
Share Session #8234 Long Beach February 22-27, 2004 Page 1

Condition Handling
with

Language Environment

Session #8234

Presented by: Janice Winchell
jwinche@us.ibm.com

Share Session #8234 Long Beach February 22-27, 2004 Page 2

Trademarks and Copyright Notices

THE FOLLOWING TERMS ARE TRADEMARKS OF
INTERNATIONAL BUSINESS MACHINES CORPORATION:

COBOL/370
COBOL for VSE/ESA
COBOL for MVS & VM
COBOL OS/390
LANGUAGE ENVIRONMENT/370
LANGUAGE ENVIRONMENT for MVS & VM
LANGUAGE ENVIRONMENT OS/390
LANGUAGE ENVIRONMENT for VSE/ESA
MVS
MVS/ESA
OS/390
VSE/ESA
IBM
CICS CICS/ESA
SYSTEM/390
z/OS

The information presented in this material is for illustration only.
There is no implied warranty or correctness for the usability or applicability
of the material contained herein.

Permission is granted to SHARE to incorporate this presentation material
In the Proceedings of SHARE Long Beach February 22-27, 2004.

Share Session #8234 Long Beach February 22-27, 2004 Page 3

LE Condition Handling
TOPICS

 What?
 is LE’s philosophy on conditions..

 How?
 your user routines can use LE’s capabilities..and there are many..

 Where?
 your routines can get control..

 When?
 does it make sense to take charge..and when should you just let it be

Share Session #8234 Long Beach February 22-27, 2004 Page 4

LE Condition Handling
Start here to connect the dots!

 The Condition Token and Stack frames are the key!
 Condition Token has the “what happened”

 And…under the covers…the CIB (Condition Information Block)

 Stack frames are the “where are you” …. and more

 LE “manages” conditions using stack frames
 Keeps track of where condition occurs

 Keeps track of where to “resume”

 Stack frames are built on entry, and “collapsed” on exit

 Stack frame 0 is always present when you use an LE-enabled
application

 Additional stack frames added “on call”

Every “condition” will have a Condition Information Block (CIB).This is built by the
condition manager and contains information built by the condition manager from LE.
This block is not made available to user-written condition Handlers. It is not “intended to
be viewed or used” by the user, but the information may be of interest!

The layout of the CIB can be found in the LE Debugging Guide and Run-time Messages
manual. The key “pieces” of the condition token (it is a 12-byte area) for users are the
severity code, the message number, and the facility issuing the message. This 12-byte
code is the same layout as the feedback code returned from call’s to CEExxx routines.

Share Session #8234 Long Beach February 22-27, 2004 Page 5

LE Condition Handling
Adding the definitions helps

Terminology used for LE Conditions
 Condition

 The “oops” we typically call an exception, and interrupt

 Condition handler

 Routine invoked by Language Environment so that user programs
can “vote” on the subsequent actions

 “Registered” to LE by a call to CEEHDLR, by using the USRHDLR run-
time option, or by such constructs as PL/I ON statements.

 Condition token

 This is the “what has happened” 12-byte piece of information

 Feedback code

 The 12-byte “result” feedback from each Language Environment
callable service

The FEEDBACK code is considered “optional” when issuing calls toLE
services. It contains extremely valuable information in case the call to the
services “fail”, so I would strongly recommend including it on each call to
LE routines. Following the call you can check for a “zero” return–then
everything is cool–but if not zero, then you can examine the FACILITY and
MESSAGE to find out what went wrong. By combining the facility+message
you get a message that you can look up in the LE Debugging Guide and
Run-Time messages manual!

Of course, when using an LE facility, the “facility” 3-byte character code will
be….you guessed it…’CEE’.

Share Session #8234 Long Beach February 22-27, 2004 Page 6

LE Condition Handling
still defining terms….

Terminology used for LE Conditions…cont’d
 Resume cursor

 This points to the initial “where to resume” location
 Identified in the CIB

 Can be “moved” to change the resume location

 Handle cursor
 This points to a user-written condition handler

(IF YOU REGISTER IT)

 Stack frame
 Built by LE and contains the register save area + more
 Frames are allocated LIFO (last in, first out)
 May also contain automatic variables, linkage, condition handling ….
 Functionally equivalent to a DSA in PL/1, a save area in Assembler

When using LE-Enabled assembler, CEEENTRY has the “prologue” code that
constructs this area and does the register save, etc. CEETERM reloads registers and
does the return. When you build LE-enabled Assembler it is no longer appropriate to
have the traditional 18F savearea, and you no longer issue the SAVE and RETURN
macros….this is all taken care of in the LE macros CEEENTRY CEETERM! For
high-level languages, the save/return is also managed by Language Environment.
The “prologue” of HLL’s has a different look with Language Environment…no more
90ECD00C (STM 14,12,12(13)) at the beginning! In addition, the HLASM LE program
is automatically constructed as AMODE(31), RMODE(ANY). The documented
“solution” should you need to override this is to use the
PARM=’AMODE(31),RMODE(24)’, for example, or get below the line storage and
construct the DCB there, it just depends on the size of your handler. Since typically
the handler is not EXTENSIVE code, it might be just as acceptable to use the PARM
and ensure that the handler is loaded below the line. You typically would want the
handler to be SEPARATE from the business executable code as a matter of good
business practices, so overriding with the parm might just be the best practices
solution!

Since you can use the SNAP (and other) macros that might need a DCB below the
line, consider the “big picture” when coding user handlers in Assembler!

Share Session #8234 Long Beach February 22-27, 2004 Page 7

LE Condition Handling
how conditions are “created”

 Condition may occur because…
 Hardware detects an interrupt

 SOC7, SOC9, SOCB …..

 Operating system detects problem
 Open error, some other file mismatch, etc

 Language detects some “situation”
 COBOL “out of range” for table or reference modification and user

has SSRANGE and CHECK(ON)

 LE can generate condition via a callable service
 Date “out of range” for CEEDAYS, for example

 User routine “signals” a condition
 Call to CEESGL from COBOL

 RAISE in C/C++

 SIGNAL in PL/1

When a condition is “signaled” LE does not care how the condition was set, LE
will go through a normal sequence to check how to handle the condition. If your
condition handler is a “regular” handler (not specified in a PARM as the super
handler), normal processing sequence occurs.

If you code the PARM=‘/USRHDLR(NORMHDLR,SUPRHDLR)’ then the
SUPRHDLR gets control immediately! In the “normal” sequence, any HLL
language semantic routines, such as ON SIZE ERROR would be used, if a size
error occurred and ON SIZE ERROR was coded(COBOL), then user written
handlers, then HLL-specific condition handlers, such as a PL/I ON-unit or a C
signal handler, that might have been set up in the application.

Share Session #8234 Long Beach February 22-27, 2004 Page 8

LE Condition Handling
the “model”

 Everything that happens is based upon stack frames
 How we get stack frame creation depends upon the language

 Function call in C/C++
 Entry into a compile unit in COBOL (not nested)
 Entry into procedure or begin block in PL/1
 Entry into ON-Unit in PL/1
 Entry into a main or subprogram in Fortran

 Frames are added in a “LIFO” sequence
 Stack frames will be built from LE storage

 Could be from HEAP
 Could be STACK…but a stack is a stack is a stack!

 The Key is… the stack frame - the stack is everything!

LE acquires stack frame 0 to build and start, then successive frames are added
depending on the language and the application.

Share Session #8234 Long Beach February 22-27, 2004 Page 9

LE Condition Handling
the “model”in words

 OK, so now you get a “condition”….what does LE do?
 Starts with the most recently activated stack frame

 Does not matter how we got the condition

 LE looks at the most recently activated stack frame

 Looks for user-written handler for this stack frame

 Next looks for HLL specific handlers (C/C++ or PL/I)

 LE “traverses” back through all the active stack frames looking for
handlers to process the condition

 LE continues until there are no more frames

 If no handlers of any kind are found, then normal LE and/or
language rules take over to finish

LE will walk through the stack frames IN REVERSE ORDER, checking to see if there is
a handler “registered”, that is, is there a HANDLE CURSOR at this frame? If there is
then LE will load the handler program and execute it, if there are NO handler’s in effect,
the normal language condition processing takes over.

Share Session #8234 Long Beach February 22-27, 2004 Page 10

LE Condition Handling
the “model”in pictures

LE Main Program

Call ‘MYPROGA’

MYPROGA

Call ‘MYPROGB’

MYPROGB
……..

exception occurs here

Stack Frame 0 built by LE for “beginning” ……

Stack Frame 1
(DSA)

Stack Frame 2
(DSA)

Stack Frame 3
(DSA)

RESUME CURSOR
LE starts looking
here for a “condition
handler” at this frame

And keeps walking
back up the STACK
frames…looking…..

Still looking for
someone to “handle”
the condition..

And if none found,
then LE or language
rules apply

Remember LE acquires a stack frame for

each CALL in COBOL

each FUNCTION in C/C++

each procedure or end block in PL/1

each ON-UNIT in PL/I.

Stack frame 0 is the starting point. The frames are actually built “up”, not down as
implied here, but it is easier to show the sequence of program to program, stack frame to
stack frame!

Share Session #8234 Long Beach February 22-27, 2004 Page 11

LE Condition Handling
Resume Cursor

 Resume cursor points to the “where to resume” location
 This cursor is always on the move as the programs

execute, tracking the NSI (next sequential instruction)
 Positioned after the instruction that causes the

condition or signal
 Next machine instruction, not necessarily the
next “source” instruction

 May be “moved” with CEEMRCR LE callable routine to
move relative to “here”

 May be “moved” with CEEMRCE callable routine to
move to an “explicit” location

Resume Cursor is just like the PSW “next” instruction address. Note than in high level
languages this may be a generated instruction from the original coded statement, it is,
truly, the next sequential instruction. If you do NOTHING, and say, respond with
RESUME, then you effectively “step over” the offending instruction, but you may also
execute some meaningless instructions generated by the high-level language, things like
OI to “fix” the sign when no calculation actually occurred (say you failed on an packed
decimal instruction).

