

OS/390 IBM

Language Environment for OS/390 & VM
Vendor Interfaces
– IEEE Floating-Point Supplement

 SY28-1152-04

OS/390 IBM

Language Environment for OS/390 & VM
Vendor Interfaces
– IEEE Floating-Point Supplement

 SY28-1152-04

 Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page v.

Fifth Edition, September 1998, Supplement

| This book is a supplement to SY28-1152-04.

This edition applies to Language Environment in OS/390 Version 2 Release 6 (5647-A01) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

IBM welcomes your comments. A form for readers' comments may be provided at the back of this publication, or you may address
your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
522 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States and Canada): 1+914+432-9405
FAX (Other Countries): Your International Access Code +1+914+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
IBM Mail Exchange: USIB6TC9 at IBMMAIL
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.s390.ibm.com/os390/

If you would like a reply, be sure to include your name, address, telephone number, or FAX number. Make sure to include the
following in your comment or note:

� Title and order number of this book
� Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . v
Programming Interface Information . v
Trademarks . vi

About This Book . vii

Summary of Changes . ix

Chapter 1. IEEE Floating-Point . 1
Introduction . 1
Functions . 2

__chkbfp() — Check IEEE Facilities Usage . 2
__fp_btoh() — Convert from IEEE Floating-Point to Hexadecimal

Floating-Point . 3
__fp_cast() — Cast between Floating-Point Data Types 5
__fpc_rd() — Read Floating-Point Control Register 6
__fpc_rs() — Read Floating-Point Control Register and Change Rounding

Mode Field . 7
__fpc_rw() — Read and Write the Floating-Point Control Register 8
__fpc_sm() — Set Floating-Point Control Register Rounding Mode Field . . . 9
__fpc_wr() — Write the Floating-Point Control Register 10
__fp_htob() — Convert from Hexadecimal Floating-Point to IEEE

Floating-Point . 11
__fp_level() — Determine Type of IEEE Facilities Available 13
__fp_read_rnd() — Determine Rounding Mode 14
__fp_setmode() — Set IEEE or Hexadecimal Mode 15
__fp_swap_rnd() — Swap Rounding Mode 16
__isBFP() — Determine Application Floating-Point Mode 18

 Copyright IBM Corp. 1998 iii

iv Language Environment for OS/390 & VM Vendor Interfaces – IEEE Floating-Point Supplement

 Notices

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products,
programs, or services, except those expressly designated by IBM, are the user's
responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

| IBM Director of Licensing
| IBM Corporation
| North Castle Drive
| Armonk, NY 10504-1785
| USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

 IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400

 USA
Attention: Information Request

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Any pointers in this publication to non-IBM Web sites are provided for convenience
only, and do not in any manner serve as an endorsement of these Web sites. IBM
accepts no responsibility for the content or use of non-IBM Web sites specifically
mentioned in this publication or accessed through an IBM Web site that is
mentioned in this publication.

Programming Interface Information
This book documents intended Programming Interfaces that allow the customer to
write programs to obtain the services of Language Environment in OS/390.

 Copyright IBM Corp. 1998 v

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

IEEE is a trademark in the United States and other countries of the Institute of
Electrical and Electronics Engineers, Inc.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks
of others.

IBM IBMLink Language Environment
OS/390 VM/ESA

vi Language Environment for OS/390 & VM Vendor Interfaces – IEEE Floating-Point Supplement

About This Book

IBM OS/390 Language Environment for OS/390 & VM (also called Language
Environment) provides common services and language-specific routines in a single
run-time environment for C, C++, COBOL, Fortran (OS/390 only; no support for
VM/ESA, OS/390 UNIX System Services, or CICS), PL/I, and assembler
applications. It offers consistent and predictable results for language applications,
independent of the language in which they are written.

Language Environment is the prerequisite run-time environment for applications
generated with the following IBM compiler products:

 � OS/390 C/C++
� C for VM/ESA
� C/C++ Compiler for MVS/ESA
� AD/Cycle C/370 Compiler
� COBOL for OS/390 & VM
� COBOL for MVS & VM (formerly COBOL/370)
� PL/I for MVS & VM
� AD/Cycle PL/I for MVS & VM
� VS FORTRAN and FORTRAN IV (in compatibility mode)

Language Environment supports, but is not required for, an interactive debug tool
for debugging applications in your native OS/390 environment. The IBM interactive
Debug Tool is available with OS/390 or with the latest releases of the C/C++,
COBOL, and PL/I compiler products.

