

zOS RAS Guidelines

and Debug Guide

for Ported Software

Bob Abrams

zOS Software Design
IBM Corporation

Poughkeepsie, NY

IBM Internal Phone: 8+295-6832
Outside Phone: 845-435-6832
E-mail: abrams@us.ibm.com

Lotus Notes: Robert Abrams/Poughkeepsie/IBM

May 17, 1999
Updated September 7, 1999
Updated November 13, 2000

zOS RAS Guidelines for Ported Software - 1 - Sun 31, 1903

zOS RAS Guidelines for Ported Software - 2 - Sun 31, 1903

zOS RAS Guidelines for Ported Software

1. Introduction

When applications are ported to the zOS environment, they generally inherit the defaults and
protections of (and can take advantage of) the broad Reliability, Availability and Serviceability
(RAS) facilities that are provided by zOS. Reliability is the capability of a program to perform
its intended function under specified conditions for a defined period of time. Availability is the
capability of a program to perform its function whenever it is needed. Serviceability is the
ability for a program to capture failure data and enable quick error analysis to determine the
cause and solution to a problem that affects the operation of the program. When a C/C++
application fails, the system ensures that the application is isolated from other work going on in
the system, and its recovery doesn’t result in a re-IPL (“reboot”) of the system. The server’s
availability characteristics are better, but the characteristics of the ported business application
remain the same as in its original environment, unless the application is changed to take
advantage of the additional RAS services that are supported by zOS (the base MVS operating
system and its associated member functions).

If a failure occurs within the application itself, the zOS UNIX System Services recovery default
is to terminate the process (usually corresponding to an MVS address space), which reflects the
same behavior that would occur in a standard UNIX server. A basic storage dump is provided by
the MVS Language Environment component to help describe the state of the program at the time
of the problem. But, in general, the RAS characteristics of ported applications, without further
investment, are the same as on their source platforms. Very often only sketchy information is
provided for debug purposes (error logs, traces, etc.). Many of the programs were originally
written to run on workstations or PC servers, where rebooting the operating system is an
acceptable recovery action, and an outage only impacts a single or a few users on those systems.
The zOS equivalent of canceling and restarting the application may clear up an unknown
problem that couldn’t be diagnosed, but will adversely affect the application’s availability
delivered to the many hundreds, or even thousands, of clients using the service. Therefore, the
typical UNIX recovery action (i.e., re-boot the server) is unacceptable when running on zOS
servers.

At the broadest level, zOS customers may assume that, when the application terminates, it could
be restarted automatically through the use of the installation’s automation product. However,
this requires that the automation product be able to intercept the “signal” from the application
that it has encountered some error. This level of function is currently unavailable, unless the
application explicitly raises its errors in a form that is recognized by MVS, such as issuing
generic alerts, or “write-to-operator” (WTO) message to the MVS system log.

To obtain RAS characteristics consistent with those expected by zOS customers, a level of
investment must be planned. zOS customers require that products remain continuously
available. This means that software products must recover from failures, even if some requests
are caused to fail. Useful diagnosis information about product failures must be captured the first
time they occur so that problems can be identified and fixes applied (if possible), to minimize

zOS RAS Guidelines for Ported Software - 3 - Sun 31, 1903

reoccurrence. This automatic gathering of information is called “first failure data capture”, and
promotes serviceability. The resulting actions that are required include:
 require good development techniques like creating descriptive messages with unique

message identifiers, and returning erroneous requests with unique error codes
 apply application recovery techniques within your programs, like driving thread termination

and retry in the applicable cases (similar to MVS capabilities)
 for each call to a service that can return error indicators, test those indicators
 capture enough diagnostic data in the event of an error to ensure that the cause can be

isolated and repaired (first failure data capture)
 allow for the delivery of individual fixes for problems
 provide good serviceability (production diagnosis / debugging) documentation.

Application recovery processing and unique error messages, ABEND codes and reason codes are
examples of information that can result in improved availability characteristics of the application
environment because it can be better managed. Other forms of serviceability, such as tracing and
error logging must be enabled in the application, just as would be done when developing MVS
functions to enable rapid identification of the root causes of problems. Some debug tools are
provided for C/C++ applications, and are discussed later in this document. Good documentation
on what to look for when diagnosing a problem related to the application is of utmost
importance.

zOS RAS Guidelines for Ported Software - 4 - Sun 31, 1903

2. Basic serviceability guidelines for ported code

The following high level guidelines are intended to be followed when porting an application to
the zOS environment. This section attempts to describe each guideline in terms that do not
require MVS expertise, and should be understood by experienced non-390 programmers. Each
guideline area is explained in more detail in Section 4 of this document, along with zOS
implementation suggestions. You may wish to refer to the detailed sections while determining
how to implement each guideline point - the detail follows the same outline as this section.

1. Minimize the impact of a failure, and improve the availability characteristic of the
application. Verify the recovery logic of the base application, and provide recovery logic
where missing. Ensure that the resulting response is appropriate for a high scale, multi-user
environment. The objective is to minimize the impact of a failure, and restart the erroneous
thread or process so that client programs and users do not perceive an outage. This approach
assumes that one or more pieces of work can be sacrificed or restarted to allow the service to
recover and remain available for subsequent requests. It is necessary to differentiate where
standard process termination is required, as opposed to errors where thread termination and
recovery is more appropriate, to improve the availability characteristics of the overall
application.

2. Ensure that clear, unique messages are issued about major events and errors that
occur. Ensure that the program provides sufficient information to identify who initiated the
work request, clearly convey the context of the event, and identify any related (prior) events. In
some cases it may be desirable to make the error data visible through the use of specific tools or
product externals. When errors are surfaced, ensure that unique codes are used to identify the
root problem and associated data reflecting the error. All messages must have unique message
ids to allow them to be easily located in a publication, and to facilitate interception of the
messages by system automation. Appendix 2 contains a set of guidelines for issuing and
handling system and application messages (applicable to IBM and ISV messages).

3. Identify and document the appropriate ways to obtain and analyze a dump of the ported
application (and associated regions) when needed, or define other ways to obtain a “snapshot” of
processing appropriate for the intended user (application programmer, system programmer,
IBM). For cases where your application is dumped, determine whether a dump of a single
process (address space) or multiple processes is required for diagnosis.

4. Provide clear documentation (via external publications or web site), containing suggested
parameter settings, areas to examine when a problem occurs, and data relationships. Identify
common setup and runtime errors, suggested solutions, and places to go to for more information.

5. Capture the flow of control for an application. Allow the customer to obtain a trace of
major events and associated data. If necessary, provide a way for the customer to obtain a trace
log of entry/exit points and parameter values (keeping in mind that this will greatly

zOS RAS Guidelines for Ported Software - 5 - Sun 31, 1903

affect the performance of the application). Any tracing must be specifiable without recompiling
the application; it is necessary to allow the trace to be activated dynamically, without requiring
the application to be stopped and restarted.

