
IBM WebSphere® Developer for zSeries® Version 6.0

Common Access Repository Manager

Developer’s Guide

SC31-6914-00

���

IBM WebSphere® Developer for zSeries® Version 6.0

Common Access Repository Manager

Developer’s Guide

SC31-6914-00

���

Note

Before using this document, read the general information under “Notices” on page 39.

First edition (July 2005)

This edition applies to Common Access Repository Manager for version 6.0 of IBM WebSphere Developer for

zSeries (product number 5724-L44) and to all subsequent releases and modifications until otherwise indicated in

new editions.

Order publications by phone or fax. IBM Software Manufacturing Solutions takes publication orders between 8:30

a.m. and 7:00 p.m. eastern standard time (EST). The phone number is (800) 879-2755. The fax number is (800)

445-9269. Faxes should be sent Attn: Publications, 3rd floor.

You can also order publications through your IBM representative or the IBM branch office serving your locality.

Publications are not stocked at the address below.

IBM welcomes your comments. You can send your comments by mail to the following address:

IBM Corporation, Attn: Information Development, Department 53NA Building 501, P.O. Box 12195, Research

Triangle Park, NC 27709-2195.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

Contents

About this book v

Who should read this book v

Chapter 1. Introduction to CARMA . . . 1

Supported operations 2

Locating the sample files 2

Chapter 2. General concepts 3

Browsing 3

Checking in and out 3

Memory allocation 4

Member contents 6

Character buffers 6

Return codes 6

Logging 6

Chapter 3. Developing a RAM 9

Compiling the RAM 9

Defining the RAM to CARMA 10

Exporting functions 10

IDs vs. names 11

RAM predefined data structures 11

Logging 11

Dealing with unsupported operations 12

State functions 12

initRAM 12

terminateRAM 13

reset 13

Browsing functions 13

getInstances 13

getMembers 14

isMemberContainer 14

getContainerContents 15

Metadata functions 15

getAllMemberInfo 15

getMemberInfo 16

updateMemberInfo 16

Other member operations 17

extractMember 17

putMember 19

lock 21

unlock 21

check_in 21

check_out 22

Chapter 4. Developing a CARMA client 23

Storing results for later use 23

Client Predefined Data Structures 23

Logging 24

Compiling the CARMA client 24

State functions 25

initCarma 25

getRAMList 26

initRAM 26

reset 26

terminateRAM 26

terminateCarma 27

Browsing functions 27

getInstances 27

getMembers 27

isMemberContainer 28

getContainerContents 29

Metadata functions 29

getAllMemberInfo 29

getMemberInfo 30

updateMemberInfo 30

Other member operations 31

extractMember 31

putMember 32

lock 33

unlock 34

checkin 34

checkout 35

Appendix. Return codes 37

Notices 39

Trademarks and service marks 40

 iii

iv IBM WebSphere® Developer for zSeries® Version 6.0: Common Access Repository Manager Developer’s Guide

About this book

This book explains how to develop repository access managers (RAMs) and

Common Access Repository Manager (CARMA) clients. It includes the following

topics:

v How to develop a RAM capable of connecting to a software configuration

manager (SCM)

v How to develop a CARMA client capable of accessing various SCMs through

CARMA using RAMs

You can use this document as a guide to these tasks or as a programming

reference.

Who should read this book

This book is intended for application programmers or anyone who wants to learn

how RAMs and clients are developed.

To use this book as a guide for RAM development, you need to be familiar with

the SCM you are developing a RAM for. To use this book for CARMA client

development, you need to understand generic SCM concepts.

 v

vi IBM WebSphere® Developer for zSeries® Version 6.0: Common Access Repository Manager Developer’s Guide

Chapter 1. Introduction to CARMA

CARMA is a library that provides a generic interface to z/OS software

configuration managers (SCMs). Developers can build on top of CARMA by

developing repository access managers (RAMs) that plug into the CARMA

environment. RAMs define how CARMA should communicate with various SCMs.

For example, a CARMA host (a z/OS host machine with CARMA on it) could be

configured to use one RAM used to communicate with IBM Source Code Library

Manager (SCLM) repositories and another RAM to communicate with your own

custom SCM.

By using CARMA, developers of client software can avoid writing specialized code

for accessing SCMs, and easily allow support for any SCM for which a RAM is

available. CARMA is a DLL stored within an MVS PDS. Only z/OS clients can

directly access CARMA. In order to access CARMA from a workstation, a software

bridge between the workstation and host must be developed. This bridge software

must act as a client to the CARMA host and as a server to workstations. IBM

WebSphere Developer for zSeries (WD/z) ships with such a software bridge to

allow its CARMA client plug-in to access CARMA hosts.

CARMA currently ships with one RAM for accessing Partitioned Data Sets (PDSs).

To access other SCMs using CARMA, you will need to obtain or develop

additional RAMs.

The following diagram illustrates the composition of the CARMA environment:

Figure 1. Example CARMA environment

 1

Supported operations

CARMA currently supports the following generic SCM operations:

v Browse an SCM

v Extract an SCM member

v Create and update an SCM member

v Get and update SCM member metadata

v Lock, unlock, check in, and check out a member

Although CARMA supports all of these actions, it is quite possible that a given

SCM may not support one or more of these operations due to its design.

Developers of RAMs accessing such SCMs should follow the guidelines for

handling unsupported operations in “Dealing with unsupported operations” on

page 12.

Locating the sample files

The sample files are shipped with the CARMA host installation packages. After

your CARMA host has been successfully set up, the default location of these

sample files should be in the sample library (CRA.SCRASAM). However, depending

on how your CARMA environment has been configured, any referenced dataset

name beginning with “CRA” may use a different middle qualifier. For example, a

CARMA environment could be configured to place its sample library in

CRA.TEST.SCRASAM instead of CRA.SCRASAM.

The following table summarizes the available sample files, available in the sample

library:

 File Description

CRA390SD CARMA/390 DLL side deck

CRACLISA Sample client source code

CRASPDS PDS RAM source code

CRARAMSA Sample (skeleton) RAM source code

CRAADDRM JCL to rebuild the VSAM cluster

CRACLICM JCL to compile a CARMA client

CRA390H Header needed for clients

CRADSDEF Header needed for clients and RAMs

CRAFCDEF Header needed for RAMs

CRACLIRN JCL to run a host-based client

CRARAMCM JCL to compile a RAM

2 IBM WebSphere® Developer for zSeries® Version 6.0: Common Access Repository Manager Developer’s Guide

Chapter 2. General concepts

Browsing

CARMA views all entities within an SCM as instances, members, and metadata.

Instances are the entities at the highest level within an SCM. For example, the PDS

RAM uses the PDSs themselves as instances. Instances could be different libraries

of code, different levels of code, or whatever the RAM developer thinks would

make the most sense for client users. For most SCMs, an instance should represent

a project or component in the SCM.

Members are entities contained within instances or other members. Members that

contain other members are known as containers, while members that do not contain

other members are known as simple members.

Figure 2 illustrates a simple hierarchy. "Build" and "Development" are instances, the

components are containers, and the source files are simple members.