Language Environment supports, but is not required for, VS Fortran Version 2
compiled code (OS/390 only).

Language Environment consists of the common execution library (CEL) and the
run-time libraries for C/C++, COBOL, Fortran, and PL/I.

This book documents support for the Institute of Electrical and Electronics
Engineers (IEEE) floating-point data type, in conformance with the IEEE 754
standard. This support applies primarily to the OS/390 C/C++ components of
Language Environment.

 Copyright IBM Corp. 1998 vii

viii Language Environment for OS/390 & VM Vendor Interfaces – IEEE Floating-Point Supplement

Summary of Changes

| Summary of Changes
| for SY28-1152-04
| for OS/390 Version 2 Release 6
| - IEEE Floating-Point Supplement

| The following changes apply only to OS/390 Version 2 Release 6.

| New Information

| Support for IEEE floating-point has been added to the C/C++ components of
| Language Environment.

 Copyright IBM Corp. 1998 ix

x Language Environment for OS/390 & VM Vendor Interfaces – IEEE Floating-Point Supplement

 IEEE Floating-Point

 Chapter 1. IEEE Floating-Point

 Introduction
The IBM S/390 Generation 5 Server includes support for IEEE binary floating-point
(IEEE floating-point) as defined by the ANSI/IEEE Standard 754-1985, IEEE
Standard for Binary Floating-Point Arithmetic. Starting with Version 2 Release 6,
OS/390 (including the Language Environment and C/C++ components) has added
support for IEEE floating-point.

Notes:

1. You must have OS/390 Release 6 to use the IEEE floating-point instructions. In
Release 6, the base control program (BCP) is enhanced to support the new
IEEE floating-point hardware in the IBM S/390 Generation 5 Server. This
enables programs running on OS/390 Release 6 to use the IEEE floating-point
instructions and 16 floating-point registers. In addition, the BCP provides
simulation support for all the new floating-point hardware instructions. This
enables applications that make light use of IEEE floating-point, and can tolerate
the overhead of software simulation, to execute on OS/390 Release 6 without
requiring an IBM S/390 Generation 5 Server.

2. The terms binary floating-point and IEEE floating-point are used
interchangeably. The abbreviations BFP and HFP, which are used in some
function names, refer to binary floating-point and S/390 hexadecimal
floating-point (hexadecimal floating-point), respectively.

The C/C++ compiler provides a FLOAT option to select the format of floating-point
numbers produced in a compile unit. The FLOAT option allows you to select either
IEEE floating-point or hexadecimal floating-point format. For information on the
C/C++ compiler options see the OS/390 C/C++ User’s Guide.

The C/C++ run-time library interfaces, which formerly supported only hexadecimal
floating-point format, have been changed in OS/390 Version 2 Release 6 to support
both IEEE floating-point and hexadecimal floating-point formats. These interfaces
are documented in the OS/390 C/C++ Run-Time Library Reference.

The primary documentation for the IEEE floating-point support is contained in the
Enterprise Systems Architecture/390 Principles of Operation, and the OS/390
C/C++ User’s Guide.

IEEE floating-point is provided on S/390 primarily to enhance interoperability and
portability between S/390 and other platforms. It is anticipated that IEEE
floating-point will be most commonly used for new and ported applications, and in
emerging environments, such as Java. Customers should not migrate existing
applications that use hexadecimal floating-point to IEEE floating-point, unless there
is a specific reason (such as a need to interoperate with a non-S/390 platform).

IBM does not recommend mixing floating-point formats in an application. However,
for applications which must handle both formats, the C/C++ run-time library does
provide some support which is described below.

 Copyright IBM Corp. 1998 1

 __chkbfp

 Functions

__chkbfp() — Check IEEE Facilities Usage

 Standards
Standards / Extensions C or C++ Dependencies

both OS/390 V2R6

 Format
#include <_Ieee754.h>
int __chkbfp(void);

 General Description
The system sets a flag in the secondary task control block (STCB) when IEEE
floating-point hardware facilities or simulated facilities (including additional
floating-point (AFP) registers in hexadecimal floating-point) are first accessed by a
task. The __chkbfp() function returns the state of this flag.

