
z/OS

UNIX System Services Command

Reference: APAR OA10314

SA22-7802-06

���

z/OS

UNIX System Services Command

Reference: APAR OA10314

SA22-7802-06

���

ii z/OS UNIX System Services Command Reference: APAR OA10314

About this document

This document supports APAR OA10314 for z/OS UNIX System Services. This

document is only available on the z/OS UNIX System Services Web site at:

http://www.ibm.com/servers/eserver/zseries/zos/unix/release/apar.html

© Copyright IBM Corp. 1996, 2005 iii

http://www.ibm.com/servers/eserver/zseries/zos/unix/release/apar.html

iv z/OS UNIX System Services Command Reference: APAR OA10314

Chapter 1. cp — Copy a file

Format

 cp [–cfimMUv] [–p|F format|B|T|X] [–P params]file1 file2

 cp [–ACcfimMUv] [–p|F format|B|T|X] [–S suffix] file ... directory

 cp –R [–cfimp] source... directory

 cp –r [–cfimp] source... directory

Automatic Conversion and File Tag Specific Options:

cp [–Z] [–O u | c=codeset]

Description

cp copies files to a target named by the last argument on its command line. If the

target is an existing file, cp overwrites it; if it does not exist, cp creates it. If the

target file already exists and does not have write permission, cp denies access and

continues with the next copy.

If you specify more than two pathnames, the last pathname (that is, the target) must

be a directory. If the target is a directory, cp copies the sources into that directory

with names given by the final component of the source pathname.

You can also use cp to copy files to and from MVS data sets. If you specify more

than one file to be copied, the target (last pathname on command line) must be

either a directory or a partitioned data set. If the target is an MVS partitioned data

set, the source cannot be a UNIX directory.

cp does not support the copying to or from GDGs. To use those MVS data sets,

user must specify the real data set name.

When copying records, the string ″ \n″ is copied the same way as the string ″\n″:

both are read back as ″\n″, where ″\n″ indicates that z/OS C++ will write a record

containing a single blank to the file (the default behavior of z/OS C/C++). All other

blanks in your output are read back as blanks, and any empty (zero-length) records

are ignored on input. However, if the environment variable _EDC_ZERO_RECLEN

is set to Y before calling cp, an empty record is treated as a single newline and is

not ignored. Also, if _EDC_ZERO_RECLEN is set to Y, a single newline is written to

the file as an empty record, and a single blank will be represented by ″ \n″.

You can copy:

v One file to another file in the working directory

v One file to a new file on another directory

v A set of directories and files to another place in your file system

v A UNIX file to an MVS data set

v An MVS data set to a filesystem

v An MVS data set to an MVS data set

Options

–A Specifies that all suffixes (from the first period till the end of the target) be

truncated. –A has precedence over –M and –C options. –S will be turned

off if –A is the last option specified.

–B Specifies that the data to be copied contains binary data. When you specify

© Copyright IBM Corp. 1996, 2005 1

–B, cp operates without any consideration for <newline> characters or

special characteristics of DBCS data (this type of behavior is typical when

copying across a UNIX system). –B is mutually exclusive with –F, –X, and

–T, i.e., you will get an error if you specify more than one of these options.

–C Specifies truncating the filename(s) to 8 characters to meet the restriction in

the MVS data set member.

–c (UNIX to UNIX only)

Prompts you to change the diskette if there is not enough room to complete

a copy operation. This option has no effect on systems without floppy

drives.

Note: The parent directories must already exist on the new target diskette.

–F format

Specifies if a file is binary or text and for text files, specifies the end-of-line

delimeter. Also sets the file format to format if the target is a UNIX file. For

text files, when copying from UNIX to MVS, the end-of-line delimeter will be

stripped. When copying from MVS to UNIX, the end-of-line delimeter will be

added (Code page IBM-1047 will be used to check for end-of-line

delimeters).

 If setting format fails, a warning will be displayed. However, cp will continue

to copy any remaining files specified to be copied.

 –F is mutually exclusive with –B, –X, –p, and –T. If you specify one of

these options with –F, you will get an error. If –F is specified more than

once, the last –F specified will be used.

 For format you can specify:

not not specified

bin binary data

Or the following text data delimeters:

nl newline

cr carriage return

lf line feed

crlf carriage return followed by line feed

lfcr line feed followed by carriage return

crnl carriage return followed by new line

–f (UNIX to UNIX only)

Attempts to replace files that do not have write permission.

–i When copying to a UNIX target, –i asks you if you want to overwrite an

existing file, whether or not the file is read-only.

–M Specifies that some characters of the filename are translated when copying

between a UNIX file and an MVS data set member. Characters are

translated as follows:

v _ (underscore) in UNIX is translated to @ in MVS DS members and vice

versa.

v . (period) in UNIX is translated to # in MVS DS members and vice versa.

v – (dash) in UNIX is translated to $ in MVS DS members and vice versa.

–m (UNIX to UNIX only)

Sets the modification and access time of each destination file to that of the

corresponding source file. Normally, cp sets the modification time of the

destination file to the present.

cp

2 z/OS UNIX System Services Command Reference: APAR OA10314

–P params

Specifies the parameters needed to create a sequential data set if one does

not already exist. You can specify the RECFM, LRECL, BLKSIZE, and

SPACE in the format the CRTL fopen() function uses. However, LRECL

and BLKSIZE can be used for variable record format only.

 SPACE=(units,(primary,secondary) where the following values are

supported for units:

v any positive integer indicating BLKSIZE

v CYL (mixed case)

v TRK (mixed case)

For example:

SPACE=(500,(100,500)) units, primary, secondary

SPACE=(500,100) units and primary only

Note: CRTL fopen() arguments: LRECL specifies the length, in bytes, for

fixed-length records and the maximum length for variable-length

records. BLKSIZE specifies the maximum length, in bytes, of a

physical block of records. RECFM refers to the record format of a

data set and SPACE indicates the space attributes for MVS data

sets.

–p Preserves the modification and access times (as the –m option does); in

addition, it preserves file mode, owner, and group owner, if authorized. It

also preserves extended attributes. It preserves the ACLs of files and

directories, if possible. The ACLs are not preserved if a file system does not

support ACLs, or if you are copying files to MVS

 –p is mutually exclusive with –F. If you specify both, you will get an error

message.

–R (UNIX to UNIX only)

“Clones” the source trees. cp copies all the files and subdirectories

specified by source... into directory, making careful arrangements to

duplicate special files (FIFO, character special). cp will traverse directories

by following symbolic links through the file hierarchy.

