
1

Using LE in an IMS Environment

SHARE 101 – Session 1243

Steve Nathan
stephen.nathan@telcordia.com

An SAIC Company

Welcome to “Using LE in an IMS Environment”

Notes have been provided for your convenience.

2

2

Disclaimer
?The purpose of this presentation is to provide a

technical perspective of Telcordia’s experience using
IMS and LE.
?Although this document addresses certain IBM

products, no endorsement of IBM or its products is
expressed, and none should be inferred.
?Telcordia also makes no recommendation regarding

the use or purchase of IMS or LE products, any other
IBM products, or any similar or comparable products.
?Telcordia does not endorse any products or suppliers.

Telcordia does not recommend the purchase or use of
any products by the participants.
?Each participant should evaluate this material and the

products himself/herself.

A legal requirement of Telcordia.

3

3

Acknowledgements
?This presentation was prepared by:

– Terry Seibert

?IBM Global Services

?tgseiber@us.ibm.com

– Avri Adleman

?Telcordia Technologies

?aadleman@telcordia.com

?They have spent MANY hours studying this topic and

working with IMS and LE development to make this

environment work

Terry Seibert and Avri Adleman get all of the credit for this presentation.

They should also get all of the credit for working together with IBM LE
development to make LE and LE/IMS work.

There were MANY problems in the early days of LE.

- We had many meetings with the LE developers.

4

4

Trademarks
?The following terms are trademarks of the IBM corporation in the

United States or other countries or both:

– C/370

– IBM

– IMS

– Language Environment

– Open Edition

– OS/390

?UNIX is a registered trademark in the United States and other countries
licensed exclusively through X/Open Company
Limited

?Other company, product, and service names may be trademarks or
service marks of others

A legal requirement of IBM.

5

For those of us that do not know LE – an introduction is required.

Like any other system – LE has its own way of looking at things and naming
things – even if they had perfectly good names before.

5

Presentation Outline

?Overview – What is LE?

?Migrating to LE

?Runtime Options

?Debugging LE

6

6

Introduction
? This session will cover Language Environment (LE)

setup and options that pertain to an IMS
environment

? Topics will include runtime and initialization options
and any differences in setting up IMS online, BMP
and batch environments

? The new IMS Version 8 Dynamic Runtime Options
will also be discussed

? This presentation was prepared at the OS/390
V2R10 level and updated for z/OS

– It is now at the z/OS1.4 level

? This presentation will make no attempt to discuss
applications which may also use OS/390 UNIX
Systems Services

This presentation was originally prepared at the OS/390 V2R10 level.

It has been updated for z/OS 1.2 and z/OS 1.4.

7

7

LE Overview

?What is Language Environment (LE)?
– Single runtime environment for High Level Languages

?Basic support routines

– Initialization, termination, storage, messages, conditions

?Callable Services

– Date, time, etc

?Language specific routines

– C/C++

– Cobol

– PL/I

– Fortran

Language Environment (LE) consists of:

-Basic routines that support starting and stopping programs, allocating
storage, communicating with programs written in different languages, and
handling conditions.

-Callable services, such as math services and date/time services, that are
commonly needed by programs

-Language-specific portions of the runtime library.

-Because many language-specific routines call LE services, behavior is
consistent across languages.

LE runtime library includes the following routines:

-CEExxxxx – Common routines

-EDCxxxxx – C/C++ specific routines

-IBMxxxxx – PL/I specific routines

-IGZxxxxx – Cobol specific routines

-AFHxxxxx – Fortran specific routines

8

8

LE Overview

?What is Language Environment (LE)?

– LE “Process”

?Address space (ASID)

– LE “Enclave”

?Main program and called subroutines

?Main to Main calls create new Enclaves

– LE “Thread”

?Task (TCB)

LE has new names for old concepts.

My definitions here are not exact – but they are simple and basically correct.

See the LE Concepts Guide for exact definitions.

-The manual is small and worth reading cover to cover.

9

9

LE Overview

?Why use LE?

– Because you have to

– Base element of OS/390 & z/OS

– Prerequisite for applications built with newer compilers

– Replaces obsolete/stabilized runtime library products

LE is prerequisite for applications built with newer compilers such as C/C++,
Enterprise COBOL, and Enterprise PL/I.

LE replaces obsolete/stabilized (working?!?) runtime library products:

-OS/VS COBOL

-VS COBOL II

-OS/PL/I

-C/370

-OS FORTRAN

-VS FORTRAN

Read the LE Concepts Guide for an overview of LE and a description of the LE
program model.

10

10

Migration – Multiple LE Releases

?LE is upward compatible
– Applications built on one level of LE will continue to run on later

releases of LE without the need to relink or recompile

?Starting with OS/390 R10 – LE is also downward
compatible
– You may develop applications on higher releases of LE for use

on platforms running lower releases of LE
– The LE Programming Guide lists guidelines and restrictions
?This is NOT a rollback of new function to prior releases
?The system used to build the applications must be at least OS/390

V2R10
– Toleration PTFs for lower OS/390 releases are in a PSP bucket
?Upgrade OS390R10 subset LANGENV
?Not in z/OS

The downward compatibility support provided by OS/390 R10, and by the
toleration PTFs, does not change LE’s upward compatibility.