Checking in and out

CARMA provides a generic interface across various SCMs, each of which may

handle operations differently. Since it is not possible to predict whether the check

in or check out function for any given SCM will respectively expect or return a

member’s contents, CARMA has been designed such that check in and check out

are only flag-setting operations. That is, no member contents are passed to or

returned from the SCM as part of the check in and check out operations.

Certain SCMs might expect the contents of a member to be passed in during a

check in operation for that member. A RAM for such an SCM should handle this

case by storing the member contents in a temporary location before making the

check in call to the SCM. Similarly, certain SCMs might return the contents of a

member during a check out operation for that member. A RAM for such an SCM

should handle this case by storing the member contents in a temporary location

Figure 2. Example SCM hierarchy

 3

until the client retrieves the contents. CARMA clients should always expect to

perform a check in operation before an update operation, and to perform an

extract operation immediately after a check out operation.

Memory allocation

Many of the CARMA API functions require that either the RAM or the CARMA

client allocate memory to store function results or parameters that are passed

between the RAM and the CARMA client. For all functions other than

extractMember and putMember, a one dimensional array will need to be allocated by

the RAM and freed by the client to store sets of instance information, member

information, etc. The following diagram illustrates how this memory is allocated:

 Each element in the array depicted above is of data structure type type. typePtr is

a type pointer (of type type*) that serves as a handle to the newly allocated

memory. In C, this memory can be allocated with the following code:

typePtr = (type*) malloc(sizeof(type) * numElements);

where numElements is the number of array indices that need to be created. The

memory typePtr points to must be freed by the client once it is no longer needed.

The putMember and extractMember functions use two-dimensional arrays to transfer

member contents, with each array row containing one of the member’s records. For

extractMember, the RAM should allocate the array and the CARMA client should

free the array. For putMember, the CARMA client should both allocate and free the

array. In both cases, the array should be allocated as illustrated in the following

diagram:

 The above illustration depicts the standard way to represent a two-dimensional

array in C. charPtrPtr is a pointer to a char pointer (it is of type char**) that

serves as a handle to an array of char pointers (elements of type char*). The data

for the two-dimensional character array is actually stored in a one-dimensional

character array; the idea of rows and columns is purely conceptual. The array of

char pointers is used to provide handles to the first element in each row of the

’two-dimensional’ array. Thus, in the illustration, the first row of the

two-dimensional array consists of elements 0a and 0b, with 0a being the first

element of that row; the second row consists of elements 1a and 1b, with 1a being

the first element of that row; and so on.

Figure 3. Simple one dimensional array as would be allocated by a RAM

Figure 4. Two-dimensional character array as used in extractMember and putMember

4 IBM WebSphere® Developer for zSeries® Version 6.0: Common Access Repository Manager Developer’s Guide

To allocate a two-dimensional array such as the ones required for the

extractMember and putMember functions, the CARMA client must first create

charPtrPtr. In C, use the following declaration:

char** charPtrPtr;

If the CARMA client is allocating the two-dimensional character array (as in the

putMember function) the array can now be allocated. In C, the CARMA client

should use the following code:

charPtrPtr = (char**) malloc(sizeof(char*) * numRows);

charPtrPtr = (char) malloc(sizeof(char) * numColumns * numRows);

for(i = 0; i < numRows; i++)

 (charPtrPtr)[i] = ((*charPtrPtr) + (i * numColumns));

where numRows is the number of rows and numColumns is the number of columns in

the two-dimensional array. The first line allocates the array of char pointers (one

pointer for each row in the two-dimensional array), the second line allocates the

array that holds the data for the two-dimensional array, and the for loop assigns

each of the char pointers in the char pointer array to a row in the two-dimensional

array.

If the RAM is allocating the two-dimensional character array (as in the

extractMember function) an extra step is required before the array can be allocated:

charPtrPtr needs to be passed by reference to the RAM; that is, a pointer to

charPtrPtr needs to be passed. This is necessary so that charPtrPtr can serve has

a handle to the two-dimensional array after the RAM has allocated the array.

Suppose that the RAM has a parameter named contents of type char*** in the

RAM function that will allocate the two-dimensional array. The address of

charPtrPtr should be passed as the value for contents. The RAM should then

allocate the two-dimensional array, using contents as a handle to the array. In C,

the RAM should use the following code to allocate the two-dimensional array:

*contents = (char**) malloc(sizeof(char*) * numRows);

**contents = (char*) malloc(sizeof(char) * numColumns * numRows);

for(i = 0; i < numRows; i++)

 (*contents)[i] = ((**contents) + (i * numColumns));

where numRows is the number of rows and numColumns is the number of columns in

the two-dimensional array. The first line allocates the array of char pointers (one

pointer for each row in the two-dimensional array), the second line allocates the

array that holds the data for the two-dimensional array, and the for loop assigns

each of the char pointers in the char pointer array to a row in the two-dimensional

array.

Regardless of who allocated the array, the CARMA client must free the

two-dimensional character array in both the extractMember and putMember

functions. In C, the CARMA client should use code similar to the following:

free(charPtrPtr[0]);

free(charPtrPtr);

It is necessary to free the data array before freeing the char pointer array to avoid

producing a memory leak.

Chapter 2. General concepts 5

Member contents

The contents of SCM members can be sent between the RAM, CARMA, and the

client all at once or a piece at a time. It is recommended that the contents of large

members be sent a piece at a time to avoid attempting to allocate a larger chunk of

memory than is available.

The contents will be passed to and from the RAM as two-dimensional character

arrays, each row in the array corresponding to a record in the member. As the

RAM writes to or reads from a member, it should place the first member record it

encounters at index 0 in the array, so that the indices of the array and member

match.

Character buffers

To match the convention for passing strings in MVS, the RAM should expect all

character buffers passed to it to be padded with spaces instead of being

null-terminated. The RAM should also set up any buffers being returned to the

client in the same way. Assuming a buffer length of 30, the string "CARMA

mechanic" would be passed in the format illustrated in Figure 5 instead of the

format illustrated in Figure 6 (where "?" represents an unknown character). Both

RAM and client developers should initialize buffers that they have created to be

filled with spaces.

Return codes

All functions that run successfully should produce a return code of 0. If an error

occurs, RAM developers may return a code between 100 and 200 or between 500

and 900. Codes ranging from 100 to 200 are reserved for generic errors that all

RAMs may face. Codes ranging from 500 to 900 should be used for any errors that

are specific to a certain RAM. Likewise, CARMA may return error codes between 4

and 100, a software bridge created between CARMA and a workstation client may

return error codes between 201 and 500, and TSO errors may be flagged by

returning error codes between 900 and 999. See “Return codes,” on page 37 for a

list of the predefined error codes. When an error occurs, the RAM should fill the

error buffer with the details of the error.