6. Provide the ability to quickly highlight and display key information in an application or
system dump. The data provided should help in problem diagnosis, and may be used together
with data from other dependent system functions. Enable users of the dump viewing and
analysis utility to obtain a summary of activity related to the instance of the ported application in
the dump. Initially, provide formatters for major control blocks or object data mappings.
Subsequently, a diagnostic summary can be created which examines key control blocks,
highlights key attributes, status, or other semantics, and summarizes the current state of the
program. Such a summary is extremely helpful when diagnosing problems related to the
application. Note that this is primarily an zOS function, although it could apply to other
platforms over time.

Again, suggestions for how to implement these guidelines are provided in section 4.

zOS RAS Guidelines for Ported Software - 6 - Sun 31, 1903

3. Debug Guide: Serviceability functions provided by zOS LE

Before discussing specific implementations of the serviceability guidelines, it is important to
understand what functions zOS Language Environment (LE) provides to allow the capture of
failure data and analysis tools for debugging different aspects of your application. Having a
basic familiarity with these tools and services will allow you to more easily select from your
options for ensuring that your application can be diagnosed during development, and in
production (the field).

LE is an integral part of the processing of any C or C++ (as well as PL/I and COBOL) program.
Its primary goal is to provide an interface to many zOS system services from the different
language environments. Certain basic recovery features are available without changing source
code, by specifying a runtime variable. Other features are provided for programmer use to
enhance the basic recovery provided, and some tools are provided for the programmer to use as
diagnosis aids. Additional information on all of these functions can be found in the LE for zOS
Programming Guide and LE for zOS Debugging Guide and Runtime Messages publications.

Serviceability and dumping - a brief tutorial
zOS prides itself in having good first failure data capture (FFDC) techniques, to capture data for
any failures that occur during production. This is important since it is impractical to recreate
errors during production, just to collect information about the error. A key aspect of FFDC is the
ability to dump specific areas of the system related to the problem, in an efficient fashion. The
dump contains a snapshot of the “raw” data areas at the time of the error. The data is not
formatted for human consumption until a later point, when a tool called IPCS (Interactive
Problem Control System) is used to examine the dump, format data areas and provide a form of
analysis related to specific zOS components.

LE, on the other hand, provides a formatted dump of the process in error, reporting environment
and program data (depending on the value of certain run-time LE options). Because the LE
dump (called a CEEDump) is formatted when the data is captured, its content is limited to the
specific formatted information. An zOS unformatted storage dump, on the other hand, contains
much more information, which can be interpreted any time after the data is written to a data set.

Debugging tools, like the VisualAge Remote Debugger or DBX, are generally intended for use
during the development and test phase. Because a debugger is run in an isolated environment,
usually against a program that has been compiled with different options, it is not intended for use
with production-level problems where data is captured in a dump.

Because of the differences described above, each type of dump is intended for specific types of
environments. In general, a business application that fails during production is well-described by
a CEEDump, especially when the program is compiled such that program variables can be
included in the dump. For system applications, like areas of DB2, TCP/IP, DCE, Component
Broker, or some ISV products, an unformatted dump is best since it contains data that resides in
your process address space, or in common storage, which can be interpreted at a later time

zOS RAS Guidelines for Ported Software - 7 - Sun 31, 1903

without recreating the problem or suffering the time it takes to gather and format a CEEDump.
Unformatted dumps come in 2 flavors: a SYSMDUMP that contains an unauthorized address
space (process), and an SVC Dump that can contain one or more system address spaces
containing operating system function.1 Any application that depends on either of these forms of
dump for debugging must provide a set of IPCS formatters and analysis programs to aid in the
viewing of the dump and interpretation of the “snapshot”. Internal IBM tools are available to
create format models for your key data areas and analysis programs that are ultimately called by
IPCS with a dump image.

Base serviceability features
The following serviceability features provide “first failure data capture” for the application
program, specified by an LE runtime variable when executing the program (or via other means,
as described in the zOS Language Environment Programming Guide). Since each of the
approaches are managed through the specification of runtime variables, they are available to the
system programmer or application developer to activate.

 Formatted application-level dump (for debug purposes) taken upon the occurrence of an

abend (such as a program check). A Language Environment dump, called a CEEDump
(Common Execution Environment Dump), describes the status of the application’s runtime
environment at the time of a failure (or any other point in the program through the use of the
cdump or CEE3DMP function calls). The CEEDump is typically useful in application
environments that do not explicitly utilize other MVS or subsystem services. The type of
information that can be obtained is controlled by an LE runtime variable called TERMTHDACT
(terminating thread action). The resulting output is a printable/viewable report of key LE
structures related to the failed program. The important portions of the CEEDump include:

 Traceback
 Enclave identifier
 Thread identifier
 Condition information for active routines
 Arguments, registers and variables for active routines
 Storage for active routines
 LE control blocks associated with the thread, enclave, process

 The content of the dump can be greatly influenced by how the program in error is compiled.
If you compile with the -g or TEST option of the C/C++ compiler, the dump will contain all
program variables and other program debug data. The ‘debug’ version of the program contains
symbol table information that describes the names, formats and locations of all program
variables. LE uses the data to identify the program attributes and values that appear in the
CEEDump. An alternative with the C compiler is to specify “TEST(SYM,NOHOOK)

1An SVC Dump can only be triggered by an authorized MVS program, or through the DUMP or SLIP command. A
SYSMDUMP can be requested in the unauthorized program’s JCL, or via an LE runtime option, or by using the
MVS IEATDUMP service.

zOS RAS Guidelines for Ported Software - 8 - Sun 31, 1903

GONUMBER” to have the compiler build the symbol information without runtime hooks. So
the information is made available without the performance penalty of the plain TEST option, but
you do end up with a larger object deck than if you didn’t run with TEST at all. In C89 and C++,
this option would be specified as “-Wc,TEST\(SYM,NOHOOK\),GONUMBER”.

 If the program is compiled without -g or TEST, or using one of the optimization options, this
information is not available and does not appear in the dump. Then, the traceback becomes the
primary piece of available, useful debug information.

 You can specify the following options with the TERMTHDACT runtime option, and the
following types of reports are generated. In all cases, you must also specify TRAP(ON) as a
runtime option to have LE generate a CEEDump.
 TRACE: Traceback, showing the sequence of functions at the time of the failure. This is the

default value.
 DUMP: Complete dump of the LE environment, including information about conditions,

tracebacks, variables, control blocks, stack and heap storage.

 The Traceback: Mentioned several times so far, the traceback is usually the first place to

examine to determine the sequence of functions when the program abnormally terminated. It is a
report of the LE call stack, which shows the last state of the sequence of programs at the time the
dump is taken. Information for each stack element includes:
 address of the stack element
 name of the program file (program unit)
 program unit address and offset
 entry point name
 entry point address and offset
 statement number
 load module name
 Service level information

More information about the traceback can be found in Chapter 3 of the LE Debugging and
Runtime Messages book.