Applications developed exploiting the downward compatibility support must
not use LE function that is unavailable on the lower release where the
application will be deployed.

The downward compatibility support includes toleration PTFs for lower
releases of LE to assist in the diagnosis of applications that violate the
programming requirements for this support.

The diagnosis assistance that will be provided by the toleration PTFs includes:

-Options processing

-Detection of unsupported function

-C/C++ headers

11

11

Migrating/Upgrading IMS For LE

?Make sure applications are ready
– Read the language-specific LE Migration Guides
?LE guide

?Language specific guide

– PLAN
?Know current/changed runtime options

– Perform regression tests
?Include error scenarios

?Make sure Vendor tools are LE enabled
– There is a list in the LE Migration Guide – Appendix A or call the

vendor

READ – With certain exceptions, LE provides object and load module
compatibility for applications that are generated with many pre-LE IBM
language products.

-Load modules that are created with these compilers and linked with their
associated runtime libraries will run compatibly with LE without relinking.

-Also, object modules created with these compilers can be linked and run
with LE without recompiling – but may uncover old errors.

- Storage and save areas are acquired and processed differently with LE.

PLAN – Ensure that you and other application programmers who will be
involved in the migration effort are familiar with the features of LE.

-You should be aware of the differences between your current runtime
environment and options and the environment and options that LE provides.

PLAN – Take an inventory of the applications, vendor products, and tools you
intend to run with LE.

-Know what version and release of which compiler generated the program
and which runtime options were used and how they were specified.

PLAN – Determine the effort required to migrate each program and the order in
which you will migrate them.

12

12

Migrating/Upgrading IMS For LE

?Read the IMS specific portions of the LE manuals
– “Running Applications Under IMS” in the LE Programming

Guide

– “Using Language Environment Under IMS” in the LE
Customization Guide

– Language Environment Run-Time Options” in the Customization
Guide

?Bookmanager search for “IMS” in the LE bookshelf
does not work well

The LE manuals have several sections dealing specifically with IMS.

There are many other references to IMS in the LE manuals.

- Bookmanager search is not great at finding these references.

13

13

Migrating/Upgrading IMS For LE

?LPA, LNKLIST or STEPLIB for LE modules?
– LNKLIST for most LE modules

?SCEERUN (PDS) and SCEERUN2 (new PDSE – V2R10)

– LPA for heavily used LE modules

?SCEELPA contains LPA eligible LE modules

?Also check language-specific recommendations in Migration Guides

– See OS/390 Program Directory

?LNKLSTxx Considerations

– APAR II10425

?How to install OS/390 without LE in the LNKLIST

LE runtime libraries SCEERUN and SCEERUN2 can be placed in LNKLIST.

-SCEERUN2 is new for OS/390 R2 and higher releases.

-This library currently contains only XPLINK.

LPA reduces overall system storage use since routines are sharable.

LPA reduces initialization and termination time since load time decreases.

II10425 is old and for OS/390.

-Installing LE not using LNKLIST is harder to do for z/OS.

14

14

Migrating/Upgrading IMS For LE

?STEPLIB for LE modules

– Use STEPLIB to test LE for the first time or new LE releases

?CEE.SCEERUN and CEE.SCEERUN2

– Use STEPLIB until LE migration is complete

– There are considerations for IMS preload

TEST – Put CEE.SCEERUN (and CEE.SCEERUN2) into STEPLIB and
regression test.

-Do not forget to test error scripts and On Error conditions.

PRELOAD – When using STEPLIB for LE libraries in IMS Dependent
Regions any LE library routines that are preloaded are not loaded into read-
only storage.

-If your application has an error it can overwrite the preloaded routines
causing corruption and abends.

-If there is an abend preloaded reentrant modules are not reloaded unless the
entire dependent region is recycled so the abends may be persistent.

-We have developed a user mod which loads the modules into protected
storage and catches violators with an 0C4 abend.

15

15

PLICALLA

?If your load module is using PLICALLA (as many IMS

programs do)

– In linked steps you must do one of the following:

?Put SIBMCALL or SIBMCALL2 ahead of SCEELKED

?Explicitly INCLUDE LE-provided PLISTART CSECT

?If your load module is not using PLICALLA

– Do not do either of the above because they will needlessly

increase your load module size

LE provided support for OS PL/I applications that use the PLICALLA entry
point (but not without a fight).