–r (UNIX to UNIX only)

“Clones” the source trees, but makes no allowances for special files (FIFO,

character special). Consequently, cp attempts to read from a device rather

than duplicate the special file. This is similar to, but less useful than, the

preferred –R.

–S d=suffix|a=suffix

v d=suffix

Removes the specifed suffix from a file.

v a=suffix

Appends the specified suffix to a file.

–S has precedence over –M and –C. It also turns off the –A option (if –S is

the last specified option).

–T Specifies that the data to be copied contains text data. See “Usage Notes”

on page 9 for details on how to treat text data. This option looks for

IBM-1047 end-of-line delimeters, and is mutually exclusive with –F, –X, and

–B. That is, you will get an error if you specify more than one of these

options.

Note: –T is ignored when copying across UNIX file systems.

cp

Chapter 1. cp — Copy a file 3

–U Keeps filenames in uppercase when copying from MVS data set members

to UNIX files. The default is to make filenames lowercase.

–v Verbose

–X Specifies that the data to be copied is an executable. Cannot be used in

conjunction with –F, –X, or –B.

-Z Specifies that error messages are not to be displayed when setting ACLs

on the target. The return code will be zero.

Note: If you do not specify either –F|B|T or X, cp will first check the format of the

MVS data set indicated and then try to determine the type of file.

Automatic conversion and file tag specific options

–Z Suppresses failure when default behavior is used to set the file tag.

For a description of the default behavior, see “Automatic conversion

and file tagging behavior for cp.”

–O u | c=codeset

Allow automatic conversion on source and target files.

–O u If the target exists and is not empty nor already

tagged, cp will not change the target’s tag in order

for the target to be a candidate for automatic

conversion.

 For new targets and existing, untagged, empty files,

this option has no effect and cp behaves the same

as the default. For a description of the default

behavior, see “Automatic conversion and file

tagging behavior for cp.”

 When using cp to copy from a UNIX file to an MVS

data set, if the source is a tagged text file, then it

may be a candidate for automatic conversion.

 When copying executables from or to MVS,

automatic conversion is disabled for both source

and target.

–O c=codeset For a detailed description of the behavior of this

option on cp, see “Automatic conversion and file

tagging behavior for cp.”

 To prevent the corruption of text files, cp will fail if it

cannot set the file tag to text or codeset.

 Attention: If automatic conversion is not properly

set or if the source is not properly tagged, the

target may end up with a tag codeset that does not

match the file contents.

Automatic conversion and file tagging behavior for cp

The following tables describe the behavior of file tagging and automatic conversion

for various source and target scenarios depending on whether the –O option is

specified on the cp command.

cp

4 z/OS UNIX System Services Command Reference: APAR OA10314

|

||
|
|

|
|

||
|
|
|

|
|
|
|
|

|
|
|

|
|
|

||
|
|

|
|

|
|
|
|

|

|
|
|

Table 1. Automatic conversion and file tagging behavior: Copying UNIX files to UNIX files

Default (without -O option)

With -O u option

With -O

c=codeset option

If the target file

system supports

setting file

tags...

If the target file

system does not

support setting

file tags (e.g.

NFS)...

File tagging Target file is

tagged the same

as the source file.

v An existing

target’s tag is

unchanged.

v A new target is

created with a

tag according

to the file

system’s

attributes

(MOUNT parm

can specify

TAG).

Target’s tag is

unchanged.

Note: The source

or target file is a

candidate for

automatic

conversion when

its txtflag is

tagged TEXT.

Target’s txtflag is

set to TEXT and

its codeset is set

to codeset.

Automatic

conversion

Disabled for

source and target

files

Allowed for source and target files

 Table 2. Automatic conversion and file tagging behavior: Copying MVS data sets to UNIX

files

Default (without -O option)

With -O u option

With -O

c=codeset option

If the target file

system supports

setting file

tags...

If the target file

system does not

support setting

file tags (e.g.

NFS)...

If the SOURCE is text:

File tagging Target is set to

UNTAG

v An existing

target’s tag is

unchanged.

v A new target is

created with a

tag according

to the file

system’s

attributes

(MOUNT parm

can specify

TAG).

Target’s tag is

unchanged

Target’s txtflag is

set to TEXT and

its codeset is set

to codeset.

Automatic

conversion

Disabled for

target file

Allowed for target file

Note: The target file is a candidate for automatic

conversion when its txtflag is tagged TEXT.

If the SOURCE is binary or executable:

File tagging Target is set to UNTAG Target’s tag is

unchanged

Target’s txtflag is

set to BINARY

and its codeset is

set to codeset.

cp

Chapter 1. cp — Copy a file 5

||

|

|

|
|
|

|
|
|
|

|
|
|
|
|

||
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|

||
|

|

|

|
|
|

|
|
|
|

|
|
|
|
|

|

||
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|

|||
|
|
|
|
|

Table 2. Automatic conversion and file tagging behavior: Copying MVS data sets to UNIX

files (continued)

Default (without -O option)

With -O u option

With -O

c=codeset option

If the target file

system supports

setting file

tags...

If the target file

system does not

support setting

file tags (e.g.

NFS)...

Automatic

conversion

Disabled for target file

 Table 3. Automatic conversion and file tagging behavior: Copying UNIX files to MVS data

sets

Default (without -O

option) With -O u option

With -O c=codeset

option

If the SOURCE is text or binary:

File tagging Not applicable for target data set

Automatic

conversion

Disabled for source file Allowed for source file

Note: The source file

is a candidate for

automatic conversion

when its txtflag is

tagged TEXT.

Disabled for source file

If the SOURCE is executable:

File tagging Not applicable for target data set

Automatic

conversion

Disabled for source file

The –p option on cp does not affect file tagging.

Limits and Requirements

General Requirements

1. To specify an MVS data set name, precede the name with double slashes (//).

For example, to specify the fully qualified data set names ’turbo.gammalib’ and

’turbo.gammalib(pgm1)’, you write:

"//’turbo.gammalib’"

"//’turbo.gammalib(pgm1)’"

The same goes for data set names that are not fully qualified:

//turbo

2. For PDS (partitioned data set) or PDSE (partitioned data set extended), to avoid

parsing by the shell, the name should be quoted or minimally, the parenthesis

should be escaped. For example, to specify ’turbo(pgm1)’, you can use quotes:

"//turbo(pgm1)"

or escape the parenthesis:

//turbo\(pgm1\)

As indicated above, a fully qualified name must be single-quoted (as is done

within TSO). To prevent the single quotes from being interpreted by the shell,

cp

6 z/OS UNIX System Services Command Reference: APAR OA10314

|
|

|

|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|

||
|

|
|
||
|
|

|

||

|
|
||

|
|
|
|
|

|

|

||

|
|
|

|

|

they must be escaped or the name must be placed within regular quotation

marks. See the ’turbo.gammalib’ examples above.

