
ACSP5000-1

IBM Advanced Crypto Service Provider REST API

Version 1.0

Installation and Configuration Guide

z/OS

IBM Crypto Competence Center, Denmark

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 1 of 44

Notices
References in this publication to IBM products, programs, or services do not imply that IBM
intends to make these available in all countries in which IBM operates. Any reference to an
IBM product, program, or service is not intended to state or imply that only IBM's product,
program, or service may be used. Any functionally equivalent product, program, or service
that does not infringe any of IBM's intellectual property rights or other legally protectable
rights may be used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, programs, or services, except
those expressly designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.
You can send license inquiries, in writing, to the IBM Director of Commercial Relations,
IBM Corporation, Purchase, NY 10577.

• Trademarks
Java™ is a trademark of Oracle®

IBM®, System z®, z/OS®, RACF® are registered trademarks of International Business
Machines Corporation.

This edition applies to the IBM Distributed Key Management System (DKMS) product:

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 2 of 44

• IBM Advanced Crypto Service Provider REST API, (ACSP-REST-1-0)

and to all subsequent releases and modifications until otherwise indicated in new editions.

Comments may be addressed to your IBM representative or the IBM branch office serving your
locality. IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation to you.

© Copyright International Business Machines Corporation 2014. All rights reserved.
Note to U.S. Government Users -Documentation related to restricted rights -Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 3 of 44

Contents
Trademarks...2

About this Publication..6
Who should use this document...6
Where to find more information..6

IBM Advanced Crypto Service Provider (ACSP)..6
IBM Java API to CCA (jCCA)...6
IBM z/OS Integrated Cryptographic Service Facility (ICSF)...6
IBM Cryptographic Co-processor...7

IBM ACSP-REST V1.0 License Terms..7
Summary of Changes...8

Release 1.0..8
1. Overview..9
2. Installation..10

Program Requirements..10
Installation Package...10
JCCA Installation..10

3. Security..12
Server Certificates...12
Client User IDs..13
Client Certificates..14
User Authorization..14
Liberty Authorization..15
ACSP Library Authorization...16
ICSF Authorization...17
Server STARTED Profile..17

4. Deployment..18
Manual Deployment..18
Automated Deployment (Using z/OSMF Workflow)...21
Troubleshooting..29

5. Using the ACSP-REST Interface...30
Processing Overview...30
URI Format..31
Content Types..31
Error Handling...31
Error Logging..32
Error Diagnostics...32
Cipher: Encrypt /Decrypt..33

Resource URI..33
HTTP Methods...33
Required Authorizations...34
JSON/XML Schemas...34
Sample Encrypt Request...34
Sample Encrypt Response..36

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 4 of 44

Sample Decrypt Request...36
Sample Decrypt Response..38

Random Number Generate (RNG)..39
Resource URI..39
HTTP Methods...39
Required Authorizations...39
JSON/XML Schemas...39
Sample RNG Request...40
Sample RNG Response..40

Hash...41
Resource URI..41
HTTP Methods...41
Required Authorizations...41
JSON/XML Schemas...41
Sample Hash Request...42
Sample Hash Response...43

6. Appendix..44

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 5 of 44

About this Publication
This publication contains information on how to install, configure and operate the IBM
Advanced Crypto Service Provider REST API.
The IBM Advanced Crypto Service Provider REST API (hereafter called ACSP-REST) is a
REST interface to IBM z/OS Cryptographic Services.

The programming interfaces in ACSP-REST include the following

▪ Representational State Transfer (REST) services for:

▪ Cipher: Encrypt/Decrypt

• Random Number Generate

• Hash

▪ JSON and XML schemas for each REST service

Who should use this document

This information is intended for:

▪ System programmers installing and configuring ACSP-REST in the z/OS
environment. See Chapter 2 for details.

▪ Security administrators configuring ACSP-REST for z/OS users. See Chapter Error:
Reference source not found for details.

▪ Application programmers writing programs that invoke the ACSP-REST APIs. See
Chapter 5 for usage instructions and samples.

Where to find more information

IBM Advanced Crypto Service Provider (ACSP)
- ACSP2100 ACSP PKCS#11 API CCA/EP11 Installation and Programmers Guide

- ACSP2000 ACSP Programmers Guide

- ACSP4000 ACSP Installation and Configuration Guide

- ACSP4010 ACSP C Client Installation and Configuration Guide

- ACSP4020 ACSP Messages

IBM Java API to CCA (jCCA)
See: http://www.ibm.com/security/cccc/tools/jcca.shtml

IBM z/OS Integrated Cryptographic Service Facility (ICSF)
- SC14-7505-00 Cryptographic Services ICSF Overview

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 6 of 44

http://www.ibm.com/security/cccc/tools/jcca.shtml
http://publibz.boulder.ibm.com/zoslib/pdf/csf2c500.pdf

- SC14-7506-00 Cryptographic Services ICSF Administrator's Guide

- SC14-7507-00 Cryptographic Services ICSF System Programmer's Guide

- SC14-7508-00 Cryptographic Services ICSF Application Programmer's Guide

IBM Cryptographic Co-processor
For a list of IBM Cryptographic Co-processor Publications see:

http://www.ibm.com/ security /cryptocards/

IBM ACSP-REST V1.0 License Terms

The IBM Advanced Crypto Service Provider REST API (ACSP-REST) is licensed to you under the terms of the
International License Agreement for Non-Warranted Programs (ILAN) and its accompanying License Information
and Notices files.

The ILAN and its accompanying License Information file are available at http://www-
03.ibm.com/software/sla/sladb.nsf/displaylis/01488832ADB0C2AB85257B6E004BB017?OpenDocument

Copies of the license files can also be found in the Program’s License Folder.

The ILAN file contains General Terms and Country-unique Terms.

The ACSP_REST_V1.0_License Information file contains Program name, version and release, Export and
Import restrictions clause and when applicable a Separately Licensed Code clause.

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 7 of 44

http://www-03.ibm.com/software/sla/sladb.nsf/displaylis/01488832ADB0C2AB85257B6E004BB017?OpenDocument
http://www-03.ibm.com/software/sla/sladb.nsf/displaylis/01488832ADB0C2AB85257B6E004BB017?OpenDocument
http://www.ibm.com/security/cryptocards/
http://www.ibm.com/security/cryptocards/
http://www.ibm.com/security/cryptocards/
http://publibz.boulder.ibm.com/zoslib/pdf/csf2c400.pdf
http://publibz.boulder.ibm.com/zoslib/pdf/csf2c200.pdf
http://publibz.boulder.ibm.com/zoslib/pdf/csf2c300.pdf

Summary of Changes

Release 1.0

This is the first release of the IBM Advanced Crypto Service Provider REST API.

In this release, you can use the ACSP-REST API to perform cryptographic operations on a
z/OS system. The REST-enabled cryptographic services in this release include:

▪ Cipher: Encrypt/Decrypt

▪ Random Number Generate

▪ Hash

To help you get started with using the ACSP-REST APIs, samples are included in this
documentation and schema files are provided with the installation.

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 8 of 44

1. Overview
z/OS Cloud Services provides a set of APIs that applications can use to exploit z/OS
capabilities. The APIs are easy-to-use HTTP services that are language- and platform-
independent, stateless, scalable, and easily parsed.

The IBM Advanced Crypto Service Provider REST API is a cryptography service available
for on- and off-platform use for z/OS Cloud Services (zCS). It provides access to z/OS
cryptographic function using an HTTP Web service. This exposes ACSP services for use
to distributed clients.

