
XML Toolkit for z/OS

User's Guide

SA22-7932-08

IBM

XML Toolkit for z/OS

User's Guide

SA22-7932-08

IBM

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
97.

Ninth Edition, 2009

This edition applies to Version 1 Release 10 of XML Toolkit for z/OS (5655-J51) and to all subsequent releases and
modifications until otherwise indicated in new editions.

This is a major revision of SA22–7932–07.

IBM welcomes your comments. A form for readers' comments may be provided at the back of this document, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this document
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2000, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures .. v

Tables .. vii

About this document .. ix
Who should use this User's Guide? ix

What is in the User's Guide? ix

Summary of changes .. xi

Chapter 1. Introduction .. 1
Why XML? .. 1
APIs .. 1

DOM .. 1
SAX .. 3
DOM vs SAX .. 5
XPath. .. 6

Validation .. 6
XML Toolkit for z/OS .. 7
z/OS specific parser classes 8
Toolkit 64-bit support .. 14
Toolkit 31-bit support .. 14

Deprecated DOM support 14
Toolkit support for both z/OS UNIX System Services and MVS environments 15

Chapter 2. How to access XML data 17
How to access data sets .. 17

Relative URIs .. 17
Absolute URIs .. 18
Considerations when using the Xalan C++ commands 18
DTDs, Schema and other embedded files 18

Chapter 3. Encoding issues 19
Encoding and XML .. 19
XML and z/OS .. 20
Avoiding conversion .. 21

Chapter 4. How to use Toolkit 31-bit XPLINK support 23
Using Toolkit 31-bit XPLINK support 23

Building an XPLINK application 23
Running an XPLINK application. 24

Chapter 5. How to use the XML Parser, C++ Edition 25
Using the sample applications 26

Rule for running 64-bit samples 28
Rule for running 31-bit non-XPLINK samples 28
Rule for running 31-bit XPLINK samples 28

z/OS UNIX Environment .. 29
Building sample applications for the z/OS UNIX Environment 29
Using your sample applications on the z/OS UNIX Environment 31

MVS Environment .. 32
Building sample applications for the MVS Environment 32
Using your sample applications on the MVS Environment 35

© Copyright IBM Corp. 2000, 2009 iii

||
||
||

||
||

||
||
||

Multi-threading considerations 36
Using UNIX pthreads .. 36
Using MVS multi-tasking 37

Chapter 6. How to use z/OS specific parser classes 39
Source offsets .. 39
zSAX2XMLReader class .. 41

Using a zSAX2XMLReader class for a non-validating parse 41
Using a zSAX2XMLReader class for a validating parse 42
Using a zSAX2XMLReader class for non-validating parse with source offsets 43

zXercesDOMParser class .. 45
Using a zXercesDOMParser class for a non-validating parse 45

Constructing a zDOMBuilder 46
Using a zDOMBuilder class for a non-validating parse 46

Using samples for the z/OS specific parser classes 48

Chapter 7. How to use the XSLT Processor, C++ Edition 49
Using the sample applications 50

Rule for running 64-bit samples 51
Rule for running 31-bit non-XPLINK samples 51
Rule for running 31-bit XPLINK samples 51

z/OS UNIX Environment .. 51
Building sample applications for the z/OS UNIX Environment 51
Using your sample applications on the z/OS UNIX Environment 54

MVS Environment .. 56
Building sample applications for the MVS Environment 56
Using your sample applications on the MVS Environment 59

Chapter 8. How to use the XML Toolkit command line utilities 61
How to use the XSLT Processor, C++ Edition command line utility 61

Chapter 9. Where to go for more information. 65

Appendix A. Building samples for native MVS using JCL 67
Building XML Parser, C++ Edition samples for native MVS using JCL 67
Building XSLT Processor, C++ Edition samples for native MVS using JCL . .. 69

Appendix B. Calling XML Parser, C++ Edition from COBOL 73
Source code samples .. 73
Compilation instructions .. 81
Setup instructions .. 82

Appendix C. Parser environment and instance reuse 83

Appendix D. Accessibility 95
Using assistive technologies 95
Keyboard navigation of the user interface 95
z/OS information .. 95

Notices .. 97
Trademarks .. 98

Index .. 99

iv XML Toolkit for z/OS User's Guide

||
||
||

Figures

1. DOM Parsing Model .. 3
2. SAX Parsing Model .. 5
3. Open source parsing model .. 9
4. z/OS parsing model .. 10
5. Validating parse with open source parser .. 11
6. Preprocess step required to create the OSR. 12
7. Loading OSR and validating parse .. 12
8. Non-valid XML file to be processed using DDNAME 80
9. JCL to compile, bind and run the sample code 81

© Copyright IBM Corp. 2000, 2009 v

vi XML Toolkit for z/OS User's Guide

Tables

1. DOM vs SAX. .. 5
2. Expected Validation Results .. 6
3. Interfaces and Specifications for the Toolkit Parser 8
4. Interfaces and Specifications for the Toolkit Processor 8
5. z/OS UNIX vs. MVS. .. 15
6. Product Files Required to Build Sample XML Applications for z/OS UNIX Environments. 29
7. Library Files Required to Run Sample XML Applications on z/OS UNIX 31
8. Product Files Required to Build Sample XML Applications for MVS Environments 33
9. Library Files Required to Run Sample XML Applications on MVS 35

10. Product Files Required to Build Sample XML Applications for z/OS UNIX Environments. 52
11. Library Files Required to Run Sample XML Applications on z/OS UNIX 55
12. Product Files Required to Build Sample XML Applications for MVS Environments 56
13. Library Files Required to Run Sample XML Applications on MVS 59
14. Flags and Arguments for the Xalan Executable 62
15. Flags and Arguments for the testXSLT Executable 63

© Copyright IBM Corp. 2000, 2009 vii

||

||

||

||

viii XML Toolkit for z/OS User's Guide

About this document

This document provides information you need to use V1.10.0 of XML Toolkit for
z/OS®. It contains instructions on how to use the following components:

v XML Parser, C++ Edition

v XSLT Processor, C++ Edition

It also provides information on the z/OS specific classes in the XML Parser, C++
Edition which utilize the z/OS XML System Services component to parse XML
documents. When the z/OS specific classes are used, a portion of the parse is
performed by z/OS XML System Services, which can take advantage of the more
competitive zAAP specialty engines (if present).

As of Toolkit V1.10.0, previous Toolkit releases will no longer be provided with the
current Toolkit. To acquire a copy of a previous Toolkit release, you will need to
order the V1.9.0 Toolkit, which comes bundled with Toolkit releases V1.8.0 and
V1.7.0. Information on how to use Toolkit V1.8.0 and Toolkit V1.7.0 is available from
the XML Toolkit for z/OS User's Guide V1R8 and the XML Toolkit for z/OS User's
Guide V1R7. Both documents can be downloaded from the following Web site:
http://www-1.ibm.com/servers/eserver/zseries/software/xml/

Who should use this User's Guide?
This document is for application programmers, system programmers, and end users
working on a z/OS system and using the Toolkit.

This document assumes that readers are familiar with the z/OS system and with the
information for z/OS and its accompanying products.

The Toolkit home page,
http://www.ibm.com/servers/eserver/zseries/software/xml/

offers information about the Toolkit releases, the Program Directory, and installation
instructions.

What is in the User's Guide?
This document describes how to use the Toolkit XML Parser, C++ Edition and XSLT
Processor, C++ Edition, and how to utilize the z/OS XML System Services parser.
Using the document, you will:

v Receive an introduction to XML and the XML Toolkit.

– Read about XML and its implications in today's world.

– Learn about the components of the XML Toolkit.

– Learn about the APIs that are implemented by the Toolkit.

– Read about the process of validation.

– Discover how to access data sets using XML.

v Understand how to use the XML Parser, C++ Edition in the XML Toolkit.

– Learn about the C++ XML parser.

– Review samples of how to use the C++ XML parser.

– Understand how to use the z/OS specific parser classes that utilize the z/OS
XML System Services component.

- Learn about the z/OS specific parser classes.

© Copyright IBM Corp. 2000, 2009 ix

- Review the provided samples that use the z/OS specific parser classes.

v Understand how to use the XSLT Processor, C++ Edition in the XML Toolkit.

– Learn about the C++ XSLT processor.

– Review samples of how to use the C++ XSLT processor.

v Find out where you can learn more about the XML Toolkit and all its
components.

x XML Toolkit for z/OS User's Guide

Summary of changes

Summary of Changes
for SA22-7932-08
XML Toolkit Version 1 Release 10

This document contains information previously presented in XML Toolkit for z/OS
User's Guide, SA22-7932-07, which supports XML Toolkit Version 1 Release 10.

New Information

v “Toolkit 64-bit support” on page 14

v “Deprecated DOM support” on page 14

v Chapter 5, “How to use the XML Parser, C++ Edition,” on page 25

v Chapter 7, “How to use the XSLT Processor, C++ Edition,” on page 49

Changed Information

v Chapter 4, “How to use Toolkit 31-bit XPLINK support,” on page 23

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of Changes
for SA22-7932-07
XML Toolkit Version 1 Release 10

This document contains information previously presented in XML Toolkit for z/OS
User's Guide, SA22-7932-06, which supports XML Toolkit Version 1 Release 9.

New Information

v An introduction to new support that allows XML Toolkit users performing
validating parsing to indicate that z/OS XML System Services be used as an
underlying parsing technology: “z/OS specific parser classes” on page 8

v Chapter 6, “How to use z/OS specific parser classes,” on page 39

Changed Information

v Chapter 5, “How to use the XML Parser, C++ Edition,” on page 25

v Chapter 6, “How to use z/OS specific parser classes,” on page 39

v Chapter 7, “How to use the XSLT Processor, C++ Edition,” on page 49

Deleted Information

Summary of Changes
for SA22-7932-06
XML Toolkit Version 1 Release 9

This document is a refresh of XML Toolkit for z/OS User's Guide, SA22-7932-05,
which supports XML Toolkit Version 1 Release 9.

New Information

© Copyright IBM Corp. 2000, 2009 xi

v An introduction to new support that allows XML Toolkit users performing
non-validating parsing to indicate that z/OS z/OS XML System Services be used
as an underlying parsing technology: “z/OS specific parser classes” on page 8

v Chapter 6, “How to use z/OS specific parser classes,” on page 39

Changed Information

Deleted Information

Summary of Changes
for SA22-7932-05
XML Toolkit Version 1 Release 9

This document contains information previously presented in XML Toolkit for z/OS
User's Guide, SA22-7932-04, which supports XML Toolkit Version 1 Release 8.

New Information

v Three new appendixes added: Appendix A, “Building samples for native MVS
using JCL,” on page 67, Appendix B, “Calling XML Parser, C++ Edition from
COBOL,” on page 73, andAppendix C, “Parser environment and instance reuse,”
on page 83.

v New information added to each "How to use..." chapter.

Changed Information

Deleted Information

xii XML Toolkit for z/OS User's Guide

Chapter 1. Introduction

Why XML?
XML allows you to tag data in a way that is similar to how you tag data when
creating an HTML file. XML incorporates many of the successful features of HTML,
but was also developed to address some of the limitations of HTML. XML tags may
be user-defined through a schema for later validation, which can either be a
Document Type Definition (DTD) or a document written in the XML Schema
language. In addition, namespaces can help ensure you have unique tags for your
XML document. The syntax of XML has more restrictions than HTML, but this
results in faster and cheaper browsing. The ability to create your own tagging
structure gives you the power to categorize and structure data for both ease of
retrieval and ease of display. XML is already being used for publishing, as well as
for data storage and retrieval, data interchange between heterogeneous platforms,
data transformations, and data displays. As it evolves and becomes more powerful,
XML may allow for single-source data retrieval and data display.

The benefits of using XML vary but, overall, marked-up data and the ability to read
and interpret that data provide the following benefits:

v With XML, applications can more easily read information from a variety of
platforms. The data is platform-independent, so now the sharing of data between
you and your customers can be simplified.

v Companies that work in the business-to-business (B2B) environment are
developing DTDs and schemas for their industry. The ability to parse
standardized XML documents gives business products an opportunity to be
exploited in the B2B environment.

v XML data can be read even if you do not have a detailed picture of how that data
is structured. Your clients will no longer need to go through complex processes to
update how to interpret data that you send to them because the DTD or schema
gives the ability to understand the information.

v Changing the content and structure of data is easier with XML. The data is
tagged so you can add and remove elements without impacting existing
elements. You will be able to change the data without having to change the
application.

However, despite all the benefits of using XML, there are some things to be aware
of. First of all, working with marked up data can be additional work when writing
applications because it physically requires more pieces to work together. Given the
benefits of using XML, this additional work up front can reduce the amount of work
needed to make a change in the future. Second, although it is a recommendation
developed by the World Wide Web Consortium (W3C), XML, along with its related
technologies and standards including Schema, XPath, and DOM/SAX APIs, are still
a developing technology.

APIs

DOM
The Document Object Model (DOM) specification is an object-based interface
developed by the World Wide Web Consortium (W3C) that builds an XML document
as a tree structure in memory. An application accesses the XML data through the
tree in memory, which is a replication of how the data is actually structured. The
DOM also allows you to dynamically traverse and update the XML document.

© Copyright IBM Corp. 2000, 2009 1

DOM uses a set of C/C++ APIs to interact with the XML data.

The DOM API is ideal when you want to manage XML data or access a complex
data structure repeatedly. The DOM API:

v Builds the data as a tree structure in memory.

v Parses an entire XML document at one time.

v Allows applications to make dynamic updates to the tree structure in memory.

v Allows applications to randomly access any item in the memory tree structure.

v Allows applications to generate an XML document by starting with an empty tree,
populating it with the desired data, and then serializing it as an XML character
document.

Using the DOM API preserves the structure of the document (and the relationship
between elements) and does the parsing up front so that you do not have to do the
parsing process over again each time you access a piece of data. If you choose to
validate your document, you can be assured that the syntax of the data is valid
when you are working with it. However, the DOM API requires additional memory to
be allocated and freed, initialized and read, translating to increased machine cycles.
In addition, the DOM API is, by nature, a four-step process:

1. The application invokes the parser, passing it an XML document.

2. The parser parses the entire document and builds a DOM tree structure in
memory.

3. Completion status is returned to the application.

4. The application utilizes DOM APIs to access and optionally modify data in the
DOM tree.

The following is a schematic of the DOM parsing model.

2 XML Toolkit for z/OS User's Guide

For information on the Toolkit support for DOM APIs, see the Interfaces and
Specifications chart for Toolkit Parser on page 8.

SAX
The Simple API for XML (SAX) specification is an event-based interface developed
by members of the XML-DEV mailing list. It uses the parser to access XML data as
a series of events in a straight line, which means that the parser finds information in
the XML document without retaining state (or context) information.

When writing applications using the SAX specification, you will use a set of C/C++
APIs to interact with the XML data.

The SAX API can provide faster and less costly processing of XML data when you
do not need to access all of the data in an XML document. Part of the reason for
this performance benefit not seen in DOM arises from the fact that SAX places
more burden on the application than does DOM. Often, applications that might

Figure 1. DOM Parsing Model

Chapter 1. Introduction 3

naturally tend to be inclined to use DOM, instead use SAX and work around its
limitations, in order to take advantage of those performance benefits. The SAX API
does the following:

v Accesses data through a series of events, eliminating the need to build a tree
structure in memory.

v Assists the application in determining the most efficient way to build an internal
model.

v Allows you to access a small number of elements at one time rather than an
entire document.

The SAX API is best for applications that need access to a subset of the data and
do not need to understand its relationship to surrounding elements. SAX is also
ideal for information that is both generated by and readable by a machine.
However, SAX can only traverse the XML document in a single pass, which makes
it more expensive when you want to access data repeatedly from an XML
document. When it comes to saving needed information from the document or
keeping its own understanding of relationships between elements (if that is
important), SAX places more burden on the application than does DOM.

The SAX parsing model is a three-step process:

1. The application invokes the parser passing it an XML document. It also passes
in the addresses of event handlers for the various SAX events.

2. The parser parses the document, calling the application's event handlers for
each token encountered in the XML document.

3. When the document is complete, control is returned to the application.

The following is a schematic of the SAX parsing model.

4 XML Toolkit for z/OS User's Guide

For information on the Toolkit support for SAX APIs, see the Interfaces and
Specifications chart for Toolkit Parser on page 8.

DOM vs SAX
The DOM and SAX APIs can each parse documents efficiently given appropriate
conditions. The following table summarizes and compares the characteristics of the
DOM API with those of the SAX API:

Table 1. DOM vs SAX

DOM SAX

Type of Interface Object based Event based

Object Model Created automatically Must be created by
application

Element Sequencing Preserved Can be preserved or not,
depending on the application

Figure 2. SAX Parsing Model

Chapter 1. Introduction 5

Table 1. DOM vs SAX (continued)

DOM SAX

Speed of Initial Data
Retrieval

Slower Faster

Stored Information Better for complex structures Better for simple structures

Validation Optional Optional

Ability to update XML
document

Yes (in memory) No

XPath
XPath is a language for addressing parts of an XML document, designed to be
used by XSLT and other XML-related technologies. It provides basic facilities for
manipulation of strings, numbers and booleans. XPath is also designed so that it
has a natural subset that can be used for matching (testing whether or not a node
matches a pattern). For information on the Toolkit support for XPath, see the
Interfaces and Specifications chart for Toolkit Processors on page 8.

Validation
A valid document is one that follows the XML syntax and also conforms to the rules
of an associated DTD or XML Schema. (A well-formed document is one that follows
the XML syntax.)

Validation is the process of comparing an XML document with a specified DTD or
XML Schema. It ensures that the document uses only those tags that have been
defined in the DTD or XML Schema as well as ensuring that it conforms to the
element rules specified in the DTD or XML Schema.

Validation of an XML document is expensive in terms of machine cycles. If the
document is received from a reliable source and the format of the document has
been predetermined, validation may not be necessary. However, using validation
ensures that only elements defined in the DTD or XML Schema are used and,
therefore, the structure of the XML document remains consistent.

If you do not want to validate the document each time you access data, you can, as
an example, code an application so that it may reject tags that it does not recognize
and takes an appropriate error path. If you do this, you may want to use validation
during testing and initial implementation of a new version of an application or
temporarily until the source of a document has been accredited.

The following table summarizes the expected results of validation:

Table 2. Expected Validation Results

Validate Against a DTD or
XML Schema Do Not Validate

Document Is Valid Once validation is completed,
parsing continues.

Validation is ignored and
processing continues.

Document Is Not Valid Validation will result in an
error response that will help
you determine the error.
Parsing is discontinued.

Validation is ignored and
processing continues.

6 XML Toolkit for z/OS User's Guide

XML Toolkit for z/OS
The XML Toolkit for z/OS (Toolkit) provides the base infrastructure to integrate
vertical/industry-specific data formats, structures, schemas, and metadata to ensure
industry compliance of data representation and content. Some of its key uses
include categorizing and tagging data for exchange in disparate environments, as
well as transforming ad hoc unstructured data to XML records, enabling you to
search, cross-reference, and share records.

The Toolkit includes the XML Parser, C++ Edition. The XML Parser, C++ Edition is a
port of IBM's XML4C parser. It is tested and packaged for use on z/OS. XML4C is
based on open source code from the Xerces Apache project of the Apache
Software Foundation.

The XML Parser, C++ Edition has a set of classes closely resembling the standard
SAX2 and DOM classes with slight alterations. These changes allow the XML
Parser, C++ Edition to utilize the z/OS XML System Services component to parse
XML documents. When these z/OS specific classes are used, a portion of the parse
is performed by z/OS XML System Services, gaining a raw performance
improvement, along with the ability to take advantage of the more competitive zAAP
specialty engines (if present).

The {fullpath to parser}/xml4c-5_7/doc/html directory (hence forth known as the
'XML Parser, C++ Edition product directory'), which can be accessed by a web
browser, provides API documentation for XML Parser, C++ Edition. The APIDocs
section contains detailed API descriptions.

In addition to the parser, the Toolkit also includes the XSLT Processor, C++ Edition.
The XSLT Processor, C++ Edition is a port of IBM's XSLT4C XSLT processor
(formerly known as LotusXSL-C++). It is tested and packaged for use on z/OS. The
processor is an implementation of the W3C recommendations for XSL
Transformations (XSLT) Version 1.0 and XML Path Language (XPath) Version 1.0.
XSLT4C is based on open source code from the Xalan Apache project of the
Apache Software Foundation. It allows users to transform XML documents into
other formats.

The {fullpath to XSLT processor}/xslt4c-1_11/docs directory (hence forth known as
the 'XSLT Processor, C++ Edition product directory'), which can be accessed by a
web browser, provides API documentation for XSLT Processor, C++ Edition. The
API Reference section contains detailed API descriptions.

The Toolkit includes z/OS world-class service and support.

For more information about the Toolkit product, visit the Toolkit Web site at:
http://www.ibm.com/servers/eserver/zseries/software/xml/

The following two tables presents a quick summary of the major features found in
the XML Toolkit for z/OS. Symbols in the tables have the following meaning:

v "-": feature absent;

v "S": completely supported;

v "P": subset;

v "X": experimental.

Chapter 1. Introduction 7

|
|
|
|

Table 3. Interfaces and Specifications for the Toolkit Parser

Interfaces and Specifications C++ Edition parser

DOM 1.0 S

DOM 2.0 S

DOM 3.0 P,X

SAX 1.0 S

SAX 2.0 S

XML 1.0 S

XML 1.1 S

XML Namespaces 1.0 S

XML Namespaces 1.1 S

XML Schema 1.0 S

Table 4. Interfaces and Specifications for the Toolkit Processor

Interfaces and Specifications C++ Edition processor

XSL Transformations S

XPATH 1.0 S

XML 1.1 S

XML Namespaces 1.1 S

Sample applications are provided with the Toolkit to help demonstrate its features.
The procedures required to set up and configure these sample applications for MVS
and z/OS UNIX environments are described in the chapters that follow.

z/OS specific parser classes
The capability exists within the XML Parser, C++ Edition that allows an application
to take advantage of the z/OS XML System Services component. A set of z/OS
specific parser classes have been implemented in the XML Parser, C++ Edition to
provide this ability. These classes were created to closely mimic the existing SAX2
and DOM interfaces. They allow many applications to exploit the improved cost and
performance characteristics of the z/OS XML System Services component with
minimal changes to their code.

Figure 3 on page 9 illustrates the flow when using the existing open source parser
(embedded in the XML Parser, C++ Edition). Applications may continue to use this
existing parser functionality without modifications to their code.

8 XML Toolkit for z/OS User's Guide

When an application does what is referred to as a “Parse using existing parser
classes” in the application box, it will use the existing open source parser to parse
the XML document. This consists of an XMLReader, an XML Scanner (which is
configurable), the XMLDocumentHandler interface which feeds the results back to
the application using an event generator that will either generate SAX callback
events or create a DOM tree in memory.

Figure 4 on page 10 illustrates the flow when using the new capability provided by
the z/OS specific parser classes. In order to take advantage of this functionality,
minor code modifications are required.

