and then copy it to an MVS

data set in another job step. You should implement the JCL in whatever manner best fits with your

current procedure.

Example 6 - From the shell, unload the contents of the entire file system, and information about

each mounted file system, to HfsuOutFile

 Irrhfsu -m / > HfsuOutFile

This example supplements Example 1 with mount table information.

Example 7 - From the shell, unload only the mount table information to HfsuOutFile

 irrhfsu -M > HfsuOutFile

This does not unload information about individual file system objects, and so no path names are

required.

Example 8 – Execute from an MVS library in batch

 //BRWELLSL JOB '577018,B0011038','B.R.WELLS',
 // CLASS=7,NOTIFY=BRWELLS,MSGLEVEL=1,

 // MSGCLASS=H

 //*--

 //HFSUNLD EXEC PGM=IRRHFSU,PARM=('/-m /')

 //STEPLIB DD DISP=SHR,DSN=SYS1.MYLIB

 //SYSPRINT DD DISP=SHR,DSN= BRWELLS.DOWNLOAD.HFSU.OUTPUT

 This executes the program from an MVS library. See “Using the source code” above to see how to get

the executable into a library. This can be helpful in a Sysplex when your libraries are on shared DASD,

but you have not implemented shared HFS.

Notes:

1. The leading “/” in the PARM= string is a signal to LE that the LE parameters have are being

terminated, and in this case, there are no LE parameters. The normal input to irrhfsu follows the

forward slash.

2. When executed from batch in this fashion, the SYSPRINT DD name must be used instead of

STDOUT.

3. You can specify the –f option to specify a UNIX file. You can also use it to specify an MVS

data set name in the format “//HLQ.DATASET.NAME”, where the fully qualified data set name

is specified in double quotes.

 10

UID and GID Name Mapping
For your convenience, each output record contains the UID and GID of the file owner, as well as the

RACF user ID and group name to which they map. The same is true for the contents of ACL entries.

The C routines getpwuid() and getgrgid() are used for this purpose. The irrhfsu program will locally

cache id/name mappings to reduce calls to RACF. However, if your HFS contains UID/GID values

which are unknown to RACF, then you should implement the UNIXMAP class, or application identity

mapping (AIM), in order to eliminate lengthy searches of the RACF database. See z/OS Security Server

RACF Security Administrator's Guide for instructions on setting up the UNIXMAP class. You can use

AIM instead of the UNIXMAP class. This involves running a RACF utility program named IRRIRA00

to define database index aliases for UIDs and GIDs. This method is preferred over the UNIXMAP

class. See z/OS Security Server RACF System Programmer’s Guide for details.

If neither UNIXMAP nor AIM is implemented, the mapping service invoked by getgrgid() and

getpwuid() will scan USER and GROUP profiles until a match on the id is found, or the name space is

exhausted. (This information will be cached so that subsequent requests for this id can bypass the

RACF search. However, the caching algorithm by default only remembers the previous 10 ids

encountered in the HFS, so the unknown id can fall out of the cache, and the exhaustive search will need

to be performed again if that id is subsequently encountered. Note that you can modify the “maxcache”

variable in irrhfsu to increase the number of id/name pairings maintained in the cache.) On the other

hand, if UNIXMAP or AIM is active, RACF will stop immediately after checking for existence of the

appropriate profile, and if not found, irrhfsu will leave blanks in the associated user ID or group name

field.

As an alternative to implementing the UNIXMAP class or AIM, you can remove the mapping code from

the C source file and recompile it yourself.

 11

Record Type 0900 - HFS File Basic Data record

The HFS File Basic Data record defines the basic information about an HFS file or directory within the currently
mounted file system structure. There is one record per file. This table is consistent with the IRRDBU00 record
formats documented in z/OS Security Server RACF Macros and Interfaces.