This service centralizes the definition, use, and maintenance of cryptographic keys,
simplifying key management. It allows the use of secure and protected keys to avoid the
exposure of sensitive key information outside of the trusted, hardened and tamper evident
cryptographic co-processor. ACSP-REST also permits access control and logging on key
service usage in addition to service charge-back to applications based on actual usage.

Any authorized RESTful application with the appropriate credentials may utilize the service.
Such an application would submit an HTTP request over SSL/TLS to the URL of an ACSP-
REST service along with a constructed “service request payload” used to configure the
cryptographic operation. Once the request has been processed, the application returns a
standard HTTP response carrying a “service response payload” containing the results of
the requested operation. The service payloads are defined and formatted using standard
JSON and XML media types and are based on the provided schemas.

Illustration 1 below is a diagram of a request/response interaction between a client and the
encrypt service:

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 9 of 44

Illustration 1: A sample request/response interaction

2. Installation

Program Requirements

The prerequisites for the z/OS ACSP-REST service are:

– IBM jCCA Package version 1.6.3 or later

– IBM z/OS V2R1 or later

– IBM z/OS Java Runtime Environment 64-bit (JRE) 7.0 or later.

– IBM z/OS Integrated Cryptographic Service Facility (ICSF) level HCR77A0 or later.

– IBM Websphere Application Server for z/OS Version 8.5.5.2 Liberty Profile with the Angel
process

– IBM z/OSMF version 2.1 or later

Installation Package

The IBM ACSP REST API package is delivered as an ACSP-RESTvrmm.pax file, where v
is version, r is release, and mm is modification level, for example 1350.

Create the following directory structure in the Unix System Services file system.

mkdir -p /usr/lpp/acsp/rest

FTP in binary mode then unpax the ACSP-RESTvrmm.pax file into that directory.

cd /usr/lpp/acsp/rest

pax -rvf ACSP-RESTvrmm.pax .

The following files are included in the pax file:

File name Description

acsp-rest.changes.txt Change log

acsp-rest.read.me Installation information

acsp-rest.war ACSP-REST modules and files

acsp-rest.properties ACSP-REST default application parameters

schema/*.xsd
schema/*.json

JSON and XML Schemas

workflow/ZCS* Sample z/OSMF workflow for Websphere Liberty Server
provisioning

jcca/libjcca_zos_* JCCA z/OS DLL's for specific ICSF releases

JCCA Installation

Inside the jcca folder are a set of files needed configure the JCCA component. These files
are 31/64 bit z/OS Dynamic Load Libraries used to interface with the native hardware

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 10 of 44

drivers for the IBM Crypto Express cards on System z.

Create the following directory and copy the jcca files into it:

mkdir /usr/lpp/acsp/bin

cp /usr/lpp/acsp/rest/jcca/* /usr/lpp/acsp/bin

cd /usr/lpp/acsp/bin

Now select the proper .so files depending on the current release of ICSF that is running
and ensure that the execute bits are turned on:

 chmod -x libjcca_zos*

A link must also be created to the specific .so file - named libjcca16.so for 31 bit and
libjcca16_64.so for 64 bit.

For example, to link to the HCR77A0 version, execute the following commands:

 For 31 bit

 ln -s libjcca_zos_HCR77A0_31.so.1.6.3.6 libjcca16.so

 For 64 bit

 ln -s libjcca_zos_HCR77A0_64.so.1.6.3.6 libjcca16_64.so

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 11 of 44

3. Security
z/OS Cloud Services uses SSL/TLS communication and requires client certificate
authentication.

For each client (individual or organization) using the REST API, the security administrator
must create a z/OS user ID and add or generate a client certificate that is associated with
that z/OS user ID. The password-protected client certificate must be exported and installed
in the client's browser or keystore for connection establishment.

The Liberty Server user ID also requires authorization to perform SAF checking and
perform operations under the client user ID.

The following commands must be issued from a user with the RACF SPECIAL attribute or
other authorities as listed below:

CLAUTH authority to the USER class

GROUP-SPECIAL authority in the zCS administrator group (e.g. ZCSADMIN)

UPDATE authority to the following resources in the FACILITY class:

• IRR.DIGTRING.ADDRING

CONTROL authority to the following resources in the FACILITY class:

• IRR.DIGTCERT.ADD

• IRR.DIGTCERT.GENCERT

• IRR.DIGTCERT.EXPORTKEY

• IRR.DIGTRING.CONNECT

The Liberty server user ID must have READ authority to the following resources in the
CSFSERV class:

Resource Service Service Description

CSFRNGL CSNBRNGL CCA Random Number Generation

Note: The following security setup procedures are available as a workflow (more
information in the section entitled “Automated Deployment (Using z/OSMF Workflow)”), but
this section should still be reviewed by a security administrator.

Note: Everything in blue in the following sections is for demonstration purposes only and
can be changed to fit your installation's individual needs.

Server Certificates

Use the RACDCERT GENCERT command to create server certificates. The example
below assumes the Liberty Server user ID is LIBSVR.

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 12 of 44

SETROPTS CLASSACT(DIGTCERT)

RACDCERT CERTAUTH GENCERT SUBJECTSDN(CN('zOS Cloud Services CA')
OU('Liberty') O('IBM')) WITHLABEL('zCloudLibertyCA') NOTAFTER(DATE(2035-12-31)
TIME(23:59:59)) RSA SIZE(2048)

RACDCERT ID(LIBSVR) GENCERT SUBJECTSDN(CN('myserver.myco.com')
OU('Liberty') O('IBM')) WITHLABEL('zCloudLibertyServer') SIGNWITH(CERTAUTH
LABEL('zCloudLibertyCA')) NOTAFTER(DATE(2035-11-30) TIME(23:59:59)) RSA
SIZE(2048)

SETROPTS RACLIST(DIGTCERT) REFRESH

Add the server certificates to a SAF key ring.

SETROPTS CLASSACT(DIGTRING)

RACDCERT ID(LIBSVR) ADDRING(zCloudKeyRing)

RACDCERT ID(LIBSVR) CONNECT(LABEL('zCloudLibertyServer') RING
(zCloudKeyRing) DEFAULT USAGE(PERSONAL))

RACDCERT ID(LIBSVR) CONNECT(CERTAUTH RING(zCloudKeyRing) LABEL
('zCloudLibertyCA') USAGE(CERTAUTH))

SETROPTS RACLIST(DIGTRING) REFRESH

Create a dataset for the server certificate and export it for installation into a client browser
or application truststore.

RACDCERT CERTAUTH EXPORT (LABEL('zCloudLibertyServer')) DSN
('HLQ.LIBSRV.CERT') FORMAT(CERTDER)

Client User IDs

Use the ADDUSER command to create z/OS user IDs. In effect, this will create a common
identity shared by multiple application instances. In the context of this publication, we are
using a functional user ID in which application identities are mapped back to this common
user ID.

ADDUSER BLUETEAM OMVS(UID(0025) HOME(/)) NOPASSWORD OWNER(ZCSADMIN)

For easier administration, organize the z/OS user IDs into groups.

ADDGROUP ZCSACSP OMVS(GID(1125)) OWNER(ZCSADMIN) SUPGROUP(ZCSADMIN)

CONNECT BLUETEAM GROUP(ZCSACSP) AUTHORITY(USE)

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 13 of 44

Any user ID requiring access to the ACSP libraries (such as the WAS Liberty Server user
ID, the ACSP started task ID, and any other ACSP users), should also be connected to the
group.