 Unformatted MVS application dump taken upon the occurrence of an abend. This form of

dump, called a SYSMDUMP, contains a snapshot of the application’s address space, and must
be viewed using a tool (IPCS) that can locate and format program structures in the dump. It is
especially useful for locating information that is not formatted by the CEEDump, such as control
blocks related to a system service used by the application program, and it is particularly useful
for IBM Service diagnosis of complex problems. You can specify the following LE runtime
values to have a dump taken. In all cases, specify a SYSMDUMP DD statement in the
application’s JCL, indicating the location of the MVS dump and that it must be unformatted.
Here is an example SYSMDUMP JCL statement:

 //SYSMDUMP DD DSN=datasetname,DISP=SHR

zOS RAS Guidelines for Ported Software - 9 - Sun 31, 1903

 The following are LE dump options that you can specify with the TERMTHDACT keyword:
 UADUMP: Dump taken as a result of an LE 40xx abend, taken after LE’s condition

handling is completed
 UAIMM: Dump of the immediate abend, taken before the conditional handler's processing.

(zOS R7 and later); Note that TRAP(ON,NOSPIE) must be specified as a runtime variable for
this option to work. If UAIMM is specified from the shell environment, be sure to specify the
_BPX_MDUMP environment variable to indicate where the dump should be written.
 UATRACE: Dump, plus a CEEDump containing only the Traceback

 Formatted MVS application dump taken upon the occurrence of an abend. Following the

same logic related to taking MVS unformatted dumps, if you specify a SYSUDUMP DD
statement instead of SYSMDUMP, a formatted MVS dump is taken. This dump may be of
limited use in the LE environment, since it does not contain LE-specific data, and cannot be
reformatted by a tool. Strategically, SYSMDUMP should be taken to ensure that enough data
can be captured upon the first failure.

 Where to find CEEDumps that are taken

 If a CEEDump is taken while the application is started from the UNIX shell, the dump is
usually written to the user’s current directory. When running in a forked process or invoked by
one of the exec functions, the dump is written to a file in your current directory, unless you are
running under the root, in which case the file is written to the /tmp directory. The name of the
HFS dump file is Fname.Date.Time.Pid where Fname is usually “CEEDUMP”. In zOS
R6, when running in the UNIX System Services shell, you can indicate to which directory a
CEEDump should be written by specifying the _CEEDUMP_DIR(directory) environment
variable. Then, when an error occurs, the CEEDump is written to directory specified in the
environment variable, if it is found. Otherwise, it will attempt to write the file to the current
directory (if not the root (/) directory, and if the directory is writeable) or /tmp.

 When not running in the UNIX shell, the dump is written to a sequential data set allocated
during the job. For example, the following CEEDUMP DD statement can be specified in JCL:
 //CEEDUMP DD DSN=my.dataset,DISP=SHR

Note: In general, a “data set” is equivalent to what is known on most operating systems as a
“file”. An HFS file is a UNIX file and is generally contained in an HFS data set. Application
programmers generally do not deal with HFS data sets.

Recovery capability and debug information that can be coded into the program
The following C/C++ serviceability features are provided to the programmer to exploit as part of
the program logic.

zOS RAS Guidelines for Ported Software - 10 - Sun 31, 1903

 Eye catchers for major data areas. All major data areas must include an EBCDIC eye
catcher at the beginning of the mapping. This allows the data area to be visible in a storage
dump, allowing it to be located easier by the experienced debugger.

 Conditional recovery logic, specified in your program. Recovery logic includes program

logic defined in the application program that could clean up and terminate the thread while
allowing the process to continue operating. Recovery logic could release serialization, free
storage structures, or clean up any other resources that could interfere with the operation of
succeeding threads in the process.

 Specifying the program’s release or service level

 You can specify your program’s service level as part of the code source by specifying the
SERVICE option to the C compiler or via a “#pragma options” statement with a string (up to 64
characters) describing the service level of your code. The string is stored into the object module
and is displayed in the traceback of the CEEDump if the application fails. The following is an
example of the #pragma statement:
 #pragma options service(PgmABC 1.0)

 The traceback in the CEEDump only contains the first ten characters of the service level
string, so be sure to place the most significant information at the beginning of the string. See
C/C++ Language Reference for more information on the SERVICE option. The use of this
feature is highly recommended for all applications.

 Requesting a CEEDump

 If you want to generate a dump during your program’s logic, such as in a conditional
recovery routine, you can use one of the following:
 Call the C/C++ cdump, csnap or ctrace routines. Each generates a “generic” CEEDump,

where the most detailed dump is generated using cdump2. csnap generates a “condensed storage
dump” with fewer CEE3DMP options, while ctrace generates a CEEDump containing only a
traceback. Refer to zOS C/C++ Run-time Library Reference for more details about the syntax of
these functions and the content of the resulting dumps.
 Call the CEE3DMP callable service, which allows you greater flexibility in requesting a

CEEDump with specific types of information. Refer to the LE 1.5 Debugging Guide and
Runtime Messages publication for a description and the syntax of the CEE3DMP service.

Runtime debug analysis tools
The following debug and analysis tools are available to the application programmer to use in
debugging problems in the application’s flow.

 mutex trace

 LE provides a trace facility, controlled by specifying the TRACE runtime variable. For
example: TRACE(ON,4K,DUMP,LE=2) . By specifying LE=2, mutex init/destroy and

2Invoking cdump is equivalent to calling CEE3DMP with the option string: TRACEBACK BLOCKS VARIABLES
FILES STORAGE STACKFRAME(ALL) CONDITION ENTRY

zOS RAS Guidelines for Ported Software - 11 - Sun 31, 1903

locks/unlocks from LE member libraries are recorded. When you specify LE=3, both the
entry/exit trace and the mutex trace are activated. In all cases, the trace is captured in a
CEEDump. For more information, refer to the zOS Language Environment Programming
Reference.

 Heap Checker:

 A common problem in C/C++ programming is accidental overlay of the heap, the storage
area provided to you for malloc’d storage. The LE heap checker can be used to isolate the cause
of a heap overlay, or other forms of damage to the heap. zOS R4 provides the heapchk function,
which you can invoke without changes to your program. heapchk is available via APAR back to
zOS R1. By setting run-time variables, you can control the frequency and starting point of the
LE HEAP analysis, which checks the integrity of the heap area whenever storage is obtained.
You can activate heapchk with the following run-time option:

HEAPCHK(ON, frequency, delay)

where:
 ‘frequency’ is the frequency at which heap checks are performed. Specify the

frequency value as n, nK or nM. A value of 1 (the default) causes the heap to be checked at
each call to an LE heap storage management service. A value of n causes the heap to be
checked at every nth call to the service.
 ‘delay’ is the delay before heap checks are performed. It is the number of calls to the

heap management service that are skipped before activating the heap check function. The
delay is specified in terms of n, nK or nM. A value of 0 (zero, the default) causes the heap to
be checked from the first call to the LE management service. A value of n causes the heap to
be checked following the nth call to the service.

The IBM default for this value is HEAPCHK(OFF,1,0).

 Detecting the storing of data into freed storage.
 When using the heapchk function, the use of HEAPCHK(ON,delay,frequency) with
STORAGE(,heap_free_value) results in checking the free areas of the heap. LE sets the storage
area to a repeating value of choice, like hex ‘FF’. If your program stores into a free area, an
error is signaled. The intent is to ensure that the freed storage areas contain the “free value” in
them and to verify that your program frees the correct storage area.

 Identifying runaway malloc’s.