3. If you specify a UNIX file as source and the MVS data set (target) does not

exist, a sequential data set will be created. If the partitioned data set exists, the

UNIX file will be copied to the partitioned data set member.

4. If source is an MVS data set and target is a UNIX directory, the UNIX directory

must exist.

5. You cannot have a UNIX directory, partitioned data set, or sequential data set

as source if the target is a partitioned data set.

6. To copy all members from a partitioned data set, you may specify the partitioned

data set as source and a UNIX directory as target.

MVS data set naming limitations

v Data set names may only contain uppercase alphabetic characters (A-Z).

Lowercase characters will be converted to uppercase during any copies to MVS

data sets.

v Data set names can contain numeric characters 0–9 and special characters @,

#, and $.

v Data set names cannot begin with a numeric character.

v A data set member name cannot be more than 8 characters. If a filename is

longer than 8 characters or uses characters that are not allowed in an MVS data

set name, the file is not copied. You may use the –C option to truncate names to

8 characters.

Limitations: UNIX to MVS data set

1. If you specify a sequential MVS data set that is in undefined record format, the

file is copied as binary.

2. If you specify a PDSE that is in undefined record format, the first file

successfully copied determines in what format files will be copied. Note that

PDSE does not allow mixture. So if the first successfully copied file is an

executable, the PDSE will have program objects only and all other files will fail.

On the other hand, if the first file is data, then all files are copied as binary.

3. If you specify a PDS that is in undefined record format, UNIX executables are

saved as PDS load modules. All other files are copied as binary.

4. If you specify an MVS data set that is either in variable length or fixed record

length and you have not set the file format, text files are copied as text, binaries

as binary, and executables as binary. (IBM-1047 end-of-line delimeters are

detected in the data)

5. If you set the file format, the set value is used to determine if data is binary or

text.

Limitations: MVS data set to UNIX

1. If an HFS file does not exist, one is created using 666 mode value:

666 mode value: owner(rw-) group(rw-) other(rw-)

whether data is binary or text. If the data to be copied is a shell script or

executable, an HFS file is created using 777 mode value:

777 mode value: owner(rwx) group(rwx) other(rwx)

2. If an HFS exists and the file format is set, cp copies the file as that format.

Otherwise,

v load modules (PDS) are stored as UNIX executables and program objects

(PDSE) are copied since they are the same as executables;

cp

Chapter 1. cp — Copy a file 7

v data within data sets of undefined record format are copied as binary if the

data is not a program object or load module;

v and data found within data sets of fixed length or variable record length are

copied as text. (IBM-1047 end-of-line delimeters are detected in the data)

Limitations: MVS to MVS

1. Options –A, –C, –f, and –S are ignored.

2. If target and source are in undefined record format (and neither is a sequential

data set), cp will attempt to copy the data as a load module. If that fails, then

cp will copy the data as binary.

3. If target and source are in undefined record format and either is a sequential

data set, cp copies the data as binary.

4. If the source has a fixed or variable record length and the target is in undefined

record format, cp copies the data as binary.

5. If the source is in undefined record format and the target has a fixed or variable

record length, cp copies the data as binary.

6. If both source and target are in fixed or variable record length, cp copies the

data as text.

Limitations: Copying executables into a PDS

1. A PDS may not store load modules that incorporate program management

features.

2. c89, by default, produces objects using the highest level of program

management.

3. If you plan on copying a load module to a PDS, you may use a pre-linker which

produces output compatible with linkage editor. Linkage editor generated output

can always be stored in a PDS.

The following table is a quick reference for determining the correct use of options

with cp.

 Table 4. cp Format: File to File and File ... (multiple files) to Directory

Source/Target Options Allowed Options Ignored Options Failed

UNIX File/UNIX File Ffip ABCMPSTUX

UNIX File/Sequential Data

Set

BFiPT ACfMpSU X

UNIX File/PDS or PDSE

Member

BFiTX ACfMPpSU

Sequential Data Set/UNIX

File

BFfiTU ACMPpS X

Sequential Data

Set/Sequential Data Set

BFiPT ACfMpSU X

Sequential Data Set/PDS

or PDSE Member

BFiT ACfMPpSU X

PDS or PDSE

Member/UNIX File

BFfiTUX ACMPpS

PDS or PDSE

Member/Sequential Data

Set

BFiPT ACfMpSU X

cp

8 z/OS UNIX System Services Command Reference: APAR OA10314

Table 4. cp Format: File to File and File ... (multiple files) to Directory (continued)

Source/Target Options Allowed Options Ignored Options Failed

PDS or PDSE

Member/PDS or PDSE

Member

BFiTX ACfMPpSU

UNIX File/UNIX Directory ACFipS BMPTUX

PDSE or PDSE

Member/UNIX Directory

BFfiMSTUX ACMPp

UNIX File/Partitioned Data

Set

ABCFiMSTX fPpU

PDS or PDSE

Member/PartitionedData

Set

BFiTX ACfMPpSU

Partitioned Data Set/UNIX

Directory

ABCFfiMSTUX Pp

The tables that follow indicate the kind of copies allowed using cp.

 Table 5. cp Format: File to File

Source Target Allowed

UNIX File, Sequential Data

Set, or Partitioned Data Set

Member

UNIX File, Sequential Data

Set, or Partitioned Data Set

Member

Yes

UNIX Directory UNIX Directory No (unless cp is used with

–R or –r)

Partitioned Data Set UNIX Directory (dir) NOTE:

results in each member of

data set are moved to dir.

Yes

UNIX Directory Partitioned Data Set No

Partitioned Data Set Partitioned Data Set No

UNIX File or Partitioned Data

Set Member

UNIX Directory (must exist)

or Partitioned Data Set

Yes

Partitioned Data Set Member Partitioned Data Set Yes

 Table 6. cp Format: File... (multiple files) to Directory

Source Target Allowed

Any combination of UNIX File

or Partitioned Data Set

Member

UNIX Directory or Partitioned

Data Set

Yes

Any combination of UNIX

Directory or Sequential Data

Set

Partitioned Data Set or UNIX

Directory

No

Partitioned Data Set UNIX Directory Yes

Partitioned Data Set Partitioned Data Set No

Usage Notes

UNIX to MVS

cp

Chapter 1. cp — Copy a file 9

1. To copy from UNIX to a partitioned data set, you must allocate the data set

before doing the cp.