CONNECT LIBSVR GROUP(ZCSACSP) AUTHORITY(USE)

Client Certificates

Use the RACDCERT GENCERT command to create new certificates or the RACDCERT
ADD command to import an existing certificate.

RACDCERT ID(BLUETEAM) GENCERT SUBJECTSDN(CN('Blue Team') OU('Location')
O('Company')) WITHLABEL('BLUETEAM.CERT') SIGNWITH(CERTAUTH
LABEL('zCloudLibertyCA')) NOTAFTER(DATE(2035-11-30) TIME(23:59:59)) RSA SIZE(2048)

SETROPTS RACLIST(DIGTCERT) REFRESH

Create a dataset for the certificate and export it for installation into the client browser or
keystore.

RACDCERT ID(BLUETEAM) EXPORT (LABEL('BLUETEAM.CERT')) DSN
('HLQ.BLUETEAM.CERT') FORMAT(PKCS12DER) PASSWORD('changeme')

User Authorization

In order to use the REST API, all z/OS Cloud Services users must be authorized to the
z/OS Cloud Services prefix as defined by the SAF Credential profile prefix in the server.xml
file (see Chapter 4). Note: Ensure that the Liberty Server unauthenticated default user ID
(i.e. WSGUEST) exists.

SETROPTS CLASSACT(EJBROLE) GENERIC(EJBROLE)

RDEFINE EJBROLE ZCLOUD.acsp-rest.user UACC(NONE) OWNER(ZCSADMIN)

PERMIT ZCLOUD.acsp-rest.user CLASS(EJBROLE) ACCESS(READ) ID(ZCSACSP)
PERMIT ZCLOUD.acsp-rest.user CLASS(EJBROLE) ACCESS(READ) ID(WSGUEST)

SETROPTS RACLIST(EJBROLE) REFRESH

Note: The high-level qualifier must be upper-case.

The z/OS Cloud Services users (and WSGUEST user ID) must also have READ access to
the z/OS Cloud Services prefix in the APPL class.

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 14 of 44

RDEFINE APPL ZCLOUD UACC(NONE) OWNER(ZCSADMIN)

PERMIT ZCLOUD CLASS(APPL) ACCESS(READ) ID(ZCSACSP)
PERMIT ZCLOUD CLASS(APPL) ACCESS(READ) ID(WSGUEST)

SETROPTS RACLIST(APPL) REFRESH

Liberty Authorization

The WAS Liberty server must be authorized to

• access the Liberty angel process services, which is required for the z/OS
authorized services

• access the z/OS authorized services

• access the SAF authentication services

RDEFINE SERVER BBG.ANGEL UACC(NONE) OWNER(ZCSADMIN)

RDEFINE SERVER BBG.AUTHMOD.BBGZSAFM UACC(NONE) OWNER(ZCSADMIN)

RDEFINE SERVER BBG.AUTHMOD.BBGZSAFM.SAFCRED UACC(NONE)
OWNER(ZCSADMIN)

PERMIT BBG.ANGEL CLASS(SERVER) ACCESS(READ) ID(LIBSVR)

PERMIT BBG.AUTHMOD.BBGZSAFM CLASS(SERVER) ACCESS(READ) ID(LIBSVR)

PERMIT BBG.AUTHMOD.BBGZSAFM.SAFCRED CLASS(SERVER) ACCESS(READ)
ID(LIBSVR)

SETROPTS RACLIST(SERVER) REFRESH

The Liberty Server user ID must have READ access to the z/OS Cloud Services prefix.

RDEFINE SERVER BBG.SECPFX.ZCLOUD UACC(NONE) OWNER(ZCSADMIN)

PERMIT BBG.SECPFX.ZCLOUD CLASS(SERVER) ACCESS(READ) ID(LIBSVR)

SETROPTS RACLIST(SERVER) REFRESH

The Liberty Server user ID must be authorized to synchronize requests to the z/OS thread.

RDEFINE FACILITY BBG.SYNC.ZCLOUD UACC(NONE) OWNER(ZCSADMIN)

PERMIT BBG.SYNC.ZCLOUD CLASS(FACILITY) ACCESS(CONTROL) ID(LIBSVR)

SETROPTS RACLIST(FACILITY) REFRESH

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 15 of 44

The Liberty Server user ID must have READ access to list SAF keyrings.

RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)

PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ACCESS(READ) ID(LIBSVR)

SETROPTS RACLIST(FACILITY) REFRESH

ACSP Library Authorization

Note: In order to perform the following steps, the user must have UID(0) or one of the BPX
or UNIXPRIV privileges.

The ACSP code must run in a clean program-controlled environment. Program control is
managed by the extattr command. To set the ACSP code to be program-controlled,
perform the following steps:

Go to the ACSP bin directory.

cd /usr/lpp/acsp/bin

List the attributes for the libjcca*.so and libjcca*.so symbolic links and note the actual files
being referenced. Make sure you find the actual files referenced by the symbolic links. You
must set the attributes on the actual files. Setting the extended attributes on the
symbolic links will be ineffective.

ls -E libjcca16.so

ls -E libjcca16_64.so

Update the extended attributes of the actual files to allow program control.

extattr +p libjcca_zos_HCR77A0_31.so.1.6.3.6

extattr +p libjcca_zos_HCR77A0_64.so.1.6.3.6

Verify the settings by checking for the '-ps-'.

ls -E libjcca_zos_HCR77A0_31.so.1.6.3.6

ls -E libjcca_zos_HCR77A0_64.so.1.6.3.6

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 16 of 44

Give group authorization to the acsp libraries

chgrp ZCSACSP /usr/lpp/acsp/*

chmod -R 774 /usr/lpp/acsp/*

ICSF Authorization

For authorization to the underlying ICSF services, see ”Required Authorizations” in Chapter
5.

Server STARTED Profile

A STARTED class profile must be defined for the Liberty server to be started as a z/OS
started task.

The example below assumes the name of the procedure to be used to start the server is
ZCSZSRV (see Chapter 4), and the Liberty Server user ID is LIBSVR.

RDEFINE STARTED ZCSZSRV.* UACC(NONE) STDATA(USER(LIBSRV)
PRIVILEGED(NO) TRUSTED(NO) TRACE(YES))

SETROPTS RACLIST(STARTED) GENERIC(STARTED) REFRESH

Note: The server user ID must also have write access to files in the $WLP_USER_DIR
directory (see Chapter 4).

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 17 of 44

4. Deployment

Manual Deployment

A Liberty server instance can be deployed manually. Use the following chart for variable
references in the steps below:

Component Variable Name Description

WAS Liberty
Installation

WLP_INSTALL_DIR The WAS Liberty installation directory

(e.g. /usr/lpp/zWebSphere/V8R5/wlp)

WLP_USER_DIR The WAS Liberty user server directory

(e.g. /etc/liberty)

ACSP-REST ACSP_REST_INSTALL_DIR The ACSP-REST installation directory

(e.g. /usr/lpp/acsp/rest)

Note: Everything in blue in the following sections is for demonstration purposes only and
can be changed to fit your installation's individual needs.

1. Create a Liberty server instance

$WLP_INSTALL_DIR/bin/server create cryptosrv

2. Configure the Liberty server

cd $WLP_USER_DIR/servers/cryptosrv

3. Edit the server.xml in the $WLP_USER_DIR/servers/cryptosrv directory. Update the host
(as shown below) and/or port numbers and verify that any field in blue below matches your
security setup.

