
IBML

Program Directory for

IBM Language Environment for MVS & VM

With US English and Japanese

National Language Support

Release 05.00

Program Number 5688-198

for Use with
VM/ESA

Document Date: September 5th 1995

xxxx-yyyy-zz

 Note!

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page x.

This program directory, dated September 5th 1995, applies to IBM Language Environment for MVS & VM Release
05.00 (Language Environment), Program Number 5688-198 for the following:

A form for reader ′s comments appears at the back of this publication. When you send information to IBM, you
grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without
incurring any obligation to you.

 Copyright International Business Machines Corporation 1991, 1995. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

COMPIDs Feature Numbers System Name

568819801
568819802
568819803
568819805

5890
5891
5892
5894
6200
6201
6202
6203
7547
7562

VM/ESA

Contents

Notices . x
Trademarks and Service Marks . x

1.0 Introduction . 1

2.0 Program Materials . 3
2.1 Basic Machine-Readable Material . 3
2.2 Program Publications . 5

2.2.1 Basic Unlicensed Publications . 5
2.2.2 Optional Program Publications . 6

2.3 Microfiche Support . 7
2.4 Publications Useful During Installation . 7

3.0 Program Support . 8
3.1 Preventive Service Planning . 8
3.2 Statement of Support Procedures . 8

4.0 Program and Service Level Information . 9
4.1 Service Updates to the PL/I Component of IBM Language Environment for MVS & VM 9
4.2 Service Updates to the COBOL Component of IBM Language Environment for MVS & VM . . . 10
4.3 Service Updates to the Base component of IBM Language Environment for MVS & VM 11
4.4 Cumulative Service Tape . 11

5.0 Installation Requirements and Considerations . 12
5.1 Hardware Requirements . 12
5.2 Virtual Storage/Loader Table Considerations . 12
5.3 Program Considerations . 12

5.3.1 Operating System Requirements . 12
5.3.2 Other Program Product Requirements . 13
5.3.3 Program Installation / Service Considerations . 13

5.4 DASD Storage and USERID Requirements . 14

6.0 Installation Instructions . 16
6.1 VMSES/E Installation Process Overview . 16
6.2 Plan Your Installation For Language Environment . 17
6.3 Allocate Resources for Installing Language Environment . 20

6.3.1 Preparing to install Language Environment on Minidisk . 20
6.3.2 Preparing to install Language Environment in SFS Directories 21

6.4 Install Language Environment . 22
6.4.1 Update Build Status Table for Language Environment . 26

6.5 Place Language Environment Into Production . 30
6.5.1 Copy Language Environment Files Into Production . 30

6.6 Post-Installation Considerations . 30

 Copyright IBM Corp. 1991, 1995 iii

7.0 Service Instructions . 31
7.1 VMSES/E Service Process Overview . 31
7.2 Servicing Language Environment . 32

7.2.1 Prepare to Receive Service . 32
7.2.2 Receive the Service . 34
7.2.3 Apply the Service . 34
7.2.4 Update the Build Status Table . 35
7.2.5 Build Serviced Objects . 37

7.3 Place the New Language Environment Service Into Production 37
7.3.1 Rebuild the Saved Segments . 37
7.3.2 Copy the New Language Environment Serviced Files Into Production 38

8.0 Selecting/Installing National Languages . 39

9.0 Customizing Language Environment . 41
9.1 Updating Run-Time Options . 41
9.2 Updating User Exit Options . 42
9.3 Updating COBOL Component COBPACKs . 42
9.4 C Component Locale Time Information . 42
9.5 Updating Saved Segments . 43
9.6 Installing in Saved Segments . 45

10.0 Define and Build The Language Environment Saved Segments 46
10.1 Defining Saved Segments on VM/ESA 1.5 370 Feature . 47

10.1.1 Saved Segment Build for VM/ESA 370 Feature . 47
10.2 Define and Build Saved Segments Using VMSES/E . 49

Appendix A. Overriding the VMSYS File Pool Name . 56

Appendix B. Contents of COBPACKs (IGZCPAC/IGZCPCO) . 59
B.1 Contents of General COBPACK - IGZCPAC . 59
B.2 Contents of the Environment-Specific COBPACK (IGZCPCO) . 62

Appendix C. Segment Build Lists (CEEBLSGA/CEEBLSGB) . 64
C.1 CEEBLSGB . 64
C.2 CEEBLSGA . 65

Appendix D. Segment Build Lists (CEEBLSPA/CEEBLSPB) - POSIX 67
D.1 CEEBLSPB . 67
D.2 CEEBLSPA . 68

Appendix E. Language Environment Run-time Options . 70
E.1 Quick Reference Table of Language Environment Run-Time Options 70
E.2 Language Run-Time Option Mapping . 74

E.2.1 COBOL Compatibility . 79
E.3 Language Environment Run-Time Options . 80

E.3.1 ABPERC . 81

iv Language Environment Program Directory

E.3.1.1 Usage Notes . 82
E.3.1.2 For More Information . 82

E.3.2 ABTERMENC . 82
E.3.2.1 Usage Notes . 83
E.3.2.2 For More Information . 84

E.3.3 AIXBLD (COBOL Only) . 84
E.3.3.1 Usage Notes . 84
E.3.3.2 Performance Considerations . 85
E.3.3.3 For More Information . 85

E.3.4 ALL31 . 85
E.3.4.1 Usage Notes . 86
E.3.4.2 Performance Consideration . 86
E.3.4.3 For More Information . 86

E.3.5 ANYHEAP . 86
E.3.5.1 Usage Notes . 87
E.3.5.2 Performance Considerations . 87
E.3.5.3 For More Information . 88

E.3.6 AUTOTASK | NOAUTOTASK (Fortran Only) . 88
E.3.7 BELOWHEAP . 88

E.3.7.1 Usage Notes . 89
E.3.7.2 Performance Considerations . 89
E.3.7.3 For More Information . 90

E.3.8 CBLOPTS (COBOL Only) . 90
E.3.8.1 For More Information . 91

E.3.9 CBLPSHPOP (COBOL Only) . 91
E.3.9.1 Performance Consideration . 91
E.3.9.2 For More Information . 91

E.3.10 CBLQDA (COBOL Only) . 92
E.3.10.1 Usage Note . 92

E.3.11 CHECK (COBOL Only) . 92
E.3.11.1 Usage Note . 93
E.3.11.2 Performance Consideration . 93

E.3.12 COUNTRY . 93
E.3.12.1 Usage Notes . 94
E.3.12.2 For More Information . 94

E.3.13 DEBUG (COBOL Only) . 94
E.3.13.1 Usage Note . 95
E.3.13.2 Performance Consideration . 95
E.3.13.3 For More Information . 95

E.3.14 DEPTHCONDLMT . 95
E.3.14.1 Usage Notes . 96
E.3.14.2 For More Information . 97

E.3.15 ENVAR . 97
E.3.15.1 Usage Notes . 98
E.3.15.2 For More Information . 98

E.3.16 ERRCOUNT . 98
E.3.16.1 Usage Notes . 99

Contents v

E.3.16.2 For More Information . 99
E.3.17 ERRUNIT (Fortran Only) . 99
E.3.18 FILEHIST (Fortran Only) . 100
E.3.19 HEAP . 101

E.3.19.1 Usage Notes . 102
E.3.19.2 Performance Considerations . 103
E.3.19.3 For More Information . 103

E.3.20 INQPCOPN (Fortran Only) . 103
E.3.21 INTERRUPT . 104

E.3.21.1 Usage Notes . 105
E.3.21.2 For More Information . 105

E.3.22 LIBSTACK . 105
E.3.22.1 Usage Notes . 106
E.3.22.2 Performance Considerations . 106
E.3.22.3 For More Information . 106

E.3.23 MSGFILE . 107
E.3.23.1 Usage Notes . 108
E.3.23.2 For More Information . 109

E.3.24 MSGQ . 110
E.3.24.1 Usage Notes . 110
E.3.24.2 For More Information . 110

E.3.25 NATLANG . 111
E.3.25.1 Usage Notes . 112
E.3.25.2 For More Information . 112

E.3.26 NONIPTSTACK | NONONIPTSTACK . 112
E.3.26.1 Usage Notes . 114
E.3.26.2 For More Information . 114

E.3.27 OCSTATUS (Fortran Only) . 114
E.3.28 PC (Fortran Only) . 115
E.3.29 PLITASKCOUNT (PL/I Only) . 116

E.3.29.1 Usage Notes . 116
E.3.30 POSIX . 116

E.3.30.1 Usage Notes . 117
E.3.30.2 For More Information . 118

E.3.31 PRTUNIT (Fortran Only) . 118
E.3.32 PUNUNIT (Fortran Only) . 118
E.3.33 RDRUNIT (Fortran Only) . 119
E.3.34 RECPAD (Fortran Only) . 119

E.3.34.1 Usage Notes . 120
E.3.35 RPTOPTS . 120

E.3.35.1 Usage Note . 121
E.3.35.2 Performance Considerations . 121
E.3.35.3 For More Information . 123

E.3.36 RPTSTG . 123
E.3.36.1 Usage Notes . 124
E.3.36.2 Performance Considerations . 124
E.3.36.3 For More Information . 126

vi Language Environment Program Directory

E.3.37 RTEREUS (COBOL Only) . 126
E.3.37.1 Usage Notes . 127
E.3.37.2 Performance Considerations . 127
E.3.37.3 For More Information . 127

E.3.38 SIMVRD (COBOL Only) . 128
E.3.38.1 Usage Notes . 128
E.3.38.2 For More Information . 128

E.3.39 STACK . 128
E.3.39.1 Usage Notes . 130
E.3.39.2 Performance Considerations . 131
E.3.39.3 For More Information . 131

E.3.40 STORAGE . 131
E.3.40.1 Usage Notes . 133
E.3.40.2 Performance Considerations . 133

E.3.41 TERMTHDACT . 134
E.3.41.1 Usage Notes . 135
E.3.41.2 For More Information . 136

E.3.42 TEST | NOTEST . 136
E.3.42.1 Usage Notes . 138
E.3.42.2 Performance Consideration . 138
E.3.42.3 For More Information . 138

E.3.43 THREADHEAP . 138
E.3.43.1 Usage Notes . 140

E.3.44 TRACE . 140
E.3.44.1 Usage Note . 141
E.3.44.2 For More Information . 142

E.3.45 TRAP . 142
E.3.45.1 Usage Notes . 143
E.3.45.2 For More Information . 144

E.3.46 UPSI (COBOL Only) . 144
E.3.46.1 Usage Note . 145
E.3.46.2 For More Information . 145

E.3.47 USRHDLR | NOUSRHDLR . 145
E.3.47.1 Usage Notes . 146
E.3.47.2 For More Information . 146

E.3.48 VCTRSAVE . 146
E.3.48.1 Usage Note . 147
E.3.48.2 Performance Considerations . 147

E.3.49 XUFLOW . 147
E.3.49.1 Usage Notes . 148

Appendix F. Language Environment National Language Support Country Codes 149

Reader ′s Comments . 152

Contents vii

Figures

 1. Basic Material: Program Tape US English National Language Feature 3
 2. Basic Material: Program Tape Japanese National Language Feature 3
 3. Program Tape: File Content . 3
 4. Basic Material: Unlicensed Publications US English NLF . 5
 5. Basic Material: Unlicensed Publications - Japanese NLF . 5
 6. Optional Material: Program Publications - US English NLF . 6
 7. Optional Material: Program Publications - Japanese NLF . 6
 8. Publications Useful During Installation / Service on VM/ESA Version 1 7
 9. Publications Useful During Installation / Service on VM/ESA Version 2 7
10. PSP UPGRADE and SUBSET ID . 8
11. Component IDs . 8
12. APARs and Related PTFs against the PL/I Component of IBM Language Environment for MVS &

VM . 9
13. APARs and Related PTFs against the COBOL Component of IBM Language Environment for

MVS & VM . 10
14. APARs and Related PTFs against the Base Component of IBM Language Environment for MVS

& VM . 11
15. DASD Storage Requirements for Target Minidisks . 15
16. Sample console output from step 5 . 18
17. Sample console output from step 6 . 19
18. Sample console output from step 6 . 25
19. Sample Install/Verification console . 27
20. Sample KANJI install console. 40
21. Customization EXEC - Panel 1 . 41
22. Component Module Size . 45
23. Segment Map panel example. 50
24. Initial ″Add Segment Definition″ panel example. 51
25. Segment Definition panel showing SCEE Segment information 52
26. Segment Map panel with SCEE/SCEEX Segments . 53
27. Sample Console ouput for SCEE Segment Load . 54
28. Sample Console ouput for SCEEX Segment Load . 55
29. Routines Eligible for Inclusion in General COBPACK (IGZCPAC) 59
30. Routines Eligible for Inclusion in the Environment-Specific COBPACK (IGZCPCO) 62
31. Contents of CEEBLSGB Build List . 64
32. Contents of CEEBLSGA Build List . 65
33. Contents of CEEBLSPB Build List . 67
34. Contents of CEEBLSPA Build List . 68
35. Run-Time Options Quick Reference . 70
36. C and Language Environment Options . 74
37. COBOL and Language Environment Options . 75
38. Fortran and Language Environment Options . 77
39. PL/I and Language Environment Options . 78
40. Effect of DEPTHCONDLMT(3) on Condition Handling . 96

viii Language Environment Program Directory

41. Options Report Produced by Language Environment Run-Time Option RPTOPTS(ON) 122
42. Storage Report Produced by Language Environment Run-Time Option RPTSTG(ON) 125
43. TRAP Run-Time Option Settings . 142
44. Country Codes . 149

Figures ix

Notices

References in this document to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product,
program, or service is not intended to state or imply that only IBM′s product, program, or service may
be used. Any functionally equivalent product, program, or service that does not infringe on any of
IBM ′s intellectual property rights may be used instead of the IBM product, program, or service.
Evaluation and verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user′s responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the

IBM Director of Licensing
500 Columbus Avenue
Thornwood, NY 10594

Trademarks and Service Marks

The following terms, denoted by an asterisk (*), used in this document, are trademarks or service
marks of IBM Corporation in the United States or other countries:

IBM
Language Environment
Virtual Machine/Enterprise System Architecture (VM/ESA)
AD/Cycle
System Application Architecture (SAA)
CustomPac
FunctionPac
SystemPac
C/370
IBMLink(Service Link)
COBOL/370
Customer Information Control System (CICS)

x Copyright IBM Corp. 1991, 1995

1.0 Introduction

This program directory is intended for the system programmer responsible for program installation and
maintenance. It contains information concerning the material and procedures associated with the
installation of Language Environment. You should read all of this program directory before installing
the program and then keep it for future reference.

The program directory contains the following sections:

• 2.0, “Program Materials” on page 3 identifies the basic and optional program materials and
documentation for Language Environment.

• 3.0, “Program Support” on page 8 describes the IBM support available for Language Environment.

• 4.0, “Program and Service Level Information” on page 9 lists the APARs (program level) and PTFs
(service level) incorporated into Language Environment.

• 5.0, “Installation Requirements and Considerations” on page 12 identifies the resources and
considerations for installing and using Language Environment.

• 6.0, “Installation Instructions” on page 16 provides detailed installation instructions for Language
Environment.

• 7.0, “Service Instructions” on page 31 provides detailed servicing instructions for Language
Environment.

• 8.0, “Selecting/Installing National Languages” on page 39 provides instructions on how to install
NLS (KANJI) for Language Environment.

• 9.0, “Customizing Language Environment” on page 41 provides instructions on how to customize
Language Environment.

• 10.0, “Define and Build The Language Environment Saved Segments” on page 46 provides
instructions on how to install Language Environment in Saved Segments.

• Appendix A, “Overriding the VMSYS File Pool Name” on page 56 describes how to change the
default file pool name.

• Appendix B, “Contents of COBPACKs (IGZCPAC/IGZCPCO)” on page 59 lists and describes
routines eligible for inclusion in COBPACKs.

• Appendix C, “Segment Build Lists (CEEBLSGA/CEEBLSGB)” on page 64 describes build lists for
Saved Segments for the full Language Environment product.

• Appendix D, “Segment Build Lists (CEEBLSPA/CEEBLSPB) - POSIX” on page 67 describes build
lists for Saved Segments for the ′Language Environment POSIX environment.

• Appendix E, “Language Environment Run-time Options” on page 70 describes Run-time options for
Language Environment

• Appendix F, “Language Environment National Language Support Country Codes” on page 149
describes Language Environment National Language Support Country Codes.

 Copyright IBM Corp. 1991, 1995 1

Before installing Language Environment, read 3.1, “Preventive Service Planning” on page 8. This
section tells you how to find any updates to the information and procedures in this program directory.

2 Language Environment Program Directory

2.0 Program Materials

An IBM program is identified by a program number. The program number for Language Environment
is 5688-198.

The program announcement material describes the features supported by Language Environment. Ask
your IBM marketing representative for this information if you have not already received a copy.

The following sections identify the basic and optional program materials available with this program.

2.1 Basic Machine-Readable Material

The distribution medium for this program is 9-track magnetic tape (written at 6250 BPI), a 3480 tape
cartridge or 1/4″ cartridge. The tape or cartridge contains all the programs and data needed for
installation. See 6.0, “Installation Instructions” on page 16 for more information about how to install
the program. Figure 1 describes the physical tape or cartridge. Figure 3 describes the file content of
the program tape or cartridge.

Figure 1. Basic Material: Program Tape US English National Language Feature

Feature
Number Medium

Physical
Volume Tape Content External Tape Label

5891 6250 Tape 1 of 1 Language Environment Lang Environ VM

5892 3480 Cart. 1 of 1 Language Environment Lang Environ VM

5894 1/4″ Cart.
QIC120 VB

1 of 1 Language Environment Lang Environ VM

7547 4MM-DAT Cart. 1 of 1 Language Environment Lang Environ VM

Figure 2. Basic Material: Program Tape Japanese National Language Feature

Feature
Number Medium

Physical
Volume Tape Content External Tape Label

6201 6250 Tape 1 of 1 Language Environment Lang Environ VM

6202 3480 Cart. 1 of 1 Language Environment Lang Environ VM

6203 1/4″ Cart.
QIC120 VB

1 of 1 Language Environment Lang Environ VM

7562 4MM-DAT Cart 1 of 1 Language Environment Lang Environ VM

Figure 3 (Page 1 of 2). Program Tape: File Content

Tape
File Content

1 Tape/Product Header

2 Tape/Product Header

 Copyright IBM Corp. 1991, 1995 3

Figure 3 (Page 2 of 2). Program Tape: File Content

Tape
File Content

3 Tape/Product Header

4 Product Memo

5 Service Apply Lists (If applicable)

6 PTFPARTs (If applicable)

7 Language Environment Service (If applicable)

8 Language Environment Service (If applicable)

9 Language Environment Base Code - (CEL - C)

10 Language Environment Base Code - (COBOL - PL/I)

11 Language Environment Softcopy Samples - (CEL - C)

12 Language Environment Softcopy Samples - (COBOL - PL/I)

13 Language Environment Executable Code - (CEL - C)

14 Language Environment Executable Code - (COBOL - PL/I)

4 Language Environment Program Directory

2.2 Program Publications

The following sections identify the basic and optional publications for Language Environment.

2.2.1 Basic Unlicensed Publications

One copy of the following publications is included when you order the basic materials for Language
Environment. For additional copies, contact your IBM representative.

Figure 4. Basic Material: Unlicensed Publications US English NLF

Publication Title Form Number

IBM Language Environment for MVS & VM Debugging Guide and Run-time Messages SC26-4829

IBM Language Environment for MVS & VM Licensed Program Specifications GC26-4774

Figure 5. Basic Material: Unlicensed Publications - Japanese NLF

Publication Title Form Number

IBM Language Environment for MVS & VM Debugging Guide and Run-time Messages N:SC26-4829

IBM Language Environment for MVS & VM Licensed Program Specifications N:GC26-4774

Program Mater ials 5

2.2.2 Optional Program Publications

Figure 6 identify the optional unlicensed publications for Language Environment You can request one
free copy of manuals with a 7xxx feature number by specifying the feature number.

Figure 6. Optional Material: Program Publications - US English NLF

Publication Title
Form
Number

Feature
Number

IBM Language Environment for MVS & VM Product Library SK2T-2389 7576

IBM Language Environment for MVS & VM Programming Guide SC26-4818 7576

IBM Language Environment for MVS & VM Programming Reference SC26-3312 7576

IBM Language Environment for MVS & VM Specification Sheet GC26-4785 7576

IBM Language Environment for MVS & VM Concepts Guide GC26-4786 7576

IBM Language Environment for MVS & VM Run-Time Migration Guide SC26-8232 7576

IBM Language Environment for MVS & VM Writing Interlanguage
Communication Applications

SC26-8351 7576

AD/CYCLE C/370 Migration Guide SC09-1359 7576

COBOL/370 and COBOL for MVS & VM Compiler and Run-Time
Migration Guide

GC26-4764 7576

PLI for MVS & VM Compiler and Run-Time Migration Guide GC26-3118 7576

Figure 7. Optional Material: Program Publications - Japanese NLF

Publication Title
Form

Number
Feature
Number

IBM Language Environment for MVS & VM Programming Guide SC26-4818 7576

IBM Language Environment for MVS & VM Programming Reference SC26-3312 7576

IBM Language Environment for MVS & VM Specification Sheet GC26-4785 7576

IBM Language Environment for MVS & VM Concepts Guide GC26-4786 7576

IBM Language Environment for MVS & VM Run-Time Migration Guide SC26-8232 7576

IBM Language Environment for MVS & VM Writing Interlanguage Communication
Applications

SC26-8351 7576

COBOL/370 and COBOL for MVS & VM Compiler
and Run-Time Migration Guide

GC26-4764 7576

PL/I for MVS & VM Compiler and Run-Time Migration Guide SC26-3118 7576

AD/CYCLE C/370 Migration Guide SC09-1359 7576

6 Language Environment Program Directory

The following manuals are available as on-line books on the Language Environment for MVS & VM
Online Product Library:

• IBM Language Environment for MVS & VM Concepts Guide
• IBM Language Environment for MVS & VM Programming Reference
• IBM Language Environment for MVS & VM Debugging Guide and Run-time Messages
• IBM Language Environment for MVS & VM Writing Interlanguage Communication Applications
• IBM Language Environment for MVS & VM Run-Time Migration Guide

2.3 Microfiche Support

There is no microfiche for Language Environment.

2.4 Publications Useful During Installation

The publications listed in Figure 9 may be useful during the installation of Language Environment. To
order copies, contact your IBM representative.

Figure 8. Publications Useful During Installation / Service on VM/ESA Version 1

Publication Title Form Number

VMSES/E Introduction and Reference SC24-5444

VM/ESA CP Planning and Administration SC24-5521

VM/ESA Service Guide SC24-5527

VM/ESA CMS Command Reference SC24-5461

VM/ESA SFS and CRR Planning, Administration, and Operation SC24-5649

VM/ESA System Messages and Codes SC24-5529

VMSES/E Introduction and Reference Release 1.5 370 Feature SC24-5680

Figure 9. Publications Useful During Installation / Service on VM/ESA Version 2

Publication Title Form Number

VMSES/E Introduction and Reference SC24-5747

VM/ESA Service Guide SC24-5749

VM/ESA CP Planning and Administration SC24-5750

VM/ESA CMS Command Reference SC24-5776

VM/ESA CMS File Pool Planning, Administration, and Operation SC24-5751

VM/ESA System Messages and Codes SC24-5784

Program Mater ials 7

3.0 Program Support

This section describes the IBM support available for Language Environment.

3.1 Preventive Service Planning
Before installing Language Environment, check with your IBM Support Center or use IBMLink (Service
Link) to see whether there is additional Preventive Service Planning (PSP) information. To obtain this
information, specify the following UPGRADE and SUBSET values as shown below.

Figure 10. PSP UPGRADE and SUBSET ID

UPGRADE SUBSET

LEMVSVMR150 See Figure 11 below

3.2 Statement of Support Procedures

Report any difficulties you have using this program to your IBM Support Center. If an APAR is
required, the Support Center will provide the address to which any needed documentation can be sent.

Figure 11 identifies the component ID (COMPID), Retain Release, and PSP SUBSET values for
Language Environment.

Figure 11. Component IDs

Retain

Component Name
PSP
SUBSETCOMPID Release

568819801 51N Language Environment Base VM/51N

568819801 51G Language Environment Base - Mixed Case English VM/51G

568819801 51J Language Environment Base - Japanese VM/51J

568819802 52N Language Environment COBOL - Base VM/52N

568819802 52G Language Environment COBOL - Mixed Case English VM/52G

568819802 52J Language Environment COBOL - Japanese VM/52J

568819803 53N Language Environment PL/I - Base VM/53N

568819803 53G Language Environment PL/I - Mixed Case English VM/53G

568819803 53J Language Environment PL/I - Japanese VM/53J

568819805 55N Language Environment ″C″ - Base VM/55N

568819805 55G Language Environment ″C″ - Mixed Case English VM/55G

568819805 55J Language Environment ″C″ - Japanese VM/55J

568819805 55C Language Environment ″C″ - Japanese Msgs VM/55C

8 Copyright IBM Corp. 1991, 1995

4.0 Program and Service Level Information

This section identifies the program and any relevant service levels of IBM Language Environment for
MVS & VM. The program level refers to the APAR fixes incorporated into the program. The service
level refers to the PTFs shipped with this product. Information about the cumulative service tape is
also provided.

4.1 Service Updates to the PL/I Component of IBM Language Environment for
MVS & VM

The release of this product incorporates the following APARs and PTFs against the “PL/I” component
of IBM Language Environment for MVS & VM in Figure 12 below.

Figure 12. APARs and Related PTFs against the PL/I Component of IBM Language Environment for MVS & VM

APAR PTF(s) for VM

PN70410 UN76635

PN70413 UN76677

PN70423 UN76032

PN70424 UN76110

PN70425 UN76107

PN70544 UN76399

PN70859 UN76287

PN71569 UN78581

PN71760 UN77813

PN71097 UN79865

PN74410 UN80464

 Copyright IBM Corp. 1991, 1995 9

4.2 Service Updates to the COBOL Component of IBM Language Environment
for MVS & VM

The release of this product incorporates the following APARs and PTFs against the “COBOL”
component of IBM Language Environment for MVS & VM

Figure 13. APARs and Related PTFs against the COBOL Component of IBM Language Environment for MVS & VM

APAR PTF(s) for VM

PN60433 UN73662 UN73663 UN79788

PN60476 UN70187 UN73663 UN79788

PN64656 UN78423

PN66485 UN76639

PN68190 UN75985 UN78719

PN68703 UN76333

PN70085 UN78113

PN70475 UN77490

PN70713 UN79788 UN79789

PN71379 UN80345

PN71570 UN78404

PN72497 UN78719

PN72981 UN79387

PN72982 UN79387

PN72983 UN79496

PN73472 UN79788 UN79789

10 Language Environment Program Directory

4.3 Service Updates to the Base component of IBM Language Environment for
MVS & VM

The release of this product incorporates the following APARs and PTFs against the Base component of
IBM Language Environment for MVS & VM

Note: Check the LE370R150 PSP bucket for further PTF information.

4.4 Cumulative Service Tape

There is no cumulative service tape for Language Environment. Cumulative service for this product is
available through a monthly corrective service tape, Expanded Service Option (ESO).

Figure 14. APARs and Related PTFs against the Base Component of IBM Language Environment for MVS & VM

APAR PTF(s) for VM

PN60910Z UN77243

PN64276Z UN77489

PN65018Z UN76343

PN66097Z UN78154

PN66497Z

PN67457Z UN76150

PN68449Z UN76015

PN69352Z UN76156

PN69674Z UN76700

PN70209Z

PN70575Z

PN71735Z UN77466

PN72252Z UN78607

Program and Service Level Information 11

5.0 Installation Requirements and Considerations

The following sections identify the system requirements for installing and activating Language
Environment.

5.1 Hardware Requirements

There are no special hardware requirements for Language Environment.

5.2 Virtual Storage/Loader Table Considerations

During initial install, a minimum of 10M of virtual storage and 12 LDRTBLS is recommended. If
customization is to be done, the minimum storage must be 22M as VMSES/E loads ″all″ of the
required info into storage to rebuild.

Note: When loading Saved Segments via the SES panels, the Loader Tables are automatically set
back to 4 after you ipl 190. Care should be taken that they are reset back to 12 prior to issuing the
VMFBLD command to build the saved segments.

5.3 Program Considerations

The following sections list the programming considerations for installing Language Environment and
activating its functions.

5.3.1 Operating System Requirements

Language Environment operates under the currently-supported releases of any one of the following
system environments (or subsequent releases):

• VM/ESA(R) Version 2 (5654-030)

• VM/ESA(R) Version 1 Release 1 Modification 5 (370 Feature)

• VM/ESA(R) Version 1 Release 2 Modification 1 (or higher)

• APAR VM59732 MUST be applied to VM/ESA 2.1, 1.1.5, and 2.2 prior to installing Language
Environment. Failure to do so will result in the failing of the install/service process of this product.

• APAR VM59640 MUST be applied to VM/ESA 2.1 only as this fix is already in the base of 2.2 and
follow on releases. Failure to do so could result in problems during the rebuilding of the saved
segments after applying service.

• RSU9405 service level or above must be applied to VMSES/E on 2.1 and VM/ESA 1.5 370 Feature
prior to installing Language Environment

12 Copyright IBM Corp. 1991, 1995

• RSU9403 service level or above must be applied to VMSES/E on VM/ESA 2.2 prior to installing
Language Environment

5.3.2 Other Program Product Requirements

Language Environment requires the following:

• High Level Assembler/MVS & VM & VSE Release 1 or above (5696-234)

5.3.3 Program Installation / Service Considerations

This section describes items that should be considered before you install or service Language
Environment.

• VMSES/E is required to install and service this product.

• If multiple users install and maintain licensed products on your system, there might be a problem
getting the necessary access to MAINT′s 51D disk. If you find that there is contention for write
access to the 51D disk, you can eliminate it by converting the Software Inventory from minidisk to
Shared File System (SFS). See the VMSES/E Introduction and Reference manual, section
′Changing the Software Inventory to an SFS Directory ′, for information on how to make this change.

• You can no longer install and service Language Environment using the MAINT User ID, but use the
new User ID “P688198E” which is the IBM suggested User ID name. You are free to change this to
any User ID name you wish, however, a PPF override must be created.

Note: It might be easier to make the changes during the installation procedure 6.2, “Plan Your
Installation For Language Environment” step 6 on page 18, after you have installed this product.

 CAUTION

If you plan to have C, COBOL or PL/I products such as C/370, COBOL/370*, VS COBOL II, OS/VS
COBOL or OS PL/I V1 or V2 on the same operating system, you should install the products on
separate minidisks to ensure that the library routines for each product maintain their integrity. The
Language Environment library contains library routines having names identical to those of the other
C, COBOL or PL/I library routines.

While you run Language Environment you should not have these other products accessed. If you
must use a disk that contains these other products while running Language Environment then
access them AFTER you access Language Environment

Installation Requirements and Considerations 13

5.4 DASD Storage and USERID Requirements

Figure 15 on page 15 lists the USERID and minidisks that are used to install and service Language
Environment.

Important Installation Notes:

• User ID(s) and minidisks are defined in 6.2, “Plan Your Installation For Language Environment”
on page 17 and are listed here so that you can get an idea of the resources that you need
prior to allocating them.

• If you are installing on a VM/ESA 2.1.0 system, then the userid and minidisks are already
defined. Use Figure 15 on page 15 to make sure the existing minidisks match the sizes
shown. Your MAINT′s 19E disk may also have to be increased by 10 cylinders in order to
handle the full product.

• P688198E is a default User ID and can be changed. If you choose to change the name of the
installation User ID you need to create an override of the Product Parameter File (PPF) to do
this. This can be done in 6.2, “Plan Your Installation For Language Environment” step 6 on
page 18.

