

OS/390 IBM

OS/390 C/C++ Run-Time Library Refere
nce
IEEE Floating-Point Supplement

OS/390 IBM

OS/390 C/C++ Run-Time Library Refere
nce
IEEE Floating-Point Supplement

ii OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 Contents

C/C++ Run-Time Library Reference . 1
New C/C++ Run-Time Library Functions (IEEE Floating-Point) 1

copysign() — Copy Sign . 2
finite() — Determine the Infinity Classification of a Floating-Point Number . . 3
fp_clr_flag() — Reset Floating-Point Exception Status Flag 4
fp_raise_xcp() — Raise a Floating-Point Exception 5
fp_read_flag() — Returns the Current Floating-Point Exception Status 7
fp_read_rnd() — Determine the Current Rounding Mode 9
fp_swap_rnd() — Swap the IEEE Floating-Point Rounding Mode 10
__isBFP() — Determine Floating-Point Format 11

Changed C/C++ Run-Time Library Functions (IEEE Floating-Point) 12
atof() — Convert Character String to Double 13
difftime() — Compute Time Difference . 14
drand48() — Pseudo-random Number Generator 16
ecvt() — Convert Double to String . 18
erand48() — Pseudo-random Number Generator 20
fcvt() — Convert Double to String . 22
fprintf() - printf() - sprintf() — Format and Write Data 23
fscanf() – scanf() – sscanf() — Read and Format Data 32
gcvt() — Convert Double to String . 42
strfmon() — Convert Monetary Value to String 43
strtod() — Convert Character String to Double 46
wcstod() — Convert Wide-Character String to a Double Floating-Point . . . 48

 Copyright IBM Corp. 1998 iii

iv OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 IEEE Floating Point

C/C++ Run-Time Library Reference

New C/C++ Run-Time Library Functions (IEEE Floating-Point)
This section contains the new IEEE floating-point functions that will go in the
C/C++ Run-Time Library Reference.

 Copyright IBM Corp. 1998 1

 copysign

copysign() — Copy Sign

 Standards
Standards/Extensions C or C++ Dependencies;

 both OS/390 V2R6

 Format
#include <math.h>
#include <float.h>

double copysign (x, y)
double x, y;

 General Description
The copysign() function returns the x parameter with the same sign as the y param-
eter.

Parameters Description

x Specifies a long double floating-point value

y Specifies a long double floating-point value

 Returned Value
Long double floating-point value.

 Related Information
 � nextafter()
 � scalb()
 � logb()
 � ilogb()

2 OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 finite

finite() — Determine the Infinity Classification of a Floating-Point
Number

 Standards
Standards/Extensions C or C++ Dependencies;

 both OS/390 V2R6

 Format
#include <math.h>

int finite(x)
double x;

 General Description
The finite() function determines the infinity classification of floating-point number x.

 Returned Value
The finite() function returns a nonzero value if the x parameter is a finite number,i.e.
if x is not +−, INF, NaNQ, or NaNS.

The finite() function does not return errors or set bits in the floating-point exception
status, even if a parameter is a NaNS.

 Related Information
� IEEE Standard for Binary Floating-Point Arithmatic (ANSI/IEEE Standards

754-1985 and 854-1987).

 C/C++ Run-Time Library Reference 3

 fp_clr_flag

fp_clr_flag() — Reset Floating-Point Exception Status Flag

 Standards
Standards/Extensions C or C++ Dependencies;

 both OS/390 V2R6

 Format
#include <float.h>
#include <fpxcp.h>

void fp_clr_flag(mask)
fp_flag_t mask;

 General Description
The fp_clr_flag() function resets the exception status flags defined by the mask
parameter to 0 (false). The remaining flags in the exception status remain
unchanged.

The fpxcp.h file defines the following names for the flags indicating floating-point
exception status:

FP_INVALID Invalid operation summary

FP_OVERFLOW Overflow

FP_UNDERFLOW Underflow

FP_DIV_BY_ZERO
Division by 0

FP_INEXACT Inexact result

Users can reset multiple exception flags using the fp_clr_flag() function by ORing
the names of individual flags. For example, the following resets both the overflow
and inexact flags.

fp_clr_flag(FP_OVERFLOW FP_INEXACT)

 Returned Value
None

 Related Information
 � fp_raise_xcp()
 � fp_read_flag()

4 OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 fp_raise_xcp

fp_raise_xcp() — Raise a Floating-Point Exception

 Standards
Standards/Extensions C or C++ Dependencies;

 both OS/390 V2R6

 Format
#include <fpxcp.h>

int fp_raise_xcp(mask)
fpflag_t mask;

 General Description
The fp_raise_xcp() function causes floating-point exceptions defined by the mask
parameter to be raised immediately.

If the exceptions defined by the mask parameter are enabled and the program is
running in serial mode, the signal for floating-point exceptions, SIGFPE, is raised.

The fpxcp.h file defines the following names for the flags indicating floating-point
exception status:

FP_INVALID Invalid operation summary

FP_OVERFLOW Overflow

FP_UNDERFLOW Underflow

FP_DIV_BY_ZERO
Division by 0

FP_INEXACT Inexact result

Users can cause multiple exceptions using fp_raise_xcp() by ORing the names of
individual flags. For example, the following causes both overflow and division by 0
exceptions to occur.

fp_raise_xcp(FP_OVERFLOW FP_DIV_BY_ZERO)

If more than one exception is included in the mask variable, the exceptions are
raised in the following order:

 1. Invalid operation

2. Division by zero

 3. Underflow

 4. Overflow

 5. Inexact result

Thus, if the user exception handler does not disable further exceptions, one call to
the fp_raise_xcp() function can cause the exception handler to be entered many
times.

 C/C++ Run-Time Library Reference 5

 fp_raise_xcp

 Returned Value
The fp_raise_xcp() function returns 0 for normal completion and returns a nonzero
value if an error occurs.

 Related Information
 � fp_clr_flag()
 � fp_read_flag()

6 OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 fp_read_flag

fp_read_flag() — Returns the Current Floating-Point Exception Status

 Standards
Standards/Extensions C or C++ Dependencies;

 both OS/390 V2R6

 Format
#include <float.h>
#include <fpxcp.h>

fp_flag_t fp_read_flag()

 General Description
The fp_read_flag() function returns the current floating-point exception status.

These functions aid in determining both when an exception has occurred and the
exception type. These functions can be called explicitly around blocks of code that
may cause a floating-point exception.

According to the IEEE Standard for Binary Floating-Point Arithmetic, the following
types of floating-point operations must be signaled when detected in a floating-point
operation:

 � Invalid operation
� Division by zero

 � Overflow
 � Underflow
 � Inexact

An invalid operation occurs when the result cannot be represented (for example, a
sqrt operation on a number less than 0).

The IEEE Standard for Binary Floating-Point Arithmetic states: “For each type of
exception, the implementation shall provide a status flag that shall be set on any
occurrence of the corresponding exception when no corresponding trap occurs. It
shall be reset only at the user's request. The user shall be able to test and to alter
the status flags individually, and should further be able to save and restore all five
at one time.”

Floating-point operations can set flags in the floating-point exception status but
cannot clear them. Users can clear a flag in the floating-point exception status
using an explicit software action such as the fp_clr_flag (0) subroutine.

The fpxcp.h file defines the following names for the flags indicating floating-point
exception status:

FP_INVALID Invalid operation summary

FP_OVERFLOW Overflow

FP_UNDERFLOW Underflow

FP_DIV_BY_ZERO
Division by 0

FP_INEXACT Inexact result

 C/C++ Run-Time Library Reference 7

 fp_read_flag

 Returned Value
The fp_read_flag() function returns the current floating-point exception status. The
flags in the returned exception status can be tested using the flag definitions above.
You can test individual flags or sets of flags.

 Related Information
 � fp_clr_flag()
 � fp_raise_xcp()

8 OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 fp_read_rnd

fp_read_rnd() — Determine the Current Rounding Mode

 Standards
Standards/Extensions C or C++ Dependencies;

 both OS/390 V2R6

 Format
#define _AIX_COMPATIBILITY 1
#include <float.h>

fprnd_t fp_read_rnd;

 General Description
The fp_read_rnd() function returns the current IEEE floating-point rounding mode.
Float.h defines the following macros for values indicating floating-point rounding
mode:

FP_RND_RZ Round toward zero

FP_RND_RN Round to nearest (default)

FP_RND_RP Round toward +infinity

FP_RND_RM Round toward −infinity

 Returned Value
fp_read_rnd() returns the current floating-point rounding mode.

 Related Information
 � fp_swap_rnd()

 C/C++ Run-Time Library Reference 9

 fp_swap_rnd

fp_swap_rnd() — Swap the IEEE Floating-Point Rounding Mode

 Standards
Standards/Extensions C or C++ Dependencies;

 both OS/390 V2R6

 Format
#define _AIX_COMPATIBILITY 1
#include <float.h>

fprnd_t fp_swap_rnd(RoundMode)
fprnd_t RoundMode

 General Description
The fp_swap_rnd() function sets the floating-point rounding mode to the mode
specified by RoundMode and returns the previous rounding mode in effect.

float.h defines the following macros for values indicating floating-point rounding
mode.

FP_RND_RZ Round toward zero

FP_RND_RN Round to nearest (default)

FP_RND_RP Round toward +infinity

FP_RND_RM Round toward −infinity

Note: The fdlibm math library and other C-RTL functions such as the printf family
of functions only support IEEE floating-point “round to nearest mode”. If the
rounding mode of an IEEE floating-point application is different from “round
to nearest” when it calls an fdlibm function, the rounding mode is changed
by the C-RTL to be “round to nearest”. The C-RTL saves the application's
rounding mode, changes to “round to nearest” while executing fdlibm code,
and then restores the applications rounding mode before returning. If a data
exception occurs while executing in fdlibm, any signal handler registered
application to handle the exception will be run in the application's rounding
mode.

 Returned Value
The previous (changed from) rounding mode.