The __heaprpt() function is a C runtime function you can place in your code to show
heap use counts. The counts are reported each time heaprpt is used. Use heaprpt in
areas of your program that you suspect may be causing storage leaks, and look for spikes
in the counts, possibly indicating runaway malloc logic. The function returns the current
heap storage counts which you can print to a side file for subsequent analysis. Additional
information is in the zOS C/C++ Run-time Library Reference. To use this function, the
calling program needs to obtain storage where the heap storage report will be stored.
The address of this storage is passed as an argument to __heaprpt().

zOS RAS Guidelines for Ported Software - 12 - Sun 31, 1903

You can activate the LE trace to only capture records related to malloc and free, to
provide data allowing you to diagnose storage leaks. Specify the following runtime
variable: TRACE(ON,table_size,DUMP,LE=8) where DUMP indicates that the trace
table should be dumped to the CEEDump location when done. Running with this trace
active will have some effect on the performance of your application.

 Obtaining LE formatting and analysis for unformatted dumps
When invoking DB2, TCP/IP or other operating-system specific functions, an
unformatted dump is usually required for diagnosing problems, to allow access to
dumped storage that is not ordinarily formatted in the CEEDump or SYSUDUMP. An
unformatted dump can be obtained using the TERMTHDACT UADUMP or UAIMM
option, or with the use of the MVS DUMP or SLIP operator commands.

IPCS (Interactive Problem Control System) is a dump formatting tool that comes with
zOS. It is used primarily by IBM Service and knowledgeable system programmers, as
well as ISV service providers. When viewing the dump using IPCS, tools are available
for interpretation of the LE data. An IPCS VERBX (or verbexit) formatter, called
LEDATA, was introduced in zOS R4 and continues to be enhanced to provide much of
the information required to debug system functions written in C, C++, COBOL, PL/I or
other use of LE services. The LEDATA report shows data like the runtime options, the
traceback, storage management areas, condition management areas C/C++ information,
as well as a summary of the overall Language Environment at the time of the dump. You
invoke it from the IPCS command line as follows:

VERBEXIT LEDATA ‘parameter,parameter,...’

Particularly useful parameters include:

 SUM - Summary of the LE environment at the time of the dump
 CEEDUMP - A CEEDUMP-like report, including the traceback, the LE trace and thread

synchronization data areas at the enclave, process and thread levels.
 SM - a report of the storage management areas related to HEAP or STACK storage.

Individual reports can be obtained by specifying just HEAP or STACK.
 ALL - all reports, plus a C/C++ report

Note that quotes must be specified around the parameter string, as shown above.

Other LEDATA parameters are available, but are typically used by IBM Service.
LEDATA and the output it generates are described in Chapter 3 of the LE Debug and
Messages book.

 Based on a run-time variable, you can remove LE’s ESPIE from its recovery path. The
ESPIE is an MVS recovery construct that allows fast recovery for program checks in
unauthorized environments. However, in doing so, it prevents the activation of POSIX signal
handling semantics for abends and program checks. An active ESPIE also prevents the MVS
SLIP command from getting control at the time of an abend. Therefore, in some cases the

zOS RAS Guidelines for Ported Software - 13 - Sun 31, 1903

installation or system component will want to specify the TRAP(ON,NOSPIE) runtime variable
to turn off the operation of LE’s ESPIE.

 The resulting recovery in this environment is provided by LE’s MVS ESTAE support. This
may result in additional overhead when handling program checks in business applications, but it
greatly improves the ability to gather diagnostic information in application failure conditions.
This run-time environment is highly recommended for system functions that are too difficult
to debug using standard business application diagnostics. (in zOS R6)

 The _BPX_MDUMP environment variable allows a user to specify where a SYSMDUMP

will be written to (as of zOS R7). Allowable values for _BPX_MDUMP are:
 OFF

Request the dump to be written to the current working directory. This is the default.
 MVS data set name

Request the dump to be written to an MVS data set. The data set name must be a fully qualified
data set name and can be up to 44 characters. The name can be specified in upper and/or lower
case and will be folded to uppercase.
 HFS file name
Request the dump to be written to an HFS file. The file name can be up to 1024 characters. The
HFS file name must begin with a slash. The slash refers to the root directory, and the file will be
created in that directory.

Dump Handling Summary
Prior to zOS R7, you could only generate a system dump (SYSMDUMP) if running the job in a
batch environment, where you could specify a SYSMDUMP DD statement. In zOS R7, a
system dump can be obtained when the application is started from the zOS UNIX shell. The
following steps should be followed to allow this to occur.
1. Specify where the dump should be written. If the dump is to be written to an MVS dataset,
specify the following shell command: export _BPXK_MDUMP=filename where filename is a
fully-qualified dataset name, allocated with the following information: LRECL=4160,
BLKSIZE=4160, and RECFM=FBS. To have the dump written to an HFS file, specify export
_BPXK_MDUMP=filename where filename is a fully-qualified HFS filename (e.g.,
/tmp/mydump.dmp).
2. Specify LE runtime variable TERMTHDACT(UADUMP) or TERMTHDACT(UAIMM). If
UAIMM is specified, be sure to also specify TRAP(ON,NOSPIE). With UADUMP, if you want
the CEEDump to be written to a specific directory, specify the following environment variable:
_CEEDUMP_DIR(directory) .
3. Run the program. A program check occurs. SYSMDUMP is written to the specified file.
4. If the dump is written to an HFS file, use the “OGET” TSO command to copy the dump from
the HFS to a pre-allocated MVS dataset. For example:
 OGET /user1/mvsdump.dmp ‘USER1.MVSDUMP.MYPROGRAM’
Specifying an MVS dataset with _BPXK_MDUMP avoids the need for this copy step.
5. Use IPCS, specifying the dataset name. Specify: VERBX LEDATA ‘CEEDUMP’
 If the process is not recognized as the primary address space & task, you will have to specify
the TCB: VERBX LEDATA ‘CEEDUMP,ASID(asid),TCB(tcbaddr)’

zOS RAS Guidelines for Ported Software - 14 - Sun 31, 1903

zOS RAS Guidelines for Ported Software - 15 - Sun 31, 1903

4. zOS-Specific Implementation Suggestions

Until now, with the exception of Section 3, very little zOS-specific implementation suggestions
are included. Section 2 provided an initial description of guidelines that could be followed when
developing the product on non-zOS platforms, but should be included at least when porting the
programs to zOS. This section includes several implementation suggestions organized in the
same order as listed in Section 2. All suggestions described in this section are further
documented in LE, C/C++ and zOS publications.

1. Minimize the impact of a failure, and improve the availability characteristic of the
application.
 Eliminate single points of failure where possible. If your application provides critical
support in a thread, and that thread fails, allow for the ability to queue up requests, clean up any
prior resources and restart the function. Such recovery is usually easy to do if designed in, and
prevents your users from thinking that your process is “down”.
 Verify the recovery logic, and provide recovery logic where missing.
 In your signal handler, determine which signals should result in termination of the process

(the default) or just termination of the thread. If terminating the thread, communicate with
another thread of your application to restart another thread to take over the failing function. See
Appendix 1 for an example of signals that can be restarted.
 If your application is driven as a started task, you can use the zOS Automatic Restart

Manager (ARM) to restart the application upon a failure. ARM macros can be used to “register”
the application (the address space), indicate that it is “ready” to accept work, and “deregister”
when the application is done and you don’t want it restarted. More information on ARM can be
found in MVS Programming: Sysplex Services Reference (GC26-1772).