• If you choose to install Language Environment on a common User ID the default minidisk
addresses for Language Environment might already be defined. If any of the default minidisks
required by Language Environment are already in use you will have to create an override to
change the default minidisks for Language Environment so they are unique.

• If you plan on installing the KANJI feature or customizing the “C” Run time options, the “191”
disk size must be increased by a factor of 4 (e.g 6 Cylinders of 3380 must now be 24 cylinders
of 3380). This is due to these two options rebuilding the SCEERUN LOADLIB during the updates
and VM using the “A” disk as an interm work disk while building the loadlib.

14 Language Environment Program Directory

Figure 15. DASD Storage Requirements for Target Minidisks

Minidisk
owner
(User ID)

Default
Address

Storage in
Cylinders

FB-512
Blocks

SFS 4K
Blocks UsageDASD CYLS

P688198E 2B2 9345
3390
3380
3375
3350

80
65
80

125
100

79200 12000

Contains all base code shipped with
Language Environment

SFS Name:
VMSYS:P688198E.LE370.BASE

P688198E 2C2 9345
3390
3380
3375
3350

6
5
6

10
8

7200 900

Contains sample files and user local
modifications for Language Environment

SFS Name:
VMSYS:P688198E.LE370.LOCAL

P688198E 2D2 9345
3390
3380
3375
3350

25
20
25
40
25

3600 3750

Contains serviced files

SFS Name:
VMSYS:P688198E.LE370.DELTA

P688198E 2A6 9345
3390
3380
3375
3350

3
2
3
4
3

3600 450

Contains AUX files and version vector
table that represent your test level of
Language Environment
SFS Name:
VMSYS:P688198E.LE370.ALTAPPLY

P688198E 2A2 9345
3390
3380
3375
3350

3
2
3
4
3

3600 450

Contains AUX file and version vector
table that represent your production
level of Language Environment
SFS Name:
VMSYS:P688198E.LE370.PRODAPPLY

P688198E 29E 9345
3390
3380
3375
3350

54
45
54
85
68

64800 N/A

Test build disk. If this disk is to be
copied to MAINT′s 19E disk, make sure the
19E disk is large enough to hold entire
contents of 29E disk.

P688198E 191 9345
3390
3380
3375
3350

45
35
45
65
55

7200 5250

P688198E User ID′s 191 minidisk
NOTE See Section 5.4 “DASD
Storage and User ID Requirements” if
install ing KANJI or customizing “C”
runtime options.

SFS Name:
VMSYS:P688198E.

Note: Cylinder values defined in this table are based on a 4k block size. FB-512 block and SFS values are
derived from the 3380 cylinder values in this table.

Installation Requirements and Considerations 15

6.0 Installation Instructions

This chapter describes the installation methods and the step-by-step procedures to install and activate
Language Environment.

The step-by-step procedures are in two column format. The steps to be performed are in bold large
numbers. Commands for these steps are on the left-hand side of the page in bold print. Any
additional information for a command is to the right of the command. For more information about the
two column format see ′Understanding Dialogs with the System′ in the VM/ESA Installation Guide.

Each step of the installation instructions must be followed. Do not skip any step unless directed
otherwise.

Throughout these instructions, the use of IBM-supplied default minidisk addresses and User IDs is
assumed. If you use different User IDs, minidisk addresses, or SFS directories to install Language
Environment, adapt these instructions as needed for your environment.

 Note!

The sample console output presented throughout these instructions was produced on a VM/ESA 2.2
system. If you′re installing Language Environment on a different VM/ESA system, the results
obtained for some commands might differ from those depicted here.

6.1 VMSES/E Installation Process Overview

The following is a brief description of the main steps in installing Language Environment using
VMSES/E.

• Plan Your Installation

The VMFINS command is used to load several VMSES/E files from the product tape and to obtain
Language Environment resource requirements.

• Allocate Resources

The information obtained from the previous step is used to allocate the appropriate minidisks (or
SFS directories) and User IDs needed to install and use Language Environment.

• Install the Language Environment Product

The VMFINS command is used to load the Language Environment product files from tape to the
test BUILD and BASE minidisks/directories. VMFINS is then used to update the VM SYSBLDS file
used by VMSES/E for software inventory management.

• Placing the Language Environment Files into Production

Once the product files have been tailored and the operation of Language Environment is
satisfactory, the product files are copied from the test BUILD disk(s) to production BUILD.

16 Copyright IBM Corp. 1991, 1995

• Performing Post installation Tasks

Information about file tailoring is presented in 6.6, “Post-Installation Considerations” on page 30.

For a complete description of all VMSES/E installation options refer to:

• VMSES/E Introduction and Reference

6.2 Plan Your Installation For Language Environment

The VMFINS command is used to plan the installation. This section has 2 main steps that will:

• load the first tape file, containing installation files

• generate a ′PLANINFO′ file listing

− all User ID/mdisks requirements

− required products

To obtain planning information for your environment:

1 Log on as Language Environment installation planner.

This User ID can be any ID that has read access to MAINT′s 5E5 minidisk
and write access to the MAINT′s 51D minidisk.

2 Mount the Language Environment installation tape and attach it to the User
ID at virtual address 181. The VMFINS EXEC requires the tape drive at
virtual address 181.

3 Establish read access to the VMSES/E code.

link MAINT 5e5 5e5 rr
access 5e5 B

The 5E5 disk contains the VMSES/E code.

4 Establish write access to the Software Inventory disk.

link MAINT 51d 51d mr
access 51d D

The MAINT 51D disk is where the VMSES/E
system-level Software Inventory and other
dependent files reside.

Note: If another user already has the MAINT 51D mindisk linked in write
mode (R/W), you′ ll only obtain read access (R/O) to this minidisk. If this
occurs, you′ ll need to have that user relink the 51D in read-only mode (RR),
and then reissue the above LINK and ACCESS commands. Do not continue
with these procedures until a R/W link is established to the 51D minidisk.

5 Load the Language Environment product control files to the 51D minidisk.

Installation Instructions 17

vmfins install info (nomemo The NOMEMO option loads the memos from the
tape but does not issue a prompt to send them to
the system printer. Specify the MEMO option if
you want to be prompted for printing the memo.

This command performs the following:

• load Memo-to-Users

• load various product control files, including
the Product Parameter File (PPF) and the
PRODPART files

• create VMFINS PRODLIST on your A-disk.
The VMFINS PRODLIST contains a list of
products on the installation tape.

VMFINS2760I VMFINS processing started
VMFINS1909I VMFINS PRODLIST created on your A-disk
VMFINS2760I VMFINS processing completed successfully
Ready;

Figure 16. Sample console output from step 5

6 Obtain resource planning information for Language Environment.

Notes:

a. The product will not be loaded by the VMFINS command at this time.

vmfins install PPF 5688198E {LE370|LE370SFS} (nomemo plan

Use LE370 for installing on minidisks or LE370SFS
for installing in Shared File System directories.

The PLAN option indicates that VMFINS will
perform requisite checking, plan system
resources, and provide an opportunity to override
the defaults in the product parameter file.

You can override any of the following:

• the name of the product parameter file

• the default User IDs

• minidisk/directory definitions

18 Language Environment Program Directory

Notes:

a. If you change the PPF name, a default User ID, or other parameters via
a PPF override, you′ ll need to use your changed values instead of
those indicated (when appropriate), throughout the rest of the
installation instructions, as well as those provided for servicing
Language Environment. For example, you ′ ll need to specify your PPF
override file name instead of 5688198E for certain VMSES/E commands.

b. If you′re not familiar with creating PPF overrides using VMFINS, you
should review the ′Using the Make Override Panel′ section in Chapter 3
of the VMSES/E Introduction and Reference before you continue.

 c. For more information about changing the VMSYS file pool name see
Appendix A, “Overriding the VMSYS File Pool Name” on page 56
except if you are running VM/ESA Release 2.2 or VM/ESA Version 2
then refer to Chapter 3 in the VMSES/E Introduction and Reference.

vmfins install ppf 5688198e le370 (nomemo plan
VMFINS2767I Reading VMFINS DEFAULTS B for additional options
VMFINS2760I VMFINS processing started
VMFINS2601R Do you want to create an override for :PPF 5688198E LE370 :PRODID

5688198E%LE370?
Enter 0 (No), 1 (Yes) or 2 (Exit)

0
VMFINS2603I Processing product :PPF 5688198E LE370 :PRODID 5688198E%LE370
VMFREQ2805I Product :PPF 5688198E LE370 :PRODID 5688198E%LE370 has passed

requisite checking
VMFINT2603I Planning for the installation of product :PPF 5688198E LE370 :PRODID

5688198E%LE370
VMFRMT2760I VMFRMT processing started
VMFRMT2760I VMFRMT processing completed successfully
VMFINS2760I VMFINS processing completed successfully
Ready; T=7.54/8.08 07:40:20

Figure 17. Sample console output from step 6

7 Review the install message log ($VMFINS $MSGLOG). If necessary, correct
any problems before going on. For information about handling specific
error messages, see VM/ESA: System Messages and Codes, or use online
HELP.

vmfview install

Installation Instructions 19

6.3 Allocate Resources for Installing Language Environment
 Note

If you are running under VM/ESA Version 2, the directory and minidisks have already been defined.
In this case, the following steps may not be applicable. You should however, check figure 15 for
the correct sizes and increase these sizes as appropriate.

Care should be taken to confirm that MAINT ′s 19E is also large enough to handle the complete
product should the test system disk be copied over to it.

Use the planning information in the 5688198E PLANINFO file, created in the PLAN step, to:

• Create the P688198E user directory for minidisk install

OR

• Create the P688198E user directory for SFS install

6.3.1 Preparing to install Language Environment on Minidisk

1 Obtain the user directory from the 5688198E PLANINFO file.

Note: The user directory entry is located at the bottom of the PLANINFO
file of the resource section. These entries contain all of the links and
privilege classes necessary for the P688198E User ID Use the directory
entry found in PLANINFO as a model as input to your system directory.

2 Add the MDISK statements to the directory entry for P688198E. Use
Figure 15 on page 15 to obtain the minidisk requirements.

3 If you′re installing Language Environment on a VM/ESA 1.5 370 Feature
system, the following directory entry changes must be made:

• For the P688198E directory entry:

− Change the user ID storage from 24M to 16M.

4 Add the P688198E directory to the system directory. Change the passwords
for P688198E from xxxxx to a valid password, in accordance with your
security guidelines.

5 Place the new directories on-line using VM/Directory Maintenance
(DIRMAINT) or an equivalent CP directory maintenance method.

 Note

All minidisks for the P688198E User ID must be formatted before
installing Language Environment.

20 Language Environment Program Directory

6.3.2 Preparing to install Language Environment in SFS Directories

1 Obtain the user directory from the 5688198E PLANINFO file.

Note: The user directory entry is located at the bottom of the PLANINFO
file of the resource section. These entries contain all of the links and
privilege classes necessary for the P688198E User ID. Use the directory
entry found in PLANINFO as a model as input to your system directory.

2 Add the MDISK statement for the 29E test build disk to the directory entry
for P688198E Use Figure 15 on page 15 to obtain the minidisk
requirements.

3 If you′re installing Language Environment on a VM/ESA 1.5 370 Feature
system, the following directory entry changes must be made:

• For the P688198E directory entry:

− Change the user ID storage from 24M to 16M.

4 Add the P688198E directory to the system directory. Change the passwords
for P688198E from xxxxx to a valid password, in accordance with your
security guidelines.

5 Place the new directories online using VM/Directory Maintenance
(DIRMAINT) or an equivalent CP directory maintenance method.

6 An SFS install also requires the following steps:

a Determine the number of 4k blocks that are required for SFS
directories by adding up the 4K blocks required for each SFS
directory you plan to use.

If you intend to use all of the default Language Environment SFS
directories, the 4K block requirements for each directory are
summarized in Figure 15 on page 15

This information is used when enrolling the P688198E to the VMSYS
filepool.

b Enroll user P688198E in the VMSYS filepool using the ENROLL USER
command:

ENROLL USER P688198E VMSYS (BLOCKS blocks

where blocks is the number of 4k blocks that you calculated in the
previous step.

Note: This must be done from a User ID that is an administrator for
VMSYS: filepool.

Installation Instructions 21

c Determine if there are enough blocks available in the filepool to
install Language Environment. This information can be obtained from
the QUERY FILEPOOL STATUS command. Near the end of the output
from this command is a list of minidisks in the filepool and the
number of blocks free. If the number of blocks free is smaller than
the total 4k blocks needed to install Language Environment you need
to add space to the filepool. See VM/ESA SFS and CRR Planning,
Administration, and Operation manual for information on adding
space to a filepool.

d Create the necessary subdirectories listed in the 5688198E PLANINFO
file using the CREATE DIRECTORY command.

set filepool vmsys:
create directory dirid

dirid is the name of the SFS directory you′re
creating, such as:

create directory vmsys:P688198E.LE370
create directory vmsys:P688198E.LE370.object

:

If necessary, see VM/ESA CMS Command
Reference for more information about the
CREATE DIRECTORY command.

A complete list of default LE370 SFS directories is provided in
Figure 15 on page 15.

e If you intend to use an SFS directory as the work space for the
P688198E used ID, include the following IPL control statement in the
P688198E directory entry:

IPL CMS PARM FILEPOOL VMSYS

This will cause CMS to automatically access the P688198E′s top
directory as file mode A.

6.4 Install Language Environment
The ppfname used throughout these installation instructions is 5688198E, which assumes you are using
the PPF supplied by IBM for Language Environment. If you have your own PPF override file for
Language Environment, you should use your file′s ppfname instead of 5688198E. The ppfname you use
should be used throughout the rest of this procedure.

The compname used throughout these installation instructions is either LE370 or LE370SFS, which
assumes you are using the component name within the 5688198E PPF file. If you specify your own
ppfname, you should use the compname from that file instead of LE370 or LE370SFS. The compname
you use should be used throughout the rest of this procedure.

1 Logon to the installation User ID P688198E.

22 Language Environment Program Directory

2 Create a PROFILE EXEC that will contain the ACCESS commands for
MAINT 5E5 and 51D minidisks.

xedit profile exec a
= = = > i n p u t / * * /
= = = > i n p u t ′access 5e5 B ′
= = = > i n p u t ′access 51d D ′
= = = > f i l e

If either 5E5 or 51D is in shared file (SFS) then
substitute your SFS directory name in the access
command.

3 Execute the profile to access MAINT′s minidisks.

profile

4 Establish write access to the Software Inventory disk, if it is not already
linked R/W.

Note: If the MAINT 51D minidisk was accessed R/O, you will need to have
the user who has it linked R/W link it as R/O. You then can issue the
following commands to obtain R/W access to it.

link MAINT 51d 51d mr
access 51d D

5 Have the Language Environment installation tape mounted and attached to
P688198E at virtual address 181. The VMFINS EXEC requires the tape drive
at virtual address 181.

6 Install Language Environment.

Notes:

If you′ve already created a PPF override file, you should specify your
override file name after the PPF keyword for the following VMFINS
command. The PROD keyword should not be used.

You might be prompted for additional information during VMFINS
INSTALL processing depending on your installation environment. If
you′re unsure how to respond to a prompt, refer to the ′ Installing
Products with VMFINS′ and ″Install Scenarios′ chapters in VMSES/E
Introduction and Reference to decide how to proceed.

vmfins install PPF 5688198E {LE370 | LE370SFS} (nomemo nolink

Installation Instructions 23

Use LE370 for installing on minidisks or LE370SFS
for installing in Shared File System directories.

The NOLINK option indicates that you don′ t want
VMFINS to link to the appropriate minidisks, only
access them if not accessed.

24 Language Environment Program Directory

vmfins install ppf 5688198e le370 (nomemo nolink
VMFINS2767I Reading VMFINS DEFAULTS B for additional options
VMFINS2760I VMFINS processing started
VMFINS2601R Do you want to create an override for PPF 5688198E LE370 PRODID

5688198E%LE370?
Enter 0 (No), 1 (Yes) or 2 (Exit)

0
VMFINS2603I Processing product PPF 5688198E LE370 PRODID 5688198E%LE370
VMFREQ2805I Product PPF 5688198E LE370 PRODID 5688198E%LE370 has passed

requisite checking
VMFINT2603I Installing product PPF 5688198E LE370 PRODID 5688198E%LE370
VMFSET2760I VMFSETUP processing started for 5688198E LE370
VMFUTL2205I Minidisk|Directory Assignments:

String Mode Stat Vdev Label/Directory
 VMFUTL2205I LOCALSAM E R/W 2C2 TLMODS
 VMFUTL2205I APPLY F R/W 2A6 TAPPLZ
 VMFUTL2205I G R/W 2A2 TAPPLY
 VMFUTL2205I DELTA H R/W 2D2 TDELTA
 VMFUTL2205I BUILD0 I R/W 29E TBUILD
 VMFUTL2205I BASE1 J R/W 2B2 TBASE
 VMFUTL2205I -------- A R/W 222 ATEMP
 VMFUTL2205I -------- B R/O 5E5 MNT5E6
 VMFUTL2205I -------- D R/W 51D TMP51D
 VMFUTL2205I -------- S R/O 190 MNT490
 VMFUTL2205I -------- Y/S R/O 19E ESA19E

ST:VMFSET2760I VMFSETUP processing completed successfully
ST:VMFREC2760I VMFREC processing started
ST:VMFREC1852I Volume 1 of 1 of INS TAPE 9400
ST:VMFREC1851I (1 of 8) VMFRCAXL processing AXLIST
ST:VMFRCX2159I Loading 0 part(s) to DELTA 2D2 (H)
ST:VMFREC1851I (2 of 8) VMFRCPTF processing PARTLST
ST:VMFRCP2159I Loading 0 part(s) to DELTA 2D2 (H)
ST:VMFREC1851I (3 of 8) VMFRCCOM processing DELTA
ST:VMFRCC2159I Loading 0 part(s) to DELTA 2D2 (H)
ST:VMFREC1851I (4 of 8) VMFRCALL processing APPLY
ST:VMFRCA2159I Loading part(s) to APPLY 2A6 (F)
ST:VMFRCA2159I Loaded 1 part(s) to APPLY 2A6 (F)
ST:VMFREC1851I (5 of 8) VMFRCALL processing BASEB
ST:VMFRCA2159I Loading part(s) to BASE1 2B2 (J)
ST:VMFRCA2159I Loaded 1346 part(s) to BASE1 2B2 (J)
ST:VMFREC1851I (6 of 8) VMFRCALL processing BASEP
ST:VMFRCA2159I Loading part(s) to BASE1 2B2 (J)
ST:VMFRCA2159I Loaded 2933 part(s) to BASE1 2B2 (J)
ST:VMFREC1851I (7 of 8) VMFRCALL processing BUILDP
ST:VMFRCA2159I Loading part(s) to BUILD0 29E (I)
ST:VMFRCA2159I Loaded 561 part(s) to BUILD0 29E (I)
ST:VMFREC1851I (8 of 8) VMFRCALL processing BUILDB
ST:VMFRCA2159I Loading part(s) to BUILD0 29E (I)
ST:VMFRCA2159I Loaded 125 part(s) to BUILD0 29E (I)
ST:VMFREC2760I VMFREC processing completed successfully
ST:VMFINT2603I Product installed
ST:VMFINS2760I VMFINS processing completed successfully
Ready; T=211.44/240.98 08:45:40

Figure 18. Sample console output from step 6

7 Review the install message log ($VMFINS $MSGLOG). If necessary, correct
any problems before going on. For information about handling specific

Installation Instructions 25

error messages, see VM/ESA: System Messages and Codes, or use online
HELP.

vmfview install

6.4.1 Update Build Status Table for Language Environment

1 If you are running on VM/ESA Version 2, you need to rename all
occurrences of the SRVBLDS tables (found on the APPLY disks, 2A6 and
2A2). This is needed so that any service that may have already been
applied (POSIX Environment) will get re-applied.

2 Update the VM SYSBLDS software inventory file for Language Environment.

vmfins build ppf 5688198E {LE370|LE370SFS} (serviced nolink

Use LE370 if installing using minidisks or
LE370SFS if installing using SFS

The serviced option will build any parts that are
flagged as serviced on the install tape. These
parts might consist of saved segments or other
parts which cannot be shipped on a VMSES/E
formatted install tape.

26 Language Environment Program Directory

VMFINS BUILD PPF 5688198E LE370 (SERVICED NOLINK

VMFINS2767I Reading VMFINS DEFAULTS B for additional options
VMFINS2760I VMFINS processing started
VMFINS2603I Building product 5688198E LE370 5688198E%LE370.

5688198E LE370 5688198E%LE370 is a VMSES product
VMFREQ2805I Product 5688198E LE370 5688198E%LE370 has passed requisite

checking
VMFSET2760I VMFSETUP processing started
VMFUTL2205I Minidisk|Directory Assignments:

String Mode Stat Vdev Label/Directory
VMFUTL2205I LOCALSAM E R/W 2C2 TLMODS
VMFUTL2205I APPLY F R/W 2A6 TAPPLX
VMFUTL2205I G R/W 2A2 TAPPLY
VMFUTL2205I DELTA H R/W 2D2 TDELTA
VMFUTL2205I BUILD0 I R/W 29E TBUILD
VMFUTL2205I BASE1 J R/W 2B2 TBASE
VMFUTL2205I -------- A R/W 222 ATEMP
VMFUTL2205I -------- B R/W 5E5 VM5E5
VMFUTL2205I -------- D R/W 51D VM51D
VMFUTL2205I -------- S R/O 190 MT2190
VMFUTL2205I -------- Y/S R/O 19E ESA19E
VMFSET2760I VMFSETUP processing completed successfully
VMFBLD2760I VMFBLD processing started
VMFBLD1851I Reading build lists
VMFBLD2182I Identifying new build requirements
VMFBLD2182I No new build requirements identified
VMFBLD2179I There are no build requirements matching your request at this time.

No objects will be built
VMFBLD2180I There are 0 build requirements remaining
VMFBLD2760I VMFBLD processing completed successfully

Figure 19 (Part 1 of 3). Sample Install/Verification console

Installation Instructions 27

VMFINB2173I Executing verification exec V5688198
===
=== Start of BASE component verification
===

DMSLIO740I Execution begins...

 Today is FRIDAY, 11 AUGUST 1995.
 Today is FRI, AUG 11, 1995 6:28 AM
 Today is FRIDAY, 08/11/95 06:28:38.23
 Today is day 223 of 1995
 Program Complete.
 ===
 === Verification of BASE component is complete.
 ===

Press ENTER key to continue
===
=== Start of C/370 Library component verification
===

*** IBM C run-time component of Language Environment for MVS & VM
Version 1 Release 5 Modification 0 ***

=== C/370 Library Verification Successful.
Hello SPC ! *** Test successful ***
=== C/370 SPC Verification Successful.
*** IBM C run-time component of Language Environment for MVS & VM

Version 1 Release 5 Modification 0 ***
=== C/370 Prelinker Verification Successful.
 ===
 === Verification of C/370 Library component is complete.
 ===

Press ENTER key to continue
===
=== Start of COBOL component verification
===

DMSLIO740I Execution begins...
***** START OF CALLIVP1 *****
***** CALLIVP1 SUCCESSFUL *****
 ===
 === Verification of COBOL component is complete.
 ===

Press ENTER key to continue

Figure 19 (Part 2 of 3). Sample Install/Verification console

28 Language Environment Program Directory

===
=== Start of PL/I component verification
===

DMSLIO740I Execution begins...

 *** Word-use Report ***

 -count- --word--

3 BEGIN
1 CLOSE

13 DCL
24 DECLARE
2 DISPLAY

14 DO
13 ELSE
23 END
1 GO

13 IF
------------The previous value should have been 14

7 LIST
4 ON
1 OPEN
2 PROC
3 PROCEDURE
2 READ
4 RETURN
1 SELECT
2 STOP

13 THEN
2 WHEN

There were 148 references to 36 words.

There was a discrepancy in at least one of the word-counts.

 ===
 == A discrepancy is expected in this test. ==
 == ==
 == Verification of PL/I component is complete. ==
 ===
Ready; T=1.24/1.78 06:28:53

Figure 19 (Part 3 of 3). Sample Install/Verification console

Installation Instructions 29

6.5 Place Language Environment Into Production

6.5.1 Copy Language Environment Files Into Production
 1. Logon to MAINT if you plan to put Language Environment general use code

on the ′Y′ disk (MAINT′s 19E disk). Or logon to the owner of the disk that will
contain the ′production ′ level of the Language Environment code.

link P688198E 29e 29e rr
access 29e e
access 19e f
vmfcopy * * e = = f2 (prodid 5688198E%LE370 olddate replace

The VMFCOPY command will update the VMSES
PARTCAT file on the 19E disk.

Language Environment is now installed and built on your system.

6.6 Post-Installation Considerations

Upon successfull installation, the following items can now be implemented:

 1. Installation of NLS feature (KANJI)

 2. Customization

 3. Installation into Saved Segments

See Chapter 8.0, “Selecting/Installing National Languages” on page 39 for a full description on how to
install the NLS feature and Chapter 9.0, “Customizing Language Environment” on page 41 for a full
description on how to customize and install in saved segments.

30 Language Environment Program Directory

7.0 Service Instructions

This section of the Program Directory contains the procedure to install CORrective service to Language
Environment. VMSES/E is used to install service for Language Environment.

To become more familiar with service using VMSES/E, you should read the introductory chapters in:

• VMSES/E Introduction and Reference

These manuals also contains the command syntax for the VMSES/E commands listed in the procedure.

Note: Each step of the servicing instructions must be followed. Do not skip any step unless directed
to. All instructions showing accessing of disks assume the use of default minidisk addresses. If
different minidisk addresses are used, or if using a shared file system, change the instructions
appropriately.

7.1 VMSES/E Service Process Overview

The following is a brief description of the main steps in servicing Language Environment using
VMSES/E.

• Merge Service

Use the VMFMRDSK command to clear the alternate apply disk before receiving new service. This
allows you to easily remove the new service if a serious problem is found.

• Receive Service

The VMFREC command receives service from the delivery media and places it on the Delta disk.

• Apply Service

The VMFAPPLY command updates the version vector table (VVT), which identifies the service level
of all the serviced parts. In addition, AUX files are generated from the VVT for parts that require
them.

• Reapply Local Service (if applicable)

All local service must be entered into the software inventory to allow VMSES/E to track the
changes and build them into the system. Refer to Chapter 7 in the VM/ESA Service Guide for this
procedure.

• Build New Levels

The build task generates the serviced level of an object and places the new object on a test BUILD
disk.

• Place the New Service into Production

Once the service is satisfactorily tested it should be put into production by copying the new service
to the production disk, re-saving the Saved Segments or DCSS (Discontiguous Saved Segments),
etc.

 Copyright IBM Corp. 1991, 1995 31

7.2 Servicing Language Environment

7.2.1 Prepare to Receive Service

The ppfname used throughout these servicing instructions is 5688198E, which assumes you are using
the PPF supplied by IBM for Language Environment. If you have your own PPF override file for
Language Environment, you should use your file′s ppfname instead of 5688198E. The ppfname you use
should be used throughout the rest of this procedure, unless otherwise stated differently.

The compname used throughout these servicing instructions is either LE370 or LE370SFS, which
assumes you are using the component name within the 5688198E PPF file. If you specify your own
ppfname, you should use the compname from that file instead of LE370 or LE370SFS. The compname
you use should be used throughout the rest of this procedure.

 Note

If you are running on VM/ESA Version 2 and have NOT installed the full Language Environment
product, then the compname you should use in all of the VMSES/E service commands MUST be
POSIX.

1 Log onto Language Environment service User ID P688198E

2 Establish access to the software inventory disk.

Note: If the MAINT 51D minidisk was accessed R/O, you will need to have
the user that has it accessed R/W link it R/O. You then can issue the
following commands to obtain R/W access to it.

link maint 51D 51D mr
access 51D D

The 51D minidisk is where the VMSES/E Software
Inventory files and other product dependent files
reside.

3 Have the Language Environment CORrective service tape mounted and
attached to P688198E.

4 Establish the correct minidisk access order.

vmfsetup 5688198E {LE370|LE370SFS} 5688198E is the PPF that was shipped with the
product. If you have your own PPF override you
should substitute your PPF name for 5688198E.

Use LE370 if the product is installed on minidisk
or LE370SFS if the product is installed in SFS.

5 Receive the documentation. VMFREC, with the INFO option, loads the
documentation and displays a list of all the products on the tape.

32 Language Environment Program Directory

Electronic Service

If you are receiving service from Service Link (electronic service) see
Appendix A, ′Receiving Service for VMSES Envelopes′, section ″Receive
the Service″ in the VM/ESA Service Guide. When complete, return back
to this step.

vmfrec info

This command will load the service memo to the
191 disk.

6 Check the receive message log ($VMFREC $MSGLOG) for warning and
error messages.

vmfview receive

Also make note of which products and
components have service on the tape. To do this,
use the PF5 key to show all status messages
which identify the products on the tape.

7 Clear the alternate APPLY disk to ensure that you have a clean disk for
new service.

vmfmrdsk 5688198E {LE370 | LE370SFS} apply

Use LE370 for installing on minidisks or LE370SFS
for installing in Shared File System directories.

This command clears the alternate APPLY disk.

8 Review the merge message log ($VMFMRD $MSGLOG). If necessary,
correct any problems before going on. For information about handling
specific build messages, see VM/ESA: System Messages and Codes, or use
online HELP.

vmfview mrd

Service Instructions 33

7.2.2 Receive the Service
Electronic Service

If you are receiving service from Service Link (electronic service) see Appendix A, ′Receiving
Service for VMSES Envelopes′, in VM/ESA Service Guide

1 Receive the service.

vmfrec ppf 5688198E {LE370|LE370SFS}

Use LE370 for installing on minidisks or LE370SFS
for installing on Shared File System directories.

This command receives service from your service
tape. All new service is loaded to the alternate
DELTA disk.

2 Review the receive message log ($VMFREC $MSGLOG). If necessary,
correct any problems before going on. For information about handling
specific build messages, see VM/ESA: System Messages and Codes, or use
online HELP.

vmfview receive

7.2.3 Apply the Service

1 Apply the new service.

vmfapply ppf 5688198E {LE370|LE370SFS}

Use LE370 for installing on minidisks or LE370SFS
for installing in Shared File System directories.

This command applies the service that you just
received. The version vector table (VVT) is
updated with all serviced parts and all necessary
AUX files are generated on the alternate apply
disk.

You must review the VMFAPPLY message log if
you receive a return code (RC) of a 4, as this
may indicate that you have local modifications
that need to be reworked.

2 Review the apply message log ($VMFAPP $MSGLOG). If necessary,
correct any problems before going on. For information about handling

34 Language Environment Program Directory

specific build messages, see VM/ESA: System Messages and Codes, or use
online HELP.

vmfview apply

 Note

If you get the message VMFAPP2120W then re-apply any local modifications before building
the new Language Environment. Refer to Chapter 7 in VM/ESA Service Guide. Follow the
steps that are applicable to your local modification.

The following substitutions need to be made:

• esalcl should be 5688198E

• esa should be 5688198E

• compname should be LE370 or LE370SFS (minidisk or SFS)

• appid should be 5688198E

• fm-local should be the fm of 2C2

• fm-applyalt should be the fm of 2A6

Keep in mind that, when you get to the ″Rebuilding Objects″ step in the Service Guide, you
should return to this program directory at 7.2.4, “Update the Build Status Table.”

7.2.4 Update the Build Status Table

1 Update the Build Status Table with serviced parts.

vmfbld ppf 5688198E {LE370|LE370SFS} (status

Use LE370 for installing on minidisks or LE370SFS
for installing on Shared File System directories.

This command updates the Build Status Table.

Service Instructions 35

 Note

If the $PPF files have been serviced you will get the following prompt:

VMFBLD2185R The following source product parameter files have been
serviced:

VMFBLD2185R 5688198E $PPF
VMFBLD2185R When source product parameter files are serviced, all

product parameter files built from them must be recompiled
using VMFPPF before VMFBLD can be run.