Logging

CARMA uses its own logging system. Trace levels can be used to filter log

messages generated by CARMA and the RAM. The available trace levels are listed

in the following table:

 Table 1. Trace levels

Enumeration Trace Level

0 Error

 C A R M A m e c h a n i c

Figure 5. Example of correct RAM buffer usage

 C A R M A m e c h a n i c \0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Figure 6. Example of incorrect RAM buffer usage

6 IBM WebSphere® Developer for zSeries® Version 6.0: Common Access Repository Manager Developer’s Guide

Table 1. Trace levels (continued)

Enumeration Trace Level

1 Warning

2 Information

3 Debug

All messages at or below the chosen level will be logged. For example, if

the"Information" trace level is chosen, the following types of messages will be

logged: information, warning, and error. Additional information on logging is

discussed in “Logging” on page 11 (for RAM development) and “Logging” on

page 24 (for client development).

Chapter 2. General concepts 7

8 IBM WebSphere® Developer for zSeries® Version 6.0: Common Access Repository Manager Developer’s Guide

Chapter 3. Developing a RAM

Repository access managers (RAMs) provide CARMA with access to specific SCMs.

A RAM is a dynamically linked library (DLL) that exports entry points for all API

functions that it implements. References for the API functions are included at the

end of this chapter.

Most RAM functions have the following pattern:

1. Determine what instance and/or member the request applies to

2. Contact the SCM to carry out the requested operation

3. Allocate any memory necessary to return the result

4. Fill the allocated memory with the result

5. Return the result to CARMA

You can use the skeleton RAM source file (CRARAMSA in the sample library) as a

starting point for your RAM. Keep in mind that your RAM must follow the state,

memory allocation, and API implementation guidelines given in this document;

otherwise, serious problems could develop: CARMA might not communicate

properly with the RAM; memory leaks could develop; or, in the worst case,

CARMA or the RAM could abnormally end.

Compiling the RAM

The RAM should be compiled as a DLL into a load library. The file CRARAMCM in the

sample library can be modified to compile your RAM code into a DLL. Specifically,

the OUTFILE, INFILE, SYSLIB, and SYSDEFSD dataset name symbolics need to be

modified to point to your dataset locations. The following table summarizes these

symbolics:

 Dataset Name Smybolic Description

OUTFILE The load library your RAM should be

compiled into.

INFILE The source file for the RAM to compile.

SYSLIB The library or libraries containing all of your

headers.

SYSDEFSD Specifies where the DLL’s side deck should

be built.

Since CARMA loads RAMs explicitly, the DLL does not necessarily require a side

deck in order for the RAM to work properly. However, it should still be created in

order for the JCL procedure to work properly.

To compile a RAM written in C, the CRADSDEF header file (located in the sample

library) must be included. Currently, equivalent header files for use with other

languages do not exist. However, they should be available by the time WD/z 6.0.1

ships.

 9

Defining the RAM to CARMA

CARMA keeps its RAM information in a VSAM cluster, which should be located at

CRA.VSAMV.CRADEF by default. The RAM records in the cluster have the format

illustrated in Figure 7.

 An example VSAM cluster initialization file is available at CRA.VSAMV.INIT by

default. This file defines several RAMs to CARMA. Edit the file or create a new

sequential dataset with the same allocation settings (be sure to use 2133 as the

value for lrecl) and fill in the fields as the samples have been filled.

The RAM ID is stored in bytes 0 through 12. It must follow the format shown in

Figure 7. It should have two spaces in the reserved area, with "0"s in the three

bytes before the reserved area. The two bytes preceding the "0"s should be unique

within the cluster and in sequential order (RAM IDs should start at 00 and

increment towards 99). The preceding five characters define a locale, and the first

character in the ID must be an "R". For example, a CARMA environment could

have three RAMs, defined by the following example:

REN_US00000

REN_US01000

RFR_FR01000

Note that each line in the above example ends with two space characters. The

RAM’s locale should only describe the locale for which the strings describing the

RAM were written. RAM IDs should be constant for RAMs with different locales.

In the above example, ″REN_US01000 ″ should point to the same RAM as

″RFR_FR01000 ″. The only difference between the two VSAM records is the locale

of the strings used to describe the RAM to client users.

After creating or customizing your VSAM cluster initialization file, update the

cluster using the JCL provided (CRAADDRM in the sample library). This JCL will

overwrite the data in the VSAM cluster with the data in the VSAM cluster

initialization file.

Exporting functions

When CARMA attempts to load a RAM, it expects to be able to load the RAM API

functions explicitly using the C dllqueryfn function. If using C, a #pragma export

statement such as the one below is used to export each RAM function. The

following example exports the initRAM function.

#pragma export(initRAM)

 Key Data

Section Record

Type (R)

Locale RAM ID Empty

(000)

Reserved

(2 spaces)

Name Version

Reposi-
tory Level

CARMA

Level

Execut-
able

Name

Descrip-
tion

Bytes 1 5 2 3 2 16 8 each 32 2048

Starting

Index

0 1 6 8 11 13 29 53 85

Figure 7. RAM information VSAM cluster memory map.

10 IBM WebSphere® Developer for zSeries® Version 6.0: Common Access Repository Manager Developer’s Guide

IDs vs. names

When a member, instance, or other type of data is being returned from the RAM to

CARMA, both its ID and display name are typically returned. The ID should

uniquely identify the entity to the RAM. It would be wise to return a member’s

absolute path (starting at the top-level container) in the ID field so that the

member can easily be accessed by the RAM when future requests are made. The

display name is simply the name that should be displayed on the client.

RAM predefined data structures

Most RAM functions use predefined structures to pass information back to

CARMA.

The Descriptor structure consists of a 64-byte name character field and a 256-byte

ID character field. It is used to describe instances, containers, and simple members.

The KeyValPair structure consists of a 64-byte key field and a 256-byte value field.

It is used for metadata key-value pairs. These structures are summarized in Table 2

and Table 3.

The header file (CRAFCDEF in the sample library) must be included within the RAM.

 Table 2. Descriptor data structure

Field Name Bytes Description

ID 256 Unique ID to describe the

entity

Name 64 Display Name

 Table 3. KeyValPair data structure

Field Name Bytes Description

Key 64 An index.

Value 256 The data.

Logging

CARMA provides RAMs with a pointer to a logging function, a pointer to a log

file, and a trace level (see Table 1 on page 6) at initialization. The trace level should

be used to filter out some messages that may not interest users. The logging

function takes a 16-byte sender character buffer, a 256-byte message character

buffer, and the file pointer that is passed in at initialization. An example call in C

is shown below:

if(traceLevel > 1)

 (*writeToLog)("MyRAM", "Gathering instances", logPtr);

The log file will be created as a sequential dataset in the CARMA user’s datasets. It

will be of the format USERNAME.CRATIMESTAMP, where USERNAME is the username of

the user running CARMA, and TIMESTAMP is a numeric timestamp indicating the

creation time of the log. For example, if user BOB is running CARMA, the log

could be named BOB.CRA15343.

Chapter 3. Developing a RAM 11

Dealing with unsupported operations

If you are developing a RAM that communicates with an SCM that does not

support a CARMA operation, you can use one of the two following procedures to

safely indicate to the CARMA client that an operation is unsupported:

1. Do not implement the function for that operation and do not include a pragma

export statement for the function. This will cause CARMA to return a return

code of 16 to any client that requests that operation from your RAM.