 2. If an MVS data set does not exist, cp will allocate a new sequential data set of

variable record format.

 3. For text files, all <newline> characters are stripped during the copy. Each line

in the file ending with a <newline> character is copied into a record of the MVS

data set. If text file format is specified or already exists for the source file, that

file format will be used for end-of-line delimeter instead of <newline>. Note that

cp looks for IBM-1047 end-of-line delimeters in data.

You cannot copy a text file to an MVS data set that has an undefined record

format:

v For an MVS data set in fixed record format, any line copied longer than the

record size will cause cp to fail with a displayed error message and error

code. If the line is shorter than the record size, the record is padded with

blanks.

v For an MVS data set in variable record format: Any line copied longer than

the largest record size will cause cp to fail with a displayed error message

and error code. Record length is set to the length of the line.

 4. For binary files, all copied data is preserved:

v For an MVS data set in fixed record format, data is cut into chunks of size

equal to the record length. Each chunk is put into one record. The last

record is padded with blanks.

v For an MVS data set in variable record format, data is cut into chunks of

size equal to the largest record length. Each chunk is put into one record.

The length of the last record is equal to length of the data left.

v For an MVS data set in undefined record format, data is cut into chunks of

size equal to the block size. Each chunk is put into one record. The length

of the last record is equal to the length of the data left.

 5. For load modules, the partitioned data set specified must be in undefined

record format otherwise the executable will not be copied.

 6. If more than one filename is the same, the file is overwritten on each

subsequent copy.

 7. If a UNIX filename contains characters that are not allowed in an MVS data

set, it will not be copied. If the UNIX filename has more than 8 characters, it

can not be copied to an MVS data set member. (See the –ACMS options for

converting filenames)

 8. You are not allowed to copy files into data sets with spanned records.

 9. PDSE cannot have a mixture of program objects and data members. PDS

allows mixing, but it is not recommended.

10. Special files such as character special, external links, and fifo will not be

copied to an MVS data set.

11. If a file is a symbolic link, cp will copy the resolved file, not the link itself.

12. UNIX file attributes are lost when copying to MVS. If you wish to preserve file

attributes, you should use the pax utility.

MVS to UNIX

1. If the specified target HFS file exists, the new data overwrites the existing data.

The mode of the file is unchanged.

cp

10 z/OS UNIX System Services Command Reference: APAR OA10314

2. If the specified HFS file does not exist, it will be created using 666 mode value

if binary or text (this is subject to umask). If the data to be copied is a shell

script or executable, the HFS file will be created with 777 mode value (also

subject to umask).

3. Allocating an MVS dataset to either RECFM(VB) or RECFM(U) will preserve

trailing blanks when copying from MVS to HFS.

4. When you copy MVS data sets to UNIX binary files, the <newline> character is

not appended to the record.

5. You cannot use cp to copy data sets with spanned record lengths.

Examples

1. To specify –P params for a non-existing sequential target:

cp -P "RECFM=U,space=(500,100)"file "//’turbo.gammalib’"

2. To copy file f1 to a fully qualified sequential data set ’turbo.gammalib’ and treat

it as a binary:

cp -F bin f1 "//’turbo.gammalib’"

3. To copy all members from a fully qualified PDS ’turbo.gammalib’ to an existing

UNIX directory dir:

cp "//turbo.gammalib’" dir

4. To drop .c suffixes before copying all files in UNIX directory dir to an existing

PDS ’turbo.gammalib’:

cp -S d=.c dir/* "//’turbo.gammalib’"

Environment Variable

cp uses the following envrionment variable when copying records to or from MVS

data sets:

_EDC_ZERO_RECLEN

If set to Y before calling cp, an empty record (zero-length) is treated as a

single newline and is not ignored. Also, a single newline is written to the file

as an empty record, and a single blank will be represented by ” \n”. If you

do not set this environment variable when copying records, then the string

” \n” is copied the same way as the string ”\n”: both are read and written as

”\n”, where ”\n” indicates that z/OS C/C++ will write a record containing a

single blank to the file (the default behavior of z/OS C/C++). All other blanks

in the output are read back as blanks, and any empty records are ignored.

Localization

cp uses the following localization environment variables:

v LANG

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

Exit Values

0 Successful completion

1 Failure due to any of the following:

cp

Chapter 1. cp — Copy a file 11

v An argument had a trailing slash (/) but was not a directory

v Inability to find a file

v Inability to open an input file for reading

v Inability to create or open an output file

v A read error occurred on an input file

v A write error occurred on an output file

v The input and output files were the same file

v An irrecoverable error when using –r or –R. Possible irrecoverable –r or

–R errors include:

– Inability to access a file

– Inability to change permissions on a target file

– Inability to read a directory

– Inability to create a directory

– A target that is not a directory

– Source and destination directories are the same

2 Failure due to any of the following:

v An incorrect command-line option

v Too few arguments on the command line

v A target that should be a directory but isn’t

v No space left on target device

v Insufficient memory to hold the data to be copied

v Inability to create a directory to hold a target file

Messages

Possible error messages include:

cannot allocate target string

cp has no space to hold the name of the target file. Try to release some

memory to give cp more space.

name is a directory (not copied)

You did not specify –r or –R, but one of the names you asked to copy was

the name of a directory.

target name?

You are attempting to copy a file with the –i option, but there is already a

file with the target name. If you have specified –f, you can write over the

existing file by typing y and pressing <Enter>. If you do not want to write

over the existing file, type n and press <Enter>. If you did not specify –f and

the file is read-only, you are not given the opportunity to overwrite it.

source name and target name are identical

The source and the target are actually the same file (for example, because

of links). In this case, cp does nothing.

unreadable directory name

cp cannot read the specified directory—for example, because you do not

have appropriate permission.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The –f and –m options are extensions of the POSIX standard.

cp

12 z/OS UNIX System Services Command Reference: APAR OA10314

Related Information

cat, cpio, ln, mv, rm

cp

Chapter 1. cp — Copy a file 13

14 z/OS UNIX System Services Command Reference: APAR OA10314

Chapter 2. mv — Rename or move a file or directory

Format

 mv [–fiMPUv] [–F format|B|T|X] [–P params]file1 file2

 mv [–ACfiMUv] [–F format|B|T|X] [–S suffix] file ... directory

 mv –Rr [–fi] directory1 directory2

Automatic Conversion and File Tag Specific Options:

mv [–Z] [–O u | c=codeset]

Description

mv renames files or moves them to a different directory. If you specify multiple files,

the target (that is, the last pathname on the command line) must be a directory. mv

moves the files into that directory and gives them names that match the final

components of the source pathnames. When you specify a single source file and

the target is not a directory, mv moves the source to the new name, by a simple

rename if possible.