 Related Information
 � fp_read_rnd()

10 OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 __isBFP

__isBFP() — Determine Floating-Point Format

 Standards
Standards/Extensions C or C++ Dependencies;

both OS/390 V2R6

 Format
#include <_Ieee754.h>
int __isBFP(void)

 General Description
The __isBFP() function determines the mode of floating-point operations.

 Returned Value
__isBFP() returns 0 if the floating-point mode is hexadecimal and returns 1 if the
floating-point mode is IEEE.

 C/C++ Run-Time Library Reference 11

Changed C/C ++ Run-Time Library Functions (IEEE Floating-Point)
This section contains changed C/C++ Run-Time Library functions (IEEE Floating-
Point)

12 OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 atof

atof() — Convert Character String to Double

 Standards
Standards / Extensions C or C++ Dependencies

ISO C
POSIX.1
XPG4
XPG4.2

both

 Format
#include <stdlib.h>

double atof(const char \nptr);

 General Description
The atof() function converts the initial portion of the string pointed to by nptr to a
'double'. This is equivalent to

 strtod(nptr, NULL)

| The double value is hexadecimal floating-point or IEEE floating-point format
| depending on the floating-point mode of the thread invoking the atof() function. This
| function uses __isBFP() to determine the floating-point mode of the invoking thread.

| See the “fscanf Family of Formatted Input Functions” on page 35 for a description
| of special infinity and NaN sequences recognized by OS/390 formatted input func-
| tions, including atof() and strtod() in IEEE floating-point mode.

 Returned Value
There are no documented errnos for this function.

 Related Information
 � “stdlib.h”
� “atoi() — Convert Character String to Integer”
� “atol() — Convert Character String to Long”
� “fscanf() - scanf() - sscanf() — Read and Format Data”
� “strtod() — Convert Character String to Double”

 �
� “strtol() — Convert Character String to Long”

 �
� “strtoul() — Convert String to Unsigned Integer”

 C/C++ Run-Time Library Reference 13

 difftime

difftime() — Compute Time Difference

 Standards
Standards / Extensions C or C++ Dependencies

ISO C
XPG4
XPG4.2

both

 Format
#include <time.h>

double difftime(time_t time2, time_t time1);

 General Description
Computes the difference in seconds between time2 and time1, which are calendar
times returned by time().

| The difftime() function returns the difference between two calendar times as a
| double. The return value is hexadecimal floating-point or IEEE floating-point format
| depending on the floating-point mode of the thread invoking difftime(). The difftime()
| function uses __isBFP() to determine which floating-point format (hexadecimal
| floating-point or IEEE floating-point) to return on the invoking thread.

 Returned Value
Returns the elapsed time in seconds from time1 to time2 as a double.

 Example
CBC3BD04

/\ CBC3BDð4
This example shows a timing application using difftime(). The example
calculates how long, on average, it takes a user to input some data to the program.

 \/
#include <time.h>
#include <stdio.h>

int main(void)
{

time_t start, finish;
int i, n, num;

 int answer;

printf("11 x 55 = ? Enter your answer below\n");
 time(&start);
 scanf("%d",&answer);
 time(&finish);

printf("You answered %s in %.ðf seconds.\n",
answer == 6ð5 ? "correctly" : "incorrectly",

 difftime(finish,start));
}

Output

 11 x 55 = ? Enter your answer below
 6ð5
 You answered correctly in 2ð seconds

14 OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 difftime

 Related Information
 � “time.h”
� “asctime() — Convert Time to a Character String”
� “ctime() — Convert Time to a Character String”
� “gmtime() — Convert Time to Broken-Down UTC Time”
� “localtime() — Convert Time and Correct for Local Time”
� “mktime() — Convert Local Time”
� “strftime() — Convert to Formatted Time”
� “time() — Determine Current Time”

 C/C++ Run-Time Library Reference 15

 drand48

drand48() — Pseudo-random Number Generator

 Standards
Standards / Extensions C or C++ Dependencies

XPG4
XPG4.2

both

 Format
#define _XOPEN_SOURCE
#include <stdlib.h>

double drand48(void);

 General Description
The drand48(), erand48(), jrand48(), lrand48(), mrand48() and nrand48() functions
generate uniformly distributed pseudorandom numbers using a linear congruential
algorithm and 48-bit integer arithmetic.

| The functions drand48() and erand48() return non-negative, double-precision,
| floating-point values, uniformly distributed over the interval [0.0,1.0). These func-
| tions have been extended to determine floating-point format (hexadecimal floating-
| point or IEEE floating-point) of the returned value using the __isBFP()function.

The functions lrand48() and nrand48() return non-negative, long integers, uniformly
distributed over the interval [0,2**31).

The functions mrand48() and jrand48() return signed long integers, uniformly distrib-
uted over the interval [-2**31,2**31).

The drand48() function generates the next 48-bit integer value in a sequence of
48-bit integer values, X(i), according to the linear congruential formula:

X(n+1) = (aX(n) + c)mod(2\\48) n>=ð

The initial values of X, a, and c are:

X(ð) = 1
 a = 5deece66d (base 16)
 c = b (base 16)

C/370 provides storage to save the most recent 48-bit integer value of the
sequence, X(i). This storage is shared by the drand48(), lrand48() and mrand48()
functions. The value, X(n), in this storage may be reinitialized by calling the
lcong48(), seed48() or srand48() function. Likewise, the values of a and c, may be
changed by calling the lcong48() function. Thereafter, whenever the seed48() or
srand48() function is called to change X(n), the initial values of a and c are also
reestablished.

Special Behavior for OS/390 UNIX Services

You can make the drand48() function and other functions in the drand48 family
thread specific by setting the environment variable _RAND48 to the value THREAD
before calling any function in the drand48 family.

16 OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 drand48

If you do not request thread specific behavior for the drand48 family, C/370 serial-
izes access to the storage for X(n), a and c by functions in the drand48 family
when they are called by a multithreaded application.

If thread specific behavior is requested, and the drand48() function is called from
thread t, the drand48() function generates the next 48-bit integer value in a
sequence of 48-bit integer values, X(t,i), for the thread t. The sequence of values
for a thread is generated according to the linear congruential formula:

X(t,n+1) = (a(t)X(t,n) + c(t))mod(2\\48) n>=ð

The initial values of X(t), a(t) and c(t) for the thread t are:

X(t,ð) = 1
 a(t) = 5deece66d (base 16)
 c(t) = b (base 16)

C/370 provides storage which is specific to the thread t to save the most recent
48-bit integer value of the sequence, X(t,i), generated by the drand48(), lrand48() or
mrand48() function. The value, X(t,n), in this storage may be reinitialized by calling
the lcong48(), seed48() or srand48() function from the thread t. Likewise, the
values of a(t) and c(t) for thread t may be changed by calling the lcong48() func-
tion from the thread. Thereafter, whenever the seed48() or srand48() function is
called from the thread t to change X(t,n), the initial values of a(t) and c(t) are also
reestablished.

 Returned Value
The drand48() function transforms the generated 48-bit value, X(n+1), to a double-
precision, floating-point value on the interval [0.0,1.0) and returns this transformed
value.

Special Behavior for OS/390 UNIX Services

If thread specific behavior is requested for the drand48 family and the drand48()
function is called on thread t, the drand48() function transforms the generated
48-bit value, X(t,n+1), to a double-precision, floating-point value on the interval
[0.0,1.0) and returns this transformed value.

 Related Information
 � “stdlib.h”
� “erand48() — Pseudo-random Number Generator”
� “jrand48() — Pseudo-random Number Generator”
� “lcong48() — Pseudo-random Number Initializer”
� “lrand48() — Pseudo-random Number Generator”
� “mrand48() — Pseudo-random Number Generator”
� “nrand48() — Pseudo-random Number Generator”
� “seed48() — Pseudo-random Number Initializer”
� “srand48() — Pseudo-random Number Initializer”

 C/C++ Run-Time Library Reference 17

 ecvt

ecvt() — Convert Double to String

 Standards
Standards / Extensions C or C++ Dependencies

XPG4.2 both

 Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <stdlib.h>

char \ecvt(double x, int ndigit,
int \decpt, int \sign);

 General Description
| The ecvt() function converts double floating-point argument values to floating-point
| output strings. The ecvt() function has been extended to determine the floating-
| point format (hexadecimal floating-point or IEEE floating-point) of double argument
| values by using __isBFP().

| OS/390 (C/C++) formatted output functions, including the ecvt() function, convert
| IEEE floating-point infinity and NaN argument values to special infinity and NaN
| floating-point number output sequences. See “fprintf Family of of Formatted Output
| Functions” on page 28 for a description of the special infinity and Nan output
| sequences.

The ecvt() function converts x to a null-terminated string of ndigit digits (where
ndigit is reduced to an unspecified limit determined by the precision of a double)
and returns a pointer to the string. The high-order digit is nonzero, unless the value
is 0. The low-order digit is rounded. The position of the radix character relative to
the beginning of the string is stored in the integer pointed to by decpt (negative
means left of the returned digits). The radix character is not included in the returned
string. If the sign of the result is negative, the integer pointed to by sign is nonzero,
otherwise it is 0.

The function returns a pointer to a buffer used only by the calling thread which may
be overwritten by subsequent calls to ecvt(), “fcvt() — Convert Double to String” on
page 22 and “gcvt() — Convert Double to String” on page 42.

If the converted value is out of range or is not representable, the function returns
NULL.

 Returned Value
If it succeeds, ecvt() returns the character equivalent of x as specified above.

If it is unable to allocate the return buffer, or the conversion fails, ecvt() returns
NULL.

18 OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 ecvt

 Related Information
 � “stdlib.h”
� “fcvt() —Convert Double to String”
� “gcvt() —Convert Double to String”

 C/C++ Run-Time Library Reference 19

 erand48

erand48() — Pseudo-random Number Generator

 Standards
Standards / Extensions C or C++ Dependencies

XPG4
XPG4.2

both

 Format
#define _XOPEN_SOURCE
#include <stdlib.h>

double erand48(unsigned short int x16v[3]);

 General Description
The drand48(), erand48(), jrand48(), lrand48(), mrand48() and nrand48() functions
generate uniformly distributed pseudorandom numbers using a linear congruential
algorithm and 48-bit integer arithmetic.

| The functions drand48() and erand48() return non-negative, double-precision,
| floating-point values, uniformly distributed over the interval [0.0,1.0]. These func-
| tions have been extended to determine the floating-point format (hexadecimal
| floating-point or IEEE floating-point) of the returned value using the __isBFP() func-
| tion.