 Returned Value
0 IEEE floating-point facilities (including AFP registers in hexadecimal

floating-point mode) have not been used by the task.

1 IEEE floating-point facilities have been used by the task.

 Related Information
� “__fp_level() — Determine Type of IEEE Facilities Available” on page 13

2 Language Environment for OS/390 & VM Vendor Interfaces – IEEE Floating-Point Supplement

 __fp_btoh

__fp_btoh() — Convert from IEEE Floating-Point to Hexadecimal
Floating-Point

 Standards
Standards / Extensions C or C++ Dependencies

both OS/390 V2R6

 Format
#include <_Ieee754.h>
int __fp_btoh(void \src_ptr, int src_type,

void \trg_ptr, int trg_type,
 int rmode);

 General Description
The __fp_btoh() function converts data in IEEE floating-point format, pointed to by
src_ptr, to hexadecimal floating-point format, and stores the hexadecimal
floating-point value at the location pointed to by trg_ptr. src_ptr and trg_ptr point to
C floating-point variables of type float, double, or long double as indicated by
src_type and trg_type. Valid values for src_type and trg_type are _FP_FLOAT,
_FP_DOUBLE, and _FP_LONG_DOUBLE. rmode specifies rounding mode for
inexact mappings. Valid values are:

Value Description

_FP_BH_NR No rounding

_FP_BH_RZ Rounding toward zero

_FP_BH_BRN Biased round to nearest

_FP_BH_RN Round to nearest

_FP_BH_RP Round toward +infinity

_FP_BH_RM Round toward −infinity

 Returned Value
If invalid src_type, trg_type, or rmode is specified, __fp_btoh() returns −1.
Otherwise, it returns the following values:

0 Zero (IEEE floating-point +zero or −zero value mapped to hexadecimal
floating-point +zero or −zero value, respectively).

1 Underflow (IEEE floating-point value is too small to map to hexadecimal
floating-point). In this case *trg_ptr is set to the hexadecimal
floating-point value corresponding to the smallest convertible IEEE
floating-point value.

2 Success (with rounding performed as indicated by rmode).

3 Overflow (IEEE floating-point value is too large to map to hexadecimal
floating-point). In this case *trg_ptr is set to the hexadecimal
floating-point value corresponding to the largest convertible IEEE
floating-point value.

 Chapter 1. IEEE Floating-Point 3

 __fp_btoh

 Related Information
� “__fp_htob() — Convert from Hexadecimal Floating-Point to IEEE

Floating-Point” on page 11

4 Language Environment for OS/390 & VM Vendor Interfaces – IEEE Floating-Point Supplement

 __fp_cast

__fp_cast() — Cast between Floating-Point Data Types

 Standards
Standards / Extensions C or C++ Dependencies

 both OS/390 V2R6

 Format
#include <_Ieee754.h>
int __fp_cast(int mode, void \src_ptr, int src_type,

void \trg_ptr, int trg_type);

 General Description
The __fp_cast() function casts between C floating-point data types, when the data
format does not match the format specified by the FLOAT compiler option. The
mode parameter indicates the format of source and target floating-point values
pointed to by src_ptr and trg_ptr. Valid values for the mode parameter are
_FP_HFP_MODE for hexadecimal floating-point format and _FP_BFP_MODE for
IEEE floating-point format.

src_type and trg_type indicate the C data type (float, double, or long double) of the
source and target floating-point values, respectively. Valid values for src_type and
trg_type are _FP_FLOAT, _FP_DOUBLE or _FP_LONG_DOUBLE.

 Returned Value
If invalid values for mode, src_type or trg_type are specified, __fp_cast() returns −1.
Otherwise, it performs the requested cast and returns 0.

 Related Information
� “__fp_setmode() — Set IEEE or Hexadecimal Mode” on page 15
� “__isBFP() — Determine Application Floating-Point Mode” on page 18

 Chapter 1. IEEE Floating-Point 5

 __fpc_rd

__fpc_rd() — Read Floating-Point Control Register

 Standards
Standards / Extensions C or C++ Dependencies

both OS/390 V2R6

 Format
#include <_Ieee754.h>
void __fpc_rd(_FP_fpcreg_t \fpc_ptr);

 General Description
The __fpc_rd() function stores the contents of the floating-point control (FPC)
register at the location pointed to by fpc_ptr.