You also have some added capability by MOVING the resume cursor and identifying
SPECIFICALLY where you want to RESUME EXECUTION. Examples of these
capabilities are in shown later in this presentation.

CEEMRCR - Moves resume cursor relative to the current positioned handle cursor. This
can be similar to performing a GOTO, or setjmp() and longjmp(). The “move” depends
upon the setting of the “type” to move the resume cursor to thecall return point of the
routine registering the executing condition handler, or to move the resume cursor to
the caller of the routine registering the executing condition handler.

CEEMRCE - Moves the resume cursor to an explicit location where you want to resume
after a condition has been handled. You must have previously set the “location” with a
call to CEESRP - Set Resume Point

Share Session #8234 Long Beach February 22-27, 2004 Page 12

LE Condition Handling
Handle Cursor

 The other important element in “conditions” is the
“handle cursor”
 If you CALL CEEHDLR from your routine you have a
handle cursor “registered” at this frame (where you issue
this CEEHDLR call)

 If you use the run-time option USRHDLR to identify a
handler routine, you have a handle cursor “registered” at
Stack Frame 0

 This is the other piece of the LE CONDITION HANDLING
“puzzle”

 This is how LE knows whether to hand off the condition,
and who to hand off to!

The “handle cursor” will exist only if you identify a user handler routine to Language
Environment. You can use the “super handler” technique, with a run-time option to
register a user handler IMMEDIATELY, or, you can use the Language Environment
CEEHDLR routine to register a handler. At the point you “register” your handler, the
handle cursor is in effect, and the identified handler programs will have a chance to look
at abends that occur to “decide” whether to continue processing,RESUME, or not,
PERCOLATE. You can have MULTIPLE handlers registered, and LE will proceed in LIFO
order to let the handlers examine the condition. The super handler, registered via the run-
time parm USRHDLR is often called the “super handler” as this handler routine gets
invoked ahead of any other user registered condition handlers (via CEEHDLR
registration).

Share Session #8234 Long Beach February 22-27, 2004 Page 13

LE Condition Handling
no handler, no handle cursor–what happens

 If all stack frames have been traversed and NO ONE
HANDLED THE CONDITION (you did have the chance and
the choice)
 Language Environment proceeds with termination TIU

 Return & Reason codes are set based upon “original condition”

 Message is built and issued (from token)

 Traceback and dump created (depending on setting of TERMTHDACT
run-time option)

 Thread is terminated (single thread appl means ENCLAVE terminates
as well)

 This is why the abend/dump message indicates “thread
terminated due to unhandled condition” –you did have the
chance!

TIU–Termination Imminent due to Unhandled condition

Termination activity can either be Language Environment or the High Level Language (HLL).

The TERMTHDACT options control the amount of information produced and may be:

TRACE–a traceback only

QUIET - no message

MSG - message only indicating what happened

DUMP - Message, Traceback, and CEEDUMP (no region or address space or program code)

UADUMP–Message, Traceback, CEEdump and U4039 which will create dump of address space

Note: You need a DD for SYSUDUMP or SYSMDUMP, for CICS you will get TRANSACTION
DUMP

UATRACE–Message, Trace, and address space dump (no CEEDUMP)

UAONLY - LE will issue a U4039 abend which will drive an address space dump as long as you
have the appropriate DD statements

UAIMM–Creates an address space dump before LE “handles” anything

Note: For software-raised conditions or signals, UAIMM behaves the same as UAONLY. When
TRAP(ON,SPIE) is in effect, UAIMM will yield UAONLY behavior.

Share Session #8234 Long Beach February 22-27, 2004 Page 14

LE Condition Handling
callable services that help

 CEE3CIB –returns pointer to current CIB

 CEE3GRN –get name of offending routine

 CEE3GRO –offset location where condition occurred

 CEE3SPM –query or modify hardware condition

 CEE3SRP –set specific resume point for resume

 CEEGQDT –get the q_data token from the ISI

 CEEHDLR –register your user condition handler

 CEEHDLU –unregister your user handler

 CEEITOK –return “initial” condition token from current CIB

 CEEMRCE –move resume cursor explicit for resume

 CEEMRCR –move resume cursor relative to where condition “detected”

 CEESGL –signal a condition

 CEE3DMP –call the LE routine that can produce a DUMP

A CIB (Condition Information Block) created for each condition encountered. The
address of the current CIB is kept in the CAA (Common Anchor Area).

For PL/1 and COBOL, the “map” to these fields is supplied in SCEESAMP.

For C/C++ the layout is in leawi.h.

This is basically the “fount of all knowledge” for conditions. Pointers and addresses in
here may prove very valuable, should you need them! There is also a layout of the CIB in
the LE Debugging Guide and Run-time messages.

There is an extensive descriptive discussion of all the fields in the CIB in the Language
Environment for OS/390 & VM Vendor Interfaces (document number SY28-1152) which
is part of the LANGUAGE ENVIRONMENT library.

Share Session #8234 Long Beach February 22-27, 2004 Page 15

LE Condition Handling
run-time options that matter (IBM defaults shown)

 ABPERC(NONE) - Percolates (removes from LE condition handling) a
single abend code you specify via this option (or CEEBXITA)

 DEPTHCONDLMT(10) –Indicates how deep conditions can be
“nested” (how many conditions inside a condition you will tolerate)

 ERRCOUNT(0) –How many sev 2, 3, 4 conditions you will tolerate
before you pull the rug on condition handler routines and let LE just
abend your enclave –depends a lot on the language (COBOL, PL/1,
C/C++)

 TRAP(ON) –Better be ON unless instructed otherwise by IBM support!

 XUFLOW –Should exponent underflow cause an interrupt? (PL/1)

 TERMTHDACT(TRACE) –if you don’t handle the condition, this one tells you
how much information will be provided in the dump (CEEDUMP, SYSUDUMP,
SYSMDUMP)

 ABTERMENC(ABEND) –do you want a 3000 or a real OC7 (ABEND will get
you the OC7, RETCODE, which was the previous default, produced a return
code 3000

ERRCOUNT(0) means that the Language Environment condition handler will not
terminate the task regardless of the severity 2, 3, or 4 conditions that are generated.

ERRCOUNT applies when conditions are handled by a user condition handler, signal
catcher, PL/I on-units, or a language-specific condition handler. Language Environment
does not count severity 0 or 1 messages. There are lots of language specific rules and
information on ERRCOUNT in the following IBM manual:

OS/390 Language Environment for OS/390 & VM

Programming Reference Document Number SC28-1940-10

For COBOL it is possible to set ERRCOUNT(20) so that after 20 abnormal “conditions”
have been handled, the next condition will terminate with no “handling”. This gets a bit
trickier with PL/1 and C/C++ since every SIGNAL and ON-units count toward
ERRCOUNT.

Share Session #8234 Long Beach February 22-27, 2004 Page 16

LE Condition Handling
now let’s add a “top gun” user handler

LE Main Program

Call ‘MYPROGA’

MYPROGA
……

Let’s say a data exception
occurs here

Stack Frame 0 built by LE for “beginning” ……
Job executes with PARM=‘/USRHDLR(ASSMHDLR)’

Stack Frame 1
(DSA)

Stack Frame 2
(DSA)

RESUME CURSOR
LE starts looking
here for a “condition
handler” at this frame

And keeps walking
back up the STACK
frames…looking…..

Still looking for
someone to “handle”
the condition..

Handle cursor is
now positioned

here

NOTE: This PARM is a typical example for COBOL, where user parms precede LE run-
time parameters separated by the slash. If you are using the standard LE parameter
format, then the parm would be: PARM=‘USRHDLR(ASSMHDLR) where this is a
standard user condition handler registered at run-time.

Handle Cursor at stack frame 0 has some differences from a routine registered via a call
to CEEHDLR. There are some cross-communication opportunities, such as setting the
RETURN-CODE, that cannot be done in COBOL programs with a “super” handler.
C/C++ does recognize the return-code set via CEESRC called LE routine, as does PL/1,
but COBOL uses COBOL’s RETURN-CODE. What this means is, with a super handler
and COBOL, you can intercept the abend, produce a dump using CEE3DMP, but you
cannot indicate via a RETURN-CODE in your application that something “not good” has
occurred. As you will see, with the facility of registering a handler using CEEHDLR
which requires a bit of added code into your main COBOL program, you can produce the
dump information AND CROSS-COMMUNICATE so you can indicate via a RETURN-
CODE that something has occurred.

Share Session #8234 Long Beach February 22-27, 2004 Page 17

LE Condition Handling
or, add a “really truly super” user handler

LE Main Program

Call ‘MYPROGA’

MYPROGA
……

Let’s say a data exception
occurs here

Stack Frame 0
Job executes with PARM=‘/USRHDLR(,ALWYSHDL)’

Stack Frame 1
(DSA)

Stack Frame 2
(DSA)

RESUME CURSOR
LE will first pass
control to
ALWAYSHDL

Then LE will look for
other “registered”
handlers…either from
the first parameter to
USRHDLR or a call to
CEEHDLR

and this super handler
ALWYSHDL will get
control BEFORE any
other user registered
handler

“SUPER” cursor is
positioned here

This ALWYSHDL super handler will get CONTROL FIRST, and then any other user
registered handler routines will be invoked. This allows the truly super top gun of
handlers to get first crack at the exception or condition before anything or anyone else
touches it! You could also register another top handler, which would be invoked in the
“normal” sequence of handlers, by using PARM=‘/USRHDLR(TOPGUN,ALWYSHDL)’.