The functions lrand48() and nrand48() return non-negative, long integers, uniformly
distributed over the interval [0,2**31].

The functions mrand48() and jrand48() return signed long integers, uniformly distrib-
uted over the interval [-2**31,2**31].

The erand48() function generates the next 48-bit integer value in a sequence of
48-bit integer values, X(i), according to the linear congruential formula:

X(n+1) = (aX(n) + c)mod(2\\48) n>=ð

The erand48() function uses storage provided by the argument array, x16v[3], to
save the most recent 48-bit integer value in the sequence, X(i). The erand48() func-
tion uses x16v[0] for the low order (rightmost) 16 bits, x16v[1] for the middle order
16 bits, and x16v[2] for the high order 16 bits of this value.

The initial values of a, and c are:

 a = 5deece66d (base 16)
 c = b (base 16)

The values a and c, may be changed by calling the lcong48() function. The initial
values of a and c are restored if either the seed48() or srand48() function is called.

Special Behavior for OS/390 UNIX Services

You can make the erand48() function and other functions in the drand48 family
thread specific by setting the environment variable _RAND48 to the value THREAD
before calling any function in the drand48 family.

20 OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 erand48

If you do not request thread specific behavior for the drand48 family, C/370 serial-
izes access to the storage for X(n), a and c by functions in the drand48 family
when they are called by a multithreaded application.

If thread specific behavior is requested and the erand48() function is called from
thread t, the erand48() function generates the next 48-bit integer value in a
sequence of 48-bit integer values, X(t,i), for the thread according to the linear
congruential formula:

X(t,n+1) = (a(t)X(t,n) + c(t))mod(2\\48) n>=ð

The erand48() function uses storage provided by the argument array, x16v[3], to
save the most recent 48-bit integer value in the sequence, X(t,i). The erand48()
function uses x16v[0] for the low order (rightmost) 16 bits, x16v[1] for the middle
order 16 bits, and x16v[2] for the high order 16 bits of this value.

The initial values of a(t) and c(t) on the thread t are:

 a(t) = 5deece66d (base 16)
 c(t) = b (base 16)

The values a(t) and c(t) may be changed by calling the lcong48() function from the
thread t. The initial values of a(t) and c(t) are restored if either the seed48() or
srand48() function is called from the thread.

 Returned Value
The erand48() function saves the generated 48-bit value, X(n+1), in storage pro-
vided by the argument array, x16v[3]. The erand48() function transforms the gener-
ated 48-bit value to a double-precision, floating-point value on the interval [0.0,1.0]
and returns this transformed value.

Special Behavior for OS/390 UNIX Services

If thread specific behavior is requested for the drand48 family and the erand48()
function is called on thread t, the erand48() function saves the generated 48-bit
value, X(t,n+1), in storage provided by the argument array, x16v[3]. The erand48()
function transforms the generated 48-bit value to a double-precision, floating-point
value on the interval [0.0,1.0] and returns this transformed value.

 Related Information
 � “stdlib.h”
� “drand48() — Pseudo-random Number Generator”
� “jrand48() — Pseudo-random Number Generator”
� “lcong48() — Pseudo-random Number Initializer”
� “lrand48() — Pseudo-random Number Generator”
� “mrand48() — Pseudo-random Number Generator”
� “nrand48() — Pseudo-random Number Generator”
� “seed48() — Pseudo-random Number Initializer”
� “srand48() — Pseudo-random Number Initializer”

 C/C++ Run-Time Library Reference 21

 fcvt

fcvt() — Convert Double to String

 Standards
Standards / Extensions C or C++ Dependencies

XPG4.2 both

 Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <stdlib.h>

char \fcvt(double x, int ndigit,
int \decpt, int \sign);

 General Description
| The fcvt() function converts double floating-point argument values to floating-point
| output strings. The fcvt() function has been extended to determine the floating-point
| format (hexadecimal floating-point or IEEE floating-point) of double argument values
| by using __isBFP().

| OS/390 (C/C++) formatted output functions, including the fcvt() function, convert
| IEEE floating-point infinity and NaN argument values to special infinity and NaN
| floating-point number output sequences. See “fprintf Family of of Formatted Output
| Functions” on page 28 for a description of the special infinity and Nan output
| sequences.

The fcvt() function converts x to a null-terminated string which has ndigit digits to
the right of the radix point (where the total number of digits in the output string is
restricted by the precision of a double) and returns a pointer to the string. The func-
tion behaves identically to “ecvt() —Convert Double to String” in all respects other
than the number of digits in the return value.

 Returned Value
If it succeeds, fcvt() returns the character equivalent of x as specified above.

If it is unable to allocate the return buffer, or the conversion fails, fcvt() returns
NULL.

 Related Information
 � “stdlib.h”
� “ecvt() — Convert Double to String”
� “gcvt() — Convert Double to String”

22 OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 fprintf - printf - sprintf

fprintf() - printf() - sprintf() — Format and Write Data
Standards / Extensions C or C++ Dependencies

POSIX.1
XPG4
XPG4.2

both

 Format
#include <stdio.h>

int fprintf(FILE \stream, const char \format-string, ...);
int printf(const char \format-string, ...);
int sprintf(char \buffer, const char \format-string, ...);

 General Description
These three related functions are referred to as the fprintf family.

The fprintf() function formats and writes output to a stream. It converts each entry in
the argument list, if any, and writes to the stream according to the corresponding
format specification in the format-string. The fprintf() function cannot be used with a
file that is opened using type=record.

The printf() function formats and writes output to the standard output stream
stdout. printf() cannot be used if stdout has been reopened using type=record.

The sprintf() function formats and stores a series of characters and values in the
array pointed to by buffer. Any argument-list is converted and put out according to
the corresponding format specification in the format-string. If the strings pointed to
by buffer and format overlap, behavior is undefined.

fprintf() and printf() have the same restriction as any write operation for a read
immediately following a write or a write immediately following a read. Between a
write and a subsequent read, there must be an intervening flush or reposition.
Between a read and a subsequent write, there must also be an intervening flush or
reposition unless an EOF has been reached.

The format-string consists of ordinary characters, escape sequences, and conver-
sion specifications. The ordinary characters are copied in order of their appearance.
Conversion specifications, beginning with a percent sign (%) or the sequence (%n$)
where n is a decimal integer in the range [1,NL_ARGMAX], determine the output
format for any argument-list following the format-string. The format-string can
contain multibyte characters beginning and ending in the initial shift state.

Special Behavior for XPG4

� If the %n$ conversion specification is found, the value of the nth argument after
the format-string is converted and output according to the conversion specifica-
tion. Numbered arguments in the argument list can be referenced from format-
string as many times as required.

� The format-string can contain either form of the conversion specification, that is,
% or %n$ but the two forms cannot be mixed within a single format-string
except that %% can be mixed with the %n$ form. When numbered conversion
specifications are used, specifying the 'nth' argument requires that the first to
(n−1)th arguments are specified in the format-string.

 C/C++ Run-Time Library Reference 23

 fprintf - printf - sprintf

The format-string is read from left to right. When the first format specification is
found, the value of the first argument after the format-string is converted and output
according to the format specification. The second format specification causes the
second argument after the format-string to be converted and output, and so on
through the end of the format-string. If there are more arguments than there are
format specifications, the extra arguments are evaluated and ignored. The results
are undefined if there are not enough arguments for all the format specifications.
The format specification is illustrated below.

55─ ─%─ ──┬ ┬─────── ──┬ ┬─────── ──┬ ┬────────────── ──┬ ┬─── ─type────────────5%
 └ ┘ ─flags─ └ ┘ ─width─ └ ┘─.──precision─ ├ ┤─h─
 ├ ┤─l─
 └ ┘─L─

Figure 1. Format Specification for fprintf(), printf(), and sprintf()

Each field of the format specification is a single character or number signifying a
particular format option. The type character, which appears after the last optional
format field, determines whether the associated argument is interpreted as a char-
acter, a string, a number, or pointer. The simplest format specification contains only
the percent sign and a type character (for example, %s).

The percent sign

If a percent sign (%) is followed by a character that has no meaning as a format
field, the character is simply copied to stdout. For example, to print a percent sign
character, use %%.

The flag characters

The flag characters in Table 1 are used for the justification of output and printing of
thousands' grouping characters, signs, blanks, decimal points, octal, and
hexadecimal prefixes, and the semantics for wchar_t precision unit. Notice that
more than one flag can appear in a format specification. This is an optional field.

Table 1 (Page 1 of 2). Flag Characters for fprintf() Family

Flag Meaning Default

' Added for XPG4: The integer portion of
the result of a decimal
conversion(%i,%d,%u, %f,%g or %G) will
be formatted with the thousands' grouping
characters.

No grouping.

− Left-justify the result within the field width. Right-justify.

+ Prefix the output value with a sign (+ or −)
if the output value is of a signed type.

Sign appears only for nega-
tive signed values (−).

blank(' ') Prefix the output value with a blank if the
output value is signed and positive. The +
flag overrides the blank flag if both
appear, and a positive signed value will
be output with a sign.

No blank.

24 OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 fprintf - printf - sprintf

The code point for the # character varies between the EBCDIC encoded character
sets. The definition of the # character is based on the current LC_SYNTAX cate-
gory. The default C locale expects the # character to use the code point for
encoded character set IBM-1047.

When the LC_SYNTAX category is set using setlocale(), the format strings passed
to the printf() functions must use the same encoded character set as is specified for
the LC_SYNTAX category.

The # flag should not be used with c, lc, C, d, i, u, s, or p types.

The Width of the Output

Width is a non-negative decimal integer controlling the minimum number of charac-
ters printed. If the number of characters in the output value is less than the speci-
fied width, blanks are added on the left or the right (depending on whether the —
flag is specified) until the minimum width is reached.