 Returned Value
None

 Related Information
� “__fpc_rs() — Read Floating-Point Control Register and Change Rounding

Mode Field” on page 7
� “__fpc_rw() — Read and Write the Floating-Point Control Register” on page 8
� “__fpc_sm() — Set Floating-Point Control Register Rounding Mode Field” on

page 9
� “__fpc_wr() — Write the Floating-Point Control Register” on page 10
� “__fp_read_rnd() — Determine Rounding Mode” on page 14

6 Language Environment for OS/390 & VM Vendor Interfaces – IEEE Floating-Point Supplement

 __fpc_rs

__fpc_rs() — Read Floating-Point Control Register and Change
Rounding Mode Field

 Standards
Standards / Extensions C or C++ Dependencies

both OS/390 V2R6

 Format
#include <_Ieee754.h>
void __fpc_rs(_FP_fpcreg_t \cur_ptr, _FP_rmode_t rmode);

 General Description
The __fpc_rs() function stores the current contents of the floating-point control
(FPC) register at the location pointed to by cur_ptr and then sets the rounding
mode field of the FPC based on the value specified by rmode as follows:

Value Rounding Mode

_RMODE_RN Round to nearest

_RMODE_RZ Round toward zero

_RMODE_RP Round toward +Infinity

_RMODE_RM Round toward −Infinity

Note: When processing IEEE floating-point values, the C/C++ run-time library
math functions require IEEE rounding mode of round to nearest. The C/C++
run-time library takes care of setting round to nearest rounding mode while
executing math functions and restoring application rounding mode before
returning to the caller.

 Returned Value
None

 Related Information
� “__fpc_rd() — Read Floating-Point Control Register” on page 6
� “__fpc_rw() — Read and Write the Floating-Point Control Register” on page 8
� “__fpc_sm() — Set Floating-Point Control Register Rounding Mode Field” on

page 9
� “__fpc_wr() — Write the Floating-Point Control Register” on page 10
� “__fp_swap_rnd() — Swap Rounding Mode” on page 16

 Chapter 1. IEEE Floating-Point 7

 __fpc_rw

__fpc_rw() — Read and Write the Floating-Point Control Register

 Standards
Standards / Extensions C or C++ Dependencies

both OS/390 V2R6

 Format
#include <_Ieee754.h>
void __fpc_rw(_FP_fpcreg_t \cur_ptr, _FP_fpcreg_t \new_ptr);

 General Description
The __fpc_rw() function stores the current contents of the floating-point control
(FPC) register at the location pointed to by cur_ptr and then replaces the contents
of the floating-point control (FPC) register with the value pointed to by new_ptr.

Note: When processing IEEE floating-point values, the C/C++ run-time library
math functions require IEEE rounding mode of round to nearest. The C/C++
run-time library takes care of setting round to nearest rounding mode while
executing math functions and restoring application rounding mode before
returning to the caller.

 Returned Value
None

 Related Information
� “__fpc_rd() — Read Floating-Point Control Register” on page 6
� “__fpc_rs() — Read Floating-Point Control Register and Change Rounding

Mode Field” on page 7
� “__fpc_sm() — Set Floating-Point Control Register Rounding Mode Field” on

page 9
� “__fpc_wr() — Write the Floating-Point Control Register” on page 10
� “__fp_swap_rnd() — Swap Rounding Mode” on page 16

8 Language Environment for OS/390 & VM Vendor Interfaces – IEEE Floating-Point Supplement

 __fpc_sm

__fpc_sm() — Set Floating-Point Control Register Rounding Mode
Field

 Standards
Standards / Extensions C or C++ Dependencies

both OS/390 V2R6

 Format
#include <_Ieee754.h>
void __fpc_sm(_FP_rmode_t rmode);

 General Description
The __fpc_sm() function changes the rounding mode field of the floating-point
control (FPC) register based on the value of rmode as follows:

Value Description

_RMODE_RN Round to nearest

_RMODE_RZ Round toward zero

_RMODE_RP Round toward +infinity

_RMODE_RM Round toward −infinity

Note: When processing IEEE floating-point values, the C/C++ run-time library
math functions require IEEE rounding mode of round to nearest. The C/C++
run-time library takes care of setting round to nearest rounding mode while
executing math functions and restoring application rounding mode before
returning to the caller.