Figure 3. Open source parsing model

Chapter 1. Introduction 9

When an application does what is referred to as a “Parse using z/OS specific
parser classes”, the z/OS specific parser classes will invoke the z/OS XML System
Services component to parse the XML document. The document is passed to z/OS
XML System Services in one or more input buffers and will be returned in one or
more output buffers. As output buffers are consumed by the new classes, the event
generator will either generate SAX2 callbacks events or create a DOM tree in
memory.

Note: This implementation does not have a configurable scanner nor does it
implement the XMLDocumentHandler interface.

There are some benefits to using the classes that take advantage of z/OS XML
System Services:

v z/OS XML System Services can take advantage of redirection of work to zAAP
specialty engines, if present.

v Significant performance improvements are possible with the z/OS XML System
Services non-validating parser. The performance of the z/OS XML System
Services validating parser depend greatly on schema size and complexity, and as
a result, performance improvements may or may not occur.

There are some significant differences in behavior in the z/OS specific parser
classes that must be considered when deciding if you can use these. Not all of the
functionality of the existing base parser classes exists in the z/OS specific parser
classes. The functionality that is most widely used is implemented where possible
given that z/OS specific parser classes must conform to the behavior of the z/OS
XML System Services component:

v z/OS release 1.8 or higher is required.

v Validation using either an internal or external DTD is not supported.

v Validation using schemas is supported on z/OS release 1.9 or higher. However,
there are significant differences between the way a validating parse is completed

Figure 4. z/OS parsing model

10 XML Toolkit for z/OS User's Guide

|
|
|
|

using the open source parser versus using the newer z/OS specific parser
classes, which use the z/OS XML System Services parser for parsing. The
following figure illustrates a validating parse using the open source parser:

In this case, the schemas are auto-detected by the parser, and no explicit action
needs to be taken in order to have the schemas loaded. However, when using
the new z/OS specific parser classes, the schemas must first be preprocessed
into Optimized Schema Representations (OSRs), and then explicitly loaded into
the parser by the application before the document is parsed. Because the z/OS
XML System Services parser does not dynamically discover which schemas are
required to validate a document, the schema must be predetermined before the
parse begins. More information on OSRs and schemas in the context the z/OS
XML System Services parser can be found in the z/OS XML System Services
User's Guide and Reference located at http://www.ibm.com/servers/eserver/
zseries/zos/xml/. The following figure illustrates the preprocess step that creates
the OSR:

Figure 5. Validating parse with open source parser

Chapter 1. Introduction 11

http://www.ibm.com/servers/eserver/zseries/zos/xml/
http://www.ibm.com/servers/eserver/zseries/zos/xml/

The next figure illustrates loading the OSR and doing the validating parse:

Figure 6. Preprocess step required to create the OSR

Figure 7. Loading OSR and validating parse

12 XML Toolkit for z/OS User's Guide

Some differences between the open source parser and the z/OS specific parser
classes are as follows:

v Schema grammar caching is not supported.

v Some schema related features and properties are not supported or have required
settings. See the accompanying API information provided in the XML Parser, C++
Edition product directory.

v Source offsets are supported on z/OS release 1.10 or higher. However, when
the source offsets feature is enabled, there are differences in parsing behavior
between the open source parser classes and z/OS specific parser classes. For a
list of these differences and other information on source offsets, see “Source
offsets” on page 39.

Other differences and considerations include the following:

v The z/OS XML System Services component is a namespace compliant parser
only. You may not specify an option to make the parser non-namespace
compliant.

v There is no implementation of the XML Entity Resolver. z/OS XML System
Services will resolve entity references that are defined in the internal DTD and
substitute the replacement text for the entity. However, there is no notification
given to the application that this has happened (that is, the SAX2
startEntityReference and endEntityReference are not called).

v There is no ability to force namespaces to be URI conformant.

v Different error messages will be displayed when an XML document contains an
error.

– The new error messages provide an offset to the character in error, not a line
and column number.

– In most cases, the return and reason codes from z/OS XML System Services
are displayed as opposed to a specific description of the error.

v SAX1 and deprecated DOM are not supported.

v The SAX2XMLFilter class is not supported.

v The XMLDocumentHandler interface is not implemented.

v The z/OS XML System Services C/C++ 31-bit APIs, which are called by the z/OS
specific parser classes, are compiled XPLINK for optimum performance. You
should build your 31-bit application using XPLINK and bind it with the XPLINK
version of the 31-bit XML Parser, C++ Edition DLLs, otherwise you must set the
following environment variable: :
export _CEE_RUNOPTS="XPLINK(ON)"

If you mix 31-bit non-XPLINK and XPLINK compiled code, there will be a
significant performance degradation during execution. It is strongly recommended
that when using the new z/OS specific parser classes, only 31-bit XPLINK
compiled code is used. This will provide the best possible performance. If,
however, your 31-bit application cannot be compiled XPLINK, you should use the
31-bit non-XPLINK version of the parser to avoid this performance penalty.

For more information on the z/OS specific parser classes, including the APIs,
examples, and sample programs, see Chapter 6, “How to use z/OS specific parser
classes,” on page 39. More information on the z/OS XML System Services parser,
including return and reason code descriptions, can be found in the z/OS XML
System Services User's Guide and Reference located at http://www.ibm.com/
servers/eserver/zseries/zos/xml/.

Chapter 1. Introduction 13

|
|
|
|
|

|

|
|
|
|
|
|

http://www.ibm.com/servers/eserver/zseries/zos/xml/
http://www.ibm.com/servers/eserver/zseries/zos/xml/

Toolkit 64-bit support
The XML Toolkit for z/OS provides support for 64-bit applications. 64-bit library files
and sidedecks are provided for the XML Parser, C++ Edition and the XSLT
Processor, C++ Edition. A listing of these files along with the build and run steps
required to use 64-bit are presented in the following chapters: Chapter 5, “How to
use the XML Parser, C++ Edition,” on page 25 and Chapter 7, “How to use the
XSLT Processor, C++ Edition,” on page 49.

Note: 64-bit is pure XPLINK; there are no non-XPLINK library files or sidedecks
associated with it. Therefore, when using 64-bit support, the build and run
steps specifically for XPLINK versus non-XPLINK applications can be
ignored.

Note: The APIs that support querying source offsets will return an unsigned long
(64 bit) value in 64-bit mode:

v getSrcOffset() - in the following classes: SAX2XMLReader,
zXercesDOMParser, zSAX2XMLReader, zDOMBuilder, XercesDOMParser,
SAXParser, DOMBuilder

v getSrcOffsetEnd() - in the following classes: zXercesDOMParser,
zSAX2XMLReader, zAttributes

v getSrcOffsetNameTagEnd() - in the following classes: zXercesDOMParser,
zSAX2XMLReader

v getSrcOffsetStart() - in the following classes: zXercesDOMParser,
zSAX2XMLReader, zAttributes

In 31-bit mode, these APIs return an unsigned int (32 bit) value.

Toolkit 31-bit support
The XML Toolkit for z/OS provides support for 31-bit XPLINK and non-XPLINK
applications. 31-bit XPLINK and non-XPLINK library files and sidedecks are
provided for the XML Parser, C++ Edition and the XSLT Processor, C++ Edition. A
listing of these files along with the build and run steps required to use 31-bit are
presented in the following chapters: Chapter 5, “How to use the XML Parser, C++
Edition,” on page 25 and Chapter 7, “How to use the XSLT Processor, C++ Edition,”
on page 49.

Deprecated DOM support
The previously deprecated DOM code has been removed from the main XML
Toolkit Parser DLL to reduce the DLL's footprint. If you want to use the deprecated
DOM code, you will need to include the new sidedeck for the deprecated DOM
code. The DLL and sidedeck names are listed in Table 6 on page 29 and Table 8 on
page 33.

Note: Deprecated DOM support is not available for 64-bit mode.

14 XML Toolkit for z/OS User's Guide

|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|

|
|

|
|

|
|

|

|
|

|
|
|
|
|
|
|

|

|
|
|
|
|

|

Toolkit support for both z/OS UNIX System Services and MVS
environments

The Toolkit supports applications running on both z/OS UNIX System Services and
MVS environments. To better understand how the Toolkit provides this support, you
need to recognize the differences between these two types of environments, and
the applications supported on them. The following table provides an introductory
comparison of these two environments:

Table 5. z/OS UNIX vs. MVS

z/OS UNIX Environment MVS Environment

Parallel Processing Model pthreads tasks

JES Batch Processing posix enabled batch non-posix batch

File access HFS or data sets data sets only

Command environment UNIX shell or BPXBATCH TSO or batch

For more information on how these environments compare, visit the following Web
page:

http://www.ibm.com/servers/eserver/zseries/zos/unix/release/ncomp2.html

Chapter 1. Introduction 15

|

http://www.ibm.com/servers/eserver/zseries/zos/unix/release/ncomp2.html

16 XML Toolkit for z/OS User's Guide

Chapter 2. How to access XML data

The XML parser (as well as the XSLT processor) was designed to utilize the
Uniform Resource Identifiers (URI) standard to access files. This standard is
described in RFC 2396 . Most APIs that need to access data support both absolute
URIs and relative URIs, aside from the following exception: The XSLT processor
output parameter only supports relative URIs.

How to access data sets
The URI design is based on a hierarchical file system naming scheme. Traditional
MVS data set naming schemes do not fit directly within this scheme so some
adaptation has been required in order to be able to access data sets from XML.
Fortunately, there is a precedent for accessing data sets when running a C++
program from UNIX and that is to prefix the data set name with '//'. Here is an
example:

//’USER1.SAMPLE.XML(PERSON1)’
//SAMPLE.XML(PERSON1)

The '//' tells a C++ program running from the UNIX APIs to look for the name as a
data set rather than in an HFS. The single quotes tell it not to add on the user's
default high level qualifier. In addition, if you are running from a batch or started
task environment, the data set can be accessed using DD statements in the JCL.
The following is an example:

//DD:SAMPFILE(PERSON1)

Where the following DD is also defined in the JCL:

//SAMPFILE DD DSN=USER1.SAMPLE.XML,DISP=SHR,
// VOL=SER=BPXLK2,UNIT=3390

All the examples above will access the same member of the same data set.

Relative URIs
In the cases where relative URIs are allowed, these data set definitions can be
used instead of the traditional hierarchical file system parameters. Using this format,
there is no 'path' distinction as in a hierarchical system. Here is an example
invocation of the SAXCount sample program passing a data set name:

SAXCount ’//sample.xml(person1)’

The quotes are needed so that UNIX doesn't see the parentheses as errors. MVS
also has a convention of adding a default high level qualifier if one is present. If you
don't want to have the default high level qualifier added on, use single quotes
around the data set name and double quotes around the whole parameter:

SAXCount "//’user1.sample.xml(person1)’"

When used in batch, JCL requires single quotes around the parameters, so you
must use a pair of single quotes:

PARM=’/ //’’user1.sample.xml(person2)’’’

© Copyright IBM Corp. 2000, 2009 17

http://www.ietf.org/rfc/rfc2396.txt

You may have noticed that there is an extra '/' in the beginning of the parameters.
This is required by JCL to separate run-time options from the parameters.

Absolute URIs
Data sets can also be specified using absolute URIs. (Note: The XSLT Processor,
C++ Edition does not support absolute URIs). Since the convention for accessing
data sets is to start with a '//' and this convention is also used to distinguish the
absolute URIs with host names, you can only specify an absolute URI using the
host format. The host name itself is still optional. Here are some examples:

SAXCount ’file:////sample.xml(person1)’
SAXCount ’file://localhost//sample.xml(person1)’
SAXCount "file:////’user1.sample.xml(person1)’"
PARM=’/ file:////’’user1.sample.xml(person2)’’’

In addition, when using XML in a batch or started task environment, you can use
the //DD: format to access a data set that is defined by way of a DD statement. The
following is an example:

SAXCount ’file:////dd:sampfile(person1)’

Considerations when using the Xalan C++ commands
Most interfaces that need to access data support both absolute URIs and relative
URIs. The following are some known exceptions:

v The Xalan command output parameter only supports relative URIs.

v The Xalan command input parameters (for the XML file and the XSL file) support
all URIs for UNIX files, but only absolute URIs for MVS data sets.

For more information on the Xalan command, see Chapter 8, “How to use the XML
Toolkit command line utilities,” on page 61. For more information on Xalan itself,
see “XML Toolkit for z/OS” on page 7.

DTDs, Schema and other embedded files
The conventions described above also apply to files which are referenced within
XML documents, such as DTDs. Here is an example xml DOCTYPE statement to
access a data set:

DOCTYPE personnel SYSTEM "file:////'USER1.SAMPLE.DTD(PERSON1)’"

18 XML Toolkit for z/OS User's Guide

Chapter 3. Encoding issues

The promise of XML is that it is portable and works on all platforms. Making this
work effectively and efficiently requires program design that takes into account the
specific situation pertinent to a particular application (for example, where the
document originates, where it is likely to be processed, the performance
requirements, the throughput requirements, where the document is stored and how
it is likely to be accessed). Proper encoding of XML documents will require thought
and consideration at application design time.

The following information is intended to give application programmers guidance on
how to deal with encoding of XML documents on z/OS.

Encoding and XML
This section presents the encoding rules in a simple and straightforward manner as
background to the discussion of encoding of XML on z/OS. It is not intended to
reproduce the detail of the XML 1.0 specification or to cover every possible case.

The XML standard defines encoding fairly rigorously. If the document is not in
UTF-8 or UTF-16, the encoding of the document must be specified using the
encoding= attribute on the XML declaration. Also, even though it is possible for the
encoding specified using the transport protocol to override the encoding declaration,
it is strongly advised that the actual encoding of the document match the encoding
specified on the encoding= attribute. Problems can occur if the document is
converted from one code page to another without the encoding= attribute being
changed. There are places where conversion takes place without the knowledge of
the application programmer. Examples of these include file transfer using ftp (File
Transfer Program) without the binary option and storing files in a database using
DRDA.

Whenever possible, avoid letting these types of conversions take place so that
mismatches do not occur. The XML parser for z/OS converts the document to
Unicode for processing and is capable of handling many different code pages. Also,
converting from one code page to another can cause loss of data if there are code
points in the original code page that are not present in the target code page.
Avoiding conversion prior to calling the parser results in the most efficient (from a
performance perspective) and least error-prone solution. Conversion is expensive
and if the document is converted before the parser is invoked, two conversions
actually occur - once from the original code page and once to Unicode within the
parser. Therefore, use the binary option on ftp and equivalent file transfer
mechanisms.

XML is intended to be a portable data format. The truly portable encoding is
Unicode. Therefore whenever possible, it is best to use Unicode as the encoding for
XML documents. However, not all platforms provide easy to use facilities for
handling Unicode. As a compromise, ASCII is another portable encoding that is
better supported by way of facilities. It is recommended that XML documents
intended for use on other platforms be encoded in US ASCII or UTF-8 or UTF-16.
This also provides performance benefits because the XML parser is optimized for
these encodings.

© Copyright IBM Corp. 2000, 2009 19

|
|
|

XML and z/OS
The current XML W3C recommendation (XML 1.0) specification defines CR
(Carriage Return), LF (Line Feed), and the combination CR-LF (Carriage Return
followed by Line Feed) as acceptable end-of-line characters. These characters are
to be converted to LF by the XML parser. Unfortunately, the XML 1.0 specification
does not define NEL (New Line or Next Line) as acceptable.

This presents a problem on z/OS because the most common end-of-line character
on z/OS is NEL. The C '\n' string converts to NEL, and editors and file I/O routines
in the C runtime insert NEL to indicate end-of-line in byte oriented file systems like
the HFS (Hierarchical File System). Therefore, if the XML document is created
using C or C++ and the application programmer does not do any special
programming to avoid it, the line ending character will be NEL. This is not
recommended for XML documents because by nature, they are intended to be
portable. The NEL is common on z/OS but not on other platforms and therefore is
not portable.

Unfortunately, this means that the application programmer has to be aware of this
fact and program around it. There are two options available to programmers writing
code to create XML documents.

1. The simplest way to create portable XML documents is to use iconv() to convert
them to ASCII or Unicode before sending them out of the application program.
The runtime function iconv() will convert the NEL to LF in ASCII and the
problem is therefore avoided.

2. Another option is to define a literal for LF and use it instead of the string '\n' to
create line breaks. This approach works if the file will not be edited or otherwise
manipulated on z/OS (remember, most mainframe editors insert NEL
characters!). Also, if this file is edited on z/OS, the document will appear to be a
single line (since there aren't any NEL characters in it) and therefore will not be
very readable.

Note: This is not an issue in the native MVS environment where file systems are
record oriented and typically do not require end of line characters.

If you need to edit or view the file on z/OS, it is best to convert it to ASCII and then
use viascii (available at z/OS Unix Tools) to edit it.

For the other case, where the program is processing a received XML document, the
situation is more complex. The fastest (and in some cases, the simplest) solution is
to not convert the file into EBCDIC. If the file is in ASCII or Unicode, then it will
have LF as the end-of-line indicator and there won't be any problem with the line
ending. However, this is much more complex for a z/OS application program to deal
with. Depending on the specific situation (for example, development/test vs
production), conversion may or may not be required. However, the recommendation
to avoid conversion if at all possible, still holds, especially in a production
environment where the cost of conversion can be prohibitive. For development/test
situations, where the file may have to be viewed or edited for debugging purposes,
conversion may be the right answer. The parser converts all the data into Unicode
so converting the data to EBCDIC after parsing is required. At this point, only data
that is required needs to be converted, rather than the entire XML document. Note
that converting small strings may be less efficient than converting larger strings.
Also, handling Unicode or ASCII data in a z/OS program does require care in
programming and isn't always simple. All these factors need to be considered in a
set of trade-offs when designing the application.

20 XML Toolkit for z/OS User's Guide

|
|
|
|
|

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1toy.html

If the file is in EBCDIC and has been created or modified on a z/OS system, then
the line ending character is typically a NEL. The XML Parser, C++ Edition will
accept XML documents that have a NEL as a line termination character. Even
though these are non-compliant XML documents, the parser will normalize the
line-endings to LF. However, because these documents are non-compliant, they
may not be accepted by parsers on other platforms. In general, EBCDIC is not a
portable encoding so IBM does not recommend using EBCDIC for XML documents
going between platforms or on the Internet.

Note: XML 1.1 does support NEL

Avoiding conversion
Most transport protocols have mechanisms to avoid conversions. Here are some of
the more common products used for transport and the options to turn off conversion
(if they exist). Detailed descriptions of these options and their uses are in the
documentation associated with each product.

File Transfer Program (FTP)
The binary option prevents FTP from converting the file.

MQSeries
Do not specify MQGMO_CONVERT option on the MQGET call.

DRDA It is not possible to turn off conversion except by using 'FOR BIT DATA' but
this can have other side effects. The DB2 XML Extender has filters that
convert LF to NEL and vice versa to ensure that the document is correct.

Chapter 3. Encoding issues 21

22 XML Toolkit for z/OS User's Guide

Chapter 4. How to use Toolkit 31-bit XPLINK support

Extra Performance Linkage (XPLINK) is a call linkage between programs that have
the potential for a significant performance increase when used in an environment of
frequent calls between small functions or subprograms. The Object Oriented aspect
of C++ causes much C++ code to fall into this category.

Note: All references herein to XPLINK and non-XPLINK apply only to the 31-bit
version of the Toolkit.

An XPLINK copy of the XML Parser, C++ Edition and the XSLT Processor, C++
Edition 31-bit library files and sidedecks are provided in addition to the non-XPLINK
versions. A listing of these files along with the build and run steps required to use
XPLINK are presented in the following chapters: Chapter 5, “How to use the XML
Parser, C++ Edition,” on page 25 and Chapter 7, “How to use the XSLT Processor,
C++ Edition,” on page 49.

Using Toolkit 31-bit XPLINK support
Under certain circumstances, it may be appropriate to use the XPLINK Toolkit code.
If you have an existing application that is pure XPLINK and you need to do XML
parsing or XSLT processing, you should see a performance improvement if you
were previously using your XPLINK application with the 31-bit non-XPLINK Toolkit
code. This is because when you use your XPLINK application with the 31-bit
non-XPLINK Toolkit code, you incur a significant performance penalty each time you
call the Toolkit. This performance penalty is a result of having to run through
additional code to convert the XPLINK stack structure and register conventions to
the format that the 31-bit non-XPLINK Toolkit expected. When the Toolkit finishes
converting, there is additional overhead (another performance penalty) restoring the
XPLINK environment upon return. As a result, you should see a significant benefit
by calling XPLINK Toolkit code from your XPLINK application, since you'll be
avoiding the performance penalties of having to do the XPLINK to non-XPLINK, and
then back XPLINK code conversions.

If your application is non-XPLINK, then you should continue to use the 31-bit
non-XPLINK Toolkit code. Calling the XPLINK Toolkit code from a 31-bit
non-XPLINK application will most likely perform worse than if you continue to use
the 31-bit non-XPLINK Toolkit code.

If you can convert your 31-bit non-XPLINK application to be 100 percent XPLINK,
then you should see a significant benefit using the XPLINK XML Toolkit code.

For best results, you want all of the 31-bit code you are calling to be built using
XPLINK. For example, you would not want to bind an XPLINK application with the
XPLINK XML Parser, C++ Edition main DLL (libxml4c-5_7_0.xplink.dll) and the
non-XPLINK deprecated DOM DLL (libxml4c-depdom5_7_0.dll).

For more information on XPLINK, refer to the z/OS Language Environment
Programming Guide Chapter 3, "Using Extra Performance Linkage (XPLINK).

Building an XPLINK application
In order to build an XPLINK application, you need to specify the XPLINK compiler
option (-Wc,XPLINK) during compilation. When link-editing your application, you must

© Copyright IBM Corp. 2000, 2009 23

|

|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

use the DFSMS binder and specify the XPLINK binder option (-Wl,XPLINK). You
also need to include the XPLINK sidedeck on the bind step.

The 31-bit samples provided in the Toolkit are pre-built non-XPLINK. If you want to
build an XPLINK version of them, you can set an environment variable that has
been added in support of XPLINK. The environment variable, once set, will apply
the correct compiler and binder options in the Makefile and the correct XPLINK
sidedeck will also be included. To build an XPLINK copy of the samples, do the
following:
export OS390_XPLINK=1

For the XSLT Processor, C++ Edition samples there is an extra step needed to
pickup the correct version of the Standard C++ library (see Chapter 7, “How to use
the XSLT Processor, C++ Edition,” on page 49 for more information).

Running an XPLINK application
If the initial program you call is compiled XPLINK, then Language Environment will
initialize the enclave as an XPLINK environment. If your initial program is
non-XPLINK, and you are calling an XPLINK program later on, then you need to
specify the XPLINK(ON) runtime option so that calls may be made between XPLINK
and non-XPLINK programs.

When you build the samples and use the OS390_XPLINK environment variable,
XPLINK(ON) runtime options never needs to be set.