Width never causes a value to be truncated; if the number of characters in the
output value is greater than the specified width, or width is not given, all characters
of the value are output (subject to the precision specification).

The width specification can be an asterisk (*); if it is, an argument from the argu-
ment list supplies the value. The width argument must precede the value being for-
matted in the argument list. This is an optional field.

If format-string contains the %n$ form of conversion specification, width can be indi-
cated by the sequence *m$, where m is a decimal integer in the range

Table 1 (Page 2 of 2). Flag Characters for fprintf() Family

Flag Meaning Default

When used with the o, x, or X formats, the
flag prefixes any nonzero output value
with ð, ðx, or ðX, respectively.

No prefix.

When used with the f, e, or E formats, the
flag forces the output value to contain a
decimal point in all cases.

The decimal point is sensitive to the
LC_NUMERIC category of the same
current locale.

Decimal point appears only
if digits follow it.

When used with the g or G formats, the #
flag forces the output value to contain a
decimal point in all cases and prevents
the truncation of trailing zeros.

Decimal point appears only
if digits follow it; trailing
zeros are truncated.

When used with the ls or S format, the #
flag causes precision to be measured in
wide characters.

Precision indicates the
maximum number of bytes
to be output.

0 When used with the d, i, o, u, x, X, e, E,
f, g, or G formats, the ð flag causes
leading ð's to pad the output to the field
width. The ð flag is ignored if precision is
specified for an integer or if the − flag is
specified.

Space padding.

 C/C++ Run-Time Library Reference 25

 fprintf - printf - sprintf

[1,NL_ARGMAX] giving the position of an integer argument in the argument list
containing the field width.

The Precision of the Output

precision is a non-negative decimal integer preceded by a period. It specifies the
number of characters to be output, or the number of decimal places. Unlike the
width specification, the precision can cause truncation of the output value or
rounding of a floating-point value.

The precision specification can be an asterisk (*); if it is, an argument from the
argument list supplies the value. The precision argument must precede the value
being formatted in the argument list. The precision field is optional.

If format-string contains the %n$ form of conversion specification, precision can be
indicated by the sequence *m$, where m is a decimal integer in the range
[1,NL_ARGMAX] giving the position of an integer argument in the argument list
containing the field precision.

The interpretation of the precision value and the default when the precision is
omitted depend upon the type, as shown in Table 2.

Optional prefix

Used to indicate the size of the argument expected:

Table 2. Precision Argument in fprintf() family

Type Meaning Default

 i
 d
 u
 o
 x
 X

Precision specifies the minimum number
of digits to be output. If the number of
digits in the argument is less than preci-
sion, the output value is padded on the
left with zeros. The value is not truncated
when the number of digits exceeds preci-
sion.

If precision is 0 or omitted
entirely, or if the period (.)
appears without a number fol-
lowing it, the precision is set to
1.

 f
 e
 E

Precision specifies the number of digits to
be output after the decimal point. The last
digit output is rounded.

The decimal point is sensitive to the
LC_NUMERIC category of the current
locale.

Default precision is 6. If preci-
sion is 0 or the period appears
without a number following it, no
decimal point is output.

 g
 G

Precision specifies the maximum number
of significant digits output.

All significant digits are output.

 c No effect. The character is output.

 C
 lc

No effect. The wide character is output.

 s Precision specifies the maximum number
of characters to be output. Characters in
excess of precision are not output.

Characters are output until a null
character is encountered.

 S
 ls

Precision specifies the maximum number
of bytes to be output. Bytes in excess of
precision are not output; however, multi-
byte integrity is always preserved.

wchar_t characters are output
until a null character is encount-
ered.

26 OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 fprintf - printf - sprintf

h A prefix with the integer types d, i, o, u, x, X, and n that specifies that
the argument is short int or unsigned short int.

l A prefix with d, i, o, u, x, X, and n types that specifies that the argu-
ment is a long int or unsigned long int.

The l prefix with the c type conversion specifier indicates that the
argument is a wint_t. The l prefix with the s type conversion specifier
indicates that the argument is a pointer to a wchar_t.

L A prefix with e, E, f, g, or G types that specifies that the argument is
long double.

Note: If you pass a long double value and do not use the L qualifier or if you
pass a double value only and use the L qualifier, errors occur.

Table 3 below shows the meaning of the type characters used in the precision
argument.

Table 3 (Page 1 of 2). Type Characters and their Meanings

Type Argument Output Format

d, i Integer Signed decimal integer.

u Integer Unsigned decimal integer.

o Integer Unsigned octal integer.

x Integer Unsigned hexadecimal integer, using abcdef.

X Integer Unsigned hexadecimal integer, using ABCDEF.

f Double Floating-point signed value having the form [−]dddd.dddd, where dddd is one
or more decimal digits. The number of digits before the decimal point
depends on the magnitude of the number. The number of digits after the
decimal point is equal to the requested precision.

The decimal point is sensitive to the LC_NUMERIC category of the current
locale.

e Double Floating-point signed value having the form [−]d.dddde[sig n]ddd, where d is
a single-decimal digit, dddd is one or more decimal digits, ddd is 2 or more
decimal digits, and sign is + or −.

E Double Identical to the e format, except that E introduces the exponent, not e.

g Double Floating-point signed value output in f or e format. The e format is used only
when the exponent of the value is less than −4 or greater than or equal to
the precision. Trailing zeros are truncated, and the decimal point appears
only if one or more digits follow it.

G Double Identical to the g format, except that E introduces the exponent (where
appropriate), not e.

D(n,p) Decimal type argu-
ment.

Fixed−point value consisting of a series of one or more decimal digits pos-
sibly containing a decimal point.

c

C or lc

Character

Wide Character

Single character.

The argument of wchar_t type is converted to an array of bytes representing
a multibyte character as if by call to wctomb().

 C/C++ Run-Time Library Reference 27

 fprintf - printf - sprintf

Table 3 (Page 2 of 2). Type Characters and their Meanings

Type Argument Output Format

s

S or ls

String

Wide String

Characters output up to the first null character (\ð) or until precision is
reached.

The argument is a pointer to an array of wchar_t type. Wide characters from
the array are converted to multibyte characters up to and including a termi-
nating null wide character. Conversion takes place as if by a call to
wcstombs(), with the conversion state described by the mbstate_t object ini-
tialized to 0. The result written out will not include the terminating null char-
acter.

If no precision is specified, the array contains a null wide character. If a pre-
cision is specified, its sets the maximum number of characters written,
including shift sequences. A partial multibyte character cannot be written.

n Pointer to integer Number of characters successfully output so far to the stream or buffer; this
value is stored in the integer whose address is given as the argument.

p Pointer Pointer to void converted to a sequence of printable characters. Refer to the
individual system reference guides for the specific format.

| fprintf Family of Formatted Output Functions

| fprintf family functions match e, E, f, g or G conversion specifiers to floating-point
| arguments for which they produce floating-point number substrings in the output
| stream. fprintf family functions have been extended to determine the floating-point
| format, hexadecimal floating-point or IEEE floating-point, of types e, E, f, g or G by
| using __isBFP().

| fprintf family functions convert IEEE floating-point infinity and NaN argument values
| to special infinity and NaN floating-point number output sequences.

| � The special output sequence for infinity values is a plus or minus sign, then the
| character sequence INF followed by a a white-space character (space, tab, or
| new line), a null character (\ð) or EOF.

| � The special output sequence for NaN values is a plus or minus sign, then the
| character sequence NANS for a signalling NaN or NANQ for a quiet NaN, then
| a NaN ordinal sequence, and then a a white-space character (space, tab, or
| new line), a null character (\ð) or EOF.

| A NaN ordinal sequence is a left-parenthesis character, “(”, followed by a digit
| sequence representing an integer n, where 1 <= n <= INT_MAX−1, followed by
| a right-parenthesis character, “)”. The integer value, n, is determined by the
| fraction bits of the NaN argument value as follows:

| 1. For a signalling NaN value, NaN fraction bits are reversed (left to right) to
| produce bits (right to left) of an even integer value, 2*n. Then formatted
| output functions produce a (signalling) NaN ordinal sequence corre-
| sponding to the integer value n.

| 2. For a quiet NaN value, NaN fraction bits are reversed (left to right) to
| produce bits (right to left) of an odd integer value, 2*n−1. Then formatted
| output functions produce a (quiet) NaN ordinal sequence corresponding to
| the integer value n.

| Some compatibility with NaN sequences output by AIX formatted output functions
| can be achieved by setting a new environment variable,

28 OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 fprintf - printf - sprintf

| _AIX_NAN_COMPATIBILITY, which OS/390 formatted output functions recognize,
| to one of the following (string) values:

| Value Output Function

| 1 Formatted output functions which produce special NaN output
| sequences omit the NaN ordinal output sequence (1). This results in
| output NaN sequences of plus or minus sign followed by NANS or
| NANQ instead of plus or minus sign followed by NANS(1) or NANQ(1).
| All other NaN ordinal sequences are explicitly output.

| ALL Formatted output functions which produce special NaN output
| sequences omit the NaN ordinal output sequence for all NaN values.
| This results in output NaN sequences of plus or minus sign followed by
| NANS or NANQ instead of plus or minus sign followed by NANS(n) or
| NANQ(n) for all NaN values.

The sprintf() function is available to C applications in a stand-alone Systems Pro-
gramming Environment.

 Returned Value
The fprintf(), printf(), and sprintf() functions return the number of characters output,
or a negative value if an output error occurs. The ending null character is not
counted.

 Example
CBC3BF30

/\ CBC3BF3ð
This example prints data using printf() in a variety of formats.