VMFBLD2185R Enter zero (0) to have the serviced source product
parameter files built to you A-disk and exit VMFBLD so
you can recompile your product parameter files with VMFPPF

VMFBLD2185R Enter one (1) to continue only if you have already
recompiled your product parameter files with VMFPPF

VMFBLD2188I Building 5688198E $PPF
on 191 (A) from level $PF nnnnn

0 Enter a 0 and complete the following steps
before you continue.

vmfppf 5688198E {LE370 | LE370SFS} Note: If you′ve created your own PPF
override, use your PPF name instead of
5688198E.

Use LE370 for installing on minidisks or
LE370SFS for installing on Shared File
System directories.

copyfile 5688198E $PPF a = = d (olddate replace
erase 5688198E $PPF a

Note: Do not use your own PPF name in
place of 5688198E for the COPYFILE and
ERASE commands.

vmfbld ppf 5688198E {LE370 | LE370SFS} (status
1

Reissue VMFBLD to complete updating the
build status table. When you receive the
prompt that was previously displayed, enter
a 1 to continue.

Use LE370 for installing on minidisks or
LE370SFS for installing on Shared File
System directories.

36 Language Environment Program Directory

2 Use VMFVIEW to review the build status messages, and see what objects
need to be built.

vmfview build

7.2.5 Build Serviced Objects

1 Rebuild Language Environment serviced parts.

vmfbld ppf 5688198E {LE370|LE370SFS} (serviced

Use LE370 for installing on minidisks or LE370SFS
for installing on Shared File System directories.

2 Review the build message log ($VMFBLD $MSGLOG). If necessary, correct
any problems before going on. For information about handling specific
build messages, see VM/ESA: System Messages and Codes, or use online
HELP.

vmfview build

7.3 Place the New Language Environment Service Into Production

7.3.1 Rebuild the Saved Segments

1 If installing Language Environment on a VM/ESA 1.5 370 Feature system,
refer to section 10.1, “Defining Saved Segments on VM/ESA 1.5 370
Feature” on page 47, step 7. Upon completion of that step, return back to
section 7.3.2.

2 If Language Environment is installed on a system with VMSES/E then,
depending on which saved segment you have installed, issue the following
command(s):

vmfbld ppf segbld esasegs segblist SCEE (serviced
vmfbld ppf segbld esasegs segblist SCEEX (serviced

Service Instructions 37

3 Review the build message log ($VMFBLD $MSGLOG). If necessary, correct
any problems before going on. For information about handling specific
error messages, see VM/ESA: System Messages and Codes, or use on-line
HELP.

vmfview build

7.3.2 Copy the New Language Environment Serviced Files Into Production

1 Logon to MAINT if you plan to put Language Environment general use code
on the ′Y′ disk (MAINT′s 19E disk). Or logon to the owner of the disk that
will contain the ′production ′ level of the Language Environment code.

link P688198E 29e 29e rr
access 29e e
access 19e f
vmfcopy * * e = = f2 (prodid 5688198E%LE370 olddate replace

The VMFCOPY command will update the VMSES
PARTCAT file on the 19E disk.

You have now finished servicing Language Environment.

38 Language Environment Program Directory

8.0 Selecting/Installing National Languages

 Note

Due to the size and having to rebuild the SCEERUN LOADLIB for this install option, your “A” disk,
which VM uses as an interm work disk during the rebuild, must be at least 20 cylinders of 3390 or
equivalent.

When installing Language Environment you can choose the national language you want used for things
such as system and Language Environment text, run-time messages, Language Environment reports,
and output of such Language Environment services as date and time services. Mixed-Case English is
the default for the run-time language option NATLANG. If you need a language other than mixed-case
English as the default for your system, you can change to uppercase English or Japanese, depending
on what national language support language you have installed. See Appendix E, “Language
Environment Run-time Options” on page 70 for a description of the NATLANG runtime option.

Language Environment ′s KANJI NLS feature will be installed through VMSES/E support using the User
ID, P688198E and the following commands:

1 Install KANJI NLS Message modules.

VMFBLD PPF 5688198E LE370KANJI EDCBLHPJ (ALL

2 Rebuild the SCEERUN LOADLIB with updated Language Function.

VMFBLD PPF 5688198E LE370KANJI EDCBLRUN CEEEV003 (ALL

3 Should you wish to return to Mixed/Upper Case English Messages simply
rebuild the required language function modules by issuing the following
commands:

VMFBLD PPF 5688198E LE370 EDCBLHPE (ALL
VMFBLD PPF 5688198E LE370 EDCBLRUN CEEEV003 (ALL

 Copyright IBM Corp. 1991, 1995 39

VMFBLD PPF 5688198E LE370KANJI EDCBLHPJ (ALL
VMFBLD2760I VMFBLD processing started
VMFBLD1851I Reading build lists
VMFBLD2182I Identifying new build requirements
VMFBLD2182I No new build requirements identified
VMFBLD1851I (1 of 1) VMFBDCOM processing EDCBLHPJ EXEC
VMFBDC2219I Processing object CMOD.HELPCMS
VMFBDC2219I Processing object CPLINK.HELPCMS
VMFBDC2219I Processing object C370LIB.HELPCMS
VMFBDC2219I Processing object LINKLOAD.HELPCMS
VMFBDC2219I Processing object GENXLT.HELPCMS
VMFBDC2219I Processing object ICONV.HELPCMS
VMFBDC2219I Processing object EDCPMSGE.MSGS
VMFBLD1851I (1 of 1) VMFBDCOM completed with return code 0
VMFBLD2180I There are 0 build requirements remaining
VMFBLD2760I VMFBLD processing completed successfully
Ready; T=114.45/115.74 11:01:21

VMFBLD PPF 5688198E LE370KANJI EDCBLRUN CEEEV003 (ALL

VMFBLD2760I VMFBLD processing started
VMFBLD1851I Reading build lists
VMFBLD2182I Identifying new build requirements
VMFBLD2182I New build requirements identified
VMFBLD1851I (1 of 1) VMFBDLLB processing EDCBLRUN EXEC
VMFLLB2219I Processing object CEEEV003
VMFBLD1851I (1 of 1) VMFBDLLB completed with return code 0
VMFBLD2180I There are 0 build requirements remaining
VMFBLD2760I VMFBLD processing completed successfully
Ready; T=147.84/153.11 11:07:12

Figure 20. Sample KANJI install console.

40 Language Environment Program Directory

9.0 Customizing Language Environment

Once the product has been installed, it can be customized using the ′C5688198′ EXEC. This EXEC will
do the following:

 1. Prompt you for the area you wish to customize;

• Language Environment Runtime Options

• Language Environment User Exit

• COBOL COBPACKs

• ′C′ Component Locale Time Information

• Saved Segements Components

 2. Invoke an ′XEDIT′ session for the specific customization component requested;

 3. Re-assemble, if required, component customized;

 4. Rebuild required modules using the specific VMSES/E part handler

IBM Language Environment for MVS & VM
Version 1 Release 5 Mod 0

1) Run Time Options
2) User Exits
3) †C† Locale Time Information
4) Saved Segments
5) COBOL COBPACKs

Enter number of option you wish to change or
Enter ¢END¢ or ¢QUIT¢ to exit EXEC

Figure 21. Customization EXEC - Panel 1

9.1 Updating Run-Time Options

Language Environment run-time options are updated by invoking the customization EXEC which puts
you into an XEDIT session of CEEDOPT ASSEMBLE. After you update and file CEEDOPT, the EXEC
assembles it (using HASM) and if the assembly is successful, will then prompt you to see if you want to
rebuild the modules in which it is included. Modules which will be rebuilt are CEEBINIT, CEEBPICI and
CEEPIPI all of which are in Build List “CEEBLMOD.” See Appendix E, “Language Environment
Run-time Options” on page 70 for a complete description of the run-time options.

 Copyright IBM Corp. 1991, 1995 41

9.2 Updating User Exit Options

The assembler user exit is updated by invoking the customization EXEC which puts you into an XEDIT
session of CEEBXITB ASSEMBLE. After you update and file CEEBXITB, the EXEC assembles it (using
HASM) and if the assembly is successful, will then prompt you to see if you want to rebuild the
component in which it is included. Modules which will be rebuilt are CEEBINIT, CEEBPICI and CEEPIPI
all of which are in Build List “CEEBLMOD.”

9.3 Updating COBOL Component COBPACKs

COBPACKs are updated by the editing of file IGZBLPAC Exec using the C5688198 Customization EXEC.
After IGZBLPAC is updated and filed, the EXEC will rebuild the IGZCPAC and IGZCPCO MODULEs.

As this is the control file defining the structure of these two relocatable LOAD MODULEs, it is important
that it is updated very carefully. Updates to this file should be made by commenting out those
“:PARTID.” statements of the text files you do not wish to have in the COBPACKs. Do NOT delete any
lines. For the IGZCPCO COBPACK you must, at a minimum leave in the “:PARTID.IGZCPCO ”
statement. For the IGZCPAC COBPACK you must leave the “:PARTID.IGZCPAC” statement. If any
lines other than the “:PARTID.” are commented out, or if the IGZCPCO or IGZCPAC basic “:PARTID.”
statements are commented out, or the order of any of the lines has been changed, the update could
fail with a control file error.

The COBPACKs can also be tailored to run above the line during customization. This is accomplished
by commenting out all of the text files built with “RMODE 24.” Modules which will be rebuilt are
IGZCPAC and IGZCPCO which are in Build List “IGZBLPAC.”

9.4 C Component Locale Time Information

 Note

Due to the size and having to rebuild the SCEERUN LOADLIB for this option, your “A” disk, which
VM uses as an interm work disk during the rebuild, must be at least 20 cylinders of 3390 or
equivalent.

C locale time information is used for options such as Time Zone name and Daylight Savings Time
starting dates.

Locale time is updated by editing a file named ′EDCLOCI′. The EXEC will put you into an XEDIT
session of EDCLOCI ASSEMBLE and after updates are completed it is filed and then assembled using
HASM. Once successfully assembled, the EXEC will rebuild the required components and the C locale
time is updated.

42 Language Environment Program Directory

9.5 Updating Saved Segments

After successfully installing IBM Language Environment for MVS & VM, you can load certain routines
into Saved Segments on VM/ESA. Placing routines into Saved Segments reduces overall system
storage requirements by making the routines sharable and also, initiation/termination (init/term) time
is reduced for each application, since load time decreases.

Included with Language Environment are four build lists (CEEBLSGA and CEEBLSGB for the full
Language Environment environment and CEEBLSPA and CEEBLSPB for POSIX environment) plus the
necessary LSEG files required to install specific routines of Language Environment into segments. By
selecting option 5 in the Customization Exec, these individual build lists can be tailored to load only
specific routines of the Language Environment product (i.e commonly used COBOL, PL/I, or C routines)
into segments. Each build list contains comments that identify these routines and to help tailor the
segment install.

Customizing can be accomplished by either commenting or uncommenting the LOADFUNC component
statement(s) you wish to take action on or by adding a correct “LOADFUNC” statement into the build
list.

A “*” inserted in the first column of any LOADFUNC statement will eliminate that component from
being included while deleting the “*” from the first column will include the component. In the example
shown below, the COBOL COBPACKs (IGZCPAC and IGCCPCO) which are normally installed below the
line, and thus included in the CEEBLSGB build list, will be eliminated from the saved segment
environment.

* IBM Language Environment for MVS & VM *
* Version 1 Release 5 Modification 0 *
* *
* Licensed Materials -- Property of IBM *
* 5688-198 (C) Copyright IBM Corporation 1995 *
* All Rights Reserved *

* Buildlist CEEBLSGB for Saved Segment (Below line 16M Line) *

*
:FORMAT. 2
*
:OBJNAME. SCEE.SEGMENT
:BLDREQ. CEEBLMOD.CEEBINIT.MODULE

CEEBLMOD.CEEBLIIA.MODULE
CEEBLMOD.CEEPIPI.MODULE
CEEBLMOD.CEEBPICI.MODULE
EDCBLSP2
IBMBLMOD.IBMRCOMP.MODULE
IBMBLMOD.IBMRLIB1.MODULE
IBMBLMOD.IBMRPTLA.MODULE

:GLOBAL. TXTLIB SCEESPC
:OPTIONS. LOADFUNC (LSEG CEEBINIT)

Customizing Language Environment 43

LOADFUNC (LSEG CEEBLIIA)
LOADFUNC (LSEG CEEPIPI)
LOADFUNC (LSEG CEEBPICI)
LOADFUNC (LSEG IBMRLIB1)
LOADFUNC (LSEG IBMRCOMP)

* LOADFUNC (LSEG IGZCPAC)
* LOADFUNC (LSEG IGZCPCO)
:EOBJNAME.
*

By using this method, should you decide at a later date to reinstate these routines in the Saved
segments simply remove the asterisk “*” and regenerate the segments. If you wish to include other
routines into saved segments simply add the correct “LOADFUNC” statement into the respective build
list.

See Appendix C, “Segment Build Lists (CEEBLSGA/CEEBLSGB)” on page 64 and Appendix D,
“Segment Build Lists (CEEBLSPA/CEEBLSPB) - POSIX” on page 67 for a full description of the
segment build lists.

For more information on the defining/loading of the Saved segments for Language Environment, see
Chapter 10.0, “Define and Build The Language Environment Saved Segments” on page 46.

44 Language Environment Program Directory

9.6 Installing in Saved Segments

All Language Environment routines that can be installed into saved segments are shown below with
their approximate sizes in hex bytes.

SCEE (CEEBLSGB) SCEEX (CEEBLSGA)
(Below Line) (Above Line)

Mod Name Size Mod Name Size

** LE Components ** ** LE Components **

CEEBINIT A740 CEECOPP BB68
CEEBLIIA 1548 CEEPLPKA A87F0
CEEPIPI CF88 CEEQMATH 843A8
CEEBPICI AD20 CEEMUEN0 2890

CEEMUEN2 2DB8
** COBOL Components ** CEE MUEN3 7420

IGZCPAC 1AF18 CEEMUEN4 0460
IGZCPCO BA90 CEEMUEN5 3598

CEEMENU0 2890
** PL/I Components ** CEE MENU2 2DB8

CEEMENU3 7420
IBMRLIB1 BDA0 CEEMENU4 0400
IBMRCOMP 3818 CEEMENU5 3598
IBMRPTLA 0008

** PL/I Components **

CEEEV010 343A0

** COBOL Components **

IIGZMSGT 0088
IGZINSH 27A00
IGZCMGEN 40D0
CEEEV005 33A8

** ¢C¢ Components **

EDCNSS01 16F840 (CEEEV003 Module)
EDCNSS02 8E958 (EDCZ24 Module)
EDCNSS03 47DF8 (EDCNINSP Module)
EDCZUMSG 6D70
EDCZEMSG 6D70

** ¢NLS¢ Components **

EDCZJMSG
IGZCMGJA 4278
CEEMJPN0 2848
CEEMJPN2 2E70
CEEMJPN3 76D8
CEEMJPN4 03F8
CEEMJPN5 3728

Figure 22. Component Module Size

Customizing Language Environment 45

10.0 Define and Build The Language Environment Saved Segments

It is recommended that segments be built for 5688198E. First the segments are defined to the system
using the segment mapping tool VMFSGMAP. Once the segments are defined VMFBLD is used to
build them.

For more information on using VMSES/E for saved segments, review the chapter, ′Using VMSES/E to
Define, Build, and Manage Saved Segments in the VM/ESA Planning and Administration manual.

When you use Saved segments for Language Environment remember that the order in loading is:

 1. Nucleus extension
 2. Saved segments
 3. Relocatable modules
 4. OS simulation load

Note: The defining and building of the Language Environment saved segments should be performed
from the installation User ID. If you move any segments that are currently defined on your system you
must ensure that they are rebuilt from the User ID that maintains them.

 Note

Installing saved segments under the VM/ESA Release 1.5 370 Feature, is described in Section 10.1
while installing saved segments under VMSES/E is described in Section 10.2

46 Copyright IBM Corp. 1991, 1995

10.1 Defining Saved Segments on VM/ESA 1.5 370 Feature

VMSES/E does not support the build function of saved segments on VM/ESA Release 1.5 370 Feature.

Notes:

You must

 1. Have Class E privileges to install a saved segment.

 2. Have a virtual storage size at least 0.5 MB greater than the address of the end of the segment.

 3. Ensure that the shared segment does not overlap any other shared segment or saved system. For
details, see the VM/ESA CP Planning and Administration for 370 manual.

The process to create a saved segment under VM/ESA Release 1.5 370 Feature is as follows:

• Define saved segment by means of an OVERRIDE file

• Load the saved segment by the SEGGEN command

• Update the CMS system disk

10.1.1 Saved Segment Build for VM/ESA 370 Feature

1 Logon to installation userid P688198E.

2 Establish read access to VMSES/E code.

link MAINT 5e5 5e5 rr
access 5e5 b

The 5E5 disk contains the VMSES/E code.

3 Establish write access to the Software Inventory disk.

link MAINT 51d 51d mr
access 51d d

4 Establish disk access to Language Environment.

vmfsetup 5688198E {LE370|LE370SFS} 5688198E is the PPF shipped with Language
Environment. If you have your own PPF override,
substitute your PPF name for 5688198E.

Use LE370 if using minidisk or LE370SFS if using
Shared File System directories.

5 Add following entry to OVERRIDE file.

Define and Build The Language Environment Saved Segments 47

The recommended method to generate the Library shared segment is to
make an entry for the segment in the SNT OVERRIDE file and activate it
with the OVERRIDE command.

Notes:

a. Please be aware this is only a suggested DEFSEF TAG, as it will vary
depending on other products.

b. segname can be anything. The default Language Environment segment
can be either SCEE|SCEEX

:DEFSEG.segname /* segment name */
Volume=cccccc /* volume serial number */
SaveLoc=(mm,nn) /* starting location on Vol.*/
Size=320K /* required but ignored */
PageCount=80 /* number of pages */
PageList=(2432-2511) /* page numbers, from-to */
SegList=(152-156) /* segment numbers, from-to */
IPLAddr=IGNORE /* must be IGNORE for a SS */

6 Issue OVERRIDE command.

override fn ft fm (immediate fn ft fm should be the name of the override file
containing the segname DEFSEG entry.

7 Invoke SEGGEN to build and save physical saved segment.

SEGGEN segname

 NOTE

A new file, SYSTEM SEGID, now appears on your A-disk (or other
READ/WRITE disk, depending on the location of the MODULEs). You must
copy this file to the S-disk to replace the SYSTEM SEGID that is currently
there. Remember to re-SAVE CMS to avoid the Shared S-STAT not available
message.

For VM/ESA 2.0 and above, the SYSTEM SEGID is updated on MAINT 51D.
You must copy this file to the S-disk to stay in sync with the system′s SEGID.

The segname segment is now generated. Any users who log on to the system
after this time receive the benefits of this. All MODULEs stated in SEQASEG are
now loaded from Saved segments instead of from the MODULE on the disk.

48 Language Environment Program Directory

10.2 Define and Build Saved Segments Using VMSES/E

1 Logon to the installation User ID P688198E.

2 Establish write access to the VMSES/E and software inventory disks.

link maint 51D 51D mr
access 51d D

3 Add Language Environment segment object definitions to the SEGBLIST
EXC00000 build list.

vmfsgmap segbld esasegs segblist This command displays a panel for making
segment updates. See Figure 23 on page 50 for
an example of the Segment Map panel that will
be displayed.

Define and Build The Language Environment Saved Segments 49

VMFSGMAP - Segment Map More: +
Lines 1 to nn of nn

000-MB 001-MB 002-MB 003-MB
Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF

M CMS SYS W-W-------------1...............2...............3...............
M GCS SYS W---------------1...............2...............3...............

004-MB 005-MB 006-MB 007-MB
Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
CMSPIPES DCS 4...............5...............6...............RRRR------------

M GCS SYS RRRRRRNNNNNNNNNNNNNNNNNNNNNNNNNN6...............7...............
M HLASM DCS 4...............5...............RRRRRRRRRRRRRRRR7...............

008-MB 009-MB 00A-MB 00B-MB
Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
DOSBAM SPA 8...............9...............A...............====------------
CMSBAM MEM 8...............9...............A...............BRRR............
CMSDOS MEM 8...............9...............A...............R...............
CMSVMLIB DCS RRRRRRRRRRRRRRRR9...............A...............B...............

 DOSINST DCS 8...............R---------------A...............B...............

00C-MB 00D-MB 00E-MB 00F-MB
Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
HELPINST DCS RRRRRRRRRRRRRRRRD...............E...............F...............

M CMS SYS C...............D...............RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR>

================================= 16-MB Line ==================================

010-MB 011-MB 012-MB 013-MB
F1=Help F2=Chk Obj F3=Exit F4=Chg Obj F5=File F6=Save
F7=Bkwd F8=Fwd F9=Retrieve F10=Add Obj F11=Del Obj F12=Cancel

====> _

Figure 23. Segment Map panel example.

4 Go to Add Segment Definition panel by pressing PF10.

F10 F10 will take you from the Segment Map panel to
the Add Segment Definition panel. See Figure 24
on page 51 to see the Add Segment Definition
panel that will be displayed.

50 Language Environment Program Directory

Add Segment Definition
Lines 1 to nn of nn

 OBJNAME....: SCEE|SCEEX
 DEFPARMS...:
 SPACE......:
 TYPE.......: SEG
 OBJDESC....:
 OBJINFO....:
 GT_16MB....: NO
 DISKS......:
 SEGREQ.....:
 PRODID.....: 5688198E LE370
 BLDPARMS...: UNKNOWN

 F1=Help F2=Get Obj F3=Exit F4=Add Line F5=Map F6=Chk MEM
F7=Bkwd F8=Fwd F9=Retrieve F10=Seginfo F11=Adj MEM F12=Cancel

====>

Figure 24. Initial ″Add Segment Definit ion″ panel example.

5 Obtain the LE370 segment definitions from the prodpart file..

OBJNAME....: {SCEE|SCEEX}
PRODID.....: 5688198E {LE370|POSIX}

Use SCEE for building below the 16M line or
SCEEX for building above the 16M line.

Use LE370 component name if running with full
Language Environment product installed or
POSIX component name if running with VM/ESA
2.1.0 component only.

F10 F10 will obtain the Language Environment
segment information from the 5688198E
PRODPART file. See Figure 25 on page 52 for
the refreshed Add Segment definition panel that
will be displayed.

Notes:

Not entering an OBJNAME parm, will cause both segments to be
displayed at the same time as shown in Figure 25 on page 52.
Entering an OBJNAME parm will result in seeing only the segment
requested.

Define and Build The Language Environment Saved Segments 51

Add Segment Definition More: +
Lines 1 to 24 of 24

 OBJNAME....: SCEE
 DEFPARMS...: 0900-09FF SR
 SPACE......:
 TYPE.......: PSEG
 OBJDESC....: SCEE SEGMENT BELOW 16 MEG
 OBJINFO....:
 GT_16MB....: NO
 DISKS......:
 SEGREQ.....:
 PRODID.....: 5688198E LE370
 BLDPARMS...: PPF(5688198E LE370 CEEBLSGB)

 OBJNAME....: SCEEX
 DEFPARMS...: 1800-1CFF SR
 SPACE......:
 TYPE.......: PSEG
 OBJDESC....: SCEEX SEGMENT ABOVE 16 MEG
 OBJINFO....:
 GT_16MB....: YES
 DISKS......:
 SEGREQ.....:
 PRODID.....: 5688198E LE370
 BLDPARMS...: PPF(5688198E LE370 CEEBLSGA)

 F1=Help F2=Get Obj F3=Exit F4=Add Line F5=Map F6=Chk MEM
 F7=Bkwd F8=Fwd F9=Retrieve F10=Seginfo F11=Adj MEM F12=Cancel
====>

Figure 25. Segment Definit ion panel showing SCEE Segment information

F5 Confirm information shown on panels is correct
and press F5 to return to the Segment Map
panel. See Figure 26 on page 53 for the
refreshed Segment Map panel that will be
displayed.

52 Language Environment Program Directory

VMFSGMAP - Segment Map More: +
Lines 1 to 25 of 32

Meg 008-MB 009-MB 00A-MB 00B-MB
St Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF

SCEE DCS 8...............RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRB...............
M SEQA DCS 8...............RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRB...............
M GCS2 SYS 8...............RRRRRRNN
M CMS11A SYS C...............D...............RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR>

================================= 16-MB Line ==================================

Meg 018-MB 019-MB 01A-MB 01B-MB
St Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
M QMF310E MEM RRR...............

SCEEX DCS RRR>

Meg 01C-MB 01D-MB 01E-MB 01F-MB
St Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF

SCEEX DCS >RRRRRRRRRRRRRRRD...............E...............F...............

Meg 030-MB 031-MB 032-MB 033-MB
St Name Typ 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF
M VSF260D DCS R---------------1...............2...............3...............

F1=Help F2=Chk Obj F3=Exit F4=Chg Obj F5=File F6=Save
F7=Bkwd F8=Fwd F9=Retrieve F10=Add Obj F11=Del Obj F12=Cancel

====>

Figure 26. Segment Map panel with SCEE/SCEEX Segments

6 Save new information and exit from the Segment Map panel.

F5

Ready; T=nn.nn/nn.nn hh:mm:ss

F5 saves all changed information and exits the
map panel.

7 Prepare to build the segments.

a IPL CMS to clear the virtual storage

ipl 190 clear parm nosprof instseg no

** DO NOT press ENTER at the VMREAD!**

IPL 190 to clear your virtual machine. This
command bypasses the execution of the system
profile (SYSPROF EXEC) and without loading the
installation saved segment (CMSINST).

access (noprof Bypass the execution of the PROFILE EXEC.

b Access the VMSES/E code

Define and Build The Language Environment Saved Segments 53

access 5E5 B

c Establish write access the Software Inventory Disk

link maint 51D 51D mr
access 51d D

d Reset Loader Tables back to 12.

Set LDRTBLS 12

8 Issue VMFBLD command to build the Language Environment segments.

vmfbld ppf segbld esasegs segblist {SCEE|SCEEX} (all

Ready; T=1.39/1.53 05:56:57
vmfbld ppf segbld esasegs segblist scee (all
VMFBLD2760I VMFBLD processing started
VMFBLD1851I Reading build lists
VMFBLD2182I Identifying new build requirements
VMFBLD2182I New build requirements identified
VMFBLD1851I (1 of 1) VMFBDSEG processing SEGBLIST EXC00000, target is BUILD 51D

(D)
VMFBDS2115I Validating segment SCEE
VMFBDS2002I A DEFSEG command will be issued for 1 segment(s).
VMFBDS2219I Processing object SCEE.SEGMENT
HCPNSS440I Saved segment SCEE was successfully saved in fileid 1129.
VMFBDS2003W The SYSTEM SEGID D(51D) file has been changed and must be moved to

the S disk.
VMFBLD1851I (1 of 1) VMFBDSEG completed with return code 4
VMFBLD2180I There are 9 build requirements remaining
VMFBLD2760I VMFBLD processing completed with warnings
Ready(00004); T=22.05/23.26 05:57:59

Figure 27. Sample Console ouput for SCEE Segment Load

54 Language Environment Program Directory

Ready; T=0.01/0.01 11:40:56
VMFBLD PPF SEGBLD ESASEGS SEGBLIST SCEEX (ALL
VMFBLD2760I VMFBLD processing started
VMFBLD1851I Reading build lists
VMFBLD2182I Identifying new build requirements
VMFBLD2182I New build requirements identified
VMFBLD1851I (1 of 1) VMFBDSEG processing SEGBLIST EXC00000, target is BUILD 51D

(D)
VMFBDS2115I Validating segment SCEEX
VMFBDS2002I A DEFSEG command will be issued for 1 segment(s).
VMFBDS2219I Processing object SCEEX.SEGMENT
GLOBAL TXTLIB EDCNSS01 SCEELKED
GLOBAL TXTLIB EDCNSS02 EDCNSS03 SCEELKED
GLOBAL TXTLIB EDCNSS02 EDCNSS03 SCEELKED
HCPNSS440I Saved segment SCEEX was successfully saved in fileid 1577.
VMFBDS2003W The SYSTEM SEGID D(51D) file has been changed and must be moved to

the S disk.
VMFBLD1851I (1 of 1) VMFBDSEG completed with return code 4
VMFBLD2180I There are 8 build requirements remaining
VMFBLD2760I VMFBLD processing completed with warnings
Ready(00004); T=22.62/24.50 11:42:15
vmfview build
Ready; T=0.27/0.29 11:44:40

Figure 28. Sample Console ouput for SCEEX Segment Load

9 Use VMFVIEW to review the build message log ($VMFBLD $MSGLOG). If
necessary, correct any problems before going on.

vmfview build

10 If you received the message:

VMFBDS2003W The SYSTEM SEGID D(51D) file has been changed and
must be moved to the S disk

then the SYSTEM SEGID must be copied over to
the S-disk in order to stay in sync with the
system ′s SEGID. Remember to re-SAVE CMS to
avoid the Shared S-STAT not available message.

Define and Build The Language Environment Saved Segments 55

Appendix A. Overriding the VMSYS File Pool Name

This section provides information to help you change the name of the file pool where Language
Environment files will reside when Language Environment is installed using SFS directories, if you are
running on a VM/ESA system at a lower level than VM/ESA 1.2.2. If you are on VM/ESA 1.2.2 then this
support has been added into VMSES/E so refer to the VMSES/E Introduction and Reference instead of
this appendix.

During the VMFINS installation process, you are presented with an opportunity to override the default
installation parameters defined in the 5688198E $PPF file. If you choose to do this, the ′Make Override
Panel′ will be displayed, from which you can then change various installation parameters, including the
SFS directory names used to organize the Language Environment files. However, this panel does not
support changing the name of the file pool with which these directories are associated—VMSYS.

VMSYS is the IBM default name for a file pool that′s intended to be used for system data and programs
that are to be shared among users. See VM/ESA Planning and Administration for more information
about the VMSYS file pool and its characteristics.

If you intend to change only the VMSYS file pool name, you′ ll need to manually create a PPF override
for the :DCL. section of the 5688198E $PPF file before you install Language Environment, as described
in 6.4, “Install Language Environment” on page 22.

If you intend to change the VMSYS file pool name in addition to other installation parameters, you
should first create a PPF override file during the installation process to change those parameters, then
modify the resulting $PPF override file to account for the VMSYS-related changes.

Note: Do not modify the product supplied 5688198E $PPF or 5688198E PPF files to change the VMSYS
file pool name or any other installation parameters. If the 5688198E $PPF file is serviced, the existing
$PPF file will be replaced, and any changes to that file will be lost. By creating your own $PPF
override, your updates will be preserved.

The following process describes changing the default file pool name, VMSYS to MYPOOL1:

1 Create a new $PPF override file, or edit the override file created via the
′Make Override Panel′ function.

56 Copyright IBM Corp. 1991, 1995

xedit overname $PPF fm2 overname is the PPF override file name (such as
″myLE370″) that you want to use.

fm is an appropriate file mode. If you create this
file yourself, specify a file mode of A.

If you modify an existing override file, specify a
file mode of A or D, based on where the file
currently resides (A being the file mode of a R/W
191 minidisk, or equivalent; D, that of the MAINT
51D minidisk).

2 Create (or modify as required) the Variable Declarations (:DCL.) section for
the LE370SFS override area so that it resembles the :DCL. section as
shown below. This override will be used for the installation of Language
Environment.