 Returned Value
None

 Related Information
� “__fpc_rd() — Read Floating-Point Control Register” on page 6
� “__fpc_rs() — Read Floating-Point Control Register and Change Rounding

Mode Field” on page 7
� “__fpc_wr() — Write the Floating-Point Control Register” on page 10
� “__fpc_rw() — Read and Write the Floating-Point Control Register” on page 8
� “__fp_swap_rnd() — Swap Rounding Mode” on page 16

 Chapter 1. IEEE Floating-Point 9

 __fpc_wr

__fpc_wr() — Write the Floating-Point Control Register

 Standards
Standards / Extensions C or C++ Dependencies

both OS/390 V2R6

 Format
#include <_Ieee754.h>
void __fpc_wr(_FP_fpcreg_t \fpc_ptr);

 General Description
The __fpc_wr() function replaces the contents of the floating-point control (FPC)
register with the value pointed to by fpc_ptr.

Note: When processing IEEE floating-point values, the C/C++ run-time library
math functions require IEEE rounding mode of round to nearest. The C/C++
run-time library takes care of setting round to nearest rounding mode while
executing math functions and restoring application rounding mode before
returning to the caller.

 Returned Value
None

 Related Information
� “__fpc_rd() — Read Floating-Point Control Register” on page 6
� “__fpc_rs() — Read Floating-Point Control Register and Change Rounding

Mode Field” on page 7
� “__fpc_rw() — Read and Write the Floating-Point Control Register” on page 8
� “__fpc_sm() — Set Floating-Point Control Register Rounding Mode Field” on

page 9
� “__fp_swap_rnd() — Swap Rounding Mode” on page 16

10 Language Environment for OS/390 & VM Vendor Interfaces – IEEE Floating-Point Supplement

 __fp_htob

__fp_htob() — Convert from Hexadecimal Floating-Point to IEEE
Floating-Point

 Standards
Standards / Extensions C or C++ Dependencies

both OS/390 V2R6

 Format
#include <_Ieee754.h>
int __fp_htob(void \src_ptr, int src_type,

void \trg_ptr, int trg_type,
 int rmode);

 General Description
The __fp_htob() function converts data in hexadecimal floating-point format, pointed
to by src_ptr, to IEEE floating-point format, and stores the IEEE floating-point value
at the location pointed to by trg_ptr. src_ptr and trg_ptr point to C floating-point
variables of type float, double, or long double as indicated by src_type and
trg_type. Valid values for src_type and trg_type are _FP_FLOAT, _FP_DOUBLE,
and _FP_LONG_DOUBLE. rmode specifies rounding mode for inexact mappings.
Valid values are:

Value Description

_FP_HB_NR No rounding

_FP_HB_RZ Rounding toward zero

_FP_HB_BRN Biased round to nearest

_FP_HB_RN Round to nearest

_FP_HB_RP Round toward +infinity

_FP_HB_RM Round toward −infinity

 Returned Value
If invalid src_type, trg_type, or rmode is specified, __fp_htob() returns −1.
Otherwise, it returns the following values:

0 Zero (hexadecimal floating-point +zero or −zero value mapped to IEEE
floating-point +zero or −zero value, respectively).

1 Underflow (hexadecimal floating-point value is too small to map to IEEE
floating-point). In this case *trg_ptr is set to the IEEE floating-point value
corresponding to the smallest convertible hexadecimal floating-point
value.

2 Success (with rounding performed as indicated by rmode).

3 Overflow (hexadecimal floating-point value is too large to map to IEEE
floating-point). In this case *trg_ptr is set to the IEEE floating-point value
corresponding to the largest convertible hexadecimal floating-point
value.