-LE also provides for recompiled OS PL/I applications that want to continue
to use PLICALLA as the primary entry point

If you recompile an OS PL/I program with PLICALLA with PL/I for MVS &
VM you must do one of the following when you linkedit your main load
module:

-For MVS applications concatenate SIBMCALL before SCEELKED

-For VM applications global SIBMCALL before SCEELKED

-Explicitly INLUDE the LE-provided PLISTART CSECT

If you do not do this the linkage editor or loader will issue an error message for
an unresolved ENTRY PLICALLA statement.

16

16

IMS Data Capture Exit

?The IMS Customization manual says:
– “IMS does not support exit routines running under Language

Environment for OS/390”

?IMS Data Capture Exits can be written in high-level
languages
– These run with LE

?IBM has tested this environment and will now support it
– The manuals will be updated

?Still there in V8

– Fixes will be required

There were problems running IMS Data Capture Exits written in high-level
languages (PL/I for one).

-These are documented on the next foil.

The IMS V8 documentation will be updated to say that this environment is now
supported.

- But not in the level of V8 manuals on my CD.

17

17

IMS Data Capture Exit

?OS/390 R10 or above requires an IMS APAR
– DFSPCC40 must initialize the LINKX parameter list

– PQ47639 (V7)

?APARs PQ35776 and PQ31566 document
Abendu4087 with “F1SA” in Register 2 after
AbendU4000 in IGZCFCC
– These APARs were closed “CAN”

?Use the ABPERC(U4000) runtime option to percolate the U4000

?Tailor LE assembler exit CEEBXITA to set the runtime option

IMS uses LINKX to call the Data Capture Exit.

-APAR PQ46980 corrects abends caused when IMS passes a ‘dirty’
parameter list to LINKX and OS/390 R10 tests a previously reserved bit.

-These abends can be U4087, U4039, U4036, etc.

-The APAR mentions COBOL but this can happen with exits written in other
languages.

-We hit it with PL/I

APARs PQ35766 and PQ31566 document a problem where LE tried to verify
the stack (save area chain) and found an indicator for ‘linkage stack’

-LE does not support the use of linkage stacks

-The solution is to percolate the original abend and avoid the stack
verification

18

18

Library Retention Routine
?Library Retention Routine (LRR)

– Keeps LE resources in memory for better performance
?Uses LE PREINIT

– Can not be used for application programs
?Use IMS Preload for that

?LRR setup
– Specify CEELRRIN in the DFSINTxx member of the IMS

PROCLIB
– Specify ‘xx’ as the suffix on the PREINIT keyword in the IMS

Dependent Region JCL

?Setting the STORAGE option to
(NONE,NONE,NONE,0) is important for performance
– This is the default for a non-CICS environment

If you are running LE in an IMS dependent region you can improve
performance using LRR.

The following is a partial list of resources which LE keeps in memory with
LRR in effect:

-LE runtime load modules

-LE storage associated with the management of the runtime load modules

-LE storage for start-up control blocks

LRR does not manage application programs.

-Use IMS Preload

LRR does NOT work with applications using LE PICI (Program Interrupt
Callable Interface).

- IMS may never support this environment.

See the LE Customization manual for setup information.

19

19

Library Retention Routine

?XPLINK (Extra Performance Linkage) is a performance
option for C/C++ subroutine linkage

?It is documented as working in an IMS environment
– Check PQ39145

?We are still trying to make it work

?It is documented as NOT working in an LRR
environment
– See PQ51511 – IMS incorrectly thought XPLINK was used

– See PQ75251 – Create a non-XPLINK C/C++ environment for
IMS LRR

XPLINK is a high-performance compile time option for C/C++ programs.

It is used to improve performance of C/C++ subroutine calls.

It is supposed to work in an IMS environment without LRR but it does not.

We are currently working with IBM to fix this.

It would seem to me to be useless if it does not also work with LRR.

PQ75251 creates a non-XPLINK Standard C++ Library DLL to run under IMS
LRR.

PQ59972 documents an 0C1 in CEETDLI using IPALINK.

20

20

LRR Load Notification User Exit
?The LRR Load Notification User Exit can be used to

improve performance by preventing the use count for
frequently used modules from dropping below one
– Invoked at region initialization

– Invoked after each successful load by LE

?Can issue a second load to increase the use count

– Invoked at region termination

?Can issue a delete to lower the use count to zero

?Exit name is CEEBLNUE and there is a sample of the
same name in SAMPLIB

?See the LE Customization manual for details

Use of the LRR Load Notification User Exit requires Library Retention Routine
(LRR) to be active.

We have not tested this.

21

21

IMS Preload and PDSE
?If you are using the new LE C compiler for C/C++ and

you are using the new DLL support then your load
modules will be in PDSE’s

?IMS documentation has stated that IMS Preload does
not support PDSE’s

?This is not true

There were IMS informational APAR’s that stated that IMS did not support
preloading modules which were in PDSE’s.

This is not true.

It works fine for us.

IMS Level 2 (John Butterweck) did extensive research on this and determined
that preloading from PDSE’s is supported.