2. Ensure that clear messages are issued about major events and errors that occur.
 Set unique message ID’s, reason codes and texts in all messages, abends and return codes
 Where possible, surface the “errno2” value when identifying an error by its “errno” value.

This MVS-specific value allows problem areas to be identified more specifically than the generic
“errno” value.
 Ensure that all messages follow the guidelines listed in Appendix 2, including having unique

message ids.
 Record all errors to a log. This may be a private error log, the USS syslog daemon, or one of

the MVS system logs (e.g., hardcopy-only WTO, Logrec). If a private error log is maintained,
ensure that it contains a valid time stamp, and program and thread information, for each entry to
aid in correlation. This requires that the program contain “catch” logic to intercept the error, in
order to surface it.
 If errors are reported in a private error log, determine which of them would be important to

automate, and issue a system message for them as well.
 If your program provides a function for a caller, notify the caller of your API via a unique

return code and reason code. In some architectures, the error may be represented as a thrown
exception.

zOS RAS Guidelines for Ported Software - 16 - Sun 31, 1903

 Don’t use WTOR (MVS operator message with ability to reply with a response) unless you
really need to. If you do, ensure the operator action is intuitive, especially where the results of
the reply are consequential.

3. Identify and document the appropriate ways to obtain and analyze a dump
 Enable the capture of the right type of dump upon failure of the program. This will allow

problem diagnosis to be performed for production-time problems, usually without having to
recreate the problem. Options include
 LE CEEDump (a formatted dump that you can view with a browser), containing the

traceback and additional information, depending on the runtime variable set (TERMTHDACT =
TRACE/DUMP/UADUMP/UAIMM). If a CEEDump is desired, specifying "DUMP" is
recommended.
 LE-driven MVS abend dump (SYSMDUMP) - an unformatted dump of the abending task or

address space, in accordance with what the application is authorized to "touch". This can be
obtained with TERMTHDACT = UADUMP or UAIMM. Note that UADUMP results in both a
CEEDump and a SYSMDUMP being taken.
 Write signal handler logic to request the CEEDump, and an MVS unformatted dump (via

IEATDUMP), in the event of an abend-related signal. Recovery logic should be considered at
this point as well. (IEATDUMP is currently only available in assembler or PLX.)
 Attempt to debug problems using CEEDumps. They may be sufficient if the application is a

single process and does not extensively use system services. However, if system functions are
used, an unformatted dump will be required.
 If multiple address spaces are expected to be involved in a failure, you will need to

investigate the use of an authorized unformatted dump containing multiple address spaces (call
an SVC Dump, obtain through the use of the SDUMPX macro). If an unformatted dump is taken,
IPCS will need to be used to examine its contents.

4. Provide clear product documentation
 Provide diagnostic information in external publications or via web pages. Clearly define

information such as:
 Diagnostic procedures for common problems
 Tracing available and how to interpret its content
 Return/reason codes, abend codes, error messages
 Major control block structures, and how they are used by the different threads of your

application.
 If the application is a multi-process environment, show how the resulting MVS address

spaces relate to each other, and the specific data structures that represent the state of each
 Things to look for in a dump
 System services used, and refer to IPCS VERBX formatters and analysis routines that report

on those system services.

5. Capture the flow of control for an application.

zOS RAS Guidelines for Ported Software - 17 - Sun 31, 1903

 Provide the ability to dynamically turn on the collection of trace records representing major
events within the application, writing the trace records to an in-storage wrapping list, with the
ability to write records to an external file.
 Any trace implementation needs the ability to be activated dynamically, and allow request

filtering by component, at a minimum. In many cases, even component-level filtering can result
in too many records and wrapped buffers, so additional filtering by level of detail, or work
request (e.g., transaction) being processed is highly recommended.
 In MVS, this can translate to using the MVS Component Trace (CTRACE) structure, which

requires the definition of a data gathering and buffering scheme specific to your application.
(Reuse code is available for internal IBM use.) An alternative is to use GTF, which provides the
GTRACE macro for specifying a trace record. However, when GTF is turned on, it might
impact system performance independent of your specific application tracing need. Therefore,
CTRACE is the preferred method.
 If errors are recorded to "std error", provide defaults that target the message stream to a data

set. Do not default to using JES spool, as this will impact overall system availability.
 Your code should exploit the trace to surface exception conditions (which should be logged

to an external file as well), basic significant events, and detail (e.g., entry/exit), provided you can
filter the selection of each. Exceptions should always be traced/logged by default.

6. Provide the ability to quickly highlight and display key information in an application or
system dump.
 Provide IPCS models for formatting major data areas in a dump. IPCS formatters are also

needed for trace records. Provide IPCS analysis routines (VERBX programs) to drive analysis
of the dump from your application's point of view. Examples include: determine and report on
outstanding requests, serialization held or other logic that would be important to quickly
diagnose what may be wrong with your program. Locate and format key control blocks or data
areas.
 Identify major areas in an unformatted dump: Create MVS "name/token" pairs to represent

the names of major data areas and their corresponding addresses. This way system services can
be used to locate your blocks in a dump. The "name/token" table is always dumped in an
unformatted dump. The name can be used with the IPCS NAMETOKN subcommand to obtain
the corresponding token, and use the token as an address reference into the dump. This
eliminates the need to build private tables containing similar data to use in your IPCS VERBX
routines. It is recommended that you create name/token pairs for malloc'd storage that will be
referenced in an unformatted dump.

Use the IEANTCR callable service to create a name/token pair. The caller passes both a unique
name and the token to be associated with it. For example, a program could pass the name of a
task/process level control block as the name, and its address as the token. Use the IEANTRT
service to retrieve the token for a given name. This could be a “well known” control block name
whose address could be retrieved via the IPCS NAMETOKN subcommand.

 When using the heapchk function, the use of HEAPCHK(ON,delay,frequency) with

STORAGE(,heap_free_value) results in checking the free areas of the heap. When the

zOS RAS Guidelines for Ported Software - 18 - Sun 31, 1903

runtime heap checker finds a heap error, it causes a U4042 abend, which should drive an
unformatted dump (see the later sections on gathering and formatting unformatted dumps).
When viewing the dump using IPCS, you can specify “LEDATA HEAP,ALL” and the resulting
dump analysis will locate errors in each heap segment and report them. The heap dump analyzer
checks for nodes with bad lengths, node addresses not on doubleword boundary, heap pointers
pointing outside the heap segment, and other indicators of problems. If a problem is located, a
message is displayed telling the nature of the problem.