 Chapter 1. IEEE Floating-Point 11

 __fp_htob

 Related Information
� “__fp_btoh() — Convert from IEEE Floating-Point to Hexadecimal

Floating-Point” on page 3

12 Language Environment for OS/390 & VM Vendor Interfaces – IEEE Floating-Point Supplement

 __fp_level

__fp_level() — Determine Type of IEEE Facilities Available

 Standards
Standards / Extensions C or C++ Dependencies

both OS/390 V2R6

 Format
#include <_Ieee754.h>
int __fp_level(void);

 General Description
The system provides simulation of IEEE floating-point hardware (including
additional floating-point registers in hexadecimal mode). The __fp_level() function
determines the level of IEEE floating-point support available.

 Returned Value
0 No IEEE floating-point support available.

1 IEEE floating-point simulation is available.

2 IEEE floating-point hardware is available.

 Related Information
� “__chkbfp() — Check IEEE Facilities Usage” on page 2

 Chapter 1. IEEE Floating-Point 13

 __fp_read_rnd

__fp_read_rnd() — Determine Rounding Mode

 Standards
Standards / Extensions C or C++ Dependencies

both OS/390 V2R6

 Format
#include <float.h>
__fprnd_t __fp_read_rnd(void);

 General Description
For an application running in IEEE floating-point mode, the __fp_read_rnd() function
returns the current rounding mode indicated by the rounding mode field of the
floating-point control (FPC) register. For an application running in hexadecimal
floating-point mode, __fp_read_rnd() returns 0.

 Returned Value
For an application running in IEEE floating-point mode, __fp_read_rnd() returns the
following:

Value Rounding Mode

_FP_RND_RZ Round toward 0

_FP_RND_RN
Round to nearest

_FP_RND_RP
Round toward +infinity

_FP_RND_RM
Round toward −infinity

For an application running in hexadecimal floating-point mode, __fp_read_rnd()
returns 0.

 Related Information
� “__fp_setmode() — Set IEEE or Hexadecimal Mode” on page 15
� “__fp_swap_rnd() — Swap Rounding Mode” on page 16
� “__isBFP() — Determine Application Floating-Point Mode” on page 18

14 Language Environment for OS/390 & VM Vendor Interfaces – IEEE Floating-Point Supplement

 __fp_setmode

__fp_setmode() — Set IEEE or Hexadecimal Mode

 Standards
Standards / Extensions C or C++ Dependencies

both OS/390 V2R6

 Format
#include <_Ieee754.h>
void __fp_setmode(int mode);

 General Description
The __fp_setmode() function sets a flag to tell C/C++ run-time library functions
whether to interpret parameters as IEEE floating-point or hexadecimal floating-point
values based on the value of mode as follows:

Value Description

_FP_MODE_RESET Use the FLOAT compile option to determine the format of
floating-point parameters.

_FP_HFP_MODE Interpret parameters as hexadecimal floating-point values.

_FP_BFP_MODE Interpret parameters as IEEE floating-point values.

Note: The compiler defines the __BFP__ macro if the FLOAT(IEEE) compile
option is chosen. Otherwise, it undefines the __BFP__ macro. Headers
related to floating-point, <float.h>, <limits.h>, and <math.h>, use the
__BFP__ macro to select floating-point-type-specific bindings for functions
and constants at compile-time. Applications which use __fp_setmode() must
use the _FP_MODE_VARIABLE macro to prevent type-specific
compile-time binding of functions and constants as illustrated by the
following example:

 #define _FP_MODE_VARIABLE
 #include <float.h>
 #include <limits.h>
 #include <math.h>
 ...

 Returned Value
None

 Related Information
� “__fp_cast() — Cast between Floating-Point Data Types” on page 5
� “__fp_swap_rnd() — Swap Rounding Mode” on page 16
� “__isBFP() — Determine Application Floating-Point Mode” on page 18

 Chapter 1. IEEE Floating-Point 15

 __fp_swap_rnd

__fp_swap_rnd() — Swap Rounding Mode

 Standards
Standards / Extensions C or C++ Dependencies

both OS/390 V2R6

 Format
#include <float.h>
__fprnd_t __fp_swap_rnd(__fprnd_t rmode);

 General Description
For an application running in IEEE floating-point mode, the __fp_swap_rnd()
function returns the current rounding mode specified by the rounding mode field of
the floating-point control (FPC) register and sets the rounding mode field in the
FPC based on the value of rmode as follows:

Value Rounding Mode

_FP_RND_RZ Round toward 0

_FP_RND_RN
Round to nearest

_FP_RND_RP
Round toward +infinity

_FP_RND_RM
Round toward −infinity

Note: When processing IEEE floating-point values, the C/C++ run-time library
math functions require IEEE rounding mode of round to nearest. The C/C++
run-time library takes care of setting round to nearest rounding mode while
executing math functions and restoring application rounding mode before
returning to the caller.