2. Implement the function for the operation to simply return a return code of 107

and include the #pragma export statement for the function as you normally

would.

State functions

The RAM has 3 state functions: initRAM, terminateRAM, and reset, as illustrated in

Figure 8. initRAM initializes the global variables of the RAM and establishes the

connection to the repository. It cannot be called again within a session until the

RAM has been terminated. reset restores the repository connection to its initial

state. It can be called at any time except immediately after terminateRAM.

terminateRAM can also be called at any time, but the only function that can be

successfully called immediately after terminateRAM is initRAM.

initRAM

int initRAM(Log_Func logFunc, FILE* log, int traceLev,

 char error[256])

 Log_Func logFunc Input A function pointer to the

CARMA logging function.

This should be stored for use

in other RAM functions.

FILE* log Input A file pointer to the CARMA

log. This should be stored for

use along with the logging

function.

int traceLev Input The logging trace level to be

used throughout the session.

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Figure 8. RAM state diagram

12 IBM WebSphere® Developer for zSeries® Version 6.0: Common Access Repository Manager Developer’s Guide

initRAM must be called before all other RAM operations occur. It should be used to

initialize the SCM connection and to set up any global variables used within the

program. Among these global variables should be ones used to store the three

variables passed into this function.

terminateRAM

void terminateRAM(char error[256])

 char error[256] Output If an error occurs, this

should be filled with a

description of the error.

terminateRAM should be used to close the SCM connection, and to free any

resources used by the RAM (such as memory and files).

reset

int reset(char buffer[256])

 char error[256] Output If an error occurs, this

should be filled with a

description of the error.

reset is used to restore the SCM connection to its initial state.

Browsing functions

getInstances

Retrieves the list of instances available in the SCM

int getInstances(Descriptor** records, int* numRecords, void** params,

 void*** customReturn, char filter[256],

 char error[256])

 Descriptor** records Output This should be allocated and

filled with the IDs and

names of the available

instances.

int* numRecords Output The number of records that

have been allocated and

returned

void** params Input Reserved for future use

void*** customReturn Output Reserved for future use

char filter[256] Input This can be passed from the

client to filter out sets of

instances.

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Operation:

1. Query the SCM for its list of instances, possibly applying a filter.

2. Allocate the records array. If developing a RAM in C, use the following code:

Chapter 3. Developing a RAM 13

records = (Descriptor) malloc(sizeof(Descriptor) * *numRecords);

3. Fill the records array with the IDs and names.

If it is not possible to query the SCM for instances, it may be useful to have the

client pass in a list of known instances using the filter buffer. The RAM should

then check the list and return the instances in the records array. The instances can

be hard-coded if they are constant for the SCM.

getMembers

Retrieves the list of members within an instance

int getMembers(char instanceID[256], Descriptor** members,

 int* numRecords, void** params, void*** customReturn,

 char filter[256], char error[256]);

 char instanceID[256] Input The instance for which the

members should be returned

Descriptor** members Output This should be allocated and

filled with the IDs and

names of the members

within the instance.

int* numRecords Output The number of members for

which the array has been

allocated

void** params Input Reserved for future use

void*** customReturn Output Reserved for future use

char filter[256] Input This can be passed from the

client to filter out sets of

members.

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Operation:

1. Query the SCM for the given instance’s members, possibly applying a filter.

2. Allocate the members array. If developing a RAM in C, use the following code:

*members = malloc(sizeof(Descriptor) * *numRecords);

3. Fill the members array with the IDs and names of the members.

isMemberContainer

Sets isContainer to true if a member is a container; false if not

int isMemberContainer(char instanceID[256], char memberID[256],

 int* isContainer, void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member being checked

char memberID[256] Input The member that is being

checked

int* isContainer Output Should be set to 1 if the

member is a container; 0 if

not

14 IBM WebSphere® Developer for zSeries® Version 6.0: Common Access Repository Manager Developer’s Guide

void** params Input Reserved for future use

void*** customReturn Output Reserved for future use

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Set *isContainer to 1 if the member is a container, or 0 if it is not a container.

getContainerContents

Retrieves the list of members available within a container

int getContainerContents(char instanceID[256], char memberID[256],

 Descriptor** contents, int* numMembers,

 void** params, void*** customReturn,

 char filter[256], char error[256])

 char instanceID[256] Input The instance containing the

container

char memberID[256] Input The container’s ID

Descriptor** contents Output Should be allocated and

filled with the IDs and

names of the members

within the container

int* numRecords Output The number of members for

which the array has been

allocated

void** params Input Reserved for future use

void*** customReturn Output Reserved for future use

char filter[256] Input This can be passed from the

client to filter out sets of

members.

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Operation:

1. Query the SCM for the given container’s members, possibly applying a filter.

2. Allocate the contents array. If developing a RAM in C, use the following code:

*contents = malloc(sizeof(Descriptor) * *numMembers);

3. Fill the contents array with the IDs and names of the members.

Metadata functions

getAllMemberInfo

Retrieves all of a member’s metadata

int getAllMemberInfo(char instanceID[256], char memberID[256],

 KeyValPair** metadata, int* num, void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member

Chapter 3. Developing a RAM 15

char memberID[256] Input The ID of the member whose

metadata is being retrieved

KeyValPair** contents Output This should be allocated and

filled with all the metadata

key-value pairs for the

specified member

int* num Output The number of key-value

pairs for which the array has

been allocated

void** params Input Reserved for future use

void*** customReturn Output Reserved for future use

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Operation:

1. Query the SCM for the given member’s metadata.

2. Allocate the contents array. If developing a RAM in C, use the following code:

*metadata = malloc(sizeof(KeyValPair) * *num);

3. Fill the contents array with the key-value pairs.

getMemberInfo

Retrieves a specific piece of a member’s metadata

int getMemberInfo(char instanceID[256], char memberID[256],

 char key[64], char value[256], void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member whose

metadata is being retrieved

char key[64] Input The key for the value to be

returned

char value[256] Output The requested value

void** params Input Reserved for future use

void*** customReturn Output Reserved for future use

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

getMemberInfo returns the value of the specified key for the given member.

updateMemberInfo

Updates a specific piece of a member’s metadata

int updateMemberInfo(char instanceID[256], char memberID[256],

 char key[64], char value[256], void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member

16 IBM WebSphere® Developer for zSeries® Version 6.0: Common Access Repository Manager Developer’s Guide

char memberID[256] Input The ID of the member whose

metadata is being set

char key[64] Input The key for the value to be

set

char value[256] Input The value to set

void** params Input Reserved for future use

void*** customReturn Output Reserved for future use

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

updateMemberInfo attempts to update a member’s metadata (specified by the given

key) with the given value.

Other member operations

extractMember

Retrieves a member’s contents

int extractMember(char instanceID[256], char memberID[256],

 char*** contents, int* lrecl, int* numRecords,

 char recFM[4], int* moreData, int* nextRec,

 void** params, void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member being

extracted

char*** contents Output Will be allocated as a

two-dimensional array to

contain the member’s

contents

int* lrecl Output The number of columns in

the dataset and array

int* numRecords Output The number of records in the

dataset/rows in the array

char recFM[4] Output Will contain the dataset’s

record format (FB, VB, etc.)

int* moreData Output Set the value of the variable

to which this points as 1 if

extract should be called

again (because there is still

more data to be extracted).