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 18 of 44

<server description="cryptosrv">

 <!-- HTTPS / Port -->
 <httpEndpoint id="defaultHttpEndpoint"
 host="*"
 httpsPort="9450" />

 <!-- Enable features -->
 <featureManager>
 <feature>ssl-1.0</feature>
 <feature>appSecurity-2.0</feature>
 <feature>zosSecurity-1.0</feature>
 <feature>jaxrs-1.1</feature>
 </featureManager>

 <!-- App Info -->
 <application type="war" id="acsp-rest" name="acsp-rest"
 location="${server.config.dir}/apps/acsp-rest.war" />
 <applicationMonitor dropinsEnabled="false" />

 <!-- z/OS Security -->
 <safRegistry id="saf" />
 <safAuthorization id="saf" />
 <safCredentials profilePrefix="ZCLOUD"
 unauthenticatedUser="WSGUEST" />
 <safRoleMapper profilePattern="ZCLOUD.%resource%.%role%"
 toUpperCase="false" />
 <syncToOSThread appEnabled="true" />

 <!-- SSL Configuration -->
 <sslDefault sslRef="zCloudSSLConfig" />
 <ssl id="zCloudSSLConfig"
 keyStoreRef="zCloudKeyStore"
 trustStoreRef="zCloudTrustStore"
 clientAuthentication="true"
 sslProtocol="TLS"
 securityLevel="HIGH" />
 <keyStore id="zCloudTrustStore"
 location="safkeyring:///zCloudKeyRing"
 type="JCERACFKS"
 password="password"
 fileBased="false"
 readOnly="true" />
 <keyStore id="zCloudKeyStore"
 location="safkeyring:///zCloudKeyRing"
 type="JCERACFKS"
 password="password"
 fileBased="false"
 readOnly="true" />
</server>

4. Create a jvm.options file. Add the liberty server path along with the zCS and ACSP-
REST environment variables (as shown below). Give relevant permissions to the created
files.

oedit $WLP_USER_DIR/servers/cryptosrv/jvm.options

-Dacsp-rest=/usr/lpp/acsp/rest/acsp-rest.properties

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 19 of 44

chmod 750 $WLP_USER_DIR/servers/cryptosrv/jvm.options

5. Create a server.env file. Set JAVA_HOME to the z/OS Java Installation and LIBPATH to
the installed ACSP binaries.

oedit $WLP_USER_DIR/servers/cryptosrv/server.env

JAVA_HOME=/usr/lpp/java/J7.1_64
LIBPATH=/usr/lpp/acsp/bin:$LIBPATH

chmod 750 $WLP_USER_DIR/servers/cryptosrv/server.env

6. Edit the acsp-rest.properties file from $ACSP_REST_INSTALL_DIR and update the
default configurations. Note: The key label must exist in an ICSF Key Data Set and you
must have authorization to the key label and services. See Chapter 5, Error: Reference
source not found and Error: Reference source not found, for authorization requirements.

#ACSP-REST Properties File
#-* Cipher: Encrypt/Decrypt *-#
#Service Bias - PERFORMANCE = CPACF / SECURITY = CEX
cipherServiceBias = PERFORMANCE
#Cipher Key Label - Key Identifier
cipherKeyLabel: Secret/Symmetric or Public/Asymmetric key
label
cipherKeyLabel2: Private/Asymmetric key label
cipherKeyLabel = AES.DATA.CLEAR
#Cipher Key Type - Cryptographic key algorithm
cipherKeyType = AES
#Cipher Mechanism - Processing Rule
cipherMechanism = CBC_PAD
#-* Hash *-#
#Hash Mechanism
hashMechanism = SHA256

7. Copy the acsp-rest.war from $ACSP_REST_INSTALL_DIR to the apps folder.

cp $ACSP_REST_INSTALL_DIR/acsp-rest.war
$WLP_USER_DIR/servers/cryptosrv/apps/.

8. Copy the $ACSP_REST_INSTALL_DIR/workflow/ZCSZSRV.stc sample Liberty start
procedure to your PROCLIB dataset.

9. Ensure the user ID associated with the server task has write access to the files in the

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 20 of 44

$WLP_USER_DIR/servers directory.

10. Issue the following z/OS operator command to start the Liberty server instance:

START ZCSZSRV,PARMS='cryptosrv',INSTDIR='/usr/lpp/zWebSphere/V8R5/wlp',
USERDIR='/etc/liberty'

Note: If you need to stop the Liberty server instance, use the following command:

STOP ZCSZSRV

Automated Deployment (Using z/OSMF Workflow)

The ACSP-RESTvrmm.pax file also includes a sample workflow to help simplify the
deployment process. Once the .pax file is extracted, the workflow scripts can be found in
the workflow folder.

The sample workflow comprises of the following steps:

1 Create Server and Started Task. This step comprises two substeps:

.1 1 Create Server. This substep creates an instance of the IBM Websphere

Application Server (WAS) Liberty Profile server by invoking the WAS Liberty

CREATE SERVER shell command.

It accepts the following user variables:

• Server Name: name of the server instance to be created

• JAVA_HOME: the path to the Java Runtime Environment install

• WLP_USER_DIR: the path to the WAS Liberty Profile user area

• WLP_INSTALL_DIR: the path to the WAS Liberty Profile install

.1 2 Install Server Started Task. This substep installs the JCL procedure for the
Liberty server started task from the ACSP-REST installation directory to the PROCLIB
dataset.

It accepts the following user variables:

• PROCLIB: name of the PROCLIB dataset in which the JCL procedure for the WAS
Liberty server started task is to be installed

• Started Task Name: name of the started task to be assigned to the Liberty server

• ACSP_REST_INSTALL_DIR: the path to the ACSP-REST install

• Overwrite Option: a checkbox indicating whether the JCL procedure for the WAS
Liberty server started task should be overwritten if one exists

.1 3 Define Started Task Profile. This substep issues RACF commands to assign a
user ID to the Liberty server. The script also creates or updates the RACF STARTED
profile for the started task to be used to start the Liberty server.

It accepts the following user variables:

• PROCLIB: name of the PROCLIB dataset that contains the JCL procedure for the
Liberty server started task

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 21 of 44

• Started Task Name: name of the started task assigned to Liberty server

• Server Name: name of the Liberty server instance

• Server ID: the RACF user ID associated with Liberty server

2 Modify Server. This step updates the server.xml file to define certain server attributes.

It accepts the following user variables:

• Server Name: name of the Liberty server instance to be modified

• WLP_USER_DIR: the path to the WAS Liberty Profile user area

• HTTP Port: the port used for client HTTP requests

• Host Name: host name to use for the server

3 Define Security Profiles. This step issues RACF commands to define security profiles
for the client and server user IDs.

It comprises the following steps:

.3 1 Define Client User ID. This substep issues RACF commands to define a user ID
to RACF for the client that is using the z/OS Cloud Services.

It accepts the following user variables:

• Client ID: the RACF user ID associated with the client using the z/OS Cloud
Services

• Client UID: the OMVS UID for the client user ID being defined to RACF

• Profile Owner: the RACF-defined user or group to be assigned as the owner of the
RACF profile being defined

.3 2 Define Group Profile. This substep issues RACF commands to define a group to
RACF. This group is used to bundle the client and server user IDs together in order to
simplify their management.

It accepts the following user variables:

• Group Name: name of the RACF-defined group to which the client and server IDs
belong

• Group GID: the OMVS GID for the group to which the client and server IDs belong

• Superior Group: name of an existing RACF-defined group. This group becomes the
superior group of the group profile being defined.