24 XML Toolkit for z/OS User's Guide

|
|
|
|
|
|

|

|
|
|

Chapter 5. How to use the XML Parser, C++ Edition

Samples have been provided to demonstrate the features of the XML Parser, C++
Edition. These samples use simple applications written on top of the SAX and DOM
API's. See “Why XML?” on page 1 for more information on the APIs. The following
samples can be found in the samples directory:

SAXCount
counts the elements, attributes, spaces and characters in an XML file

SAX2Count
same as SAXCount, except uses SAX 2.0

SAXPrint
parses an XML file and prints it out

SAX2Print
same as SAXPrint, except uses SAX 2.0

DOMCount
counts the elements, attributes, spaces and characters in an XML file

DOMPrint
parses an XML file and prints it out

MemParse
parses XML in a memory buffer, outputting the number of elements and
attributes

Redirect
redirects the input stream for external entities

PParse
demonstrates progressive parsing

PSVIWriter
exposes the underlying PSVI of the parsed XML file

SCMPrint
parses an XSD file and prints information about the Schema Component
Model

StdInParse
demonstrates streaming XML data from standard input

EnumVal
shows how to enumerate the markup declarations in a DTD validator

SEnumVal
shows how to enumerate the markup declarations in a Schema validator

CreateDOMDocument
creates a DOM tree in memory from scratch

C_sample
shows how to invoke the XML Parser, C++ Edition from a C program

Rule: These samples are only examples of how to exploit the XML Parser, C++
Edition. You will need to modify your own applications accordingly.

Pre-built versions of the samples for the z/OS UNIX environment are included in the
Toolkit. These can be used to illustrate XML concepts, validate XML documents,
and validate DTDs and schemas during development. See “Using the sample

© Copyright IBM Corp. 2000, 2009 25

applications” on page 26 section for instructions on how to use these pre-built
versions. Also, source code is provided in the Toolkit for all of the samples to aid
developers in getting started with their applications.

Rule: The prebuilt 64-bit samples shipped with the Toolkit can be found in the
{fullpath to XML Parser}/xml4c-5_7/bin64 directory. The prebuilt 31-bit samples
shipped with the Toolkit are the non-XPLINK versions and can be found in the
{fullpath to XML Parser}/xml4c-5_7/bin directory. If you want to use the XPLINK
versions of the 31-bit samples, then you must build your own copy of them.

The procedures for building and using your built samples differ depending on the
target environment. The procedures for building your samples are outlined in
sections “z/OS UNIX Environment” on page 29 and “Building sample applications
for the MVS Environment” on page 32. The procedures for using your built samples
are outlined in sections “Using your sample applications on the z/OS UNIX
Environment” on page 31 and “Using your sample applications on the MVS
Environment” on page 35

The XML Parser, C++ Edition component is installed in /usr/lpp/ixm/IBM/xml4c-
5_7 by default. It contains the following sub-directories:

/doc contains online APIs and design documentation

/include
used for building samples

/lib used for running the parser code

/bin used for the 31-bit samples

/bin64 used for the 64-bit samples

In addition to the sub-directories, the Toolkit includes the following data sets:

hlq.SIXMLOD1
used for running the parser code in an MVS environment

hlq.SIXMEXP
used to build applications for an MVS environment

Using the sample applications

Note: The pre-built samples can be run in a z/OS UNIX command environment.

Before running the samples, you must ensure that several environment variables
are set properly. First, set up an environment variable to point to the location where
the XML Toolkit, C++ Parser component was installed:

export XERCESCROOT=/usr/lpp/ixm/IBM/xml4c-5_7

Then type in the following command statements:

export LIBPATH=$XERCESCROOT/lib:$LIBPATH
export PATH=$XERCESCROOT/bin:$PATH
(use $XERCESCROOT/bin64 for 64-bit samples)

You are now set to run the sample applications. For example, to run the DOMPrint
application from the $XERCESCROOT/bin directory, type the following command
statement:

26 XML Toolkit for z/OS User's Guide

|
|
|
|
|

|

||

|
|
|

cd $XERCESCROOT/samples/data
DOMPrint -v=always -wenc=IBM-1047-s390 -wfpp=on personal.xml
(use "-v=auto" for personal-schema.xml)

This sample application will then parse the personal.xml file, construct the DOM
tree, and invoke DOMWriter::writeNode() to serialize the resultant DOM tree back to
an XML stream. The following is a sample output from DOMPrint:

<?xml version="1.0" encoding="IBM-1047-s390" standalone="no" ?>
<!DOCTYPE personnel SYSTEM "personal.dtd">
<personnel>

<person id="Big.Boss">
<name>
<family>Boss</family>
<given>Big</given>

</name>
<email>chief@foo.com</email>
<link subordinates="one.worker two.worker three.worker four.worker five.worker"/>

</person>

<person id="one.worker">
<name>
<family>Worker</family>
<given>One</given>

</name>
<email>one@foo.com</email>
<link manager="Big.Boss"/>

</person>

<person id="two.worker">
<name>
<family>Worker</family>
<given>Two</given>

</name>
<email>two@foo.com</email>
<link manager="Big.Boss"/>

</person>

<person id="three.worker">
<name>
<family>Worker</family>
<given>Three</given>

</name>
<email>three@foo.com</email>
<link manager="Big.Boss"/>

</person>

<person id="four.worker">
<name>
<family>Worker</family>
<given>Four</given>

</name>
<email>four@foo.com</email>
<link manager="Big.Boss"/>

</person>

Chapter 5. How to use the XML Parser, C++ Edition 27

<person id="five.worker">
<name>
<family>Worker</family>
<given>Five</given>

</name>
<email>five@foo.com</email>
<link manager="Big.Boss"/>

</person>

</personnel>

Help for each of the samples can be displayed by using the -? parameter. For
example, to display help for the MemParse sample, type the following:

MemParse -?

This will display the following text:

Usage:
MemParse [options]
This program uses the SAX Parser to parse a memory buffer
containing XML statements, and reports the number of
elements and attributes found.

Options:
-v=xxx Validation scheme [always | never | auto*].
-n Enable namespace processing. Defaults to off.
-s Enable schema processing. Defaults to off.
-f Enable full schema constraint checking. Defaults to off.
-? Show this help.

* = Default if not provided explicitly.

Rule for running 64-bit samples
In order to run the 64-bit samples, the XML Parser, C++ Edition requires the
run-time libraries provided by Language Environment, SCEERUN and SCEERUN2,
to be made available in the program search order. The best way to do this is by
adding the SCEERUN and SCEERUN2 data sets into the LNKLST. If you do not
wish to add SCEERUN and SCEERUN2 to the LNKLST, access SCEERUN and
SCEERUN2 data sets through STEPLIB.

Rule for running 31-bit non-XPLINK samples
In order to run the 31-bit non-XPLINK samples, the XML Parser, C++ Edition
requires the run-time library provided by Language Environment, SCEERUN, to be
made available in the program search order. The best way to do this is by adding
SCEERUN data set in the LNKLST. If you do not wish to add SCEERUN to the
LNKLST, access SCEERUN data set through STEPLIB.

Rule for running 31-bit XPLINK samples
In order to run the 31-bit XPLINK samples, the XML Parser, C++ Edition requires
the run-time libraries provided by Language Environment, SCEERUN and
SCEERUN2, to be made available in the program search order. The best way to do

28 XML Toolkit for z/OS User's Guide

|

|
|
|
|
|
|

|

|
|
|
|
|

|

|
|
|

this is by adding the SCEERUN and SCEERUN2 data sets into the LNKLST. If you
do not wish to add SCEERUN and SCEERUN2 to the LNKLST, access SCEERUN
and SCEERUN2 data sets through STEPLIB.

z/OS UNIX Environment

Building sample applications for the z/OS UNIX Environment
Before being able to build the provided samples, the system environment must be
configured correctly. Doing so requires the use of the GNU make utility (gmake). To
download gmake go to:

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty1.html#gmake

After you have downloaded gmake, issue the following command against the install
file:

pax -rzf

This will place the gmake program into the /bin directory (the /bin directory was
created by the pax command). For additional information on using gmake, see the
IBM redbook Open Source Software for OS/390 UNIX, SG24-5944 available online
at:

http://www-1.ibm.com/servers/eserver/zseries/zos/unix/redbook/index.html

Please note that all references to gmake refer to the GNU make utility.

Product files are required to build the XML Parser, C++ Edition on z/OS UNIX.
These files and their descriptions are displayed in the following table:

Table 6. Product Files Required to Build Sample XML Applications for z/OS UNIX
Environments

Product file name Product file description

files in the include directory C++ header files contained in the include
directory. These are required in order to
compile application code.

31-bit non-XPLINK product files

libxml4c5_7_0.x The definition side-deck contained in the lib
directory that describes the XML Parser, C++
Edition external functions and the variables.
This is required in order to bind application
code.

libxml4c-depdom5_7_0.x The definition side-deck that describes the
previously deprecated DOM APIs; it is only
required if you are using these APIs.

31-bit XPLINK product files

libxml4c5_7_0.xplink.x The definition side-deck contained in the lib
directory that describes the XML Parser, C++
Edition external functions and the variables.
This is required in order to use XPLINK to
bind application code.

Chapter 5. How to use the XML Parser, C++ Edition 29

|
|
|

|

|

Table 6. Product Files Required to Build Sample XML Applications for z/OS UNIX
Environments (continued)

Product file name Product file description

libxml4c-depdom5_7_0.xplink.x The definition side-deck that describes the
previously deprecated DOM APIs; it is only
required if you are using these APIs and
compiling with XPLINK.

64-bit product files

libxml4c5_7_0q.x The definition side-deck contained in the lib
directory that describes the XML Parser, C++
Edition external functions and the variables.
This is required in order to bind application
code.

Rules for invoking the XML Parser, C++ Edition in z/OS UNIX
Any application that is to invoke the XML Parser, C++ Edition parser under the z/OS
UNIX System Services environment must include either the 31-bit
non-libxml4c5_7_0.x (libxml4c5_7_0.xplink.x if using XPLINK) or 64-bit
libxml4c5_7_0q.x, when they bind. The binder uses the definition side-deck to
resolve references to functions and variables defined in libxml4c5_7_0.dll
(libxml4c5_7_0.xplink.dll if using XPLINK) or libxml4c5_7_0q.dll.

If you are using the deprecated DOM APIs, you need to include the 31-bit
libxml4c-depdom5_7_0.x sidedeck, or for XPLINK applications, the 31-bit
libxml4c-depdom5_7_0.xplink.x sidedeck.

The next thing you need to do is set the XML4C root path. To set it correctly, issue
the following command statement:

export XERCESCROOT=/usr/lpp/ixm/IBM/xml4c-5_7

Now, you need to obtain access to a copy of the samples directory to which you
have write access. Unless you are a superuser, you normally will not have write
access to the samples subdirectory that was shipped with the product. In this case,
you will need to do the following:

1. Create a new directory that you have write access to, for example:

cd $HOME
mkdir mysamples

2. Set a new environment variable that contains the full path to this new directory,
as follows:

export XERCESCOUT=$HOME/mysamples

3. Copy the samples directory to your directory:

cp -r /usr/lpp/ixm/IBM/xml4c-5_7/samples $XERCESCOUT

Since the XERCESCOUT environment variable is set, that copy of the samples
subdirectory will be used. The binary files will be stored in a "bin" subdirectory.

After you have copied the samples directory, you need to set up environment
variables. This is done through the following sequence:

30 XML Toolkit for z/OS User's Guide

|

|
|
|
|
|
|

|
|
|

unset _CXX_CXXSUFFIX
export CXX=c++
export CXXFLAGS="-2"

If debugging is desired, the -g option can be used instead of the -2 option in the
export CXXFLAGS statement.

The next statement is only required for building 31-bit XPLINK samples:

export OS390_XPLINK=1

The next statement is only required for building 64-bit samples:

export OS390_BIT64=1

Once the environment variables have been properly set, Makefiles must be created.
The directory in which you create the Makefiles depends on where you are building
the samples. If you have set the XERCESCOUT environment variable, type the
following:

cd $XERCESCOUT/samples
configure

Finally, to build the samples, type the following in the directory in which you created
the Makefiles:

export _CXX_CXXSUFFIX=cpp
export _CXX_CCMODE=1
gmake

After issuing the gmake command, the build process is completed. The samples are
built into the $XERCESCOUT/bin directory. Proceed to the next section to see how to
run your newly built sample applications.

Using your sample applications on the z/OS UNIX Environment
Library files are required to run XML Parser, C++ Edition on z/OS UNIX. These files
can be found in the $XERCESCROOT/lib directory. The file names and their
descriptions are displayed in the following table:

Table 7. Library Files Required to Run Sample XML Applications on z/OS UNIX

Library File Name Library File Description

31-bit non-XPLINK library files

libxml4c5_7_0.dll XML Parser, C++ Edition library file

libxml4c5_7_0-depdom.dll library file for the previously deprecated DOM
API

libicudata38.0.dll, libicudata_stub38.0.dll,
libicuuc38.0.dll, libicui18n38.0.dll

ICU library files

31-bit XPLINK library files

libxml4c5_7_0.xplink.dll XML Parser, C++ Edition library file

libxml4c-depdom5_7_0.xplink.dll library file for the previously deprecated DOM
API

Chapter 5. How to use the XML Parser, C++ Edition 31

|

|

|

|

|

||

||

|

||

||
|

|
|
|

|

||

||
|

Table 7. Library Files Required to Run Sample XML Applications on z/OS UNIX (continued)

Library File Name Library File Description

libicudata38.1.xplink.dll,
libicudata_stub38.1.xplink.dll,
libicuuc38.1.xplink.dll, libicui18n38.1.xplink.dll

ICU library files

64-bit library files

libxml4c5_7_0q.dll XML Parser, C++ Edition library file

libicudata38.1q.dll, libicuuc38.1q.dll.
libicui18n38.1q.dll

ICU library files

Before running the samples, you must ensure that several environment variables
are set properly. First, set up an environment variable to point to the location where
the XML Parser, C++ Edition component was installed:

export XERCESCROOT=/usr/lpp/ixm/IBM/xml4c-5_7

Then type in the following command statements:

export LIBPATH=$XERCESCROOT/lib:$LIBPATH

Then set the PATH to locate the samples you have just built:

export PATH=$XERCESCOUT/bin:$PATH

You are now set to run your sample applications. For example, to run the
SAXCount application from the $XERCESCOUT/bin directory, type the following
command statement:

SAXCount $XERCESCROOT/samples/data/personal.xml

This sample application will then count the number of elements, attributes, spaces
and characters in the XML file personal.xml .

MVS Environment

Building sample applications for the MVS Environment
Before being able to build the provided samples, the system environment must be
configured correctly. Doing so requires the use of the GNU make utility (gmake). To
download gmake go to:

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty1.html#gmake

After you have downloaded gmake, issue the following command against the install
file:

pax -rzf

This will place the gmake program into the /bin directory (the /bin directory was
created by the pax command). For additional information on using gmake, see the
IBM redbook Open Source Software for OS/390 UNIX, SG24-5944 available online
at:

32 XML Toolkit for z/OS User's Guide

|

||

|
|
|

|

|

||

|
|
|

|

http://www-1.ibm.com/servers/eserver/zseries/zos/unix/redbook/index.html

Please note that all references to gmake refer to the GNU make utility.

Product files are required to build the XML Parser, C++ Edition on MVS. These files
and their descriptions are displayed in the following table:

Table 8. Product Files Required to Build Sample XML Applications for MVS Environments

Product file name Product file description Data set name

files in the include directory C++ header files contained in
the include directory. These
are required in order to
compile application code.

31-bit non-XPLINK product files

IXM4C57X Definition side-deck that
describes the XML Parser,
C++ Edition functions and the
variables.

hlq.SIXMEXP

IXMDD57X Definition side-deck that
describes the previously
deprecated DOM APIs; it is
only required if you are using
these APIs.

hlq.SIXMEXP

31-bit XPLINK product files

IXM4C7AX Definition side-deck that
describes the XML Parser,
C++ Edition functions and the
variables. This is required in
order to use XPLINK to bind
application code.

hlq.SIXMEXP

IXMDD7AX Definition side-deck that
describes the previously
deprecated DOM APIs; it is
only required if you are using
these APIs and XPLINK.

hlq.SIXMEXP

64-bit product file

IXM4C7QX Definition side-deck that
describes the XML Parser,
C++ Edition functions and the
variables.

hlq.SIXMEXP

Rules for invoking the XML Parser, C++ Edition in native MVS
Any application that is to invoke the XML Parser, C++ Edition parser under the
native MVS environment must include one of the following definition side-decks
when they bind: IXM4C7QX (for 64-bit applications), IXM4C57X (for 31-bit
non-XPLINK applications) or IXM4C7AX (for 31-bit XPLINK applications). The
binder uses the definition side-deck to resolve references to functions and variables
defined in IXM4C7QX, IXM4C57 or IXM4C7A. In addition to the above, any
applications that wish to use previously deprecated DOM APIs must also include
either of the following definition side-decks: IXMDD57X (for 31-bit non-XPLINK
applications) or IXMDD7AX (for 31-bit XPLINK applications). The binder uses the
definition side-deck to resolve references to functions and variables defined in the
IXMDD57 or IXMDD7A.

Chapter 5. How to use the XML Parser, C++ Edition 33

|
|
|
|

|

||
|
|
|

|
|
|
|
|
|
|
|
|
|
|

Rules for building samples in native MVS
To be able to run the sample applications, you must first allocate a data set to hold
the executables. The following is an example of a data set allocation:

userid.SAMPLES.rel.LOAD, 500 tracks on 3390, Record format:U,
Record Length: 0, Block size: 32760, ORG: PDSE,
Directory blocks: 0

You should allocate a minimum of 500 tracks.

The next thing you need to do is set the XML4C root path. To set it correctly, issue
the following command statement:

export XERCESCROOT=/usr/lpp/ixm/IBM/xml4c-5_7

Now, you need to obtain access to a copy of the samples directory to which you
have write access. Unless you are a superuser, you normally will not have write
access to the samples subdirectory that was shipped with the product. In this case,
you will need to do the following:

1. Create a new directory that you have write access to, for example:

cd $HOME
mkdir mysamples

2. Set a new environment variable that contains the full path to this new directory,
as follows:

export XERCESCOUT=$HOME/mysamples

3. Copy the samples directory to your directory:

cp -r /usr/lpp/ixm/IBM/xml4c-5_7/samples $XERCESCOUT

Since the XERCESCOUT environment variable is set, that copy of the samples
subdirectory will be used. The binary files are stored in the MVS data set pointed to
by the LOADMOD environment variable. If XERCESCOUT is not set, the copy of the
samples in the HFS that the product resides in will be used, and the binary files will
be stored there.

After you have copied the samples directory, you need to set up environment
variables. This is done through the following sequence:

export LOADMOD=userid.SAMPLES.rel.LOAD
export LOADEXP=hlq.SIXMEXP
export OS390BATCH=1
unset _CXX_CXXSUFFIX
export CXX=c++
export CXXFLAGS="-2"

If debugging is desired, the -g option can be used instead of the -2 option in the
export CXXFLAGS statement.

The next statement is only required if your building 31-bit XPLINK samples:

export OS390_XPLINK=1

The next statement is only required for building 64-bit samples:

34 XML Toolkit for z/OS User's Guide

|

|

|

export OS390_BIT64=1

Once the environment variables have been properly set, Makefiles must be created.
Type the following:

cd $XERCESCOUT/samples
configure

.

You are now ready to build the samples. Type the following in the directory in which
you created the Makefiles:

export _CXX_CXXSUFFIX=cpp
export _CXX_XSUFFIX_HOST=SIXMEXP
export _CXX_CCMODE=1
gmake

After you have issued the gmake command, the build process is completed. The
built samples are placed into the userid.SAMPLES.rel.LOAD data set. Proceed to
the next section to see how to run your newly built sample applications.

Using your sample applications on the MVS Environment
Library files are required to run XML Parser, C++ Edition on MVS. The following
table is a list of library files required, a short description of the files, and the data
set names of where these files are located.

Table 9. Library Files Required to Run Sample XML Applications on MVS

Library file name Library file description Library data set name

31-bit non-XPLINK library files

IXM4C57 XML Parser, C++ Edition
library file

hlq.SIXMLOD1

IXMDD57 previously deprecated DOM
API library file

hlq.SIXMLOD1

IXMI38UC ICU library file (explicitly
loaded by IXM4C57)

hlq.SIXMLOD1

IXMI38DA ICU library file hlq.SIXMLOD1

IXMI38D1 ICU library file hlq.SIXMLOD1

IXMI38IN ICU library file hlq.SIXMLOD1

31-bit XPLINK library files

IXM4C7A XML Parser, C++ Edition
library file

hlq.SIXMLOD1

IXMDD7A previously deprecated DOM
API library file

hlq.SIXMLOD1

IXMI38XC ICU library file (explicitly
loaded by IXM4C7A)

hlq.SIXMLOD1

IXMI38XA ICU library file hlq.SIXMLOD1

IXMI38X1 ICU library file hlq.SIXMLOD1

IXMI38XN ICU library file hlq.SIXMLOD1

64-bit library files

Chapter 5. How to use the XML Parser, C++ Edition 35

|

|

||

|||

|

||
|
|

||
|
|

||
|
|

|||

|||

|||

|

||
|
|

||
|
|

||
|
|

|||

|||

|||

|

Table 9. Library Files Required to Run Sample XML Applications on MVS (continued)

Library file name Library file description Library data set name

IXM4C7Q XML Parser, C++ Edition
library file

hlq.SIXMLOD1

IXMI38QC ICU library file (explicitly
loaded by IXM4C7Q)

hlq.SIXMLOD1

IXMI38QA ICU library file hlq.SIXMLOD1

IXMI38QN ICU library file hlq.SIXMLOD1

Before you run the samples, you must make sure that you have access to the
library, SIXMLOD1. You can ask your system programmer to install SIXMLOD1 in
LNKLST. If the SIXMLOD1 data set cannot be placed in LNKLST, you can STEPLIB
the data set for each application that requires it. You can invoke the samples from
TSO or a JCL job. For example, you can submit the following JCL to run
SAXCount.

//USERJOB JOB MSGLEVEL=(1,1),CLASS=A
//TEST EXEC PGM=SAXCOUNT,
//* HFS file input
// PARM=’//usr/lpp/ixm/IBM/xml4c-5_7/samples/data/personal.xml’
//*
//* DDNAME input
//* PARM=’///DD:XMLDATA(PERSONAL)’
//* PARM=’DD:XMLDATA(PERSONAL)’
//*
//* Data set input
//* PARM=’"//’’USERID.XML.DATA(PERSONAL)’’"’
//* PARM=’"//XML.DATA(PERSONAL)"’
//*
//STEPLIB DD DSN=hlq.SIXMLOD1,DISP=SHR
// DD DSN=userid.SAMPLES.rel.LOAD,DISP=SHR
//*XMLDATA DD DSN=userid.XML.DATA,DISP=SHR
/*

Multi-threading considerations
The following are multi-threading considerations for the XML Parser, C++ Edition.

Using UNIX pthreads
Within a program, an instance of the parser may be used without restriction from a
single thread, or an instance of the parser can be accessed from multiple threads,
provided the application guarantees that only one thread has entered a method of
the parser at any one time.

When two or more parser instances exist in a process, the instances can be used
concurrently, without external synchronization. That is, in an application containing
two parsers and two threads, one parser can be running within the first thread
concurrently with the second parser running within the second thread.

Similar rules apply to XML4C DOM documents. Multiple document instances may
be concurrently accessed from different threads, but any given document instance
can only be accessed by one thread at a time.