You can also use mv to move files to and from MVS data sets. If you specify more

than one file to be moved, the target (last pathname on command line) must be

either a directory or a partitioned data set. If the target is an MVS partitioned data

set, the source cannot be a UNIX directory.

mv does not support the moving to or from GDGs. To use those MVS data sets,

user must specify the real data set name.

When moving records, the string ″ \n″ is moved the same way as the string ″\n″:

both are read back as ″\n″, where ″\n″ indicates that z/OS C++ will write a record

containing a single blank to the file (the default behavior of z/OS C/C++). All other

blanks in your output are read back as blanks, and any empty (zero-length) records

are ignored on input. However, if the environment variable _EDC_ZERO_RECLEN

is set to Y before calling cp, an empty record is treated as a single newline and is

not ignored. Also, if _EDC_ZERO_RECLEN is set to Y, a single newline is written to

the file as an empty record, and a single blank will be represented by ″ \n″.

A file can be moved by any user who has write permission to the directory

containing the file, unless that directory has its sticky bit turned on. If the file is in a

directory whose sticky bit is turned on, only the file owner or a superuser can move

the file.

You can move:

v One file to another file in the working directory

v One file to a new file on another directory

v A set of directories and files to another place in your file system

v A UNIX file to an MVS data set

v An MVS data set to a file system

v An MVS data set to an MVS data set

© Copyright IBM Corp. 1996, 2005 15

Options

–A Specifies that all suffixes (from the first period till the end of the target) be

truncated. –A has precedence over –M and –C options. –S will be turned

off if –A is the last option specified.

–B Specifies that the data to be moved contains binary data. When you specify

–B, mv operates without any consideration for <newline> characters or

special characteristics of DBCS data (this type of behavior is typical when

moving across a UNIX system). –B is mutually exclusive with –F, –X, and

–T, i.e., you will get an error if you specify more than one of these options.

–C Specifies truncating the filename(s) to 8 characters to meet the restriction in

the MVS data set member.

–F format

Specifies if a file is binary or text and for text files, specifies the end-of-line

delimeter. Also sets the file format to format only if the source is an MVS

data set and the target is a UNIX file. Only cp sets the file format for UNIX

to UNIX operations. For text files, when moving from UNIX to MVS, the

end-of-line delimeter will be stripped. When moving from MVS to UNIX, the

end-of-line delimeter will be added (Code page IBM-1047 will be used to

check for end-of-line delimeters).

 –F is mutually exclusive with –B, –X, –p, and –T. If you specify one of

these options with –F, you will get an error. If –F is specified more than

once, the last –F specified will be used.

 For format you can specify:

not not specified

bin binary data

Or the following text data delimeters:

nl newline

cr carriage return

lf line feed

crlf carriage return followed by line feed

lfcr line feed followed by carriage return

crnl carriage return followed by new line

–f (UNIX to UNIX only)

Does not ask if you want to overwrite an existing destination without write

permission; it automatically behaves as if you answered yes. If you specify

both –f and –i, mv uses the option that appears last on the command line.

–i When moving to a UNIX target, always prompts before overwriting an

existing file, but does not overwrite the file if you do not have permission. If

you specify both –f and –i, mv uses the option that appears last on the

command line.

–M Specifies that some characters of the filename are translated when moving

between a UNIX file and a data set member. Characters are translated as

follows:

v _ (underscore) in UNIX is translated to @ in MVS DS members and vice

versa.

v . (period) in UNIX is translated to # in MVS DS members and vice versa.

v – (dash) in UNIX is translated to $ in MVS DS members and vice versa.

–P params

Specifies the parameters needed to create a sequential data set if one does

mv

16 z/OS UNIX System Services Command Reference: APAR OA10314

not already exist. You can specify the RECFM, LRECL, BLKSIZE, and

SPACE in the format CRTL fopen() function uses. However, LRECL and

BLKSIZE can be used for variable record format only.

 SPACE=(units,(primary,secondary) where the following values are

supported for units:

v any positive integer indicating BLKSIZE

v CYL (mixed case)

v TRK (mixed case)

For example:

SPACE=(500,(100,500)) units, primary, secondary

SPACE=(500,100) units and primary only

Note: The CRTLfopen() arguments: LRECL specifies the length, in bytes,

for fixed-length records and the maximum length for variable-length

records. BLKSIZE specifies the maximum length, in bytes, of a

physical block of records. RECFM refers to the record format of a

data set and SPACE indicates the space attributes for MVS data

sets.

–R (UNIX to UNIX only)

Moves a directory and all its contents (files, subdirectories, files in

subdirectories, and so on). For example:

mv –R dir1 dir2

moves the entire contents of dir1 to dir2/dir1. mv creates any directories

that it needs.

–r (UNIX to UNIX only)

Is identical to –R.

–S d=suffix|a=suffix

v d=suffix

Removes the specifed suffix from a file.

v a=suffix

Appends the specified suffix to a file.

–S has precedence over –M and –C. It also turns off the –A option (if –S is

the last specified option).

–T Specifies that the data to be moved contains text data. See “Usage Notes”

on page 24 for details on how to treat text data. This option looks for

IBM-1047 end-of-line delimeters, and is mutually exclusive with –F, –X, and

–B, i.e., you will get an error if you specify more than one of these options.

Note: –T is ignored when moving across UNIX file systems.

–U Keeps filenames in uppercase when moving from MVS data set members

to UNIX files. The default is to make filenames lowercase.

–v Verbose

–X Specifies that the data to be moved is an executable. Cannot be used in

conjunction with –F, –X, or –B.

-Z Specifies that error messages are not to be displayed when setting ACLs

on the target. The return code will be zero. mv will try to preserve the

ACLs, if possible. The ACLs are not preserved if a file system does not

support ACLs, or if you are moving files to MVS

mv

Chapter 2. mv — Rename or move a file or directory 17

Note: If you do not specify –F|B|T or X, mv will first check the format of the MVS

data set indicated and then try to determine the type of file.