Field Name Type Start End Comments

HFSBD_RECORD_TYPE Int 1 4 Record type of the HFS Basic Data record (0900)

HFSBD_NAME Char 6 1,028 Path name of file or directory

HFSBD_INODE Int 1,030 1,039 Inode (file serial number)

HFSBD_FILE_TYPE Char 1,041 1,048 What type of file is this? Valid values are FILE, DIR, SOCKET,
EXTLINK, SYMLINK, FIFO, BLOCK, and CHAR.

HFSBD_OWN_UID Int 1,050 1,059 The owner’s z/OS UNIX user identifier (UID) associated with
the file.

HFSBD_OWN_UNAME Char 1,061 1,068 The owner’s RACF user ID

HFSBD_OWN_GID Int 1,070 1,079 The owner z/OS UNIX group identifier (GID) associated with
the file.

HFSBD_OWN_GNAME Char 1,081 1,088 The RACF group name corresponding to this GID

HFSBD_S_ISUID Yes/No 1,090 1,093 Is the S_ISUID (set-uid) bit on for this file?

HFSBD_S_ISGID Yes/No 1,095 1,098 Is the S_ISGID (set-gid) bit on for this file?

HFSBD_S_ISVTX Yes/No 1,100 1,103 Is the S_ISVTX (sticky) bit on for this file?

HFSBD_OWN_READ Yes/No 1,105 1,108 Is the owner read bit on for this file?

HFSBD_OWN_WRITE Yes/No 1,110 1,113 Is the owner write bit on for this file?

HFSBD_OWN_EXEC Yes/No 1,115 1,118 Is the owner execute bit on for this file?

HFSBD_GRP_READ Yes/No 1,120 1,123 Is the group read bit on for this file?

HFSBD_GRP_WRITE Yes/No 1,125 1,128 Is the group write bit on for this file?

HFSBD_GRP_EXEC Yes/No 1,130 1,133 Is the group execute bit on for this file?

HFSBD_OTH_READ Yes/No 1,135 1,138 Is the other read bit on for this file?

HFSBD_OTH_WRITE Yes/No 1,140 1,143 Is the other write bit on for this file?

HFSBD_OTH_EXEC Yes/No 1,145 1,148 Is the other execute bit on for this file?

HFSBD_APF Yes/No 1,150 1,153 Is the APF bit on for this file?

HFSBD_PROGRAM Yes/No 1,155 1,158 Is the program-control bit on for this file?

HFSBD_SHAREAS Yes/No 1,160 1,163 Is the SHAREAS bit on for this file?

HFSBD_AAUD_READ Char 1,165 1,172 What are the auditor audit options for READ actions? Valid
values are ALL, SUCCESS, FAIL, and NONE.

HFSBD_AAUD_WRITE Char 1,174 1,181 What are the auditor audit options for WRITE actions? Valid
values are ALL, SUCCESS, FAIL, and NONE.

HFSBD_AAUD_EXEC Char 1,183 1,190 What are the auditor audit options for EXECUTE actions? Valid
values are ALL, SUCCESS, FAIL, and NONE.

HFSBD_UAUD_READ Char 1,192 1,199 What are the user audit options for READ actions? Valid
values are ALL, SUCCESS, FAIL, and NONE.

HFSBD_UAUD_WRITE Char 1,201 1,208 What are the user audit options for WRITE actions? Valid
values are ALL, SUCCESS, FAIL, and NONE.

HFSBD_UAUD_EXEC Char 1,210 1,217 What are the user audit options for EXECUTE actions? Valid
values are ALL, SUCCESS, FAIL, and NONE.

HFSBD_AUDIT_ID Char 1,219 1,250 RACF audit id

HFSBD_FID Char 1,252 1,267 FID

HFSBD_CREATE_DATE Date 1,269 1,278 Date the file was created.

 12

HFSBD_CREATE_TIME Time 1,280 1,287 Time the file was created.