7. Other programming practices required for serviceability
 Define a viewable acronym (EBCDIC or ASCII) and version number at the beginning of

each major data area (C mapping, etc.).
 Ensure that any requests made to the application are correct, and returned with a specific

error indicator if they are not.

zOS RAS Guidelines for Ported Software - 19 - Sun 31, 1903

For additional information, please refer to zOS System Application RAS Checklist, available
from Bob Abrams. In addition, the following references may be useful.

 zOS C/C++ Run-time Library Reference, SC28-1633
 zOS MVS Programming: Assembler Services Guide, GC28-1762.
 zOS MVS Programming: Assembler Services Reference, GC28-1910.
 zOS Authorized MVS Programming: Assembler Services Guide, GC28-1763.
 zOS Interactive Problem Control System User’s Guide, GC28-1756.
 zOS Interactive Problem Control System Commands, GC28-1754.
 zOS Diagnosis: Tools and Service Aids, LY28-1085.
 zOS MVS Programming: Sysplex Services Reference, GC26-1772.
 Language Environment for zOS and VM Debugging Guide and Runtime Messages, SC28-

1942.
 Language Environment for zOS and VM Programming Reference, SC28-1940.
 Language Environment for zOS and VM Programming Guide, SC28-1939.
 zOS UNIX System Services Command Reference, SC28-1892.
 IBM C/C++ for MVS/ESA Library Reference, SC23-3881.
 IBM C/C++ for MVS/ESA Programming Guide, SC09-2164.
 "MVS Dump Suppression: DAE provides Benefits", by R.M. Abrams and D. Williamson,

Enterprise Systems Journal, September 1994.

zOS RAS Guidelines for Ported Software - 20 - Sun 31, 1903

Appendix 1. Example of Determining the Recovery from Certain Signals

In Section 4 of this document, it is suggested that your application recover from certain types of
signals issued by the UNIX System Services support. The following table shows an example
(taken from Component Broker/390) of which signals it makes sense to retry in your application,
as opposed to taking the default action - failing the process. The base information in this table is
taken from C/C++ Library Reference SC28-1663, Table 32. The table contains all of the signals
delivered by UNIX System Services.

zOS RAS Guidelines for Ported Software - 21 - Sun 31, 1903

Signal Value Default
Action(*)

Meaning Suggested Recovery
Action in Signal

Handler
SIGABND 1 Abend Attempt retry /

terminate thread
SIGABRT 1 Abnormal

termination, sent by
abort()

Attempt retry /
terminate thread

SIGALRM 1 Timeout signal, sent
by alarm()

None (don’t catch)

SIGBUS 1 Bus error Attempt retry /
terminate thread

SIGFPE 1 Arithmetic
exceptions that are
not masked, like
overflow, division by
zero and incorrect
operation

Attempt retry /
terminate thread

SIGHUP 1 Controlling terminal
is suspended, or the
controlling process
ended

Terminate process

SIGILL 1 Detection of an
incorrect function
image

Attempt retry /
terminate thread

SIGINT 1 Interactive attention Terminate process
SIGKILL 1 A termination signal

that cannot be caught
None (don’t catch)

SIGPIPE 1 Write to a pipe that is
not being read

Terminate thread

SIGPOLL 1 Pollable event
occurred

None (don’t catch)

SIGPROF 1 Profiling timer
expired

None (don’t catch)

SIGQUIT 1 A quit signal for a
terminal

Terminate process

SIGSEGV 1 Incorrect access to
memory

Terminate thread

SIGSYS 1 Bad system call
issued

Attempt retry /
terminate thread

SIGTERM 1 Termination request
sent to the program

Terminate process

SIGTRAP 1 Internal for use by
dbx or ptrace.

None (don’t catch)

SIGURG 2 High bandwidth data
is available at a

None (don’t catch)

zOS RAS Guidelines for Ported Software - 22 - Sun 31, 1903

socket
SIGUSR1 1 Intended for use by

user applications'
None (don’t catch)

SIGUSR2 1 Intended for use by
user applications

None (don’t catch)

SIGVTALRM 1 Virtual timer has
expired

None (don’t catch)

SIGXCPU 1 CPU time limit
exceeded

Terminate process

SIGXFSZ 1 File size limit
exceeded

Attempt retry /
terminate thread

SIGCHLD 2 An ended or stopped
child

None (don’t catch)

SIGDCE 2 Signal is used by
DCE

None (don’t catch)

SIGIO 2 Completion of input
or output

None (don’t catch)

SIGIOERR 2 A serious I/O error
was detected

None (don’t catch)

SIGWINCH 2 Window size has
changed

None (don’t catch)

SIGSTOP 3 A stop signal that
cannot be caught or
ignored

None (don’t catch) -
cannot catch STOP

SIGTSTP 3 A stop signal for a
terminal

Terminate process

SIGTTIN 3 A background
process attempted to
read from a
controlling terminal

Terminate process

SIGTTOU 3 A background
process attempted to
write to a controlling
terminal

Terminate process

SIGCONT 4 If stopped, continue None (don’t catch)

(*) The Default Actions in the above table are:
1. Normal termination of the process.
2. Ignore the signal.
3. Stop the process.
4. Continue the process if it is currently stopped. Otherwise, ignore the signal.

zOS RAS Guidelines for Ported Software - 23 - Sun 31, 1903

Appendix 2. System and Application Message Guidelines

External Guidelines
 Systems should be managed, not run.
 The system should be managed by exception.
 Don't display a message unless you are requesting the operator to do something or you're

answering a specific query.
 Allow the operator to request only the information he or she is interested in.
 Don't answer a query with more information than the operator asked for.
 Responses to operator queries should only go back to the operator that requested the

information.
 Don't ask the operator to do something unless it is important.
 Don't ask the operator to do something unless it truly requires a human to do it (mount a tape,

load paper, etc.).
 Don't ask the operator to do something that he or she does not have the expertise to do.
 Only put out choices which the operator can be reasonably expected to understand.
 If you have to interact with the operator, do it in as few interactions as possible. Don't be

overly verbose. At the same time, do not use obscure jargon.
 If an operator decision is required, list the options in increasing order of severity.
 If a message must be issued, don't assume that it will be read by a human -- it may be read by

various forms of automation.
 Direct the message to the appropriate decision maker, not to the world. Route messages

functionally.
 Don't violate the Principle of Least Astonishment: "It didn't work the way I expected it to."
 Consider what the operator has to do to handle your message:
 Retention/erasure of action messages
 Retrieval of action messages
 Valid message IDs are typically 7-10 characters long, following a naming convention that

identifies the component, subcomponent, and a message number within the subcomponent.
Having unique message IDs aids in automation, helps enable automated publication lookup tools,
and facilitates easier manual lookup in a book.

zOS-Specific Guidelines

 Be sure to flag operator responses as operator responses.
 Keep unnecessary messages off of the Master Console.
 Be sure to delete (DOM) action messages when the action has been taken or the situation

requiring the message no longer exists. This allows any recording related to the message to be
cleaned up and allows the message to roll off the MVS console if it is held.
 Multiple line messages should be issued as a single multi-line message.
 Don't use WTORs as a way to do command entry; use the MODIFY/CANCEL/STOP

command facilities.
 Don't use Write To Log (WTL); use WTO with "Hardcopy Only" specified.