Automatic conversion and file tag specific options

–Z Suppresses failure when setting the file tag by default or on empty,

untagged files. For a description of the default behavior, see

“Automatic conversion and file tagging behavior for mv.”

–O u | c=codeset

Allow automatic conversion on source and target files.

–O u If the target exists and is not empty nor already

tagged, mv will not change the target’s tag in order

for the target to be a candidate for automatic

conversion.

 For new targets and existing, untagged, empty files,

this option has no effect and mv behaves the same

as the default. For a description of the default

behavior, see “Automatic conversion and file

tagging behavior for mv.”

 When using mv to move from a UNIX file to an

MVS data set, if the source is a tagged text file,

then it may be a candidate for automatic

conversion.

 When moving executables from or to MVS,

automatic conversion is disabled for both source

and target.

–O c=codeset For a detailed description of the behavior of this

option on mv, see “Automatic conversion and file

tagging behavior for mv.”

 To prevent the corruption of text files, mv will fail if

it cannot set the file tag to text or codeset.

 Attention: If automatic conversion is not properly

set or if the source is not properly tagged, the

target may end up with a tag codeset that does not

match the file contents.

Automatic conversion and file tagging behavior for mv

The following tables describe the behavior of file tagging and automatic conversion

for various source and target scenarios depending on whether the –O option is

specified on the mv command.

mv

18 z/OS UNIX System Services Command Reference: APAR OA10314

|

||
|
|

|
|

||
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

||
|
|

|
|

|
|
|
|

|

|
|
|

Table 7. Automatic conversion and file tagging behavior: Moving UNIX files to UNIX files

Default (without -O option)

With -O u option

With -O

c=codeset option

If the target file

system supports

setting file

tags...

If the target file

system does not

support setting

file tags (e.g.

NFS)...

File tagging Target file is

tagged the same

as the source file.

v An existing

target’s tag is

unchanged.

v A new target is

created with a

tag according

to the file

system’s

attributes

(MOUNT parm

can specify

TAG).

Target’s tag is

unchanged.

Note: The source

or target file is a

candidate for

automatic

conversion when

its txtflag is

tagged TEXT.

Target’s txtflag is

set to TEXT and

its codeset is set

to codeset.

Automatic

conversion

Disabled for

source and target

files

Allowed for source and target files

 Table 8. Automatic conversion and file tagging behavior: Moving MVS data sets to UNIX

files

Default (without -O option)

With -O u option

With -O

c=codeset option

If the target file

system supports

setting file

tags...

If the target file

system does not

support setting

file tags (e.g.

NFS)...

If the SOURCE is text:

File tagging Target is set to

UNTAG

v An existing

target’s tag is

unchanged.

v A new target is

created with a

tag according

to the file

system’s

attributes

(MOUNT parm

can specify

TAG).

Target’s tag is

unchanged

Target’s txtflag is

set to TEXT and

its codeset is set

to codeset.

Automatic

conversion

Disabled for

target file

Allowed for target file

Note: The target file is a candidate for automatic

conversion when its txtflag is tagged TEXT.

If the SOURCE is binary or executable:

File tagging Target is set to UNTAG Target’s tag is

unchanged

Target’s txtflag is

set to BINARY

and its codeset is

set to codeset.

mv

Chapter 2. mv — Rename or move a file or directory 19

||

|

|

|
|
|

|
|
|
|

|
|
|
|
|

||
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|

||
|

|

|

|
|
|

|
|
|
|

|
|
|
|
|

|

||
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|

|||
|
|
|
|
|

Table 8. Automatic conversion and file tagging behavior: Moving MVS data sets to UNIX

files (continued)

Default (without -O option)

With -O u option

With -O

c=codeset option

If the target file

system supports

setting file

tags...

If the target file

system does not

support setting

file tags (e.g.

NFS)...

Automatic

conversion

Disabled for target file

 Table 9. Automatic conversion and file tagging behavior: Moving UNIX files to MVS data

sets

Default (without -O

option) With -O u option

With -O c=codeset

option

If the SOURCE is text or binary:

File tagging Not applicable for target data set

Automatic

conversion

Disabled for source file Allowed for source file

Note: The source file

is a candidate for

automatic conversion

when its txtflag is

tagged TEXT.

Disabled for source file

If the SOURCE is executable:

File tagging Not applicable for target data set

Automatic

conversion

Disabled for source file

Limits & Requirements

General Requirements

1. To specify an MVS data set name, precede the name with double slashes (//).

For example, to specify the fully qualified data set names ’turbo.gammalib’ and

’turbo.gammalib(pgm1)’, you write:

"//’turbo.gammalib’"

"//’turbo.gammalib(pgm1)’"

The same goes for data set names that are not fully qualified:

//turbo

2. For PDS (partitioned data set) or PDSE (partitioned data set extended), to avoid

parsing by the shell, the name should be quoted or minimally, the parenthesis

should be escaped. For example, to specify ’turbo(pgm1)’, you can use quotes:

"//turbo(pgm1)"

or escape the parenthesis:

//turbo\(pgm1\)

As indicated above, a fully qualified name must be single-quoted (as is done

within TSO). To prevent the single quotes from being interpreted by the shell,

they must be escaped or the name must be placed within regular quotation

marks. See the ’turbo.gammalib’ examples above.

mv

20 z/OS UNIX System Services Command Reference: APAR OA10314

|
|

|

|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|

||
|

|
|
||
|
|

|

||

|
|
||

|
|
|
|
|

|

|

||

|
|
|

|

|

3. If you specify a UNIX file as source and the MVS data set (target) does not

exist, a sequential data set will be created. If the partitioned data set exists, the

UNIX file will be moved to the partitioned data set member.

4. If source is an MVS data set and target is a UNIX directory, the UNIX directory

must exist.

5. You cannot have a UNIX directory, partitioned data set, or sequential data set

as source if the target is a partitioned data set.

6. To move all members from a partitioned data set, you may specify the

partitioned data set as source and a UNIX directory as target.

MVS data set naming limitations

v Data set names may only contain uppercase alphabetic characters (A-Z).

Lowercase characters will be converted to uppercase during any moves to MVS

data sets.

v Data set names can contain numeric characters 0–9 and special characters @,

#, and $.

v Data set names cannot begin with a numeric character.

v A data set member name cannot be more than 8 characters. If a filename is

longer than 8 characters or uses characters that are not allowed in an MVS data

set name, the file is not moved. You may use the –C option to truncate names to

8 characters.

Limitations: UNIX to MVS data set

1. If you specify a sequential MVS data set that is in undefined record format, the

file is moved as binary.