 \/
#include <stdio.h>

int main(void)
{

char ch = 'h', \string = "computer";
int count = 234, hex = ðx1ð, oct = ð1ð, dec = 1ð;
double fp = 251.7366;
unsigned int a = 12;
float b = 123.45;

 int c;
void \d = "a";

printf("the unsigned int is %u\n\n",a);

printf("the float number is %g, and %G\n\n",b,b);

 printf("RAY%n\n\n",&c);

printf("last line prints %d characters\n\n",c);

printf("Address of d is %p\n\n",d);

 printf("%d %+d %ð6d %X %x %o\n\n",
count, count, count, count, count, count);

 printf("123456789ð123%n456789ð123456789\n\n", &count);

printf("Value of count should be 13; count = %d\n\n", count);

printf("%1ðc%5c\n\n", ch, ch);

 C/C++ Run-Time Library Reference 29

 fprintf - printf - sprintf

printf("%25s\n%25.4s\n\n", string, string);

printf("%f %.2f %e %E\n\n", fp, fp, fp, fp);

printf("%i %i %i\n\n", hex, oct, dec);
}

Output

the unsigned int is 12

the float number is 123.45 and 123.45

RAY

last line prints 3 characters

Address of d is DD72F9

234 +234 ððð234 EA ea 352

123456789ð123456789ð123456789

Value of count should be 13; count = 13

 h h

 computer
 comp

251.7366ðð 251.74 2.517366e+ð2 2.517366E+ð2

16 8 1ð

CBC3BF31

/\ CBC3BF31
The following example illustrates the use of printf() to print
fixed-point decimal data types.
This example works under C only, not C++.

 \/
#include <stdio.h>
#include <decimal.h>

decimal(1ð,2) pdð1 = -12.34d;
decimal(12,4) pdð2 = 12345678.9876d;
decimal(31,1ð) pdð3 = 123456789ð135792468ð1.987654321ðd;

int main(void) {
printf("pdð1 %%D(1ð,2) = %D(1ð,2)\n", pdð1);
printf("pdð2 %%D(12 , 4) = %D(12 , 4)\n", pdð2);

printf("pdð1 %%ð1ð.2D(1ð,2) = %ð1ð.2D(1ð,2)\n", pdð1);
printf("pdð2 %%2ð.2D(12,4) = %2ð.2D(12,4)\n", pdð2);
printf("\n Give strange result if the specified size is wrong!\n");
printf("pdð3 %%D(15,3) = %D(15,3)\n\n", pdð3);

}

Output

30 OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 fprintf - printf - sprintf

pdð1 %D(1ð,2) = -12.34
pdð2 %D(12 , 4) = 12345678.9876
pdð1 %ð1ð.2D(1ð,2) = -ðððð12.34
pdð2 %2ð.2D(12,4) = 12345678.98

Give strange result if the specified size is wrong!
pdð3 %D(15,3) = -123456789ð13.579

CBC3BF32

/\ CBC3BF32
This example illustrates the use of sprintf() to format and print

 various data.
 \/
#include <stdio.h>

char buffer[2ðð];
int i, j;
double fp;
char \s = "baltimore";
char c;

int main(void)
{

c = 'l';
i = 35;
fp = 1.732ð5ð8;

/\ Format and print various data \/
j = sprintf(buffer, "%s\n", s);
j += sprintf(buffer+j, "%c\n", c);
j += sprintf(buffer+j, "%d\n", i);
j += sprintf(buffer+j, "%f\n", fp);
printf("string:\n%s\ncharacter count = %d\n", buffer, j);

}

Output

string:
Baltimore
l
35
1.732ð51

character count = 24

 Related Information
� “Internationalization: Locales and Character Sets” in the OS/390 C/C++ Pro-

gramming Guide
� “System Programming Facilities” in the OS/390 C/C++ Programming Guide

 � “locale.h”
 � “stdio.h”
 � “wchar.h”
� “fscanf() - scanf() - sscanf() — Read and Format Data”
� “localeconv() — Query Numeric Conventions”
� “setlocale() — Set Locale”
� “wcrtomb() — Convert a Wide Character to a Multibyte Character”

 C/C++ Run-Time Library Reference 31

 fscanf - scanf - sscanf

fscanf() – scanf() – sscanf() — Read and Format Data
Standards / Extensions C or C++ Dependencies

POSIX.1
XPG4
XPG4.2

both

 Format
#include <stdio.h>

int fscanf (FILE \stream, const char \format-string, ...);
int scanf(const char \format-string, ...);
int sscanf(const char \buffer, const char \format, ...);

 General Description
| These three related functions are referred to as the fscanf family.

Reads data from the current position of the specified stream into the locations given
by the entries in the argument list, if any. The argument list, if it exists, follows the
format string. The fscanf() function cannot be used for a file opened with
type=record.

The scanf() function reads data from the standard input stream stdin into the
locations given by each entry in the argument list. The argument list, if it exists,
follows the format string. scanf() cannot be used if stdin has been reopened as a
type=record file.

The sscanf() function reads data from buffer into the locations given by argument-
list. Reaching the end of the string pointed to by buffer is equivalent to fscanf()
reaching EOF. If the strings pointed to by buffer and format overlap, behavior is
undefined.

fscanf() and scanf() have the same restriction as any read operation for a read
immediately following a write or a write immediately following a read. Between a
write and a subsequent read, there must be an intervening flush or reposition.
Between a read and a subsequent write, there must also be an intervening flush or
reposition unless an EOF has been reached.

For all three functions, each entry in the argument list must be a pointer to a vari-
able of a type that matches the corresponding conversion specification in format-
string. If the types do not match, the results are undefined.

For all three functions, the format-string controls the interpretation of the argument
list. The format-string can contain multibyte characters beginning and ending in the
initial shift state.

The format string pointed to by format-string can contain one or more of the
following:

� White-space characters, as specified by isspace(), such as blanks and new-line
characters. A white-space character causes fscanf(), scanf(), and sscanf() to
read, but not to store, all consecutive white-space characters in the input up to
the next character that is not white space. One white-space character in format-
string matches any combination of white-space characters in the input.

32 OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 fscanf - scanf - sscanf

� Characters that are not white space, except for the percent sign character (%).
A non-white-space character causes fscanf(), scanf(), and sscanf() to read, but
not to store, a matching non-white-space character. If the next character in the
input stream does not match, the function ends.

� Conversion specifications which are introduced by the percent sign (%) or the
sequence (%n$) where n is a decimal integer in the range [1,NL_ARGMAX]. A
conversion specification causes fscanf(), scanf(), and sscanf() to read and
convert characters in the input into values of a conversion specifier. The value
is assigned to an argument in the argument list.

All three functions read format-string from left to right. Characters outside of con-
version specifications are expected to match the sequence of characters in the
input stream; the matched characters in the input stream are scanned but not
stored. If a character in the input stream conflicts with format-string, the function
ends, terminating with a “matching” failure. The conflicting character is left in the
input stream as if it had not been read.

When the first conversion specification is found, the value of the first input field is
converted according to the conversion specification and stored in the location speci-
fied by the first entry in the argument list. The second conversion specification
converts the second input field and stores it in the second entry in the argument
list, and so on through the end of format-string.

Special Behavior for XPG4.2

� When the %n$ conversion specification is found, the value of the input field is
converted according to the conversion specification and stored in the location
specified by the nth argument in the argument list. Numbered arguments in the
argument list can only be referenced once from format-string.

� The format-string can contain either form of the conversion specification, that is,
% or %n$ but the two forms cannot be mixed within a single format-string
except that %% or %* can be mixed with the %n$ form.

An input field is defined as:

� All characters until a white-space character (space, tab, or new line) is encount-
ered

� All characters until a character is encountered that cannot be converted
according to the conversion specification

� All characters until the field width is reached.

If there are too many arguments for the conversion specifications, the extra argu-
ments are evaluated but otherwise ignored. The results are undefined if there are
not enough arguments for the conversion specifications.

55─ ─%─ ──┬ ┬─── ──┬ ┬─────── ──┬ ┬─── ─conversion specifier──────────────────5%
 └ ┘ ─\─ └ ┘─width─ ├ ┤─h─
 ├ ┤─l─
 └ ┘─L─

Figure 2. Syntax of Conversion Specification for fscanf(), scanf(), and sscanf()

 C/C++ Run-Time Library Reference 33

 fscanf - scanf - sscanf

Each field of the conversion specification is a single character or a number signi-
fying a particular format option. The conversion specifier, which appears after the
last optional format field, determines whether the input field is interpreted as a char-
acter, a string, or a number. The simplest conversion specification contains only
the percent sign and a conversion specifier (for example, %s).

Each field of the format specification is discussed in detail below.

Other than conversion specifiers, you should avoid using the percent sign (%),
except to specify the percent sign: %%. Currently, the percent sign is treated as the
start of a conversion specifier. Any unrecognized specifier is treated as an ordinary
sequence of characters. If, in the future, OS/390 C/C++ permits a new conversion
specifier, it could match a section of your format string, be interpreted incorrectly,
and result in undefined behavior. See Table 4 for a list of conversion specifiers.

An asterisk (*) following the percent sign suppresses assignment of the next input
field, which is interpreted as a field of the specified conversion specifier. The field is
scanned but not stored.

width is a positive decimal integer controlling the maximum number of characters to
be read. No more than width characters are converted and stored at the corre-
sponding argument.

Fewer than width characters are read if a white-space character (space, tab, or
new line), or a character that cannot be converted according to the given format
occurs before width is reached.

The optional prefix l shows that you use the long version of the following conver-
sion specifier, while the prefix h indicates that the short version is to be used. The
corresponding argument should point to a long or double object (for the l char-
acter), a long double object (for the L character), or a short object (with the h
character). The l and h modifiers can be used with the d, i, o, x, and u conversion
specifiers. The l modifier can also be used with the e, f, and g conversion
specifiers. The L modifier can be used with the e, f and g conversion specifiers.
Note that the l modifier is also used with the c and s conversion specifiers to indi-
cate a multibyte character or string. The l and h modifiers are ignored if specified
for any other conversion specifier.

The type characters and their meanings are in Table 4.

Table 4 (Page 1 of 4). Conversion Specifiers in fscanf() and scanf()

Conversion
Specifier Type of Input Expected Type of Argument

d Decimal integer Pointer to int

o Octal integer Pointer to unsigned
int

x
X

Hexadecimal integer Pointer to unsigned
int

i Decimal, hexadecimal, or octal integer Pointer to int

u Unsigned decimal integer Pointer to unsigned
int

34 OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 fscanf - scanf - sscanf

Table 4 (Page 2 of 4). Conversion Specifiers in fscanf() and scanf()

Conversion
Specifier Type of Input Expected Type of Argument

e
f
g
E
G

Floating-point value consisting of an optional sign
(+ or −); a series of one or more decimal digits
possibly containing a decimal point; and an
optional exponent (e or E) followed by a possibly
signed integer value.