Note that whether you have the ‘/’ before or after user run-time options depends upon
the setting of CBLOPTS(ON|OFF). CBLOPTS(ON) specifies that USER run-time
options are FIRST, and the separator or initial slash identifies where the LE run-time
options begin. CBLOPTS(OFF) indicates that LE run-time options PRECEDE any user
parameters, and now the slash indicates the beginning of user run-times parameters.:

With CBLOPTS(ON): PARM=‘USEROPTS/LEOPTS’

With CBLOPTS(OFF): PARM=‘LEOPTS/USEROPTS’

This option ONLY APPLIES with a main program in COBOL, otherwise the normal LE
order is in effect, which is PARM=’LEOPTS/USEROPTS’.

Share Session #8234 Long Beach February 22-27, 2004 Page 18

LE Condition Handling
sample Assembler “top gun” snippet
* IDENTIFY HANDLER

WTO 'ASSMHDLR HAS ARRIVED',ROUTCDE=11
* CHECK CONDITION

CLC CURCOND(8),CEE347 CHECK FOR DATA EXCEPTION
* AS TO WHY ARE WE HERE?

BE BADPDATA YES, GO TAKE CARE OF IT
*

MVC RESCODE,=A(PERCOLAT) OTHERWISE PERCOLATE COND
B OUT AND LEAVE

*
BADPDATA EQU *

MVC RESCODE,=A(RESUME) SET UP RESUME "ACTION"
*
* CALL CEE3DMP SO YOU GET THE INFO YOU WOULD HAVE SEEN ON SOC7
*

LA R1,DUMPTITL GET ADDRESS OF TITLE
ST R1,PARM1 MAKE IT PARM 1
LA R1,DUMPOPTS GET ADDRESS OF OPTIONS
ST R1,PARM2 MAKE IT PARM 2
LA R1,FC GET ADDRESS OF FEEDBACK CD
ST R1,PARM3 MAKE IT PARM 3
LA R1,DMPPARMS POINT TO PARM LIST FOR

* CEE3DMP
CALL CEE3DMP AND CALL THE DUMP ROUTINE

*
* WHEN YOU LEAVE THE RESULT CODE TELLS LE TO KEEP EXECUTING
* IF SET TO '10', OR TO PERCOLATE UP IF SET TO '20'
OUT EQU *

WTO 'ASSMHDLR IS NOW SAYING SO LONG',ROUTCDE=11
*
* USE LE TERMINATION TO FINISH AND LEAVE
*

CEETERM RC=0
CEE347 DC X'00030C8759C3C5C5' DATA EXCEPTION TOKEN

The Current Condition is a 12 byte condition token that is available to be “examined” in
your user handler program. The contents of this condition token indicate what just
happened. The CEE347 is indicative (by name only) that a data exception has occurred.
You can name these token descriptive names or use the symbolic feedback code, it’s the
content that counts! The first eight bytes are the critical ones to check:

CEE347 DC X’00030C8759C3C5C5’

In order to RESUME, you send back to Language Environment the code +10, and to
PERCOLATE, you would use code +20. These are only 2 of several possible return
codes to Language Environment, but are the typical starter codes, either resume just
past the failing instruction, or percolate to another (if it exists) handler in the stack frame
sequence. If this is a handler registered via USRHDLR, then probably there are no other
handler, in which case a PERCOLATE will ultimately cause the application to fail with the
original condition and information just as if no handlers had ever been involved!

See the complete assembler program example in the additional handout material.

Share Session #8234 Long Beach February 22-27, 2004 Page 19

LE Condition Handling
what it means with PARM=’/USRHDLR(ASSMHDLR)’

 This assembler routine, ASSMHDLR, is currently set to
“catch” ANY SOC7, regardless of the language of the
program involved in this Enclave (run-unit)

 By registering as a USRHDLR, the routine is tagged to
STACK FRAME 0 and every condition percolates ….unless it
is “handled” earlier for the specific condition…

 The “CURRENT CONDITION” is a 12 byte field with the
following construction:
 SEVERITY –binary 2 byte field (such as 0003)
 MESSAGE –binary 2 byte field (such as 0C87)
 HEX BITS –hex 1 byte field
 “WHO” ISSUED MESSAGE –3 byte character (C3C5C5)
 Instance specific information –4 bytes

The full program coding for ASSMHDLR is available as an additional handout. In this
example the “main” program can be any language, the condition handler can also be any
LE supported language, and the handler will “catch” the condition, and determine what
the error is. In this example if the error is a SOC7 then the handler routine will return a
code +10 to Language Environment, indicating that processing should resume at the
statement following the one that caused the condition.

Share Session #8234 Long Beach February 22-27, 2004 Page 20

LE Condition Handling
sample COBOL “top gun” page 1 of 2

IDENTIFICATION DIVISION.
PROGRAM-ID. TOPHDLR.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 DMP-TITLE PIC X(80)

VALUE 'CEEDUMP FROM COBOL HANDLER ROUTINE'.
01 DMP-OPTIONS PIC X(255)

VALUE 'TRACE FILE VAR STOR'.
01 FEEDBACK.

10 FB-SEV PIC S9(4) COMP.
10 FB-MSGNO PIC S9(4) COMP.
10 FB-CASE-SEV PIC X.
10 FB-FAC-ID PIC X(3).
10 FB-ISINFO PIC S9(8) COMP.

LINKAGE SECTION.
01 CURRENT-CONDITION.

10 FBCODE PIC X(8).
88 SOC7 VALUE X'00030C8759C3C5C5'.
88 SOC9 VALUE X'00030C8959C3C5C5'.
88 SOCB VALUE X'00030C8B59C3C5C5'.

10 PIC X(4).
01 DATA-INFO PIC S9(8) COMP.
01 RESULT-CODE PIC S9(9) COMP.

88 RESUME VALUE +10.
88 PERCOLATE VALUE +20.

01 NEW-CONDITION PIC X(12).

This is a COBOL sample for a condition handler that is set to catch a SOC7, SOC9, or
SOCB condition. If the error is any of these three, the handler tells LE to RESUME. Any
other error is simply percolated to LE. If there are no other handlers registered (and in
this case there are not), then LE will do normal program abend processing.

Share Session #8234 Long Beach February 22-27, 2004 Page 21

LE Condition Handling
sample COBOL “top gun” page 2 of 2

PROCEDURE DIVISION USING CURRENT-CONDITION, DATA-INFO,
RESULT-CODE, NEW-CONDITION.

100-PROGRAM-BEGIN.

* IF A SOC7, SOC9, SOCB HAS OCCURRED
* CALL CEE3DMP TO PRODUCE THE DUMP, AND THEN
* SET RESUME TO TRUE SO THE PROGRAM KEEPS RUNING
* ON ANY OTHER “CONDITION” SIMPLY PERCOLATE

IF SOC7 OR SOC9 OR SOCB
CALL 'CEE3DMP' USING DMP-TITLE, DMP-OPTIONS, FEEDBACK
IF FB-SEV NOT = 0

DISPLAY 'ERROR IN CEE3DMP CALL', FB-FAC-ID, FB-MSGNO
DISPLAY 'NO DUMP HAS BEEN PRODUCED'

END-IF
SET RESUME TO TRUE

ELSE
SET PERCOLATE TO TRUE

END-IF.

999-EXIT-PROGRAM.
GOBACK.

END PROGRAM TOPHDLR.

Notice that the handler does a call to CEE3DMP, which will produce the CEEDUMP just
as if the program had abended, but because RESUME is sent back to LE, you get the
dump, but the application continues processing.

Share Session #8234 Long Beach February 22-27, 2004 Page 22

LE Condition Handling
what it means with PARM=’/USRHDLR(TOPHDLR)’

 This COBOL routine, TOPHDLR, is currently set to “catch”
ANY SOC7, SOC9, or SOCB regardless of the language of
the program involved in this Enclave (run-unit)

 By registering as a USRHDLR, the routine is tagged to
STACK FRAME 0 and every condition percolates ….unless it
gets “handled” on the way up

 The “CURRENT CONDITION” is a 12 byte field with the
following construction:
 SEVERITY –binary 2 byte field (such as 0003)
 MESSAGE –binary 2 byte field (such as 0C87)
 HEX BITS –hex 1 byte field
 “WHO” ISSUED MESSAGE –3 byte character (such as C3C5C5)
 Instance specific information –4 bytes

The sample TOPHDLR is a complete COBOL program, albeit a simple one. This routine
will create the information you would have received with CEEDUMP, but the application
continues processing.

Share Session #8234 Long Beach February 22-27, 2004 Page 23

LE Condition Handling
USRHDLR ..additional thoughts

 With these “top” handlers, there are considerations
 The handler load module cannot be linked in, must be

separate
 But, the handler module will ONLY be loaded if needed

 You can use the same result codes as you would choose
when the condition handler is registered via CEEHDLR call
(like resume +10, percolate +20)

 You do not get to set up the “token” to send into the user
handler
 Can send in a 4-byte “something” when you register with a call to

CEEHDLR

 You cannot use CEEMRCR or CEEMRCE –move the
resume cursor
 This means a top handler CANNOT respond to COBOL IGZ

messages which are SEV 2 or higher

It would typically be good practice to have all the condition handlers as “dynamic”
modules. You would then only get them loaded and executed in the event you have a
program “condition”. With the handlers registered via the USRHDLR run-time option,
you must have the modules as separate. With handlers registered via CEEHDLR you
can either have the condition handler program dynamically linked, or statically linked.

Share Session #8234 Long Beach February 22-27, 2004 Page 24

LE Condition Handling
Using CEEHDLR to register your routine

 Beyond the use of a PARM to “register”, there is
another choice
 USRHDLR is convenient because no program changes

are required
 But…the restrictions limit some of your capabilities

 Using a call to CEEHDLR adds to what your handler
can do

 You can now handle COBOL IGZ messages for sev 2 or
greater in a condition handler

 You can pass in a 4 byte “something” to the condition
handler (this is one of the parameters in the CALL CEEHDLR)

 You can use other Assembler Macros in your Assembler
condition handler

 SNAP is one that comes to mind, to dump some storage
areas you might want included in the information

With the call to CEEHDLR there are 4 parameters.