:OVERLST. LE370SFS
*
===
:LE370SFS. LE370
===
:DCL. UPDATE
 &191 DIR MYPOOL1:P688198E. * A DISK
 &SAMPZ DIR MYPOOL1:P688198E.LE370.LOCAL * SAMPLE/LOCAL FILES
 &DELTZ DIR MYPOOL1:P688198E.LE370.DELTA * PRODUCT SERVICE
 &APPLY DIR MYPOOL1:P688198E.LE370.ALTAPPLY * AUX/INVENTORY FILES
 &APPLZ DIR MYPOOL1:P688198E.LE370.PRODAPPLY * PROD. APPLY DISK
&BLD0Z LINK P688198E 39E 39E MR * TEST USABLE FORMS

 &BAS1Z DIR MYPOOL1:P688198E.LE370.OBJECT * BASE DISK
 &LE3ID1 USER P688198E
:EDCL.
:END.
===
*

This override will replace the :DCL. section of the LE370SFS override area of the 5688198E $PPF
file.

3 If your $PPF override file was created at file mode A, copy it to file mode
D—the Software Inventory minidisk (MAINT 51D).

file
copyfile overname $PPF fm = = d (olddate

4 Compile your changes to create the usable overname PPF file.

Appendix A. Overriding the VMSYS File Pool Name 57

vmfppf overname LE370SFS where overname is the file name of your $PPF
override file.

Now that the overname PPF file has been created, you should specify overname
instead of 5688198E as the PPF name to be used for those VMSES/E commands
that require a PPF name.

58 Language Environment Program Directory

Appendix B. Contents of COBPACKs (IGZCPAC/IGZCPCO)

B.1 Contents of General COBPACK - IGZCPAC
Figure 29 lists routines you can include in the general IGZCPAC COBPACK and briefly describes each
to help you determine which to include in your tailored COBPACK.

Figure 29 (Page 1 of 3). Routines Eligible for Inclusion in General COBPACK (IGZCPAC)

Name Description
OS/
CICS*

Link-
Edited
AMODE

Link-
Edited
RMODE

IGZCACP ACCEPT and STOP literal OS 31 ANY

IGZCACS Alternate collating sequence
comparison

Both 31 ANY

IGZCANE Alphanumeric edit ing Both 31 ANY

IGZCANF Format with f igurative
constant

Both 31 ANY

IGZCBID Binary to internal decimal Both 31 ANY

IGZCBUG6 Used for debugging Both 31 24

IGZCCLS Class test Both 31 ANY

IGZCCTL4 Batch/interactive debug
control

Both 31 ANY

IGZCCVB Numeric conversion Both 31 ANY

IGZCDSP DISPLAY OS 31 ANY

IGZCFCC6 Linkage manager for COBOL
for MVS & VM (dynamic call
and cancel)

OS 31 24

IGZCFDP5 Formatted FDUMP Both 31 ANY

IGZCFDW TRUNC floating point to
binary conversion

Both 31 ANY

IGZCFPW Exponentiates double
precision floating-point
numbers

Both 31 ANY

IGZCGDR Segment refresh Both 31 ANY

IGZCHCM Condition management
events handler

Both 31 ANY

IGZCIDB Internal decimal to binary Both 31 ANY

IGZCINS INSPECT Both 31 ANY

IGZCIN1 INSPECT library Both 31 ANY

 Copyright IBM Corp. 1991, 1995 59

Figure 29 (Page 2 of 3). Routines Eligible for Inclusion in General COBPACK (IGZCPAC)

Name Description
OS/
CICS*

Link-
Edited
AMODE

Link-
Edited
RMODE

IGZCIN2 INSPECT library Both 31 ANY

IGZCIPS Initialization for internal
program setup

Both 31 ANY

IGZCIVL Comparison with figurative
constant

Both 31 ANY

IGZCKCL Kanji class test Both 31 ANY

IGZCLDL Load/delete subroutines Both 31 ANY

IGZCLDR1 Partition loader (COBLDR) Both 31 ANY

IGZCLLM2 Load list manager Both 31 ANY

IGZCLNC6 Linkage manager for OS/VS
COBOL, DEBUG, and
IGZBRDGE (dynamic call and
cancel)

Both 31 24

IGZCLNK6 Linkage manager for VS
COBOL II and COBOL/370
(dynamic call and cancel)

Both 31 24

IGZCMED Median function processor Both 31 ANY

IGZCMLT5 Message table Both 31 ANY

IGZCMSG Message process control
routine

Both 31 ANY

IGZCNMV NUMVAL/NUMVAL-C
function processor

Both 31 ANY

IGZCONV Conversion routine for
floating point

Both 31 ANY

IGZCPPL2 Linkage manager for
procedure-pointers

Both 31 24

IGZCPRC2 Program cleanup Both 31 ANY

IGZCPRS2 Program setup Both 31 ANY

IGZCRCL3 Run unit cleanup Both 31 ANY

IGZCREV Reverse function processor Both 31 ANY

IGZCRSU2 Run unit setup Both 31 ANY

IGZCSCH Binary search of table Both 31 ANY

IGZCSMV Move right-justif ied Both 31 ANY

IGZCSPA Printer spacing OS 31 ANY

IGZCSPC Call by content Both 31 ANY

IGZCSPM Space manager Both 31 ANY

60 Language Environment Program Directory

Figure 29 (Page 3 of 3). Routines Eligible for Inclusion in General COBPACK (IGZCPAC)

Name Description
OS/
CICS*

Link-
Edited
AMODE

Link-
Edited
RMODE

IGZCSSN Separate sign numeric Both 31 ANY

IGZCSSR SSRANGE compile-t ime
option

Both 31 ANY

IGZCSTA Statistical routine function
processor

Both 31 ANY

IGZCSTG STRING Both 31 ANY

IGZCULE6 User I/O logic error handler OS 31 24

IGZCUPL Upper and lowercase
function

Both 31 ANY

IGZCUST UNSTRING Both 31 ANY

IGZCVDP5 Variable dump routine 1 Both 31 ANY

IGZCVIN VSAM init ial ization OS 31 ANY

IGZCVLD2 Verify loader Both 31 ANY

IGZCVMO Variable length move Both 31 ANY

IGZCXDI Double precision division Both 31 ANY

IGZCXFR6 I/O declarative transfer OS 31 24

IGZCXMU Double precision
multipl ication

Both 31 ANY

IGZCXPR Decimal fixed-point
exponentiation

Both 31 ANY

IGZIBPC4 Build program control tables Both 31 ANY

IGZICAL4 Call intercept routine Both 31 ANY

IGZICUD4 Describe CU Both 31 ANY

Notes to Routines Eligible for inclusion in General COBPACK (IGZCPAC):

1 Highly recommended for a partially loaded COBPACK.

2 Highly recommended for inclusion in the general COBPACK, regardless of whether the location is above or
below the 16M address line.

3 Highly recommended for inclusion in the general COBPACK if it is located below the 16M address line.

4 If IGZCCTL is included in the COBPACK, you should also include modules IGZIBPC, IGZICAL, and IGZICUD.

5 If IGZCFDP is included in the COBPACK, you should also include modules IGZCMLT and IGZCVDP.

6 This routine is not included in the IBM supplied COBPACK IGZCPAC so that the COBPACK is RMODE(ANY)
and will be loaded above the 16M line.

Appendix B. Contents of COBPACKs (IGZCPAC/IGZCPCO) 61

B.2 Contents of the Environment-Specific COBPACK (IGZCPCO)

Figure 30 lists routines you can include in the environment-specific COBPACK (IGZCPCO) and
describes each to help you determine which to include in your tailored COBPACK.

Figure 30 (Page 1 of 2). Routines Eligible for Inclusion in the
Environment-Specific COBPACK (IGZCPCO)

Name Description

Link-
Edited
AMODE

Link-
Edited
RMODE

CEEARLU5 Anchor lookup 31 ANY

CEEBLLST5 Language list CSECT 31 ANY

CEEBPIRA5 Common init ial ization 31 ANY

CEEBTRM5 Common termination 31 ANY

IGZCSG5 COBOL signature 31 ANY

IGZCBET5 Common table CSECT 31 ANY

IGZECKP Checkpoint 31 ANY

IGZECMS4 CMS command handler 31 ANY

IGZEDMR6 Reusable environment deactivation 31 24

IGZEDTE Date, day, and time of day 31 ANY

IGZEINI2,3,6 Environment init ial ization 31 24

IGZEINP6 Accept input reader 31 24

IGZEMSG Object-time message writer 31 ANY

IGZENRT NORES termination 31 ANY

IGZEOPN6 OPENS SYSIN and SYSPUNCH in the
initial Program Thread (IPT)

31 24

IGZEOUT6 Display output writer 31 24

IGZEPTV Printer overf low 31 ANY

IGZEQBL6 QSAM initialization transmission
verbs, error exits

31 24

IGZEQOC6 QSAM OPEN/ CLOSE 31 24

IGZESCD6 SORT-CONTROL I/O handling
routine

31 24

IGZESMG6 Sort/Merge interface 31 24

IGZETCL1 Thread cleanup 31 ANY

IGZETRM6 Environment termination 31 24

IGZETSU1 Thread setup 31 ANY

IGZEVAM6 VSAM-to-IDCAMS interface 31 24

62 Language Environment Program Directory

Figure 30 (Page 2 of 2). Routines Eligible for Inclusion in the
Environment-Specific COBPACK (IGZCPCO)

Name Description

Link-
Edited
AMODE

Link-
Edited
RMODE

IGZEVEX6 VSAM exit module for SYNAD and
LERAD

31 24

IGZEVIO VSAM input/output 31 ANY

IGZEVOC VSAM OPEN/CLOSE 31 ANY

IGZEVOP VSAM OPEN interface for variable
length records

31 ANY

IGZEVSV VSAM I/O for simulated relative
record data sets with variable
length records

31 ANY

Notes to Routines Eligible for Inclusion in the Environment-Specific
COBPACK(IGZCPCO):

1 Highly recommended for inclusion in a COBPACK, regardless of whether it is
located above or below the 16M address line.

2 Must exist outside the OS ESM COBPACK, even if it also exists in it.

3 Highly recommended for inclusion in a COBPACK if it is located below the 16M
address line.

4 IGZECMS is applicable under CMS only and must be available at link-time if
the load module is to run under CMS.

5 If IGZEINI is included in the COBPACK, the following routines must also be
included: CEEARLU, CEEBLLST, CEEBPIRA, CEEBTRM, and IGZCBET.

6 This routine is not included in the IBM supplied COBPACK IGZCPCO so that the
COBPACK is RMODE(ANY) and will be loaded above the 16M line.

Appendix B. Contents of COBPACKs (IGZCPAC/IGZCPCO) 63

Appendix C. Segment Build Lists (CEEBLSGA/CEEBLSGB)

C.1 CEEBLSGB

* IBM Language Environment for MVS & VM *
* Version 1 Release 5 Modification 0 *
* *
* Licensed Materials -- Property of IBM *
* 5688-198 (C) Copyright IBM Corporation 1995 *
* All Rights Reserved *

Buildlist CEEBLSGB for ¢SCEE PSEG¢ Saved Segment (Below line)

*
:FORMAT. 2
*
:OBJNAME. SCEE.SEGMENT
:BLDREQ. CEEBLMOD.CEEBINIT.MODULE

CEEBLMOD.CEEBLIIA.MODULE
CEEBLMOD.CEEPIPI.MODULE
CEEBLMOD.CEEBPICI.MODULE
EDCBLSP2
IBMBLMOD.IBMRCOMP.MODULE
IBMBLMOD.IBMRLIB1.MODULE
IBMBLMOD.IBMRPTLA.MODULE

:GLOBAL. TXTLIB SCEESPC
:OPTIONS. LOADFUNC (LSEG CEEBINIT)

LOADFUNC (LSEG CEEBLIIA)
LOADFUNC (LSEG CEEPIPI)
LOADFUNC (LSEG CEEBPICI)
LOADFUNC (LSEG IBMRLIB1)
LOADFUNC (LSEG IBMRCOMP)
LOADFUNC (LSEG IGZCPAC)
LOADFUNC (LSEG IGZCPCO)

:EOBJNAME.
*

Figure 31. Contents of CEEBLSGB Build List

64 Copyright IBM Corp. 1991, 1995

C.2 CEEBLSGA

**
* IBM Language Environment for MVS & VM *
* Version 1 Release 5 Modification 0 *
* *
* Licensed Materials -- Property of IBM *
* 5688-198 (C) Copyright IBM Corporation 1995 *
* All Rights Reserved *
**
*Build list CEEBLSGA for ¢SCEEX¢ Saved Segment (Above Line) *
**
*
:FORMAT. 2
*
:OBJNAME. SCEEX.SEGMENT
:BLDREQ. CEEBLMOD.CEECOPP.MODULE

CEEBLMOD.CEEMUEN0.MODULE
CEEBLMOD.CEEMUEN2.MODULE
CEEBLMOD.CEEMUEN3.MODULE
CEEBLMOD.CEEMUEN4.MODULE
CEEBLMOD.CEEPLPKA.MODULE
CEEBLMOD.CEEQMATH.MODULE
CEEBLNLS.CEEMENU0.MODULE
CEEBLNLS.CEEMENU2.MODULE
CEEBLNLS.CEEMENU3.MODULE
CEEBLNLS.CEEMENU4.MODULE
CEEBLNLS.CEEMENU5.MODULE
CEEBLNLS.CEEMJPN0.MODULE
CEEBLNLS.CEEMJPN2.MODULE
CEEBLNLS.CEEMJPN3.MODULE
CEEBLNLS.CEEMJPN4.MODULE
CEEBLNLS.CEEMJPN5.MODULE
IGZBLMOD.CEEEV005.MODULE
IGZBLMOD.IGZINSH.MODULE
IGZBLMOD.IIGZMSGT.MODULE
IGZBLNLS.IGZCMGEN.MODULE
IGZBLNLS.IGZCMGJA.MODULE
IBMBLMOD.CEEEV010.MODULE
EDCBLNS1
EDCBLNS2
EDCBLNS3

Figure 32 (Part 1 of 2). Contents of CEEBLSGA Build List

Appendix C. Segment Build Lists (CEEBLSGA/CEEBLSGB) 65

:OPTIONS. LOADFUNC (LSEG CEECOPP)
LOADFUNC (LSEG CEEPLPKA)
LOADFUNC (LSEG CEEQMATH)
LOADFUNC (LSEG CEEMUEN0)
LOADFUNC (LSEG CEEMUEN2)
LOADFUNC (LSEG CEEMUEN3)
LOADFUNC (LSEG CEEEV005)
LOADFUNC (LSEG IIGZMSGT)
LOADFUNC (LSEG IGZINSH)
LOADFUNC (LSEG EDCNSS01 PROFILE NSS01)
LOADFUNC (LSEG EDCNSS02 PROFILE NSS02)
LOADFUNC (LSEG EDCNSS03 PROFILE NSS03)
LOADFUNC (LSEG EDCZUMSG)
LOADFUNC (LSEG CEEEV010)
LOADFUNC (LSEG CEEMENU0)
LOADFUNC (LSEG CEEMENU2)
LOADFUNC (LSEG CEEMENU3)
LOADFUNC (LSEG IGZCMGEN)
LOADFUNC (LSEG EDCZEMSG)
LOADFUNC (LSEG CEEMJPN0)
LOADFUNC (LSEG CEEMJPN2)
LOADFUNC (LSEG CEEMJPN3)
LOADFUNC (LSEG CEEMJPN4)
LOADFUNC (LSEG CEEMJPN5)
LOADFUNC (LSEG IGZCMGJA)
LOADFUNC (LSEG EDCZJMSG)

:EOBJNAME.
*

Figure 32 (Part 2 of 2). Contents of CEEBLSGA Build List

66 Language Environment Program Directory

Appendix D. Segment Build Lists (CEEBLSPA/CEEBLSPB) - POSIX

D.1 CEEBLSPB

 * IBM Language Environment for MVS & VM *
 * Version 1 Release 5 Modification 0 *
 * *
 * Licensed Materials -- Property of IBM *
 * 5688-198 (C) Copyright IBM Corporation 1995 *
 * All Rights Reserved *

 Buildlist CEEBLSPB for ¢SCEE PSEG¢ Saved Segment (Below line)

 *
 :FORMAT. 2
 *
 :OBJNAME. SCEE.SEGMENT
 :BLDREQ. CEEBLMOD.CEEBINIT.MODULE

CEEBLMOD.CEEBLIIA.MODULE
CEEBLMOD.CEEPIPI.MODULE
CEEBLMOD.CEEBPICI.MODULE
EDCBLSP2

 :GLOBAL. TXTLIB SCEESPC
 :OPTIONS. LOADFUNC (LSEG CEEBINIT)

LOADFUNC (LSEG CEEBLIIA)
LOADFUNC (LSEG CEEPIPI)
LOADFUNC (LSEG CEEBPICI)

 :EOBJNAME.
 *

Figure 33. Contents of CEEBLSPB Build List

 Copyright IBM Corp. 1991, 1995 67

D.2 CEEBLSPA

**
 * IBM Language Environment for MVS & VM *
 * Version 1 Release 5 Modification 0 *
 * *
 * Licensed Materials -- Property of IBM *
 * 5688-198 (C) Copyright IBM Corporation 1995 *
 * All Rights Reserved *
 **
 *Buildlist CEEBLSPA for ¢SCEEX¢ Saved Segments - (Above line) *
 **
 *
 :FORMAT. 2
 *
 :OBJNAME. SCEEX.SEGMENT
 :BLDREQ. CEEBLMOD.CEECOPP.MODULE

CEEBLMOD.CEEMUEN0.MODULE
CEEBLMOD.CEEMUEN2.MODULE
CEEBLMOD.CEEMUEN3.MODULE
CEEBLMOD.CEEMUEN4.MODULE
CEEBLMOD.CEEPLPKA.MODULE
CEEBLMOD.CEEQMATH.MODULE
CEEBLNLS.CEEMENU0.MODULE
CEEBLNLS.CEEMENU2.MODULE
CEEBLNLS.CEEMENU3.MODULE
CEEBLNLS.CEEMENU4.MODULE
CEEBLNLS.CEEMENU5.MODULE
CEEBLNLS.CEEMJPN0.MODULE
CEEBLNLS.CEEMJPN2.MODULE
CEEBLNLS.CEEMJPN3.MODULE
CEEBLNLS.CEEMJPN4.MODULE
CEEBLNLS.CEEMJPN5.MODULE
IGZBLMOD.CEEEV005.MODULE
EDCBLNS1
EDCBLNS2
EDCBLNS3

Figure 34 (Part 1 of 2). Contents of CEEBLSPA Build List

68 Language Environment Program Directory

 :OPTIONS. LOADFUNC (LSEG CEECOPP)
LOADFUNC (LSEG CEEPLPKA)
LOADFUNC (LSEG CEEQMATH)
LOADFUNC (LSEG CEEMUEN0)
LOADFUNC (LSEG CEEMUEN2)
LOADFUNC (LSEG CEEMUEN3)
LOADFUNC (LSEG CEEEV005)
LOADFUNC (LSEG EDCNSS01 PROFILE NSS01)
LOADFUNC (LSEG EDCNSS02 PROFILE NSS02)
LOADFUNC (LSEG EDCNSS03 PROFILE NSS03)
LOADFUNC (LSEG EDCZUMSG)
LOADFUNC (LSEG CEEEV010)
LOADFUNC (LSEG CEEMENU0)
LOADFUNC (LSEG CEEMENU2)
LOADFUNC (LSEG CEEMENU3)
LOADFUNC (LSEG EDCZEMSG)
LOADFUNC (LSEG CEEMJPN0)
LOADFUNC (LSEG CEEMJPN2)
LOADFUNC (LSEG CEEMJPN3)
LOADFUNC (LSEG CEEMJPN4)
LOADFUNC (LSEG CEEMJPN5)
LOADFUNC (LSEG EDCZJMSG)

 :EOBJNAME.
 *

Figure 34 (Part 2 of 2). Contents of CEEBLSPA Build List

Appendix D. Segment Build Lists (CEEBLSPA/CEEBLSPB) - POSIX 69

Appendix E. Language Environment Run-time Options

This chapter includes descriptions of the Language Environment run-time options. Where noted, some
of the run-time options might be used only by a COBOL routine. A quick reference table is provided
for convenience. In addition, there is a table that maps Language Environment run-time options to HLL
run-time options to help you plan your customization.

The syntax described here is specific to the CEEDOPT form of the file used at installation time. All
suboptions must be specified and no abbreviations are permitted in CEEDOPT. IBM-supplied defaults
are indicated for planning information only.

E.1 Quick Reference Table of Language Environment Run-Time Options

Figure 35 (Page 1 of 5). Run-Time Options Quick Reference

Run-Time Options Function Page

NONE OVR
ABPERC = ((abcode) , NONOVR)

Percolates a specified abend. 81

RETCODE OVR
ABTERMENC = ((ABEND) , NONOVR)

Sets the enclave termination
behavior for an enclave ending
with an unhandled condition of
severity 2 or greater.

82

OFF OVR
AIXBLD = ((ON) , NONOVR)

Invokes the access method
services (AMS) for VSAM
indexed and relative data sets
to complete the file and index
definit ion procedures for
COBOL routines.

84

OFF OVR
ALL31 = ((ON) , NONOVR)

Indicates whether an application
does or does not run entirely in
AMODE(31).

85

ANYWHERE
ANYHEAP = ((init _size , incr _size , ANY ,

BELOW

FREE OVR
KEEP) , NONOVR)

Controls allocation of l ibrary
heap storage not restricted to
below the 16M line.

86

OVR
NOAUTOTASK (NONOVR)

OVR
NOAUTOTASK ((loadmod , numtasks) , NONOVR)

Specif ies whether Fortran
Multitasking Facility is to be
used by your program and the
number of tasks that are
allowed to be active.

88

FREE
BELOWHEAP = ((init _size , incr _size , KEEP) ,

OVR
NONOVR)

Controls allocation of l ibrary
heap storage below the 16M
line.

88

70 Copyright IBM Corp. 1991, 1995

Figure 35 (Page 2 of 5). Run-Time Options Quick Reference

Run-Time Options Function Page

ON OVR
CBLOPTS = ((OFF) , NONOVR)

Specifies the format of the
argument string on application
invocation when the main
program is COBOL.

90

ON OVR
CBLPSHPOP = ((OFF) , NONOVR)

Controls whether CICS PUSH
HANDLE and CICS POP
HANDLE commands are issued
when a COBOL subprogram is
called.

91

ON OVR
CBLQDA = ((OFF) , NONOVR)

Controls COBOL QSAM
dynamic allocation.

92

ON OVR
CHECK = ((OFF) , NONOVR)

Indicates whether “checking
errors” within an application
should be detected.

92

OVR
COUNTRY = ((country _code) , NONOVR)

Specifies the default formats for
date, time, currency symbol,
decimal separator, and the
thousands separator based on a
country.

93

ON OVR
DEBUG = ((OFF) , NONOVR)

Activates the COBOL batch
debugging features specified by
the “debugging l ines” or the
USE FOR DEBUGGING
declarative.

94

OVR
DEPTHCONDLMT = ((limit) , NONOVR)

Limits the extent to which
conditions can be nested.

95

, OVR
ENVAR = ((string) , NONOVR)

Sets the initial values for the
environment variables specif ied
in string.

97

OVR
ERRCOUNT = ((number) , NONOVR)

Specifies how many conditions
of severity 2, 3, and 4 can occur
per thread before an enclave
terminates abnormally.

98

OVR
ERRUNIT = ((number) , NONOVR)

Identifies the unit number to
which run-time error information
is to be directed.

99

ON OVR
FILEHIST = ((OFF) , NONOVR)

FILEHIST specifies whether to
allow the file definition of a file
referred to by a ddname to be
changed during run time.

100

ANYWHERE KEEP
HEAP = ((init _size , incr _size , ANY , FREE

BELOW

OVR
, initsz24 , incrsz24) , NONOVR)

Controls allocation of the heaps. 101

Appendix E. Language Environment Run-time Options 71

Figure 35 (Page 3 of 5). Run-Time Options Quick Reference

Run-Time Options Function Page

ON OVR
INQPCOPN = ((OFF) , NONOVR)

INQPCOPN controls whether the
OPENED specifier on an
INQUIRE by unit statement can
be used to determine whether a
preconnected unit has had any
I/O statements directed to it.

103

OFF OVR
INTERRUPT = ((ON) , NONOVR)

Causes attentions recognized
by the host operating system to
be recognized by Language
Environment.

104

FREE
LIBSTACK = ((init _size , incr _size , KEEP) ,

OVR
NONOVR)

Controls the allocation of the
thread ′s l ibrary stack storage.

105

MSGFILE = ((ddname , recfm , lrecl , blksize) ,

OVR
NONOVR)

Specifies the ddname of the
run-time diagnostics fi le.

107

OVR
MSGQ = ((number) , NONOVR)

Specifies the number of ISI
blocks allocated on a per-thread
basis during execution.

110

ENU OVR
NATLANG = ((UEN) , NONOVR)

JPN

Specifies the national language
to use for the run-time
environment.

111

NONONIPTSTACK BELOW
NONIPTSTACK = ((init _size , incr _size , ANYWHERE

ANY

 KEEP OVR
, FREE) , NONOVR)

Controls stack allocation for
each thread, except the initial
thread, in a multithread
environment.

112

ON OVR
OCSTATUS = ((OFF) , NONOVR)

Controls whether the OPEN and
CLOSE status specifiers are
verif ied.

114

NOPCF
PCF

Specifies that Fortran static
common blocks are not shared
among load modules.

115

OVR
PLITASKCOUNT = ((tasks) , NONOVR)

Controls the maximum number
of tasks active at one time while
you are running PL/I MTF
applications.

116

OFF OVR
POSIX = ((ON) , NONOVR)

Specifies whether the enclave
can run with the POSIX
semantics.

116

OVR
PRTUNIT = ((number) , NONOVR)

Identifies the unit number used
for PRINT and WRITE
statements that do not specify a
unit number.

118

OVR
PUNUNIT = ((number) , NONOVR)

Identifies the unit number used
for PUNCH statements that do
not specify a unit number.

118

72 Language Environment Program Directory

Figure 35 (Page 4 of 5). Run-Time Options Quick Reference

Run-Time Options Function Page

OVR
RDRUNIT = ((number) , NONOVR)

Identifies the unit number used
for READ statements that do not
specify a unit number.

119

OFF OVR
RECPAD = ((ON) , NONOVR)

NONE
ALL
VAR

Specifies whether a formatted
input record is padded with
blanks.

119

OFF OVR
RPTOPTS = ((ON) , NONOVR)

Specifies that a report of the
run-time options in use by the
application be generated.

120

OFF OVR
RPTSTG = ((ON) , NONOVR)

Specifies that a report of the
storage used by the application
be generated at the end of
execution.

123

OFF OVR
RTEREUS = ((ON) , NONOVR)

Initializes the run-time
environment to be reusable
when the first COBOL program
is invoked.

126

OFF OVR
SIMVRD = ((ON) , NONOVR)

Specifies whether your COBOL
programs use a VSAM KSDS to
simulate variable length relative
organization data sets.

128

BELOW KEEP
STACK = ((init _size , incr _size , ANYWHERE , FREE

ANY

OVR
) , NONOVR)

Controls the allocation and
management of thread-level
heap storage.

128

STORAGE = ((heap_alloc _value , heap _free _value ,

OVR
dsa_alloc _value , reserve _size) , NONOVR)

Controls the value of storage
that is allocated and freed.

131

TRACE OVR
TERMTHDACT = ((QUIET) , NONOVR)

MSG
DUMP
UADUMP

Sets the level of information
produced due to an unhandled
error of severity 2 or greater.

134

ANYWHERE
THREADHEAP = ((init _size , incr _size , ANY ,

BELOW

KEEP OVR
FREE) , NONOVR)

Controls the allocation and
management of thread-level
heap storage.

138

NOTEST ALL PROMPT
TEST = ((ERROR , commands_file , NOPROMPT

NONE * *
;
command

OVR
, preference _file) , NONOVR)

*

Specifies that a debug tool is to
be given control according to
the suboptions specified.

136

Appendix E. Language Environment Run-time Options 73

Figure 35 (Page 5 of 5). Run-Time Options Quick Reference

Run-Time Options Function Page

OFF DUMP LE=0
TRACE = ((ON , t able _size , NODUMP , LE=1)

 LE=2
 LE=3

 OVR
, NONOVR)

Determines whether Language
Environment run-t ime l ibrary
tracing is active.

140

ON OVR
TRAP = ((OFF) , NONOVR)

Specifies how Language
Environment routines handle
abends and program interrupts.

142

OVR
UPSI = ((nnnnnnnn) , NONOVR)

Sets the eight UPSI switches on
or off. Affects only COBOL
programs.

144

NOUSRHDLR OVR
USRHDLR = ((lmname) , NONOVR)

USRHDLR registers a user
condition handler at stack frame
0.

145

OFF OVR
VCTRSAVE = ((ON) , NONOVR)

Specifies whether any language
in an application uses the vector
facil i ty when user-written
condition handlers are called.

146

AUTO OVR
XUFLOW = ((ON) , NONOVR)

OFF

Specifies whether an exponent
underflow causes a program
interrupt.

147

E.2 Language Run-Time Option Mapping

Figure 36 (Page 1 of 2). C and Language Environment Options

C Option
Language Environment
Equivalent Notes

ISAINC STACK If you don′ t change the C/370 run-time option
ISAINC, you will receive a warning message
during execution.

ISASIZE STACK If you don′ t change the C/370 run-time option
ISASIZE, you will receive a warning message
during execution.

LANGUAGE NATLANG Mixed-case and uppercase U.S. English and
Japanese are supported. If you don′ t change
the C/370 run-time option LANGUAGE, you will
receive a warning message during execution.

REPORT | NOREPORT RPTSTG(ON | OFF),
RPTOPT(ON | OFF)

RPTSTG(ON | OFF) and RPTOPT(ON | OFF)
provide behavior compatible with REPORT |
NOREPORT, and affects all languages in an
enclave. If you don′ t change the C/370 run-time
option REPORT|NOREPORT, you will receive a
warning message during execution.

74 Language Environment Program Directory

Figure 36 (Page 2 of 2). C and Language Environment Options

C Option
Language Environment
Equivalent Notes

SPIE | NOSPIE TRAP(ON | OFF) If SPIE | NOSPIE is specified in input, then TRAP
is set according to the option: TRAP(ON) for
SPIE, and TRAP(OFF) for NOSPIE. If both SPIE |
NOSPIE and STAE | NOSTAE are specified
together in input, then TRAP is set according to
both options: TRAP(OFF) when both options are
negative, and TRAP(ON) otherwise. TRAP(ON)
must be in effect for applications to run
successfully.

STAE | NOSTAE TRAP(ON | OFF) If STAE | NOSTAE is specified in input, then
TRAP is set according to the option: TRAP(ON)
for STAE, and TRAP(OFF) for NOSTAE. If both
SPIE | NOSPIE and STAE | NOSTAE are
specified together in input, then TRAP is set
according to both options: TRAP(OFF) when
both options are negative, and TRAP(ON)
otherwise. TRAP(ON) must be in effect for
applications to run successfully.

Figure 37 (Page 1 of 2). COBOL and Language Environment Options

COBOL Option
Language Environment
Equivalent Notes

AIXBLD | NOAIXBLD AIXBLD | NOAIXBLD Access Method Services (AMS) messages are
directed to the ddname specified in the
Language Environment run-time option
MSGFILE when running under MVS. Under
CMS, the messages are erased, which is the
same behavior as VS COBOL II. AIXBLD |
NOAIXBLD is not applicable under CICS.

DEBUG | NODEBUG DEBUG | NODEBUG DEBUG | NODEBUG provides behavior
compatible with VS COBOL II.

FLOW | NOFLOW FLOW | NOFLOW FLOW | NOFLOW provides behavior compatible
with VS COBOL II.

LANGUAGE NATLANG NATLANG replaces LANGUAGE, which is a VS
COBOL II installation option. You can select a
national language at run time or installation
time by using the NATLANG option.

Appendix E. Language Environment Run-time Options 75

Figure 37 (Page 2 of 2). COBOL and Language Environment Options

COBOL Option
Language Environment
Equivalent Notes

LIBKEEP | NOLIBKEEP Not applicable LIBKEEP | NOLIBKEEP is not supported under
Language Environment. To obtain similar
performance function, use the Library Routine
Retention (LRR) feature described in Language
Environment for MVS & VM Programming Guide
and Language Environment for MVS & VM
Installation and Customization on MVS. The
LIBKEEP | NOLIBKEEP option is not applicable
under CICS.