22

22

LE Runtime Options
?There are MANY LE runtime options

– They have MANY parameters

?They are documented in the LE Programming
Reference manual

?The LE Migration Guide lists current recommendations
– Language specific

– Mixed language applications

– CICS environments
?For some reason CICS always seems to be an exception

– Non-CICS environments
?This includes IMS

There are many LE runtime options and these options have many parameters.

There are many ways of setting these runtime options.

This presentation will cover those that have been found to influence IMS
execution and performance.

Question – how to you spell “runtime”?

-LE uses “Run-Time” in the titles of the manuals.

-LE uses “runtime” in the text of the manuals.

23

23

LE Runtime Options

? ABPERC (NONE)

? ABTERMENC(ABEND)

? NOAIXBLD

? ALL31(ON)

? ANYHEAP(65536,65536,ANYWHERE,KEEP)

? NOAUTOTASK

? BELOWHEAP(32768,32768,KEEP)

? CBLOPTS(ON)

? CBLPSHPOP(ON)

? CBLQDA(ON)

? CHECK(OFF)

? COUNTRY(US)

? NODEBUG

? DEPTHCONDLMT(0)

? ENVAR(“”)

? ERRCOUNT(0)

? ERRUNIT(6)

? FILEHIST
? FILETAG(NOAUTOCVT,NOAUTOTAG)
? NOFLOW
? HEAP(5242880,1048576,ANYWHERE,KEEP,

32768,32768)
? HEAPCHK(OFF,1,0,0)
? HEAPPOOLS(OFF,8,20,32,100,128,100,256,100,

1024,10,2048,10)
? INFOMSGFILTER(OFF,,,,)
? INQPCOPN
? INTERRUPT(OFF)
? LIBRARY(SYSCEE)
? LIBSTACK(8192,8192,KEEP)
? MSGFILE(SYSOUT,FBA,121,0,NOENQ)
? MSGQ(15)
? NATLANG(ENU)
? NONONIPTSTACK
? OCSTATUS
? NOPC
? PLITASKCOUNT(20)
? POSIX(OFF)

There are many LE runtime options and parameters.

Here is a list of a RPTOPTS output for one application.

24

24

LE Runtime Options

? PROFILE(OFF,””)

? PRTUNIT(6)

? PUNUNIT(7)

? RDRUNIT(5)

? RECPAD(OFF)

? RPTOPTS(ON)

? RPTSTG(OFF)

? NORTEREUS

? RTLS(OFF)

? NOSIMVRD

? STACK(524288,524288,ANYWHERE,KEEP,
524288,131072)

? STORAGE(NONE,NONE,NONE,0)

? TERMTHDACT(UADUMP,,96)

? NOTEST(ALL,”*”,”PROMPT”,”INSPPREF”)

? THREADHEAP(4096,4096,ANYWHERE,KEEP)

? THREADSTACK(OFF,4096,4096,ANYWHERE,
KEEP,131072,131072)

? TRACE(OFF,4096,DUMP,LE=0)
? TRAP(ON,SPIE)
? UPSI(00000000)
? NOUSRHDLR(,)
? VCTRSAVE(OFF)
? VERSION()
? XPLINK(OFF)
? XUFLOW(AUTO)

There are many LE runtime options and parameters.

Here is the rest of the list of a RPTOPTS output for one application.

25

25

LE Runtime Options
?ABTERMENC

– ABTERMENC sets the enclave termination behavior for an
enclave ending with an unhandled condition of severity 2 or
greater

– TRAP(ON) must be in effect for ABTERMENC to have an effect

– Valid values are RETCD or ABEND

– ALWAYS specify ABEND for IMS

?This is the default starting with OS/390 V2R9

?Do not override it

ABTERMENC(ABEND) is the default for V2R9 and above.

-Earlier releases had RETCODE as the default.

Specifying RETCODE can cause problems with rollback under IMS because
errors in application programs result in getting RC=3000 rather than

an abend and IMS and DB2 (and MQSeries) do not know that backout is
required.

26

26

LE Runtime Options
?DEPTHCONDLMT

– DEPTHCONDLMT specifies the extent to which conditions can
be nested

– The default is 10

– The recommendation is 0

?This allows an unlimited depth of condition handling

?This also provides PL/I compatibility

If the limit is not 0 and the limit is reached LE will not be able to handle the
error.

27

27

LE Runtime Options
?ERRCOUNT

– ERRCOUNT specifies how many conditions of severity 2, 3, or
4 can occur per thread before the enclave terminates
abnormally

– After the number specified in ERRCOUNT is reached, no further
Language Environment condition management, including
CEEHDLR management, is honored.

– The default starting with OS/390 V2R6 is zero

– Zero is the recommedation

A value of zero means that the LE condition handler will not terminate the task
regardless of the number of conditions that are generated.

It can be normal for some conditions, such as PL/I ENDPAGE to occur many
times in an application.