Pointer to float

|
|

| fscanf Family of Formatted Input Functions

| fscanf family functions match e, E, f, g or G conversion specifiers to floating-point number
| substrings in the input stream. fscanf family functions convert each input substring matched
| by an e, E, f, g or G conversion specifier to a float, double or long double value depending
| on a size modifier preceeding the e, E, f, g or G conversion specifier.

| The floating-point value produced is hexadecimal floating-point or IEEE floating-point format
| depending on the floating-point mode of the thread invoking the fscanf family function. The
| fscanf family functions use __isBFP() to determine the floating-point mode of invoking
| threads.

| Many OS/390 (C/C++) formatted input functions, including the fscanf family, recognize
| special infinity and NaN floating-point number input sequences when the invoking thread is in
| IEEE floating-point mode as determined by __isBFP().

| � The special sequence for infinity input is an optional plus or minus sign, then the char-
| acter sequence INF, where the individual characters may be upper or lower case, and
| then a white-space character (space, tab, or new line), a null character (\ð) or EOF.

| � The special sequence for NaN input is an optional plus or minus sign, then the character
| sequence NANS for a signalling NaN or NANQ for a quiet NaN, where the individual
| characters may be upper or lower case, then an optional NaN ordinal sequence, and
| then a a white-space character (space, tab, or new line), a null character (\ð) or EOF.

| A NaN ordinal sequence is a left-parenthesis character, “(”, followed by a digit sequence
| representing an integer n, where 1 <= n <= INT_MAX−1, followed by a right-parenthesis
| character, “)”. If the NaN ordinal sequence is omitted, NaN ordinal sequence (1) is
| assumed. The integer value, n, corresponding to a NaN ordinal sequence determines
| what IEEE floating-point NaN fraction bits are produced by formatted input functions.

| For a signalling NaN, these functions produce NaN fraction bits (left to right) by reversing
| the bits (right to left) of the even integer value 2*n.

| For a quiet NaN they produce NaN fraction bits (left to right) by reversing the bits (right
| to left) of the odd integer value 2*n−1.

|
|

D(n,p) Fixed−point value consisting of an optional sign (+
or −); a series of one or more decimal digits pos-
sibly containing a decimal point.

Pointer to decimal

 C/C++ Run-Time Library Reference 35

 fscanf - scanf - sscanf

Table 4 (Page 3 of 4). Conversion Specifiers in fscanf() and scanf()

Conversion
Specifier Type of Input Expected Type of Argument

c

C or lc

(Can be used with the “l” modifier as lc). Char-
acter; white-space characters that are ordinarily
skipped are read when c is specified.

The input matches the number of multibyte char-
acters specified by the field width. Each multibyte
character in the sequence is converted to a wide
character as if by a call to the mbstowcs() func-
tion. The conversion state described by mbstate_t
object is initialized to zero before the first multibyte
character is converted. The number of wide char-
acters matched is specified by the field width (1 if
no field width is present in the directive). The cor-
responding argument is a pointer to the initial
element of an array of wchar_t large enough to
accept the resulting sequence of wide characters.
No null wide character is added.

C or lc is the multibyte character constant.

Pointer to char large
enough for input
field.

C or lc uses a
pointer to wchar_t.

s

S or ls

(Can be used with the “l” modifier as ls). String,
which matches a sequence of multibyte characters
that begins and ends in the initial shift state. None
of the multibyte characters in the sequence are
also single-byte white-space characters (as speci-
fied by the isspace() function). Each multibyte
character in the sequence is converted to a wide
character as if by a call to the mbrtowc() function,
with the conversion state described by mbstate_t
object initialized to zero before the first multibyte
character is converted.

The corresponding argument is a pointer to the
initial array of wchar_t large enough to accept the
sequence and the terminating null wide character,
which is added automatically.

S or ls expects a multibyte string constant.

Pointer to character
array large enough
for input field, plus a
terminating null char-
acter (\ð) that is
automatically
appended.

S or ls uses a
pointer to wchar_t
string.

n No input read from stream or buffer. Pointer to int, into
which is stored the
number of charac-
ters successfully
read from the stream
or buffer up to that
point in the call to
either fscanf() or to
scanf().

p Pointer to void converted to series of characters.
For the specific format of the input, see the indi-
vidual system reference guides.

Pointer to void.

36 OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 fscanf - scanf - sscanf

When the LC_SYNTAX category is set using setlocale(), the format strings passed
to the fscanf(), scanf(), or sscanf() functions must use the same encoded character
set as is specified for the LC_SYNTAX category.

To read strings not delimited by space characters, substitute a set of characters in
square brackets ([]) for the s (string) conversion specifier. The corresponding input
field is read up to the first character that does not appear in the bracketed char-
acter set. If the first character in the set is a logical not (¬), the effect is reversed:
the input field is read up to the first character that does appear in the rest of the
character set.

To store a string without storing an ending null character (\ð), use the specification
%ac, where a is a decimal integer. In this instance, the c conversion specifier
means that the argument is a pointer to a character array. The next a characters
are read from the input stream into the specified location, and no null character is
added.

The input for a %x conversion specifier is interpreted as a hexadecimal number.

All three functions, fscanf(), scanf(), and sscanf() scan each input field character by
character. It might stop reading a particular input field either before it reaches a
space character, when the specified width is reached, or when the next character
cannot be converted as specified. When a conflict occurs between the specification
and the input character, the next input field begins at the first unread character. The
conflicting character, if there is one, is considered unread and is the first character
of the next input field or the first character in subsequent read operations on the
input stream.

Table 4 (Page 4 of 4). Conversion Specifiers in fscanf() and scanf()

Conversion
Specifier Type of Input Expected Type of Argument

[] A non-empty sequence of bytes from a set of
expected bytes (the scanset), which form the con-
version specification. The conversion continues
reading bytes until a failure to match or until an
input failure.

Consider the following situations:

[^bytes]. In this case, the scanset contains all
bytes that do not appear between the circumflex
and the right square bracket.

[]abc] or [^]abc.] In both these cases the right
square bracket is included in the scanset (in the
first case:]abc and in the second case, not]abc)

[a–z] The – is in the scanset; the characters b
through y are not in the scanset.

The code point for the square brackets ([and])
and the caret (^) vary among the EBCDIC
encoded character sets. The default C locale
expects these characters to use the code points
for encoded character set Latin-1 / Open Systems
1047. Conversion proceeds one byte at a time:
there is no conversion to wide characters.

Pointer to the initial
byte of an array of
char, signed char, or
unsigned char large
enough to accept the
sequence and a ter-
minating byte, which
will be added auto-
matically.

 C/C++ Run-Time Library Reference 37

 fscanf - scanf - sscanf

 Returned Value
All three functions, fscanf(), scanf(), and sscanf() return the number of input items
that were successfully matched and assigned. The returned value does not include
conversions that were performed but not assigned (for example, suppressed
assignments). The functions return EOF if there is an input failure before any conver-
sion, or if EOF is reached before any conversion. Thus a returned value of 0
means that no fields were assigned: there was a matching failure before any con-
version. Also, if there is an input failure, then the file error indicator is set, which is
not the case for a matching failure.

The ferror() and feof() functions are used to distinguish between a read error and
an EOF. Note that EOF is only reached when an attempt is made to read “past” the
last byte of data. Reading up to and including the last byte of data does not turn on
the EOF indicator.

 Examples
CBC3BF42

/\ This example scans various types of data \/
#include <stdio.h>

int main(void)
{
 int i;
 float fp;

char c, s[81];

printf("Enter an integer, a real number, a character "
"and a string : \n");

if (scanf("%d %f %c %s", &i, &fp, &c, s) != 4)
printf("Not all of the fields were assigned\n");

 else
 {

printf("integer = %d\n", i);
printf("real number = %f\n", fp);
printf("character = %c\n", c);
printf("string = %s\n",s);

 }
}

Output

If input is: 12 2.5 a yes, then output would be:

Enter an integer, a real number, a character and a string:
integer = 12
real number = 2.5ððððð
character = a
string = yes

CBC3BF43

/\ CBC3BF43
This example converts a hexadecimal integer to a decimal integer.
The while loop ends if the input value is not a hexadecimal integer.

 \/
#include <stdio.h>

int main(void)
{
 int number;

38 OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 fscanf - scanf - sscanf

printf("Enter a hexadecimal number or anything else to quit:\n");
 while (scanf("%x",&number))
 {

printf("Hexadecimal Number = %x\n",number);
 printf("Decimal Number = %d\n",number);
 }
}

Output

If input is: ðx231 ðxf5e ðx1 q, then output would be:

Enter a hexadecimal number or anything else to quit:
Hexadecimal Number = 231
Decimal Number = 561
Hexadecimal Number = f5e
Decimal Number = 3934
Hexadecimal Number = 1
Decimal Number = 1

CBC3BF44

/\ CBC3BF44
The next example illustrates the use of scanf() to input fixed-point
decimal data types. This example works under C only, not C++.