2. If you specify a PDSE that is in undefined record format, the first file

successfully moved determines in what format files will be moved. Note that

PDSE does not allow mixture. So if the first successfully moved file is an

executable, the PDSE will have program objects only and all other files will fail.

On the other hand, if the first file is data, then all files are moved as binary.

3. If you specify a PDS that is in undefined record format, UNIX executables are

saved as PDS load modules. All other files are moved as binary.

4. If you specify an MVS data set that is either in variable length or fixed record

length and you have not set the file format, text files are moved as text, binaries

as binary, and executables as binary. (IBM-1047 end-of-line delimeters are

detected in the data)

5. If you set the file format, the set value is used to determine if data is binary or

text.

Limitations: MVS data set to UNIX

1. If an HFS file does not exist, one is created using 666 mode value:

666 mode value: owner(rw-) group(rw-) other(rw-)

whether data is binary or text. If the data to be moved is a shell script or

executable, an HFS file is created using 777 mode value:

777 mode value: owner(rwx) group(rwx) other(rwx)

2. If an HFS exists and the file format is set, mv moves the file as that format.

Otherwise,

v load modules (PDS) are stored as UNIX executables and program objects

(PDSE) are moved since they are the same as executables;

v data within data sets of undefined record format are moved as binary if the

data is not a program object or load module;

mv

Chapter 2. mv — Rename or move a file or directory 21

v and data found within data sets of fixed length or variable record length are

moved as text. (IBM-1047 end-of-line delimeters are detected in the data)

Limitations: MVS to MVS

1. Options –A, –C, –f, and –S are ignored.

2. If target and source are in undefined record format (and neither is a sequential

data set), mv will attempt to move the data as a load module. If that fails, then

mv will move the data as binary.

3. If target and source are in undefined record format and either is a sequential

data set, mv moves the data as binary.

4. If the source has a fixed or variable record length and the target is in undefined

record format, mv moves the data as binary.

5. If the source is in undefined record format and the target has a fixed or variable

record length, mv moves the data as binary.

6. If both source and target are in fixed or variable record length, mv moves the

data as text.

Limitations: Moving executables into a PDS

1. A PDS may not store load modules that incorporate program management

features.

2. c89, by default, produces objects using the highest level of program

management.

3. If you plan on moving a load module to a PDS, you may use a pre-linker which

produces output compatible with linkage editor. Linkage editor generated output

can always be stored in a PDS.

The following table is a quick reference for determining the correct use of options

with mv.

 Table 10. mv Format: File to File and File ... (multiple files) to Directory

Source/Target Options Allowed Options Ignored Options Failed

UNIX File/UNIX File Ffi ABCMPSTUX

UNIX File/Sequential Data

Set

BFiPT ACfMSU X

UNIX File/PDS or PDSE

Member

BFiTX ACfMPSU

Sequential Data Set/UNIX

File

BFfiTU ACMPS X

Sequential Data

Set/Sequential Data Set

BFiPT ACfMSU X

Sequential Data Set/PDS

or PDSE Member

BFiT ACfMPSU X

PDS or PDSE

Member/UNIX File

BFfiTUX ACMPS

PDS or PDSE

Member/Sequential Data

Set

BFiPT ACfMSU X

PDS or PDSE

Member/PDS or PDSE

Member

BFiTX ACfMPSU

UNIX File/UNIX Directory Fi ABCFMPSTUX

mv

22 z/OS UNIX System Services Command Reference: APAR OA10314

Table 10. mv Format: File to File and File ... (multiple files) to Directory (continued)

Source/Target Options Allowed Options Ignored Options Failed

PDSE or PDSE

Member/UNIX Directory

BFfiMSTUX ACP

UNIX File/Partitioned Data

Set

ABCFiMSTX fPU

PDS or PDSE

Member/PartitionedData

Set

BFiTX ACfMPSU

UNIX Directory/UNIX

Directory

fi ABCFMPSTUX

Partitioned Data Set/UNIX

Directory

ABCFfiMSTUX P

The tables that follow indicate the kind of moves allowed using mv.

 Table 11. mv Format: File to File

Source Target Allowed

UNIX File, Sequential Data

Set, or Partitioned Data Set

Member

UNIX File, Sequential Data

Set, or Partitioned Data Set

Member

Yes

UNIX Directory (dir) UNIX Directory (dir2 exists) YES (NOTE: Results will be

found in dir2/dir1/ ..).

UNIX Directory (dir) UNIX Directory (dir2 does not

exist)

YES (NOTE: Results will be

found in dir2/...).

Partitioned Data Set UNIX Directory (dir) NOTE:

results in each member of

data set are moved to dir.

Yes

UNIX Directory Partitioned Data Set No

Partitioned Data Set Partitioned Data Set No

UNIX File, UNIX Directory, or

Partitioned Data Set Member

UNIX Directory Yes

Partitioned Data Set Member Partitioned Data Set (must

exist)

Yes

 Table 12. mv Format: File... (multiple files) to Directory

Source Target Allowed

Any combination of UNIX File

and/or Partitioned Data Set

Member

UNIX Directory or Partitioned

Data Set

Yes

Any combination of UNIX

Directory, Partitioned Data

Set, Sequential Data Set

Partitioned Data Set No

Sequential Data Set UNIX Directory No

Any combination of UNIX

Directory, UNIX File,

Partitioned Data Set,

Partitioned Data Set Member

UNIX Directory Yes

mv

Chapter 2. mv — Rename or move a file or directory 23

Usage Notes

UNIX to MVS

 1. To move from UNIX to a partitioned data set, you must allocate the data set

before doing the mv.

 2. If an MVS data set does not exist, mv will allocate a new sequential data set

of variable record format.

 3. For text files, all <newline> characters are stripped during the move. Each line

in the file ending with a <newline> character is moved into a record of the

MVS data set. If text file format is specified or already exists for the source file,

that file format will be used for end-of-line delimeter instead of <newline>. Note

that mv looks for IBM-1047 end-of-line delimeters in data.

You cannot move a text file to an MVS data set that has an undefined record

format:

v For an MVS data set in fixed record format, any line moved longer than the

record size will cause mv to fail with a displayed error message and error

code. If the line is shorter than the record size, the record is padded with

blanks.

v For an MVS data set in variable record format: Any line moved longer than

the largest record size will cause mv to fail with a displayed error message

and error code. Record length is set to the length of the line.