Setting ERRCOUNT(0) can avoid unnecessary abends.

28

28

LE Runtime Options
?TERMTHDACT

– TERMTHDACT sets the level of information that is produced
when Language Environment percolates a condition of severity
2 or greater beyond the first routine's stack frame

– The default option is TRACE
?LE generates a message indicating the cause of the termination and

a trace of the active routines on the activation stack as well as an
options report

– The UADUMP option and a DD statement will get a U4039
dump

– See the LE Programming Reference manual for all of the
options and their meanings

If you are used to REAL MVS dumps LE snaps can be very ugly and not very
useful.

There are many options described in the LE Programming Reference manual.

This has no affect on how LE notifies IMS when there is an abend.

PQ58958 (+ PQ66066) fixes a problem when there is a U474 abend (/STO
REGION x ABDUMP) and no dump is produced.

29

29

LE Runtime Options
?TRAP

– TRAP specifies how Language Environment programs handle
abends and program interrupts

– This option is similar to the STAE | NOSTAE runtime option
offered by COBOL, C, and PL/I, and the SPIE | NOSPIE option
offered by C and PL/I in non-LE environments

?But not really

– TRAP(ON) must be in effect for the ABTERMENC runtime
option to have effect

TRAP (ON,SPIE) fully enables the LE condition handler.

Due to restrictions and side-effects when running TRAP(OFF) IBM highly
recommends running TRAP(ON) in all environments – including IMS.

- LE will pass the abend to IMS for proper error handling.

TRAP(OFF) does not totally nullify the LE condition handler – there is still an
ESTAE.

-There may be cases, e.g. traversing the DSA chain, where an 0C4 can be
trapped and ignored.

-This is known as the shunting mechanism.

If you really want to control the error handling there is an LE API called
CEE3ERP.

-This was created for Telcordia.

-It allows a local error handler to be invoked in a shunting situation to
determine the abend action.

-This is documented in the LE Vendor Interface manual.

30

30

LE Runtime Options for Performance

?ANYHEAP, BELOWHEAP, HEAP, THREADHEAP

– ANYHEAP, BELOWHEAP and THREADHEAP are used by LE

– HEAP is used by the application

?LIBSTACK, STACK, THREADSTACK (Save Areas)

– LIBSTACK and THREADSTACK are used by LE

– STACK is used by the application

These options improve performance when you specify values that
minimize the number of times the operating system allocates storage

-And can absolutely kill performance if they are too small

31

31

LE Runtime Options for Performance

?This is part of the output from a STROBE report where

STACK was too small

#PUP ** PROGRAM USAGE BY PROCEDURE **.SYSTEM SYSTEM

SERVICES .LELIB LE/370 LIBRARY SUBROUTNE

MODULE SECTION FUNCTION % CPU TIME MARGIN OF ERROR 2.13%

NAME NAME SOLO TOTAL 00 9.00 18.00

CEEBINIT CEEVGTSI GET A STACK INCREMENT 17.45 17.49 ********************

CEEBINIT CEEVGTS1 CEEVGTSI STUB ROUTINE 2.74 2.74 ****

CEEBINIT CEEVTOVF STACK OVERFLOW ROUTINE 1.80 1.80 ***

CEEPLPKA LE/370 VECTOR CSECT .05 .05

----- -----

SECTION .LELIB TOTALS: 22.04 22.08

In this case 22% of the CPU was wasted because the STACK value was
too small.

32

32

LE Runtime Options for Performance
?The STACK logic is called throughout the program
#ACE ** ATTRIBUTION OF CPU EXECUTION TIME **

.LELIB CEEBINIT CEEVGTSI GET A STACK INCREMENT

---------------INVOKED BY------------------ ------VIA------- -CPU TIME %-

XACTION MODULE SECTION RETURN LINE MODULE SECTION SOLO TOTAL

PGM001 *PGM0011 005E7A 1.70 1.70

PGM001 *PGM0011 005E84 1.99 1.99

PGM001 *PGM0011 00E67E 1.99 1.99

PGM001 *PGM0011 00E6B4 1.99 1.99

PGM001 *PGM0011 00E6BE 2.08 2.13

PGM001 *PGM0011 00E6DA .99 .99

PGM001 *PGM0011 00E78A 2.55 2.55

PGM001 *PGM0011 00EC38 1.80 1.80

PGM001 *PGM0011 00F716 2.27 2.27

PGM001 *PGM0011 01200C .05 .05

PGM001 *PGM0011 020F88 .05 .05

----- -----

17.45 17.49

In this case 22% of the CPU was wasted because the STACK value was
too small.

33

33

LE Runtime Options for Performance

?RPTOPTS

– Generate report of options in effect

?RPTSTG

– Generate reports of actual storage used

– Use RPTSTG suggested values to minimize GETMAINs

– Do not generate reports during production!!!