36 XML Toolkit for z/OS User's Guide

|

|||

||
|
|

||
|
|

|||

|||
|

DOMStrings allow multiple concurrent readers. All DOMString const methods are
thread safe, and can be concurrently entered by multiple threads. Non-const
DOMString methods, such as appendData(), are not thread safe and the application
must guarantee that no other methods (including const methods) are executed
concurrently with them.

The application also needs to guarantee that only one thread has entered either the
method XMLPlatformUtils::Initialize() or the method
XMLPlatformUtils::Terminate() at any one time.

Using MVS multi-tasking
Care must be taken when using the parser in a multi-tasking environment within a
single address space. Each task that wishes to use a parser must initialize its own
parser environment using a call to XMLPlatformUtils::Initialize(). It follows then
that each task must have its own parser instance and cannot share parser data
structures, such as DOMString.

Chapter 5. How to use the XML Parser, C++ Edition 37

38 XML Toolkit for z/OS User's Guide

Chapter 6. How to use z/OS specific parser classes

This topic describes how to use the z/OS specific parser classes that will utilize
z/OS XML System Services to parse an XML document, instead of the open source
parser. Examples are provided to illustrate how to convert existing code to use this
function.

Virtual classes are now available. Previously, the SAX2XMLReader class was
instantiated when doing a SAX2 parse with the z/OS specific classes. The
zXMLReaderFactory::createXMLReader() method gave you access to the z/OS
specific classes needed. Now, a new zSAX2XMLReader virtual class is available
which must be used. This extends the SAX2XMLReader class. The new methods
are provided in order to support additional functionality, such as the ability to load
an OSR file (see z/OS XML User's Guide for more details on using OSR files) and
to obtain information on source offsets (see “Source offsets” for more details).

Previously, the DOMBuilder class was instantiated. The
DOMImplementationRegistry::getDOMImplementation() method was passed a
unique string (“zScanner LS”) to give you access to the z/OS specific classes. Now,
a zDOMBuilder class is available which must be used. This extends the
DOMBuilder class. It also provides methods to support additional functionality.

The zAbstractDOMParser and zXercesDOMParser classes now include methods to
support additional functionality.

A zAttributes class is available providing methods for obtaining the source offsets
for attributes.

For a complete description of the APIs, features and properties refer to the HTML
documentation provided in the XML Parser, C++ Edition product directory. These
APIs are documented in the API documentation ("APIDocs") section along with the
rest of the XML4C APIs.

Source offsets
This topic provides information on source offset support. Source offset support
provides an application the ability to obtain the following information:

v The starting offset of an XML element

v The ending offset of an XML element

v The ending offset of the start tag name in a given XML start element

v The starting offset of an attribute or namespace prefix within an XML element

v The ending offset of an attribute or namespace prefix within an XML element

With a SAX2 parse, these source offsets may be obtained in application event
handlers for both progressive and non-progressive parses, or when control returns
to the application during a progressive parse after a parseFirst or parseNext. With a
DOM parse, these source offsets may be obtained only when the application
receives back control during a progressive parse, that is, after parseFirst and
parseNext completes.

When the source offsets feature is enabled, there are differences in parsing
behavior between the open source parser classes and z/OS specific parser classes.
These differences are as follows:

© Copyright IBM Corp. 2000, 2009 39

http://www.ibm.com/servers/eserver/zseries/zos/xml/

v the open source parser classes provide only API getSrcOffset() to obtain source
offset information. The z/OS specific parser classes provide 5 additional APIs:
getSrcOffsetStart(), getSrcOffsetEnd(), getSrcOffsetStart(index),
getSrcOffsetEnd(index), getSrcOffsetNameTagEnd().

v For source offsets to attributes whose values are defaulted from schema or
internal DTD, the open source parser classes provide the offset within the
containing XML element. The z/OS specific parser classes provide the offset from
the beginning of the XML document. The same is true for substituted character
data resulting from an ENTITY attribute in the DTD.

v During a progressive parse, for empty elements that contain no attributes, no
namespace prefixes and no defaulted content, open source parser classes do
not return control to the application. The z/OS specific parser classes do return
control.

v For any character data or elements encountered following the root element
during a progressive parse, the open source parser classes return control (for the
SAX2 endDocument event or after a parseNext request) after the data following
the root element is processed. The z/OS specific parser classes return control to
the application for both the end of the root element and any subsequent
character data or elements.

v For the SAX2 endDocument event handler with a call to getSrcOffset(), the open
source parser classes include any characters following the root element; the
z/OS specific parser classes do not.

v The following XMLElementDecl properties (for example, when queried in SAX2
startElement or endElement advanced event handlers) are not supported (that is,
they return unpredictable results) by the z/OS specific parser classes:

– getURI()

– getId()

– isDeclared()

– isExternal()

– getCreateReason()

– getFormattedContentModel()

– getDOMTypeInfoUri()

– getDOMTypeInfoName()

v Source offsets returned by the open source parser classes for the end of internal
DTD elements (for example, in a SAX2 endDTD event handler) refer to the end
of the SYSTEM variant's value. The z/OS specific parser classes return the offset
of the ">" that terminates the internal DTD element.

v Source offsets returned by the open source parser classes for the start of internal
DTD elements (for example, in a SAX2 startDTD event handler) refer to the "["
that begins the internal subset. The z/OS specific parser classes return the offset
of the "<" that starts the internal DTD element.

v The open source parser classes provide the ability to query the internal subset of
the DTD using the getInternalSubset API; the z/OS specific parser classes do not
support getInternalSubset.

v The open source parser classes's source offsets do not include any BOM bytes
at the beginning of the XML document (that is, offset 0 is the byte following the
BOM bytes). The z/OS specific parser classes include them (that is, offset 0 is
the first byte of the BOM bytes).

v For a DOM progressive parse, open source parser classes do not store any DTD
internal subset information in the DOM tree. The z/OS specific parser classes will
store PI information if present in the DTD internal subset.

40 XML Toolkit for z/OS User's Guide

v For ENTITY substitution in XML elements, open source parser classes report
both pre and post-substitution character lengths and offset information. The z/OS
specific parser classes report offset information about the pre-substitution text
and character data and length about the post-substitution text.

v The z/OS specific parser classes do not support the getSpecified() API for
namespace prefix attributes. TRUE is always returned.

zSAX2XMLReader class
In order to use the z/OS specific parser classes to parse XML files using SAX2, you
need to create an instance of the zSAX2XMLReader class. You need to use the
z/OS specific zXMLReaderFactory::createXMLReader() method. This will give you
access to the z/OS specific parser classes that will use the z/OS XML System
Services to parse the XML document instead of the open source parser.

Using a zSAX2XMLReader class for a non-validating parse
The example below shows the code required to create an instance of
zSAX2XMLReader that will use the z/OS specific parser classes to do a
non-validating parse.

#include <xercesc/zparsers/zSAX2XMLReader.hpp>
#include <xercesc/zparsers/zXMLReaderFactory.hpp>
#include <xercesc/sax2/DefaultHandler.hpp>
#include <xercesc/util/XMLString.hpp>

#if defined(XERCES_NEW_IOSTREAMS)
#include <iostream>
#else
#include <iostream.h>
#endif

XERCES_CPP_NAMESPACE_USE

int main (int argc, char* args[]) {

try {
XMLPlatformUtils::Initialize();

}
catch (const XMLException& toCatch) {

char* message = XMLString::transcode(toCatch.getMessage());
cout << "Error during initialization! :\n";
cout << "Exception message is: \n"

<< message << "\n";
XMLString::release(&message);
return 1;

}

char* xmlFile = "x1.xml";
zSAX2XMLReader* parser = zXMLReaderFactory::createXMLReader();
parser->setFeature(XMLUni::fgSAX2CoreValidation, false);
parser->setFeature(XMLUni::fgSAX2CoreNameSpaces, true);

DefaultHandler* defaultHandler = new DefaultHandler();
parser->setContentHandler(defaultHandler);
parser->setErrorHandler(defaultHandler);

try {
parser->parse(xmlFile);

}
catch (const XMLException& toCatch) {

char* message = XMLString::transcode(toCatch.getMessage());
cout << "Exception message is: \n"

<< message << "\n";

Chapter 6. How to use z/OS specific parser classes 41

XMLString::release(&message);
return -1;

}
catch (const SAXParseException& toCatch) {

char* message = XMLString::transcode(toCatch.getMessage());
cout << "Exception message is: \n"

<< message << "\n";
XMLString::release(&message);
return -1;

}
catch (...) {

cout << "Unexpected Exception \n" ;
return -1;

}

delete parser;
delete defaultHandler;
return 0;

}

Using a zSAX2XMLReader class for a validating parse
The example below shows the code you need in order to create an instance of
zSAX2XMLReader that will use the z/OS specific parser classes to do a validating
parse. In this case, the OSR has to be explicitly loaded prior to doing the parse
request.

#include <xercesc/zparsers/zSAX2XMLReader.hpp>
#include <xercesc/zparsers/zXMLReaderFactory.hpp>
#include <xercesc/sax2/DefaultHandler.hpp>
#include <xercesc/util/XMLString.hpp>

#if defined(XERCES_NEW_IOSTREAMS)
#include <iostream>
#else
#include <iostream.h>
#endif

XERCES_CPP_NAMESPACE_USE

int main (int argc, char* args[]) {

try {
XMLPlatformUtils::Initialize();

}
catch (const XMLException& toCatch) {

char* message = XMLString::transcode(toCatch.getMessage());
cout << "Error during initialization! :\n";
cout << "Exception message is: \n"

<< message << "\n";
XMLString::release(&message);
return 1;

}

char* xmlFile = "x1.xml";
char* osrFile = "x1.osr";
zSAX2XMLReader* parser = zXMLReaderFactory::createXMLReader();
parser->setFeature(XMLUni::fgSAX2CoreValidation, true);
parser->setFeature(XMLUni::fgXercesSchemaFullChecking, true);
parser->setFeature(XMLUni::fgXercesIdentityConstraintChecking, true);
parser->setFeature(XMLUni::fgSAX2CoreNameSpaces, true);

DefaultHandler* defaultHandler = new DefaultHandler();
parser->setContentHandler(defaultHandler);
parser->setErrorHandler(defaultHandler);

// Load the OSR file into memory

42 XML Toolkit for z/OS User's Guide

try {
loadOSR(osrFile);

}
catch (const OutOfMemoryException&)
{

cout << "Error during OSR load, OutOfMemoryException!" << "\n";
return -1;

}
catch (const XMLException& toCatch) {

char* message = XMLString::transcode(toCatch.getMessage());
cout << "Error during OSR load, Exception message is: \n"

<< message << "\n";
XMLString::release(&message);
return -1;

}

try {
parser->parse(xmlFile);

}
catch (const XMLException& toCatch) {

char* message = XMLString::transcode(toCatch.getMessage());
cout << "Exception message is: \n"

<< message << "\n";
XMLString::release(&message);
return -1;

}
catch (const SAXParseException& toCatch) {

char* message = XMLString::transcode(toCatch.getMessage());
cout << "Exception message is: \n"

<< message << "\n";
XMLString::release(&message);
return -1;

}
catch (...) {

cout << "Unexpected Exception \n" ;
return -1;

}

delete parser;
delete defaultHandler;
return 0;

}

Using a zSAX2XMLReader class for non-validating parse with source
offsets

The example below shows the code required to create an instance of
zSAX2XMLReader that will use the z/OS specific parser classes to do a
non-validating parse, taking advantage of the source offset support.

#include <xercesc/zparsers/zSAX2XMLReader.hpp>
#include <xercesc/zparsers/zXMLReaderFactory.hpp>
#include <xercesc/sax2/DefaultHandler.hpp>
#include <xercesc/util/XMLString.hpp>

#if defined(XERCES_NEW_IOSTREAMS)
#include <iostream>
#else
#include <iostream.h>
#endif

XERCES_CPP_NAMESPACE_USE

int main (int argc, char* args[]) {

try {
XMLPlatformUtils::Initialize();

Chapter 6. How to use z/OS specific parser classes 43

}
catch (const XMLException& toCatch) {

char* message = XMLString::transcode(toCatch.getMessage());
cout << "Error during initialization! :\n";
cout << "Exception message is: \n"

<< message << "\n";
XMLString::release(&message);
return 1;

}

char* xmlFile = "x1.xml";
zSAX2XMLReader* parser = zXMLReaderFactory::createXMLReader();
parser->setFeature(XMLUni::fgSAX2CoreValidation, false);
parser->setFeature(XMLUni::fgSAX2CoreNameSpaces, true);
parser->setFeature(XMLUni::fgXercesCalculateSrcOfs, true);

zSAX2SrcOffsetsHandler handler;
zSAX2SrcOffsetsAdvHandler* advancedHandler = new zSAX2SrcOffsetsAdvHandler;
parser->setContentHandler(&handler);

try {
parser->parse(xmlFile);

}
catch (const XMLException& toCatch) {

char* message = XMLString::transcode(toCatch.getMessage());
cout << "Exception message is: \n"

<< message << "\n";
XMLString::release(&message);
return -1;

}
catch (const SAXParseException& toCatch) {

char* message = XMLString::transcode(toCatch.getMessage());
cout << "Exception message is: \n"

<< message << "\n";
XMLString::release(&message);
return -1;

}

The following is an incomplete event handler class that illustrates how to call the
z/OS specific parser class APIs used to obtain source offset information. It only
shows a constructor, destructor and startElement callback handler and does not
attempt to do anything with the information returned from the APIs.
// ---
// Handlers: Constructors and Destructor
// ---
zSAX2SrcOffsetsHandler::zSAX2SrcOffsetsHandler()
{
}

zSAX2SrcOffsetsHandler::~zSAX2SrcOffsetsHandler()
{
}

// ---
//zSAX2SrcOffsetsHandlers: Start Element Callback Handler
// ---
void zSAX2SrcOffsetsHandler::startElement(

const XMLCh* const uri
, const XMLCh* const localname
, const XMLCh* const qname
, const Attributes& attrs)

{
#if defined (_LP64)
unsigned long nextElementOffset = parser->getSrcOffset();
unsigned long elementStartOffset = parser->getSrcOffsetStart();
unsigned long elemenEndOffset = parser->getSrcOffsetEnd();

44 XML Toolkit for z/OS User's Guide

unsigned long elementTagNameEndOffset = parser->getSrcOffsetNameTagEnd();
#else
unsigned int nextElementOffset = parser->getSrcOffset();
unsigned int elementStartOffset = parser->getSrcOffsetStart();
unsigned int elemenEndOffset = parser->getSrcOffsetEnd();
unsigned int elementTagNameEndOffset = parser->getSrcOffsetNameTagEnd();
#endif
const zAttributes* zattrs = dynamic_cast<const zAttributes*>(&attrs);
for(int i = 0; i < attrs.getLength(); i++)
{

printf(zattrs->getSrcOffsetStart(i)); // offset of starting quote of attribute’s value
printf(zattrs->getSrcOffsetEnd(i); // offset of ending quote of attribute’s value

}
);

.

.

.

.

.
}

zXercesDOMParser class
The zXercesDOMParser class provides the ability to use the z/OS XML System
Services to parse an XML document using the DOM interface.

Using a zXercesDOMParser class for a non-validating parse
The example below shows the code required to create an instance of the
zXercesDOMParser class that will use the z/OS specific parser classes to do a
non-validating parse.

#include <xercesc/zparsers/zXercesDOMParser.hpp>
#include <xercesc/dom/DOM.hpp>
#include <xercesc/sax/HandlerBase.hpp>
#include <xercesc/util/XMLString.hpp>
#include <xercesc/util/PlatformUtils.hpp>

#if defined(XERCES_NEW_IOSTREAMS)
#include <iostream>
#else
#include <iostream.h>
#endif

XERCES_CPP_NAMESPACE_USE

int main (int argc, char* args[]) {

try {
XMLPlatformUtils::Initialize();

}
catch (const XMLException& toCatch) {

char* message = XMLString::transcode(toCatch.getMessage());
cout << "Error during initialization! :\n"

<< message << "\n";
XMLString::release(&message);
return 1;

}

zXercesDOMParser* parser = new zXercesDOMParser();
parser->setValidationScheme(zXercesDOMParser::Val_Never);
parser->setDoNamespaces(true);
ErrorHandler* errHandler = (ErrorHandler*) new HandlerBase();
parser->setErrorHandler(errHandler);

char* xmlFile = "x1.xml";

Chapter 6. How to use z/OS specific parser classes 45

try {
parser->parse(xmlFile);

}
catch (const XMLException& toCatch) {

char* message = XMLString::transcode(toCatch.getMessage());
cout << "Exception message is: \n"

<< message << "\n";
XMLString::release(&message);
return -1;

}
catch (const DOMException& toCatch) {

char* message = XMLString::transcode(toCatch.msg);
cout << "Exception message is: \n"

<< message << "\n";
XMLString::release(&message);
return -1;

}
catch (...) {

cout << "Unexpected Exception \n" ;
return -1;

}

delete parser;
delete errHandler;
XMLPlatformUtils::Terminate();
return 0;

}

Constructing a zDOMBuilder
DOMBuilder is an interface introduced by the W3C DOM Level 3.0 Abstract
Schemas and Load and Save Specification. DOMBuilder provides the "Load"
interface for parsing XML documents and building the corresponding DOM
document tree from various input sources. The zDOMBuilder class extends the
DOMBuilder class.

A zDOMBuilder instance is obtained from the DOMImplementationLS interface by
invoking its createDOMBuilder method. To access the z/OS specific parser classes,
the string passed in on the
DOMImplementationRegistry::getDOMImplementation(const XMLCh *features)
method needs to be the Unicode string “zScanner LS” instead of “LS” . This will
result in your code using the z/OS specific parser classes, which will utilize z/OS
XML System Services to parse the XML document instead of the open source
parser.

Using a zDOMBuilder class for a non-validating parse
The example below shows the code required to create an instance of zDOMBuilder
that will use the new z/OS specific parser classes.

#include <xercesc/dom/DOM.hpp>
#include <xercesc/util/XMLString.hpp>
#include <xercesc/util/PlatformUtils.hpp>
#include <xercesc/zparsers/zDOMBuilder.hpp>

#if defined(XERCES_NEW_IOSTREAMS)
#include <iostream>
#else
#include <iostream.h>
#endif

XERCES_CPP_NAMESPACE_USE

46 XML Toolkit for z/OS User's Guide

int main (int argc, char* args[]) {

try {
XMLPlatformUtils::Initialize();

}
catch (const XMLException& toCatch) {

char* message = XMLString::transcode(toCatch.getMessage());
cout << "Error during initialization! :\n"

<< message << "\n";
XMLString::release(&message);
return 1;

}

static const XMLCh gLS[] = {chLatin_z, chLatin_S, chLatin_c, chLatin_a, chLatin_n, chLatin_n,
chLatin_e, chLatin_r, chSpace, chLatin_L, chLatin_S, chNull};

DOMImplementation *impl = DOMImplementationRegistry::getDOMImplementation(gLS);
zDOMBuilder* parser = ((DOMImplementationLS*)impl)->createDOMBuilder(DOMImplementationLS::MODE_SYNCHRONOUS, 0);

// optionally you can set some features on this builder
if (parser->canSetFeature(XMLUni::fgDOMValidation, false))

parser->setFeature(XMLUni::fgDOMValidation, false);
if (parser->canSetFeature(XMLUni::fgDOMNamespaces, true))

parser->setFeature(XMLUni::fgDOMNamespaces, true);

// optionally you can implement your DOMErrorHandler (e.g. MyDOMErrorHandler)
// and set it to the builder
MyDOMErrorHandler* errHandler = new myDOMErrorHandler();
parser->setErrorHandler(errHandler);

char* xmlFile = "x1.xml";
DOMDocument *doc = 0;

try {
doc = parser->parseURI(xmlFile);

}
catch (const XMLException& toCatch) {

char* message = XMLString::transcode(toCatch.getMessage());
cout << "Exception message is: \n"

<< message << "\n";
XMLString::release(&message);
return -1;

}
catch (const DOMException& toCatch) {

char* message = XMLString::transcode(toCatch.msg);
cout << "Exception message is: \n"

<< message << "\n";
XMLString::release(&message);
return -1;

}
catch (...) {

cout << "Unexpected Exception \n" ;
return -1;

}

parser->release();
delete errHandler;
return 0;

}

Chapter 6. How to use z/OS specific parser classes 47

Using samples for the z/OS specific parser classes
Samples have been provided below to enable use of the z/OS specific parser
classes. The following samples are located in the zsamples directory:

zSAX2Count
This program creates a SAX2XMLReader object that will use z/OS XML
System Services to parse the XML document(s). Upon completion of the
parse, it prints the number of elements, attributes, spaces and characters
found in each XML file.

zSAX2Print
This program creates a SAX2XMLReader object that will use z/OS XML
System Services to parse an XML document. It then prints the data
returned by the various SAX2 handlers for the specified XML file.

zDOMCount
This program invokes DOMBuilder to create a parser object that uses z/OS
XML System Services to parse the input document(s). It then builds the
DOM tree and prints the number of elements found in each XML file.

zDOMPParse
This program demonstrates the progressive parse capabilities of the parser
using z/OS XML System Services to parse an XML document. It does a
scanFirst() call followed by a loop which calls scanNext(). Upon completion
of the scanNext() loop, it reports the number of elements encountered
during the parse.

zDOMPrint
This program invokes the z/OS XML System Services parser to parse the
input document and build the DOM tree. It then utilizes DOMWriter to
serialize the DOM tree.

zMemParse
This program uses the z/OS XML System Services parser to parse a
memory buffer containing XML statements. It reports the number of
elements, attributes, spaces and characters encountered during the parse.

zPParse
This program demonstrates the progressive parse capabilities of the z/OS
XML System Services parser. It does a parseFirst() call followed by a loop
which calls parseNext(). Upon completion of the parseNext() loop, it reports
the number of elements, attribute, spaces, and characters encountered
during the parse.

Rule: These samples are only examples of how to use the specific z/OS parser
classes. You will need to modify your own applications accordingly.

Pre-built versions of the samples for the z/OS UNIX environment are included in the
Toolkit. The process for building and running these samples is the same as for the
open source parser classes in XML Parser, C++ Edition. See Chapter 5, “How to
use the XML Parser, C++ Edition,” on page 25 for more information on this.