zOS RAS Guidelines for Ported Software - 24 - Sun 31, 1903

 Be sure to document which messages are:
 new
 changed (and how)
 deleted
 command response: MCSFLAG=RESP, Descriptor code 5
 If you have single-line message with inserts, use the TEXT= parameter on the WTO macro to

pass the address of the text line. Similar capability exists for multi-line WTOs.
 use 4-byte console id on command responses
 propagate CART (Command And Response Token) on all command responses. It is used by

automation programs for correlation of command and response(s). Depending on the type of
program, the CART can be found in one of the following locations:
 CSCB: CHCART (operator commands)
 XSA: XACART (internal representation of operator commands)
 SSCM: SSCMCART (on the command subsystem interface)
 WQE: WQECART (for system messages)

Some WTO definitions:
 The Write To Operator (WTO) macro is used to specify system messages that are to appear

on the MVS operator console and in the MVS system log. Messages issued via WTO are also
made available to system automation products. WTO can be used by unauthorized programs,
and certain features are limited for use by authorized programs. WTO is described in zOS MVS
Programming: Assembler Services Reference.
 operator: a person whose job is to keep the system operational, which includes responding to

key requests, managing jobs, controlling output, etc.
 Routing code: a number that identifies the operational area related to the message, used by

the system to route the message to one or more consoles requesting to display messages with that
routing code. Routing codes are used by some installations who like to segregate the message
traffic across multiple consoles.
 Descriptor code: a number that instructs the system on how to treat the appearance of a

message, and whether it describes an operator action or command response.
 Command response: message that describes the final status of a command request. Some

message responses are in the form of a multiple-line display of data, called a display response.
 Master console: primary console used by the installation for displaying messages.
 Hardcopy-only: when you specify this for a message, that message is not displayed on any

console, and it is written directly to the system log.
 Rough WTO syntax:
WTO ‘... text ...’,ROUTCDE=(16,28),DESC=(4),CONS=(26),
CART=cart,MCSFLAG=(flagsettings)
 WTO also accepts the address of a text line, making it easier to build a message with inserts

and specify it to the macro: WTO TEXT=addr,
 See the Assembler Macro Reference book for more details on WTO syntax.

zOS RAS Guidelines for Ported Software - 25 - Sun 31, 1903

Appendix 3 - Introduction to reading a CEEDump

The CEEDump is an application debug dump that is formatted by the zOS Language
Environment when the runtime option TERMTHDACT is set to the appropriate value. Chapter
3 of the LE Debugging Guide and Runtime Messages book defines each specific section of a full
CEEDUMP in detail. The following are the major segments of the dump:

 Page Heading
 Caller Program and Offset
 Registers on entry to CEE3DMP
 Enclave identifier
 Thread information
 Traceback
 Condition Information for Active Routines
 Arguments, Registers, and Variables for Active Routines
 Control blocks for active Routines
 Storage for active routines
 Control Blocks associated with the Thread
 Enclave Control Blocks
 Enclave Storage
 Process Control Blocks

The following are some hints to help you when examining a CEEDump:

 Many times, when you are looking at a traceback, you would like to verify the data passed

from call to call. You can do this by looking at the Dynamic Storage Area (DSA), also known as
the stack frame, associated with each call. The traceback indicates the address of the DSA
associated with each calling routine. The DSAs are listed below the traceback table. If you look
at Register 1 in a stack frame, the value in that register represents the address of the parameter
list when 'that routine' called 'the next routine' (forward in time ... going up the traceback list).
That address will be within the 'caller's' stack frame itself. You can go and look at the parameter
list to see the data passed to the called routine. This is very useful for verifying:
 How many parameters were actually passed? Are they all there?
 Is the parameter in the correct format ... is it the data or the address of the data?

Many times this helps narrow down where a problem is occurring.

 When looking at registers in a DSA (stack frame), note that these registers are reflective of

the environment at the time of the call from 'that' routine' to the next. When a call is made, the
registers will represent the following:

 R0 is used by COBOL static call
 R1 is a pointer to a parameter list or 0 if no parameter list is passed
 R2-R11 is unreferenced by LE (Caller's values are passed transparently)
 R12 is a pointer to the Common Anchor Area (CAA) if entry is to an external routine

zOS RAS Guidelines for Ported Software - 26 - Sun 31, 1903

 R13 is a pointer to the caller's stack frame
 R14 is a return address
 R15 is the address of the called entry point

 For Heap corruption problems, you can usually determine where the corruption is by using

the LE Storage Management Internals document and check the HPCB, HANC, and the Cartesian
Trees in the dump. Refer to DCE Debugging Seminar 2 for more details on how to do this.
Usually some of the registers at the time of the dump point to the LE Enclave Storage
Management Control Structure. At a minimum, Reg 12 will point to the CAA. Depending upon
when LE found a problem in the heap, other registers may point to the HPCB or the particular
HANC (heap segment) that is corrupted.

 If you want an SVC dump instead of a CEEDUMP from a probe situation (since a DCE

probe invokes CEE3DMP), you can simply set a slip where the probe is issued. This would, of
course, be second failure data capture. But you may be in a situation where you NEED an SVC
dump for a probe instead of the CEEDUMP. The address that you would need to set the slip on
(instruction fetch) can be easily determined from the data in the traceback. Take the following
example:

 Traceback:
 DSA Addr Program Unit PU Addr PU Offset Entry E Addr
 04655100 /ibmdce/mvs/full/dw4.xx7/dce/src/svc/MVS/svcprobe.c
 0228B9B8 +000009EE dce_svc_probe
 0228B9B8
 046543D8 /ibmdce/mvs/full/dw4.xx7/dce/src/rpc/runtime/rpcaclmg.c
 0266CF80 +000009CC rpc_acl_build_default_entry
 0266CF80 ...
 ...etc...

 In the above traceback, you can see that it is the rpc_acl_build_default_entry routine which
calls the probe. In particular, the call to the probe occurred at X'0266CF80" + X'9CC' =
X'0266D94C'. You can verify this address by looking at the DSA for the
rpc_acl_build_default_entry routine. The value in R14 should be the next instruction after the
call to probe (BALR) ... and, in this, case R14 is X'0266D94E' ... which is the return register.

 Refer to the slip command for more information on setting a slip for an instruction fetch. Be
careful that, when using the address from the CEEDUMP, you should know that that instruction
will occur at the same address. Otherwise, the slip won't hit (or will hit for some other
instruction.) If the probe is issued from a DLL routine, and the DLL is running in LPA, then the
instruction will be the same. If the probe is issued from a fetched module (say from the link list),
the module may not load/run from the same place. In that case you could set the slip, but use
module name and displacement to tell MVS when to take the dump.

zOS RAS Guidelines for Ported Software - 27 - Sun 31, 1903

Appendix 4: IPCS Tutorial
(Based on “Using IPCS”, found at http://dcemvsw3.endicott.ibm.com/).

