
IBM Rational Developer for System z

Advanced COBOL Development

Technical Preview

Version 7.5 Technical Preview

���

IBM Rational Developer for System z

Advanced COBOL Development

Technical Preview

Version 7.5 Technical Preview

���

Note:

Before using this information and the product it supports, read the information in “Notices,” on page 43.

First Edition March 2008

© Copyright International Business Machines Corporation 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Introduction to Processes and Components 1

The UML to COBOL Process . 1

The Advanced COBOL Editor . 1

The VSAM/QSAM Wizard . 2

Chapter 2. The UML to COBOL Process . 3

Developing a model using RSA . 3

Modeling the language-neutral layer . 3

Transformation to the COBOL-dependent layer . 12

Enhancement to the COBOL-dependent layer . 14

Describing a basic control flow of a program . 27

Limitations . 30

Generating COBOL Source . 30

Generating from RSA . 31

Generating from RDz . 31

Chapter 3. Advanced COBOL Editor Features 35

Real Time Validation . 35

Open Declaration . 35

Refactor . 37

Perform Hierarchy . 37

Additional Information . 39

Limitations . 39

Chapter 4. The VSAM/QSAM Wizard . 41

Generation . 41

Usage . 42

Limitations . 42

Appendix. Notices . 43

Trademarks . 44

© Copyright IBM Corp. 2008 iii

iv IBM Rational Developer for System z: Advanced COBOL Development Technical Preview

Chapter 1. Introduction to Processes and Components

This is the Advanced COBOL Development technical preview.

The UML to COBOL Process

This technology preview is intended to help bridge the UML model-driven

architecture process to the COBOL development process, by allowing the modeling

of data structures and programs and then, the generation of COBOL source code

using these models.

The inclusive modeling-to-development process uses both the Rational® Software

Architect (RSA) and the Rational Developer for System z™ (RDz) platforms.

Additionally, an RSA user may also export an Eclipse Modeling Framework (EMF)

representation of their assembled model, which can then be imported by an RDz

user, and the COBOL generated within RDz.

The modeling process requires several models and transformations to complete the

full transformation from UML to COBOL. Initial modeling of data structures and

programs is accomplished in RSA by using language-neutral UML profiles. The

initial model is then transformed into a second model, this one using COBOL

language-specific profiles. This generated COBOL model can be customized

further, and its programs detailed using activity diagrams. The next step of the

transformation produces two outputs:

v COBOL source code, if the modeler has RDz installed along with RSA.

v A file containing an EMF representation of the modeled data structures and

code, in an intermediate state of transformation.

This EMF representation can be shared with an RDz user, where the final

transformation into COBOL source code can be completed.

The Advanced COBOL Editor

The Advanced COBOL Development technology preview provides features and

capabilities to enhance the COBOL editing experience. These features include:

1. Real-time syntax checking with limited semantic checking; for example,

unresolved references.

2. An "Open Declaration" action that allows navigation from a reference to a data

item, section, or paragraph to its corresponding declaration.

3. An "Open Perform Hierarchy" action that presents a view for navigating a

perform hierarchy for a given paragraph or section.

4. A "Rename" refactoring that operates on data items, paragraphs, and sections.

5. A "Remove Noise Words" refactoring that removes unnecessary noise words

from the source.

For further information and available features, see Chapter 3, “Advanced COBOL

Editor Features,” on page 35.

© Copyright IBM Corp. 2008 1

The VSAM/QSAM Wizard

The Advanced COBOL Development technology preview provides new features

and capabilities to create new COBOL programs that perform I/O to VSAM

and/or QSAM files via the new VSAM/QSAM Wizard.

For further information and available features, see Chapter 4, “The VSAM/QSAM

Wizard,” on page 41.

2 IBM Rational Developer for System z: Advanced COBOL Development Technical Preview

Chapter 2. The UML to COBOL Process

The UML to COBOL process requires the modeling of data structures and

programs. The next step in the process is the generation of the COBOL source code

using the generated models. This process uses both RSA and RDz as platforms.