Note: When following the instructions in Chapter 5, “How to use the XML Parser,
C++ Edition,” on page 25, make sure to use the zsamples directory in place
of the samples directory. Also, if you do not build the 31-bit zsamples using
XPLINK, then the following environment variable needs to be set in order to
prevent a failure:
export _CEE_RUNOPTS="XPLINK(ON)"

48 XML Toolkit for z/OS User's Guide

|
|
|
|
|

|

Chapter 7. How to use the XSLT Processor, C++ Edition

Samples have been provided to demonstrate the features of the XSLT Processor,
C++ Edition. These samples use simple applications written on top of the SAX,
DOM, and Xalan API's. See “Why XML?” on page 1 for more information on the
APIs. The following samples can be found in the samples directory:

CompileStylesheet
use a compiled stylesheet to perform a series of transformations

DocumentBuilder
programmatically constructs an XML document, applies the foo.xsl
stylesheet to this document, and writes the output to foo.out

ExternalFunctions
implements, installs, and illustrates the usage of three extension functions

ParsedSourceWrappers
performs a transformation with input in the form of a pre-built XercesDOM
or XalanSourceTree

SerializeNodeSet
serializes the node set returned by the application of an XPath expression
to an XML document

SimpleTransform
uses the foo.xsl stylesheet to transform foo.xml, and writes the output to
foo.out

SimpleXPathAPI
uses the XPathEvaluator interface to evaluate an XPath expression from
the specified context node of an XML file and displays the nodeset returned
by the expression

SimpleXPathCAPI
uses the XPathEvaluator C interface to evaluate an XPath expression and
displays the string value returned by the expression

StreamTransform
processes character input streams containing a stylesheet and an XML
document, and writes the transformation output to a character output
stream

TraceListen
trace events during a transformation

TransformToXercesDOM
performs a simple transformation but puts the result in a Xerces
DOMDocument

UseStylesheetParam
set a stylesheet parameter that the stylesheet uses during the
transformation

XalanSplitTransform
reduces the memory usage when transforming large XML documents

XalanTransform
uses the XalanTransformer class and the associated C++ API to apply an
XSL stylesheet file to an XML document file and write the transformation
output to either an output file or to a stream

© Copyright IBM Corp. 2000, 2009 49

|
|

XalanTransformerCallback
returns transformation output in blocks to a callback function, which writes
the output to a file

XPathWrapper
use this sample to find out what a given XPath expression returns from a
given context node in an XML file

Rule: These samples are only examples of how to exploit the XSLT Processor,
C++ Edition. You will need to modify your own applications accordingly.

Pre-built versions of the samples for the z/OS UNIX environment are included in the
Toolkit. These can be used to illustrate XML concepts, validate XML documents,
and validate DTDs and schemas during development. See “Using the sample
applications” on page 50 section for instructions on how to use these pre-built
versions.

Rule: The prebuilt 31-bit samples shipped with the Toolkit are the non-XPLINK
versions. If you want to use the 31-bit XPLINK versions of these samples, you must
build your own copy of them.

The procedures for building and using your built samples differ depending on the
target environment. The procedures for building your samples are outlined in
sections “Building sample applications for the z/OS UNIX Environment” on page 51
and “Building sample applications for the MVS Environment” on page 56. The
procedures for using your built samples are outlined in sections “Using your sample
applications on the z/OS UNIX Environment” on page 54 and “Using your sample
applications on the MVS Environment” on page 59

The XSLT Processor, C++ Edition component is installed in /usr/lpp/ixm/IBM/
xslt4c-1_11 by default. It contains the following sub-directories:

/docs contains online APIs and design documentation

/include
used for building samples

/lib used for running the processor code

/bin used for the 31-bit samples

/bin64 used for the 64-bit samples

In addition to the sub-directories, the Toolkit includes the following data sets:

hlq.SIXLMOD1
used for running the processor code in an MVS environment

hlq.SIXMEXP
used to build applications for an MVS environment

Using the sample applications
Set up an environment variable to point to the location where the XSLT Processor,
C++ Edition component was installed:

export XALANCROOT=/usr/lpp/ixm/IBM/xslt4c-1_11

You also need to set up an environment variable to point to the location where the
XML Parser, C++ Edition component was installed. Here is how you do that:

50 XML Toolkit for z/OS User's Guide

|
|
|

|

|

|

export XERCESCROOT=/usr/lpp/ixm/IBM/xml4c-5_7

Next, type in the following command statements:

export LIBPATH=$XALANCROOT/lib:$XERCESCROOT/lib:$LIBPATH
export PATH=$XALANCROOT/bin:$PATH
(use the $XALANCROOT/bin64 directory for 64-bit samples)

You must now copy the sample files to a temporary directory. Here is how you do
that:

mkdir $HOME/xslsamples
cd $HOME/xslsamples
cp $XALANCROOT/samples/SimpleTransform/foo.* .

You are now set to run the sample applications. For example, to run the
SimpleTransform application, in the $XALANCROOT/samples/SimpleTransform/
directory type the following:

SimpleTransform

This sample application will then use the foo.xsl stylesheet to transform foo.xml,
and write the output to foo.out. The pre-built samples can be run in a z/OS UNIX
command environment.

Rule for running 64-bit samples
In order to run the 64-bit samples, the XSLT Processor, C++ Edition requires the
run-time libraries provided by Language Environment, SCEERUN and SCEERUN2,
to be made available in the program search order. The best way to do this is by
adding the SCEERUN and SCEERUN2 data sets into the LNKLST. If you do not
wish to add SCEERUN and SCEERUN2 to the LNKLST, access SCEERUN and
SCEERUN2 data sets through STEPLIB.

Rule for running 31-bit non-XPLINK samples
In order to run the 31-bit non-XPLINK samples, the XSLT Processor, C++ Edition
requires the run-time library provided by Language Environment, SCEERUN, to be
made available in the program search order. The best way to do this is by adding
SCEERUN data set in the LNKLST. If you do not wish to add SCEERUN to the
LNKLST, access SCEERUN data set through STEPLIB.

Rule for running 31-bit XPLINK samples
In order to run the 31-bit XPLINK samples, the XSLT Processor, C++ Edition
requires the run-time libraries provided by Language Environment, SCEERUN and
SCEERUN2, to be made available in the program search order. The best way to do
this is by adding the SCEERUN and SCEERUN2 data sets into the LNKLST. If you
do not wish to add SCEERUN and SCEERUN2 to the LNKLST, access SCEERUN
and SCEERUN2 data sets through STEPLIB.

z/OS UNIX Environment

Building sample applications for the z/OS UNIX Environment
Next, the system environment must be configured correctly. Doing so requires the
use of the GNU make utility (gmake). To download gmake go to:

Chapter 7. How to use the XSLT Processor, C++ Edition 51

|
|
|

|

|
|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|
|

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty1.html#gmake

After you have downloaded gmake, issue the following command against the install
file:

pax -rzf

This will place the gmake program into the /bin directory (the /bin directory was
created by the pax command). For additional information on using gmake, see the
IBM redbook Open Source Software for OS/390 UNIX, SG24-5944 available online
at:

http://www-1.ibm.com/servers/eserver/zseries/zos/unix/redbook/index.html

Please note that all references to gmake refer to the GNU make utility.

Product files are required to build the XSLT Processor, C++ Edition on z/OS UNIX.
These files and their descriptions are displayed in the following table:

Table 10. Product Files Required to Build Sample XML Applications for z/OS UNIX
Environments

Product file name Product file description

31-bit non-XPLINK product files

libxslt4c.1_11_0.x the definition side-deck that describes the
XSLT Processor, C++ Edition functions and
the variables

libxml4c-5_7_0.x The definition side-deck contained in the lib
directory that describes the XSLT Processor,
C++ Edition external functions and the
variables. This is required in order to bind
application code.

libxml4c-depdom5_7_0.x The definition side-deck that describes the
previously deprecated DOM APIs; it is only
required if you are using these APIs.

31-bit XPLINK product files

libxslt4c.1_11_0.xplink.x The definition side-deck that describes the
XSLT Processor, C++ Edition functions and
the variables. This is required in order to use
XPLINK to bind application code.

libxml4c-5_7_0.xplink.x The definition side-deck contained in the lib
directory that describes the XSLT Processor,
C++ Edition external functions and the
variables. This is required in order to use
XPLINK to bind application code.

libxml4c-depdom5_7_0.xplink.x The definition side-deck that describes the
previously deprecated DOM APIs; it is only
required if you are using these APIs and
XPLINK.

64-bit product files

libxslt4c.1_11_0q.x the definition side-deck that describes the
XSLT Processor, C++ Edition functions and
the variables

52 XML Toolkit for z/OS User's Guide

|
|
|

|
|
|
|
|

|

|

Table 10. Product Files Required to Build Sample XML Applications for z/OS UNIX
Environments (continued)

Product file name Product file description

31-bit non-XPLINK product files

libxml4c5_7_0q.x The definition side-deck contained in the lib
directory that describes the XSLT Processor,
C++ Edition external functions and the
variables. This is required in order to bind
application code.

Rules for invoking the XSLT Processor, C++ Edition in z/OS UNIX
Any application that is to invoke the XSLT Processor, C++ Edition processor under
the z/OS UNIX System Services environment must include libxslt4c.1_11_0q.x and
libxml4c5_7_0q.x for 64-bit, or libxslt4c.1_11_0.x and libxml4c-5_7_0.x for 31-bit
(libxslt4c.1_11_0.xplink.x and libxml4c-5_7_0.xplink.x if using XPLINK) when they
bind. The binder uses the definition side-deck to resolve references to functions and
variables defined in libxslt4c.1_11_0q.dll and libxml4c5_7_0q.dll for 64-bit,
libxslt4c.1_11_0.dll and libxml4c-5_7_0.dll (libxslt4c.1_11_0.xplink.dll and
libxml4c-5_7_0.xplink.dll if using XPLINK) for 31-bit.

If you are using the deprecated DOM APIs, you need to include the
libxml4c-depdom5_7_0.x sidedeck, or for XPLINK applications, the
libxml4c-depdom5_7_0.xplink.x sidedeck.

Now set up an environment variable to point to the location where the XSLT
Processor, C++ Edition component was installed:

export XALANCROOT=/usr/lpp/ixm/IBM/xslt4c-1_11

You also need to set up an environment variable to point to the location where the
XML Parser, C++ Edition component was installed. Here is how you do that:

export XERCESCROOT=/usr/lpp/ixm/IBM/xml4c-5_7

Next, you need to obtain access to a copy of the samples directory to which you
have write access. Unless you are a superuser, you normally will not have write
access to the samples subdirectory that was shipped with the product. In this case,
you will need to do the following:

1. Create a new directory that you have write access to, for example:

cd $HOME
mkdir mysamples

2. Set a new environment variable that contains the full path to this new directory,
as follows:

export XALANCOUT=$HOME/mysamples

3. Copy the samples directory to your directory:

cp -r /usr/lpp/ixm/IBM/xslt4c-1_11/samples $XALANCOUT

Since the XALANCOUT environment variable is set, that copy of the samples
subdirectory will be used. The binary files will be stored in a "bin" subdirectory.

Chapter 7. How to use the XSLT Processor, C++ Edition 53

|

|
|
|
|
|
|
|
|

After you have copied the samples directory, you need to set up environment
variables. This is done through the following sequence:

export CXX=c++
export CXXFLAGS="-2"

If debugging is desired, the -g option can be used instead of the -2 option in the
export CXXFLAGS statement.

The next statement is only required for building 64-bit samples:

export OS390_BIT64=1

The next statement is only required for building 31-bit XPLINK samples:

export OS390_XPLINK=1

Next, you need to set up some information for the 31-bit non-XPLINK Standard C++
Library sidedeck. Here is how you do that:

Note: The below export statement is not required if using 31-bit XPLINK or 64-bit;
the contents of the _CXX_PSYSIX variable are loaded by default when using
XPLINK. Also, if _CXX_PSYSIX was previously set and you are now building
a 31-bit XPLINK or 64-bit version, unset the variable.

For z/OS 1.9 or higher releases: export _CXX_PSYSIX=\
"{_PLIB_PREFIX}.SCEELIB(C128N)":\
"{_CLIB_PREFIX}.SCLBSID(IOSTREAM,COMPLEX)"

For z/OS 1.8 and earlier releases:
export _CXX_PSYSIX=\
"{_PLIB_PREFIX}.SCEELIB(C128N)":\
"{_CLIB_PREFIX}.SCLBSID(IOC,IOSTREAM,COMPLEX,COLL)"

where {_PLIB_PREFIX} and {_CLIB_PREFIX} are set to a default (for example,
CEE and CBC, respectively) during custom installation, or using user overrides.

Rule: All three segments of the above example must be entered on the same
command line.

Finally, to build the samples, type the following in the directory in which you created
the Makefiles:

export _CXX_CXXSUFFIX=cpp
export _CXX_CCMODE=1
cd $XALANCOUT/samples
gmake

After issuing the gmake command, the build process is completed. The samples are
built into the $XALANCOUT/bin directory.

Using your sample applications on the z/OS UNIX Environment
Library files are required to run XSLT Processor, C++ Edition on z/OS UNIX. These
files can be found in the $XALANCROOT/lib and $XERCESCROOT/lib directories.
The file names and their descriptions are displayed in the following table:

54 XML Toolkit for z/OS User's Guide

|

|

|

|

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|

Table 11. Library Files Required to Run Sample XML Applications on z/OS UNIX

Library File Name Library File Description

31-bit non-XPLINK library files

libxslt4c.1_11_0.dll,
libxslt4cMessages.1_11_0.dll

XSLT Processor, C++ Edition library files

libxml4c-5_7_0.dll XML Parser, C++ Edition library file

libxml4c-depdom5_7_0.dll library file for the previously deprecated DOM
API

libicuuc38.1.dll, libicudata_stub38.1.dll,
libicudata38.1.dll, libicui18n38.1.dll

ICU library files

31-bit XPLINK library files

libxslt4c.1_11_0.xplink.dll,
libxslt4cMessages.1_11_0.xplink.dll

XSLT Processor, C++ Edition library files

libxml4c-5_7_0.xplink.dll XML Parser, C++ Edition library file

libxml4c-depdom5_7_0.xplink.dll library file for the previously deprecated DOM
API

libicudata38.1.xplink.dll,
libicudata_stub38.1.xplink.dll,
libicuuc38.1.xplink.dll, libicui18n38.1.xplink.dll

ICU library files

64-bit library files

libxslt4c.1_11_0q.dll,
libxslt4cMessages.1_11_0q.dll

XSLT Processor, C++ Edition library files

libxml4c5_7_0q.dll XML Parser, C++ Edition library file

libicuuc38.1q.dll, libicudata38q.1q.x,
libicui18n38.1q.dll

ICU library files

Before running the samples, you must ensure that several environment variables
are set properly. First, set up an environment variable to point to the location where
the XSLT Processor, C++ Edition component was installed:

export XALANCROOT=/usr/lpp/ixm/IBM/xslt4c-1_11

You also need to set up an environment variable to point to the location where the
XML Parser, C++ Edition component was installed. Here is how you do that:

export XERCESCROOT=/usr/lpp/ixm/IBM/xml4c-5_7

Then type in the following command statements:

export LIBPATH=$XALANCROOT/lib:$XERCESCROOT/lib:$LIBPATH
export ICU_DATA=$XERCESCROOT/lib

Then set the PATH to locate the samples you have just built:

export PATH=$XALANCOUT/bin:$PATH

You are now set to run your sample applications. For example, to run the
SimpleTransform application from the $XALANCOUT/bin directory, type the
following command statement:

Chapter 7. How to use the XSLT Processor, C++ Edition 55

||

||

|

|
|
|

||

||
|

|
|
|

|

|
|
|

||

||
|

|
|
|

|

|

|
|
|

||

|
|
|

|

cd $XALANCOUT/samples/SimpleTransform
SimpleTransform

This sample application will then use the foo.xsl stylesheet to transform foo.xml,
and write the output to foo.out.

MVS Environment

Building sample applications for the MVS Environment
Before being able to build the provided samples, the system environment must be
configured correctly. Doing so requires the use of the GNU make utility (gmake). To
download gmake go to:

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty1.html#gmake

After you have downloaded gmake, issue the following command against the install
file:

pax -rzf

This will place the gmake program into the /bin directory (the /bin directory was
created by the pax command). For additional information on using gmake, see the
IBM redbook Open Source Software for OS/390 UNIX, SG24-5944 available online
at:

http://www-1.ibm.com/servers/eserver/zseries/zos/unix/redbook/index.html

Please note that all references to gmake refer to the GNU make utility.

Product files are required to build the XSLT Processor, C++ Edition on MVS. These
files and their descriptions are displayed in the following table:

Table 12. Product Files Required to Build Sample XML Applications for MVS Environments

Product file name Product file description Data set name

files in the include directory C++ header files contained in
the include directory. These
are required in order to
compile application code.

31-bit non-XPLINK product files

IXMLC21X Definition side-deck that
describes the XSLT
Processor, C++ Edition
functions and variables.

hlq.SIXMEXP

IXM4C57X Definition side-deck that
describes the XML Parser,
C++ Edition functions and the
variables.

hlq.SIXMEXP

IXMDD57X Definition side-deck that
describes the previously
deprecated DOM APIs; it is
only required if you are using
these APIs.

hlq.SIXMEXP

31-bit XPLINK product files

56 XML Toolkit for z/OS User's Guide

|
|
|
|

|
|
|
|

Table 12. Product Files Required to Build Sample XML Applications for MVS
Environments (continued)

Product file name Product file description Data set name

IXMLX21X Definition side-deck that
describes the XSLT
Processor, C++ Edition
functions and variables.This
is required in order to use
XPLINK to bind application
code.

hlq.SIXMEXP

IXM4C7AX XPLINK definition side-deck
that describes the XML
Parser, C++ Edition functions
and the variables. This is
required in order to use
XPLINK to bind application
code.

hlq.SIXMEXP

IXMDD7AX Definition side-deck that
describes the previously
deprecated DOM APIs; it is
only required if you are using
these APIs and XPLINK.

hlq.SIXMEXP

64-bit product files

IXMLQ21X Definition side-deck that
describes the XSLT
Processor, C++ Edition
functions and variables.

hlq.SIXMEXP

IXM4C7QX Definition side-deck that
describes the XML Parser,
C++ Edition functions and the
variables.

hlq.SIXMEXP

Rule: Any 64-bit application that is to invoke the XSLT Processor, C++ Edition
parser under the native MVS environment must include the IXMLQ21X and
IXM4C7QX definition side-decks when they bind. The binder uses the
definition side-decks to resolve references to functions and variables defined
in the IXMLQ21 and IXM4C7Q. Any 31-bit non-XPLINK application that is to
invoke the XSLT Processor, C++ Edition parser under the native MVS
environment must include the IXMLC21X and IXM4C57X definition
side-decks when they bind. The binder uses the definition side-decks to
resolve references to functions and variables defined in the IXMLC21 and
IXM4C57. Any XPLINK application that is to invoke the XSLT Processor, C++
Edition parser under the native MVS environment must include the
IXMLX21X and IXM4C7AX definition side-decks when they bind. The binder
uses the definition side-decks to resolve references to functions and
variables defined in the IXMLX21 and IXM4C7A.

To be able to run the sample applications, you must first allocate a data set to hold
the executables. If you have already allocated a data set for XML Parser, C++
Edition, skip this step. The following is an example of a data set allocation:

userid.SAMPLES.rel.LOAD, 500 tracks on 3390, Record format:U,
Record Length: 0, Block size: 32760, ORG: PDSE,
Directory blocks: 0

Chapter 7. How to use the XSLT Processor, C++ Edition 57

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

Rule: If you are building samples from multiple releases, you will need a unique
PDSE for each release, for example: SAMPLES.V1100 .LOAD for samples
from Toolkit V1.10.0 and SAMPLES.V190 .LOAD for samples from Toolkit
V1.9.0.

Next, you must ensure that several environment variables are set properly. First, set
up an environment variable to point to the location where the XSLT Processor, C++
Edition component was installed:

export XALANCROOT=/usr/lpp/ixm/IBM/xslt4c-1_11

You also need to set up an environment variable to point to the location where the
XML Parser, C++ Edition component was installed. Here is how you do that:

export XERCESCROOT=/usr/lpp/ixm/IBM/xml4c-5_7

Then, you need to obtain access to a copy of the samples directory to which you
have write access. Unless you are a superuser, you normally will not have write
access to the samples subdirectory that was shipped with the product. In this case,
you will need to do the following:

1. Create a new directory that you have write access to, for example:

cd $HOME
mkdir mysamples

2. Set a new environment variable that contains the full path to this new directory,
as follows:

export XALANCOUT=$HOME/mysamples

3. Copy the samples directory to your directory:

cp -r /usr/lpp/ixm/IBM/xslt4c-1_11/samples $XALANCOUT

Since the XALANCOUT environment variable is set, that copy of the samples
subdirectory will be used. The binary files are stored in the MVS data set pointed to
by the LOADMOD environment variable.

After you have copied the samples directory, you need to set up environment
variables. This is done through the following sequence:

export LOADMOD=userid.SAMPLES.rel.LOAD
export LOADEXP=hlq.SIXMEXP
export OS390BATCH=1
export CXX=c++
export CXXFLAGS="-2"

If debugging is desired, the -g option can be used instead of the -2 option in the
export CXXFLAGS statement.

The next statement is only required for building 64-bit samples:

export OS390_BIT64=1

The next statement is only required if you are building 31-bit XPLINK samples:

export OS390_XPLINK=1

58 XML Toolkit for z/OS User's Guide

|

|

|

|

Next, you need to set up some information for the 31-bit non-XPLINK Standard C++
Library sidedeck. Here is how you do that:

Note: The below export statement is not required if using XPLINK or 64-bit; the
contents of the _CXX_PSYSIX variable are loaded by default when using
XPLINK. Also, if _CXX_PSYSIX was previously set and you are now building
an XPLINK version, unset the variable.

For z/OS 1.9 or higher releases: export _CXX_PSYSIX=\
"{_PLIB_PREFIX}.SCEELIB(C128N)":\
"{_CLIB_PREFIX}.SCLBSID(IOSTREAM,COMPLEX)"

For z/OS 1.8 and earlier releases:
export _CXX_PSYSIX=\
"{_PLIB_PREFIX}.SCEELIB(C128N)":\
"{_CLIB_PREFIX}.SCLBSID(IOC,IOSTREAM,COMPLEX,COLL)"

where {_PLIB_PREFIX} and {_CLIB_PREFIX} are set to a default (for example,
CEE and CBC, respectively) during custom installation, or using user overrides.

Rule:: All three segments of the above example must be entered on the same
command line.

You are now ready to build the samples. The following sequence shows how to
build the samples:

export _CXX_CXXSUFFIX=cpp
export _CXX_XSUFFIX_HOST=SIXMEXP
export _CXX_CCMODE=1
gmake

After you have issued the gmake command, the build process is now completed.
The built samples are placed into the userid.SAMPLES.rel.LOAD data set.

Using your sample applications on the MVS Environment
Library files are required to run XSLT Processor, C++ Edition on MVS. The following
table is a list of library files required, a short description of the files, and the data
set names of where these files are located.