 4. For binary files, all moved data is preserved:

v For an MVS data set in fixed record format, data is cut into chunks of size

equal to the record length. Each chunk is put into one record. The last

record is padded with blanks.

v For an MVS data set in variable record format, data is cut into chunks of

size equal to the largest record length. Each chunk is put into one record.

The length of the last record is equal to length of the data left.

v For an MVS data set in undefined record format, data is cut into chunks of

size equal to the block size. Each chunk is put into one record. The length

of the last record is equal to the length of the data left.

 5. For load modules, the partitioned data set specified must be in undefined

record format otherwise the executable will not be moved.

 6. If more than one filename is the same, the file is overwritten on each

subsequent move.

 7. If a UNIX filename contains characters that are not allowed in an MVS data

set, it will not be moved. If the UNIX filename has more than 8 characters, it

can not be moved to an MVS data set member. (See the –ACMS options for

converting filenames)

 8. You are not allowed to move files into data sets with spanned records.

 9. PDSE cannot have a mixture of program objects and data members. PDS

allows mixing, but it is not recommended.

10. Special files such as character special, external links, and fifo will not be

moved to an MVS data set.

11. If a file is a symbolic link, mv will move the resolved file, not the link itself.

12. UNIX file attributes are lost when moving to MVS. If you wish to preserve file

attributes, you should use the pax utility.

MVS to UNIX

1. If the specified target HFS file exists, the new data overwrites the existing data.

mv

24 z/OS UNIX System Services Command Reference: APAR OA10314

2. If the specified HFS file does not exist, it will be created using a 666 mode

value whether the data is binary or text (this is subject to umask). If the data to

be moved is a shell script or executable, the HFS file will be created with a 777

mode value (also subject to umask).

3. When you move MVS data sets to UNIX text files, a <newline> character is

appended to the end of each record. If trailing blanks exist in the record, the

<newline> character is appended after the trailing blanks. If the file format

option is specified or the target file has the file format set, that file format is

used as the end-of-line delimeter instead of <newline>.

4. When you move MVS data sets to UNIX binary files, the <newline> character is

not appended to the record.

5. You cannot use mv to move data sets with spanned record lengths.

Examples

1. To specify –P params for a non-existing sequential target:

mv -P "RECFM=U,space=(500,100)"file "//’turbo.gammalib’"

2. To move file f1 to a fully qualified sequential data set ’turbo.gammalib’ and

treat it as a binary:

mv -F bin f1 "//’turbo.gammalib’"

3. To move all members from a fully qualified PDS ’turbo.gammalib’ to an existing

UNIX directory dir:

mv "//turbo.gammalib’" dir

4. To drop .c suffixes before moving all files in UNIX directory dir to an existing

PDS ’turbo.gammalib’:

mv -S d=.c dir/* "//’turbo.gammalib’"

Environment Variable

mv uses the following environment variable when moving records to or from MVS

data sets:

_EDC_ZERO_RECLEN

If set to Y before calling mv, an empty record is treated as a single newline

and is not ignored. Also, a single newline is written to the file as an empty

record, and a single blank will be represented by ” \n”. If you do not set this

environment variable when moving records, then the string ” \n” is moved

the same way as the string ”\n”: both are read and written as ”\n”, where

”\n” indicates that z/OS C/C++ will write a record containing a single blank

to the file (the default behavior of z/OS C/C++). All other blanks in the

output are read back as blanks, and any empty (zero-length) records are

ignored on input.

Localization

mv uses the following localization environment variables:

v LANG

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MESSAGES

v LC_SYNTAX

v NLSPATH

mv

Chapter 2. mv — Rename or move a file or directory 25

Exit Values

0 Successful completion

1 Failure due to any of the following:

v The argument had a trailing / but was not a directory

v Inability to find file

v Inability to open input file for reading

v Inability to create or open output file for output

v Read error on an input file

v Write error on an output file

v Input and output files identical

v Inability to unlink input file

v Inability to rename input file

v Irrecoverable error when using the –r option, such as:

– Inability to access a file

– Inability to read a directory

– Inability to remove a directory

– Inability to create a directory

– A target that is not a directory

– Source and destination directories identical

2 Failure due to any of the following:

v Incorrect command-line option

v Too few arguments on the command line

v A target that should be a directory but isn’t

v No space left on target device

v Out of memory to hold the data to be moved

v Inability to create a directory to hold a target file

Messages

Possible error messages include:

cannot allocate target string

mv has no space to hold the name of the target file. Try to free some

memory to give mv more space.

filename?

You are attempting to move a file, but there is already a file with the target

name and the file is read-only. If you really want to write over the existing

file, type y and press <Enter>. If you do not want to write over the existing

file, type n and press <Enter>.

source name and target name are identical

The source and the target are actually the same file (for example, because

of links). In this case, mv does nothing.

unreadable directory name

mv cannot read the specified directory—for example, because you do not

have appropriate permissions.

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The –R and –r options are extensions of the POSIX standard.

mv

26 z/OS UNIX System Services Command Reference: APAR OA10314

Related Information

cp, cpio, rm

mv

Chapter 2. mv — Rename or move a file or directory 27

28 z/OS UNIX System Services Command Reference: APAR OA10314

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be

used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2005 29

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road

Poughkeepsie, NY 12601-5400

USA

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

If you are viewing this information softcopy, the photographs and color illustrations

may not appear.

Programming Interface Information

This publication documents intended Programming Interfaces that allow the

customer to write programs that use z/OS UNIX System Services (z/OS UNIX).

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

 IBM

ibm.com

MVS

z/OS

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

Acknowledgments

InterOpen Shell and Utilities is a source code product providing POSIX.2 (Shell and

Utilities) functions to the z/OS UNIX services offered with MVS. InterOpen/POSIX

Shell and Utilities is developed and licensed by Mortice Kern Systems (MKS) Inc. of

Waterloo, Ontario, Canada.

30 z/OS UNIX System Services Command Reference: APAR OA10314

����

Program Number: 5694-A01, 5655-G52

Printed in USA

SA22-7802-06

	About this document
	Chapter 1. cp — Copy a file
	Format
	Description
	Options
	Automatic conversion and file tag specific options
	Automatic conversion and file tagging behavior for cp

	Limits and Requirements
	Usage Notes
	Examples
	Environment Variable
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	Chapter 2. mv — Rename or move a file or directory
	Format
	Description
	Options
	Automatic conversion and file tag specific options
	Automatic conversion and file tagging behavior for mv

	Limits & Requirements
	Usage Notes
	Examples
	Environment Variable
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	Notices
	Programming Interface Information
	Trademarks
	Acknowledgments