 \/
#include <stdio.h>
#include <decimal.h>

decimal(15,4) pdð1;
decimal(1ð,2) pdð2;
decimal(5,5) pdð3;

int main(void) {
printf("\nFirst time :-------------------------------\n");
printf("Enter three fixed-point decimal number\n");

 printf(" (15,4) (1ð,2) (5,5)\n");
if (scanf("%D(15,4) %D(1ð,2) %D(5,5)", &pdð1, &pdð2, &pdð3) != 3) {
printf("Error found in scanf\n");

} else {
printf("pdð1 = %D(15,4)\n", pdð1);
printf("pdð2 = %D(1ð,2)\n", pdð2);
printf("pdð3 = %D(5,5)\n", pdð3);

 }
printf("\nSecond time :------------------------------\n");
printf("Enter three fixed-point decimal number\n");

 printf(" (15,4) (1ð,2) (5,5)\n");
if (scanf("%D(15,4) %D(1ð,2) %D(5,5)", &pdð1, &pdð2, &pdð3) != 3) {
printf("Error found in scanf\n");

} else {
printf("pdð1 = %D(15,4)\n", pdð1);
printf("pdð2 = %D(1ð,2)\n", pdð2);
printf("pdð3 = %D(5,5)\n", pdð3);

 }
 return(ð);
}

Output

 C/C++ Run-Time Library Reference 39

 fscanf - scanf - sscanf

First time :-------------------------------
Enter three fixed-point decimal number
(15,4) (1ð,2) (5,5)

123456789ð1.2345 -987.6 .2468ð
pdð1 = 123456789ð1.2345
pdð2 = -987.6ð
pdð3 = ð.2468ð

Second time :------------------------------
Enter three fixed-point decimal number
(15,4) (1ð,2) (5,5)

123456789ð13579.2468ð 123.456789ð 987
pdð1 = 123456789ð1.3579
pdð2 = 123.45
pdð3 = ð.987ðð

CBC3BF46

/\ CBC3BF46
The next example opens the file myfile.dat for reading and then scans
this file for a string, a long integer value, a character, and a

 floating-point value.
 \/
#include <stdio.h>
#define MAX_LEN 8ð

int main(void)
{
 FILE \stream;
 long l;
 float fp;

char s[MAX_LEN + 1];
 char c;

stream = fopen("myfile.dat", "r");

/\ Put in various data. \/
fscanf(stream, "%s", &s[ð]);
fscanf(stream, "%ld", &l);
fscanf(stream, "%c", &c);
fscanf(stream, "%f", &fp);

printf("string = %s\n", s);
printf("long double = %ld\n", l);
printf("char = %c\n", c);
printf("float = %f\n", fp);

}

Output

If myfile.dat contains abcdefghijklmnopqrstuvwxyz 343.2, then the expected
output is:

string = abcdefghijklmnopqrstuvwxyz
long double = 343
char = .
float = 2.ðððððð

CBC3BS32

40 OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 fscanf - scanf - sscanf

/\ CBC3BS32
This example uses sscanf() to read various data from the string
tokenstring, and then displays the data.

 \/
#include <stdio.h>
#define SIZE 81

int main(void)
{
char \tokenstring = "15 12 14";
int i;
float fp;
char s[SIZE];
char c;

/\ Input various data \/
printf("No. of conversions=%d\n",

sscanf(tokenstring, "%s %c%d%f", s, &c, &i, &fp));

/\ If there were no space between %s and %c, \/
/\ sscanf would read the first character following \/
/\ the string, which is a blank space. \/

/\ Display the data \/
printf("string = %s\n",s);
printf("character = %c\n",c);
printf("integer = %d\n",i);
printf("floating-point number = %f\n",fp);

}

Output

You would see this output from example CBC3BS32.

No. of conversions = 4
string = 15
character = 1
integer = 2
floating-point number = 14.ðððððð

 Related Information
� “Internationalization: Locales and Character Sets” in the OS/390 C/C++ Pro-

gramming Guide
 � “locale.h”
 � “stdio.h”
� “fprintf() - printf() - sprintf() — Format and Write Data”
� “localtime() — Convert Time and Correct for Local Time”
� “setlocale() — Set Locale”

 C/C++ Run-Time Library Reference 41

 gcvt

gcvt() — Convert Double to String

 Standards
Standards / Extensions C or C++ Dependencies

XPG4.2 both

 Format
#define _XOPEN_SOURCE_EXTENDED 1
#include <stdlib.h>

char \gcvt(double x, int ndigit,
 char \buf);

 General Description
| The gcvt() function converts double floating-point argument values to floating-point
| output strings. The gcvt() function has been extended to determine the floating-
| point format (hexadecimal floating-point or IEEE floating-point) of double argument
| values by using __isBFP().

| OS/390 (C/C++) formatted output functions, including the gcvt() function, convert
| IEEE floating-point infinity and NaN argument values to special infinity and NaN
| floating-point number output sequences. See “fprintf Family of of Formatted Output
| Functions” on page 28 for a description of the special infinity and Nan output
| sequences.

The gcvt() function converts x to a null-terminated string (similar to the %g format of
“fprintf() - printf() - sprintf() — Format and Write Data” on page 23) in the array
pointed to by buf and returns buf. It produces ndigit significant digits (limited to an
unspecified value determined by the precision of a double) in %f if possible, or %e
(scientific notation) otherwise. A minus sign is included in the returned string if
value is less than 0. A radix character is included in the returned string if value is
not a whole number. Trailing zeros are suppressed where value is not a whole
number. The radix character is determined by the current locale. If “setlocale()
—Set Locale” has not been called successfully, the default locale, “POSIX”, is
used. The default locale specifies a period (.) as the radix character. The
LC_NUMERIC category determines the value of the radix character within the
current locale.

 Returned Value
If it succeeds, gcvt() returns the character equivalent of x as specified above.

If the conversion fails, gcvt() returns NULL.

 Related Information
 � “stdlib.h”
� “ecvt() —Convert Double to String”
� “fcvt() —Convert Double to String”

42 OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 strfmon

strfmon() — Convert Monetary Value to String

 Standards
Standards / Extensions C or C++ Dependencies

XPG4
XPG4.2

both

 Format
#include <monetary.h>

int strfmon(char \s, size_t maxsize, const char \format, ...);

 General Description
| strfmon() produces a formatted monetary output string from a double argument. It
| has been extended to determine floating-point argument format (hexadecimal
| floating-point or IEEE floating-point) using the __isBFP() function.

| Note: In IEEE floating-point mode, denormal, infinity and NaN argument values
| are out of range.

Places characters into the array pointed to by *s as controlled by the string pointed
to by format. No more than maxsize characters are placed into the array.

The character string format contains two types of objects: plain characters, which
are copied to the output array, and directives, each of which results in the fetching
of zero or more arguments that are converted and formatted. The results are unde-
fined if there are insufficient arguments for the format. If the format is exhausted
while arguments remain, the excess arguments are simply ignored. If objects
pointed to by s and format overlap, the behavior is undefined.

The directive (conversion specification) consists of the following sequence:

1. A % character

2. Optional flags: =f, ^, !, then +, C, or (

3. Optional field width (may be preceded by w

4. Optional left precision: #n

5. Optional right precision: .p

6. Required conversion character to indicate what conversion should be
performed: i or n

Each directive is replaced by the appropriate characters, as described in the fol-
lowing list:

%i The double argument is formatted according to the locale's interna-
tional currency format (for example, in USA: USD 1,234.56).

%n The double argument is formatted according to the locale's national
currency format (for example, in USA: $1,234.56).

%% is replaced by %. No argument is converted.

The following optional conversion specifications may immediately follow the initial %
of a directive:

 C/C++ Run-Time Library Reference 43

 strfmon

=f A flag, used in conjunction with the maximum digits specification #n
(see below), specifies that the character f should be used as the
numeric fill character. The default numeric fill character is the space
character. This option does not affect the other fill operations that
always use space as the fill character.

^ A flag. Do not format the currency amount with thousands grouping
characters. The default is to insert the grouping characters if defined
for the current locale.

Note: The code point for the ^ character will be determined
according to the current LC_SYNTAX category.

+ | C | (A flag, specifies the style of representing positive and negative cur-
rency amounts. Only one of +, C, or (may be specified. If + is speci-
fied, the locale's equivalent of + and − are used (for example, in USA:
the empty (null) string if positive and - if negative). If C is specified,
the locale's equivalent of DB for negative and CR for positive are
used. If (is specified, the locale's equivalent of enclosing negative
amounts within parentheses is used. If this option is not included, a
default specified by the current locale is used.

[−]w The field width. The decimal digit string w specifies a minimum field
width in which the result of the conversion is right-justified (or left-
justified if the optional flag “−” is specified).

#n The left precision. The decimal digit string n specifies the maximum
number of digits expected to be formatted to the left of the radix char-
acter. This option can be used to keep the formatted output from mul-
tiple calls to the strfmon() aligned in the same columns. It can also be
used to fill unused positions with a special character as in $***123.45.
This option causes an amount to be formatted as if it has the number
of digits specified by n. If more digit positions are required than the
number specified, conversion specification is ignored. Digit positions in
excess of those actually required are filled with the numeric fill char-
acter. (See the =f specification above.)

If the thousands grouping is enabled, the behavior is:

1. Format the number as if it is an n digit number.

2. Insert fill characters to the left of the leftmost digit (for example,
$0001234.56 or $***1234.56)

3. Insert the separator character (for example, $0,001,234.56 or
$*,**1,234.56)

4. If the fill character is not the digit zero, the separators are
replaced by the fill character (for example, $****1,234.56).

To ensure alignment, any characters appearing before or after the
number in the formatted output such as currency or sign symbols are
padded as necessary with space characters to make their positive and
negative formats an equal length.

Note: The code point for the # character (in #n) will be determined
according to the current LC_SYNTAX category.

.p The right precision. The decimal digit string p specifies the number of
digits after the radix character. If the value of the precision p is zero,
no radix character appears. If this option is not included, a default

44 OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 strfmon

specified by the current locale is used. The amount being formatted is
rounded to the specified number of digits prior to formatting.

! A flag used to suppress the currency symbol from the output conver-
sion.

Note: The code point for the ! character is determined according to
the current LC_SYNTAX category.

The LC_MONETARY category of the program's locale affects the behavior of this
function including the monetary radix character (which is different from the numeric
radix character affected by the LC_NUMERIC category), the thousands (or alterna-
tive grouping) separator, the currency symbols and formats. The international cur-
rency symbol must be in accordance with those specified in ISO 4217 Codes for
the representation of currencies and funds.

 Returned Value
If the total number of resulting bytes including the terminating null character is not
more than maxsize, the strfmon() function returns the number of bytes placed into
the array pointed to by *s, not including the terminating null character. Otherwise, -1
is returned , the contents of the array are indeterminate and errno is set to indicate
the error.