Table 13. Library Files Required to Run Sample XML Applications on MVS

Library file name Library file description Library data set name

31-bit non-XPLINK library files

IXMLC21 XSLT Processor, C++ Edition
library file

hlq.SIXMLOD1

IXMMSG21 XSLT Processor, C++ Edition
message handling

hlq.SIXMLOD1

IXM4C57 XML Parser, C++ Edition
library file

hlq.SIXMLOD1

IXMDD57 previously deprecated DOM
API library file

hlq.SIXMLOD1

IXMI38UC ICU library file hlq.SIXMLOD1

IXMI38DA ICU library file hlq.SIXMLOD1

IXMI38D1 ICU library file hlq.SIXMLOD1

IXMI38IN ICU library file hlq.SIXMLOD1

Chapter 7. How to use the XSLT Processor, C++ Edition 59

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|

|
|

||

|||

|

||
|
|

||
|
|

||
|
|

||
|
|

|||

|||

|||

|||

Table 13. Library Files Required to Run Sample XML Applications on MVS (continued)

Library file name Library file description Library data set name

64-bit library files

IXMLQ21 XSLT Processor, C++ Edition
library file

hlq.SIXMLOD1

XSLT Processor, C++ Edition
message handling

hlq.SIXMLOD1

IXM4C7Q XML Parser, C++ Edition
library file

hlq.SIXMLOD1

IXMI38QC ICU library file hlq.SIXMLOD1

IXMI38QA ICU library file hlq.SIXMLOD1

IXMI38QN ICU library file hlq.SIXMLOD1

31-bit XPLINK library files

IXMLX21 XSLT Processor, C++Edition
library file

hlq.SIXMLOD1

IXMMXG21 XSLT Processor, C++ Edition
message handling

hlq.SIXMLOD1

IXM4C7A XML Parser, C++ Edition
library file

hlq.SIXMLOD1

IXMDD7A previously deprecated DOM
API library file

hlq.SIXMLOD1

IXMI38XC ICU library file hlq.SIXMLOD1

IXMI38XA ICU library file hlq.SIXMLOD1

IXMI38X1 ICU library file hlq.SIXMLOD1

IXMI38XN ICU library file hlq.SIXMLOD1

Before you run the samples, you must make sure that you have access to the
library, SIXMLOD1. You can ask your system programmer to install SIXMLOD1 in
LNKLST. If the SIXMLOD1 data set cannot be placed in LNKLST, you can STEPLIB
the data set for each application that requires it. You can invoke the samples from
TSO or a JCL job. For example, you can submit the following JCL to run
TRACELSN.

//USERJOB JOB MSGLEVEL=(1,1),CLASS=A
//TEST1 EXEC PGM=TRACELSN,
//* HFS file input
// PARM=’/-tt’
//STEPLIB DD DSN=hlq.SIXMLOD1,DISP=SHR
// DD DSN=userid.SAMPLES.rel.LOAD,DISP=SHR

60 XML Toolkit for z/OS User's Guide

|

|||

|

||
|
|

||
|
|

||
|
|

|||

|||

|||

|

||
|
|

||
|
|

||
|
|

||
|
|

|||

|||

|||

|||
|

Chapter 8. How to use the XML Toolkit command line utilities

How to use the XSLT Processor, C++ Edition command line utility
To perform a transformation, you can call the XSLT Processor, C++ Edition from the
command line. Xalan is a simple executable providing a command-line interface for
performing XSLT transformations .The following describes how you can use Xalan
to perform transformations:

1. Set XALANCROOT to be /usr/lpp/ixm/IBM/xslt4c-1_11

2. Set XERCESCROOT to be /usr/lpp/ixm/IBM/xml4c-5_7

3. Set the PATH to include $XALANCROOT/bin

4. Set the LIBPATH to include $XALANCROOT/lib:$XERCESCROOT/lib

Then from the command line, type the following:

Xalan

or

Xalan -?

to show all the options. The following is an example of the Xalan command line:

Xalan -o foo.out
$XALANCROOT/samples/SimpleTransform/foo.xml
$XALANCROOT/samples/SimpleTransform/foo.xsl

Rule:: All three segments of the above example must be entered on the same
command line.

Here is a sample job for the Xalan command (IXMXAL21):

//XALAN1 JOB REGION=0M,NOTIFY=&SYSUID
//STEP1 EXEC PGM=IXMXAL21,
// PARM=’/-e ibm-1047-s390 -o DD:OUTFILE DD:INXML DD:INXSL’
//STEPLIB DD DSN=hlq.SIXMLOD1,DISP=SHR
//INXML DD DSN=USER1.FOO.XML,DISP=SHR
//INXSL DD DSN=USER1.FOO.XSL,DISP=SHR
//OUTFILE DD DSN=USER1.FOO.OUT,DISP=SHR
//*

Here is a sample job for the 64-bit Xalan command (IXMXAQ21):

//XALAN2 JOB REGION=0M,NOTIFY=&SYSUID
//STEP1 EXEC PGM=IXMXAQ21,
// PARM=’/-e ibm-1047-s390 -o DD:OUTFILE DD:INXML DD:INXSL’
//STEPLIB DD DSN=hlq.SIXMLOD1,DISP=SHR
//INXML DD DSN=USER1.FOO.XML,DISP=SHR
//INXSL DD DSN=USER1.FOO.XSL,DISP=SHR
//OUTFILE DD DSN=USER1.FOO.OUT,DISP=SHR
//*

The following table lists the flags and arguments the Xalan executable can take (the
flags are case insensitive) :

© Copyright IBM Corp. 2000, 2009 61

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

Table 14. Flags and Arguments for the Xalan Executable

-a (Use stylesheet processing instruction, not the stylesheet argument)

-e encoding (Force the specified encoding for the output)

-i integer (Indent the specified amount)

-m (Omit the META tag in HTML output)

-o filename (Write transformation result to this file (rather than to the console))

-p name expr (Set a stylesheet parameter with this expression)

-u name expr (Disable escaping of URLs in HTML output)

-v (Validate the XML source document)

- (A dash as the 'source' argument reads from stdin. A dash as the 'stylesheet' argument
reads from stdin. ('-' cannot be used for both arguments.))

-?(Show all options)

There is another XSLT Processor, C++ Edition command line utility available called
testXSLT. Like Xalan, this command line utility can perform transformations.
However, unlike Xalan, it has additional options which can be used to help debug
stylesheets during development. The following describes how you can use testXSLT
to perform transformations:

1. Set XALANCROOT to be /usr/lpp/ixm/IBM/xslt4c-1_11

2. Set XERCESCROOT to be /usr/lpp/ixm/IBM/xml4c-5_7

3. Set the PATH to include $XALANCROOT/bin

4. Set the LIBPATH to include $XALANCROOT/lib:$XERCESCROOT/lib

You can now call the testXSLT executable with the appropriate flags and arguments
or enter

testXSLT -h

to show all the options. The following command line, for example, includes the -IN,
-XSL, and-OUT flags with their accompanying arguments; the XML source
document, the XSL stylesheet, and the output file:

testXSLT -IN $XALANCROOT/samples/SimpleTransform/foo.xml
-XSL $XALANCROOT/samples/SimpleTransform/foo.xsl
-OUT foo.out

Rule:: All three segments of the above example must be entered on the same
command line.

Also, here is a sample job for the testXSLT command (IXMTST21):

//TSTXSLT1 JOB REGION=0M,NOTIFY=&SYSUID
//STEP1 EXEC PGM=IXMTST21
// PARM=’/-IN FILE:////FOO.XML -XSL FILE:////FOO.XSL -OUT FOO.OUT’
//STEPLIB DD DSN=hlq.SIXMLOD1,DISP=SHR,
//*

Here is a sample job for the 64-bit testXSLT command (IXMTSQ21):

//TSTXSLT2 JOB REGION=0M,NOTIFY=&SYSUID
//STEP1 EXEC PGM=IXMTSQ21
// PARM=’/-IN FILE:////FOO.XML -XSL FILE:////FOO.XSL -OUT FOO.OUT’
//STEPLIB DD DSN=hlq.SIXMLOD1,DISP=SHR,
//*

62 XML Toolkit for z/OS User's Guide

|

The following table lists the flags and arguments the testXSLT executable can take
(the flags are case sensitive) :

Table 15. Flags and Arguments for the testXSLT Executable

-in inputxmlurl

-xsl xsltransformationurl

-out outputfilename

-h(Display list of command line options)

-? (Display list of command line options)

-v (Version info)

-qc (Quiet Pattern Conflicts Warnings)

-q (Quiet Mode)

-indent (Number of spaces to indent each level in output tree — default is 0)

-validate (Validate the XSL and XML input — default is not to validate)

-tt (Trace the templates as they are being called)

-tg (Trace each result tree generation event)

-ts (Trace each selection event)

-ttc (Trace the template children as they are being processed)

-xml (Use XML formatter and add XML header)

-nh (Don't write XML header) *The -XML flag must be set before use

-html (Use HTML formatter)

-noindent (turns off HTML indenting) *The -HTML flag must be set before use

-stripcdata (Strip CDATA sections of their brackets, but do not escape) *The -XML or
-HTML flag must be set before use

-escapecdata (Strip CDATA sections of their brackets, and escape) *The -XML or -HTML
flag must be set before use

-text (Use simple Text formatter)

-dom (Test for well-formed output — format to DOM then to XML for output)

-xst (Format to Xalan source tree, then to XML for output)

-xd (Use Xerces DOM instead of Xalan source tree)

-de (Disable built-in extension functions)

-en (Specify the namespace URI for Xalan extension functions; the default is
http://xml.apache.org/xslt)

-param name expression (Set a stylesheet parameter)

Chapter 8. How to use the XML Toolkit command line utilities 63

64 XML Toolkit for z/OS User's Guide

Chapter 9. Where to go for more information

For more information on XML Toolkit for z/OS, visit the XML Toolkit Web site at:
http://www.ibm.com/servers/eserver/zseries/software/xml/

For more information on z/OS XML System Services, visit the z/OS XML System
Services Web site at:
http://www.ibm.com/servers/eserver/zseries/zos/xml/

For additional information on the Apache XML project, visit the Apache Web site at:
http://xml.apache.org/

There are also two redbooks that you may find informative:

v Using XML on z/OS and OS/390 for Application Integration, which contains
information on how to integrate XML technology with business applications on
z/OS. This document can be accessed from the following link:
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/
sg246285.html?Open

v XML on z/OS and OS/390: Introduction to a Service-Oriented Architecture, which
provides a general introduction to the XML Toolkit in the first half, followed by a
comprehensive introduction to services–oritented architecture (SOA) and Web
Services. This document can be accessed from the following link:
http://www.redbooks.ibm.com/redbooks/pdfs/sg246826.pdf

© Copyright IBM Corp. 2000, 2009 65

http://www.ibm.com/servers/eserver/zseries/software/xml/
http://www.ibm.com/servers/eserver/zseries/zos/xml/
http://xml.apache.org/
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246285.html?Open
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246285.html?Open
http://www.redbooks.ibm.com/redbooks/pdfs/sg246826.pdf

66 XML Toolkit for z/OS User's Guide

Appendix A. Building samples for native MVS using JCL

Building XML Parser, C++ Edition samples for native MVS using JCL
The samples for the XML Parser, C++ Edition, which are included in the XML Toolkit
for z/OS (XML Toolkit), reside in the product HFS. They may be compiled and
linked into either an HFS or into a PDSE data set depending upon your preference.
However, the instructions provided only deal with building the samples from the
HFS using the gmake utility under z/OS UNIX System Services (z/OS UNIX).
Alternatively, it is possible to copy the sample C++ source code and header files to
PDSE data sets, and compile and link-edit them from TSO using JCL instead of
using gmake from z/OS UNIX. All of the header files needed from the XML Toolkit
will still have to be picked up out of the product HFS because of their long names
and hierarchical structure.

In order to illustrate an application whose source code resides in data sets, we will
use the source and header files for the SAXCount sample which reside in the
/usr/lpp/ixm/IBM/xml4c-5_7/samples/SAXCount directory and copy them to data
sets.

You first need to allocate the following PDSE data sets:
[userid].BATCH.CPP -- recfm=FB, lrecl=240, blksize=12960
[userid].BATCH.HPP -- recfm=FB, lrecl=240, blksize=12960
[userid].BATCH.JCL -- recfm=FB, lrecl=80, blksize=12960
[userid].BATCH.OBJ -- recfm=FB, lrecl=80, blksize=12960
[userid].BATCH.LOAD -- recfm=U, lrecl=0, blksize=32760

Then you need to copy the SAXCount.cpp and SAXCountHandlers.cpp files to
the[userid].BATCH.CPP PDSE. Since the member names in a PDSE may not
exceed 8 characters, you will need to rename the SAXCountHandlers.cpp part to
SAXCONTH. For SAXCount.cpp, you can use a member name of SAXCOUNT.
Since files in the HFS can have more than 80 byte records in them, a logical record
length of 240 is used here to avoid truncating any code.

The corresponding header files (SAXCount.hpp and SAXCountHandlers.hpp) also
need to be copied to the [userid].BATCH.HPP PDSE. Use SAXCONTH for the
member name for the SAXCountHandlers.hpp member here too.

Once you have copied all of these files, you need to edit the SAXCOUNT member
of the [userid].BATCH.HPP PDSE and change the following line:
#include "SAXCountHandlers.hpp"

to
#include "SAXConth.hpp"

This now refers to the 8 character name we copied the header file to in the PDSE.
The next step is to copy the following JCL to the [userid].BATCH.JCL PDSE. This
JCL will compile the SAXCOUNT and SAXCONTH members and store the object
files in [userid].BATCH.OBJ.
//SAXCOMP JOB MSGLEVEL=(1,1),REGION=0M,NOTIFY=&SYSUID.
//JOBLIB DD DSNAME=SYS1.CEE.SCEERUN,DISP=SHR
// DD DSNAME=SYS1.CEE.SCEERUN2,DISP=SHR
// DD DSNAME=SYS1.CBC.SCCNCMP,DISP=SHR
//STEP1 EXEC PGM=CCNDRVR,PARM=’/CXX OPTFILE(DD:OPTS),OBJ,LIST’
//OPTS DD *

LANGLVL(EXTENDED)

© Copyright IBM Corp. 2000, 2009 67

NOSEARCH SEARCH(
/usr/lpp/ixm/IBM/xml4c-5_7/include/,
//’[userid].BATCH.+’,
//’SYS1.CEE.SCEEH.+’,
//’SYS1.CBC.SCLBH.+’)

DEFINE(OS390=1)
DEFINE(_OPEN_THREADS=1)
DEFINE(_XOPEN_SOURCE_EXTENDED=1)

/*
//SYSLIN DD DSNAME=&SYSUID..BATCH.OBJ(SAXCOUNT),DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSIN DD DSNAME=&SYSUID..BATCH.CPP(SAXCOUNT),DISP=SHR
//SYSUT1 DD DUMMY
/*
//STEP2 EXEC PGM=CCNDRVR,PARM=’/CXX OPTFILE(DD:OPTS),OBJ,LIST’
//OPTS DD *

LANGLVL(EXTENDED)
NOSEARCH SEARCH(

/usr/lpp/ixm/IBM/xml4c-5_7/include/,
//’[userid].BATCH.+’,
//’SYS1.CEE.SCEEH.+’,
//’SYS1.CBC.SCLBH.+’)

DEFINE(OS390=1)
DEFINE(_OPEN_THREADS=1)
DEFINE(_XOPEN_SOURCE_EXTENDED=1)

/*
//SYSLIN DD DSNAME=&SYSUID..BATCH.OBJ(SAXCONTH),DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSIN DD DSNAME=&SYSUID..BATCH.CPP(SAXCONTH),DISP=SHR
//SYSUT1 DD DUMMY
/*

In this JCL, if you allocated the data sets with your TSO userid and run from that
ID, you can leave "&SYSUID" as the high-level qualifier. In the compiler options
(under the OPTS DD statement), you need to change [userid] to the high-level
qualifier of the [userid].BATCH.HPP data set. If your system does not use the
“SYS1” prefix on the CEE.SCEEH and CBC.SCLBH data sets, you need to remove
that qualifier as well. What this SEARCH option does is instruct the compiler to first
look in /usr/lpp/ixm/IBM/xml4c-5_7/include/ for header files, then in the
[userid].BATCH.HPP data set, and so on and so forth.

The options could actually be stored in a data set and that data set name used on
the OPTS DD statement, but the options are shown here to make the example
complete. You can submit this job and it will create the SAXCOUNT and
SAXCONTH object files in the [userid].BATCH.OBJ PDSE.

The next step is to link-edit (bind) these object files into an executable file. You can
use the following JCL to accomplish this:
//SAXBIND JOB MSGLEVEL=(1,1),REGION=0M,NOTIFY=&SYSUID.
//BIND1 EXEC PGM=IEWL,PARM=’OPTIONS=OPTS’
//OPTS DD *

AMODE=31,RMODE=ANY
DYNAM=DLL,ALIASES=NO,UPCASE=NO,
LIST=NO,MAP=NO,XREF=NO,MSGLEVEL=4,
REUS=RENT,EDIT=YES,AC=0,CALL=YES,CASE=MIXED

/*
//SYSLIB DD DISP=SHR,DSN=SYS1.CEE.SCEELKEX
// DD DISP=SHR,DSN=SYS1.CEE.SCEELKED
// DD DISP=SHR,DSN=SYS1.CEE.SCEECPP
// DD DISP=SHR,DSN=SYS1.CBC.SCLBSID
//SYSLIB1 DD DISP=SHR,DSN=SYS1.SIXMEXP
//SYSLIB2 DD DISP=SHR,DSN=&SYSUID..BATCH.OBJ
//SYSLMOD DD DISP=SHR,DSN=&SYSUID..BATCH.LOAD

68 XML Toolkit for z/OS User's Guide

//SYSDEFSD DD DUMMY
//SYSPRINT DD SYSOUT=A
//SYSLIN DD *

INCLUDE SYSLIB(IOSTREAM)
INCLUDE SYSLIB(COMPLEX)
INCLUDE SYSLIB1(IXM4C57X)
INCLUDE SYSLIB2(SAXCOUNT)
INCLUDE SYSLIB2(SAXCONTH)
ENTRY CEESTART
NAME SAXCOUNT(R) RC=0

/*

In this JCL, you can also leave “&SYSUID” there as long as you are running this
from your TSO ID and it matches the high-level qualifier you allocated these data
sets under. On the SYSLIB DD statements, if “SYS1” is not the high-level qualifier
for these data sets, you will need to remove or replace that. The SYSLIB1 DD
statement assumes the side-decks for the XML Toolkit were installed as
recommended and they are in SYS1.SIXMEXP. You can submit this JCL, and it should
link-edit the SAXCOUNT and SAXCONTH object files into a single executable file
called SAXCOUNT in [userid].BATCH.LOAD.

If you want to execute the SAXCOUNT executable, you can use the following JCL:
//SAXCOUNT JOB MSGLEVEL=1,REGION=0M,NOTIFY=&SYSUID.
//JOBLIB DD DSN=SYS1.SIXMLOD1,DISP=SHR
// DD DSN=&SYSUID..BATCH.LOAD,DISP=SHR
//TEST1 EXEC PGM=SAXCOUNT,
// PARM=’//usr/lpp/ixm/IBM/xml4c-5_7/samples/data/personal.xml’
/*

This JCL assumes that the XML Toolkit DLLs were installed as recommended to the
SYS1.SIXMLOD1 data set.

Building XSLT Processor, C++ Edition samples for native MVS using
JCL

The samples for the XSLT Processor, C++ Edition, may also be built using JCL.
This is very similar to the process for building the XML Parser, C++ Edition
samples. You should review that section first. You will need to allocate the same
MVS data sets. For the XSLT Processor we will use the SimpleTransform sample
as an example. This resides in the /usr/lpp/ixm/IBM/xslt4c-1_11/samples/
SimpleTransform directory.

The first thing you need to do is copy the SimpleTransform.cpp file to the
[userid].BATCH.CPP PDSE. Since the member names in a PDSE may not exceed 8
characters, you will need to rename the SimpleTransform.cpp part to SMPLTRNS.

The corresponding header file (XalanMemoryManagerImpl.hpp) also needs to be
copied to the [userid].BATCH.HPP PDSE. Use XALANMMI for the 8 character
member name.

Once you have copied all of these files you need to edit the SMPLTRNS member of
the [userid].BATCH.CPP PDSE and change the following line:
#include "XalanMemoryManagerImpl.hpp"

to
#include "XalanMMI.hpp"

Appendix A. Building samples for native MVS using JCL 69

This is so that this refers to the 8 character name we copied this header file to in
the PDSE. The next step is to copy the following JCL to the [userid].BATCH.JCL
PDSE. This JCL will compile the SMPLTRNS member and store the object file in
[userid].BATCH.OBJ.
//SMPTCOMP JOB MSGLEVEL=(1,1),REGION=0M,NOTIFY=&SYSUID.
//JOBLIB DD DSNAME=SYS1.CEE.SCEERUN,DISP=SHR
// DD DSNAME=SYS1.CEE.SCEERUN2,DISP=SHR
// DD DSNAME=SYS1.CBC.SCCNCMP,DISP=SHR
//STEP1 EXEC PGM=CCNDRVR,PARM=’/CXX OPTFILE(DD:OPTS),OBJ,LIST’
//OPTS DD *

LANGLVL(EXTENDED)
NOSEARCH SEARCH(./,

/usr/lpp/ixm/IBM/xml4c-5_7/include/,
/usr/lpp/ixm/IBM/xslt4c-1_11/include/,
/usr/lpp/ixm/IBM/xslt4c-1_11/include/xalanc/Include/,
/usr/lpp/ixm/IBM/xslt4c-1_11/include/xalanc/XSLT,
//’[userid].BATCH.+’,
//’SYS1.CEE.SCEEH.+’,
//’SYS1.CBC.SCLBH.+’)

DEFINE(OS390=1)
DEFINE(_OPEN_THREADS=1)
DEFINE(_XOPEN_SOURCE_EXTENDED=1)

/*
//SYSLIN DD DSNAME=&SYSUID..BATCH.OBJ(SMPLTRNS),DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSIN DD DSNAME=&SYSUID..BATCH.CPP(SMPLTRNS),DISP=SHR
//SYSUT1 DD DUMMY
/*

The next step is to link-edit (bind) this object file into an executable file. You can
use the following JCL to accomplish this:
//SMPTBIND JOB MSGLEVEL=(1,1),REGION=0M,NOTIFY=&SYSUID.
//BIND1 EXEC PGM=IEWL,PARM=’OPTIONS=OPTS’
//OPTS DD *

AMODE=31,RMODE=ANY
DYNAM=DLL,ALIASES=NO,UPCASE=NO,
LIST=NO,MAP=NO,XREF=NO,MSGLEVEL=4,
REUS=RENT,EDIT=YES,AC=0,CALL=YES,CASE=MIXED

/*
//SYSLIB DD DISP=SHR,DSN=SYS1.CEE.SCEELKEX
// DD DISP=SHR,DSN=SYS1.CEE.SCEELKED
// DD DISP=SHR,DSN=SYS1.CEE.SCEECPP
// DD DISP=SHR,DSN=SYS1.CEE.SCEELIB
// DD DISP=SHR,DSN=SYS1.CBC.SCLBSID
//SYSLIB1 DD DISP=SHR,DSN=SYS1.SIXMEXP
//SYSLIB2 DD DISP=SHR,DSN=&SYSUID..BATCH.OBJ
//SYSLMOD DD DISP=SHR,DSN=&SYSUID..BATCH.LOAD
//SYSDEFSD DD DUMMY
//SYSPRINT DD SYSOUT=A
//SYSLIN DD *

INCLUDE SYSLIB(IOSTREAM)
INCLUDE SYSLIB(COMPLEX)
INCLUDE SYSLIB(C128N)
INCLUDE SYSLIB1(IXM4C57X)
INCLUDE SYSLIB1(IXMLC21X)
INCLUDE SYSLIB2(SMPLTRNS)
ENTRY CEESTART
NAME SMPLTRNS(R) RC=0

/*

In this JCL, you can also leave “&SYSUID.” there as long as you are running this
from your TSO ID and it matches the high-level qualifier you allocated these data
sets under. On the SYSLIB DD statements, if “SYS1” is not the high-level qualifier
for these data sets, you will need to remove or replace that. The SYSLIB1 DD

70 XML Toolkit for z/OS User's Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

statement assumes the side-decks for the XML Toolkit were installed as
recommended and they are in SYS1.SIXMEXP. You can submit this JCL, and it should
link-edit the SMPLTRNS object file into an executable file called SMPLTRNS in
[userid].BATCH.LOAD.