•1st parameter is a pointer with the name of the Condition Handler Program,

•2nd parameter is a 4-byte something, perhaps a pointer to a structure, which can be
sent INTO the condition handler,

•3rd parameter is the result code to send back to LE,

•4th parameter is a new-condition, should the handler have code to CHANGE the
condition from the current-condition.

Share Session #8234 Long Beach February 22-27, 2004 Page 25

LE Condition Handling
Using CEEHDLR to register your routine

 Now with CEEHDLR
 You can register multiple condition handlers at multiple “locations”

 Handlers are processed in a LIFO manner
 If you have registered more than 1 handler at a specific stack frame level

 The last shall be first!

 You can have specific handlers for specific conditions
 You can have the handler registered at specific “frame” levels
 You can still use CEEHDLR to be a “top gun”

 Register your routine RIGHT AWAY in the FIRST PROGRAM
 If you have no other handlers, this is similar to using the parm, but you

get some additional capabilities

CEEHDLR can be called to register AS MANY CONDITION HANDLERS as you might
need. This allows you to have VERY SPECIFIC condition handlers, and you can register
each one independently, and LE will find them all! The condition handlers will be invoked
in the reverse order they are registered.

Share Session #8234 Long Beach February 22-27, 2004 Page 26

LE Condition Handling
Using CEEHDLR to register your routine

 The next examples:
 LAB2SOLX is a program with a table used in the
processing to “extract” and left-justify the output

 For example 00077777 should end up as ‘7777777 ‘ and 0000055555
should end up as ‘55555 ‘

 The last entry is all zeros, so if not properly tested for, the program
appears to work, but when you compile with SSRANGE you “fail” with
error IGZ0072S –reference modification start position value of nn on line
nn referenced an area outside the data item data-field-name

 The symbolic feedback for this is IGZ028

 The condition handler LAB2HDLR is set up to check for
some specific COBOL IGZ errors that could be “trapped”
without having the application abend…

 This is an example where a COBOL routine actually
detects the problem, so it is necessary to MOVE RESUME
CURSOR with a MOVE-TYPE-0 to put the resume back into
LABSOLX

See the programming sample for the LAB2SOLX and LAB2HDLR in the additional
handout material. The following Pages will only show snippets from the code.

Share Session #8234 Long Beach February 22-27, 2004 Page 27

LE Condition Handling
sample COBOL program which registers handlers (1 of 2)

<SNIP>

ID DIVISION.
PROGRAM-ID. LAB2SOLX.
DATA DIVISION.
WORKING-STORAGE SECTION.
**
* AREAS FOR LE CONDITION HANDLER
**
01 ERROR-INDICATOR PIC X EXTERNAL.
01 MY-ABEND-TOKEN PIC S9(8) COMP.
01 PGMPTR PROCEDURE-POINTER.
01 FEEDBACK.
10 FB-SEV PIC S9(4) COMP.
10 FB-MSG PIC S9(4) COMP.
10 FB-CTL PIC X.
10 FB-FAC PIC X(3).
10 FB-ISINFO PIC S9(9) COMP.

* END OF DATA VARIABLES FOR CONDITION HANDLER
**

</SNIP>

The complete program sample is provided as an additional supplemental handout. The
PGMPTR PROCEDURE-POINTER data item will be set up with the name of the
condition handler for the call to CEEHDLR. MY-ABEND-TOKEN is an 4 byte item that
can be SENT INTO the condition handler (it is a one-way ticket only). Also notice that
the FEEDBACK structure is a 12-byte area with information that contains the RESULTS
from EVERY call to a language environment routine. The layout of this feedback area is
consistent regardless of the program/language/facility, and can be used to check
whether the call to the Language Environment routine was successful. If the 1st halfword
is NOT zeros, there was some problem. The problem will be indicated by the 2nd

halfword, which will be the binary representation of the error message. The FB-FAC will
indicate “who issued” the message. Since in this example we arecalling an LE routine,
the FAC will contain CEE.

Share Session #8234 Long Beach February 22-27, 2004 Page 28

LE Condition Handling
sample COBOL program which registers handlers (2 of 2)

PROCEDURE DIVISION.
BEGIN-PROGRAM.

MOVE 'N' TO ERROR-INDICATOR
SET PGMPTR TO ENTRY 'LAB2HDLR'
MOVE 0000 TO MY-ABEND-TOKEN
CALL 'CEEHDLR' USING PGMPTR, MY-ABEND-TOKEN, FEEDBACK
IF FB-SEV = ZEROS

DISPLAY 'LAB2HDLR REGISTERED'
ELSE

DISPLAY 'LAB2HDLR REGISTRATION FAILED'
DISPLAY 'FB-MSG = ' FB-FAC, FB-MSG

END-IF.
SET PGMPTR TO ENTRY 'TOPHDLRC'
MOVE 0000 TO MY-ABEND-TOKEN
CALL 'CEEHDLR' USING PGMPTR, MY-ABEND-TOKEN, FEEDBACK
IF FB-SEV = ZEROS

DISPLAY 'TOPHDLRC REGISTERED'
ELSE

DISPLAY 'TOPHDLRC REGISTRATION FAILED'
DISPLAY 'FB-SEV = ' FB-SEV

END-IF.
<snip> note code here to loop through table and “extract” non-zero data

ADD +1 TO DUMPIT (simply to force a SOC7 at this level)
IF ERROR-INDICATOR = 'Y'

MOVE +8 TO RETURN-CODE
ELSE

MOVE +0 TO RETURN-CODE
END-IF
GOBACK.

This program is set up to demonstrate two different capabilities of Condition Handling.
The first “error” that occurs is a COBOL detected error. The program loops through the
table data to eliminate leading zeroes and display the “rest of the field”. The last entry is
all zeros, so counting the leading zeroes gives a count of 10, then when you attempt to
move the rest of the field to DDANO-OUT, you are actually referencing a position
OUTSIDE the range of the field. This “error” is only detected when you compile with
SSRANGE, and execute with CHECK(ON). Since a COBOL routine detects the error, the
condition handler cannot simply resume execution, because the resume cursor is pointing
to the COBOL routine. This is an example where you should use the move resume cursor
capability, to move the resume cursor “back” one level, which will put the resume cursor
back in your COBOL application program and you can correctly and properly resume
execution! Note also that the ERROR-INDICATOR is defined as an EXTERNAL data
item in both the COBOL application program and in the COBOL condition handler. This
allows the condition handler to “set” an indicator that can be checked in the main COBOL
program so that the RETURN-CODE can indicate some “problem” occurred. Using a little
bit of added logic in the COBOL main program, and coordinating with the condition
handler, allows some additional information to be provided. Contrast this with the super
condition handler, using USRHDLR, which can trap the SOC7, but NOT this type of
COBOL error. Additionally using 2 COBOL programs and cross-communicating allow the
program to indicate via JCL RETURN-CODE that something was amiss!

Share Session #8234 Long Beach February 22-27, 2004 Page 29

LE Condition Handling
sample <snip> of COBOL handler for IGZ sev >= 2 errors

01 FEEDBACK.
10 FB-SEV PIC S9(4) COMP.
10 FB-MSGNO PIC S9(4) COMP.
10 FB-CASE-SEV PIC X.
10 FB-FAC-ID PIC X(3).
10 FB-ISINFO PIC S9(8) COMP.

01 RESUME-CURSOR-REPOSITION.
10 MOVE-TYPE-0 PIC S9(9) COMP

VALUE +0.
10 MOVE-TYPE-1 PIC S9(9) COMP

VALUE +1.
01 ERROR-INDICATOR PIC X EXTERNAL.
LINKAGE SECTION.
01 CURRENT-CONDITION.

10 FBCODE PIC X(8).
88 FIXED-TABLE-RANGE VALUE X'0003000659C9C7E9'.
88 VARIABLE-TABLE-RANGE VALUE X'0003000759C9C7E9'.
88 REFMOD-START VALUE X'0003004859C9C7E9'.
88 REFMOD-NEG VALUE X'0003004959C9C7E9'.
88 REFMOD-RIGHT VALUE X'0003004A59C9C7E9'.

10 PIC X(4).
01 DATA-INFO PIC S9(8) COMP.
01 RESULT-CODE PIC S9(9) COMP.

88 RESUME VALUE +10.
88 PERCOLATE VALUE +20.

01 NEW-CONDITION PIC X(12).

This is a portion of the COBOL coding in LAB2HDLR, which is available in its entirety as
a separate handout. Notice that the feedback code is now checking for some specific
COBOL IGZ type errors, related to table range or reference modification positions being
outside the “range” or size of the field. The symbolic feedbackcodes are actually:
IGZ006–from message IGZ0006S, the reference to table table-name by verb number
verb-number on line line-number addressed an area outside the region of the table,
IGZ007–from message IGZ0007S, the reference to variable-length group group-name
by verb number verb-number on line line-number addressed an area outside the
maximum length of the group. IGZ0072S, A reference modification start position value
of reference-modification-value on line line-number referenced an area outside the
region of data item data-item, IGZ0073S, symbolic feedback IGZ028, etc.