Otherwise, assign the value

to which it points as 0

int* nextRec Input/Output Input: The member record

where the RAM should

begin extracting

Output: The first record in

the dataset that wasn’t

extracted if *moreData is set

to 1; otherwise, undefined

Chapter 3. Developing a RAM 17

void** params Input Reserved for future use

void** customReturn Output Reserved for future use

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

extractMember returns the contents of the dataset in a two-dimensional array. The

function is designed to support sending the data in chunks, so that the array does

not have to be allocated to the entire size of the file. The records in the datasets are

considered to be indexed with the first record being record 0.

Operation:

1. Determine how many records are in the dataset, what lrecl and the record

formats are, and set *lrecl and recFM.

a. If the *numRecords - nextRec is greater than RAM’s data chunk size, set

*numRecords to the data chunk’s number of records, and set *moreData to 1;

finally, allocate the array.

b. Otherwise, set *numRecords to *numRecords - *nextRec and allocate the

array. If developing a RAM in C, use the following code:

 *contents = (char**) malloc(sizeof(char*) * (*numRecords));

 **contents = (char*) malloc(sizeof(char) * (*lrecl) * (*numRecords));

 for(i = 0; i < *numRecords; i++)

 (*contents)[i] = ((**contents) + (i * (*lrecl)));

2. Fill the array with the expected set of records. Ensure that the records are not

null-terminated. If there is more data to return, set *nextRec to the 0-based

index of the next record.

Example

Setup: The member contains 26 records, each containing the next alphabetic

character, starting with "A" in record 0. Its *lrecl value is 5, its recFM value is

“FB”, and the RAM’s data chunk size is 10.

 Figure 9 on page 19 shows what extractMember should return for each call needed

to extract all the contents.

18 IBM WebSphere® Developer for zSeries® Version 6.0: Common Access Repository Manager Developer’s Guide

putMember

Updates a member’s contents or creates a new member if the specified memberID

does not exist within the instance

int putMember(char instanceID[256],

 char memberID[256], char** contents, int lrecl,

 int* numRecords, char recFM[4], int moreData,

 int nextRec, int eof, void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member being

updated/created

char** contents Input Contains the new member

contents

int lrecl Input The number of columns in

the dataset and array

int* numRecords Input/Output The number of records in the

dataset/rows in the array.

char recFM[4] Input Contains the dataset’s record

format (FB, VB, etc.)

 First Call Second Call Third Call

*lrecl = 5

*numRecords = 10

*moreData = 1

*nextRec = 10

*lrecl = 5

*numRecords = 10

*moreData = 1

*nextRec = 20

*lrecl = 5

*numRecords = 6

*moreData = 0

*nextRec = X

Figure 9. Example of return values for subsequent calls to extractMember. Notice that during the third call, *nextRec

has a listed value of X. This means that the value of *nextRec is not significant and will not need to be altered.

Chapter 3. Developing a RAM 19

int moreData Input Will be 1 if the client has

more chunks of data to send;

0 otherwise

int nextRec Input The record in the dataset to

which the 0th record of the

contents array maps

int eof Input If 1, denotes that the last row

of the array should mark the

last row in the dataset; 0

otherwise

void** params Input Reserved for future use

void** customReturn Output Reserved for future use

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Like extractMember, putMember supports the data being sent in chunks. putMember

should also support clients that wish to pass data chunks that are not in sequential

order. For example, a client may send records 10 through 19, 20 through 29, and

then 0 through 9. The RAM should handle such a situation and properly update

the member, or return an error code and fill the error buffer with a string stating

that it cannot handle such a situation.

numRecords describes how many records the client would like to update/write on

input, and the RAM should set it to the number of records that were actually

written for output. If there is a difference between the two, the client will attempt

to put in the members that were not written. Therefore, after receiving a response

from the RAM, the client will set nextRec to the new numRecords value plus

nextRec on its next putMember call.

For putMember, nextRec tells the RAM where to begin writing the contents buffer

that has been passed in. For example, if nextRec is 0, the RAM should start at the

beginning of the member.

moreData signifies that the client will be calling putMember again with another

chunk. It is up to the RAM developer to decide how to handle a situation where

moreData is set and the next call to the RAM is not a call to the putMember function

providing the next chunk of data. In such a case, the RAM might simply return an

error. Alternatively, it could handle the problem and move on.

eof signifies that the current contents buffer contains the last records of a member.

If a 40-record member needed to be shortened to 5 records, eof would be set to 1

when the 5th record were being passed in. This should never be set when moreData

equals 1.

See the source for the skeleton RAM and the PDS RAM for more help (see

“Locating the sample files” on page 2 for information on how to find these source

files).

Operation:

1. Ensure that the lrecl, numRecords, and nextRec values that were passed in are

valid.

20 IBM WebSphere® Developer for zSeries® Version 6.0: Common Access Repository Manager Developer’s Guide

2. Open up the dataset and write from record nextRec to record nextRec +

numRecords.

3. If eof is specified, ensure that all records starting with the record at index

nextRec + numRecords are removed.

4. If moreData is equal to 0, close the dataset. If moreData is equal to 1, either leave

the dataset open if its state cannot be maintained between calls, or close the

dataset and make sure that it can be reopened to the appropriate place with the

values being passed in next time putMember is called.

lock

Locks the member

int lock(char instanceID[256], char memberID[256], void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member being

locked

void** params Input Reserved for future use

void** customReturn Output Reserved for future use

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

unlock

Unlocks the member

int unlock(char instanceID[256], char memberID[256], void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member being

unlocked

void** params Input Reserved for future use

void** customReturn Output Reserved for future use

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

check_in

Checks in the member. This only consists of setting a flag to mark that it is

checked in.

int check_in(char instanceID[256], char memberID[256], void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member being

checked in

void** params Input Reserved for future use

Chapter 3. Developing a RAM 21

void** customReturn Output Reserved for future use

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

check_out

Checks out the member. This only consists of setting a flag to mark that it is

checked out.

int check_out(char instanceID[256], char memberID[256], void** params,

 void*** customReturn, char error[256])

 char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member being

checked out

void** params Input Reserved for future use

void** customReturn Output Reserved for future use

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

22 IBM WebSphere® Developer for zSeries® Version 6.0: Common Access Repository Manager Developer’s Guide

Chapter 4. Developing a CARMA client

CARMA clients can be designed to work specifically with a RAM, can provide a

generic interface for any RAM to use, or can do a combination of the two. A good

example of a generic client that can also be modified to work specifically with

certain RAMs is IBM WebSphere Developer for zSeries (WD/z). WD/z was

designed to support the basic functions all RAMs have in common, so a RAM

fitting perfectly into the CARMA specification would work with WD/z right out of

the box. WD/z also provides extension points with which RAM developers can

customize the client for their RAM(s). On the other end of the spectrum, a very

specific, non-interactive client could be written to simply run maintenance

operations through a RAM.