For an application running in hexadecimal floating-point mode, __fp_swap_rnd()
returns 0.

 Returned Value
For an application running in IEEE floating-point mode, __fp_swap_rnd() function
returns the following:

Value Description

_FP_RND_RZ Round toward 0

_FP_RND_RN
Round to nearest

_FP_RND_RP
Round toward +infinity

_FP_RND_RM
Round toward −infinity

For an application running in hexadecimal floating-point mode, __fp_swap_rnd()
returns 0.

16 Language Environment for OS/390 & VM Vendor Interfaces – IEEE Floating-Point Supplement

 __fp_swap_rnd

 Related Information
� “__fp_read_rnd() — Determine Rounding Mode” on page 14
� “__fp_setmode() — Set IEEE or Hexadecimal Mode” on page 15
� “__isBFP() — Determine Application Floating-Point Mode” on page 18

 Chapter 1. IEEE Floating-Point 17

 __isBFP

__isBFP() — Determine Application Floating-Point Mode

 Standards
Standards / Extensions C or C++ Dependencies

both OS/390 V2R6

 Format
#include <_Ieee754.h>
int __isBFP(void)

 General Description
The __isBFP() function determines the application floating-point mode.

 Returned Value
__isBFP() returns 1 if the floating-point mode of the caller is IEEE, and returns 0 if
the floating-point mode of the caller is hexadecimal.

 Related Information
� “__fp_read_rnd() — Determine Rounding Mode” on page 14
� “__fp_setmode() — Set IEEE or Hexadecimal Mode” on page 15
� “__fp_swap_rnd() — Swap Rounding Mode” on page 16

18 Language Environment for OS/390 & VM Vendor Interfaces – IEEE Floating-Point Supplement

Communicating Your Comments to IBM

OS/390
Language Environment for OS/390 & VM
Vendor Interfaces
– IEEE Floating-Point Supplement

Publication No. SY28-1152-04

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM. Whichever method you
choose, make sure you send your name, address, and telephone number if you
would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization,
subject matter, or completeness of this book. However, the comments you send
should pertain to only the information in this manual and the way in which the
information is presented. To request additional publications, or to ask questions or
make comments about the functions of IBM products or systems, you should talk to
your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

If you are mailing a reader's comment form (RCF) from a country other than the
United States, you can give the RCF to the local IBM branch office or IBM
representative for postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

– FAX: (International Access Code)+1+914+432-9405

� If you prefer to send comments electronically, use this network ID:

– IBM Mail Exchange: USIB6TC9 at IBMMAIL
– Internet e-mail: mhvrcfs@us.ibm.com
– World Wide Web: http://www.s390.ibm.com/os390

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies

Optionally, if you include your telephone number, we will be able to respond to your
comments by phone.

Reader's Comments — We'd Like to Hear from You

OS/390
Language Environment for OS/390 & VM
Vendor Interfaces
– IEEE Floating-Point Supplement

Publication No. SY28-1152-04

You may use this form to communicate your comments about this publication, its organization, or subject
matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you. Your comments will be sent to the author's
department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM
representative or to the IBM branch office serving your locality.

Today's date:

What is your occupation?

Newsletter number of latest Technical Newsletter (if any) concerning this publication:

How did you use this publication?

Is there anything you especially like or dislike about the organization, presentation, or writing in this
manual? Helpful comments include general usefulness of the book; possible additions, deletions, and
clarifications; specific errors and omissions.

Page Number: Comment:

Name Address

Company or Organization

Phone No.

[] As an introduction [] As a text (student)

[] As a reference manual [] As a text (instructor)

[] For another purpose (explain)

Cut or Fold
Along Line

Cut or Fold
Along Line

Reader's Comments — We'd Like to Hear from You
SY28-1152-04 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
522 South Road
Poughkeepsie NY 12601-5400

Fold and Tape Please do not staple Fold and Tape

SY28-1152-04

IBM

Program Number: 5647-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SY28-1152-ð4