The RPTSTG runtime option generates a report of the storage the
application uses while it is running

-You can use the report to establish values for these parameters

The RPTOPTS and RPTSTG options increase the time it takes for the
application to execute

-Use them only as an aid to application development

34

34

LRR Storage Tuning User Exit

?The LRR Storage Tuning User Exit has two functions
– Collect LE storage tuning information without having to run with

the RPTSTG option

– Set the LE runtime options STACK, LIBSTACK, HEAP,
ANYHEAP, and BELOWHEAP for each LE enclave

?The exit name must be CEEBSTX (for non-CICS
environments with LRR)

?There is a sample in SCEESAMP named CEEWBSTX

?See the LE Customization manual for details

This looks like a great feature.

-We have not tested it.

35

35

LE Runtime Options for Performance
?LE runtime options changed at z/OS 1.2

– ALL31(ON)

?Tell LE that no application routines are AMODE 24

– STACK(,,ANY,,,)

?Puts stack storage above the line

– THREADSTACK(,,,ANY,,,)

?Puts thread stacks above the line for multi-threaded applications

– STORAGE(,,,0K)

?Eliminates below the line reserved stack storage

?This is known as the Favor 31-Bit Application
Enhancement

Z/OS 1.2 LE includes an enhancement to favor 31-bit applications.

-The goals of this enhancement are to reduce init/term path length and
reduce below-the-line storage usage.

-These changes introduce migration concerns for non-CICS
applications that invoke AMODE 24 routines.

The reserve stack is used to process an out-of-storage condition, as
when a stack or heap can not be extended.

The LE Runtime Migration manual has details of these changes if you
have AMODE 24 routines.

36

36

LE Runtime Options for Performance
?ALL31

– ALL31 specifies whether an application can run entirely in
AMODE 31 or whether the application has one or more AMODE
24 routines

– This option does not implicitly alter storage, in particular storage
managed by the STACK and HEAP runtime options

– However, you must be aware of your application's requirements
for stack and heap storage, because such storage can
potentially be allocated above the line while running in AMODE
24

– It is recommended that ALL31 have the same setting for all
enclaves in a process
?LE does not support the invocation of a nested enclave requiring

ALL31(OFF) from an enclave running with ALL31(ON) in non-CICS
environments.

If your application consists entirely of AMODE 31 routines it wll run faster and
use less below-the-line storage with ALL31(ON) than with ALL31(OFF).

If ALL31(ON) is in effect there is no AMODE switching among library
routines.

If you still have AMODE 24 programs, they must use ALL31(OFF) and
STACK(,,BELOW).

37

37

LE Runtime Options for Performance

?Favor 31-Bit Application Enhancement

– IMS applications compiled with C/370 and linked with the pre-LE

CTDLI stub and run with ALL31(OFF) may abend because LWS

(Library Work Space) storage is not allocated

?This is fixed with APAR PQ56143

?Or you can relink with LE version of CTDLI

– The Reserve Stack needs to be a minimum of 32K

?STORAGE(,,,nK)

?Used by LE to process out-of-storage conditions

For APAR PQ56143 logic was added back into the C runtime
initialization to obtain the LWS area, but ONLY for IMS applications
(those linked with CTDLI) and running ALL31(OFF).

-C will obtain the LWS storage only under these circumstances to
keep the below-the-line storage at a minimum for most applications.

You can also relink the application with the LE libraries to pick up the
new version of CTDLI which does not use the LWS as a module save
area.

38

38

Setting LE Runtime Options

?There are MANY ways to set LE runtime options

– CEEDOPT

– CEEROPT

– CEEUOPT

– Application Load Module

– IMS V8 Dynamic LE runtime options

– LRR Storage Tuning User Exit

There are many ways to set the LE runtime options.

The more specific ways will override the levels above it.

39

39

Setting LE Runtime Options

?CEEDOPT

– Installation-wide LE default options

?CEEROPT

– Region-wide LE options (if IMS with LRR)

– CEEROPT can only be used in IMS (with LRR) and CICS

environments

CEEDOPT can be used to set installation-wide runtime options,
changing the IBM provided defaults.

-The use of CEEDOPT is optional.

-CEEDOPT does not generate a separate load module, but it does
modify several modules in the LE libraries.

CEEROPT can be used to set runtime options for IMS in an IMS
dependent region which is also using LRR.

-The use of CEEROPT is optional.

-CEEROPT is a separate load module.

-IMS transactions can be classed so that certain transaction run in
certain Message Regions and therefore get certain LE runtime options.

40

40

Setting LE Runtime Options

?CEEUOPT

– Application specific LE options

– Must be linked with the application

The CEEUOPT CSECT can optionally be included by the application
programmer when linking an application to override LE options unless
NONOVR was specified in CEEDOPT.

-NONOVR is specified at the option level so that some options may
be able to be overridden and some may not.