CARMA clients can make use of some or all of the basic CARMA API functions.

The only functions that are required to be implemented are initCarma, initRAM,

and terminateCarma. terminateRAM is not required because terminateCarma will

take care of cleaning up the RAMs if it is called and CARMA still has RAMs

loaded. However, special care should be taken with the memory that is passed to

and from CARMA. Often, the RAM will allocate memory that the client is required

to free. Please read through “Storing results for later use” and “Memory

allocation” on page 4 carefully, as memory leaks and abnormal program

termination can easily result from not following the recommendations on handling

memory for each function.

Storing results for later use

The client should store the results for most operations executed during a CARMA

session, especially the results from browsing functions such as getMembers and

getInstances. All instances, simple members, and containers have both an ID and

a display name. The display name is what the client should display to the user.

The display name for an entity should be given in the context of that entity’s

instance and, if applicable, all parent containers needed to reach that entity. The ID

defines the entity to the RAM uniquely. For example, the entity’s ID could simply

contain its absolute path. Alternatively, the RAM could use a hashing function to

obtain the entity’s absolute path from the ID. The ID should be stored by the client

so that it can be passed back to the RAM as needed. For example, a user might

obtain a list of members within an instance and then check to see if one of those

members is a container.

The other pieces of data that might need to be stored by the client (if they are not

already known) are metadata keys, RAM IDs, and names. The RAM IDs are

required by virtually every function that uses a RAM to carry out an operation.

Client Predefined Data Structures

Most RAM functions use predefined structures to pass information back to

CARMA and then the RAM. The RAMRecord consists of a 13–byte ID character field,

a 16–byte name character field, and several other character fields that describe the

RAM. The Descriptor structure consists of a 64–byte name character field and a

256–byte ID character field. It is used to describe instances, containers, and simple

members. The KeyValPair structure consists of a 64–byte key field and a 256–byte

value field. It is used for metadata key-value pairs. The applicable structures are

summarized in Table 4 on page 24, Table 5 on page 24, and Table 6 on page 24.

 23

These structures are available in the CRADSDEF header file located in the sample

library. These structures are almost always allocated by the RAM, so it is unlikely

that the client will ever have to initialize any of their buffers. However, the client

will have to free any memory that is allocated by the RAM.

 Table 4. RAMRecord data structure

Field Name Bytes Description

ID 13 Unique ID to describe the

RAM

Name 16 Display name

Version 8 RAM version

SCMLevel 8 The level of the SCM the

RAM accesses.

Language 8 Language in which the RAM

is written

CARMALevel 8 The level of CARMA for

which the RAM was

designed.

Module Name 8 Name of the RAM module to

load

Description 2048 Displayed as a RAM

description by the client.

 Table 5. Descriptor data structure

Field Name Bytes Description

ID 256 Unique ID to describe the

entity

Namename 64 Display name

 Table 6. KeyValPair data structure

Field Name Bytes Description

Key 64 An index.

Value 256 The data.

Logging

CARMA and RAMs will write messages to a log per CARMA session. When

initializing CARMA, a trace level should be passed to it. The trace levels are

shown in Table 1 on page 6.

Compiling the CARMA client

CARMA clients can include the CARMA DLL’s side deck during compilation

(causing the CARMA DLL to be loaded implicitly) or can be compiled without the

side deck (causing the CARMA DLL to be loaded explicitly). The example client

(CRACLISA in the sample library) implicitly loads the CARMA DLL. The JCL code to

compile a client that will implicitly load the CARMA DLL is in the sample file

named CRACLICM. Regardless of how the client loads CARMA, the JCL to run the

client must have the location of the CARMA DLL and the RAMs in the STEPLIB

data definition. Also, the CRADEF and MSGPDS data definitions must point to the

24 IBM WebSphere® Developer for zSeries® Version 6.0: Common Access Repository Manager Developer’s Guide

locations of the VSAM cluster and MSG file PDSs, respectively. By default, the MSG

file PDS will be created and named CRA.MSG during installation and the VSAM

cluster will be created and named CRA.VSAMV.CRADEF after running the sample file

CRAADDRM.

State functions

CARMA expects certain functions to be run in order. These state functions and

their expected order are:

1. initCARMA — CARMA initializes several global variables; the session log, and

the locale to be used for the session with this function. This function should not

be called a second time unless a terminateCarma call is made first.

2. getRAMList — This should be called before loading any RAMs, but clients may

cache the RAM list and ignore this function if desired. However, there is little

performance benefit in doing this, because CARMA will run the function as it

needs the list itself.

3. initRAM — This must be called for each RAM before attempting to run any of

that RAM’s functions. Once this is run, CARMA will keep a pointer to the

RAM until termination. RAMs should not be re-initialized without first

terminating them.

4. reset — This may be called if the user wants to reload the SCM environment

because a change has occurred. It will tell the RAM to restore itself to its initial

state.

5. terminateRAM — This function does not have to be called. Each loaded RAM’s

terminateRAM function will be called by terminateCarma if terminateCarma is

called first. Once terminateRAM is called, each RAM must be re-initialized using

the initRAM function before any other function can be called for that RAM.

6. terminateCarma — This should always be called when exiting the CARMA

session. It will handle cleaning up all of the RAMs that are currently loaded.

Once this is called, initCarma must be run again before attempting to call any

other CARMA function.

initCarma

Will set up the CARMA environment, session log, and session locale

int initCarma(int traceLev, char locale[5], char error[256])

 int traceLev Input The trace level for the

current session. See

“Logging” on page 24 for

more information.

char locale[5] Input Five character, non-null

terminated buffer containing

the locale for which all

displayable strings should be

set

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

If this function is not called, a default locale of "EN_US" and a default trace level

of 0 will be used.

Chapter 4. Developing a CARMA client 25

getRAMList

Retrieves the list of available RAMs from CARMA

int getRAMList(RAMRecord** records, int *numRecords, char error[256])

 RAMRecord** records Output Will contain an array of

RAMRecord data structures to

be used for display

information about the RAMs

and accessing them with

other functions

int* numRecords Output The number of RAMRecord

data structures contained in

the records array

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

The list of RAMs that is returned is dependent on the locale that was passed into

initializeCarma. All RAMs stored within the CARMA environment that have

display strings for the specified client locale will be returned.

initRAM

Initializes a RAM. CARMA will store a pointer to the RAM for quick future access.

int initRAM(char RAMid[13], char error[256])

 char RAMid[13] Input Tells CARMA which RAM

should be initialized. This ID

was obtained after running

getRAMList.

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

reset

Tells the RAM to reset itself to its initial state

int reset(char RAMid[14], char error[256])

 char RAMid[13] Input Tells CARMA which RAM

should be reset. This ID was

obtained after running

getRAMList.

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

terminateRAM

Tells the RAM to clean up its environment. CARMA will release the RAM module.

int terminateRAM(char RAMid[13], char error[256])

26 IBM WebSphere® Developer for zSeries® Version 6.0: Common Access Repository Manager Developer’s Guide

char RAMid[13] Input Tells CARMA which RAM

should be terminated. This

ID was obtained after

running getRAMList.