HFSBD_LASTREF_DATE Date 1,289 1,298 Date of last access

HFSBD_LASTREF_TIME Time 1,300 1,307 Time of last access

HFSBD_LASTCHG_DATE Date 1,309 1,318 Date of last file status change

HFSBD_LASTCHG_TIME Time 1,320 1,327 Time of last file status change

HFSBD_LASTDAT_DATE Date 1,329 1,338 Date of last data modification

HFSBD_LASTDAT_TIME Time 1,340 1,347 Time of last data modification

HFSBD_NUMBER_LINKS Int 1,349 1,358 Number of links

HFSBD_SHARELIB Yes/No 1,360 1,363 Is the shared library extended attribute bit on for this file?

HFSBD_ACCESS_ACL Yes/No 1,365 1,368 Does an access ACL exist for this file or directory?

HFSBD_FILEMOD_ACL Yes/No 1,370 1,373 Does a file default ACL exist for this directory?

HFSBD_DIRMOD_ACL Yes/No 1,375 1,378 Does a directory default ACL exist for this directory?

HFSBD_SECLABEL Char 1,380 1,387 The security label (SECLABEL)

HFSBD_DSNAME Char 1,389 1,432 The name of the data set containing the file system in which
this object resides

HFSBD_LINK Char 1,434 2,456 For a symbolic link or external link, the contents of the link

Record Type 0901 - HFS File Access record

The HFS File Access record defines the users or groups who have specific access to HFS files via an access
ACL. There is one record per file/authorization combination.

Field Name Type Start End Comments
HFACC_RECORD_TYPE Int 1 4 Record type of the HFS File Access record (0901)

HFACC_NAME Char 6 1,028 Path name of file or directory

HFACC_INODE Int 1,030 1,039 Inode (file serial number)

HFACC_TYPE Char 1,041 1,048 ‘USER’ or ‘GROUP’

HFACC_ID Int 1,050 1,059 UID or GID

HFACC_ID_NAME Char 1,061 1,068 RACF user ID or group name

HFACC_READ Yes/No 1,070 1,073 Does the user or group have read access to this file?

HFACC_WRITE Yes/No 1,075 1,078 Does the user or group have write access to this file?

HFACC_EXEC Yes/No 1,080 1,083 Does the user or group have search/execute access to this
file?

Record Type 0902 - HFS File Default Access record

The HFS File Default Access record defines the users or groups who are defined in a file default ACL, if one
exists for a directory. There is one record per file/authorization combination. The mapping is the same as for
record type 0901, except that the field name prefix is “HFACF_”.

Record Type 0903 - HFS Directory Default Access record

The HFS Directory Default Access record defines the users or groups who are defined in a directory default ACL,
if one exists for a directory. There is one record per directory/authorization combination. The mapping is the

 13

same as for record type 0901, except that the field name prefix is “HFACD_”.

Record Type 0904 – Mounted File System record

The Mounted File System record defines the basic information pertaining to a mounted file system.

Field Name Type Start End Comments
HFMFS_RECORD_TYPE Int 1 4 Record type of the Mounted File System record (0904)

HFMFS_DSNAME Char 6 49 MVS data set containing this file system

HFMFS_TYPE Char 51 58 File system type (HFS, ZFS, etc) from the FILESYSTYPE
statement in BPXPRMxx.

HFMFS_MODE Char 60 69 Mount mode (READONLY or READWRITE)

HFMFS_SECURITY Char 71 80 Are security checks performed? (SECURITY or
NOSECURITY)

HFMFS_SETUID Char 82 91 Are setuid bits honored? (SETUID or NOSETUID)

HFMFS_MUID Int 93 102 The effective z/OS UNIX user identifier (UID) of the user who
mounted the file system. This will be blanks when compiled
for a release lower than z/OS R13.

HFMFS_MUSER Char 104 111 The user ID who mounted the file system (obtained by
mapping the UID). This will be blanks when compiled for a
release lower than z/OS R13.

HFMFS_MOUNTPOINT Char 113 1135 The name of the directory where the file system is mounted.

 14

Messages Created by irrhfsu

The following error messages can be issued by irrhfsu. They will be directed to stderr.

IRR67700I

IRR67700I fopen() error on output file: message-text

Explanation: The irrhfsu utility was unable to open the output file specified in the -f option.