.3 3 Add Client ID to Group. This substep issues RACF commands to connect the
client user ID to the group.

It accepts the following user variables:

• Client ID: the RACF user ID associated with the client using the z/OS Cloud
Services

• Group Name: name of the RACF-defined group the client is connecting to

.3 4 Add Server ID to Group. This substep issues RACF commands to connect the
server user ID to the group.

It accepts the following user variables:

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 22 of 44

• Server ID: the RACF ID associated with the Liberty server

• Group Name: name of the RACF-defined group the server is connecting to

4 Set up SSL. This step updates the server.xml file and issues the RACF commands
needed for the server to accept an SSL connection.

Specifically, the script performs the following tasks:

• Issue RACF RACDCERT commands to create a ring, a Certificate Authority
certificate, and a user certificate for the server instance, and to connect the
certificates to the ring

• Issue RACF RACDCERT commands to export the Certificate Authority certificate to
a dataset

• Modify the server.xml file to include z/OS Security and SSL features within the
featureManager element

• Modify the server.xml file to set up the sslDefault element

• Modify the server.xml file to use the new SSL port number

It accepts the following user variables:

• Server ID: the RACF ID associated with the Liberty server

• Server Name: name of the Liberty server instance to be modified

• WLP_USER_DIR: the path to the WAS Liberty Profile user area

• SSL Port: SSL port number to use for the server

5 Create Client Certificate. This step issues RACF commands to create and export a
new certificate for the client using the z/OS Cloud Services.

It accepts the following user variables:

• Client ID: the RACF user ID associated with the client

• Certificate DSN: the fully qualified name of the dataset to which the new certificate
is to be exported

6 Authorize Server. This step sets up the authorizations required to permit the Liberty
server access to the z/OS Cloud Services. It comprises the following substeps:

.6 1 Liberty Server RACF Authorization. This substep issues RACF commands to
authorize the Liberty server user ID to the z/OS Cloud Services prefix.

Specifically, the script performs the following tasks:

• Issue RACF commands to permit the Liberty server to use the Liberty angel
process services

• Issue RACF commands to permit the Liberty server to use the z/OS authorized
services

• Issue RACF commands to permit the Liberty server to check SAF credentials

• Issue RACF commands to permit the Liberty server to list SAF keyrings

• Issue RACF commands to grant the Liberty server READ access to the z/OS Cloud

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 23 of 44

Services security prefix

• Issue RACF commands to authorize the Liberty server to synchronize requests to
the z/OS thread

• Modify the server.xml file to set up SAF elements

• Modify the server.xml file to enable syncToOSThread

It accepts the following user variables:

• Profile Owner: the RACF-defined user or group to be assigned as the owner of the
RACF profile being defined

• z/OS Cloud Services Prefix: profile prefix to be assigned to the z/OS Cloud Services

• Server ID: the RACF ID associated with the Liberty server

• WLP_USER_DIR: the path to the WAS Liberty Profile user area

• Server Name: name of the Liberty server instance

.6 2 ACSP Binary Authorization. This substep modifies the extended attributes of the
ACSP libraries so that they can be controlled by Liberty server. The substep also changes
the group associated with the ASCP libraries to the group the server user ID belongs to.

It accepts the following user variables:

• ACSP_INSTALL_DIR - the path to the ACSP install

• Group Name: name of the RACF-defined group to which the server user ID belong

.6 3 Liberty Server Directory Authorization. This substep modifies the owner and
permission bits of all files and folders of the Liberty server directory to ensure the Liberty
server started task has access.

It accepts the following user variables:

• Server Name: name of the Liberty server instance to be modified

• WLP_USER_DIR: the path to the WAS Liberty Profile user area

• Server ID: the RACF ID associated with the Liberty server

7 Authorize Client. This step executes a REXX exec to issue RACF commands to
authorize the client group to the z/OS Cloud Services profile prefix. It also executes a shell
script to allow the client WRITE access to the jcca.log file in the server directory. It
comprises the following substeps:

.7 1 Authorize Client to Profile Prefix. This substep sets up the authorizations required
to permit the client group access to the z/OS Cloud Services in order to use the REST
APIs.

Specifically, the script performs the following tasks:

• Define a RACF EJBROLE class profile

• Permit the client group READ authority to the EJBROLE class profile

• Optionally permits the default Liberty Server unauthenticated user ID (WSGUEST)
READ access to the EJBROLE class profile

• Define a RACF APPL class profile

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 24 of 44

• Permit the client group READ access to the APPL class profile

• Optionally permits the default Liberty Server unauthenticated user ID (WSGUEST)
READ access to the APPL class profile

It accepts the following user variables:

• Profile Owner: the RACF-defined user or group to be assigned as the owner of the
RACF profile being defined

• z/OS Cloud Services Prefix: profile prefix to be assigned to the z/OS Cloud Services

• Group Name: name of the RACF-defined group to which the client user IDs belong

• Authorize WSGUEST Option: a checkbox indicating whether to permit the default
Liberty Server unauthenticated user ID (WSGUEST) access to both the EJBROLE
and APPL class profiles.

.13 1 Authorize Client to Log File. This substep modifies permission bits of the jcca.log
file in the Liberty server directory to ensure the client user ID has WRITE access.

It accepts the following user variables:

• Server Name: name of the Liberty server instance to be modified

• WLP_USER_DIR: the path to the WAS Liberty Profile user area

14 Deploy and Configure Encryption and Decryption Services. This step deploys and
configures the ACSP-REST Encryption and Decryption Services. It comprises the following
substeps:

.14 1 Deploy Encryption and Decryption Services. This substep deploys the ACSP-
REST Encryption and Decryption Services. It performs the following tasks:

• Copy application WAR file to the deployment directory

• Create or replace the jvm.options file to define environmental variables

• Create or replace the server.env file

• Modify the server.xml file to include JSP and servlet features

• Modify the server.xml file to include application information

It accepts the following user variables:

• WLP_USER_DIR: the path to the WAS Liberty Profile user area

• Server Name: name of the Liberty server instance where the services are to be
deployed

• ACSP_REST_INSTALL_DIR: the path to the ACSP-REST install

• ACSP_REST_OUTPUT_DIR: the path to the ACSP-REST output directory

• JAVA_HOME: the path to the Java Runtime Environment install

.14 2 Configure Encryption and Decryption Services Settings. This substep sets up the
default ACSP-REST Services settings in the acsp-rest.properties file. It performs the
following task:

• Replace the following default key value pairs with user inputs:

◦ serviceBias

◦ cipherKeyLabel

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 25 of 44

◦ cipherKeyLabel2

◦ cipherKeyType

◦ cipherMechanism

It accepts the following user variables:

• Service Bias: PERFORMANCE (CPACF) or SECURITY (CEX)

• Cipher Key Label: secret/symmetric or public/asymmetric key label

• Cipher Key Label 2: private/asymmetric key label

• Cipher Key Type: cryptographic key algorithm

• Cipher Mechanism: processing rule

15 Start Server. This step starts the Liberty server instance as a z/OS started task by
invoking the z/OS START command. In addition, a REXX exec is run to determine if the
Liberty server instance started successfully by monitoring the standard output.

It accepts the following user variables:

• Started Task Name: name of the started task assigned to the Liberty server

• Server Name: name of the Liberty server instance to be started

• WLP_USER_DIR: the path to the WAS Liberty Profile user area

• WLP_INSTALL_DIR: the path to the WAS Liberty Profile install

• Jobname: the jobname to be assigned to the Liberty server started task

16 Stop Server. This step stops the Liberty server instance by invoking the z/OS STOP
command. In addition, a REXX exec is run to determine if the Liberty server instance
stopped successfully by monitoring the standard output.