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

terminateCarma

Will clean up the CARMA environment, including the environments of any loaded

RAMs

int terminateCarma(char error[256])

 char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Browsing functions

getInstances

Retrieves the list of instances available in the SCM

int getInstances(char RAMid[13], Descriptor** RIrecords,int* numRecords,

 void** params, void*** customReturn, char filter[256],

 char error[256])

 char RAMid[13] Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

Descriptor** RIrecords Output This will be allocated and

filled with the IDs and

names of instances.

int* numRecords Output The number of records that

have been allocated and

returned

void** params Input Reserved for future use

void*** customReturn Output Reserved for future use

char filter[256] Input This can be passed from the

client to filter out sets of

instances.

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Note: Be sure to free the RIrecords array

getMembers

Retrieves the list of members available within the specified instance

Chapter 4. Developing a CARMA client 27

int getMembers(char RAMid[13], char instanceID[256],

 Descriptor** memberArr, int* numRecords, void** params,

 void*** customReturn, char filter[256], char error[256])

 char RAMid[13] Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance for which the

members should be retrieved

Descriptor** memberArr Output This will be allocated and

filled with the IDs and

names of instances.

int* numRecords Output The number of records that

have been allocated and

returned in the array

void** params Input Reserved for future use

void*** customReturn Output Reserved for future use

char filter[256] Input This can be passed from the

client to filter out sets of

members.

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Note: Be sure to free the memberArr array.

isMemberContainer

Sets isContainer to true if the member is a container; false if not

int isMemberContainer(char RAMid[13], char instanceID[256],

 char memberID[256], int* isContainer,

 void** params, void*** customReturn,

 char error[256])

 char RAMid[13] Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The member that may be a

container

int* isContainer Output Set this to 1 if the member is

a container; 0 if not.

void** params Input Reserved for future use

void*** customReturn Output Reserved for future use

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

28 IBM WebSphere® Developer for zSeries® Version 6.0: Common Access Repository Manager Developer’s Guide

getContainerContents

Retrieves the list of members within a container

int getContainerContents(char RAMid[13], char instanceID[256],

 char memberID[256], Descriptor** contents,

 int* numMembers, void** params,

 void*** customReturn, char filter[256],

 char error[256])

 char RAMid[13] Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The container for which the

members are being retrieved

Descriptor** contents Output This will be allocated and

filled with the IDs and

names of the members

within the container.

int* numRecords Output The number of member

records that have been

allocated and returned in the

array

void** params Input Reserved for future use

void*** customReturn Output Reserved for future use

char filter[256] Input This can be passed from the

client to filter out sets of

members

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Note: Be sure to free the contents array.

Metadata functions

getAllMemberInfo

Retrieves all metadata for the given member

int getAllMemberInfo(char RAMid[13], char instanceID[256],

 char memberID[256], KeyValPair** metadata,

 int* num, void** params, void*** customReturn,

 char error[256])

 char RAMid[13] Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The member for which

metadata is being returned

Chapter 4. Developing a CARMA client 29

KeyValPair** metadata Output This will be allocated and

filled with the keys and

values of the metadata.

int* num Output The number of metadata

KeyValPair structs allocated

and returned in the array

void** params Input Reserved for future use

void*** customReturn Output Reserved for future use

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Note: Be sure to free the metadata array.

getMemberInfo

Retrieves a specific piece of metadata for the given member

int getMemberInfo(char RAMid[13], char instanceID[256],

 char memberID[256], char key[64], char value[256],

 void** params, void*** customReturn, char error[256])

 char RAMid[13] Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The member for which

metadata is being retrieved

char key[64] Input The key of the metadata

value to be retrieved

char value[256] Output The value being retrieved

void** params Input Reserved for future use

void*** customReturn Output Reserved for future use

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

updateMemberInfo

Updates a specific piece of metadata for the given member

int updateMemberInfo(char RAMid[13], char instanceID[256],

 char memberID[256], char key[64], char value[256],

 void** params, void*** customReturn,

 char error[256])

 char RAMid[13] Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance the member is

within

30 IBM WebSphere® Developer for zSeries® Version 6.0: Common Access Repository Manager Developer’s Guide

char memberID[256] Input The member for which

metadata is being set

char key[64] Input The key of the metadata

value to be set

char value[256] Input The value being set

void** params Input Reserved for future use

void*** customReturn Output Reserved for future use

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Other member operations

extractMember

int extractMember(char RAMid[13], char instanceID[256],

 char memberID[256], char*** contents, int* lrecl,

 int* numRecords, char recFM[4], int* moreData,

 int* nextRec, void** params, void*** customReturn,

 char error[256])

 char RAMid[13] Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member being

extracted

char*** contents Output Will be allocated as

two-dimensional array to

contain the member’s

contents

int* lrecl Output The number of columns in

the dataset and array

int* numRecords Output The number of records in the

dataset/rows in the array

char recFM[4] Output Will contain the dataset’s

record format (FB, VB, etc.)

int* moreData Output Set the value of the variable

to which this points as 1 if

extract should be called

again (because there is still

more data to be extracted).

Otherwise, assign the value

to which it points as 0.

Chapter 4. Developing a CARMA client 31

int* nextRec Input/Output Input: The member record

where the RAM should

begin the extraction

Output: The first record in

the dataset that was not

extracted if *moreData is set

to 1; otherwise, undefined

void** params Input Reserved for future use

void** customReturn Output Reserved for future use

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

The contents buffer is a two-dimensional character array that will be filled by the

RAM and returned to the client. For the first extractMember call, nextRec must be

0. The RAM may choose to return the data in chunks of records. Extract should be

called until moreData is 0. If moreData is 1, extractMember needs to be called again,

and the extraction from the member will start with the record indexed by the value

of nextRec returned on the previous call. The RAM will need the client to pass that

value of nextRec back in for the following call.

See Chapter 3, “Developing a RAM,” on page 9 for an example of extractMember’s

operation from the RAM’s point of view.

Note: Be sure to free contents properly. It has been allocated as a large contiguous

data chunk, so it should be freed in the following manner (the example is in C):

for(i = 0; i < numRecords; i++)

 free(contents[i]);

free(contents);

putMember

Updates a member’s contents or creates a new member if the member ID is not

found within the specified instance

int putMember(char RAMid[13], char instanceID[256],

 char memberID[256], char** contents, int lrecl,

 int* numRecords, char recFM[4], int moreData,

 int nextRec, int eof, void** params, void*** customReturn,

 char error[256])

 char RAMid[13] Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance containing the

member

char memberID[256] Input The ID of the member being

updated/created

char** contents Input Contains the new member

contents

int lrecl Input The number of columns in

the dataset and array

32 IBM WebSphere® Developer for zSeries® Version 6.0: Common Access Repository Manager Developer’s Guide

int* numRecords Input/Output The number of records in the

dataset/rows in the array

char recFM[4] Input Contains the dataset’s record

format (FB, VB, etc.)

int moreData Input Will be 1 if the client has

more chunks of data to send;

0 otherwise

int nextRec Input The record in the dataset to

which the 0th record of the

contents array maps

int eof Input If 1, denotes that the last row

of the array should mark the

last row in the dataset; 0

otherwise.

void** params Input Reserved for future use

void** customReturn Output Reserved for future use

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

The client may choose a chunk size for the function or attempt to pass the whole

file’s contents at once. The client may also choose to jump around within a file. For

example, records 0 through 15 could be passed first, 40 through 50 next, and then

16 through 39. However, not all RAMs may handle non-sequential data chunks

such as this properly.