If you want to execute the SMPLTRNS executable, you can use the following JCL:
//SMPLTRNS JOB MSGLEVEL=(1,1),CLASS=5,REGION=0M,NOTIFY=&SYSUID.
//STEP1 EXEC PGM=SMPLTRNS
//STEPLIB DD DSN=&SYSUID..BATCH.LOAD,DISP=SHR
// DD DSN=SYS1.SIXMLOD1,DISP=SHR
//*

This JCL assumes that the XML Toolkit DLLs were installed as recommended to the
SYS1.SIXMLOD1 data set.

Appendix A. Building samples for native MVS using JCL 71

|

|
|
|
|
|

|
|

72 XML Toolkit for z/OS User's Guide

Appendix B. Calling XML Parser, C++ Edition from COBOL

Source code samples
This appendix shows an example of invoking the XML Toolkit from a COBOL
application. Enterprise COBOL provides its own built-in XML processing capability,
but this support lacks certain functions that you may be interested in. For example,
Enterprise COBOL lacks ability to validate an XML document based on a Document
Type Definition (DTD) or an XML schema, and also does not provide XSLT
transformation support. However, by utilizing XML Toolkit components that do
provide such capability from your COBOL application, you may be able to achieve
your desired goals. The samples provided in the XML Toolkit only illustrate how to
invoke the XML Parser, C++ Edition, from a strictly C++ environment.

In the following example, the COBOL program “SAXParseFrontEnd” calls the
“parse_validate” method in the SAXParse C++ sample code provided here, which in
turn invokes the XML Parser, C++ Edition to do the actual validation of an XML file.

The COBOL code is illustrated in “SAXParseFrontEnd (SPFE) COBOL program”
on page 73.

SAXParseFrontEnd (SPFE) COBOL program
Process pgmname(longmixed),dll,noexportall,outdd(sysprint)

Identification division.
Program-id ’SAXParseFrontEnd’.

Data division.
Working-storage section.

* 1 fileName pic x(80) value z’/usr/lpp/ixm/IBM/xml4c-5_7/sample
- ’s/data/personal-schema.xml’.

1 invalidFile pic x(12) value z’DD:INVALID’.
1 rc comp-5 pic s9(9).
1 fnlen comp pic 99.

Procedure division.
* parse_validate does a single validating parse of the XML file
*
* First, try a valid file from the samples/data directory

Call ’parse_validate’
using by value address of fileName
returning rc

Move 0 to tally
Inspect fileName

tallying tally for characters before x’00’
If rc = 0

Display ’"’ fileName(1:tally) ’" is valid.’
Else

Display ’Error! ’
’"’ fileName(1:tally) ’" should have been valid.’

Move rc to return-code
End-if

*
* Next, try a well-formed but invalid file, accessed by DDNAME INVALID

Call ’parse_validate’
using by value address of invalidFile
returning rc

Move 0 to tally
Inspect invalidFile

tallying tally for characters before x’00’
If rc = 0

Display ’Error! The file in "’

© Copyright IBM Corp. 2000, 2009 73

invalidFile(1:tally) ’" should have been invalid.’
Move 8 to return-code

Else
Display ’The file in "’

invalidFile(1:tally) ’" is invalid.’
End-if
Goback.

End program ’SAXParseFrontEnd’

The COBOL code in “SAXParseFrontEnd (SPFE) COBOL program” on page 73,
first passes in by value, a null terminated string containing the fully qualified file
path of an HFS file. “parse_validate” will return an integer indicating whether the
XML file was valid or not valid.

The COBOL code will make a second call to “parse_validate”, also by value, which
illustrates using a DDNAME instead of a file path in the HFS. In this case, the XML
file passed in contains errors so validation will fail.

SAXParse.cpp
/*
* Copyright 1999-2006 The Apache Software Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

// ---
// Includes
// ---
#include <xercesc/parsers/SAXParser.hpp>
#include xercesc/util/OutOfMemoryException.hpp>
#include "SAXParse.hpp"
#include "stdio.h"

// ---
// Function prototypes
// ---
extern "C"
{
int parse_validate(char * xmlFilePath);
}

// ---
// "parse_validate" will initialize the parser environment and do a single
// parse of the XML document specified in the parameter list. It terminates
// and cleans up the environment before exiting.
// ---

int parse_validate(char * xmlFilePath)
{

74 XML Toolkit for z/OS User's Guide

bool error_occurred = false;
bool warning_occurred = false;
unsigned long duration;

SAXParser * parser;
SAXParseHandlers * handler;

try
{
// Initialize the XML4C system

XMLPlatformUtils::Initialize();

}
catch (const OutOfMemoryException&)
{
XERCES_STD_QUALIFIER cerr << "OutOfMemoryException during initialization!" << XERCES_STD_QUALIFIER endl;
return 8;

}
catch (const XMLException& toCatch)
{
XERCES_STD_QUALIFIER cerr << "Error during initialization! Message:\n"
<< StrX(toCatch.getMessage()) << XERCES_STD_QUALIFIER endl;

return 8;
}
catch (...)
{
XERCES_STD_QUALIFIER cerr << "Error during initialization!"
<< XERCES_STD_QUALIFIER endl;

return 8;
}

// Create the parser instance and set the parser options

parser = new SAXParser;
parser->setDoNamespaces(true);
parser->setDoSchema(true);
parser->setValidationSchemaFullChecking(true);
parser->setValidationScheme(SAXParser::Val_Auto);
parser->cacheGrammarFromParse(false);
handler = new SAXParseHandlers();
parser->setErrorHandler(handler);

//
// Kick off the parse and catch any exceptions.
//

try
{
const unsigned long startMillis = XMLPlatformUtils::getCurrentMillis();
parser->parse(xmlFilePath);
const unsigned long endMillis = XMLPlatformUtils::getCurrentMillis();
duration = endMillis - startMillis;

}
catch (const OutOfMemoryException&)
{
XERCES_STD_QUALIFIER cerr << "OutOfMemoryException during parsing!"
<< XERCES_STD_QUALIFIER endl;

error_occurred = true;
}
catch (const XMLException& e)
{
XERCES_STD_QUALIFIER cerr << "\nError during parsing: \n"
<< StrX(e.getMessage())
<< XERCES_STD_QUALIFIER endl;

error_occurred = true;
}

Appendix B. Calling XML Parser, C++ Edition from COBOL 75

catch (...)
{
XERCES_STD_QUALIFIER cerr << "Error during parsing!"
<< XERCES_STD_QUALIFIER endl;

error_occurred = true;
}

if (handler->getSawErrors()) {
error_occurred = true;

}

if (handler->getSawWarning()) {
warning_occurred = true;

}

// Print out the filename and time taken
if (!error_occurred) {
XERCES_STD_QUALIFIER cout << xmlFilePath << ": " << duration << " MS " << XERCES_STD_QUALIFIER endl;

}

delete handler;
delete parser;

XMLPlatformUtils::Terminate();

if (error_occurred)
{
return 8;

}
else if (warning_occurred)
{
return 4;

}
else
{
return 0;

}

// return 0;
}

The C++ code that the COBOL code will invoke is illustrated in “SAXParse.cpp” on
page 74. The “parse_validate” method is declared as “extern C” even though it is
being invoked from COBOL. This is much easier than using “extern COBOL”. The
only parameter is the null terminated string which contains the file name. The
“parse_validate” routine will initialize the XML parser environment and then create a
parser instance and error handler. If this is successful it will then set some parser
features and then attempt to parse the file name passed in. If successful the caller
will receive a zero in the return code parameter. If an error occurs a non-zero return
code will be returned and an appropriate error message displayed.

The parser instance and error handler are deleted and the XML parser environment
is terminated before returning to the caller.

“SAXParse.hpp” on page 77 contains the header file that corresponds to the
SAXParse.cpp file.

SAXParse.hpp

76 XML Toolkit for z/OS User's Guide

/*
* Copyright 1999-2006 The Apache Software Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

// ---
// Includes for all the program files to see
// ---
#include <string.h>
#include <stdlib.h>
#if defined(XERCES_NEW_IOSTREAMS)
#include <iostream>
#else
#include <iostream.h>
#endif
#include <xercesc/util/PlatformUtils.hpp>
#include <xercesc/parsers/SAXParser.hpp>
#include "SAXParHD.hpp"

// ---
// This is a simple class that lets us do easy (though not terribly efficient)
// transcoding of XMLCh data to local code page for display.
// ---
class StrX
{
public :
// ---
// Constructors and Destructor
// ---
StrX(const XMLCh* const toTranscode)
{
// Call the private transcoding method
fLocalForm = XMLString::transcode(toTranscode);

}

~StrX()
{
XMLString::release(&fLocalForm);

}

// ---
// Getter methods
// ---
const char* localForm() const
{
return fLocalForm;

}

private :
// ---
// Private data members
//
// fLocalForm
// This is the local code page form of the string.
// ---
char* fLocalForm;

Appendix B. Calling XML Parser, C++ Edition from COBOL 77

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

};

inline XERCES_STD_QUALIFIER ostream& operator<<(XERCES_STD_QUALIFIER ostream& target, const StrX& toDump)
{
target << toDump.localForm();
return target;

}

“SAXParseHandlers.cpp” contains the C++ code for the error handler
(SAXParseHandlers.cpp).

SAXParseHandlers.cpp
/*
* Copyright 1999-2006 The Apache Software Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

// ---
// Includes
// ---
#include <xercesc/sax/SAXParseException.hpp>
#include <xercesc/util/XMLString.hpp>
#include <xercesc/util/XMLUniDefs.hpp>
#include "SAXParse.hpp"

// ---
// SAXParseHandlers: Constructors and Destructor
// ---
SAXParseHandlers::SAXParseHandlers() :
fSawErrors(false)
,fSawWarning(false)

{
}

SAXParseHandlers::~SAXParseHandlers()
{
}
// ---
// SAXParseHandlers: Overrides of the SAX ErrorHandler interface
// ---
void SAXParseHandlers::error(const SAXParseException& e)
{
fSawErrors = true;
XERCES_STD_QUALIFIER cerr << "\nError at (file " << StrX(e.getSystemId())
<< ", line " << e.getLineNumber()
<< ", char " << e.getColumnNumber()
<< "): " << StrX(e.getMessage()) << XERCES_STD_QUALIFIER endl;

}

78 XML Toolkit for z/OS User's Guide

|
|
|
|
|
|
|

void SAXParseHandlers::fatalError(const SAXParseException& e)
{
fSawErrors = true;
XERCES_STD_QUALIFIER cerr << "\nFatal Error at (file " << StrX(e.getSystemId())
<< ", line " << e.getLineNumber()
<< ", char " << e.getColumnNumber()
<< "): " << StrX(e.getMessage()) << XERCES_STD_QUALIFIER endl;

}

void SAXParseHandlers::warning(const SAXParseException& e)
{
fSawWarning = true;
XERCES_STD_QUALIFIER cerr << "\nWarning at (file " << StrX(e.getSystemId())
<< ", line " << e.getLineNumber()
<< ", char " << e.getColumnNumber()
<< "): " << StrX(e.getMessage()) << XERCES_STD_QUALIFIER endl;

}

void SAXParseHandlers::resetDocument()
{
fSawWarning = false;
fSawErrors = false;

}

SAXParseHandlers.cpp is similar to the existing SAXCount and SAXPrint samples
in the Toolkit. In this example, only the error handler methods are implemented.
Since this only illustrates the validation of an XML file, the default document handler
callback methods are inherited, which will ignore the data returned.

“SAXParseHandlers.hpp” on page 79 contains the header file that corresponds to
the SAXParseHandlers.cpp file.

SAXParseHandlers.hpp
/*
* Copyright 1999-2006 The Apache Software Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

// ---
// Includes
// ---
#include <xercesc/sax/HandlerBase.hpp>

XERCES_CPP_NAMESPACE_USE

class SAXParseHandlers : public HandlerBase
{
public:
// ---

Appendix B. Calling XML Parser, C++ Edition from COBOL 79

// Constructors and Destructor
// ---
SAXParseHandlers();
~SAXParseHandlers();

// ---
// Handlers for the SAX ErrorHandler interface
// ---
void warning(const SAXParseException& exception);
void error(const SAXParseException& exception);
void fatalError(const SAXParseException& exception);

bool getSawErrors() const
{
return fSawErrors;

}

bool getSawWarning() const
{
return fSawWarning;

}

void resetDocument();

private:
bool fSawErrors;
bool fSawWarning;
};

The XML in Figure 8 should be copied to an MVS dataset so that it can be
accessed by a DDNAME. The data set name, etc. are provided later in “Setup
instructions” on page 82.

<?xml version="1.0" encoding="ibm-1140"?>

<personnel xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation=

 '/usr/lpp/ixm/IBM/xml4c-5_6/samples/data/personal.xsd'>

 <person id="Big.Boss" >

 <name><family>Boss</family> <given>Big</given></name>

 <email>chief@foo.com</email>

 <link subordinates="one.worker two.worker"/>

 </person>

 <person id="one.worker">

 <name><family>Worker</family> <given>One</given></name>

 <link manager="Big.Boss"/>

 <email>one@foo.com</email>

 </person>

 <person id="two.worker">

 <name><family>Worker</family> <given>Two</given></name>

 <email>two@foo.com</email>

 <link manager="Big.Boss"/>

 <phone>+1.123.555.1234</phone>

 </person>

</personnel

Figure 8. Non-valid XML file to be processed using DDNAME

80 XML Toolkit for z/OS User's Guide

Compilation instructions
The JCL in Figure 9 can be used to compile, bind, and execute the COBOL and
C++ code from the above section.

This JCL uses catalogued JCL procedures to invoke the C++ Compiler, the COBOL
compiler and the z/OS Binder.

The CBCC procedure will compile the SAXParse C++ code that contains
“parse_validate”.

//CBLXMLVL JOB MSGLEVEL=(1,1),REGION=0M,NOTIFY=&SYSUID,MSGCLASS=H

//ORDER JCLLIB ORDER=(SYS1.ADCOB.V3R3M0.SIGYPROC,SYS1.CBC.SCCNPRC)

//*STDORD JCLLIB ORDER=(CBC.SCCNPRC,IGY.V3R4M0.SIGYPROC) !!!

//*

//*-- Compile C++ program parse_validate -------------------------------

//CPPSP EXEC CBCC,INFILE=[userid].BATCH.CPP(SAXPARSE),

// PARM.COMPILE='/CXX OPTFILE(DD:OPTIONS)'

//COMPILE.OPTIONS DD *

 DEFINE(OS390=1) DEFINE(_OPEN_THREADS=1)

 DEFINE(_XOPEN_SOURCE_EXTENDED=1) EXPORTALL LANG(EXTENDED)

 SEARCH(

 /usr/lpp/ixm/IBM/xml4c-5_6/include/,

 //'[userid].BATCH.+',

 //'SYS1.CEE.SCEEH.+',

 //'SYS1.CBC.SCLBH.+')

/*

//*

//*-- Compile C++ class SAXParseHandlers and bind with parse_validate --

//CPPSPH EXEC CBCCB,INFILE=[userid].BATCH.CPP(SAXPARHD),

// PARM.COMPILE='/CXX OPTFILE(DD:OPTIONS)',

// BPARM='NOLIST,NOMAP,RMODE=ANY'

//COMPILE.OPTIONS DD *

 DEFINE(OS390=1) DEFINE(_OPEN_THREADS=1)

 DEFINE(_XOPEN_SOURCE_EXTENDED=1) LANG(EXTENDED)

 SEARCH(

 /usr/lpp/ixm/IBM/xml4c-5_6/include/,

 //'[userid].BATCH.+',

 //'SYS1.CEE.SCEEH.+',

 //'SYS1.CBC.SCLBH.+')

/*

//BIND.XML4C DD DISP=SHR,DSN=SYS1.SIXMEXP

//BIND.SYSIN DD *

 INCLUDE XML4C(IXM4C56X)

/*

//BIND.SYSLMOD DD DSN=&&GOSET(SAXPARSE)

//BIND.SYSDEFSD DD DSN=&&IMPXSET,UNIT=&TUNIT.,

// DISP=(MOD,PASS),SPACE=(TRK,(3,3)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

//*

//*-- Compile, link and execute COBOL program SAXParseFrontEnd ---------

//CBLFE EXEC IGYWCLG,

// PARM.LKED='CASE=MIXED,DYNAM=DLL,RENT,NOLIST',GOPGM=SPFE,

//* IGYWCLG not properly customized; we shouldn't need the following !!!

// LNGPRFX=SYS1.ADCOB.V3R3M0,LIBPRFX=SYS1.CEE

//COBOL.SYSIN DD DISP=SHR,DSN=[userid].BATCH.COBOL(SPFE)

//LKED.SYSLIN DD

// DD DSN=&&IMPXSET,DISP=(OLD,DELETE)

//LKED.SYSLMOD DD DSN=&&GOSET(&GOPGM)

//GO.STEPLIB DD

// DD DSN=&&GOSET,DISP=(OLD,DELETE)

// DD DISP=SHR,DSN=SYS1.SIXMLOD1

//GO.SYSOUT DD SYSOUT=*

//GO.INVALID DD DISP=SHR,DSN=[userid].BATCH.XML(INVALID)

//

Figure 9. JCL to compile, bind and run the sample code

Appendix B. Calling XML Parser, C++ Edition from COBOL 81

The CBCCB procedure will compile the SAXParseHandlers C++ code and then bind
it into a DLL. This DLL will be linked with the XML Parser, C++ Edition's main DLL.

The IGYWCLG procedure will compile, link, and execute the COBOL
SAXParseFrontEnd code.

Setup instructions
Several data sets will need to be allocated to copy the sample code into. You
should substitute your actual USERID for [userid].
[userid].BATCH.COBOL -- recfm=FB, lrecl=240, blksize=12960 (contains COBOL code)
[userid].BATCH.CPP -- recfm=FB, lrecl=240, blksize=12960 (contains C++ code)
[userid].BATCH.HPP -- recfm=FB, lrecl=240, blksize=12960 (contains C++ header files)
[userid].BATCH.CNTL -- recfm=FB, lrecl=80, blksize=12960 (contains JCL)
[userid].BATCH.OBJ -- recfm=FB, lrecl=80, blksize=12960 (contains object code)
[userid].BATCH.LOAD -- recfm=U, lrecl=0, blksize=32760 (contains executable code)
[userid].BATCH.XML -- recfm=FB, lrecl=80, blksize=12960 (contains actual XML data)

In order to compile, link, and run this sample you will need to copy the code,
header files, JCL and XML file to the above MVS data sets.

v You will need to copy the SAXParseFrontEnd COBOL code to the SPFE
member in [userid].BATCH.COBOL.

v The SAXParse C++ code should be copied to the SAXPARSE member in
[userid].BATCH.CPP.

v The SAXParseHandlers C++ code should be copied to the SAXPARHD member
in [userid].BATCH.CPP.

v The SAXParse header file should be copied to the SAXPARSE member in
[userid].BATCH.HPP.

v The SAXParseHandlers header file should be copied to the SAXPARHD
member in [userid].BATCH.HPP.

v The invalid XML data from Figure 6 should be copied to the INVALID member in
[userid].BATCH.XML.

Once all of this is done, then the JCL in [userid].BATCH.CNTL(SPFE) can be
submitted to compile, link, and run this sample code.

Note: : This example is only intended to demonstrate the usage to the XML Toolkit
from COBOL. It is not intended to have high performance characteristics. For
more information on how to enhance the performance of this example, refer
to the Performance section of theXML Toolkit Web site or the Persistent
Parser example in Appendix C, “Parser environment and instance reuse,” on
page 83.

82 XML Toolkit for z/OS User's Guide

http://www.ibm.com/servers/eserver/zseries/software/xml/

Appendix C. Parser environment and instance reuse

This appendix shows you how a parser environment can be initialized and a parser
instance created and saved for subsequent calls to parse documents. The overhead
of initializing the environment and the creation of a parser instance (as well as the
later termination overhead) can be spread across all subsequent parses instead of
doing an initialize/parse/terminate sequence for each individual XML document.

In this example, the grammar may also be cached to enhance performance.

The “PersistParseFrontEnd.cpp” on page 83 code contains the main routine for this
example. It accepts several command line parameters from the PersistParse
command that control the settings used to create the parser instance as well as the
file name to parse.

This code is referred to as a “Front End” because it differs from what the other
samples in the Toolkit do in their main routine. Other samples normally process the
command line arguments and then initialize the parser environment, create a parser
instance, process the document and then terminate all in a single routine.

The purpose of this “Front End” module is to separate the initialization, parse, and
terminate functions from the main routine and move them into separate methods in
the PersistParse.cpp module. This way, the “Front End” code can process the
command line arguments and then request the parser environment/instance be
created by another method. When control returns to it, a pointer now exists that can
be used subsequently to parse an indefinite number of documents using this
existing environment and parser instance. When this environment is no longer
needed, a single termination request can be performed.

The PersistParse command has a -i option that allows you to specify the number
of times the document is to be parsed. This is intended to illustrate how the parser
environment is initialized and terminated a single time and used across multiple
parses. In more practical situations, you would use this feature to parse many
different documents.

One thing to keep in mind when creating an application that needs to parse multiple
documents is that since the parser instance is only created once, the options
specified at the time of creation cannot be changed without terminating and
re-initializing. For example, you cannot create a parser instance that does grammar
caching and then process a few documents and then stop caching grammars.

“PersistParseFrontEnd.hpp” on page 87 contains the header file for the main routine
“PersistParseFrontEnd.cpp” on page 83. “PersistParse.cpp” on page 88 contains
the methods that initialize the environment and parser instance, parse the
document, and terminate. “PersistParse.hpp” on page 90 contains the header file
for the code in “PersistParse.cpp” on page 88. “PersistParseHandlers.cpp” on page
92 contains the error handler methods needed. “PersistParseHandlers.hpp” on page
93 contains the header file the code in “PersistParseHandlers.cpp” on page 92.