Share Session #8234 Long Beach February 22-27, 2004 Page 30

LE Condition Handling
sample <snip> part 2 of COBOL handler for IGZ sev >= 2

* CHECK FOR COBOL ERROR MESSAGE, CALL CEE3DMP
* THEN MOVE THE RESUME CURSOR "UP" ONE LEVEL SO YOU
* RESUME IN YOUR COBOL PROGRAM, NOT IN THE COBOL
* MESSAGE PRODUCING ROUTINE

DISPLAY 'YOU HAVE ENTERED LAB2HDLR ROUTINE'
EVALUATE TRUE

WHEN FIXED-TABLE-RANGE
WHEN VARIABLE-TABLE-RANGE
WHEN REFMOD-START
WHEN REFMOD-NEG
WHEN REFMOD-RIGHT

CALL 'CEE3DMP' USING DMP-TITLE, DMP-OPTIONS, FEEDBACK
**********************deleted portions of program **********

DISPLAY 'ABOUT TO CALL CEEMRCR'
CALL 'CEEMRCR' USING MOVE-TYPE-0, FEEDBACK
IF FB-SEV NOT = 0

DISPLAY 'ERROR IN CEEMRCR CALL', FB-FAC-ID, FB-MSGNO
DISPLAY 'CURSOR WAS NOT MOVED'

ELSE
DISPLAY 'MOVE TYPE 0 DONE'

END-IF
DISPLAY 'EXECUTION RESUMED, BUT THERE WERE PROBS'
MOVE 'Y' TO ERROR-INDICATOR
SET RESUME TO TRUE

WHEN OTHER
SET PERCOLATE TO TRUE

END-EVALUATE.

Since the checking is for a COBOL error message, a simple RESUME is not valid. The
resume cursor would be pointing to the next instruction IN THE COBOL ERROR
ROUTINE, not in your application program! The MOVE RESUME CURSOR moves the
RESUME location to the point in the “up one level” program, in this case, the COBOL
PROGRAM, not the COBOL ERROR ROUTINE! The BOTTOM LINE MESSAGE here
is, if the message is an IGZ message, you must use the MOVE RESUME CURSOR +0
to move the cursor UP 1 level in order to RESUME in YOUR program. You can get a
DIVIDE BY ZERO that is a CEE message, OR, you might get one from COBOL if
COBOL is the detector of the problem. If the divide by zero is detected by COBOL then
you need to use a technique like the one shown here–and this also means you must
REGISTER the CONDITION HANDLER IN YOUR PROGRAM, you cannot simply
RESUME without moving the resume cursor!

Share Session #8234 Long Beach February 22-27, 2004 Page 31

LE Condition Handling
Here is the output from the execution with LAB2 ….

Messages from EXECUTION of LAB2SOLX

LAB2HDLR REGISTERED
TOPHDLRC REGISTERED
COUNT2= 03
DDANO-OUT = 7777777
COUNT2= 07
DDANO-OUT = 333
COUNT2= 06
DDANO-OUT = 4444
COUNT2= 09
DDANO-OUT = 1
COUNT2= 08
DDANO-OUT = 22
COUNT2= 05
DDANO-OUT = 55555
COUNT2= 04
DDANO-OUT = 666666
COUNT2= 02
DDANO-OUT = 88888888
COUNT2= 01
DDANO-OUT = 999999999
YOU HAVE ENTERED LAB2HDLR ROUTINE
ABOUT TO CALL CEEMRCR
MOVE TYPE 0 DONE
EXECUTION RESUMED, BUT THERE WERE PROBS
COUNT2= 10
DDANO-OUT =

This output shows the sequence that the 2 handler routines were“registered”, so there
are 2 handle cursors at this stack frame, the application displays the information as it
loops through the table, then the last entry in the table has all zeros to create the
“condition” of a COBOL detected reference modification “out of range” error, so the
MOVE TYPE 0 moves the resume cursor up 1 frame, and execution continues.

Share Session #8234 Long Beach February 22-27, 2004 Page 32

LE Condition Handling
Here is the output from the execution with LAB2 ….

CEE3DMP V2 R10.0: CEEDUMP FROM LAB2HDLR ROUTINE 02/04/04 5:10:19 PM Page: 1

CEE3DMP called by program unit IGZCFCC at offset +00000270.

Registers on Entry to CEE3DMP:

PM....... 0000
GPR0..... 0002D198 GPR1..... 0002CF90 GPR2..... 0E44CB8C GPR3..... 0E45B124
GPR4..... 0002CFA0 GPR5..... 0E45B124 GPR6..... 0004A448 GPR7..... 0002CF90
GPR8..... 00000000 GPR9..... 0E45AFE0 GPR10.... 0004A038 GPR11.... 8001C130
GPR12.... 00017AC0 GPR13.... 0002CFB0 GPR14.... 8001F0E2 GPR15.... 85E0FAA8
FPR0..... 00000000 00000000 FPR2..... 00000000 00000000
FPR4..... 00000000 00000000 FPR6..... 00000000 00000000
GPREG STORAGE:
Storage around GPR0 (0002D198)
-0020 0002D178 D9C5C440 D3C1C2F2 C8C4D3D9 40D9D6E4 E3C9D5C5 40404040 40404040 40404040 |RED LAB2HDLR ROUTINE

………………..
Information for enclave LAB2SOLX

Information for thread 8000000000000000

Registers on Entry to CEE3DMP:
PM....... 0000
GPR0..... 0002D198 GPR1..... 0002CF90 GPR2..... 0E44CB8C GPR3..... 0E45B124
GPR4..... 0002CFA0 GPR5..... 0E45B124 GPR6..... 0004A448 GPR7..... 0002CF90
GPR8..... 00000000 GPR9..... 0E45AFE0 GPR10.... 0004A038 GPR11.... 8001C130
GPR12.... 00017AC0 GPR13.... 0002CFB0 GPR14.... 8001F0E2 GPR15.... 85E0FAA8
FPR0..... 00000000 00000000 FPR2..... 00000000 00000000
FPR4..... 00000000 00000000 FPR6..... 00000000 00000000
GPREG STORAGE:
Storage around GPR0 (0002D198)

………………………

This is a portion of the dump that resulted because LAB2HDLR was“invoked”, and as
part of the processing this handler routine did a CALL CEE3DMP to produce this
information.

Share Session #8234 Long Beach February 22-27, 2004 Page 33

LE Condition Handling
<SNIPPIT> of dump output from the execution with LAB2 ….

………………………………
Traceback:

DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
0002CFB0 IGZCFCC 0001C130 +00000270 IGZCFCC 0001C130 +00000270 IGZCFCC Call
0002CEE8 LAB2HDLR 0E458800 +00000508 LAB2HDLR 0E458800 +00000508 68 LAB2HDLR Call
0002A7B8 CEEHDSP 05E05D30 +000017B6 CEEHDSP 05E05D30 +000017B6 CEEPLPKA Call
0002A620 CEEHSGLT 05E71300 +0000005C CEEHSGLT 05E71300 +0000005C CEEPLPKA Exception
0002A108 IGZCMSG 0E4356A8 +0000038C IGZCMSG 0E4356A8 +0000038C IGZCPAC Call
0002A018 LAB2SOLX 0E4005C8 +000008A4 LAB2SOLX 0E4005C8 +000008A4 71 LAB2SOLX Call

Condition Information for Active Routines
Condition Information for CEEHSGLT (DSA address 0002A620)
CIB Address: 0002AE30
Current Condition:
IGZ0072S A reference modification start position value of 11 on line 000071 referenced an area outside the region

of data item DDANO-IN.
Location:
Program Unit: CEEHSGLT Entry: CEEHSGLT Statement: Offset: +0000005C

………………………..
Local Variables:

9 01 DMP-TITLE X(80) DISP 'CEEDUMP FROM LAB2HDLR ROUTINE’ '
12 01 DMP-OPTIONS X(255) DISP 'TRACE FILE VAR STOR’
15 01 FEEDBACK AN-GR
16 02 FB-SEV S9999 COMP +00000
17 02 FB-MSGNO S9999 COMP +00000
18 02 FB-CASE-SEV X DISP '?'
19 02 FB-FAC-ID XXX DISP '???'
20 02 FB-ISINFO S9(8) COMP +0000000000
22 01 RESUME-CURSOR-REPOSITION

AN-GR
23 02 MOVE-TYPE-0 S9(9) COMP +0000000000
25 02 MOVE-TYPE-1 S9(9) COMP +0000000001
28 01 ERROR-INDICATOR X DISP 'N'
31 01 CURRENT-CONDITION

AN-GR
32 02 FBCODE X(8) DISP '? ?‡áIGZ'
38 02 FILLER XXXX DISP '??? '
40 01 DATA-INFO S9(8) COMP +0000000000
41 01 RESULT-CODE S9(9) COMP +0000000020
44 01 NEW-CONDITION X(12) DISP '????????????'

Notice the sequence of routines in the traceback sequence. The 1st program is
LAB2SOLX, then a COBOL routine (IGZ…) which detects a “problem”,and then the
CEE routine is next, and LAB2HDLR is invoked (this is the condition handler routine that
SPECIFICALLY checks for specific IGZ type errors). Notice also that the STATEMENT
number is identified in the traceback. This is the last statement executed (from the
compiler listing sequence number) in LAB2SOLX and LAB2HDLR, and reflects the
actual last statement, NOT THE NEXT ONE, and is produced because the COBOL
programs were compiled with TEST(NONE,SYM). The SYM produces the symbol table
that creates this statement number, and, in addition, produces the LOCAL VARIABLES
portion of the dump with the data names and data field contents.

Share Session #8234 Long Beach February 22-27, 2004 Page 34

LE Condition Handling
Now TOPHDLRC (This is TOPHDLR COBOL Program)

………………………………
CEE3DMP V2 R10.0: TOPHDLRC CREATED DUMP 02/04/04 5:10:19 PM Page: 1

CEE3DMP called by program unit IGZCFCC at offset +00000270.