It accepts the following user variables:

• Server Name: name of the Liberty server instance to be stopped

• WLP_USER_DIR: the path to the WAS Liberty Profile user area

• Jobname - the jobname of the Liberty server started task to be stopped

Note: This sample is only intended to assist in the development of a working program. IBM
does not warrant that the content of this sample will meet your requirements or that it is
error-free.

Illustrations 2-4 below show sample screenshots of using this workflow:

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 26 of 44

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 27 of 44

Illustration 2: Creating the ACSP-REST workflow

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 28 of 44

Illustration 3: Steps of the sample ACSP-REST workflow

Troubleshooting

Common installation problems are listed below.

Note: Be sure to restart the Liberty server after applying the following solutions.

Problem Solution(s)

”Context Root Not Found” • Verify that the acsp-rest.war is in the /apps/ folder.

No output / Blank results • Verify the acsp-rest.properties file exists.
• Verify the LIBPATH in the server.env file is correct.
• Look at messages.log in the server logs for more

information.

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 29 of 44

Illustration 4: Modify Server step of the sample ACSP-REST workflow

5. Using the ACSP-REST Interface
The format for the ACSP-RESTAPIs requests and responses is based on the HTTP/1.1
protocol. Conceptually, your application (the client) issues requests to the target system
(z/OS) in the form of request messages. Each request message consists of a request line,
optionally followed by request headers (HTTP headers), an empty line, and an optional
message body. The request line includes the HTTP method, such as GET, a Universal
Resource Identifier (URI), and parameters that further qualify the request, where
appropriate. For requests that return data, the services define an expected response in the
form of a JavaScript Object Notation (JSON) object or as Extensible Markup Language
(XML) elements.

It is assumed that users of these services are familiar with JSON (or XML) standard and
coding practices. The following references provide additional helpful information:

▪ Hypertext Transfer Protocol 1.1: http://www.w3.org/Protocols/rfc2616/rfc2616.html

▪ Multipurpose Internet Mail Extensions (MIME) media types:
http://www.iana.org/assignments/media-types/index.html

▪ Introducing JSON: http://www.json.org

▪ XML Specification: http://www.w3.org/XML

The ACSP-REST services are used to exploit z/OS cryptographic functions.

This release provides support for the following cryptographic functions:

▪ Cipher: Encrypt/Decrypt

▪ Hash

▪ Random Number Generate

Default Values
The default values may be set in the acsp-rest.properties file. For more information,
see Chapter 4: Deployment.

Processing Overview

The ACSP-REST can be invoked by any HTTPS client application, running on the z/OS
local system or a remote system. Such an application will have to be authorized using the
RACF/certificate security steps outlined earlier in this document.

The client program initiates an HTTPS request to the ACSP-REST REST API. If the
interface determines that the request is valid, it performs the requested service. After
performing the service, the ACSP-REST interface creates an HTTP response. If the
request is successful, this response takes the form of an HTTP 200 (OK) response and an
object containing a JSON (or XML) object which must be parsed by your program. If the
request is not successful, the response includes a JSON response object indicating service
failure.

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 30 of 44

http://www.w3.org/XML
http://www.json.org/
http://www.iana.org/assignments/media-types/index.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html

URI Format

The URIs of the ACSP-REST REST interface have the format

https://{host}:{port}/zCloud/crypto/{resource}

where:

▪ "https://{host}:{port}" specifies the target system address and port

▪ "/zCloud/crypto" identifies the ACSP-REST interface

▪ "{resource}" represents the service, e.g. Encrypt or Decrypt

Content Types

ACSP-REST supports the JSON content type (”content-type: application/json”) and XML
content type (”content-type: text/xml”). Either format may be used for the request and
response data. For the detailed structure of each response object, see the individual
JSON/XML schemas in the installation package (See Chapter 2).

Generally the JSON media type provides better overall performance as compared to XML
and therefore is recommended instead of XML unless otherwise restricted. The
performance differences tend to be minimal when dealing with small payload sizes but can
become significant as the size of the payload grows.

Error Handling

If an HTTP error occurs during the processing of a request, the ACSP-REST interface
returns an appropriate HTTP status code to the calling client. An error is indicated by a 4nn
code or a 5nn code. For example, HTTP/1.1 400 Bad Request or HTTP/1.1 500 Internal
Server Error

Should an error occur in processing of the JSON payload, the ACSP-REST Interface will
return a JSON object that contains a message that describes the error. You can use this
information to diagnose the problem or provide it to IBM Support, if required.

The following HTTP status codes are valid:

HTTP 200 OK
Success.

HTTP 400 Bad Request
Request contained incorrect parameters.

HTTP 401 Unauthorized

Submitter of the request did not authenticate to ACSP-REST or is not authorized to
use the service.

HTTP 404 Bad URL

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 31 of 44

Target of the request (a URL) was not found.

HTTP 500 Internal server error
Programming error.

Error Logging

The logging for ACSP-REST is built into the existing WebSphere Liberty logging framework
and all configurations are handled directly through the server.xml.

The basic configuration to enable tracing is achieved by adding the following line to the
server definition inside your server.xml.

<logging traceSpecification="*=info"/>

This sets the trace granularity for the entire Liberty component to info. Additional fine grain
control can be setup by appending additional components separated by a colon. To enable
full diagnostic tracing for the ACSP-REST crypto services update the configuration to the
following:

 <logging traceSpecification="*=info:com.ibm.zcloud.*=all"/>

For more information please refer to the WebSphere Liberty logging documentation found
here:

http://www-
01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplat
form.doc/ae/rwlp_logging.html?cp=SSAW57_8.5.5%2F3-17-0-0

Error Diagnostics

A diagnostic object is always returned on failure. It is also returned when the verbose
property is set to TRUE. (See individual JSON/XML Schemas in the installation package
mentioned in Chapter 2.) The diagnostic object provides z/OS-specific information such as
the underlying service name (e.g. CSNBSYE), the service return code, and the service
reason code. All default and caller-specified properties are also returned in the diagnostic
object.

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 32 of 44

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_logging.html?cp=SSAW57_8.5.5/3-17-0-0
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_logging.html?cp=SSAW57_8.5.5/3-17-0-0
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_logging.html?cp=SSAW57_8.5.5/3-17-0-0

{
 "cipherResponse": {
 "text": {
 "textType": "BASE64",
 "textValue": "NhqR6VVxBDcglUVwAA2nCA=="
 },
 "mechanismParams": {
 "initVector": "pQoi+gjcyNna9l17FcOaOQ=="
 }
 "serviceResponse": {
 "serviceMsgs": [
 "SUCCESS"
],
 "serviceDiag": {
 "operation": "ENCRYPT",
 "serviceRS": 0,
 "serviceRC": 0,
 "textType": "UTF8",
 “textValue": "hello world",
 "chainOperation": "SINGLE",
 "mechanism": "CBC_PAD",
 "serviceBias": "PERFORMANCE",
 "keyType": "AES",
 "keyLabel": "AES.DATA.CLEAR",
 "serviceName": "CSNBSYE",
 "initVector": "pQoi+gjcyNna9l17FcOaOQ=="
 }
 }
 }
}

 Table 1: Sample Diagnostic Response (JSON)

Cipher: Encrypt /Decrypt

Use the cipher service to encrypt or decrypt data.