Need brief intro to IPCS

Getting Started

On our local test images, you can get to the IPCS tool by choosing option 9 'IBM Products', and
then option 5 'IPCS'. You will now be on the IPCS main menu panel which looks like this:

------------------------ IPCS PRIMARY OPTION MENU -----------------------
OPTION ===>

 0 DEFAULTS - Specify default dump and options * USERID - G885144
 1 BROWSE - Browse dump data set * DATE - 96/02/14
 2 ANALYSIS - Analyze dump contents * JULIAN - 96.045
 3 UTILITY - Perform utility functions * TIME - 15:41
 4 INVENTORY - Inventory of problem data * PREFIX - G885144
 5 SUBMIT - Submit problem analysis job to batch * TERMINAL- 3278
 6 COMMAND - Enter subcommand, CLIST or REXX exec * PF KEYS - 12
 T TUTORIAL - Learn how to use the IPCS dialog *******************
 X EXIT - Terminate using log and list defaults

Enter END command to terminate IPCS dialog

 F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
 F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

To look at your dump for the first time you will need to enter option '0' defaults. On the line that
states:

Source ==> NODSNAME

Change 'NODSNAME' to 'DSNAME('SYS1.DUMP01') and hit enter. Enter whatever dataset
name your dump is in - in this example it is in SYS1.DUMP01. You can now exit 'defaults'.

Choose option '1' to 'Browse'. You will now see a panel with your DSNAME already provided
(came from the defaults you set). Hit enter. Note that you do not necessarily need to provide the
dump dataset name on the defaults panel first...you can simply provide it right on the 'browse'
panel as well. If you do have a default name that appears on the browse panel, you can always
override it with a new name of a dump dataset to browse.

You will now get some messages while IPCS is retrieving the dump data. If you get message
'BLS18160D May summary dump data be used by dump access? Enter Y to use, N to
bypass'...choose Y. This simply makes the summary portion of the dump available to browse as
well.

zOS RAS Guidelines for Ported Software - 28 - Sun 31, 1903

You should then get to a panel that looks something like this:

DSNAME('SYS1.DUMP01') POINTERS ---
-
PTR Address Address space Data type
00001 00000000 ASID(X'0041') AREA
**************************** END OF POINTER STACK

Simply put your curser on the 00001 value under PTR and enter an 's' to select viewing address
space X'0041'. Note that if your dump contained more than one address space, that they would be
enumerated on this panel, and you could 's' select any one of them to browse.

After entering 's' on the dump pointers panel on the ASID you wish to review, you will now be
browsing the beginning of the dump...starting with virtual address '0' of the address space. At this
point you can start to use the various IPCS commands and subcommands to browse different
locations in storage, information in the summary dump, locate strings, etc. PLEASE refer to the
IPCS pubs for a complete list and description of IPCS subcommands.

Common IPCS commands and subcommands

Here are some commonly used IPCS commands when dump browsing:

 IPcs: Invoke an IPCS subcommand, for example 'IP status faildata' invokes the status

subcommand
 Locate: View a particular storage location while in the BROWSE storage panel.
 Find: Search dump for a specified value
 CBFormat: Format a control block
 UP RIGHT LEFT DOWN: Scroll data options

Here are some commonly used IPCS subcommands when dump browsing:

 CBFormat: Format a control block
 CTRACE: Format component trace entries (for example OE CTRACE)
 Find: Locate data in a dump
 FINDMOD: Locate a module in the dump (searches the Symbol table, active link pack area

queue, and link pack area directory)
 GTFtrace: Format GTF Trace records (if provided in the dump)
 List: Display storage
 LPAMAP: List LPA Entry Points
 RUNChain: Process a chain of control blocks
 STatus: Describe system status...psw, regs, etc.
 SUMMary: Produces a variety of reports depending upon specified keyword. For example

IP SUMMARY TCBSUMMARY displays and formats a variety of fields in a TCB control
block, for those TCBs in the currently browsed ASID.

zOS RAS Guidelines for Ported Software - 29 - Sun 31, 1903

 TSO: execute a TSO command

zOS RAS Guidelines for Ported Software - 30 - Sun 31, 1903

 VERBEXIT: Run an IBM or Installation provided Verb Exit Routine

 The VERBEXIT subcommand must be entered along with a pgmname or verbname, which
represent an exit routine. IBM supplies verbexit routines, and the user may write their own as
well. Some commonly used verbexit routines are:
 LOGDATA: Format Logrec Buffers
 SUMDUMP: Display Summary Dump Data with the SVC dump
 VSMDATA: Format Virtual Storage Management data

Formatters of interest

Here are some useful tools for format data:

 OMVSDATA: From browse you can invoke:

 ip omvsdata detail process

 The omvsdata subcommand can format all processes and threads that the OEKERN address
space is managing. This is particularly useful when shooting loops and hangs. You can delimit
which the process/thread information to a particular set of address spaces with the ASIDLIST
parameter. Process/thread summary is just one of four types of data that the OEKERN can report
on. The four types are:
 Process
 Exception
 Communications
 Storage

 Refer to the IPCS Commands Reference for more details on the omvsdata ipcs subcommand.

 VERBX LEDATA:
 HEAP option: Provides a mapping of LE heap storage...for example:

 ip verbx ledata 'heap,detail,tcb(tcbaddr)'

 Maps all heaps associated with a particular enclave.
 Note that you can use various options, such 'caa' and 'asid'.
 Since heaps are associated with an enclave, if you use the tcb option, you must choose the tcb

that represents the IPT thread (initial process thread) for your enclave.
 Specifically maps the free chain, maps all malloc'd and free'd area, and totals free and

malloced pieces.
 This support is available in LE 1.8.

zOS RAS Guidelines for Ported Software - 31 - Sun 31, 1903

 Hint: If you dumped more that one asid, you must supply the asid as well as the tcbaddr.
 CEEDUMP option: Provides the 'traceback' and 'LE trace' data

 ip verbx ledata 'ceedump'

IPCS Publications

Please refer to the MVS IPCS publications for a complete description of the IPCS tool, and it's
customization and usage:

 MVS IPCS Commands
 MVS IPCS Customization
 MVS IPCS User's Guide
 MVS IPCS Command/s Summary

zOS RAS Guidelines for Ported Software - 32 - Sun 31, 1903

Acknowledgements

I thank the following people who helped me ensure the clarity and accuracy of this paper:
Don Ewing, Wayne Rhoten, Roger McKnight, Bart Tague, Kevin Kelley, John Thompson, Carol
Rozella, Tim Hahn.

zOS RAS Guidelines for Ported Software - 33 - Sun 31, 1903

Working area

1. IPCS ANALYZE routine for latches, mutexes and control variables as an aid in the
determination of system and/or address space hang situations. When an address spaces appears
hung, the threads within the address space need to be examined to determine if a deadlock exists.
When trying to detemrine whether, for example, there is a deadlock with pthread_mutex’s, it is a
very time consuming process, requiring expertise in LE internal control blocks. LE’s
ANALYZE exit allows easier detection and debug for problems caused by mutexes.

Need output sample
2. LEDATA is enhanced to obtain a traceback for all threads within a process. The current
LEDATA IPCS verb exit only formats the traceback for the failing or specified thread. This
becomes cumbersome when debugging multithreaded process dumps. Debuggers need the
ability to display the tracebacks of all threads within a process. This will be handled via the new
NTHREADS (value) option on VERBX LEDATA. Show syntax
3. Runtime options are added to the CEEDUMP with the new GENOPTS parameter on
CEE3DMP. The new parameter is specified automatically with any CEEDump initiated via the
TERMTHDACT runtime parameter.
4.
5.