41

41

Setting LE Runtime Options

?Load module

– PL/I main

?PLIXOPT

– C main

?#pragma runopts()

?LRR Storage Tuning User Exit

– This was previously discussed

PLIXOPT and #pragma runopts() allow PL/I & C application programs
to define runtime options in their source code.

-After compilation these options will be part of the load module.

-PLIXOPT and #pragma runopts() existed prior to LE.

-Pre-LE runtime options will be mapped to equivalent LE runtime
options.

-See the LE Migration Guides for details.

42

42

Setting LE Runtime Options

?IMS V8 Dynamic LE Runtime Options

– IMS users asked for the ability to dynamically change LE

runtime options for an IMS transaction

– The solution should not require that CEEROPT or CEEUOPT or

the application to be recompiled or relinked

– This requirement was met in IMS V8

IMS users had asked for the ability to dynamically change LE runtime
options for an IMS transaction.

This requirement was satisfied in IMS V8.

IMS documentation uses the term “parameters” instead of the LE term
“options”.

This presentation will use the term “options”.

43

43

Setting LE Runtime Options

?IMS V8 Dynamic LE Runtime Options

– New IMSplex commands allow a user to dynamically update,

delete, and query LE runtime options

?There are no equivalent “/” commands

– Requires new IMS V8 Operations Manager (OM)

– Uses DFSBXITA, an IMS specific version of CEEBXITA

?DFSBXITA uses an enhanced DL/I INQY call to retrieve the dynamic

options

The new IMS V8 Dynamic LE Runtime Options allows LE runtime
options to be set when the PSB is scheduled.

DB/DC, DBCTL, and DCCTL environments are supported.

MPP, BMP, IFP, JMP, and JBP regions are supported.

IMS Batch regions are not supported.

-Use CEEROPT for these regions.

44

44

Setting LE Runtime Options
?IMS V8 Dynamic LE Runtime Options

– Filters are used to decide when to set the dynamic LE runtime
options

?Transaction Code

?LTERM

?Userid

?Program

Filters are used to decide when to set the LE options are combinations
of Transaction Code, LTERM, Userid, and Program.

-BMP regions only use Program.

As an example, you could set the LE options for a specific IMS
transaction only if it was submitted from a specific user from a specific
LTERM.

45

45

Setting LE Runtime Options
?IMS V8 Dynamic LE Runtime Options

– Users can specify whether or not IMS should allow dynamic
runtime option overrides

?LEOPT= Y or N in the DFSCGxxx IMS Proclib member

?UPD LE SET(LEOPT(YES or NO)) IMSplex command

– QUERY MEMBER TYPE(IMS) displays “LEOPT” if overrides
are enabled

– JMP/JBP regions must also have JLEOPT=Y specified in the
Environment Proclib member

?These regions require APAR PQ54375 to use Dynamic LE Runtime
Options

The use of LE dynamic runtime options can be controlled by the
LEOPT parameter in DFSCGxxx.

The IMSplex UPD LE SET command can change this option.

JMP/JBP regions require APAR PQ54375 to use Dynamic LE Runtime
Options.

46

46

Setting LE Runtime Options

?IMS V8 Dynamic LE Runtime Options

– The dynamic LE options are specified and displayed with

IMSplex commands

?UPDATE LE

?DELETE LE

?QUERY LE

– Standard OM (Operations Manager) security is used

The LE runtime options are set , deleted, and displayed using IMSplex
commands.

This requires the use of the IMS Operations manager (V8) and an OM
client.

This could be the ISPF SPOC (Single Point of Control) provided by
IMS.

Standard OM security is used to control access to the commands.

47

47

Setting LE Runtime Options

?IMS V8 Dynamic LE Runtime Options

– The UPD LE command is used to set dynamic LE runtime

options based on a filter of transaction code and/or LTERM

and/or USERID and/or program

?At least one filter must be specified

– The UPD LE command can be issued while dynamic LE options

are disabled

?The options and filters will be saved and go into effect when dynamic

LE options are enabled

The LE runtime options are set using the UPD LE command, e.g.

UPD LE TRAN(PART) LTERM(TERM2) SET(LERUNOPTS(xxxx))

UPD LE PGM(DFSSAM02) SET(LERUNOPTS(yyyy))

The dynamic runtime options are stored in a table.

The UPD LE command can be issued even when the use of dynamic LE

runtime options has been disabled.

The table will still be updated and the options will go into effect when
dynamic LE runtime options is enabled.

48

48

Setting LE Runtime Options
?IMS V8 Dynamic LE Runtime Options

– The DELETE LE command is used to delete dynamic LE

runtime options based on a filter of transaction code and/or

LTERM and/or USERID and/or program

?At least one filter must be specified

?All matches found will be deleted

?Wildcard support is available for the filters

– The DELETE LE command can be issued while dynamic LE

options are disabled

?The options table will be updated and go into effect when dynamic

LE options are enabled

The LE runtime options are deleted using the DELETE LE command,
e.g.