System Action: The utility stops processing.

User Response: Use the message-text to perform problem determination. If your output file is an MVS

data set, and the message text says “An I/O abend was trapped”, make sure the user running the utility

has RACF access to the output data set.

IRR67701I

IRR67701I ftw() error

Explanation: The irrhfsu utility encountered an error using the C function ftw().

System Action: The utility stops processing.

User Response: Look up the error code.

IRR67702I

IRR67702I stat() could not be executed on file. Possible search error on parent directory.

System Action: The utility continues processing the next file.

User Response: If you wish irrhfsu to report on the failed file, then contact the directory owner to grant

you search (execute) access, and rerun the utility against the directory.

IRR67703I

IRR67703I Unable to read directory directory

System Action: The utility continues processing the next directory.

 15

User Response: If you wish irrhfsu to report on the failed directory, then contact the directory owner to

grant you read access, and rerun the utility against the directory.

IRR67704I

IRR67704I fprintf() error while writing to output file

System Action: The utility terminates. The output file will contain records for files which were

processed prior to this error.

User Response: Check the system console for message IEC031I indicating an abend D37 with reason

code 04. This means you have run out of space in your output file. You need to either allocate a larger

output file, or run irrhfsu against a smaller portion of the file system. Also look for message IEC030I

indicating an abend B37 with reason code 04. If you’ve preallocated your own output file, this may

indicate insufficient secondary space allocated.

For errors other than these, look up the number of the error message which is displayed after this one,

and check the operator console for other indicators.

IRR67705I

IRR67705I acl_get_file() error: message-text

Explanation: The irrhfsu utility encountered an error using the C function acl_get_error(). The UNIX

error message is displayed in message-text.

System Action: The utility continues with the next file.

User Response: An IRR67706I message will immediately follow this one. See the documentation for

IRR67706I.

IRR67706I

IRR67706I Error received from acl_get_file while retrieving the type ACL for the file file

Explanation: The irrhfsu utility encountered an unexpected error trying to retrieve an ACL from the file

system using the acl_get_file function. The error code is displayed in the IRR67705I message

immediately preceding this one. The ACL type can be access ACL, file default ACL, or directory

default ACL. The file name is displayed in file.

System Action: The utility continues with the next ACL, if another one exists, and then on to the next

file. The ACL will not be unloaded for this file, nor will orphan ACL entries be deleted from it if the -c

option was specified.

 16

User Response: Try using the UNIX getfacl command to display the ACL in question. If an error is

encountered, follow the instructions documented for that error message. The message-text in the

IRR67705I message immediately preceding this one may also be of help.

IRR67707I

IRR67707I error opening /dev/tty

Explanation: The -c option was specified to remove orphan ACL entries. The irrhfsu utility attempted to

issue message IRR67708I to the terminal, but encountered an error opening the terminal. This is

probably because irrhfsu was invoked using the BPXBATCH utility. This is not a problem.

System Action: The utility writes the IRR67708I message to stderr instead of to the terminal.

User Response: Look in stderr to see the IRR67708I message.

IRR67708I

IRR67708I There were number extended ACL entries deleted as a result of specifying

 the -c option

Explanation: The -c option was specified to remove orphan ACL entries. This informational message

simply reports the number of ACL entries which were actually deleted.

System Action: The utility completes successfully.

User Response: Bask in the warm glow resulting from your successful use of irrhfsu.

IRR67709I

IRR67709I w_getmntent() error: message-text

Explanation: The irrhfsu utility encountered an error using the C function w_getmntent(). The UNIX

error message is displayed in message-text.

System Action: The data set name field (HFBD_DSNAME) is set to blanks and the utility continues.

User Response: Look up the error code.

IRR67710I

IRR67710I readlink() error: message-text

Explanation: The irrhfsu utility encountered an error using the C function readlink(). The UNIX error

message is displayed in message-text.

 17

System Action: The link contents field (HFSBD_LINK) is set to blanks and the utility continues.

User Response: Look up the error code.