MIXRES | NOMIXRES Not applicable MIXRES | NOMIXRES is not supported under
Language Environment. MIXRES applications
supported by Language Environment always
exhibit RES behavior. For more information,
see COBOL/370 and COBOL for MVS & VM
Compiler and Run-Time Migration Guide.
MIXRES|NOMIXRES is not applicable under
CICS.

RTEREUS | NORTEREUS RTEREUS | NORTEREUS RTEREUS | NORTEREUS provides similar
behavior to the VS COBOL II RTEREUS option,
but it will not work if you are using more than
one language. RTEREUS is not recommended.
RTEREUS | NORTEREUS is not applicable under
CICS.

SIMVRD | NOSIMVRD SIMVRD | NOSIMVRD SIMVRD | NOSIMVRD provides behavior
compatible with VS COBOL II.

SPOUT | NOSPOUT RPTOPTS(ON | OFF),
RPTSTG(ON | OFF)

Storage reports are directed to the ddname
specified in the Language Environment option
MSGFILE. For information about report formats
and tuning programs, see COBOL/370 and
COBOL for MVS & VM Compiler and Run-Time
Migration Guide.

SSRANGE | NOSSRANGE CHECK(ON | OFF) CHECK(ON | OFF) provides behavior compatible
with SSRANGE | NOSSRANGE.

STAE | NOSTAE TRAP(ON | OFF) If STAE | NOSTAE is specified in input, then
TRAP is set according to the option: TRAP(ON)
for STAE, and TRAP(OFF) for NOSTAE.
TRAP(ON) must be in effect for applications to
run successfully.

UPSI UPSI UPSI provides behavior compatible with VS
COBOL II.

WSCLEAR | NOWSCLEAR STORAGE(00) For behavior similar to WSCLEAR |
NOWSCLEAR, use the Language Environment
STORAGE(00) option. For more information,
see the COBOL/370 and COBOL for MVS & VM
Compiler and Run-Time Migration Guide.

76 Language Environment Program Directory

Figure 38 (Page 1 of 2). Fortran and Language Environment Options

Fortran Option
Language Environment
Equivalent Notes

ABSDUMP | NOABSDUMP TERMTHDACT TERMTHDACT(DUMP) replaces ABSDUMP to
produce a Language Environment dump at
termination.

TERMTHDACT with suboptions TRACE, QUIET,
or MSG replaces NOABSDUMP to avoid getting
a Language Environment dump at termination.

AUTOTASK | NOAUTOTASK AUTOTASK | NOAUTOTASK AUTOTASK | NOAUTOTASK provides behavior
compatible with VS FORTRAN Version 2.

CNVIOERR | NOCNVIOERR Not applicable There is no Language Environment equivalent
for CNVIOERR | NOCNVIOERR. Fortran
semantics will behave as if CNVIOERR is in
effect.

DEBUG | NODEBUG Not applicable The Debug Tool does not support Fortran.

DEBUNIT Not applicable There is no Language Environment equivalent
for DEBUNIT. If specified, you will receive an
informational message during execution.

ECPACK | NOECPACK Not applicable There is no Language Environment equivalent
for ECPACK | NOECPACK. You cannot run
programs with Language Environment that use
access registers or that were compiled with the
EC or EMODE compiler options.

ERRUNIT ERRUNIT ERRUNIT provides behavior compatible with VS
FORTRAN Version 2.

FAIL ABTERMENC ABTERMENC replaces FAIL. ABTERMENC must
be specified to control whether a condition of
severity 2 or greater is terminated with a return
code or an abend.

FILEHIST | NOFILEHIST FILEHIST | NOFILEHIST FILEHIST | NOFILEHIST provides behavior
compatible with VS FORTRAN Version 2.

INQPCOPN | NOINQPCOPN INQPCOPN | NOINQPCOPN INQPCOPN | NOINQPCOPN provides behavior
compatible with VS FORTRAN Version 2.

IOINIT | NOIOINIT Not applicable There is no Language Environment equivalent
for IOINIT | NOIOINIT. The message file is
opened only when the first record is written to
it. If no allocation for the ddname has been
made for the message file, it is dynamically
allocated to the terminal (under TSO) or to
SYSOUT=* (under MVS batch).

OCSTATUS | NOOCSTATUS OCSTATUS | NOOCSTATUS OCSTATUS | NOOCSTATUS provides behavior
compatible with VS FORTRAN Version 2.

Appendix E. Language Environment Run-time Options 77

Figure 38 (Page 2 of 2). Fortran and Language Environment Options

Fortran Option
Language Environment
Equivalent Notes

PARALLEL | NOPARALLEL Not applicable There is no Language Environment equivalent
for PARALLEL | NOPARALLEL. Parallel
programs cannot be run with Language
Environment. If specified, you will receive an
informational message during execution.

PRTUNIT PRTUNIT PRTUNIT provides behavior compatible with VS
FORTRAN Version 2.

PTRACE | NOPTRACE Not applicable There is no Language Environment equivalent
for PTRACE | NOPTRACE. Parallel programs
cannot be run with Language Environment. If
specified, you will receive an informational
message during execution.

PUNUNIT PUNUNIT PUNUNIT provides behavior compatible with VS
FORTRAN Version 2.

RDRUNIT RDRUNIT RDRUNIT provides behavior compatible with VS
FORTRAN Version 2.

RECPAD | NORECPAD |
RECPAD(VAR)

RECPAD(OFF | NONE | VAR
| ALL | ON)

NORECPAD automatically maps to
RECPAD(OFF). RECPAD(VAR) provides
behavior compatible with VS FORTRAN Version
2. RECPAD must be changed to RECPAD(ON).

SPIE | NOSPIE, STAE |
NOSTAE

TRAP(ON | OFF) If either SPIE or STAE is specified in input,
TRAP is set to TRAP(ON). If both NOSPIE and
NOSTAE are specified, TRAP is set to
TRAP(OFF). TRAP(ON) must be in effect for
applications to run successfully.

XUFLOW |
NOXUFLOW

XUFLOW(ON | AUTO)
XUFLOW(OFF)

There is no automatic mapping of XUFLOW to
the Language Environment XUFLOW.

NOXUFLOW maps to the Language Environment
XUFLOW(OFF), which provides compatible
behavior.

Figure 39 (Page 1 of 2). PL/I and Language Environment Options

PL/I Option Language Environment
Equivalent

Notes

COUNT | NOCOUNT Not applicable There is no Language Environment equivalent
for COUNT | NOCOUNT. It is not processed but
produces an informational message.

FLOW | NOFLOW Not applicable There is no Language Environment equivalent
for FLOW | NOFLOW. Language Environment
honors this option only as a COBOL option.

78 Language Environment Program Directory

Figure 39 (Page 2 of 2). PL/I and Language Environment Options

PL/I Option Language Environment
Equivalent

Notes

ISAINC STACK, NONIPTSTACK, or
PLITASKCOUNT

ISAINC maps to three Language Environment
options, STACK, NONIPTSTACK, and
PLITASKCOUNT, which provide compatible
behavior.

ISASIZE STACK, NONIPTSTACK, or
PLITASKCOUNT

ISASIZE maps to three Language Environment
options, STACK, NONIPTSTACK, and
PLITASKCOUNT, which provide compatible
behavior.

LANGUAGE NATLANG Mixed-case and uppercase U.S. English and
Japanese are supported.

REPORT | NOREPORT RPTSTG(ON | OFF),
RPTOPTS(ON | OFF)

RPTSTG(ON | OFF) and RPTOPTS(ON | OFF)
provide behavior compatible with REPORT |
NOREPORT.

SPIE | NOSPIE TRAP(ON | OFF) If SPIE | NOSPIE is specified in input, then TRAP
is set according to the option: TRAP(ON) for
SPIE, and TRAP(OFF) for NOSPIE. If both SPIE |
NOSPIE and STAE | NOSTAE are specified
together in input, then TRAP is set according to
both options: TRAP(OFF) when both options are
negative, and TRAP(ON) otherwise. TRAP(ON)
must be in effect for applications to run
successfully.

STAE | NOSTAE TRAP(ON | OFF) If STAE | NOSTAE is specified in input, then
TRAP is set according to the option: TRAP(ON)
for STAE, and TRAP(OFF) for NOSTAE. If both
SPIE | NOSPIE and STAE | NOSTAE are
specified together in input, then TRAP is set
according to both options: TRAP(OFF) when
both options are negative, and TRAP(ON)
otherwise. TRAP(ON) must be in effect for
applications to run successfully.

TASKHEAP THREADHEAP THREADHEAP provides behavior compatible
with TASKHEAP.

E.2.1 COBOL Compatibility

The current release of VS COBOL II supports an order of run-time options and program options that is
the reverse of that of Language Environment: program arguments precede run-time options in COBOL.
To ensure compatibility with COBOL, Language Environment provides the run-time option CBLOPTS,
which specifies whether run-time options or program arguments are first in the character parameter.

For example:

Under MVS:

Appendix E. Language Environment Run-time Options 79

CBLOPTS=OFF:

//GO EXEC PGM=PROGRAM1,PARM=¢AIXBLD/ ¢

CBLOPTS=ON:

//GO EXEC PGM=PROGRAM1,PARM=¢/AIXBLD¢

Under VM:

CBLOPTS=OFF:

LOAD
START * AIXBLD/

CBLOPTS=ON:

LOAD
START * /AIXBLD

E.3 Language Environment Run-Time Options

The run-time options that can be modified in the CEEDOPT CSECT are described here in detail in the
form specific to CEEDOPT.

IBM-supplied default keywords appear above the main path or options path in the syntax diagrams. In
the parameter list, IBM-supplied default choices are underlined. For a full description of the syntax of
Language Environment run-time options, see Language Environment for MVS & VM Programming
Reference.

Some of these run-time options descriptions refer to the severity of conditions. The values that can
occur as condition token severity codes, and their meanings, are listed here:

0 An informational message (or, if the entire token is zero, no information)

1 A warning message. Service completed, probably correctly.

2 An error message. Correction attempted. Service completed, perhaps incorrectly.

3 A severe error message. Service not completed.

4 A critical error message. Service not completed and condition signaled. A critical error is
a condition that jeopardizes the environment. If a critical error occurs during an Language
Environment callable service, it is always signaled to the condition manager instead of
being returned synchronously to the caller.

80 Language Environment Program Directory

ABPERC

E.3.1 ABPERC

ABPERC percolates an abend whose code you specify. TRAP(ON) must be in effect for ABPERC to
have an effect.

The ABPERC option is a debug tool that specifies the application can run with the TRAP run-time
option set to ON. This provides Language Environment semantics for everything except one abend,
whose code you specify.

When you run with ABPERC and encounter the specified abend:

• User condition handlers are not enabled.

• In OpenEdition MVS, POSIX signal handling semantics are not enabled for the abend.

• No storage report or run-time options report is generated.

• No Language Environment messages or Language Environment dump output is generated.

• The assembler user exit is not driven for enclave termination.

• The abnormal termination exit (if there is one) is not driven.

• Files opened by HLLs are not closed by Language Environment, so records might be lost.

• Resources acquired by Language Environment are not freed.

• The debug tool is not notified of the error.

You can also use the CEEBXITA assembler user exit to specify a list of abend codes for Language
Environment to percolate.

IBM-Supplied Default: ABPERC = ((NONE),OVR)

 Syntax

NONE OVR
ABPERC = ((abcode) , NONOVR)

NONE
Specifies that all abends are handled according to Language Environment condition handling
semantics.

abcode
Specifies the code number of the abend to percolate.

abcode can be specified as:

Shhh A system abend code where hhh is the hex system abend code

Appendix E. Language Environment Run-time Options 81

ABTERMENC

Udddd A user abend code where dddd is a decimal user-issued abend code

Any 4-character string can also be used as an abcode.

You can identify only one abend code with this option. However, an abend U0000 is
interpreted in the same way as S000.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.1.1 Usage Notes

• Language Environment ignores ABPERC(0Cx). In this instance, no abend is percolated, and
Language Environment condition handling semantics are in effect.

• CICS consideration—ABPERC is ignored under CICS.

• OpenEdition consideration—ABPERC percolates an abend regardless of the thread in which it
occurs.

E.3.1.2 For More Information

• For more information about the assembler user exit (CEEBXITA), see Language Environment for
MVS & VM Programming Guide.

E.3.2 ABTERMENC

ABTERMENC sets the enclave termination behavior for an enclave ending with an unhandled condition
of severity 2 or greater. TRAP(ON) must be in effect for ABTERMENC to have an effect.

IBM-Supplied Default: ABTERMENC = ((RETCODE),OVR)

 Syntax

RETCODE OVR
ABTERMENC = ((ABEND) , NONOVR)

RETCODE
Specifies that the enclave terminates with a normal return code and reason code.

However, the assembler user exit can modify this behavior as follows:

• If the assembler user exit does not set the CEEAUE_ABND flag to ON during enclave
termination, Language Environment returns to its caller with a return code and a reason code.

• If the assembler user exit sets the CEEAUE_ABND flag to ON during enclave termination,
Language Environment issues an abend to terminate the enclave. Language Environment sets
the abend and reason code for the abend to equal the values of assembler user exit
parameters, as follows:

82 Language Environment Program Directory

ABTERMENC

− Abend code: Value of the CEEAUE_RETURN parameter of the assembler user exit. If the
assembler user exit does not modify the CEEAUE_RETURN value, Language Environment
sets an abend code that maps to the severity of the condition and to the user return code.

− Reason code: Value of the CEEAUE_REASON parameter of the assembler user exit.

ABEND
Specifies that Language Environment issues an abend to end the enclave regardless of the setting
of the CEEAUE_ABND flag by the assembler user exit. However, the setting of the CEEAUE_ABND
flag affects the abend processing, as follows:

When CEEAUE_ABND is set to OFF, the following occurs:

• Abend code: Language Environment sets an abend code value that depends on the type of
unhandled condition.

• Reason code: Language Environment sets a reason code value that depends on the type of
unhandled condition.

• Abend dump attribute: Language Environment does not request a system dump.

• Abend task/step attribute (on MVS): An abend is issued to terminate the task.

When CEEAUE_ABND is set to ON, Language Environment uses values set by the assembler user
exit to determine abend processing:

• Abend code: Value of the CEEAUE_RETURN parameter of the assembler user exit.

• Reason code: Value of the CEEAUE_REASON parameter of the assembler user exit.

• Abend dump attribute: Language Environment requests a system dump only if the assembler
user exit sets CEEAUE_DUMP to ON. The system abend dump goes to the system abend
ddname with the filename you define in your JCL (for MVS) or in your FILEDEF (for VM). The
filename is the name defined in the DD card.

• Abend task/step attribute (on MVS): If the assembler user exit sets CEEAUE_STEPS to ON,
Language Environment issues an abend to terminate the step. Otherwise, Language
Environment issues an abend to terminate the task.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.2.1 Usage Notes

• COBOL considerations—ABEND is the recommended setting for COBOL customers who use MVS.
Your system administrator can change the default value of ABTERMENC to ABEND.

• CICS consideration—The default under CICS is ABTERMENC(ABEND,OVR).

Appendix E. Language Environment Run-time Options 83

AIXBLD

E.3.2.2 For More Information

• For information about return code calculation CEEAUE_RETURN, CEEAUE_ABND, and assembler
user exit CEEBXTA processing, see Language Environment for MVS & VM Programming Guide.

• For more information about abend codes, see Language Environment for MVS & VM Programming
Guide.

• For a list of abend code values, see Language Environment for MVS & VM Programming Guide.

E.3.3 AIXBLD (COBOL Only)

AIXBLD invokes the access method services (AMS) for VSAM indexed and relative data sets (KSDS
and RRDS) to complete the file and index definition procedures for COBOL programs.

AIXBLD conforms to the ANSI 1985 COBOL standard.

IBM-Supplied Default: AIXBLD = ((OFF),OVR)

 Syntax

OFF OVR
AIXBLD = ((ON) , NONOVR)

OFF
Does not invoke the access method services for VSAM indexed and relative data sets.

ON
Invokes the access method services for VSAM indexed and relative data sets. AIXBLD can be
abbreviated AIX.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.3.1 Usage Notes

• The only valid abbreviations for AIXBLD and NOAIXBLD are AIX and NOAIX, respectively.

• When specifying this option in CEEDOPT or CEEUOPT, use the syntax AIXBLD(ON) or AIXBLD(OFF).
Use AIXBLD and NOAIXBLD only on the command line.

• CICS consideration—This option is ignored under CICS.

• MVS consideration—If you also specify the MSGFILE run-time option, the access method services
messages are directed to the MSGFILE ddname or to the default SYSOUT.

84 Language Environment Program Directory

ALL31

E.3.3.2 Performance Considerations: Running your program under AIXBLD requires more
storage, which can degrade performance. Therefore, use AIXBLD only during application development
to build alternate indices. Use NOAIXBLD when you have already defined your VSAM data sets.

E.3.3.3 For More Information

• See COBOL/370 Programming Guide or COBOL for MVS & VM Programming Guide for more
details.

• See E.3.23, “MSGFILE” on page 107 for information about the MSGFILE run-time option.

E.3.4 ALL31

ALL31 specifies whether an application can run entirely in AMODE 31 or whether the application has
one or more AMODE 24 routines.

This option does not implicitly alter storage, in particular storage managed by the STACK and HEAP
run-time options. However, you must be aware of your application′s requirements for stack and heap
storage, because such storage can potentially be allocated above the line while running in AMODE 24.

ALL31 should have the same setting for all enclaves in the process, because Language Environment
does not support the invocation of a nested enclave requiring ALL31(OFF) from an enclave running
with ALL31(ON).

In a multithread environment, Language Environment invokes all start routines, which are specified in
a C pthread_create() function call, in AMODE 31. However, for PL/I MTF applications, Language
Environment provides AMODE switching. Thus, the first routine of a task can be in AMODE 24.

IBM-Supplied Default: ALL31 = ((OFF),OVR)

 Syntax

OFF OVR
ALL31 = ((ON) , NONOVR)

OFF
Indicates that one or more routines of a Language Environment application are AMODE 24.

With ALL31(OFF) specified:

• AMODE switching across calls to Language Environment common run-time routines is
performed. For example, AMODE switching is performed on calls to Language Environment
callable services.

• In COBOL, EXTERNAL data is allocated in storage below the 16M line.

If you use the default setting ALL31(OFF), you must also use the default setting STACK(,,BELOW).
AMODE 24 routines usually require stack storage below the 16M line.

Appendix E. Language Environment Run-time Options 85

ANYHEAP

ON
Indicates that no user routines of a Language Environment application are AMODE 24.

With ALL31(ON) specified:

• AMODE switching across calls to Language Environment common run-time routines is
minimized. For example, no AMODE switching is performed on calls to Language Environment
callable services.

• In COBOL, EXTERNAL data is allocated in unrestricted storage.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.4.1 Usage Notes

• CICS consideration—The default under CICS is ALL31 = ((ON,OVR).

• OpenEdition consideration—The ALL31 option applies to the enclave.

E.3.4.2 Performance Consideration: If your application consists entirely of AMODE 31 routines,
it might run faster and use less below-the-line storage with ALL31(ON) than with ALL31(OFF), since
mode switching code is not required.

E.3.4.3 For More Information

• See E.3.39, “STACK” on page 128 for information about the STACK run-time option.

E.3.5 ANYHEAP

ANYHEAP controls the allocation of library heap storage that is not restricted to a location below the
16M line.

The ANYHEAP option is always in effect. If you do not specify ANYHEAP or if you specify ANYHEAP(0),
Language Environment allocates the value of 16K when a call is made to get heap storage.

IBM-Supplied Default: ANYHEAP = ((16K,8K,ANYWHERE,FREE)OVR)

 Syntax

ANYWHERE FREE
ANYHEAP = ((init _size , incr _size , ANY , KEEP) ,

BELOW

OVR
NONOVR)

86 Language Environment Program Directory

ANYHEAP

init_size
Determines the minimum initial size of the anywhere heap storage. This value can be specified as
n, nK, or nM bytes of storage. The actual amount of allocated storage is rounded up to the
nearest multiple of 8 bytes.

incr _size
Determines the minimum size of any subsequent increment to the anywhere heap area, and is
specified in n, nK, or nM bytes of storage. This value is rounded up to the nearest multiple of 8
bytes.

ANYWHERE|ANY
Specifies that heap storage can be allocated anywhere in storage. On systems that support
bimodal addressing, storage can be allocated either above or below the 16M line. If there is no
storage available above the line, storage is acquired below the line. On systems that do not
support bimodal addressing (for example, when VM/ESA* is initially loaded in 370 mode), this
option is ignored and heap storage is placed below 16M.

The only valid abbreviation for ANYWHERE is ANY.

BELOW
Specifies that heap storage must be allocated below the 16M line in storage that is accessible to
24-bit addressing.

FREE
Specifies that storage allocated to ANYHEAP increments is released when the last of the storage
is freed.

KEEP
Specifies that storage allocated to ANYHEAP increments is not released when the last of the
storage is freed.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.5.1 Usage Notes

• CICS consideration—Under CICS, ANYHEAP assumes the defaults
ANYHEAP = ((4K,4K,ANYWHERE,FREE),OVR). Both the initial size and the increment size are
rounded up to the nearest multiple of 8 bytes. The minimum is 4K. If you specify ANYHEAP or
ANYHEAP(0), Language Environment assumes the default value of 4K. The maximum initial and
increment size for ANYHEAP under CICS is 1 gigabyte (1024M).

• OpenEdition consideration—The ANYHEAP option applies to the enclave.

E.3.5.2 Performance Considerations: The ANYHEAP option improves performance when you
specify values that minimize the number of times the operating system allocates storage. The RPTSTG
run-time option generates a report of the storage the application uses while running; you can use the
report numbers to help determine what values to specify.

Appendix E. Language Environment Run-time Options 87

BELOWHEAP

E.3.5.3 For More Information

• See Language Environment for MVS & VM Programming Guide for more information about
Language Environment heap storage.

• See E.3.36, “RPTSTG” on page 123 for more information about the RPTSTG run-time option.

• For more information about heap storage tuning with storage report numbers, see Language
Environment for MVS & VM Programming Guide.

E.3.6 AUTOTASK | NOAUTOTASK (Fortran Only)

AUTOTASK specifies whether Fortran Multitasking Facility is to be used by your program and the
number of tasks that are allowed to be active.

IBM-Supplied Default: NOAUTOTASK = (OVR)

 Syntax

OVR
NOAUTOTASK (NONOVR)

OVR
NOAUTOTASK ((loadmod , numtasks) , NONOVR)

NOAUTOTASK
Disables the MTF and nullifies the effects of previous specifications of AUTOTASK parameters.

loadmod
The name of the load module that contains the concurrent subroutines that run in the subtasks
created by MTF.

numtasks
The number of subtasks created by MTF. This value can range from 1 through 99.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.7 BELOWHEAP

BELOWHEAP controls the allocation of library heap storage that must be located below the 16M line.
The heap controlled by BELOWHEAP is intended for items such as control blocks used for I/O.

The BELOWHEAP option is always in effect. If you do not specify BELOWHEAP or if you specify
BELOWHEAP(0), the value of 8K is allocated when a call is made to get heap storage.

IBM-Supplied Default: BELOWHEAP = ((8K,4K,FREE),OVR)

88 Language Environment Program Directory

BELOWHEAP

 Syntax

FREE OVR
BELOWHEAP = ((init _size , incr _size , KEEP) , NONOVR)

init_size
Determines the minimum initial size of the below heap storage. This value can be specified as n,
nK, or nM bytes of storage. The actual amount of allocated storage is rounded up to the nearest
multiple of 8 bytes.

incr _size
Determines the minimum size of any subsequent increment to the area below the 16M line, and is
specified in n, nK, or nM bytes of storage. This value is rounded up to the nearest multiple of 8
bytes.

FREE
Specifies that storage allocated to BELOWHEAP increments is released when the last of the
storage is freed.

KEEP
Specifies that storage allocated to BELOWHEAP increments is not released when the last of the
storage is freed.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.7.1 Usage Notes

• CICS considerations—Under CICS, BELOWHEAP assumes the defaults
BELOWHEAP = ((4K,4K,FREE),OVR).

Both the initial size and the increment size are rounded to the nearest multiple of 8 bytes. The
minimum is 4K. If you specify BELOWHEAP(0), both init_size and incr_size assume the
IBM-supplied default of 4K.

• OpenEdition consideration—The BELOWHEAP option applies to the enclave.

E.3.7.2 Performance Considerations: BELOWHEAP improves performance when you specify
values that minimize the number of times that the operating system allocates storage. The RPTSTG
run-time option generates a report of storage your application uses while running. You can use its
numbers to help determine what values to specify.

Appendix E. Language Environment Run-time Options 89

CBLOPTS

E.3.7.3 For More Information

• See Language Environment for MVS & VM Programming Guide for more information about
Language Environment heap storage.

• See E.3.36, “RPTSTG” on page 123 for more information about the RPTSTG run-time option.

• For more information about tuning your application with storage report numbers, see Language
Environment for MVS & VM Programming Guide.

E.3.8 CBLOPTS (COBOL Only)

CBLOPTS specifies the format of the parameter string on application invocation when the main
program is COBOL. CBLOPTS determines whether run-time options or program arguments appear
first in the parameter string.

You can specify this option only in CEEUOPT or CEEDOPT at initialization.

When you specify the ON suboption of CBLOPTS in CEEUOPT or CEEDOPT, the run-time options and
program arguments specified in the JCL or on the command line are honored in the following order:

program arguments/run-time options

This order is the reverse of that normally honored by Language Environment.

CBLOPTS(ON) allows the existing COBOL format of the invocation character string to continue working
(user parameters followed by run-time options). CBLOPTS(ON) is valid only for applications whose
main program is COBOL.

IBM-Supplied Default: CBLOPTS = ((ON),OVR)

 Syntax

ON OVR
CBLOPTS = ((OFF) , NONOVR)

ON
Specifies that program arguments appear first in the parameter string.

OFF
Specifies that run-time options appear first in the parameter string.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

90 Language Environment Program Directory

CBLPSHPOP

E.3.8.1 For More Information

• For more information about CEEUOPT or CEEDOPT, see Language Environment for MVS & VM
Installation and Customization on MVS.

E.3.9 CBLPSHPOP (COBOL Only)

CBLPSHPOP controls whether CICS PUSH HANDLE and CICS POP HANDLE commands are issued
when a COBOL (VS COBOL II, COBOL/370, or COBOL for MVS & VM) subroutine is called.

Specify CBLPSHPOP(ON) to avoid compatibility problems when calling VS COBOL II, COBOL/370, or
COBOL for MVS & VM subroutines that contain CICS CONDITION, AID, or ABEND condition handling
commands.

You can set the CBLPSHPOP run-time option on a transaction by transaction basis using CEEUOPT.

IBM-Supplied Default: CBLPSHPOP = ((ON),OVR)

 Syntax

ON OVR
CBLPSHPOP = ((OFF) , NONOVR)

ON
Automatically issues the following when a COBOL subroutine is called:

• An EXEC CICS PUSH HANDLE command as part of the routine initialization.
• An EXEC CICS POP HANDLE command as part of the routine termination.

OFF
Does not issue CICS PUSH HANDLE and CICS POP HANDLE commands on a call to a COBOL
subroutine.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.9.1 Performance Consideration: If your application calls COBOL subroutines under CICS,
performance is better with CBLPSHPOP(OFF) than with CBLPSHPOP(ON).

E.3.9.2 For More Information

• For more information about CEEUOPT, see Language Environment for MVS & VM Programming
Guide.

Appendix E. Language Environment Run-time Options 91

CHECK

E.3.10 CBLQDA (COBOL Only)

CBLQDA controls COBOL QSAM dynamic allocation on an OPEN statement.

CBLQDA does not affect dynamic storage allocation for the message file specified in MSGFILE or the
dump file.

IBM-Supplied Default: CBLQDA = ((ON),OVR)

 Syntax

ON OVR
CBLQDA = ((OFF) , NONOVR)

ON
Specifies that COBOL QSAM dynamic allocation is permitted. ON conforms to the 1985 COBOL
Standard.

OFF
Specifies that COBOL QSAM dynamic allocation is not permitted.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.10.1 Usage Note

• CICS consideration—This option is ignored under CICS.

• MVS consideration—You should use CBLQDA(OFF) under MVS, because this prevents a temporary
data set from being created in case there is a misspelling in your JCL. If you specify CBLQDA(ON)
and have a misspelling in your JCL, Language Environment creates a temporary file, writes to it,
and then MVS deletes it. You receive a return code of 0 but no output.

E.3.11 CHECK (COBOL Only)

CHECK flags checking errors within an application. In COBOL, index, subscript, and reference
modification ranges are checking errors. COBOL is the only language that uses the CHECK option.

IBM-Supplied Default: CHECK = ((ON),OVR)

 Syntax

ON OVR
CHECK = ((OFF) , NONOVR)

92 Language Environment Program Directory

COUNTRY

ON
Specifies that run-time checking is performed.

OFF
Specifies that run-time checking is not performed.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.11.1 Usage Note

• CHECK(ON) has no effect if NOSSRANGE was in effect at compile time.

E.3.11.2 Performance Consideration: If your COBOL program was compiled with SSRANGE,
and you are not testing or debugging an application, performance improves when you specify
CHECK(OFF).

E.3.12 COUNTRY

COUNTRY sets the country code, which affects the date and time formats, the currency symbol, the
decimal separator, and the thousands separator, based on a specified country. COUNTRY does not
change the default settings for the language currency symbol, decimal point, thousands separator, and
date and time picture strings set by CEESETL or setlocale() . COUNTRY affects only the Language
Environment NLS services, not the Language Environment locale callable services.

You can set the country value using the run-time option COUNTRY or the callable service CEE3CTY.

The COUNTRY setting affects the format of the date and time in the reports generated by the RPTOPTS
and RPTSTG run-time options.

IBM-Supplied Default: COUNTRY = ((US),OVR) with US signifying the United States.

 Syntax

OVR
COUNTRY = ((country _code) , NONOVR)

country _code
A 2-character code that indicates to Language Environment the country on which to base the
default settings.

OVR
Specifies that the option can be overridden.

Appendix E. Language Environment Run-time Options 93

DEBUG

NONOVR
Specifies that the option cannot be overridden.

E.3.12.1 Usage Notes

• If you specify a country_code that is not supported by Language Environment, Language
Environment accepts the value and issues an informational message. When you specify an
unavailable country code, you must provide a message template for that code.

CEEUOPT and CEEDOPT permit the specification of an unavailable country code, but give a return
code of 4 and a warning message.

• C/C++ consideration—Language Environment provides locales used in C and C++ to establish
default formats for the locale-sensitive functions and locale callable services, such as date and
time formatting, sorting, and currency symbols. To change the locale, you can use the setlocale()
library function or the CEESETL callable service.

The settings of CEESETL or setlocale() do not affect the setting of the COUNTRY run-time option.
COUNTRY affects only Language Environment NLS and date and time services. setlocale() and
CEESETL affect only C/C++ locale-sensitive functions and Language Environment locale callable
services.

To ensure that all settings are correct for your country, use COUNTRY and either CEESETL or
setlocale() .

• OpenEdition consideration—The COUNTRY option sets the initial value for the enclave.

E.3.12.2 For More Information

• For more information about the CEE3CTY callable service, see Language Environment for MVS &
VM Programming Reference.

• See Appendix F, “Language Environment National Language Support Country Codes” on page 149
for a list of countries and their codes.

• For more information about the CEESETL callable service, see Language Environment for MVS &
VM Programming Reference.

• For more information on setlocale() , see AD/Cycle C/370 Programming Guide, C/MVS
Programming Guide, or C++/MVS Programming Guide.