DELETE LE TRAN(PART) LTERM(TERM2)

DELETE LE PGM(DFSSAM02)

DELETE LE USERID(STEVE*)

The DELETE LE command can be issued even when the use of
dynamic LE runtime options has been disabled.

The table will still be updated and go into effect when dynamic LE

runtime options is enabled.

There is wildcard support for the TRAN, LTERM, USERID, and PGM
values.

49

49

Setting LE Runtime Options

?IMS V8 Dynamic LE Runtime Options

– The QUERY LE command is used to display dynamic LE

runtime options based on a filter of transaction code and/or

LTERM and/or USERID and/or program

?At least one filter must be specified

?The first entry in the list with the most exact filter matches is

displayed

?Wildcard support is available for the filters

The LE runtime options are displayed using the QUERY LE command,
e.g.

QUERY LE TRAN(PART) SHOW(ALL)

QUERY LE USERID(STEVE*) SHOW(ALL)

There is wildcard support for the TRAN, LTERM, USERID, and PGM
values.

50

50

Debugging With LE
?ABEND codes are different with LE

– Why be consistent?!?!?

– Most LE abends are U4038/U4039

?About as useful as IMS U4095

?Debug using error messages – not abend codes
– e.g. Abend0C4 becomes message CEE3204S

?The MSGFILE runtime option species the DDNAME for
all runtime diagnostics and reports generated by
RPTOPTS and RPTSTG
– The default is SYSOUT

Just when you got used to U4000 abends – they changed the number.

U4038 will be used if there is no dump.

U4039 will be used if there is a dump.

51

51

Debugging With LE – Dump Files
?CEEDUMP

– Formatted dump of LE storage/data

– Content depends on TERMTHDACT() suboption

?CEESNAP
– Application generated dump information

?SYSUDUMP
– If TRMTHDACT(UADUMP) and SYSUDUMP DD card

– Formatted dump but no formatting of LE information

?SYSMDUMP
– If TRMTHDACT(UADUMP) and SYSMDUMP DD card

– Use when reporting problems to IBM

– IPCS verbexit LEDATA/CEEERRIP formats LE data

Ensure you have the proper DD cards for capturing debugging and
problem resolution data.

If your routine is running under z/OS or CICS, you can generate useful
diagnostic information by using the cdump() function or PLIDUMP.

-This produces a main storage dump with the activation stack.

-This is equivalent to calling CEE3DMP with the option string:
TRACEBACK BLOCKS VARIABLES FILES STORAGE
STACKFRAME(ALL) CONDITION ENTRY.

52

52

Debugging With LE – Control Blocks
?Common Anchor Point (CAA)

– Pointed to by Register 12

?Stack Frame/Dynamic Save Area (DSA)
– Pointed to by Register 13

– DSA’s are backchained at DSA+4

?Condition Information Block
– CEECAA+x’2D8’ points to current CIB

?Machine State Information Block (ZMCH)
– Pointed to by CIB+x’24’

Each LE thread is represented by a common anchor area (CAA) which
is the ‘SCD’ of LE.

A DSA is acquired every time a separately compiled procedure or block
is entered.

-A stack frame is also allocated for each call to a LE service.

-The first DSA on the chain is a “Dummy DSA”.

The LE condition manager creates a CIB for each condition
encountered in the LE environment.

The LE machine state information block (ZMCH) contains information
about the hardware state (PSW & registers) at the time of the error for
program checks.

53

53

Debugging with IMS and LE
?IMS & LE do coordinate condition handling!

– If an error occurs in an IMS environment LE will send the
condition to IMS

?There are a number of APAR’s dealing with IMS and
LE
– Some have been documented in this presentation

– Others can be found be searching IBMLINK

?This is HIGHLY recommended

If a program interrupt or abend occurs when your application is running
in an IMS environment LE percolates the condition back to IMS.

54

54

Uninitialized Variables
?Prior to LE uninitialized variables had a “high

probability” of being binary zero
– Many programs relied on this

?With LE many uninitialized variables contain “garbage”
– LE gets the storage and uses it for initialization and then uses it

for the application

?This was the source of MANY (MANY MANY) abends
and unexpected conditions and logic errors

In an LE environment uninitialized variables can easily contain
“garbage” – other than x’00’.

We have many applications which assumed (or were lucky) that this
data started as x’00’ in a pre-LE environment.

It took a great deal of time and energy to find and fix all of the
problems.

-There may still be some surprises waiting to be found.

55

55

Conclusion

?Implementing and upgrading LE in an IMS

environment requires hard work

?Plan by reading the Migration manuals

?Review runtime options before migration

?Consider LRR for performance

?Check for uninitialized variables

?Do extensive testing

– Including error scenarios

I am sure there are other considerations for LE and IMS.

We have not tested all languages and options.

Check IBMLINK regularly.

Keep up to date with IMS maintenance.

The IMS LISTSERV and Assembler LISTSERV are great place for more
information.

56

56

Questions?