Resource URI
https://{host}:{port}/zCloud/crypto/cipher

HTTP Methods
The cipher service supports the following HTTP methods:

POST Submit a cipher(encrypt/decrypt) request

PUT Not supported

GET Not supported

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 33 of 44

DELETE Not supported

Required Authorizations
Cipher operations require authorization to ICSF services and key labels. For detailed
information about ICSF authorization, please refer to the SC14-7506-00 Cryptographic
Services ICSF Administrator's Guide.

To submit requests through the cipher service, the z/OS user ID associated with the client
certificate must have READ authority to the following resources in the CSFSERV class:

Resource Service Service Description

CSFENC CSNBENC CCA - Secure key encryption for DES

CSFSAE CSNBSAE CCA - Secure key encryption for AES

CSFPKE CSNDPKE CCA - PKA encryption for RSA

CSF1SKE CSFPSKE PKCS#11 - Secret key encryption for AES

CSF1PKV CSFPPKV PKCS#11 - PKA encryption for RSA

CSFDEC CSNBDEC CCA - Secure key decryption for DES

CSFSAD CSNBSAD CCA - Secure key decryption for AES

CSFPKD CSNDPKD CCA - PKA decryption for RSA

CSF1SKD CSFPSKD PKCS#11 - Secret key decryption for AES

CSF1PKS CSFPPKS PKCS#11 - PKA decryption for RSA

Note: The CSNBSYE/CSNBSYD services processes requests for CCA - Clear and
protected key encryption for AES and DES but does not require SAF authorization.

To use ICSF key labels, the z/OS user ID associated with the client certificate requires
authorization to the specific key label.

▪ For CCA keys, READ access to the key label in the CSFKEYS class.

▪ For PKCS#11 keys, READ access to the token containing the key label in the
CRYPTOZ class.

JSON/XML Schemas
The JSON and XML schemas are provided in the ACSP-RESTvrmm.pax file.

▪ CipherRequestSchema_v1.0.0.json

▪ CipherRequestSchema_v1.0.0.xsd

▪ CipherResponseSchema_v1.0.0.json

▪ CipherResponseSchema_v1.0.0.xsd

Sample Encrypt Request

An encrypt request can be minimal (uses defaults) or custom configured (some options are
explicitly specified). The request must always include the operation and text to be

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 34 of 44

http://publibz.boulder.ibm.com/zoslib/pdf/csf2c300.pdf
http://publibz.boulder.ibm.com/zoslib/pdf/csf2c300.pdf

encrypted. The following tables show an example of a minimal and custom configured
encrypt request.

{
 "cipherRequest": {
 "operation": "ENCRYPT",
 "text": {
 "textType": "UTF8",
 "textValue": "hello world"
 },
 }
}

 Table 2: Sample Minimal Encrypt Request (JSON)

<cipherRequest>
 <operation>ENCRYPT</operation>
 <text>
 <textType>UTF8</textType>
 <textValue>hello world</textValue>
 </text>
</cipherRequest>

 Table 3: Sample Minimal Encrypt Request (XML)

{
 "cipherRequest": {
 "operation": "ENCRYPT",
 "text": {
 "textType": "UTF8",
 "textValue": "hello world"
 },
 "chain": {
 "chainOperation": "SINGLE"
 },
 "mechanism": "CBC_PAD",
 "serviceVerbose": "false",
 "serviceBias": "PERFORMANCE",
 "key": {
 "keyType": "AES",
 "keyLabel": "AES.DATA.CLEAR"
 },
 "mechanismParams": {
 "initVector": "pQoi+gjcyNna9l17FcOaOQ=="
 }
 }
}

 Table 4: Sample Custom Configured Encrypt Request (JSON)

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 35 of 44

Sample Encrypt Response

An encrypt response will contain the results of the requested encrypt operation. The
contents may vary depending on the success or failure of the operation but will always
include a service response object which holds any generated service information. The
following table shows a sample encrypt response.

{
 "cipherResponse": {
 "text": {
 "textType": "BASE64",
 "textValue": "NhqR6VVxBDcglUVwAA2nCA=="
 },
 "serviceResponse": {
 "serviceMsgs": [
 "SUCCESS"
]
 },
 "mechanismParams": {
 "initVector": "pQoi+gjcyNna9l17FcOaOQ=="
 }
 }
}

 Table 5: Sample Encrypt Response (JSON)

<cipherResponse>
 <text>
 <textType>BASE64</textType>
 <textValue>NhqR6VVxBDcglUVwAA2nCA==</textValue>
 </text>
 <serviceResponse>
 <serviceMsgs>
 <string>SUCCESS</string>
 </serviceMsgs>
 </serviceResponse>
 <mechanismParams>
 <initVector>pQoi+gjcyNna9l17FcOaOQ==</initVector>
 </mechanismParams>
</cipherResponse>

 Table 6: Sample Encrypt Response (XML)

Note: The initialization vector for a minimal request is generated randomly so the resulting
cipher text will differ depending on the initialization vector used.

Sample Decrypt Request

A decrypt request can be minimal (uses defaults) or custom configured (some options are

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 36 of 44

explicitly specified). The request must always include the operation, text to be decrypted,
and the initialization vector used during encryption. The following tables show an example
of a minimal and custom configured decrypt request.

{
 "cipherRequest": {
 "operation": "DECRYPT",
 "text": {
 "textType": "UTF8",
 "textValue": "NhqR6VVxBDcglUVwAA2nCA=="
 },
 "mechanismParams": {
 "initVector": "pQoi+gjcyNna9l17FcOaOQ=="
 }
 }
}

Table 7: Sample Minimal Decrypt Request (JSON)

<cipherRequest>
 <operation>DECRYPT</operation>
 <text>
 <textType>UTF8</textType>
 <textValue>NhqR6VVxBDcglUVwAA2nCA==</textValue>
 </text>
 <mechanismParams>
 <initVector>pQoi+gjcyNna9l17FcOaOQ==</initVector>
 </mechanismParams>
</cipherRequest>

 Table 8: Sample Minimal Decrypt Request (XML)

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 37 of 44

{
 "cipherRequest": {
 "operation": "DECRYPT",
 "text": {
 "textType": "UTF8",
 "textValue": "NhqR6VVxBDcglUVwAA2nCA=="
 },
 "chain": {
 "chainOperation": "SINGLE"
 },
 "mechanism": "CBC_PAD",
 "serviceVerbose": "false",
 "serviceBias": "PERFORMANCE",
 "key": {
 "keyType": "AES",
 "keyLabel": "AES.DATA.CLEAR"
 },
 "mechanismParams": {
 "initVector": "pQoi+gjcyNna9l17FcOaOQ=="
 }
 }
}

Table 9: Sample Custom Configured Decrypt Request (JSON)

Note: The input textValue is always expected to be encoded as a Base64 string. The
textType actually represents the desired encoding of the decrypted text returned in the
response.

Sample Decrypt Response

A decrypt response will contain the results of the requested decrypt operation. The
contents may vary depending on the success or failure of the operation but will always
include a service response object which holds any generated service information. The
following table shows a sample decrypt response.

{
 "cipherResponse": {
 "text": {
 "textType": "UTF8",
 "textValue": "hello world"
 },
 "serviceResponse": {
 "serviceMsgs": [
 "SUCCESS"
]
 },
 }
}

Table 10: Sample Decrypt Response (JSON)

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 38 of 44

<cipherResponse>
 <text>
 <textType>UTF8</textType>
 <textValue>hello world</textValue>
 </text>
 <serviceResponse>
 <serviceMsgs>
 <string>SUCCESS</string>
 </serviceMsgs>
 </serviceResponse>
</cipherResponse>

Table 11: Sample Decrypt Response (XML)

Random Number Generate (RNG)

Use the RNG service to generate a string of random bytes.