E.3.13 DEBUG (COBOL Only)

DEBUG activates the COBOL batch debugging features specified by the USE FOR DEBUGGING
declarative.

IBM-Supplied Default: DEBUG = ((ON),OVR)

94 Language Environment Program Directory

DEPTHCONDLMT

 Syntax

ON OVR
DEBUG = ((OFF) , NONOVR)

ON
Activates the COBOL batch debugging features.

You must have the WITH DEBUGGING MODE clause in the environment division of your application
in order to compile the debugging sections.

OFF
Suppresses the COBOL batch debugging features.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.13.1 Usage Note

• When specifying this option in CEEDOPT or CEEUOPT, use the syntax DEBUG(ON) or DEBUG(OFF).
Use DEBUG and NODEBUG only on the command line.

E.3.13.2 Performance Consideration: Because DEBUG(ON) gives worse run-time performance
than DEBUG(OFF), you should use it only during application development or debugging.

E.3.13.3 For More Information

• See COBOL/370 Programming Guide or COBOL for MVS & VM Programming Guide for more details
on the USE FOR DEBUGGING declarative.

E.3.14 DEPTHCONDLMT

DEPTHCONDLMT specifies the extent to which conditions can be nested. Figure 40 on page 96
illustrates the effect of DEPTHCONDLMT(3) on condition handling. The initial condition and two nested
conditions are handled in this example. The third nested condition is not handled.

Appendix E. Language Environment Run-time Options 95

DEPTHCONDLMT

Error
(level 1)

User-written
condition handler Another

error (level 2)

User-written
condition handler Another

error (level 3)

User-written
condition handler Another

error (level 4)

Not handled

Figure 40. Effect of DEPTHCONDLMT(3) on Condit ion Handling

IBM-Supplied Default: DEPTHCONDLMT = ((10),OVR)

 Syntax

OVR
DEPTHCONDLMT = ((limit) , NONOVR)

limit
An integer of 0 or greater value. It is the depth of condition handling allowed. An unlimited depth
of condition handling is allowed if you specify 0.

A 1 value specifies handling of the initial condition, but does not allow handling of nested
conditions that occur while handling a condition. With a 5 value, for example, the initial condition
and four nested conditions are processed, but there can be no further nesting of conditions.

If the number of nested conditions exceeds the limit, the application terminates with abend 4091
and reason code 21 (X′15′).

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.14.1 Usage Notes

• PL/I consideration—DEPTHCONDLMT(0) provides PL/I compatibility.

• PL/I MTF consideration—In a PL/I MTF application, DEPTHCONDLMT sets the limit for how many
nested synchronous conditions are allowed for a PL/I task. If the number of nested conditions
exceeds the limit, the application terminates abnormally.

• OpenEdition consideration—The DEPTHCONDLMT option sets the limit for how many nested

96 Language Environment Program Directory

ENVAR

synchronous conditions are allowed for a thread. Asynchronous signals do not affect
DEPTHCONDLMT.

E.3.14.2 For More Information

• For more information on nested conditions, see Language Environment for MVS & VM Programming
Guide.

E.3.15 ENVAR

ENVAR sets the initial values for the environment variables specified in string. With ENVAR, you can
pass into the application switches or tagged information that can then be accessed using the C
functions getenv , setenv , and clearenv .

When the run-time options are merged, ENVAR strings are appended in the order encountered during
the merge. Thus, the set of environment variables established by the end of run-time option
processing reflects all the various sources where environment variables are specified (rather than just
the one source with the highest precedence). However, if a setting for the same environment variable
is specified in more than one source, the last setting is used.

Environment variables in effect at the time of the system function are copied to the new environment.
The copied environment variables are treated the same as those found in the ENVAR run-time option
on the command level, with respect to the merge of the run-time options from their various sources.

When you have specified the RPTOPTS run-time option, you receive a list of the merged ENVAR
run-time options. The output for the ENVAR run-time options contains a separate entry for each source
where ENVAR was specified with the environment variables from that source.

IBM-Supplied Default: ENVAR = ((¢¢),OVR)

 Syntax

, OVR
ENVAR = ((string) , NONOVR)

string
Is of the form name =value, where name and value are sequences of characters that do not contain
null bytes or equal signs. The string name is an environment variable, and value is its value.

Blanks are significant in both the name = and the value characters.

You can enclose the string in either single or double quotation marks to distinguish it from other
strings. string cannot contain DBCS characters. It can have a maximum of 250 characters.

You can specify multiple environment variables, separating the name =value pairs with commas.
Quotation marks are required when specifying multiple variables.

OVR
Specifies that the option can be overridden.

Appendix E. Language Environment Run-time Options 97

ERRCOUNT

NONOVR
Specifies that the option cannot be overridden.

E.3.15.1 Usage Notes

• The ENVAR option functions independently of the POSIX run-time option setting.

• C consideration—An application can access the environment variables using C function getenv or
the POSIX variable environ, which is defined as:

extern char **environ;

Access through getenv is recommended, especially in a multithread environment.

HLLs can access the environment variables through standard C functions at enclave initialization
and throughout the application′s run. Access remains until the HLL returns from enclave
termination. Environment variables that are propagated across the EXEC override those
established by the ENVAR option. getenv serializes access to the environment variables.

• C++ consideration—An application can access the environment variables using C function getenv

HLLs can access the environment variables through standard C functions at enclave initialization
and throughout the application′s run.

• OpenEdition consideration—The environment variables apply to the enclave.

E.3.15.2 For More Information

• For more information about the RPTOPTS run-time option, see E.3.35, “RPTOPTS” on page 120.

E.3.16 ERRCOUNT

ERRCOUNT specifies how many conditions of severity 2, 3, and 4 can occur per thread before the
enclave terminates abnormally. After the number specified in ERRCOUNT is reached, no further
Language Environment condition management, including CEEHDLR management, is honored.

IBM-Supplied Default: ERRCOUNT = ((20),OVR)

 Syntax

OVR
ERRCOUNT = ((number) , NONOVR)

number
The number of severity 2, 3, and 4 conditions per individual thread that can occur while this
enclave is running. If the number of conditions exceeds number, the thread and enclave terminate
abnormally.

98 Language Environment Program Directory

ERRUNIT

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.16.1 Usage Notes

• ERRCOUNT(0) means the number of conditions that can occur is unlimited. This setting can cause
an infinite loop or a runaway task.

• COBOL consideration—Language Environment counts severity 1 messages with the facility ID IGZ.
When the limit is reached, additional severity 1 messages are suppressed.

• PL/I consideration—Use the default setting of ERRCOUNT(0) if you are using PL/I.

• PL/I MTF consideration—In a PL/I MTF application, ERRCOUNT sets the threshold for the total
number severity 2, 3, and 4 synchronous conditions that can occur for each task. If the number of
conditions exceeds the threshold, the application terminates normally.

• OpenEdition consideration—Synchronous signals that are associated with a condition of severity 2,
3, and 4 do not affect ERRCOUNT. Asynchronous signals do not affect ERRCOUNT.

• C++ consideration—The ERRCOUNT option sets the threshold for the total number of severity 2, 3,
and 4 synchronous conditions that can occur. Note that each thrown object is considered a
severity 3 condition. However, this condition does not affect ERRCOUNT.

E.3.16.2 For More Information

• For more information about the CEEDHLR callable service, see Language Environment for MVS &
VM Programming Reference.

• For more information about the CEESGL callable service, see Language Environment for MVS & VM
Programming Reference.

• See Language Environment for MVS & VM Programming Guide for more information about the
facility ID part of messages.

E.3.17 ERRUNIT (Fortran Only)

ERRUNIT identifies the unit number to which run-time error information is to be directed.

IBM-Supplied Default: ERRUNIT = ((6),OVR)

 Syntax

OVR
ERRUNIT = ((number) , NONOVR)

Appendix E. Language Environment Run-time Options 99

FILEHIST

number
A valid unit number in the range 0-99. You can establish your own default number at installation
time. The Language Environment message file and the file connected to the Fortran error message
unit are the same.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.18 FILEHIST (Fortran Only)

FILEHIST specifies whether to allow the file definition of a file referred to by a ddname to be changed
during run time. This option is intended for use with applications called by Fortran that reallocate
Fortran′s supplied DD names.

IBM-Supplied Default: FILEHIST = ((ON),OVR)

 Syntax

ON OVR
FILEHIS T = ((OFF) , NONOVR)

ON
Causes the history of a file to be used in determining its existence. It checks to see whether:

• The file was ever internally opened (in which case it exists)
• The file was deleted by a CLOSE statement (in which case it does not exist).

OFF
Causes the history of a file to be disregarded in determining its existence.

If you specify FILEHIST(OFF), you should consider:

• If you change file definitions during run time, the file is treated as if it were being opened for
the first time. Before the file definition can be changed, the existing file must be closed.

• If you do not change file definitions during run time, you must use STATUS=¢NEW¢ to re-open
an empty file that has been closed with STATUS=¢KEEP¢, because the file does not appear to
exist to Fortran.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

100 Language Environment Program Directory

HEAP

E.3.19 HEAP

HEAP controls the allocation of the initial heap, controls allocation of additional heaps created with the
CEECRHP callable service, and specifies how that storage is managed.

Heaps are storage areas where you allocate memory for user-controlled dynamically allocated
variables such as:

• C variables allocated as a result of the malloc() , calloc() , and realloc() functions

• COBOL WORKING-STORAGE data items

• PL/I variables with the storage class CONTROLLED, or the storage class BASED

The HEAP option is always in effect. If you do not specify HEAP, Language Environment allocates the
default value of heap storage when a call is made to get heap storage.

Language Environment does not allocate heap storage until the first call to get heap storage is made.
You can get heap storage by using language constructs or by making a call to CEEGTST.

IBM-Supplied Default: HEAP = ((32K,32K,ANYWHERE,KEEP,8K,4K),OVR)

 Syntax

ANYWHERE KEEP
HEAP = ((init _size , incr _size , ANY , FREE , initsz24 ,

BELOW

OVR
incrsz24) , NONOVR)

init_size
Determines the minimum initial allocation of heap storage. Specify this value as n, nK, or nM
bytes of storage. The actual amount of allocated storage is rounded up to the nearest multiple of
8 bytes.

incr _size
Determines the minimum size of any subsequent increment to the heap storage. Specify this
value as n, nK, or nM bytes of storage. The actual amount of allocated storage is rounded up to
the nearest multiple of 8 bytes.

ANYWHERE|ANY
Specifies that you can allocate heap storage anywhere in storage. On systems that support
bimodal addressing, you can allocate storage either above or below the 16M line. If there is no
available storage above the line, storage is acquired below the line. On systems that do not
support bimodal addressing (for example, when VM/ESA is initially loaded in 370 mode), Language
Environment ignores this option and places the heap storage below 16M.

The only valid abbreviation of ANYWHERE is ANY.

Appendix E. Language Environment Run-time Options 101

HEAP

BELOW
Specifies that you must allocate heap storage below the 16M line in storage that is accessible to
24-bit addressing.

KEEP
Specifies that storage allocated to HEAP increments is not released when the last of the storage is
freed.

FREE
Specifies that storage allocated to HEAP increments is released when the last of the storage is
freed.

initsz24
Determines the minimum initial size of the heap storage that is obtained below the 16M line for
applications running with ALL31(OFF) when these applications specify ANYWHERE in the HEAP
run-time option. Specify initsz24 as n, nK, or nM number of bytes. The amount of storage is
rounded up to the nearest multiple of 8 bytes.

initsz24 applies to the initial heap and other heaps created with the CEECRHP callable service that
are not allocated strictly below the 16M line.

incrsz24
Determines the minimum size of any subsequent increment to the heap area that is obtained
below the 16M line for applications running with ALL31(OFF) when these applications specify
ANYWHERE in the HEAP run-time option. Specify incrsz24 as n, nK, or nM number of bytes. The
amount of storage is rounded up to the nearest multiple of 8 bytes.

incrsz24 applies to the initial heap and other heaps created with the CEECRHP callable service
that are not allocated strictly below the 16M line.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.19.1 Usage Notes

• Applications running in AMODE 24 that request heap storage get the storage below the 16M line
regardless of the setting of ANYWHERE | BELOW.

• COBOL consideration—You can use the HEAP option to provide function similar to the VS COBOL II
space management tuning table.

• C/C++ consideration—If your C application runs below the 16M (AMODE 24) line, you must specify
HEAP(,,BELOW,,,) as an installation default for the HEAP run-time option, on the command line
when invoking the program, or at compile time as a #pragma runopts .

• PL/I consideration—The ANYWHERE | BELOW and KEEP | FREE suboptions are positional.
ANYWHERE | BELOW must be in the third position, and KEEP | FREE must be in the fourth position.
If you want to omit init_size and incr_size, you must specify: HEAP(,,ANY,KEEP).

102 Language Environment Program Directory

INQPCOPN

For PL/I, the only case in which storage is allocated above the line is when all of the following
conditions exist:

− The user routine requesting the storage is running in 31-bit addressing mode.
− HEAP(,,ANY) is in effect.
− The main routine is AMODE 31.

In pre-Language Environment-conforming PL/I, the ANYWHERE | BELOW and KEEP | FREE
suboptions were not positional. They could be in any order respective to each other. If init_size
and/or incr_size was not specified, the suboptions could be in the first or second position as well.

• CICS consideration—If HEAP is not specified or if HEAP(0) is specified, Language Environment uses
the IBM-supplied default of HEAP = ((4K,4K,ANYWHERE,KEEP,4K,4K),OVR). Both the initial HEAP
allocation and HEAP increments are rounded to the next higher multiple of 8 bytes (not 4K bytes).
The minimum is 4K bytes.

If HEAP(,,ANYWHERE) is in effect, the maximum size of a heap segment is 1 gigabyte (1024M).
These restrictions are subject to change from one release of CICS to another.

• PL/I MTF consideration—In a PL/I MTF application, HEAP specifies the heap storage allocation and
management for a PL/I main task.

• OpenEdition considerations—The HEAP option applies to the enclave.

Under OpenEdition, heap storage is managed at the thread level using pthread _key_create ,
pthread _setspecific , and pthread _getspecific .

E.3.19.2 Performance Considerations: To improve performance, use the storage report
numbers generated by the RPTSTG run-time option as an aid in setting the initial and increment size
for HEAP.

E.3.19.3 For More Information

• See Language Environment for MVS & VM Programming Guide for more information about
Language Environment heap storage or about specifying run-time options at application invocation.

• For more information about the CEECRHP callable service, see Language Environment for MVS &
VM Programming Reference.

• For more information about the CEEGTST callable service, see Language Environment for MVS &
VM Programming Reference.

• See E.3.36, “RPTSTG” on page 123 for more information about the RPTSTG run-time option.

E.3.20 INQPCOPN (Fortran Only)

INQPCOPN controls whether the OPENED specifier on an INQUIRE by unit statement can be used to
determine whether a preconnected unit has had any I/O statements directed to it.

IBM-Supplied Default: INQPCOPN = ((ON),OVR)

Appendix E. Language Environment Run-time Options 103

INTERRUPT

 Syntax

ON OVR
INQPCOPN = ((OFF) , NONOVR)

ON
Causes the running of an INQUIRE by unit statement to provide the value true in the variable or
array element given in the OPENED specifier if the unit is connected to a file. This includes the
case of a preconnected unit, which can be used in an I/O statement without running an OPEN
statement, even if no I/O statements have been run for that unit.

OFF
Causes the running of an INQUIRE by unit statement to provide the value false for the case of a
preconnected unit for which no I/O statements other than INQUIRE have been run.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.21 INTERRUPT

INTERRUPT causes attention interrupts recognized by the host system to be recognized by Language
Environment after the Language Environment environment has been initialized. The way you request
an attention interrupt varies from operating system to operating system. When you request the
interrupt, you can give control to your application or to a debug tool.

IBM-Supplied Default: INTERRUPT = ((OFF),OVR)

 Syntax

OFF OVR
INTERRUPT = ((ON) , NONOVR)

OFF
Specifies that Language Environment does not recognize attention interrupts.

ON
Specifies that Language Environment recognizes attention interrupts. In addition, if you have
specified the TEST(ERROR) or TEST(ALL) run-time option, the interrupt causes the debug tool to
gain control.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

104 Language Environment Program Directory

LIBSTACK

E.3.21.1 Usage Notes

• PL/I consideration—Language Environment supports the PL/I method of polling code. Note that the
PL/I routine must be compiled with the INTERRUPT compiler option in order for the INTERRUPT
run-time option to have an effect.

• PL/I MTF consideration—To receive the attention interrupt, the PL/I routine must be compiled with
the INTERRUPT compiler option, and the INTERRUPT run-time option must be in effect.

• CICS consideration—INTERRUPT is ignored under CICS.

• PL/I MTF consideration—The INTERRUPT option applies to the enclave. However, only one thread
in the enclave is affected for a particular attention interrupt.

• OpenEdition consideration—The INTERRUPT option applies to the enclave. However, only one
thread in the enclave is affected for a particular attention interrupt.

E.3.21.2 For More Information

• See E.3.42, “TEST | NOTEST” on page 136 for more information about the TEST run-time option.

• For more information about the POSIX run-time option, see E.3.30, “POSIX” on page 116.

E.3.22 LIBSTACK

LIBSTACK controls the allocation of the thread ′s library stack storage. This stack is used by Language
Environment and HLL library routines that require save areas below the 16M line.

IBM-Supplied Default: LIBSTACK = ((8K,4K,FREE),OVR)

 Syntax

FREE OVR
LIBSTACK = ((init _size , incr _size , KEEP) , NONOVR)

init_size
Determines the size of the initial library stack segment. The storage is contiguous.

Specify init_size as n, nK, or nM bytes of storage. init_size can be preceded by a minus sign. On
systems other than CICS, if you specify a negative number, all available storage minus the amount
specified is used for the initial stack segment.

In all supported systems except CICS, an init_size of 0 or −0 requests half of the largest block of
contiguous storage below the 16M line.

At initialization, Language Environment allocates the storage rounded up to the nearest multiple of
8 bytes.

incr _size
Determines the minimum size of any subsequent increment to the library stack area. Specify this
value as n, nK, or nM bytes of storage. The actual amount of allocated storage is the larger of 2
values— incr_size or the requested size—rounded up to the nearest multiple of 8 bytes.

Appendix E. Language Environment Run-time Options 105

LIBSTACK

If you do not specify incr_size, Language Environment uses the IBM-supplied default setting of 4K.
If incr_size =0, Language Environment gets only the amount of storage needed at the time of the
request, rounded up to the nearest multiple of 8 bytes.

The requested size is the amount of storage a routine needs for a stack frame. For example, if the
requested size is 9000 bytes, incr_size is specified as 8K, and the initial stack segment is full, then
Language Environment gets a 9000 byte stack increment from the operating system to satisfy the
request. If the requested size is smaller than 8K, Language Environment gets an 8K stack
increment from the operating system.

FREE
Specifies that Language Environment releases storage allocated to LIBSTACK increments when
the last of the storage in the library stack is freed. The initial library stack segment is not
released until the enclave terminates.

KEEP
Specifies that Language Environment does not release storage allocated to LIBSTACK increments
when the last of the storage is freed.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.22.1 Usage Notes

• CICS consideration—The initial and increment sizes for LIBSTACK are rounded to the next higher
multiple of 8 bytes. The minimum initial and increment size is 4K.

The IBM-supplied default setting for LIBSTACK under CICS is LIBSTACK = ((4K,4K,FREE),OVR).

• OpenEdition consideration—The LIBSTACK option sets the library stack characteristics on each
thread.

The recommended setting for LIBSTACK under OpenEdition is LIBSTACK = ((12K,12K,FREE),OVR).

E.3.22.2 Performance Considerations: To improve performance, use the storage report
numbers generated by the RPTSTG run-time option as an aid in setting the initial and increment size
for LIBSTACK.

E.3.22.3 For More Information

• See E.3.36, “RPTSTG” on page 123 for more information about the RPTSTG run-time option.

• For more information about using the storage reports generated by the RPTSTG run-time option to
tune the stacks, see Language Environment for MVS & VM Programming Guide.

106 Language Environment Program Directory

MSGFILE

E.3.23 MSGFILE

MSGFILE specifies the ddname of the file where all run-time diagnostics and reports generated by the
RPTOPTS and RPTSTG run-time options are written. MSGFILE also specifies the ddname for CEEMSG
and CEEMOUT callable services.

IBM-Supplied Default: MSGFILE = ((SYSOUT,FBA,121,0),OVR)

 Syntax

OVR
MSGFILE = ((ddname , recfm , lrecl , blksize) , NONOVR)

ddname
The ddname of the run-time diagnostics file.

recfm
The default record format (RECFM) value for the message file. recfm is used when this information
is not available either in a file definition or in the label of an existing file. The following values are
acceptable: F, FA, FB, FBA, FBS, FBSA, U, UA, V, VA, VB, and VBA.

lrecl
The default record length (LRECL) value for the message file. lrecl is used when this information
is not available either in a file definition or in the label of an existing file. lrecl is expressed as
bytes of storage.

The lrecl value (whether from MSGFILE or from another source) cannot exceed the blksize value,
whose maximum value is 32760. For variable-length record formats, the lrecl value is limited to
the blksize value minus 4.

blksize
The default block size (BLKSIZE) value for the message file. blksize is used when this information
is not available either in a file definition or in the label of an existing file. blksize is expressed as
bytes of storage.

blksize (whether from MSGFILE or from another source) cannot exceed 32760.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

Appendix E. Language Environment Run-time Options 107

MSGFILE

E.3.23.1 Usage Notes

• CICS considerations—The MSGFILE option is ignored under CICS. Run-time output under CICS is
directed instead to a transient data queue named CESE.

• HLL compiler options, such as the COBOL OUTDD compiler option, can affect whether your
run-time output goes to MSGFILE ddname.

• Use commas to separate suboptions of the MSGFILE run-time option. If you do not specify a
suboption but do specify a subsequent one, you must still code the comma to indicate its omission.
However, trailing commas are not required.

If you do not specify any suboptions, either of the following is valid: MSGFILE or MSGFILE().

• If one of the suboptions of the MSGFILE run-time option is not present in any source, including
CEEDOPT, then an IBM-supplied default value is used. The default values for ddname, recfm, lrecl,
and blksize are SYSOUT, FBA, 121, and 0, respectively.

• If there is no block size in the MSGFILE run-time option, in a file definition, or in the label of an
existing file, block size is determined as follows:

− For a recfm value that specifies unblocked fixed-length format records (F or FA) or
undefined-format records (U or UA), the blksize value is the same as the lrecl value.

− For a recfm value that specifies unblocked variable-length format records (V or VA), the blksize
value is the lrecl value plus 4.

− For a DASD device on MVS and a recfm value that specifies blocked records (FB, FBA, FBS,
FBSA, VB, or VBA), the blksize value is left at 0 by Language Environment so that the system
can determine the optimum blksize value.

− For a terminal and a recfm value that specifies blocked fixed-length format records (FB, FBA,
FBS, or FBSA), the blksize value is the same as the lrecl value.

− For a terminal and a recfm value that specifies blocked variable-length format records (VB or
VBA), the blksize value is the lrecl value plus 4.

− For all other cases, blksize has a value which gives 100 records per block if the blksize value
wouldn ′ t exceed 32760, otherwise, a value giving the largest number of records per block such
that the blksize value that doesn′ t exceed 32760.

Or, to put it another way:

- For a recfm value that specifies blocked fixed-length format records (FB, FBA, FBS, or
FBSA), the blksize value is lrecl × bfact where bfact is the largest integer not exceeding
100 such that the blksize value does not exceed 32760.

- For a recfm value that specifies blocked variable-length format records (VB or VBA), the
blksize value is (lrecl × bfact) plus 4 where bfact is the largest integer not exceeding 100
such that the blksize value does not exceed 32760.

• Language Environment detects certain invalid values for the MSGFILE suboptions, namely an
invalid value for recfm and a value of lrecl or blksize that exceeds 32760. A message is printed,
and any incorrect values are ignored.

108 Language Environment Program Directory

MSGFILE

• Invalid combinations of recfm, lrecl, and blksize values are not diagnosed by Language
Environment but can cause an error condition to be detected by the system on the first attempt to
write to the message file.

• Language Environment does not check the validity of the MSGFILE ddname. An invalid ddname
generates an error condition on the first attempt to issue a message.

• C/C++ consideration—C perror() messages and output directed to stderr go to the MSGFILE
destination.

• PL/I consideration—Run-time messages in PL/I routines are directed to the file specified by
MSGFILE, instead of to the PL/I SYSPRINT STREAM PRINT file.

User-specified output is still directed to the PL/I SYSPRINT STREAM PRINT file. To direct this
output to the Language Environment MSGFILE file, specify MSGFILE(SYSPRINT).

• OpenEdition MVS considerations—The MSGFILE option specifies the ddname of the diagnostic file
for the enclave. When multiple threads write to the message file, the output is interwoven by line.
To group lines of output, serialize MSGFILE access (by using a mutex, for example).

When OpenEdition MVS is available and the MSGFILE option specifies a ddname nominating a
POSIX file, Language Environment uses POSIX services to write the message file. A ddname
nominates a POSIX file using the keyword PATH = .

OpenEdition MVS must be available on the underlying operating system for the MSGFILE option to
write to a POSIX file. If the ddname nominates a POSIX file and OpenEdition is not present, then
Language Environment tries to dynamically allocate an MVS file to be used as the message file.

If the message file is allocated (whether POSIX or MVS), Language Environment directs the output
to this file. If the current message file is not allocated, and the application carries out a
fork()/exec , spawn() , or spawnp() , Language Environment checks whether File Descriptor 2 exists. If
it does exist, then Language Environment uses it; otherwise, Language Environment dynamically
allocates the message file to the POSIX file system and attempts to open the file SYSOUT in the
current working directory; or, if there is no current directory, then in the directory /tmp.

• OpenEdition for VM/ESA considerations—If your application is running under the OpenEdition shell
or any environment that has file descriptor 2 (FD2) open, MSGFILE output is directed to whatever
FD2 points to. Under the shell, this is typically your terminal. If FD2 is closed when your application
is invoked (via spawn() or exec()), no message file is created.

E.3.23.2 For More Information

• For more information about the RPTOPTS and RPTSTG run-time options, see E.3.35, “RPTOPTS” on
page 120 and E.3.36, “RPTSTG” on page 123.

• For more information about the CEEMSG and CEEMOUT callable services, see Language
Environment for MVS & VM Programming Reference.

• For details on how HLL compiler options affect messages, see information on HLL I/O statements
and message handling in Language Environment for MVS & VM Programming Guide.

• For more information about perror() and stderr see C message output information in Language
Environment for MVS & VM Programming Guide.

Appendix E. Language Environment Run-time Options 109

MSGQ

• For more information about the CESE transient data queue, see Language Environment for MVS &
VM Programming Guide.

E.3.24 MSGQ

MSGQ specifies the number of ISI blocks that Language Environment allocates on a per thread basis
for use by the application. The ISI contains information for Language Environment to use when
identifying and reacting to conditions, providing access to q_data tokens, and assigning space for
message inserts used with user-created messages. When an ISI is needed and one is not available,
Language Environment uses the least recently used ISI. CEECMI allocates storage for the ISI, if
necessary.

IBM-Supplied Default: MSGQ = ((15),OVR)

 Syntax

OVR
MSGQ = ((number) , NONOVR)

number
An integer that specifies the number of ISIs to be maintained per thread within an enclave.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.24.1 Usage Notes:

• PL/I MTF consideration—In a PL/I MTF application, MSGQ sets the number of message queues
allowed for each task.

E.3.24.2 For More Information

• For more information about the CEECMI callable service, see Language Environment for MVS & VM
Programming Reference.

• For more information about the ISI, see Language Environment for MVS & VM Programming Guide.

110 Language Environment Program Directory

NATLANG

E.3.25 NATLANG

NATLANG specifies the initial national language to be used for the run-time environment, including
error messages, month names, and day of the week names. Message translations are provided for
Japanese and for uppercase and mixed-case U.S. English. NATLANG also determines how the
message facility formats messages.

NATLANG affects only the Language Environment NLS and date and time services, not the Language
Environment locale callable services.

You can set the national language by using the NATLANG run-time option or the SET function of the
CEE3LNG callable service Language Environment maintains one current language at the enclave level.
The current language remains in effect until one of the above changes it. For example, if you specify
JPN in the NATLANG run-time option, but subsequently specify ENU using the CEE3LNG callable
service, ENU becomes the current national language.

Language Environment writes storage and options reports and dump output only in mixed-case U.S.
English.

IBM-Supplied Default: NATLANG = ((ENU),OVR)

 Syntax

ENU OVR
NATLANG = ((UEN) , NONOVR)

JPN

ENU
A 3-character ID specifying mixed-case U.S. English.

Message text consists of SBCS characters and includes both uppercase and lowercase letters.

UEN
A 3-character ID specifying uppercase U.S. English.

Message text consists of SBCS characters and includes only uppercase letters.

JPN
A 3-character ID specifying Japanese.

Message text can contain a mixture of SBCS and DBCS characters.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

Appendix E. Language Environment Run-time Options 111

NONIPTSTACK | NONONIPTSTACK

E.3.25.1 Usage Notes

• If you specify a national language that is not available on your system, Language Environment uses
the IBM-supplied default ENU (mixed-case U.S. English).

CEEUOPT and CEEDOPT can specify an unknown national language code, but give a return code of
4 and a warning message.

• C/C++ consideration—Language Environment provides locales used in C and C++ to establish
default formats for the locale-sensitive functions and locale callable services, such as date and
time formatting, sorting, and currency symbols. To change the locale, you can use the setlocale()
library function or the CEESETL callable service.

The settings of CEESETL or setlocale() do not affect the setting of the NATLANG run-time option.
NATLANG affects only Language Environment NLS and date and time services. setlocale() and
CEESETL affect only C/C++ locale-sensitive functions and Language Environment locale callable
services.

To ensure that all settings are correct for your country, use NATLANG and either CEESETL or
setlocale() .

• PL/I MTF consideration—NATLANG affects every task in the application. The SET function of
CEE3LNG is supported for the relinked OS PL/I or PL/I for MVS & VM MTF applications only.

• OpenEdition consideration—The NATLANG option specifies the initial value for the enclave.

E.3.25.2 For More Information

• For more information about the CEE3LNG callable service, see Language Environment for MVS &
VM Programming Reference.

• See E.3.24, “MSGQ” on page 110 for more information about the MSGQ run-time option.

• For more information on setlocale() , see AD/Cycle C/370 Programming Guide, C/MVS
Programming Guide, or C++/MVS Programming Guide.

E.3.26 NONIPTSTACK | NONONIPTSTACK

NONIPTSTACK controls stack allocation for each thread, except the initial thread, in a multithread
environment. If the thread attribute object does not provide an explicit stack size, then the allocation
values can be inherited from the STACK option or specified explicitly on the NONIPTSTACK option.
NONONIPTSTACK causes the values specified in the STACK option to be used.

In PL/I MTF applications, NONIPTSTACK specifies stack storage for every subtask. If you use the
IBM-supplied default NONONIPTSTACK, the STACK option specifies stack storage for both the main
task and subtasks.

IBM-Supplied Default: NONONIPTSTACK = ((4K,4K,BELOW,KEEP),OVR)

112 Language Environment Program Directory

NONIPTSTACK | NONONIPTSTACK

 Syntax

NONONIPTSTACK BELOW KEEP
NONIPTSTACK = ((init _size , incr _size , ANYWHERE , FREE)

ANY

 OVR
, NONOVR)

NONONIPTSTACK
Indicates that the allocation options of the STACK option are used for thread stack allocation. Any
suboption specified with NONONIPTSTACK is ignored.

NONIPTSTACK
Controls the stack allocation for each thread, except the initial thread, in a multithread
environment.

init_size
The length of each noninitial thread initial stack storage area. This is an unsigned integer, n, nK,
or nM. The actual amount of allocated storage is rounded up to the nearest multiple of 8 bytes.