Registers on Entry to CEE3DMP:

PM....... 0000
GPR0..... 0002CAE8 GPR1..... 0002C8E0 GPR2..... 0E44CB8C GPR3..... 0E45F12C
GPR4..... 0002C8F0 GPR5..... 0E45F12C GPR6..... 0004A448 GPR7..... 0002C8E0
GPR8..... 0004A448 GPR9..... 0E45EFE8 GPR10.... 0004A038 GPR11.... 8001C130
GPR12.... 00017AC0 GPR13.... 0002C900 GPR14.... 8001F0E2 GPR15.... 85E0FAA8
FPR0..... 49313974 A8000000 FPR2..... 4E000000 03AF4892
FPR4..... 4E000000 00025567 FPR6..... 00000000 00000000

………………
Traceback:

DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status
0002C900 IGZCFCC 0001C130 +00000270 IGZCFCC 0001C130 +00000270 IGZCFCC Call
0002C838 TOPHDLRC 0E45CE88 +00000344 TOPHDLRC 0E45CE88 +00000344 35 TOPHDLRC Call
0002A108 CEEHDSP 05E05D30 +000017B6 CEEHDSP 05E05D30 +000017B6 CEEPLPKA Call
0002A018 LAB2SOLX 0E4005C8 +0000090C LAB2SOLX 0E4005C8 +0000090C 77 LAB2SOLX Exception

Condition Information for Active Routines
Condition Information for LAB2SOLX (DSA address 0002A018)

CIB Address: 0002A780
Current Condition:

CEE3207S The system detected a data exception (System Completion Code=0C7).
Location:

Program Unit: LAB2SOLX Entry: LAB2SOLX Statement: 77 Offset: +0000090C
Machine State:

ILC..... 0006 Interruption Code..... 0007
PSW..... 078D1000 8E400EDA
GPR0..... 0E45010C GPR1..... 0E4008A0 GPR2..... 0000005A GPR3..... 000197FC
GPR4..... 00000000 GPR5..... 00016AF0 GPR6..... 0E45011A GPR7..... 00000000
GPR8..... 0E450088 GPR9..... 0E44C078 GPR10.... 0E4006E8 GPR11.... 0E400A1C
GPR12.... 0E4006C4 GPR13.... 0002A018 GPR14.... 8E400ED4 GPR15.... 8E42E490

…………………
Storage dump near condition, beginning at location: 0E400EC4

+000000 0E400EC4 58B0C020 47B0B35E 45E0914C 45E0914E FA1080A0 A0EE940F 80A0960F 80A145E0 |.......;..j<..j+......m...o.....|

This dump is produced because of the ADD +1 to DUMP-IT in the program, a purposeful
setup to create a SOC7 abend AFTER the original COBOL reference-modification
outside range of data item error. This program was “registered”in LAB2SOLX after the
LAB2HDLR condition handler was registered. In this example it does not really matter
which program is registered first, this was merely to show that you can get multiple
handlers involved, and depending on the action the handler takes, in this example,
RESUME, both handlers see action!

Share Session #8234 Long Beach February 22-27, 2004 Page 35

LE Condition Handling
Symbolic Feedback Codes

 When a “condition” occurs
 The handlers are checking a data field to see what LE is “reporting”
 This is the condition token that is created when something untoward

occurs
 This is also what LE uses to construct the message you will get

regarding the condition
 The format of the token is consistent:

 1st half-word –severity
 2nd half-word –message (in binary)
 3rd one-byte field –hex codes
 4th 3 bytes (char) –who issued the message

 CEE –LE
 IGZ –COBOL
 EDC –C/C++
 IBM –PL/1

The format of the condition token used for condition handling is exactly the same as the
feedback token from any call to any of the LE callable services, and the use is the same.
The 1st half-word is the severity (like a status back from the CALL to a CEE… routine),
etc.

Share Session #8234 Long Beach February 22-27, 2004 Page 36

LE Condition Handling
Symbolic Feedback Codes

 The handler routines (both COBOL & Assembler) shown
here have coded the feedback code as data fields in the
program
 Error messages have this “symbolic feedback code”

which represents the 1st 8 positions of the token of the
12-byte field

CEE3207S The system detected a data exception (System Completion Code=0C7).

Explanation: Your program attempted to use a decimal instruction incorrectly. See a Principles of Operation
manual for a full list of data exceptions.

Programmer Response: Check the variables associated with the failing statement to make sure that they have been
initialized correctly.

System Action: The thread is terminated.

Symbolic Feedback Code: CEE347

This message information is from the LE Run-time messages manual. This information
is the “tie that binds” that allow you identify the symbolic feedback code which can be
used to uncover the actual information in the 12-byte condition token.

Share Session #8234 Long Beach February 22-27, 2004 Page 37

LE Condition Handling
Symbolic Feedback Codes

 Rather than coding the feedback code you could copy
in the appropriate token from SCEESAMP (in COBOL
this is 20 pages of 88’s)

 CEEBALCT for the Assembler “format”
 CEEIGZCT for COBOL 88’s for LE messages
 IGZIGZCT for COBOL 88’s for COBOL messages

 The first 3 positions represent the message origination
(LE would be CEE, COBOL would be IGZ)

 The next 3 positions represent the language format for
the conditions

 IGZ would be the 88’s for COBOL for EVERY symbolic code
 BAL would be the assembler definitions

 The CT is for CONDITION TOKEN

The MESSAGE number is documented in the LE run-time messages manual. Each
message has an associated SYMBOLIC FEEDBACK associated with it. If you examine
the members in SCEESAMP for the appropriate language, IGZCEECT for COBOL
symbolic feedbacks for LE originating message, IGZIGZCT for condition token definitions
for COBOL program format, COBOL IGZ messages, etc. The symbolic feedback code
files have the file names as: xxxyyyCT, where XXX indicates the facility id for WHO IS
ISSUING the message, and yyy is the handler language format, such as BAL for
assembler, IGZ for COBOL. So, if you want to find the assembler formats for symbolic
feedback codes, you would go to SCEESAMP, locate IGZBALCT for the assembler
format of COBOL error feedbacks, or CEEIGZCT, as another example, for COBOL
format (88-level) of the Language Environment feedback codes. The detail explanation
of the symbolic feedback code is explained in great detail in the LE Programming Guide.

Share Session #8234 Long Beach February 22-27, 2004 Page 38

LE Condition Handling
Symbolic Feedback Codes

BROWSE CEE.SCEESAMP(CEEBALCT)
……………
CEE341 DC XL4'00030C81',XL4'59C3C5C5‘
CEE342 DC XL4'00030C82',XL4'59C3C5C5‘
CEE343 DC XL4'00030C83',XL4'59C3C5C5'
CEE344 DC XL4'00030C84',XL4'59C3C5C5'
CEE345 DC XL4'00030C85',XL4'59C3C5C5'
CEE346 DC XL4'00030C86',XL4'59C3C5C5'
CEE347 DC XL4'00030C87',XL4'59C3C5C5'
CEE348 DC XL4'00030C88',XL4'59C3C5C5'
CEE349 DC XL4'00030C89',XL4'59C3C5C5'
CEE34A DC XL4'00030C8A',XL4'59C3C5C5'
CEE34B DC XL4'00030C8B',XL4'59C3C5C5'
………….

This is a sample copied from the assembler format of the LE messages for the typical
SOC1 through SOCB program abend errors. The symbolic feedback code CEE347 is
the one for a data exception, the actual “message” is CEE3207S…and the 7 is
consistent in the message and the feedback and it is, the 7 from the SOC7 you know
and love!

Share Session #8234 Long Beach February 22-27, 2004 Page 39

LE Condition Handling
Symbolic Feedback Codes

BROWSE CEE.SCEESAMP(CEEIGZCT)
……………
88 CEE341 VALUE X'00030C8159C3C5C5'.
88 CEE342 VALUE X'00030C8259C3C5C5'.
88 CEE343 VALUE X'00030C8359C3C5C5'.
88 CEE344 VALUE X'00030C8459C3C5C5'.
88 CEE345 VALUE X'00030C8559C3C5C5'.
88 CEE346 VALUE X'00030C8659C3C5C5'.
88 CEE347 VALUE X'00030C8759C3C5C5'.
88 CEE348 VALUE X'00030C8859C3C5C5'.
88 CEE349 VALUE X'00030C8959C3C5C5'.
88 CEE34A VALUE X'00030C8A59C3C5C5'.
88 CEE34B VALUE X'00030C8B59C3C5C5'.
……..

This is a sample for the COBOL formats for the LE CEE messages for SOC1–SOCB.

Share Session #8234 Long Beach February 22-27, 2004 Page 40

LE Condition Handling
Additional capabilities with Assembler

 With an Assembler handler you have some additional
“possibilities” beyond the “moving the resume cursor”
 You can issue Assembler Macros which might be useful

 Sometimes there are LE services, sometimes there is no functional
equivalent to these macros

 Remember one of the things you can “send in” to the handler is a
32-bit (read that 4-byte) piece of information

 This is SEND IT IN only, as it is passed “by content”

 Perhaps sending in a POINTER (Address) might be useful to
identify specific storage areas that you want to SNAP

 The next example does just this…
 Program ASMPOUGH is an assembler handler

 Program LABPOUGH is an assembler program which sets up 2
address pairs for the SNAP in ASMPOUGH

The LE Programming Reference has an excellent chart with a list of Assembler Macros,
comparable LE services, if available, and whether the Assembler macro can be used in
an LE-conforming assembler program. Here is an example from this table:

SNAP │ Call CEE3DMP. │ This service can be used. │
STIMER(2)│ No equivalent Language Environment │ This service can be used. │
. │ function. │ │
TIME │ Call Language Environment date and │ This service can be used. │
. │ time services. │ │
SVC LINK │ No equivalent Language Environment │ This service can be used. For │

│ function │ compatibility, Language │
│ │ Environment supports the LINK │
│ │ boundary crossing and treats │