E2BIG Conversion stopped due to lack of space in the buffer

 Example
CBC3BS41

/\ CBC3BS41 \/
#include <localdef.h>
#include <monetary.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
 char string[1ðð]; /\ hold the string returned from strfmon() \/

double money = 1234.56;

if (setlocale(LC_ALL, "En_US") == NULL) {
printf("Unable to setlocale().\n");

 exit(1);
 }

strfmon(string, 1ðð, "%i", money);
 printf("%s\n", string);

strfmon(string, 1ðð, "%n", money);
 printf("%s\n", string);
}

 Related Information
 � “monetary.h”

 C/C++ Run-Time Library Reference 45

 strtod

strtod() — Convert Character String to Double

 Standards
Standards / Extensions C or C++ Dependencies

ISO C
XPG4
XPG4.2

both

 Format
#include <stdlib.h>

double strtod(const char \nptr, char \\endptr)

 General Description
Converts a part of a character string, pointed to by nptr, to a double. The parameter
nptr points to a sequence of characters that can be interpreted as a numerical
value of the type double.

| The double value is hexadecimal floating-point or IEEE floating-point format
| depending on the floating-point mode of the thread invoking the strtod() function.
| This function uses __isBFP() to determine the floating-point mode of the invoking
| thread.

| See the “fscanf Family of Formatted Input Functions” on page 35 for a description
| of special infinity and NaN sequences recognized by OS/390 formatted input func-
| tions, including atof() and strtod() in IEEE floating-point mode.

The strtod() function breaks the string into three parts:

1. A sequence of white-space characters (as specified for the current locale, see
isspace())

2. The sequence of characters of the floating-point constant format (the subject
string)

3. A sequence of unrecognized characters (including a null character).

The function then attempts to convert the subject string into the floating-point
number. The format of the expected string is as follows:

55─ ──┬ ┬──────────── ──┬ ┬───── ──┬ ┬─────────────────────────── ─────────5
 └ ┘─whitespace─ ├ ┤─ + ─ ├ ┤ ─digits─ ──┬ ┬─── ──┬ ┬────────

└ ┘─ – ─ │ │└ ┘─.─ └ ┘─digits─
 └ ┘─.──digits─────────────────

5─ ──┬ ┬──────────────────────── ─────────────────────────────────────5%
 └ ┘ ──┬ ┬─e─ ──┬ ┬───── ─digits─

└ ┘─E─ ├ ┤─ + ─
└ ┘─ – ─

The subject string is the longest string that matches the expected form.

The pointer to the last string successfully converted is stored in the object pointed
to by endptr, provided that endptr is not a NULL pointer. If the subject string is

46 OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 strtod

empty or it does not have the expected form, then no conversion is performed. The
value of nptr is stored in the object pointed to by endptr.

 Returned Value
Returns the value of the floating-point number, except when the representation
causes an underflow or overflow. In an overflow, it returns -HUGE_VAL or +HUGE_VAL.
In an underflow, it returns the value 0. If no conversion is performed, strtod()
returns the value 0. In both cases, errno is set to ERANGE, depending on the base
of the value.

 Example
CBC3BS53

/\ CBC3BS53
This example converts a string to a double value. It prints out the
converted value and the substring that stopped the conversion.

 \/
#include <stdlib.h>
#include <stdio.h>

int main(void)
{

char \string, \stopstring;
 double x;

string = "3.1415926This stopped it";
x = strtod(string, &stopstring);
printf("string = %s\n", string);

 printf(" strtod = %f\n", x);
 printf(" Stopped scan at %s\n\n", stopstring)

string = "1ððergs";
x = strtod(string, &stopstring);
printf("string = \"%s\"\n", string);

 printf(" strtod = %f\n", x);
 printf(" Stopped scan at \"%s\"\n\n", stopstring);
}

Output

string = 3.1415926This stopped it
strtod = 3.141593
Stopped scan at This stopped it

string = 1ððergs
strtod = 1ðð.ðððððð
Stopped scan at ergs

 Related Information
 � “stdlib.h”
� “atof() —Convert Character String to Double”
� “atoi() —Convert Character String to Integer”
� “atol() —Convert Character String to Long”
� “fscanf() - scanf() - sscanf() —Read and Format Data”
� “strtol(0) —Convert Character String to Long”
� “strtoul() —Convert String to Unsigned Integer”

 C/C++ Run-Time Library Reference 47

 wcstod

wcstod() — Convert Wide-Character String to a Double Floating-Point

 Standards
Standards / Extensions C or C++ Dependencies

ISO C Amendment
XPG4
XPG4.2

both

 Format
#include <wchar.h>

double wcstod(const wchar_t \nptr, wchar_t \\endptr);

 General Description
| The wcstod() function converts a wchar_t * type floating-point number input string to
| a double value. The double value is hexadecimal floating-point or IEEE floating-
| point format depending on the floating-point mode of the thread invoking wcstod().
| The wcstod() function uses __isBFP() to determine the floating-point format
| (hexadecimal floating-point or IEEE floating-point) of the invoking thread.

| See the “fscanf Family of Formatted Input Functions” on page 35 for a description
| of special infinity and NaN sequences recognized by OS/390 formatted input func-
| tions, including wcstod() in IEEE floating-point mode.

Converts the initial portion of the wide-character string pointed to by nptr to double
representation. First it decomposes the input string into three parts:

1. An initial, possibly empty, sequence of white space characters (as specified by
the iswspace() function)

2. A subject sequence resembling a floating-point constant.

3. A final string of one or more unrecognized characters, including the terminating
NULL character of the input string.

Then it attempts to convert the subject sequence to a floating-point number, and
returns the result.

The expected form of the subject sequence is an optional plus or minus sign, then
a non-empty sequence of digits optionally containing a decimal-point wide char-
acter, then an optional exponent part as defined in ISO/IEC 9899: subclause
6.1.3.1, but with no floating suffix. The subject sequence is defined as the longest
initial subsequence of the input wide-character string, starting with the first non-
white space wide character, that is of the expected form. The subject sequence
contains no wide characters if the input wide-character string is empty or consists
entirely of white space wide characters, or if the first non-white space wide char-
acter is other than a sign, a digit, or a decimal-point wide character.

If the subject sequence has the expected form, the sequence of wide characters
starting with the first digit or the decimal-point wide character (whichever occurs
first) is interpreted as a floating constant according to the rules of ISO/IEC 9899:
subclause 6.1.3.1, except the decimal-point wide character is used in place of a
period, and if neither an exponent part nor a decimal-point wide character appears,
a decimal point is assumed to follow the last digit in the wide-character string. If the
subject sequence begins with a minus sign, the value resulting from the conversion

48 OS/390 C/C++ Run-Time Library Reference IEEE Floating-Point Supplement

 wcstod

is negated. A pointer to the final wide-character string is stored in the object
pointed to by endptr, provided that endptr is not a NULL pointer.

In a locale other than the C locale, additional implementation-defined subject
sequence forms may be accepted.

If the subject sequence is empty or does not have the expected form, no conver-
sion is performed; the value of nptr is stored in the object pointed to by endptr,
provided that endptr is not a null pointer.

The behavior of this wide-character function is affected by the LC_CTYPE category
of the current locale. If you change the category, undefined results can occur.

 Returned Value
Returns the converted value, if any. If no conversion could be performed, zero is
returned. If the correct value is outside the range of representable values, plus or
minus HUGE_VAL is returned—according to the sign of the value—and the value
of the macro ERANGE is stored in errno. If the correct value would cause under-
flow, zero is returned and the value of the macro ERANGE is stored in errno.

 Example
CBC3BW21

/\ CBC3BW21 \/
#include <stdio.h>
#include <wchar.h>

int main(void)
{
 wchar_t \wcs;
 wchar_t \stopwcs;
 double d;

wcs = L"3.1415926This stopped it";
d = wcstod(wcs, &stopwcs);
printf("wcs = %ls \n", wcs);

 printf(" wcstod = %f\n", d);
 printf(" Stopped scan at %ls \n", stopwcs);
}

 Related Information
 � “wchar.h”

 C/C++ Run-Time Library Reference 49

Communicating Your Comments to IBM

OS/390
OS/390 C/C++ Run-Time Library Reference
IEEE Floating-Point Supplement

Publication No.

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM. Whichever method you
choose, make sure you send your name, address, and telephone number if you
would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization,
subject matter, or completeness of this book. However, the comments you send
should pertain to only the information in this manual and the way in which the infor-
mation is presented. To request additional publications, or to ask questions or
make comments about the functions of IBM products or systems, you should talk to
your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

If you are mailing a reader's comment form (RCF) from a country other than the
United States, you can give the RCF to the local IBM branch office or IBM repre-
sentative for postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

– FAX: (International Access Code)+1+914+432-9405

� If you prefer to send comments electronically, use this network ID:

– IBM Mail Exchange: USIB6TC9 at IBMMAIL
– Internet e-mail: mhvrcfs@us.ibm.com
– World Wide Web: http://www.s390.ibm.com/os390

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies

Optionally, if you include your telephone number, we will be able to respond to your
comments by phone.

Reader's Comments — We'd Like to Hear from You

OS/390
OS/390 C/C++ Run-Time Library Reference
IEEE Floating-Point Supplement

Publication No.

You may use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you. Your comments will be sent to the author's
department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Today's date:

What is your occupation?

Newsletter number of latest Technical Newsletter (if any) concerning this publication:

How did you use this publication?

Is there anything you especially like or dislike about the organization, presentation, or writing in this
manual? Helpful comments include general usefulness of the book; possible additions, deletions, and
clarifications; specific errors and omissions.

Page Number: Comment:

Name Address

Company or Organization

Phone No.

[] As an introduction [] As a text (student)

[] As a reference manual [] As a text (instructor)

[] For another purpose (explain)

Cut or Fold
Along Line

Cut or Fold
Along Line

Reader's Comments — We'd Like to Hear from You
 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
522 South Road
Poughkeepsie NY 12601-5400

Fold and Tape Please do not staple Fold and Tape

IBM

Program Number: 5647-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