If sending data in chunks, moreData should be 1 on every call until the final one,

during which it should be 0. nextRec should always be set to the first record to be

updated in the member. Remember that this uses a 0-based index. eof is used to

specify that the member record at nextRec + numRecords should be the last one in

the updated member. For example, if that sum is 15 and there are currently 30

records in the member, records 16 through 29 will be deleted by the RAM after it

updates through record 15.

See the source for the sample client (CRACLISA in the sample library) for more help.

Note: The contents buffer should be allocated before the call in a manner similar to

the following (the example is in C):

 contents = (char**) malloc(sizeof(char*) * (numRecords));

 contents = (char) malloc(sizeof(char) * (lrecl) * (numRecords));

 for(i = 0; i < numRecords; i++)

 (contents)[i] = ((*contents) + (i * (lrecl)));

and should be freed after the call in a manner similar to the following (the

example is in C):

 free(contents[0])

 free(contents);

lock

Locks the member

int lock(char RAMid[13], char instanceID[256], char memberID[256],

 void** params, void*** customReturn, char error[256])

Chapter 4. Developing a CARMA client 33

char RAMid[13] Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The member to be locked

void** params Input Reserved for future use

void*** customReturn Output Reserved for future use

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

unlock

Unlocks the member

int unlock(char RAMid[13], char instanceID[256], char memberID[256],

 void** params, void*** customReturn, char error[256])

 char RAMid[13] Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The member to be unlocked

void** params Input Reserved for future use

void*** customReturn Output Reserved for future use

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

checkin

Check in the member. This only sets a flag. A putMember call is expected

immediately after this call.

int checkin(char RAMid[13], char instanceID[256], char memberID[256],

 void** params, void*** customReturn, char error[256])

 char RAMid[13] Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The member to be checked

in

void** params Input Reserved for future use

void*** customReturn Output Reserved for future use

34 IBM WebSphere® Developer for zSeries® Version 6.0: Common Access Repository Manager Developer’s Guide

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

checkout

Check out the member. This only sets a flag. A extractMember call is expected

immediately after this call.

int checkout(char RAMid[13], char instanceID[256], char memberID[256],

 void** params, void*** customReturn, char error[256])

 char RAMid[13] Input Tells CARMA which RAM

should be worked on. This

ID was obtained after

running getRAMList.

char instanceID[256] Input The instance the member is

within

char memberID[256] Input The member to be checked

out

void** params Input Reserved for future use

void*** customReturn Output Reserved for future use

char error[256] Output If an error occurs, this

should be filled with a

description of the error.

Chapter 4. Developing a CARMA client 35

36 IBM WebSphere® Developer for zSeries® Version 6.0: Common Access Repository Manager Developer’s Guide

Appendix. Return codes

 Return Code Description

20 Internal error

22 VSAM cluster contains no records

24 VSAM cluster not found

26 No RAMs defined for this locale

28 VSAM Cluster read error

30 No RAM records found in the VSAM cluster

32 Invalid RAM record found in the VSAM

cluster

34 Requested RAM not found

36 Could not load RAM module

38 Could not load pointer to RAM function

40 Requested RAM has not been loaded

44 Error in MSG file

46 Failed to initialize CARMA

48 Failed to load the RAM list

 37

38 IBM WebSphere® Developer for zSeries® Version 6.0: Common Access Repository Manager Developer’s Guide

Notices

Note to U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP

Schedule Contract with IBM® Corp.

This information was developed for products and services offered in the U.S.A. IBM may not offer the

products, services, or features discussed in this document in other countries. Consult your local IBM

representative for information on the products and services currently available in your area. Any

reference to an IBM product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product, program, or service that

does not infringe any IBM intellectual property right may be used instead. However, it is the user’s

responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not give you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

 IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR CONDITIONS OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

P.O. Box 12195, Dept. TL3B/B503/B313

3039 Cornwallis Rd.

Research Triangle Park, NC 27709-2195

U.S.A.

 39

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this document and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or

any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples may include the names of individuals, companies, brands,

and products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates

programming techniques on various operating platforms. You may copy, modify, and distribute these

sample programs in any form without payment to IBM, for the purposes of developing, using, marketing

or distributing application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or

function of these programs. You may copy, modify, and distribute these sample programs in any form

without payment to IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. (C)

Copyright IBM Corp. 2000, 2004. All rights reserved.

Trademarks and service marks

The following terms are trademarks or registered trademarks of International Business Machines

Corporation in the United States, or other countries, or both:

v IBM

v WebSphere

v zSeries

Other company, product, and service names, which may be denoted by a double asterisk(**), may be

trademarks or service marks of others.

(C) Copyright IBM Corporation 2000, 2004. All Rights Reserved.

40 IBM WebSphere® Developer for zSeries® Version 6.0: Common Access Repository Manager Developer’s Guide

Readers’ Comments — We’d Like to Hear from You

IBM WebSphere® Developer for zSeries® Version 6.0

Common Access Repository Manager Developer’s Guide

 Publication No. SC31-6914-00

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

 Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SC31-6914-00

SC31-6914-00

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Information Development

Department G7IA / Bldg. 503

P.O. Box 12195

Research Triangle Park, NC

 27709-2195

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5724-L44

Printed in USA

SC31-6914-00

	Contents
	About this book
	Who should read this book

	Chapter 1. Introduction to CARMA
	Supported operations
	Locating the sample files

	Chapter 2. General concepts
	Browsing
	Checking in and out
	Memory allocation
	Member contents
	Character buffers
	Return codes
	Logging

	Chapter 3. Developing a RAM
	Compiling the RAM
	Defining the RAM to CARMA
	Exporting functions
	IDs vs. names
	RAM predefined data structures
	Logging
	Dealing with unsupported operations
	State functions
	initRAM
	terminateRAM
	reset

	Browsing functions
	getInstances
	getMembers
	isMemberContainer
	getContainerContents

	Metadata functions
	getAllMemberInfo
	getMemberInfo
	updateMemberInfo

	Other member operations
	extractMember
	Example

	putMember
	lock
	unlock
	check_in
	check_out

	Chapter 4. Developing a CARMA client
	Storing results for later use
	Client Predefined Data Structures
	Logging
	Compiling the CARMA client
	State functions
	initCarma
	getRAMList
	initRAM
	reset
	terminateRAM
	terminateCarma

	Browsing functions
	getInstances
	getMembers
	isMemberContainer
	getContainerContents

	Metadata functions
	getAllMemberInfo
	getMemberInfo
	updateMemberInfo

	Other member operations
	extractMember
	putMember
	lock
	unlock
	checkin
	checkout

	Appendix. Return codes
	Notices
	Trademarks and service marks

	Readers’ Comments — We'd Like to Hear from You