A value of zero (0) causes an allocation of 4K.

incr _size
The minimum amount by which the stack storage for any noninitial thread is incremented, and is
specified in n, nK, or nM. The actual amount of allocated storage is the larger of two values,
incr_size or the requested size, rounded up to the nearest multiple of 8 bytes.

If you specify incr_size as 0, only the amount of the storage needed at the time of the request
(rounded up to the nearest 8 bytes) is obtained.

BELOW
Specifies that the stack storage must be allocated below the 16M line. Applications running with
ALL31(OFF) must specify NONIPTSTACK(,,BELOW) to ensure that stack storage is addressable by
the application.

ANYWHERE|ANY
Specifies that the stack storage can be allocated anywhere in storage either above or below the
16M line.

The only valid abbreviation of ANYWHERE is ANY.

KEEP
Specifies that storage allocated to NONIPTSTACK increments is not released when the last of the
storage in the thread stack increment is freed.

FREE
Specifies that storage allocated to NONIPTSTACK increments is released when the last of the
storage in the thread stack increment is freed.

Appendix E. Language Environment Run-time Options 113

OCSTATUS

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.26.1 Usage Notes

• All storage allocated to NONIPTSTACK segments is freed when the thread terminates.

• The initial stack segment of the thread is never released until the thread terminates, regardless of
the KEEP/FREE state.

• You can specify sub-options with NONONIPTSTACK, but they are ignored. If you override the
NONONIPTSTACK option with NONIPTSTACK and you omit suboptions, then the suboptions you
specified with NONONIPTSTACK remain in effect. If you respecify NONONIPTSTACK with different
suboptions, they override the defaults.

• PL/I MTF consideration—NONIPTSTACK(4K, 4K, BELOW, KEEP) provides PL/I compatibility for stack
storage allocation and management for each subtask in the application.

• CICS consideration—This option is ignored under CICS.

E.3.26.2 For More Information

• For more information about the STACK run-time option, see E.3.39, “STACK” on page 128.

• For more information about the ALL31 run-time option, see E.3.4, “ALL31” on page 85.

E.3.27 OCSTATUS (Fortran Only)

OCSTATUS controls the verification of file existence and whether a file is actually deleted based on the
STATUS specifier on the OPEN and CLOSE statement, respectively.

IBM-Supplied Default: OCSTATUS = ((ON),OVR)

 Syntax

ON OVR
OCSTATUS = ((OFF) , NONOVR)

ON
Specifies that file existence is checked with each OPEN statement to verify that the status of the file
is consistent with STATUS=¢OLD¢ and STATUS=¢NEW¢. It also specifies that file deletion occurs
with each CLOSE statement with STATUS=¢DELETE¢ for those devices which support file deletion.
Preconnected files are included in these verifications. OCSTATUS consistency checking applies to
DASD files, PDS members, VSAM files, MVS labeled tape files, and dummy files only. For dummy
files, the consistency checking occurs only if the file was previously opened successfully in the
current program.

114 Language Environment Program Directory

PC

In addition, when a preconnected file is disconnected by a CLOSE statement, an OPEN statement is
required to reconnect the file under OCSTATUS. Following the CLOSE statement, the INQUIRE
statement parameter OPENED indicates that the unit is disconnected.

OFF
Bypasses file existence checking with each OPEN statement and bypasses file deletion with each
CLOSE statement.

If STATUS=¢NEW¢, a new file is created; if STATUS=¢OLD¢, the existing file is connected.

If STATUS=¢UNKNOWN¢ or ¢SCRATCH¢, and the file exists, it is connected; if the file does not
exist, a new file is created.

In addition, when a preconnected file is disconnected by a CLOSE statement, an OPEN statement is
not required to reestablish the connection under OCSTATUS(OFF). A sequential READ, WRITE,
BACKSPACE, REWIND, or ENDFILE will reconnect the file to a unit. Before the file is reconnected,
the INQUIRE statement parameter OPENED will indicate that the unit is disconnected; after the
connection is reestablished, the INQUIRE statement parameter OPENED will indicate that the unit is
connected.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.28 PC (Fortran Only)

PC controls whether Fortran status common blocks are shared among load modules.

IBM-Supplied Default: PC = ((OFF),OVR)

 Syntax

OFF OVR
PC = ((ON) , NONOVR)

OFF
Specifies that Fortran static common blocks with the same name but in different load modules all
refer to the same storage. PC(OFF) applies only to static common blocks referenced by compiled
code produced by any of the following compilers and that were not compiled with the PC compiler
option:

• VS FORTRAN Version 2 Release 5
• VS FORTRAN Version 2 Release 6

ON Specifies that Fortran static common blocks with the same name but in different load modules do
not refer to the same storage.

Appendix E. Language Environment Run-time Options 115

POSIX

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.29 PLITASKCOUNT (PL/I Only)

PLITASKCOUNT controls the maximum number of tasks active at one time while you are running PL/I
MTF applications.

IBM-Supplied Default: PLITASKCOUNT = ((20),OVR)

 Syntax

OVR
PLITASKCOUNT = ((tasks) , NONOVR)

tasks
A decimal integer that is the maximum number of tasks allowed in a PL/I MTF application at any
one time during execution. The total tasks include the main task and subtasks created directly or
indirectly from the main task.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.29.1 Usage Notes

• A value of zero (0) assumes the IBM-supplied default of 20.

• PL/I MTF consideration—If tasks or the IBM-supplied default of 20 exceeds the OpenEdition MVS
installation default of the maximum number of threads, Language Environment assumes the
OpenEdition MVS installation default.

• If a request to create a task would take the number of currently active tasks over the allowable
limit, condition IBM0566S is signalled and the task is not created.

E.3.30 POSIX

POSIX specifies whether the enclave can run with the POSIX semantics.

POSIX is an application characteristic that is maintained at the enclave level. After you have
established the characteristic during enclave initialization, you cannot change it.

When you set POSIX to ON, you can use functions that are unique to POSIX, such as pthread _create() .

116 Language Environment Program Directory

POSIX

One of the effects of POSIX(ON) is the enablement of POSIX signal handling semantics, which interact
closely with the Language Environment condition handling semantics.

ANSI C routines can access the OpenEdition MVS Hierarchical File System (HFS) on MVS independent
of the POSIX setting. They can also access the OpenEdition for VM/ESA Byte File System (BFS) on VM
independent of the POSIX setting. Where ambiguities exist between ANSI and POSIX semantics, the
POSIX run-time option setting indicates the POSIX semantics to follow.

If you set POSIX to ON and you run non-thread-safe languages such as COBOL, PL/I, and C++ in a
thread other than the initial thread, the behavior is undefined.

IBM-Supplied Default: POSIX = ((OFF),OVR)

 Syntax

OFF OVR
POSIX = ((ON) , NONOVR)

OFF
Indicates that the application is not POSIX-enabled.

ON
Indicates that the application is POSIX-enabled.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.30.1 Usage Notes

• If you set POSIX to ON when OpenEdition is not active, the following events occur:

− The message file receives a warning, but the application continues to run.

− If you invoke a POSIX function that has an OpenEdition kernal dependency, it does not take
effect.

− If you invoke a POSIX function that has an OpenEdition kernal dependency and has no
provision for failure, for example, alarm , a severity 3 condition is raised.

• POSIX(ON) applies to MVS/ESA and VM/ESA, but explicitly excludes CICS. If you set POSIX to ON
while an application is running under CICS, you receive a warning message and the application
continues to run. You can specify POSIX(ON) for both DB2* and IMS applications.

• Within nested enclaves, only one enclave can have the POSIX option set to ON. All other nested
enclaves must have the POSIX option set to OFF.

Appendix E. Language Environment Run-time Options 117

PUNUNIT

E.3.30.2 For More Information

• For more information on POSIX functions that have an OpenEdition kernal dependency, see C/C++
for MVS/ESA Library Reference.

• For more information about the INTERRUPT run-time option, see E.3.21, “INTERRUPT” on page 104.

E.3.31 PRTUNIT (Fortran Only)

PRTUNIT identifies the unit number used for PRINT and WRITE statements that do not specify a unit
number.

IBM-Supplied Default: PRTUNIT = ((6),OVR)

 Syntax

OVR
PRTUNIT = ((number) , NONOVR)

number
A valid unit number in the range 0-99. You can establish your own default number at installation
time.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.32 PUNUNIT (Fortran Only)

PUNUNIT identifies the unit number used for PUNCH statements that do not specify a unit number.

IBM-Supplied Default: PUNUNIT = ((7),OVR)

 Syntax

OVR
PUNUNIT = ((number) , NONOVR)

number
A valid unit number in the range 0-99. You can establish your own default number at installation
time.

OVR
Specifies that the option can be overridden.

118 Language Environment Program Directory

RECPAD

NONOVR
Specifies that the option cannot be overridden.

E.3.33 RDRUNIT (Fortran Only)

RDRUNIT identifies the unit number used for READ statements that do not specify a unit number.

IBM-Supplied Default: RDRUNIT = ((5),OVR)

 Syntax

OVR
RDRUNIT = ((number) , NONOVR)

number
A valid unit number in the range 0-99. You can establish your own default number at installation
time.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.34 RECPAD (Fortran Only)

RECPAD specifies whether a formatted input record is padded with blanks.

IBM-Supplied Default: RECPAD = ((OFF),OVR)

 Syntax

OFF OVR
RECPAD = ((ON) , NONOVR)

NONE
ALL
VAR

OFF|NONE
Specifies that no blank padding be applied when an input list and format specification requires
more data from an input record than the record contains. If more data is required, the error
described by condition FOR1002 is detected.

ON|ALL
Specifies that a formatted input record within an internal file, or a varying or undefined length
record (RECFM=U or V) external file, be padded with blanks when an input list and format

Appendix E. Language Environment Run-time Options 119

RPTOPTS

specification require more data from the record than the record contains. Blanks added for
padding are interpreted as though the input record actually contains blanks in those fields.

VAR
Applies blank padding to any of the following types of files:

• An external, non-VSAM file with a record format (the RECFM value) that allows the lengths of
records to differ within the file. Such record formats are variable(V), variable blocked (VB),
undefined (U), variable spanned (VS), and variable blocked spanned (VBS); this excludes fixed
(F) and fixed blocked (FB).

• An external, VSAM entry-sequenced data set (ESDS) or key-sequenced data set (KSDS).

• An internal file.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.34.1 Usage Notes

• NORECPAD has the same effect as RECPAD(OFF) and RECPAD(NONE). RECPAD has the same
effect as RECPAD(ON) and RECPAD(ALL).

• The PAD specifier of the OPEN statement can be used to indicate padding for individual files.

E.3.35 RPTOPTS

RPTOPTS generates, after an application has run, a report of the run-time options in effect while the
application was running. Language Environment writes options reports only in mixed-case U.S.
English.

Language Environment directs the report to the ddname specified in the MSGFILE run-time option.

RPTOPTS does not generate the options report if Language Environment abends but does generate a
report in all other cases.

Figure 41 on page 122 shows the sample output when RPTOPTS is set to ON. RPTOPTS(ON) lists the
declared run-time options in alphabetical order. The report lists the option names and shows where
each option obtained its current setting. The report heading displayed at the top of the options report
is set by CEE3RPH. The date and time formats are affected by the country code set by the COUNTRY
run-time option or the CEE3CTY callable service.

The LAST WHERE SET column in the report shows the last place where the options were referenced,
even if no suboptions or subsets of the options were changed. “Default setting” in the report indicates
that you cannot specify the option in CEEDOPT or CEEUOPT. “Programmer default” includes any
options specified with C #pragma runopts , PL/I PLIXOPT, and CEEUOPT.

IBM-Supplied Default: RPTOPTS = ((OFF),OVR)

120 Language Environment Program Directory

RPTOPTS

 Syntax

OFF OVR
RPTOPTS = ((ON) , NONOVR)

OFF
Does not generate a report of the run-time options in effect while the application was running.

ON
Generates a report of the run-time options in effect while the application was running.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.35.1 Usage Note

• OpenEdition consideration—The RPTOPTS option reports run-time options for the enclave.

E.3.35.2 Performance Considerations: This option increases the time it takes for the
application to run. Therefore, use it only as an aid to application development.

Appendix E. Language Environment Run-time Options 121

RPTOPTS

Options Report for Enclave ABC 08/07/95 1:12:20 PM

LAST WHERE SET OPTION

Programmer default ABPERC(NONE)
Installation default ABTERMENC(RETCODE)
Installation default NOAIXBLD
Programmer default ALL31(OFF)
Assembler user exit ANYHEAP(327 68,16384,ANYWHERE,FREE)
Installation default NOAUTOTASK
Assembler user exit BELOWHEAP(8192,8192,FREE)
Installation default CBLOPTS(ON)
Installation default CBLPSHPOP(ON)
Installation default CBLQDA(ON)
Installation default CHECK(ON)
Installation default COUNTRY(US)
Installation default DEBUG
Programmer default DEPTHCONDLMT(20)
Installation default ENVAR(††)
Programmer default ERRCOUNT(7)
Installation default ERRUNIT(6)
Installation default FILEHIST
Default setting NOFLOW
Assembler user exit HEAP(32768, 32768,ANYWHERE,KEEP,8192,4096)
Installation default INQPCOPN
Installation default INTERRUPT(OFF)
Invocation command LIBSTACK(8192,4096,FREE)
Installation default MSGFILE(SYSOUT,FBA,121,0)
Installation default MSGQ(15)
Installation default NATLANG(ENU)
Invocation command NONONIPTSTACK(4096,4096,BELOW,KEEP)
Installation default OCSTATUS
Installation default NOPC
Installation default PLITASKCOUNT(20)
Installation default POSIX(OFF)
Installation default PRTUNIT(6)
Programmer default PUNUNIT(7)
Installation default RDRUNIT(5)
Installation default RECPAD(OFF)
Invocation command RPTOPTS(ON)
Installation default RPTSTG(OFF)
Installation default NORTEREUS
Installation default NOSIMVRD
Invocation command STACK(65536,65536,BELOW,KEEP)
Assembler user exit STORAGE(NONE,NONE,NONE,131 072)
Programmer default TERMTHDACT(TRACE)
Installation default NOTEST(ALL, †*†,†PROMPT†,†INSPPREF†)
Installation default THREADHEAP(4096,4096,ANYWHERE,KEEP)
Installation default TRACE(OFF,4096,DUMP,LE=0)
Installation default TRAP(ON)
Installation default UPSI(00000000)
Installation default NOUSRHDLR()
Installation default VCTRSAVE(OFF)
Programmer default XUFLOW(AUTO)

Figure 41. Options Report Produced by Language Environment Run-Time Option RPTOPTS(ON)

122 Language Environment Program Directory

RPTSTG

E.3.35.3 For More Information

• See E.3.23, “MSGFILE” on page 107 for more information about the MSGFILE run-time option.

• For more information about the CEE3RPH callable service, see Language Environment for MVS &
VM Programming Reference.

• See E.3.12, “COUNTRY” on page 93 for more information about the COUNTRY run-time option.

• For more information about the CEE3CTY callable service, see Language Environment for MVS &
VM Programming Reference.

E.3.36 RPTSTG

RPTSTG generates, after an application has run, a report of the storage the application used. The
report is directed to the ddname specified in the MSGFILE run-time option.

Figure 42 on page 125 shows a sample report created with the RPTSTG option set to ON.

The storage report heading is set by CEE3RPH. The date and time formats, in the RPTSTG generated
reports, are affected by the country code set by the COUNTRY run-time option or the CEE3CTY callable
service.

You can use the storage report information to adjust the ANYHEAP, BELOWHEAP, HEAP, LIBSTACK,
NONIPTSTACK, STACK, and THREADHEAP run-time options.

Language Environment writes storage reports only in mixed-case U.S. English.

IBM-Supplied Default: RPTSTG = ((OFF),OVR)

 Syntax

OFF OVR
RPTSTG = ((ON) , NONOVR)

OFF
Does not generate a report of the storage used while the application was running.

ON
Generates a report of the storage used while the application was running.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

Appendix E. Language Environment Run-time Options 123

RPTSTG

E.3.36.1 Usage Notes

• RPTSTG does not generate a storage report if your application terminates abnormally.

• The phrases “Number of segments allocated” and “Number of segments freed” represent the
following:

− On VM/ESA, the number of CMSSTOR OBTAIN and CMSSTOR RELEASE requests, respectively.

− On CICS, the number of EXEC CICS GETMAIN and EXEC CICS FREEMAIN requests,
respectively.

• RPTSTG includes PL/I task-level information on stack and heap utilization.

• OpenEdition consideration—The RPTSTG option applies to storage utilization for the enclave,
including thread-level information on stack utilization, and stack storage used by multiple threads.

E.3.36.2 Performance Considerations: This option increases the time it takes for an
application to run. Therefore, use it only as an aid to application development.

The storage report generated by RPTSTG(ON) shows the number of system-level get storage calls that
were required while the application was running. To improve performance, use the storage report
numbers generated by the RPTSTG option as an aid in setting the initial and increment size for STACK
and HEAP. This reduces the number of times that the Language Environment storage manager makes
requests to acquire storage. For example, you can use the storage report numbers to set appropriate
values in the HEAP and STACK init_size and incr_size fields for allocating storage.

124 Language Environment Program Directory

RPTSTG

Storage Report for Enclave main 08/07/95 12:59:59 PM

STACK statistics:
Initial size: 131072
Increment size: 131072
Maximum used by all concurrent threads: 12600
Largest used by any thread: 12600
Number of segments allocated: 1
Number of segments freed: 0

NONIPTSTACK statistics:
Initial size: 32768
Increment size: 32768
Maximum used by all concurrent threads: 6552
Largest used by any thread: 2232
Number of segments allocated: 4
Number of segments freed: 0

LIBSTACK statistics:
Initial size: 8192
Increment size: 4096
Maximum used by all concurrent threads: 784
Largest used by any thread: 784
Number of segments allocated: 1
Number of segments freed: 0

THREADHEAP statistics:
Initial size: 4096
Increment size: 4096
Maximum used by all concurrent threads: 0
Largest used by any thread: 0
Successful Get Heap requests: 0
Successful Free Heap requests: 0
Number of segments allocated: 0
Number of segments freed: 0

HEAP statistics:
Initial size: 32768
Increment size: 32768
Total heap storage used (sugg. initial size): 20312
Successful Get Heap requests: 25
Successful Free Heap requests: 3
Number of segments allocated: 1
Number of segments freed: 0

ANYHEAP statistics:
Initial size: 16384
Increment size: 8192
Total heap storage used (sugg. initial size): 105256
Successful Get Heap requests: 412
Successful Free Heap requests: 391
Number of segments allocated: 2
Number of segments freed: 0

Figure 42 (Part 1 of 2). Storage Report Produced by Language Environment Run-Time Option RPTSTG(ON)

Appendix E. Language Environment Run-time Options 125

RTEREUS

BELOWHEAP statistics:
Initial size: 8192
Increment size: 4096
Total heap storage used (sugg. initial size): 240304
Successful Get Heap requests: 41
Successful Free Heap requests: 32
Number of segments allocated: 5
Number of segments freed: 4

Additional Heap statistics:
Successful Create Heap requests: 0
Successful Discard Heap requests: 0
Total heap storage used: 0
Successful Get Heap requests: 0
Successful Free Heap requests: 0
Number of segments allocated: 0
Number of segments freed: 0

Largest number of threads concurrently active: 2
End of Storage Report

Figure 42 (Part 2 of 2). Storage Report Produced by Language Environment Run-Time Option RPTSTG(ON)

E.3.36.3 For More Information

• For more information about the MSGFILE run-time option, see E.3.23, “MSGFILE” on page 107.

• For more information about the CEE3RPH callable service, see Language Environment for MVS &
VM Programming Reference.

• See E.3.12, “COUNTRY” on page 93 for more information about the COUNTRY run-time option.

• For more information about the CEE3CTY callable service, see Language Environment for MVS &
VM Programming Reference.

• For more information about the ANYHEAP run-time option, see E.3.5, “ANYHEAP” on page 86.

• For more information about the BELOWHEAP run-time option, see E.3.7, “BELOWHEAP” on
page 88.

• For more information about the HEAP run-time option, see E.3.19, “HEAP” on page 101.

• For more information about the LIBSTACK run-time option, see E.3.22, “LIBSTACK” on page 105.

• For more information about the STACK run-time option, see E.3.39, “STACK” on page 128.

• For more information about tuning your application with storage numbers, see Language
Environment for MVS & VM Programming Guide.

E.3.37 RTEREUS (COBOL Only)

RTEREUS implicitly initializes the run-time environment to be reusable when the main program for the
thread is a COBOL program. This option is valid only when used with CEEDOPT or CEEUOPT.

IBM-Supplied Default: RTEREUS = (OFF),(OVR)

126 Language Environment Program Directory

RTEREUS

 Syntax

OFF OVR
RTEREUS = ((ON) , NONOVR)

OFF
Does not initialize the run-time environment to be reusable when the first COBOL routine is
invoked.

ON
Initializes the run-time environment to be reusable when the first COBOL routine is invoked.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.37.1 Usage Notes

• Avoid using RTEREUS(ON) as an installation default, because doing so can cause problems for
other HLLs such as C/C++ and PL/I.

• When you specify RTEREUS in CEEDOPT or CEEUOPT, the only accepted syntax is RTEREUS(ON)
or RTEREUS(OFF).

• CICS consideration—This option is ignored under CICS.

• IMS consideration—RTEREUS is not recommended for use under IMS.

E.3.37.2 Performance Considerations: You must change STOP RUN statements to GOBACK
statements in order to gain the benefits of RTEREUS. STOP RUN terminates the reusable environment.
If you specify RTEREUS and use STOP RUN, Language Environment recreates the reusable
environment on the next invocation of COBOL. Doing this repeatedly degrades performance, because
a reusable environment takes longer to create than does a normal environment.

Language Environment also offers preinitialization support in addition to RTEREUS.

E.3.37.3 For More Information

• For more information about CEEUOPT or CEEDOPT, see Language Environment for MVS & VM
Installation and Customization on MVS.

• See Language Environment for MVS & VM Programming Guide for more information about
preinitialization.

Appendix E. Language Environment Run-time Options 127

STACK

E.3.38 SIMVRD (COBOL Only)

SIMVRD specifies whether your COBOL routines use a VSAM KSDS to simulate variable-length relative
organization data sets.

IBM-Supplied Default: SIMVRD = ((OFF),OVR)

 Syntax

OFF OVR
SIMVRD = ((ON) , NONOVR)

OFF
Do not use a VSAM KSDS to simulate variable-length relative organization.

ON
Use a VSAM KSDS to simulate variable-length relative organization.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.38.1 Usage Notes

• When you specify SIMVRD in CEEDOPT or CEEUOPT, the only accepted syntax is SIMVRD(ON) or
SIMVRD(OFF).

• CICS consideration—This option is ignored under CICS.

E.3.38.2 For More Information

• See COBOL/370 Programming Guide or COBOL for MVS & VM Programming Guide for more
details.

• See Language Environment for MVS & VM Installation and Customization on MVS for more
information on CEEDOPT and CEEUOPT.

E.3.39 STACK

STACK controls the allocation of the thread′s stack storage. Typical items residing in the stack are C
or PL/I automatic variables, COBOL LOCAL-STORAGE data items, and work areas for COBOL library
routines.

Storage required for the common anchor area (CAA) and other control blocks is allocated separately
from, and prior to, the allocation of the initial stack segment and the initial heap.

IBM-Supplied Default: STACK = ((128K,128K,BELOW,KEEP),OVR)

128 Language Environment Program Directory

STACK

 Syntax

BELOW KEEP
STACK = ((init _size , incr _size , ANYWHERE , FREE) ,

ANY

OVR
NONOVR)

init_size
Determines the size of the initial stack segment. The storage is contiguous. You specify the
init_size value as n, nK, or nM bytes of storage. The actual amount of allocated storage is
rounded up to the nearest multiple of 8 bytes.

init_size can be preceded by a minus sign. On systems other than CICS, if you specify a negative
number Language Environment uses all available storage minus the amount specified for the
initial stack segment.

A size of †0† or †−0† requests half of the largest block of contiguous storage in the region below
the 16M line. Behavior under CICS is described in the Usage Notes for this run-time option.

incr _size
Determines the minimum size of any subsequent increment to the stack area. You can specify this
value as n, nK, or nM bytes of storage. The actual amount of allocated storage is the larger of two
values— incr_size or the requested size—rounded up to the nearest multiple of 8 bytes

If you specify incr_size as 0, only the amount of the storage needed at the time of the request,
rounded up to the nearest multiple of 8 bytes, is obtained.

The requested size is the amount of storage a routine needs for a stack frame. For example, if the
requested size is 9000 bytes, incr_size is specified as 8K, and the initial stack segment is full,
Language Environment gets a 9000 byte stack increment from the operating system to satisfy the
request. If the requested size is smaller than 8K, Language Environment gets an 8K stack
increment from the operating system.

BELOW
Specifies that the stack storage must be allocated below the 16M line, in storage that is accessible
to 24-bit addressing.

ANYWHERE|ANY
Specifies that stack storage can be allocated anywhere in storage. On systems that support
bimodal addressing, storage can be allocated either above or below the 16M line. If there is no
storage available above the line, Language Environment acquires storage below the line. On
systems that do not support bimodal addressing (for example, when VM/ESA is initial program
loaded in 370 mode) Language Environment ignores this option and places the stack storage
below 16M.

The only valid abbreviation for ANYWHERE is ANY.

Appendix E. Language Environment Run-time Options 129

STACK

KEEP
Specifies that storage allocated to STACK increments is not released when the last of the storage
in the stack increment is freed.

FREE
Specifies that storage allocated to STACK increments is released when the last of the storage in
the stack is freed. The initial stack segment is never released until the enclave terminates.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.39.1 Usage Notes

• Applications running with ALL31(OFF) must specify STACK(,,BELOW) to ensure that stack storage is
addressable by the application.

• CICS consideration—The IBM-supplied default setting for STACK under CICS is
STACK = ((4K,4K,ANYWHERE,KEEP),OVR). However, when you define your CICS transaction, if the
value of the TASKDATALOC suboption is set to or defaults to BELOW, it overrides the setting
STACK(,,ANYWHERE) and forces GETMAINs to obtain stack storage below the line.

The maximum initial and increment size for CICS above 16M is 1 gigabyte (1204M). This restriction
is subject to change from one release of CICS to another.

Both the initial size and the increment size are rounded up to the nearest multiple of 8 bytes. The
initial size and the increment size minimum is 4K.

If you do not specify STACK, Language Environment assumes the default value of 4K. Under CICS,
STACK(0), STACK (−0), and STACK (−n) are all interpreted as STACK(4K).

• PL/I consideration—PL/I automatic storage above the 16M line is supported under control of the
Language Environment STACK option. When the Language Environment stack is above, PL/I
temporaries (dummy arguments) and parameter lists (for reentrant/recursive blocks) also reside
above.

The stack frame size for an individual block is constrained to 16M. Stack frame extensions are
also constrained to 16M. Therefore, the size of an automatic aggregate, temporary variable, or
dummy argument cannot exceed 16M. Violation of this constraint might have unpredictable results.

If an OS PL/I application does not contain any edited stream I/O and if it is running with AMODE 31,
you can relink it with Language Environment to use STACK(,,ANY). Doing so is particularly useful
under CICS to help relieve below-the-line storage constraints.

• PL/I MTF consideration—The STACK option allocates and manages stack storage for the PL/I main
task only. For information about stack storage management in the subtasks, see E.3.26,
“NONIPTSTACK | NONONIPTSTACK” on page 112.

• OpenEdition consideration—The STACK option specifies the characteristics of the user stack for the
initial thread. In particular, it gets the initial size of the user stack for the initial thread.

130 Language Environment Program Directory

STORAGE

The characteristics that indicate incr_size, ANYWHERE, and KEEP | FREE apply to any thread
created using pthread _create . Language Environment gets the initial stack size from the threads
attribute object specified in the pthread _create function. The default size to be set in the thread′s
attribute object is obtained from the STACK run-time option ′s initial size.

The recommended default setting for STACK under OpenEdition is
STACK = ((12K,12K,ANYWHERE,KEEP),OVR).

E.3.39.2 Performance Considerations: To improve performance, use the storage report
numbers generated by the RPTSTG run-time option as an aid in setting the initial and increment size
for STACK.

E.3.39.3 For More Information

• See E.3.4, “ALL31” on page 85, for more information about the ALL31 run-time option.

• See E.3.36, “RPTSTG” on page 123, for more information about the RPTSTG run-time option.

• For more information about using the storage reports generated by the RPTSTG run-time option to
tune the stacks, see Language Environment for MVS & VM Programming Guide.

E.3.40 STORAGE

STORAGE controls the initial content of storage when allocated and freed. It also controls the amount
of storage that is reserved for the out-of-storage condition. If you specify one of the parameters in the
STORAGE run-time option, all allocated storage processed by that parameter is initialized to the
specified value. Otherwise, it is left uninitialized.

You can use the STORAGE option to identify uninitialized application variables, or prevent the
accidental use of previously freed storage. STORAGE is also useful in data security. For example,
storage containing sensitive data can be cleared when it is freed.

IBM-Supplied Default: STORAGE = ((NONE,NONE,NONE,8K),OVR)

 Syntax

STORAGE = ((heap_alloc _value , heap _free _value , dsa _alloc _value ,

OVR
reserve _size) , NONOVR)

heap_alloc _value
The initialized value of any heap storage allocated by the storage manager. You can specify
heap_alloc_value as:

• A single character enclosed in quotes. If you specify a single character, every byte of heap
storage allocated by the storage manager is initialized to that character ′s EBCDIC equivalent.
For example, if you specify ¢a¢ as the heap_alloc_value, heap storage is initialized to
X¢818181...81¢ or ¢aaa...a¢.

Appendix E. Language Environment Run-time Options 131

STORAGE

• Two hex digits without quotes. If you specify two hex digits, every byte of the allocated heap
storage is initialized to that value. For example, If you specify FE as the heap_alloc_value,
heap storage is initialized to X¢FEFEFE...FE¢. A heap_alloc_value of 00 initializes heap storage
to X¢0000...00¢.

• NONE. If you specify NONE, the allocated heap storage is not initialized.

heap_free_value
The value of any heap storage freed by the storage manager is overwritten. You can specify
heap_free_value as:

• A single character enclosed in quotes. For example, a heap_free_value of ¢f¢ overwrites freed
heap storage to X¢868686...86¢; ¢B¢ overwrites freed heap storage to X¢C2¢.

• Two hex digits without quotes. A heap_free_value of FE overwrites freed heap storage with
X¢FEFEFE...FE¢.

• NONE. If you specify NONE, the freed heap storage is not initialized.

dsa_alloc _value
The initialized value of stack frames from the Language Environment stack. A stack frame is
dynamically-acquired storage that is composed of a standard register save area and the area
available for automatic storage.

If specified, all Language Environment stack storage, including automatic variable storage, is
initialized to dsa_alloc_value. Stack frames allocated outside the Language Environment stack are
never initialized.

You can specify dsa_alloc_value as:

• A single character enclosed in quotes. If you specify a single character, any dynamically
acquired stack storage allocated by the storage manager is initialized to that character ′s
EBCDIC equivalent. For example, if you specify ¢A¢ as the dsa_alloc_value, stack storage is
initialized to X¢C1¢. A dsa_alloc_value of ¢F¢ initializes stack storage to X¢C6¢, ¢d¢ to X¢84¢.

• Two hex digits without quotes. If you specify two hex digits, any dynamically-acquired stack
storage is initialized to that value. For example, if you specify FE as the dsa_alloc_value, stack
storage is initialized to X¢FE¢. A dsa_alloc_value of 00 initializes stack storage to X¢00¢, FF to
X¢FF¢.

• NONE. If you specify NONE, the stack storage is not initialized.

reserve _size
The amount of storage for the Language Environment storage manager to reserve in the event of
an out-of-storage condition. You can specify the reserve_size value as n, nK, or nM bytes of
storage. The amount of storage is rounded to the nearest multiple of 8 bytes.