Resource URI
https://{host}:{port}/zCloud/crypto/rng

HTTP Methods
The RNG service supports the following HTTP methods:

POST Submit an RNG request

PUT Not supported

GET Not supported

DELETE Not supported

Required Authorizations
RNG operations require authorization to ICSF services. For detailed information about
ICSF authorization, please reference the SC14-7506-00 Cryptographic Services ICSF
Administrator's Guide.

To submit requests through the RNG service, the z/OS user ID associated with the client
certificate must have READ authority to the following resources in the CSFSERV class:

Resource Service Service Description

CSFRNGL CSNBRNGL Random Number Generate

JSON/XML Schemas
The JSON and XML schemas are provided in the ACSP-RESTvrmm.pax file.

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 39 of 44

http://publibz.boulder.ibm.com/zoslib/pdf/csf2c300.pdf
http://publibz.boulder.ibm.com/zoslib/pdf/csf2c300.pdf

▪ RNGRequestSchema_v1.0.0.json

▪ RNGRequestSchema_v1.0.0.xsd

▪ RNGResponseSchema_v1.0.0.json

▪ RNGResponseSchema_v1.0.0.xsd

Sample RNG Request

An RNG request must always be fully specified as defined by the RNGRequestSchema's.
The following table shows an example of a fully specified RNG request.

{
 "RNGRequest": {
 "serviceVerbose": false,
 "RNGLength": 8
 }
}

Table 12: Sample RNG request (JSON)

<RNGRequest>
 <serviceVerbose>UTF8</serviceVerbose>
 <RNGLength>message</RNGLength>
</RNGRequest>

Table 13: Sample RNG Request (XML)

Sample RNG Response

An RNG response will contain the results of the requested RNG operation. The contents
may vary depending on the success or failure of the operation but will always include a
service response object which holds any generated service information. The following table
shows a sample RNG response.

{
 "RNGResponse": {
 "serviceResponse": {
 "serviceMsgs": [
 "SUCCESS"
]
 },
 "RNGValue": "HSl/dqH0UvU="
 }
}

Table 14: Sample RNG Response (JSON)

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 40 of 44

<RNGResponse>
 <serviceResponse>
 <serviceMsgs>
 <string>SUCCESS</string>
 </serviceMsgs>
 </serviceResponse>
 <RNGValue>HSl/dqH0UvU=</RNGValue>
</RNGResponse>

Table 15: Sample RNG Response (XML)

Note: Since the string of random bytes returned will always be Base64 encoded, the length
of the string may actually be greater than the number of random bytes requested.

Hash

Use the Hash service to generate a hash of the input text.

Resource URI
https://{host}:{port}/zCloud/crypto/hash

HTTP Methods
The RNG service supports the following HTTP methods:

POST Submit a hash request

PUT Not supported

GET Not supported

DELETE Not supported

Required Authorizations
Hash operations require authorization to ICSF services. For detailed information about
ICSF authorization, please reference the SC14-7506-00 Cryptographic Services ICSF
Administrator's Guide.

To submit requests through the Hash service, the z/OS user ID associated with the client
certificate must have READ authority to the following resources in the CSFSERV class:

Resource Service Service Description

CSFOWH CSNBOWH One-Way Hash Generate

JSON/XML Schemas
The JSON and XML schemas are provided in the ACSP-RESTvrmm.pax file.

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 41 of 44

http://publibz.boulder.ibm.com/zoslib/pdf/csf2c300.pdf
http://publibz.boulder.ibm.com/zoslib/pdf/csf2c300.pdf

▪ HashRequestSchema_v1.0.0.json

▪ HashRequestSchema_v1.0.0.xsd

▪ HashResponseSchema_v1.0.0.json

▪ HashResponseSchema_v1.0.0.xsd

Sample Hash Request

A hash request can be minimal (uses defaults) or custom configured (some options are
explicitly specified). A request must always include the text to be hashed. The following
tables show an example of a minimal and custom configured hash request.

{
 "hashRequest": {
 "text": {
 "textType": "UTF8",
 "textValue": "message"
 }
 }
}

Table 16: Sample Minimal Hash Request (JSON)

<hashRequest>
 <text>
 <textType>UTF8</textType>
 <textValue>message</textValue>
 </text>
</hashRequest>

Table 17: Sample Minimal Hash Request (XML)

{
 "hashRequest": {
 "serviceVerbose": true,
 "text": {
 "textType": "UTF8",
 "textValue": "message"
 }
 "mechanism": "SHA256"
 }
}

Table 18: Sample Custom Configured Hash Request (JSON)

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 42 of 44

Sample Hash Response

A hash response will contain the results of the requested hash operation. The contents
may vary depending on the success or failure of the operation but will always include a
service response object which holds any generated service information. The following table
shows a sample hash response.

{
 "hashResponse": {
 "serviceResponse": {
 "serviceMsgs": [
 "SUCCESS"
]
 },
 "hash":"q1MKE+RZFJgrefm34/uplM/R8/si9xzqGvvwK0YMbR0="
 }
}

Table 19: Sample Hash Response (JSON)

<hashResponse>
 <serviceResponse>
 <serviceMsgs>
 <string>SUCCESS</string>
 </serviceMsgs>
 </serviceResponse>
 <hash>q1MKE+RZFJgrefm34/uplM/R8/si9xzqGvvwK0YMbR0=</hash>
</hashResponse>

Table 20: Sample Hash Response (XML)

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 43 of 44

6. Appendix

Glossary of Terms:
REST (Representational State Transfer): A software architecture style that is stateless, a
client-server model, and cacheable.

RESTful: A program or service constructed with REST architecture.

IBM Advanced Crypto Service Provider REST API - Installation and Configuration Guide - Version 1.0 Page 44 of 44

	Trademarks
	About this Publication
	Who should use this document
	Where to find more information
	IBM Advanced Crypto Service Provider (ACSP)
	IBM Java API to CCA (jCCA)
	IBM z/OS Integrated Cryptographic Service Facility (ICSF)
	IBM Cryptographic Co-processor

	IBM ACSP-REST V1.0 License Terms

	Summary of Changes
	Release 1.0

	1. Overview
	2. Installation
	Program Requirements
	Installation Package
	JCCA Installation

	3. Security
	Server Certificates
	Client User IDs
	Client Certificates
	User Authorization
	Liberty Authorization
	ACSP Library Authorization
	ICSF Authorization
	Server STARTED Profile

	4. Deployment
	Manual Deployment
	Automated Deployment (Using z/OSMF Workflow)
	Troubleshooting

	5. Using the ACSP-REST Interface
	Processing Overview
	URI Format
	Content Types
	Error Handling
	Error Logging
	Error Diagnostics
	Cipher: Encrypt /Decrypt
	Resource URI
	HTTP Methods
	Required Authorizations
	JSON/XML Schemas
	Sample Encrypt Request
	Sample Encrypt Response
	Sample Decrypt Request
	Sample Decrypt Response

	Random Number Generate (RNG)
	Resource URI
	HTTP Methods
	Required Authorizations
	JSON/XML Schemas
	Sample RNG Request
	Sample RNG Response

	Hash
	Resource URI
	HTTP Methods
	Required Authorizations
	JSON/XML Schemas
	Sample Hash Request
	Sample Hash Response

	6. Appendix