PersistParseFrontEnd.cpp
/*
* Copyright 1999-2006 The Apache Software Foundation.
*

© Copyright IBM Corp. 2000, 2009 83

* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

// ---
// Includes
// ---
#if defined(XERCES_NEW_IOSTREAMS)
#include "fstream"
#else
#include "fstream.h"
#endif
#include "PersistParseFrontEnd.hpp"
#include "stdio.h"

// ---
// Function prototypes
// ---
int initialize_env(parmList *);
int validate_file(parmList *);
int terminate_env(parmList *);

// ---
// Local helper methods
// ---
void usage()
{

XERCES_STD_QUALIFIER cout << "\nUsage:\n"
" PersistParse [options] <XML file>\n\n"
"This program demonstrates how to initialize the parser\n"
"environment and parser instance a single time and then\n"
"reuse the saved environment on later parse requests. In this\n"
"sample the -i option allows the file specified to be parsed\n"
"multiple times.\n"

"Options:\n"
" -v=xxx Validation scheme [always | never | auto*].\n"
" -n Enable namespace processing. Defaults to off.\n"
" -s Enable schema processing. Defaults to off.\n"
" -f Enable full schema constraint checking.\n"
" Defaults to off.\n"
" -gc Cache Grammar from parse. Defaults to off.\n"
" -i nnn Parse file in loop nnn times. Default is 1 time.\n"

" -? Show this help.\n\n"
" * = Default if not provided explicitly.\n"

<< XERCES_STD_QUALIFIER endl;
}

// ---
// Program entry point
// ---
int main(int argC, char* argV[])
{
parmList SAXParms;
int xercesc_rc = 0;

// Initialize defaults in parameter block

84 XML Toolkit for z/OS User's Guide

SAXParms.valScheme = SAXParser::Val_Auto;
SAXParms.doNamespaces = false;
SAXParms.doSchema = false;
SAXParms.schemaFullChecking = false;
SAXParms.doGrammarCaching = false;
SAXParms.repeatParse = false;
SAXParms.numParses = 1;
SAXParms.errorOccurred = false;
SAXParms.warningOccurred = false;
SAXParms.xmlFile = 0;
SAXParms.parser = 0;
SAXParms.handler = 0;

// If enough parameters not specified display help information
if (argC < 2)
{
usage();
return 4;

}

// Grab user parameter(s)

int parmInd;

for (parmInd = 1; parmInd < argC; parmInd++)
{
// Break out on first parameter not starting with a dash
if (argV[parmInd][0] != ’-’)
{
break;

}

// Watch for special case help request
if (!strcmp(argV[parmInd], "-?"))
{
usage();
return 4;

}
else if (!strncmp(argV[parmInd], "-v=", 3)

|| !strncmp(argV[parmInd], "-V=", 3))
{
const char* const parm = &argV;[parmInd][3];

if (!strcmp(parm, "never"))
SAXParms.valScheme = SAXParser::Val_Never;

else if (!strcmp(parm, "auto"))
SAXParms.valScheme = SAXParser::Val_Auto;

else if (!strcmp(parm, "always"))
SAXParms.valScheme = SAXParser::Val_Always;

else
{
XERCES_STD_QUALIFIER cerr << "Unknown -v= value: " << parm << XERCES_STD_QUALIFIER endl;
return 8;

}
}

else if (!strcmp(argV[parmInd], "-n")
|| !strcmp(argV[parmInd], "-N"))

{
SAXParms.doNamespaces = true;
}
else if (!strcmp(argV[parmInd], "-s")

|| !strcmp(argV[parmInd], "-S"))
{
SAXParms.doSchema = true;

}
else if (!strcmp(argV[parmInd], "-f")

Appendix C. Parser environment and instance reuse 85

|| !strcmp(argV[parmInd], "-F"))
{
SAXParms.schemaFullChecking = true;

}
else if (!strcmp(argV[parmInd], "-gc")

|| !strcmp(argV[parmInd], "-GC"))
{
SAXParms.doGrammarCaching = true;

}
else if (!strcmp(argV[parmInd], "-i"))

{
++parmInd;
if (parmInd >= argC)
{
XERCES_STD_QUALIFIER cerr << "Invalid -i option (missing # of iterations)" << XERCES_STD_QUALIFIER endl;
return 8;

}
SAXParms.repeatParse = true;
SAXParms.numParses = atoi(argV[parmInd]);
if (SAXParms.numParses < 0)
{
XERCES_STD_QUALIFIER cerr << "Invalid -i option (negative # of iterations" << XERCES_STD_QUALIFIER endl;
return 8;

}
}
else

{
XERCES_STD_QUALIFIER cerr << "Unknown option ’" << argV[parmInd]

<< "’, ignoring it\n" << XERCES_STD_QUALIFIER endl;
}

} // end - for ...

//
// There should at least one parameter left, and that
// should be the file name.

SAXParms.xmlFile = argV[parmInd];

// "initialize_env" call will do the XMLPlatformUtils::Initialize() and
// create a parser instance and error handler and store their addresses
// in the parameter block for later use.

xercesc_rc = initialize_env(&SAXParms;);
if (xercesc_rc != 0)
{
return xercesc_rc;

}

// "validate_file" call will parse the input file either once or
// a multiple number of times based on the "-i" parameter.

int i = SAXParms.numParses;
if (SAXParms.repeatParse)
{

XERCES_STD_QUALIFIER cout << "-i parameter specified, doing parse " << SAXParms.numParses << " times" <<XERCES_STD_QUALIFIER endl;
}

for(; i > 0 ; i--)
{
xercesc_rc = validate_file(&SAXParms;);
if (xercesc_rc != 0)
{
break;

}
}

86 XML Toolkit for z/OS User's Guide

// "terminate_env" call will delete the error handler and parser
// instance and call XMLPlatformUtils::Terminate().

terminate_env(&SAXParms;);

if (SAXParms.errorOccurred)
return 8;

else
return xercesc_rc;

}

PersistParseFrontEnd.hpp
/*
* Copyright 1999-2006 The Apache Software Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

// ---
// Includes for all the program files to see
// ---
#include <string.h>
#include <stdlib.h>
#if defined(XERCES_NEW_IOSTREAMS)
#include <iostream>
#else
#include <iostream.h>
#endif
#include <xercesc/util/PlatformUtils.hpp>
#include <xercesc/parsers/SAXParser.hpp>
#include <xercesc/sax/HandlerBase.hpp>
#include "PersistParse.hpp"

// ---
// The parmList structure is used to pass parameters to the methods
// and to preserve the parser and handler pointers so that
// the parser instance can be preserved across calls to avoid the
// initialization costs.
// ---

struct parmList {
SAXParser::ValSchemes valScheme;
bool doNamespaces;
bool doSchema;
bool schemaFullChecking;
bool doGrammarCaching;
bool repeatParse;
bool errorOccurred;
bool warningOccurred;
int numParses;
char * xmlFile;
SAXParser * parser;
PersistParseHandlers * handler;

};

Appendix C. Parser environment and instance reuse 87

PersistParse.cpp
/*
* Copyright 1999-2006 The Apache Software Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

// ---
// Includes
// ---
#include <xercesc/internal/XMLGrammarPoolImpl.hpp>
#include <xercesc/util/OutOfMemoryException.hpp>
#include "PersistParseFrontEnd.hpp"
#include "stdio.h"

// ---
// The "initialize_env" method initializes the XML environment and creates a
// parser instance and error handler and stores their addresses in the
// parameter block so that subsequent parse ("validate_file") calls can be made
// without the overhead of creating the XML environment, parser instance, etc.
// ---

int initialize_env(parmList * reqBlock)
{

XERCES_STD_QUALIFIER cout << "Processing initialize_env request" << XERCES_STD_QUALIFIER endl;

try
{

// Initialize the XML4C system
XMLPlatformUtils::Initialize();

// Create the parser instance that can be used later on
// Use options from parameter block to customize the parser.

reqBlock->parser = new SAXParser;

if (reqBlock->doNamespaces)
{

(reqBlock->parser)->setDoNamespaces(reqBlock->doNamespaces);
}

if (reqBlock->doSchema)
{

(reqBlock->parser)->setDoSchema(reqBlock->doSchema);
}

if (reqBlock->schemaFullChecking)
{

(reqBlock->parser)->setValidationSchemaFullChecking(reqBlock->schemaFullChecking);
}

if (reqBlock->doGrammarCaching)

88 XML Toolkit for z/OS User's Guide

{
(reqBlock->parser)->cacheGrammarFromParse(reqBlock->doGrammarCaching);

}

reqBlock->handler = new PersistParseHandlers();
(reqBlock->parser)->setErrorHandler(reqBlock->handler);

}
catch (const OutOfMemoryException&)
{

XERCES_STD_QUALIFIER cerr << "OutOfMemoryException during initialization!"
<< XERCES_STD_QUALIFIER endl;

return 8;
}
catch (const XMLException& toCatch)
{

XERCES_STD_QUALIFIER cerr << "Error during initialization! Message:\n"
<< StrX(toCatch.getMessage()) << XERCES_STD_QUALIFIER endl;

return 1;
}
catch (...)
{

XERCES_STD_QUALIFIER cerr << "Error during initialization!"
<< XERCES_STD_QUALIFIER endl;

return 8;
}

return 0;

} // end -- "initialize_env"

// ---
// The "validate_file" routine uses the previously established XML environment,
// parser instance, and error handler to do the actual parse request.
// ---

int validate_file(parmList * reqBlock)
{
int rc;
XERCES_STD_QUALIFIER cout << "Processing validate_file request" << XERCES_STD_QUALIFIER endl;

// Make sure we have valid values
if (reqBlock->parser == 0 || reqBlock->handler == 0)
{
rc = initialize_env(reqBlock);
if (rc != 0)
{
reqBlock->errorOccurred = true;
return rc;

}
}

unsigned long duration;

reqBlock->errorOccurred = false;
reqBlock->warningOccurred = false;
(reqBlock->handler)->resetDocument();

// Kick off the parse and catch any exceptions.

try
{
const unsigned long startMillis = XMLPlatformUtils::getCurrentMillis();
(reqBlock->parser)->parse(reqBlock->xmlFile);
const unsigned long endMillis = XMLPlatformUtils::getCurrentMillis();
duration = endMillis - startMillis;

}
catch (const OutOfMemoryException&)
{

Appendix C. Parser environment and instance reuse 89

XERCES_STD_QUALIFIER cerr << "OutOfMemoryException during parsing!"
<< XERCES_STD_QUALIFIER endl;

reqBlock->errorOccurred = true;
return 8;

}
catch (const XMLException& e)
{
XERCES_STD_QUALIFIER cerr << "\nError during parsing: \n"
<< StrX(e.getMessage())
<< XERCES_STD_QUALIFIER endl;

reqBlock->errorOccurred = true;
return 8;

}
catch (...)
{
XERCES_STD_QUALIFIER cerr << "Error during parsing!"
<< XERCES_STD_QUALIFIER endl;

reqBlock->errorOccurred = true;
return 8;

}

if ((reqBlock->handler)->getSawErrors())
{
reqBlock->errorOccurred = true;
return 8;

}

if ((reqBlock->handler)->getSawWarning())
{
reqBlock->warningOccurred = true;
return 4;

}

// Print out the filename and time taken
if (!reqBlock->errorOccurred)
{
XERCES_STD_QUALIFIER cout << reqBlock->xmlFile << ": " << duration << " ms " << XERCES_STD_QUALIFIER endl;

}

return 0;
} // end -- "validate_file"

// ---
// The "terminate_env" routine will delete the previously established error
// handler and parser instance and then terminate the XML environment.
// ---
int terminate_env(parmList * reqBlock)
{
XERCES_STD_QUALIFIER cout << "Processing terminate_env request" << XERCES_STD_QUALIFIER endl;

delete reqBlock->handler;
delete reqBlock->parser;

XMLPlatformUtils::Terminate();

return 0;
} // end -- "terminate_env"

PersistParseFrontEnd.hpp
/*
* Copyright 1999-2006 The Apache Software Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");

90 XML Toolkit for z/OS User's Guide

* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

// ---
// Includes for all the program files to see
// ---
#include <string.h>
#include <stdlib.h>
#if defined(XERCES_NEW_IOSTREAMS)
#include <iostream>
#else
#include <iostream.h>
#endif
#include <xercesc/util/PlatformUtils.hpp>
#include <xercesc/parsers/SAXParser.hpp>
#include "PersistParseHandlers.hpp"

// ---
// This is a simple class that lets us do easy (though not terribly efficient)
// trancoding of XMLCh data to local code page for display.
// ---
class StrX
{
public :
// ---
// Constructors and Destructor
// ---
StrX(const XMLCh* const toTranscode)
{
// Call the private transcoding method
fLocalForm = XMLString::transcode(toTranscode);

}

~StrX()
{
XMLString::release(&fLocalForm;);

}

// ---
// Getter methods
// ---
const char* localForm() const
{
return fLocalForm;

}

private :
// ---
// Private data members
//
// fLocalForm
// This is the local code page form of the string.
// ---
char * fLocalForm;
};

inline XERCES_STD_QUALIFIER ostream& operator<<(XERCES_STD_QUALIFIER ostream& target, const StrX& toDump)

Appendix C. Parser environment and instance reuse 91

{
target << toDump.localForm();
return target;

}

PersistParseHandlers.cpp
/*
* Copyright 1999-2006 The Apache Software Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

// ---
// Includes
// ---
#include <xercesc/sax/SAXParseException.hpp>
#include <xercesc/util/XMLString.hpp>
#include <xercesc/util/XMLUniDefs.hpp>
#include "PersistParse.hpp"

// ---
// PersistParseHandlers: Constructors and Destructor
// ---
PersistParseHandlers::PersistParseHandlers() :
fSawErrors(false),fSawWarning(false)

{
}

PersistParseHandlers::~PersistParseHandlers()
{
}

// ---
// PersistParseHandlers: Overrides of the SAX ErrorHandler interface
// ---
void PersistParseHandlers::error(const SAXParseException& e)
{
fSawErrors = true;
XERCES_STD_QUALIFIER cerr << "\nError at (file " << StrX(e.getSystemId())
<< ", line " << e.getLineNumber()
<< ", char " << e.getColumnNumber()
<< "): " << StrX(e.getMessage()) << XERCES_STD_QUALIFIER endl;

}

void PersistParseHandlers::fatalError(const SAXParseException& e)
{
fSawErrors = true;
XERCES_STD_QUALIFIER cerr << "\nFatal Error at (file " << StrX(e.getSystemId())
<< ", line " << e.getLineNumber()
<< ", char " << e.getColumnNumber()
<< "): " << StrX(e.getMessage()) << XERCES_STD_QUALIFIER endl;

}

92 XML Toolkit for z/OS User's Guide

void PersistParseHandlers::warning(const SAXParseException& e)
{
fSawWarning = true;
XERCES_STD_QUALIFIER cerr << "\nWarning at (file " << StrX(e.getSystemId())
<< ", line " << e.getLineNumber()
<< ", char " << e.getColumnNumber()
<< "): " << StrX(e.getMessage()) << XERCES_STD_QUALIFIER endl;

}

void PersistParseHandlers::resetDocument()
{
fSawWarning = false;
fSawErrors = false;

}

PersistParseHandlers.hpp
/*
* Copyright 1999-2006 The Apache Software Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

// ---
// Includes
// ---
#include <xercesc/sax/HandlerBase.hpp>

XERCES_CPP_NAMESPACE_USE

class PersistParseHandlers : public HandlerBase
{
public:
// ---
// Constructors and Destructor
// ---
PersistParseHandlers();
~PersistParseHandlers();

// ---
// Handlers for the SAX ErrorHandler interface
// ---
void warning(const SAXParseException& exception);
void error(const SAXParseException& exception);
void fatalError(const SAXParseException& exception);

bool getSawErrors() const
{
return fSawErrors;

}

bool getSawWarning() const
{
return fSawWarning;

}

Appendix C. Parser environment and instance reuse 93

void resetDocument();

private:
bool fSawErrors;
bool fSawWarning;
};

94 XML Toolkit for z/OS User's Guide

Appendix D. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

z/OS information
z/OS information is accessible using screen readers with the BookServer/Library
Server versions of z/OS books in the Internet library at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 2000, 2009 95

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

96 XML Toolkit for z/OS User's Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM® may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, New York 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2–31 Roppongi 3–chrome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs

© Copyright IBM Corp. 2000, 2009 97

and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA
Attention: Information Request

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Trademarks
The following terms used in this book are trademarks of the IBM Corporation in the
United States or other countries or both:

v IBM

v Language Environment

v MVS

v OS/390

v zSeries

v z/OS

Adobe, Acrobat, and PostScript are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States, other countries, or both.

IBM, the IBM logo, ibm.com and DB2 are registered trademarks of International
Business Machines Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

The following terms may be trademarks or service marks of others:
UNIX UNIX is a registered trademark of The Open Group

in the United States and other countries.
Xerces The Apache Software Foundation
Xalan The Apache Software Foundation

98 XML Toolkit for z/OS User's Guide

Index

Numerics
31-bit support 14
64-bit support 14

A
accessibility 95
accessing data sets

how to 17
accessing XML data

how to 17
Apache project, Xerces 7
Apache Software Foundation 7
ASCII, encoding 20
avoiding conversion

DRDA 21
FTP 21
MQSeries 21

B
B2B 1
business-to-business 1

C
characteristics of

DOM API 5
SAX API 5

conversion, avoiding
DRDA 21
MQSeries 21

D
deprecated DOM support 14
disability 95
Document Object Model 1
Document Type Definition 1
DOM 1
DTD 1, 18
DTD, accessing 18

E
EBCDIC, encoding 20
encoding, general 19
encoding, XML 19
event-based interface 3

F
FTP

DRDA 21
MQSeries 21

H
HTML 1

I
iconv() 20
interface, event-based 3

K
keyboard 95

M
MVS environment, Toolkit support 15

N
namespaces 1
native MVS

building samples using JCL
XML Parser, C++ Edition 67
XSLT Processor, C++ Edition 69

P
parser, XML4C 7
parsing documents

using DOM 5
using SAX 5

processor, XSLT C++ 7

S
SAX 3
Schema, accessing 18
Schema, XML 1
schematic of the DOM parsing model 2
schematic of the SAX API 4
shortcut keys 95
Simple API for XML 3
source offsets 13, 39
specifying data sets using absolute URIs 18
specifying data sets using relative URIs 17

T
Toolkit 7
Toolkit parser, C++

multi-threading considerations 36
sample applications 25
using MVS multi-tasking 37
using UNIX pthreads 36
z/OS 25

building sample applications 32, 56
running sample applications 35, 59

© Copyright IBM Corp. 2000, 2009 99

Toolkit parser, C++ (continued)
z/OS UNIX 25

building sample applications 29, 51
Toolkit parser, interfaces and specifications chart 7
Toolkit processor, C++

sample applications 49
z/OS 49
z/OS UNIX 49

Toolkit processor, interfaces and specifications chart 7
Toolkit support

MVS 15
z/OS UNIX System Services 15

U
Unicode, encoding 20
using the DOM API 2

V
validating XML documents

results 6
validation results 6

W
W3C 1
World Wide Web Consortium 1
writing applications using the SAX specification 3

X
Xerces Apache project 7
XML 1, 7
XML data, accessing 17
XML documents, validation 6
XML encoding 19
XML Parser, C++ Edition 7

native MVS
building samples using JCL 67

XML Path Language 7
XML Schema 1
XML Toolkit for z/OS 7
XML4C parser 7
XPath 6, 7
XPLINK application, building 23
XPLINK application, running 24
XPLINK support 23
XPLINK support, using 23
XSL Transformations (XSLT) Version 1.0 7
XSLT Processor, C++ Edition 7

native MVS
building samples using JCL 69

XSLT ProcessorS, C++ Edition 7

Z
z/OS 7
z/OS parser classes

how to use 39

z/OS parser classes (continued)
sample applications 48
using 48

z/OS specific parser classes 8
z/OS UNIX System Services, Toolkit support 15
z/OS XML 8
z./OS XML System Services 8

100 XML Toolkit for z/OS User's Guide

Readers’ Comments — We'd Like to Hear from You

XML Toolkit for z/OS
User's Guide

Publication No. SA22-7932-08

We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,
organization, subject matter, or completeness of this book. The comments you send should pertain to only the
information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM
business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the
personal information that you supply to contact you about the issues that you state on this form.

Comments:

Thank you for your support.

Submit your comments using one of these channels:
v Send your comments to the address on the reverse side of this form.
v Send your comments via email to: mhvrcfs@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name Address

Company or Organization

Phone No. Email address

Readers’ Comments — We'd Like to Hear from You
SA22-7932-08

SA22-7932-08

IBM®
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY
12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBM®

Product Number: 5655–J51

Printed in USA

SA22-7932-08

	Contents
	Figures
	Tables
	About this document
	Who should use this User's Guide?
	What is in the User's Guide?

	Summary of changes
	Chapter 1. Introduction
	Why XML?
	APIs
	DOM
	SAX
	DOM vs SAX
	XPath

	Validation
	XML Toolkit for z/OS
	z/OS specific parser classes
	Toolkit 64-bit support
	Toolkit 31-bit support
	Deprecated DOM support

	Toolkit support for both z/OS UNIX System Services and MVS environments

	Chapter 2. How to access XML data
	How to access data sets
	Relative URIs
	Absolute URIs
	Considerations when using the Xalan C++ commands
	DTDs, Schema and other embedded files

	Chapter 3. Encoding issues
	Encoding and XML
	XML and z/OS
	Avoiding conversion

	Chapter 4. How to use Toolkit 31-bit XPLINK support
	Using Toolkit 31-bit XPLINK support
	Building an XPLINK application
	Running an XPLINK application

	Chapter 5. How to use the XML Parser, C++ Edition
	Using the sample applications
	Rule for running 64-bit samples
	Rule for running 31-bit non-XPLINK samples
	Rule for running 31-bit XPLINK samples

	z/OS UNIX Environment
	Building sample applications for the z/OS UNIX Environment
	Rules for invoking the XML Parser, C++ Edition in z/OS UNIX

	Using your sample applications on the z/OS UNIX Environment

	MVS Environment
	Building sample applications for the MVS Environment
	Rules for invoking the XML Parser, C++ Edition in native MVS
	Rules for building samples in native MVS

	Using your sample applications on the MVS Environment

	Multi-threading considerations
	Using UNIX pthreads
	Using MVS multi-tasking

	Chapter 6. How to use z/OS specific parser classes
	Source offsets
	zSAX2XMLReader class
	Using a zSAX2XMLReader class for a non-validating parse
	Using a zSAX2XMLReader class for a validating parse
	Using a zSAX2XMLReader class for non-validating parse with source offsets

	zXercesDOMParser class
	Using a zXercesDOMParser class for a non-validating parse

	Constructing a zDOMBuilder
	Using a zDOMBuilder class for a non-validating parse

	Using samples for the z/OS specific parser classes

	Chapter 7. How to use the XSLT Processor, C++ Edition
	Using the sample applications
	Rule for running 64-bit samples
	Rule for running 31-bit non-XPLINK samples
	Rule for running 31-bit XPLINK samples

	z/OS UNIX Environment
	Building sample applications for the z/OS UNIX Environment
	Rules for invoking the XSLT Processor, C++ Edition in z/OS UNIX

	Using your sample applications on the z/OS UNIX Environment

	MVS Environment
	Building sample applications for the MVS Environment
	Using your sample applications on the MVS Environment

	Chapter 8. How to use the XML Toolkit command line utilities
	How to use the XSLT Processor, C++ Edition command line utility

	Chapter 9. Where to go for more information
	Appendix A. Building samples for native MVS using JCL
	Building XML Parser, C++ Edition samples for native MVS using JCL
	Building XSLT Processor, C++ Edition samples for native MVS using JCL

	Appendix B. Calling XML Parser, C++ Edition from COBOL
	Source code samples
	Compilation instructions
	Setup instructions

	Appendix C. Parser environment and instance reuse
	Appendix D. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Trademarks

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	H
	I
	K
	M
	N
	P
	S
	T
	U
	V
	W
	X
	Z

	Readers’ Comments — We'd Like to Hear from You