. │ │ it as a new enclave. │
WAIT/POST│ │ │
/EVENTS(3) No equivalent Language Environment │ Host services can be used. │
. │ function. │ │
WTO │ Call CEEMOUT. This writes to the │ Host services can be used. │
. │ error log or the terminal. │ │
XCTL │ No equivalent Language Environment │ Host services can, but should │
. │ function. │ not, be used. │

Share Session #8234 Long Beach February 22-27, 2004 Page 41

LE Condition Handling
LE Assembler routine LABPOUGH which sets TOKEN to addrlist (1 of 2)

** 00049000
* CEEENTRY TO SET UP THIS AS A "MAIN" AND AN L/E CONFORMING ROUTINE 00049100
** 00049200
LABPOUGH CEEENTRY PPA=MAINPPA,MAIN=YES,BASE=11,PARMREG=1 00050300
*** 00050400
* * 00050500
*********REGISTER USER-WRITTEN ASSEMBLER CONDITION HANDLER ********** 00050600
* 00050700

LA R1,CONDHDLR ADDRESS OF USER HANDLER PROGRAM 00050800
ST R1,PARM1 SET IT UP FOR CEEHDLR 00050900
LA R1,TOKEN LOAD ADDRESSES TO SEND IN 00051000
ST R1,PARM2 SET IT UP AS 2ND PARM FOR CEEHDLR 00051100
LA R1,FEEDBACK ADDRESS OF FEEDBACK CODE 00051200
ST R1,PARM3 SET AS 3RD PARM FOR CEEHDLR 00051300
LA R1,HDLRPARM ADDRESS OF PARMS FOR CEEHDLR 00051400
CALL CEEHDLR AND "REGISTER" 00051500

* 00051600
********************** BEGIN LOGIC ******************************** 00052000
START EQU * 00060000
*** 00159000
* USE A SIMPLE AP S0C7 ABEND WITH USER HANDLER ASMSHARE REGISTERED * 00159100
*** 00159200

AP MYTOTAL,MYREPL 00159300
* TERMINATE L/E CONFORMING ASSEMBLER ROUTINE * 00160000
*** 00161000

CEETERM RC=0,MODIFIER=0 00161100
*** 00161200

This is a portion of the Assembler program that is setting up addresses to be specifically
“snap’d” in the condition handler routine. When registering a user condition handler with
the call to CEEHDLR, the 2n’d parameter can be a pointer (address), and in this
example the address points to 2 address pairs so that the condition handler can issue
the SNAP macro to capture specific identified areas. This technique obviously requires
coordination between the application and the condition handler, and can ONLY be
implemented by using the CEEHDLR call to register the user handler, not via the
PARM=‘/USRHDLR’, where you do not have the opportunity to identify the 2nd parameter
for CEEHDLR.

Share Session #8234 Long Beach February 22-27, 2004 Page 42

LE Condition Handling
LE Assembler routine LABPOUGH which sets TOKEN to addrlist (2 of 2)

*** 00161400
* CODE PROGRAM DEFINITIONS INCLUDING LE MACROS 00161500
*** 00161600
SNAPAREA DS 0CL8 00161908

DC A(LABPOUGH) 00162008
DC A(LABPEND) 00162107
DC A(INVAREA) 00162209
DC A(INVEND) 00162309

*************snip***

* ADDRESS LIST FOR SENDING IN ADDRESSES TO ASSMHDLR ROUTINE 00171400
TOKEN DC A(SNAPAREA) ADDRESS LIST FOR SNAP 00171508
* ADDRESS OF EXTERNAL HANDLER ROUTINE 00171900
CONDHDLR DC V(ASMPOUGH),A(0) ADDRESS OF EXTERNAL HANDLER 00172001
* SEND IN 3 PARAMETERS TO CEEHDLR 00172200
HDLRPARM DS 0F PARAMETERS FOR CEEHDLR 00172300
PARM1 DS A ADDRESS OF USER HANDLER (V-CON) 00172400
PARM2 DS A 32-BIT SEND IT IN STUFF 00172500
PARM3 DS A FEEDBACK CODE FOR ALL LE CALLS 00172600

The SNAPAREA sets up 2 “address pairs” that can be sent into thecondition handler
(Assembler) so that a SNAP can dump specific identified areas. Using CEEDUMP to
produce dump information is useful, but sometimes you may wish to identify some user
specific areas that need to be available, and this technique might be preferable to
producing a complete region dump. The SNAPAREA address will be passed into the
condition handler as the 2ndparameter, and the condition handler “understands” that
these address pairs are set up in the originating application, and can then SNAP them.

Share Session #8234 Long Beach February 22-27, 2004 Page 43

LE Condition Handling
LE Assembler handler routine ASMPOUGH which uses addrlist for

SNAP to get additional and specific areas dumped

* USE THE SNAP MACRO IN THE HANDLER TO DUMP SPECIFIC AREAS LIKE *
* MAYBE THE PROGRAM STORAGE AREA. THIS ASSUMES THE ORIGINAL PROG *
* HAS SET UP AN ADDRESS IN THE 2ND PARM FOR THE CALL TO CEEHDLR *

* THE ADDRESSES FOR THE SNAP ARE SET UP IN THE ASSEMBLER *
* MAIN PROGRAM - AND THERE ARE 2 PAIRS OF START/END ADDRESSES *
* SO THIS EXAMPLE ASSUMES KNOWLEDGE BETWEEN THE "MAIN" *
* PROGRAM AND THE HANDLER PROGRAM *

OPEN (SNAP,OUTPUT)
L R5,@TOKEN POINT TO PASSED IN TOKEN
L R5,0(,R5) LOAD THE ADDRESS PASSED IN
L R6,0(,R5) AND SET UP A BEGINNING
L R7,4(,R5) AND AND ENDING STOR ADDRESS
WTO 'ASMPOUGH IS ABOUT TO SNAP',ROUTCDE=11
SNAP DCB=SNAP,ID=11,PDATA=(REGS),STORAGE=((R6),(R7))
L R6,8(,R5) SET UP THE 2ND PAIR ADDRESS
L R7,12(,R5) AND THIS IS THE END ADDRESS
SNAP DCB=SNAP,ID=22,PDATA=(REGS),STORAGE=((R6),(R7))
CLOSE SNAP

**
* This is a simple example with the SNAP DCB coded in the program *
* This means this ASMPOUGH should be AMODE(31) RMODE(24) *
* LE-enabled Assembler routines are always generated as AMODE(31) *
* RMODE(ANY). To change use ‘PARM=AMODE(31),RMODE(24)’ on the LINK *
**

This is a portion of the condition handler routine ASMPOUGH, which expects that a pair
of addresses have been set up in the main program (or the program which “registers” the
user condition handler via the call to CEEHDLR). Remember also that LE conforming
assembler programs are automatically set to be AMODE(31), RMODE(ANY), so if you
have a DCB in your assembler application you need to FORCE the AMODE and
RMODE via the PARM at LINK or BINDER time. You CANNOT use the AMODE and
RMODE directive, you MUST use the PARM technique, but by making the routine
AMOD(31), RMODE(24) this assembler handler can deal with either AMODE(31) or
AMODE(24) programs! The handler routine MUST BE SEPARATELY LINKEDT from
the application programs, and will only be loaded IF YOU ENCOUNTER A CONDITION!

Share Session #8234 Long Beach February 22-27, 2004 Page 44

LE Condition Handling
Additional capabilities with Assembler

 Assembler macros may or may not be
“appropriate”

 SNAP does allow you to pick off specific areas
 There are some macros where the LE service is

preferable, and some where there is no real
equivalent (see LE Programming Guide for more)

 WTO could be replaced with a call to CEEMOUT
 ABEND should not be used, rather CALL

CEE3ABD which is the LE service that allows
USER ABEND CODE process

 And, of course, rather than SPIE, STAE, ESPIE,
ESTAE, use CEEHDLR, CEEHDLU, CEESGL routines

 And CEECRHP, CEEGTSTG rather than GETMAIN

Although the LE manuals indicate that CEEDUMP is a “replacement”for SNAP, clearly
there are some capabilities by using SNAP that are not available when using
CEEDUMP. In other cases, the LE equivalent may provide replacement AND MORE.

Share Session #8234 Long Beach February 22-27, 2004 Page 45

LE Condition Handling
More interesting LE routines

 CEE3GRN
 Get the routine name of the offender

 CEEMOUT
 Output a message (could be used in a user handler) to give a
consistent “look & feel” to messages

 CEE3GRO
 Get the offset of the condition

 CEE3SRP
 Set a specific resume point (this will definitely move the

resume cursor because you are directing!)

 CEEMRCE
 Move resume cursor to resume point set by SRP

Samples of using these routines are shown in the LE Programming Guide. Typically
using CEE3DUMP will give you the routine name of the offender, but there may be
situations where all you want to do is write out a message (CEEMOUT) with the name of
the offending routine, and perhaps also by using EXTERNAL data areas in COBOL, you
could also “message out” the appropriate data information ratherthan using CEE3DMP,
it is a CHOICE!

Share Session #8234 Long Beach February 22-27, 2004 Page 46

LE Condition Handling
Portion of COBOL handler routine using CEE3GRN and CEEMOUT

01 FEEDBACK.
10 FB-SEV PIC S9(4) COMP.
10 FB-MSG PIC S9(4) COMP.
10 FB-HEX PIC X.
10 FB-FAC PIC X(3).
10 FB-ISINFO PIC S9(9) COMP.