If you specify reserve_size as 0, no reserve segment is allocated. If you do not specify a reserve
segment and your application runs out of storage, the application abends with a return code of
4088 and a reason code of 1004.

If you specify a reserve_size that is greater than 0 on a non-CICS system, Language Environment
does not immediately abend when your application runs out of storage. Instead, when the stack
overflows, Language Environment attempts to get another stack segment and add it to the stack.

132 Language Environment Program Directory

STORAGE

If unsuccessful, Language Environment temporarily adds the reserve stack segment to the
overflowing stack, and signals the out-of-storage condition. This causes a user-written condition
handler to gain control and release storage. If the reserve stack segment overflows while this is
happening, Language Environment abends with a return code of 4088 and reason code of 1004.

To avoid such an overflow, increase the size of the reserve stack segment with the
STORAGE(,,,reserve_size) run-time option. The reserve stack segment is not freed until thread
termination.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.40.1 Usage Notes

• heap_alloc_value, heap_free_value, and dsa_alloc_value can all be enclosed in quotes. To initialize
heap storage to the EBCDIC equivalent of a single quote, double it within the string delimited by
single quotes or surround it with a pair of double quotes. Both of the following are correct ways to
specify a single quote:

STORAGE(¢¢¢¢)
STORAGE(†¢†)

Similarly, double quotes must be doubled within a string delimited by double quotes, or surrounded
by a pair of single quotes. The following are correct ways to specify a double quote:

STORAGE(††††)
STORAGE(¢†¢)

• CICS consideration—The IBM-supplied default setting for STORAGE under CICS is
STORAGE = ((NONE,NONE,NONE,0K),OVR).

The out-of-storage condition is not raised under CICS.

• OpenEdition consideration—A reserve stack of the size specified by the reserve_size suboption of
STORAGE is allocated for each thread.

E.3.40.2 Performance Considerations: Using STORAGE to control initial values can increase
program run time. If you specify a dsa_alloc_value, performance is likely to be poor. Therefore, use
the dsa_alloc_value option only for debugging, not to initialize automatic variables or data structures.

Use STORAGE(NONE,NONE,NONE) when you are not debugging.

Appendix E. Language Environment Run-time Options 133

TERMTHDACT

E.3.41 TERMTHDACT

TERMTHDACT sets the level of information that is produced when Language Environment percolates a
condition of severity 2 or greater beyond the first routine ′s stack frame.

The Language Environment service CEE3DMP is called for the TRACE and DUMP suboptions of
TERMTHDACT.

The following CEE3DMP options are passed for TRACE:

NOENTRY CONDITION TRACEBACK THREAD(ALL) NOBLOCK NOSTORAGE NOVARIABLES
NOFILES STACKFRAME(ALL) PAGESIZE(60) FNAME(CEEDUMP)

The following options are passed for DUMP and UADUMP:

THREAD(ALL) NOENTRY TRACEBACK FILES VARIABLES BLOCK STORAGE STACKFRAME(ALL)
PAGESIZE(60) FNAME(CEEDUMP) CONDITION

If a message is printed, based upon the TERMTHDACT(MSG) run-time option, the message is for the
active condition immediately prior to the termination imminent step. In addition, if that active condition
is a promoted condition (was not the original condition), the original condition ′s message is printed.

If the TRACE run-time option is specified with the DUMP suboption, a dump containing the trace table,
at a minimum, is produced. The contents of the dump depend on the values set in the TERMTHDACT
run-time option.

Under abnormal termination, the following dump contents are generated:

• TERMTHDACT(TRACE)—generates a dump containing the trace table and the traceback

• TERMTHDACT(QUIET)—generates a dump containing the trace table only

• TERMTHDACT(MSG)—generates a dump containing the trace table only

• TERMTHDACT(DUMP)—generates a dump containing thread/enclave/process storage and control
blocks (the trace table is included as an enclave control block)

• TERMTHDACT(UADUMP)—generates a system dump of the user address space.

Under normal termination, the following dump contents are generated:

• Independent of the TERMTHDACT setting, Language Environment generates a dump containing the
trace table only.

IBM-Supplied Default: TERMTHDACT = ((TRACE),OVR)

134 Language Environment Program Directory

TERMTHDACT

 Syntax

TRACE OVR
TERMTHDACT = ((QUIET) , NONOVR)

MSG
DUMP
UADUMP

TRACE
Specifies that when a thread terminates due to an unhandled condition of severity 2 or greater,
Language Environment generates a message indicating the cause of the termination and a trace of
the active routines on the activation stack.

QUIET
Specifies that Language Environment does not generate a message when a thread terminates due
to an unhandled condition of severity 2 or greater.

MSG
Specifies that when a thread terminates due to an unhandled condition of severity 2 or greater,
Language Environment generates a message indicating the cause of the termination.

DUMP
Specifies that when a thread terminates due to an unhandled condition of severity 2 or greater,
Language Environment generates a message indicating the cause of the termination, a trace of the
active routines on the activation stack, and a Language Environment dump.

UADUMP
Specifies that when a thread terminates due to an unhandled condition of severity 2 or greater,
Language Environment generates a message indicating the cause of the termination, a trace of the
active routines on the activation stack, a Language Environment dump, and, if the appropriate DD
statement is specified in the GO step of your JCL, a system dump of the user address space.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.41.1 Usage Notes

• PL/I considerations—After a normal return from a PL/I ERROR ON-unit or from a PL/I FINISH
ON-unit, Language Environment considers the condition unhandled. If a GOTO is not performed
and the resume cursor is not moved, the thread terminates. The TERMTHDACT setting guides the
amount of information that is produced. The message is not presented twice.

• PL/I MTF considerations—TERMTHDACT applies to a task when the task terminates abnormally due
to an unhandled condition of severity 2 or higher that is percolated beyond the initial routine ′s
stack frame. All active subtasks created from the incurring task also terminate abnormally, but the
enclave can continue to run.

Appendix E. Language Environment Run-time Options 135

TEST | NOTEST

• CICS consideration—All TERMTHDACT output is written to a transient data queue named CESE.

• OpenEdition consideration—The TERMTHDACT option applies when a thread terminates
abnormally. Abnormal termination of a single thread causes termination of the entire enclave. If
an unhandled condition of severity 2 or higher percolates beyond the first routine′s stack frame, the
enclave terminates abnormally.

If an enclave terminates due to a POSIX default signal action, TERMTHDACT applies only to
conditions that result from program checks or abends.

E.3.41.2 For More Information

• See E.3.44, “TRACE” on page 140, for more information about the TRACE run-time option.

• For more information about the CEE3DMP service and its parameters, see Language Environment
for MVS & VM Programming Reference.

• See Language Environment for MVS & VM Programming Guide for more information about the
TERMTHDACT run-time option and condition message.

• For More Information about CESE, see Language Environment for MVS & VM Programming Guide.

E.3.42 TEST | NOTEST

TEST specifies the conditions under which a debug tool (such as the &dtool. supplied with &lecodel.)
assumes control when the user application is being initialized.

Parameters of the TEST and NOTEST run-time options are merged as one set of parameters.

IBM-Supplied Default: NOTEST = ((ALL,*,PROMPT,INSPPREF),OVR)

 Syntax

NOTEST ALL PROMPT
TEST = ((ERROR , commands_file , NOPROMPT ,

NONE * *
;
command

OVR
preference _file) , NONOVR)
*

ALL
Specifies that any of the following causes the debug tool to gain control even without a defined AT
OCCURRENCE for a particular condition or AT TERMINATION:

• The ATTENTION function
• Any Language Environment condition of severity 1 or above
• Application termination

136 Language Environment Program Directory

TEST | NOTEST

ERROR
Specifies that only one of the following causes the debug tool to gain control without a defined AT
OCCURRENCE for a particular condition or AT TERMINATION:

• The ATTENTION function
• Any Language Environment-defined error condition of severity 2 or higher
• Application termination

NONE
Specifies that no condition causes the debug tool to gain control without a defined AT
OCCURRENCE for a particular condition or AT TERMINATION.

commands _file
A valid ddname, data set name (MVS), or file name (CMS), specifying the primary commands file
for this run. If you do not specify this parameter all requests for commands go to the user
terminal.

You can enclose commands_file in single or double quotes to distinguish it from the rest of the
TEST | NOTEST suboption list. It can have a maximum length of 80 characters. If the data set
name provided could be interpreted as a ddname, it must be preceded by a slash (/). The slash
and data set name must be enclosed in quotes.

A primary commands file is required when running in a batch environment.

* (asterisk—in place of commands_file)
Specifies that no commands_file is supplied. The terminal, if available, is used as the source of
the debug tool commands.

PROMPT
Specifies that the debug tool is invoked at Language Environment initialization.

NOPROMPT
Specifies that the debug tool is not invoked at Language Environment initialization.

* (asterisk—in place of PROMPT/NOPROMPT)
Specifies that the debug tool is not invoked at Language Environment initialization; equivalent to
NOPROMPT.

; (semicolon—in place of PROMPT/NOPROMPT)
Specifies that the debug tool is invoked at Language Environment initialization; equivalent to
PROMPT.

command
A character string that specifies a valid debug tool command. The command list can be enclosed
in single or double quotes to distinguish it from the rest of the TEST parameter list; it cannot
contain DBCS characters. Quotes are needed whenever the command list contains embedded
blanks, commas, semicolons, or parentheses. The list can have a maximum of 250 characters.

preference _file
A valid ddname, data set name (MVS), or file name (CMS), specifying the preference file to be
used. A preference file is a type of commands file that you can use to specify settings for your

Appendix E. Language Environment Run-time Options 137

THREADHEAP

debugging environment. It is analogous to creating a profile for a text editor, or initializing an
S/370 terminal session.

You can enclose preference_file in single or double quotes to distinguish it from the rest of the
TEST parameter list. It can have a maximum of 80 characters.

If a specified data set name could be interpreted as a ddname, it must be preceded by a slash (/).
The slash and data set name must be enclosed in quotes.

The IBM-supplied default setting for preference_file is INSPPREF.

* (asterisk—in place of preference_file)
Specifies that no preference_file is supplied.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.42.1 Usage Notes

• You can specify parameters on the NOTEST option. If NOTEST is in effect when the application
gains control, it is interpreted as TEST(NONE,,*,). If &dtool. is initialized using a CALL CEETEST or
equivalent, the initial test level, the initial commands_file, and the initial preference_file are taken
from the NOTEST run-time option setting.

• OpenEdition consideration—Language Environment honors the initial command string before the
main routine runs on the initial thread.

The test level (ALL, ERROR, NONE) applies to the enclave.

Language Environment honors the preference file when the debug tool is initialized, regardless of
which thread first requests the debug tool services.

E.3.42.2 Performance Consideration: To improve performance, use this option only while
debugging.

E.3.42.3 For More Information

• See &dtool. Reference Guide for details and for examples of the TEST run-time option as it relates
to &dtool..

E.3.43 THREADHEAP

THREADHEAP controls the allocation and management of thread-level heap storage. Separate heap
segments are allocated and freed for each thread based on the THREADHEAP specification.

For PL/I MTF applications, controlled and based variables declared in a subtask are allocated from
heap storage specified by THREADHEAP. Variables in the main task are allocated from heap storage
specified by HEAP.

138 Language Environment Program Directory

THREADHEAP

Library use of heap storage in a substack is allocated from the enclave-level heap storage specified by
the ANYHEAP and BELOWHEAP options.

IBM-Supplied Default: THREADHEAP = ((4K,4K,ANY,KEEP),OVR)

 Syntax

ANYWHERE KEEP
THREADHEAP = ((init _size , incr _size , ANY , FREE) ,

BELOW

OVR
NONOVR)

init_size
The minimum initial size of thread heap storage, and is specified in n, nK, or nM. Storage is
acquired in multiples of 8 bytes.

A value of zero (0) causes an allocation of 4K.

incr _size
The minimum size of any subsequent increment to the noninitial heap storage is specified in n, nK,
or nM. The actual amount of allocated storage is the larger of two values, incr_size or the
requested size, rounded up to the nearest multiple of 8 bytes.

If you specify incr_size as 0, only the amount of the storage needed at the time of the request
(rounded up to the nearest 8 bytes) is obtained.

ANYWHERE|ANY
Specifies that the heap storage can be allocated anywhere in storage. On systems that support
bimodal addressing, the storage can be allocated either above or below the 16M line. If there is
no available storage above the line, storage is acquired below the line.

The only valid abbreviation of ANYWHERE is ANY.

BELOW
Specifies that the heap storage must be allocated below the 16M line.

KEEP
Specifies that storage allocated to THREADHEAP increments is not released when the last of the
storage in the thread heap increment is freed.

FREE
Specifies that storage allocated to THREADHEAP increments is released when the last of the
storage in the thread heap increment is freed.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

Appendix E. Language Environment Run-time Options 139

TRACE

E.3.43.1 Usage Notes

• If the requesting routine is running in 24-bit addressing mode and THREADHEAP(,,ANY) is in effect,
THREADHEAP storage is allocated below the 16M line based upon the HEAP(,,,initsz24,incrsz24)
settings.

• PL/I MTF considerations—The thread-level heap is allocated only in applications that use the PL/I
MTF. For PL/I MTF applications, controlled and based variables specified in subatasks are located
in the thread-level heap.

If the main program is AMODE 24 and THREADHEAP(,,ANY) is in effect, heap storage is allocated
below the 16M line. The only case in which storage is allocated above the line is when all of the
following conditions exist:

− The user routine requesting the storage is running in 31-bit addressing mode.
− HEAP(,,ANY) is in effect.
− The main routine is AMODE 31.

• When running PL/I with POSIX(ON) in effect, THREADHEAP is used for allocating heap storage for
PL/I base variables declared in non-IPTs. Storage allocated to all THREADHEAP segments is freed
when the thread terminates.

• The initial thread heap segment is never released until the thread terminates.

• THREADHEAP has no effect on C/C++ applications.

• CICS consideration—This option is ignored under CICS.

E.3.44 TRACE

TRACE controls run-time library tracing activity, the size of the in-storage trace table, the type of trace
events to record, and it determines whether a dump containing, at a minimum, the trace table should
be unconditionally taken when the application terminates. When you specify TRACE(ON),
user-requested trace entries are intermixed with Language Environment trace entries in the trace
table.

Under normal termination conditions, if TRACE is active and you specify DUMP, only the trace table is
written to the dump report, independent of the TERMTHDACT setting. Only one dump is taken for each
termination. Under abnormal termination conditions, the type of dump taken (if one is taken) depends
on the value of the TERMTHDACT run-time option and whether TRACE is active and the DUMP
suboption is specified.

IBM-Supplied Default: TRACE = ((OFF,4K,DUMP,LE=0),OVR)

 Syntax

OFF DUMP LE=0 OVR
TRACE = ((ON , table _size , NODUMP , LE=1) , NONOVR

 LE=2
 LE=3

)

140 Language Environment Program Directory

TRACE

OFF
Indicates that the tracing facility is inactive.

ON
Indicates that the tracing facility is active.

table_size
Determines the size of the tracing table as specified in bytes (nK or nM). The upper limit is 16M.

DUMP
Requests that a Language Environment-formatted dump (containing the trace table) be taken at
program termination regardless of the setting of the TERMTHDACT run-time option.

NODUMP
Requests that a Language Environment-formatted dump not be taken at program termination.

LE=0
Specifies that no trace events be recorded.

LE=1
Specifies that entry to and exit from Language Environment member libraries be recorded (such
as, in the case of C, entry and exit of the printf() library function).

LE=2
Specifies that mutex init/destroy and locks/unlocks from Language Environment member libraries
be recorded.

LE=3
Activates both the entry/exit trace and the mutex trace.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.44.1 Usage Note

• PL/I MTF consideration—The TRACE(ON,,,LE=2) setting provides the following trace table entries
for PL/I MTF support:

− Trace entry 100 occurs when a task is created.

− Trace entry 101 occurs when a task that contains the tasking CALL statements is terminated.

− Trace entry 102 occurs when a task that does not contain the tasking CALL statements is
terminated.

• When running PL/I with POSIX(ON) in effect, no PL/I-specific trace information is provided.

Appendix E. Language Environment Run-time Options 141

TRAP

E.3.44.2 For More Information

• For more information about the dump contents, see E.3.41, “TERMTHDACT” on page 134.

• For more information about using the tracing facility, see Language Environment for MVS & VM
Debugging Guide and Run-Time Messages.

E.3.45 TRAP

TRAP specifies how Language Environment routines handle abends and program interrupts.

TRAP(ON) must be in effect in order for applications to run successfully.

TRAP(ON) must be in effect for the ABTERMENC run-time option to have effect.

This option is similar to the STAE | NOSTAE run-time option currently offered by COBOL, C, and PL/I,
and the SPIE | NOSPIE option offered by C and PL/I:

CEESGL is unaffected by this option.

IBM-Supplied Default: TRAP = ((ON),OVR)

 Syntax

ON OVR
TRAP = ((OFF) , NONOVR)

ON
Fully enables the Language Environment condition handler.

Figure 43. TRAP Run-Time Option Settings

If... then...

a single option is specified in input, TRAP is set according to that option, TRAP(OFF) for
NOSTAE or NOSPIE, TRAP(ON)for STAE or SPIE.

both options are specified in input, TRAP is set ON, unless both options are negative, then
TRAP is set OFF.

STAE is specified in one #pragma runopts statement,
and NOSPIE in another,

the option in the last #pragma runopts determines the
setting of TRAP.

multiple instances of
STAE | NOSTAE are specified,

TRAP is set according to the last instance only. Al l
others are ignored.

multiple instances of
SPIE | NOSPIE are specified,

TRAP is set according to the last instance only. Al l
others are ignored.

an options string has TRAP(ON) or TRAP(OFF) together
with SPIE | NOSPIE, and/or STAE | NOSTAE,

the TRAP setting takes preference over all others.

142 Language Environment Program Directory

TRAP

OFF
Prevents language condition handlers or handlers registered by CEEHDLR from being notified of
abends or program checks; prevents application of POSIX signal handling semantics for abends
and program checks.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.45.1 Usage Notes

• Use TRAP(OFF) only when you need to analyze a program exception before Language Environment
handles it.

• When you specify TRAP(OFF) in a non-CICS environment, neither ESPIE nor ESTAE is issued.
Language Environment does not handle conditions raised by program interrupts or abends initiated
by SVC 13 as Language Environment conditions, and does not print messages for such conditions.

• Running with TRAP(OFF) (for exception diagnosis purposes) can cause many side effects, because
Language Environment uses condition handling internally and requires TRAP(ON). When you run
with TRAP(OFF), you can get side effects even if you do not encounter a software-raised condition,
program check, or abend. If you do encounter a program check or an abend with TRAP(OFF) in
effect, the following side effects can occur:

− The ABTERMENC run-time option has no effect.

− The ABPERC run-time option has no effect.

− Resources acquired by Language Environment are not freed.

− Files opened by HLLs are not closed by Language Environment, so records might be lost.

− The abnormal termination exit is not driven for enclave termination.

− The assembler user exit is not driven for enclave termination.

− User condition handlers are not enabled.

− The debugger is not notified of the error.

− No storage report or run-time options report is generated.

− No Language Environment messages or Language Environment dump output is generated.

− In OpenEdition, POSIX signal handling semantics are not enabled for the abend.

The enclave terminates abnormally if such conditions are raised.

• TRAP(ON) must be in effect when you use the CEEBXITA assembler user exit for enclave
initialization to specify a list of abend codes that Language Environment percolates.

• C++ consideration—TRAP(ON) must be in effect in order for the C++/MVS try /throw /catch condition
handling mechanisms to work.

Appendix E. Language Environment Run-time Options 143

UPSI

• When TRAP(ON) is in effect, and the abend code is in the CEEAUE_CODES list in CEEBXITA,
Language Environment percolates the abend. Normal Language Environment condition handling is
never invoked to handle these abends. This feature is useful when you do not want Language
Environment condition handling to intervene for certain abends or when you want to prevent
invocation of the abnormal termination exit for certain abends, such as when IMS issues a user
ABEND code 777.

When TRAP(OFF) is specified and there is a program interrupt, the user exit for termination is not
driven.

• If your application uses extended-precision arithmetic and runs on a 370-mode machine, you must
specify TRAP(ON) and add the CMSLIB TXTLIB with the GLOBAL TXTLIB command.

• CICS consideration—When you specify TRAP(OFF) in a CICS environment, the standard CICS
system action occurs. Language Environment does not print messages for conditions raised by
program interruptions or transaction abends.

• OpenEdition consideration—The TRAP option applies to the entire enclave and all threads within.

E.3.45.2 For More Information

• See E.3.2, “ABTERMENC” on page 82 for more information about the ABTERMENC run-time option.

• See Language Environment for MVS & VM Programming Reference for more information about the
CEESGL callable service.

• For more information about the CEEHDLR callable service, see Language Environment for MVS &
VM Programming Reference.

• See Language Environment for MVS & VM Programming Guide for more information about the
CEEBXITA assembler user exit.

E.3.46 UPSI (COBOL Only)

UPSI sets the eight UPSI switches on or off for applications that use COBOL programs.

IBM-Supplied Default: UPSI = ((00000000),OVR)

 Syntax

OVR
UPSI = ((nnnnnnnn) , NONOVR)

nnnnnnnn
n represents one UPSI switch between 0 and 7, the leftmost n representing the first switch. Each n
can either be 0 (off) or 1 (on).

OVR
Specifies that the option can be overridden.

144 Language Environment Program Directory

USRHDLR | NOUSRHDLR

NONOVR
Specifies that the option cannot be overridden.

E.3.46.1 Usage Note

• When you specify this option in CEEDOPT or CEEUOPT, specify UPSI with a string of eight
binary-valued flags; for example, UPSI(00000000). Use UPSI, not followed by a string, only on the
command line.

E.3.46.2 For More Information

• For more information on how COBOL routines access the UPSI switches, see COBOL/370
Programming Guide or COBOL for MVS & VM Programming Guide.

E.3.47 USRHDLR | NOUSRHDLR

USRHDLR registers a user condition handler at stack frame 0, allowing you to register a user condition
handler without having to include a call to CEEHDLR in your application and then recompile the
application.

IBM-Supplied Default: NOUSRHDLR = ((),OVR)

 Syntax

NOUSRHDLR OVR
USRHDLR = ((lmname) , NONOVR)

NOUSRHDLR
Does not register a user condition handler without recompiling an application to include a call to
CEEHDLR.

USRHDLR
Registers a user condition handler without recompiling an application to include a call to
CEEHDLR.

lmname
The name of a load module (or an alias name of a load module) that contains the user condition
handler that is to be registered at stack frame 0.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

Appendix E. Language Environment Run-time Options 145

VCTRSAVE

E.3.47.1 Usage Notes

• The user condition handler specified by the USRHDLR run-time option must be in a separate load
module rather than be link-edited with the rest of the application.

• The user condition handler lmname is invoked for conditions that are still unhandled after being
presented to condition handlers for the main program.

• Restriction − If USRHDLR is in effect, you cannot resume execution in the program in which the
condition occurs. This includes calls in the condition handler to CEEMRCR and CEEMRCE.

• You can use a user condition handler registered with the USRHDLR run-time option to return any
of the result codes allowed for a user condition handler registered with the CEEHDLR callable
service.

• A condition that is percolated or promoted by a user condition handler registered with the
USRHDLR run-time option is not presented to any other user condition handler.

• The loading of the user condition handler lmname occurs only when that user condition handler
needs to be invoked the first time.

E.3.47.2 For More Information

• For information on registering a user condition handler, see the CEEHDLR callable service in
Language Environment for MVS & VM Programming Reference.

E.3.48 VCTRSAVE

VCTRSAVE specifies whether any language in the application uses the vector facility when user-written
condition handlers are called.

IBM-Supplied Default: VCTRSAVE = ((OFF),OVR)

 Syntax

OFF OVR
VCTRSAVE = ((ON) , NONOVR)

OFF
No language in the application uses the vector facility when user-provided condition handlers are
called.

ON
A language in the application uses the vector facility when user-provided condition handlers are
called.

OVR
Specifies that the option can be overridden.

146 Language Environment Program Directory

XUFLOW

NONOVR
Specifies that the option cannot be overridden.

E.3.48.1 Usage Note

• OpenEdition consideration—The VCTRSAVE option applies to the entire enclave and all threads
within.

E.3.48.2 Performance Considerations: When a condition handler plans to use the vector
facility (that is, run any vector instructions), the entire vector environment has to be saved on every
condition and restored on return to the application code. You can avoid this extra work by specifying
VCTRSAVE(OFF) when you are not running an application under vector hardware.

E.3.49 XUFLOW

XUFLOW specifies whether an exponent underflow causes a program interrupt. An exponent underflow
occurs when a floating point number becomes too small to be represented.

The underflow setting is determined at enclave initialization and is updated when new languages are
introduced into the application (via fetch or dynamic call, for example). Otherwise, it does not vary
while the application is running.

Language Environment preserves the language semantics for C/C++ and COBOL regardless of the
XUFLOW setting. Language Environment preserves the language semantics for PL/I only when
XUFLOW is set to AUTO or ON. Language Environment does not preserve the language semantics for
PL/I when XUFLOW is set to OFF.

An exponent underflow caused by a C/C++ or COBOL routine does not cause a condition to be raised.

IBM-Supplied Default: XUFLOW = ((AUTO),OVR)

 Syntax

AUTO OVR
XUFLOW = ((ON) , NONOVR)

OFF

AUTO
An exponent underflow causes or does not cause a program interrupt dynamically, based upon the
HLLs that make up the application. Enablement is determined without user intervention.

XUFLOW(AUTO) causes condition management to process underflows only in those applications
where the semantics of the application languages require it. Normally, XUFLOW(AUTO) provides
the best efficiency while meeting language semantics.

Appendix E. Language Environment Run-time Options 147

XUFLOW

ON
An exponent underflow causes a program interrupt.

XUFLOW(ON) causes condition management to process underflows regardless of the mix of
languages; therefore, this setting might be less efficient in applications that consist of languages
not requiring underflows to be processed by condition management.

OFF
An exponent underflow does not cause a program interrupt; the hardware takes care of the
underflow.

When you set XUFLOW to OFF, the hardware processes exponent underflows. This is more
efficient than condition handling to process the underflow.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

E.3.49.1 Usage Notes

• PL/I consideration—When setting XUFLOW to OFF, be aware that the semantics of PL/I require the
underflow to be signaled.

• OpenEdition consideration—The XUFLOW option applies to the entire enclave and all threads
within.

148 Language Environment Program Directory

Appendix F. Language Environment National Language Support
Country Codes

The following table contains valid country identifiers along with their respective countries:

Figure 44 (Page 1 of 3). Country Codes

Code Country Code Country

AD Andorra AE United Arab Emirates

AF Afghanistan AG Antigua and Barbuda

AL Albania AN Netherlands Anti l les

AO Angola AR Argentina

AT Austr ia AU Austral ia

BA Bosnia/ Herzegovina BB Barbados

BD Bangladesh BE Belgium

BF Burkina Faso (Upper Volta) BG Bulgaria

BH Bahrain BI Burundi

BJ Benin BM Bermuda

BN Brunei Darussalam BO Bolivia

BR Brazil BS Bahamas

BU Burma BW Botswana

CA Canada CF Central African Republic

CG Congo CH Switzerland

CI Ivory Coast CL Chile

CM Cameroon CN People′s Republic of China

CO Colombia CR Costa Rica

CS Czechoslovakia CU Cuba

CY Cyprus CZ Czech Republic

DE Germany DK Denmark

DO Dominican Republic DZ Algeria

EC Ecuador EE Estonia

EG Egypt ES Spain

ET Ethiopia FI Finland

FR France GA Gabon

GB United Kingdom GH Ghana

GM Gambia GN Guinea

GR Greece GT Guatemala

GW Guinea-Bissau GY Guyana

 Copyright IBM Corp. 1991, 1995 149

Figure 44 (Page 2 of 3). Country Codes

Code Country Code Country

HK Hong Kong HN Honduras

HR Croatia HT Haiti

HU Hungary ID Indonesia

IE Ireland IL Israel

IN India IQ Iraq

IR Iran IS Iceland

IT Italy JM Jamaica

JO Jordan JP Japan

KE Kenya KR Korea, Republic of

KW Kuwait KY Cayman Islands

LB Lebanon LC Saint Lucia

LI Liechtenstein LT Lithuania

LR Liberia LK Sri Lanka

LS Lesotho LU Luxembourg

LV Latvia LY Libya

MA Morocco MC Monaco

MG Madagascar MK Macedonia

ML Mali MO Macau

MR Mauritania MT Malta

MU Maurit ius MW Malawi

MX Mexico MY Malaysia

MZ Mozambique NA Namibia

NC New Caledonia NG Nigeria

NE Niger NI Nicaragua

NL Netherlands NO Norway

NZ New Zealand OM Oman

PA Panama PE Peru

PG Papua New Guinea PH Philippines

PK Pakistan PL Poland

PR Puerto Rico PT Portugal

PY Paraguay QA Qatar

RO Romania RU Russian Federation

SA Saudi Arabia SC Seychelles

SD Sudan SE Sweden

SG Singapore SI Slovenia

SK Slovakia SL Sierra Leone

150 Language Environment Program Directory

Figure 44 (Page 3 of 3). Country Codes

Code Country Code Country

SN Senegal SO Somalia

SR Surinam SU Union of Soviet Socialist Republics

SV El Salvador SY Syria

SZ Swaziland TD Chad

TG Togo TH Thailand

TN Tunisia TR Turkey

TT Trinidad and Tobago TW Republic of China

TZ Tanzania UG Uganda

US United States UY Uruguay

VE Venezuela VU Vanuatu

WS Western Samoa YE Yemen

YU Yugoslavia ZA South Africa

ZM Zambia ZR Zaire

ZW Zimbabwe

Appendix F. Language Environment National Language Support Country Codes 151

Reader ′s Comments

IBM Language Environment for MVS & VM Release 05.00

You may use this form to comment about this document, its organization, or subject matter with the
understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate
without incurring any obligation to you.

For each of the topics below please indicate your satisfaction level by circling your choice from the rating scale.
If a statement does not apply, please circle N.

RATING SCALE

very very not
satisfied <=====================> dissatisfied applicable

1 2 3 4 5 N

Satisfaction

Ease of product installation 1 2 3 4 5 N

Contents of program directory 1 2 3 4 5 N

Installation Verif ication Programs 1 2 3 4 5 N

Time to install the product 1 2 3 4 5 N

Readabil ity and organization of program directory tasks 1 2 3 4 5 N

Necessity of all installation tasks 1 2 3 4 5 N

Accuracy of the definition of the installation tasks 1 2 3 4 5 N

Technical level of the installation tasks 1 2 3 4 5 N

Ease of getting the system into production after
installation

1 2 3 4 5 N

Did you order this product as an independent product or as part of a package?

Independent
Package

If this product was ordered as part of a package, what type of package was ordered?

CustomPac*

FunctionPac*
SystemPac*

System Delivery Offering (SDO)

Other - Please specify type:

Is this the first time your organization has installed this product?

Yes
No

152 Copyright IBM Corp. 1991, 1995

Were the people who did the installation experienced with the installation of VM products?

Yes
No

If yes, how many years? __

If you have any comments to make about your ratings above, or any other aspect of the product installation,
please list them below:

Please provide the following contact information:

Name and Job Title

Organization

Address

Telephone

Thank you for your participation.

Please send the completed form to (or give to your IBM representative who will forward it to the IBM Language
Environment for MVS & VM Development group):

IBM Corporation, Department J58
P.O. Box 49023
San Jose, California 95161-9023
USA

Reader ′ s Comments 153

IBML

Program Number: 5688-198 5890
5891
5892
5894
6200
6201
6202
6203
7547

Printed in U.S.A.

XXXX-YYYY-ZZ