01 CONDITION-AREAS EXTERNAL.
10 CURRENT-RECORD PIC X(80).
10 ERROR-INDICATOR PIC X.

01 ROUTINE-NAME PIC X(80).
01 MSG-DEST PIC S9(9) COMP VALUE +2.
01 MSG-STR.

10 MSG-LENGTH PIC S9(4) COMP VALUE +120.
10 MSG-STRING PIC X(120).

………………………snip from COBOL Handler Routine……………………………..
IF DIVIDE-BY-ZERO OR DATA-EXCEPTION

CALL 'CEE3GRN' USING ROUTINE-NAME, FEEDBACK
MOVE SPACES TO MSG-STRING
STRING 'THE ROUTINE ' DELIMITED BY SIZE

ROUTINE-NAME DELIMITED BY ' '
' HAD A DIVIDE BY ZERO OR DATA EXCEPTION'

DELIMITED BY SIZE
INTO MSG-STRING

END-STRING
CALL 'CEEMOUT' USING MSG-STR, MSG-DEST, FEEDBACK
MOVE SPACES TO MSG-STRING
STRING 'THE RECORD IN ERROR IS ‘ DELIMITED BY SIZE

CURRENT-RECORD DELIMITED BY SIZE
INTO MSG-STRING

END-STRING
CALL 'CEEMOUT' USING MSG-STR, MSG-DEST, FEEDBACK

This is a code snip that shows using CEE3GRN in a user condition handler to get the
name of the “offending routine” and write out the routine-name. In addition, this example
shows an 01 data area ‘CONDITION-AREAS’ that is cross-coded in the COBOL
application program and in the condition handler, so that as a record is processed it can
be available for the condition handler to message out with a call to CEEMOUT.
Obviously this type of condition handler requires some coordination between the
application program and the condition handler.

Share Session #8234 Long Beach February 22-27, 2004 Page 47

LE Condition Handling
Portion of COBOL main program that uses handler with CEE3GRN & CEEMOUT

01 FEEDBACK.
10 FB-SEV PIC S9(4) COMP.
10 FB-MSG PIC S9(4) COMP.
10 FB-HEX PIC X.
10 FB-FAC PIC X(3).
10 FB-ISINFO PIC S9(9) COMP.

01 CONDITION-AREAS EXTERNAL.
10 CURRENT-RECORD PIC X(80).
10 ERROR-INDICATOR PIC X.

PROCEDURE DIVISION.
MOVE ‘N’ TO ERROR-INDICATOR.

………..snip from program reading QSAM input file to total & print……..
EVALUATE HOUSEINV-STATUS

WHEN '00'
MOVE HOUSE-RECORD TO CURRENT-RECORD
MOVE SPACES TO PRINT-RECORD
MOVE ITEMNO TO PRT-ITEMNO

…………..snip at the end of this program, checking to see if
……………there was a “problem” by checking the error-indicator switch….

IF ERROR-INDICATOR = 'Y'
MOVE +8 TO RETURN-CODE

ELSE
MOVE +0 TO RETURN-CODE

END-IF.
GOBACK.

This is a portion of the COBOL application that sets up the external data areas “just in
case” some problem happens. Notice also that the ERROR-INDICATOR can be used to
signal back to the main application that some problem occurred, so that the application
can end, but with a non-zero return code.

Share Session #8234 Long Beach February 22-27, 2004 Page 48

LE Condition Handling
Some thoughts about these LE routines

 Notice the use of the COBOL EXTERNAL elements to
“share” data without having to “pass via linkage”

 Any of the variable length elements can be coded as
true variable .. These examples used fixed length fields
for simplicity and … well…for 3AM programming!

01 CONDITION-AREAS EXTERNAL.
10 CURRENT-RECORD PIC X(80).
10 ERROR-INDICATOR PIC X.

………
01 MSG-STR.

10 MSG-LENGTH PIC S9(4) COMP VALUE +120.
10 MSG-STRING PIC X(120).

Could also be coded:
01 MSG-STR.

10 MSG-LENGTH PIC S9(4) COMP.
02 MSG-STRING-TEXT.

03 MSG-STRING-CHAR PIC X
OCCURS 0 TO 256 TIMES
DEPENDING ON MSG-LENGTH

of MSG-STR.

Many of the data areas used in Language Environment are variable length elements,
and the 3rdexample shown here is the “technically correct” way to represent these areas.
For simplicity you may want to just code the “string” portion tobe long enough for your
purposes, and make it a fixed-length data item.

Share Session #8234 Long Beach February 22-27, 2004 Page 49

LE Condition Handling
Some thoughts about these LE routines

 CEE3SRP allows you to direct the RESUME point to
specific code

 Obviously now you need to consider some additional things…

 If printing reports, no good way to “undo” the print output
because you do not know which field is “bad”

 Could “carve off” the offending record to an “error file”
Could mark this record with an indicator (error record)

 Could write this record to a separate file or report

 Need to consider after you have done some of these
specifics, where do I go next?

 Read another record? ABEND on MY TERMS?

 Navigation out of the resume specific code becomes very
important!

CEE3SRP–Set Resume Point lets you set up the address where you want SPECIFIC
RESUMPTION. This takes some thought and PRE-PLANNING, but could prove VERY
USEFUL to allow user programming to do some additional processing, or write a record
off to another “error file” and then read the next record and continue
processing…well…you get the idea.

Share Session #8234 Long Beach February 22-27, 2004 Page 50

LE Condition Handling
Main Program which sets up for a specific RESUME using CEE3SRP

01 HANDLER-AREAS EXTERNAL.
10 RECOVER-ADDR POINTER.
10 CURRENT-RECORD PIC X(80).
10 ERROR-INDICATOR PIC X(01).

……….snip from main program which reads/prints/totals from QSAM
*
* perform paragraph to get "recover-addr" set up
* now if program "abends" it will resume at the
*"instruction" following this 888-set-resume location

PERFORM 888-SET-RESUME.
………much later in code………..

888-SET-RESUME.
* SET UP ADDR OF 999-ERROR FOR MOVE RESUME CURSOR EXPLICIT
* SINCE IT IS THE NEXT "STATEMENT"

CALL 'CEE3SRP' USING RECOVER-ADDR, FEEDBACK.
999-ERROR.

DISPLAY 'YOU GOT HERE BECAUSE OF AN ERROR'
DISPLAY 'ERROR RECORD IS' HOUSE-RECORD
DISPLAY 'what do you want to do?'
DISPLAY 'This example simply ends with a goback!'

* put whatever clean-up logic you need here.....
* you will have "trapped" the abend and resumed here....
* then what action do you want?
* if simply to "goback" after trapping....goback
* or you can control your destiny!

MOVE +8 TO RETURN-CODE
GOBACK.

In this example the 888-SET-RESUME paragraph is really a dummy paragraph simply to
allow the SRP to be the next set of code. By using a paragraph for the CEESRP, you
can PERFORM the 888-SET-RESUME just to get the resume point set up, then in the
condition handler when you do the CALL ‘CEEMRCE’ the resume point will be positioned
at 999-ERROR.

Note that this example REQUIRES THE COMPILER OPTION NOOPT! If you are
OPTIMIZING your code, COBOL will interpret this paragraph as unreachable and
unexecutable and discard it, so for the program setting up a specific resume point using
this technique, be sure to use

PROCESSS NOOPT

or

CBL NOOPT to force nooptimization!

Share Session #8234 Long Beach February 22-27, 2004 Page 51

LE Condition Handling
Handler routine that KNOWS you have set the resume point

 This “handler” uses the RECOVER-ADDR which was set
up in the “main” program

 This address is where execution will resume

 You must use MRCE to move the resume cursor to the explicit
location pointed to by RECOVER-ADDR

01 HANDLER-AREAS EXTERNAL.
10 RECOVER-ADDR POINTER.
10 CURRENT-RECORD PIC X(80).
10 ERROR-INDICATOR PIC X(01).

……….snip from handler program that knows about CEE3SRP and CEEMRCE
DISPLAY 'ABOUT TO CALL CEEMRCE'
CALL 'CEEMRCE' USING RECOVER-ADDR, FEEDBACK
IF FB-SEV NOT = ZEROES

DISPLAY 'FB-MSG = ' FB-FAC, FB-MSG
ELSE

DISPLAY 'MRCE WORKED'
END-IF
SET RESUME TO TRUE
MOVE 'Y' TO ERROR-INDICATOR

This is a portion of a VERY SIMPLE condition handler that issues the CEEMRCE, move
resume cursor EXPLICIT, to use the address in RECOVER-ADDR which was set up in
the main application.

Share Session #8234 Long Beach February 22-27, 2004 Page 52

LE Condition Handling
A Review, after all this information

 What?
 Condition handlers give you EXTENSIVE capabilities on how you can deal

with conditions..you can resume, you can capture and report additional
information, you can always abend…lots of routines supplied withLE

 How?
 Your user routines can use LE’s capabilities, and the ways you can use LE’s

services should be clearer after all this

 Where?
 Your routines can get control when some condition occurs AS LONG AS YOU
HAVE “REGISTERED” a HANDLER ROUTINE and you can register many
handlers, in many ways including via a PARM=‘/ USRHDLR(progname)’

 When?
 At what point does it make sense to “handle” condition? This isthe big

question and is VERY SPECIFIC TO your processing and business!
 For TESTING condition handling is great, for production there are many additional

considerations, but now you should have some ideas about all this!

Share Session #8234 Long Beach February 22-27, 2004 Page 53

LE Condition Handling
Where you can read more about all this…

The manuals are available by selecting LIBRARY from the main LE web page, and then
you can pick either bookmanager of PDF style manuals:

The web site for Language Environment is:

http://www-1.ibm.com/servers/eserver/zseries/zos/le/

From here you can navigate to many places:

Library–for the manuals

FAQ–frequently asked questions

You can even CONTACT LANGUAGE ENVIRONMENT if you want!

Share Session #8234 Long Beach February 22-27, 2004 Page 54

LE Condition Handling
Where you can read more about all this…

The manuals are available by selecting LIBRARY from the main LE web page, and then
you can pick either bookmanager of PDF style manuals:

You can download whichever version you want, including the Vendor Interfaces manual
(the last line on this screen) which contains a great deal of “inside” information! You can
pick the level of LE and get all the manuals for your specific release!