RSA is required. See the RSA documentation for further information.

Developing a model using RSA

The following sections describe how to develop a model using Rational Software

Architect.

Modeling the language-neutral layer

Using the provided primitive types and stereotypes for class

attributes

The solution provides a model library that contains business oriented primitive

types. These primitive types augment the UML primitive types that RSA provides.

Their usage is not mandatory for the rest of the tasks, but they provide a better

semantic for the attributes you want to describe. The transformations to the

language related layers take advantage of this extra semantic.

When you create an UML model, you can specify which model libraries you want

to use. To specify which libraries to add, do the following:

1. Open your UML model (.emx file) and, in the editor view, switch to the Details

tab.

2. Select Add under Model Libraries. The Import Model Library window opens.

See Figure 1 on page 4.

3. In the Import Model Library window, select the Deployed Library radio

button.

4. From the Deployed Library drop-down menu, select Data Types.

5. Select Ok.

Figure 1 on page 4 shows how to include the provided model library.

© Copyright IBM Corp. 2008 3

The model library provides the following types for attributes of a class.

v Data

v Binary

v Currency

v Date

v Float

v Integer

v String

Figure 2 on page 5 shows the types for class attributes from the Select Element for

Type window.

Figure 1. Including a provided model library

4 IBM Rational Developer for System z: Advanced COBOL Development Technical Preview

Include your own primitive types in the process: Most people define their own

sets of primitive types in order to define basic business elementary types. Most

often these types are similar in concept to the ones we provide. Since our process

takes advantage of the primitive types provided by the solution, you need to

customize the solution to take into account your primitive type instead of the

provided ones and specify which are the appropriate stereotypes for the new

primitive types. Or you can add a transformation in order to obtain a model that

uses the primitive types of the solution.

Specify type properties for the attribute: The attribute primitive types provide

semantics about type information. You can optionally set properties related to these

types by applying a dedicated stereotype to the attribute of the class you describe

in UML. These properties better refine the way transformation occurs. These

stereotypes are contained within the Data profile.

To use the Data profile in your UML model, do the following steps:

1. Under Applied Profiles select Add. The Select Profile window opens.

2. In the Select Profile window, toggle Deployed Profile.

3. From the Deployed Profile drop-down menu, select Data Profile. See Figure 3

on page 6.

4. Select Ok.

5. The data profile is added to the list of profiles to apply to the model.

Figure 2. Types for class attributes

Chapter 2. The UML to COBOL Process 5

You can also use the stereotypes with the UML default primitive types provided

by RSA. In this case, the transformation ensures that the stereotype chosen is

consistent with the primitive type; that is, it ensures that a string stereotype is not

applied on an integer primitive type.

Figure 4 shows the list of stereotypes that are applicable to the attributes of a class.

 The list includes the following:

v Binary

v Boolean

v Currency

Figure 3. Adding a data profile

Figure 4. Applicable stereotypes

6 IBM Rational Developer for System z: Advanced COBOL Development Technical Preview

v Date

v Email

v Float

v Integer

v String

The stereotype contains properties that are language independent. These properties

define the characteristics of the field more accurately. To apply such a stereotype,

do the following:

1. Select the class attribute you want to apply the stereotype to and go to the

stereotype pane in the Property view. Figure 5 shows the Property window.

2. Select the Apply Stereotype button. The Apply Stereotype window opens with

the list of possible stereotypes. In Figure 6 on page 8, the String stereotype has

been selected.

Figure 5. Properties window

Chapter 2. The UML to COBOL Process 7

Figure 7 shows that the String stereotype is now applied. You now have access to

the stereotype properties that you can set. As shown in Figure 7, we have set the

maxLength property.

Figure 6. String is selected

Figure 7. Stereotype properties of String

8 IBM Rational Developer for System z: Advanced COBOL Development Technical Preview

Identify the Data Object and Services (Optional): This is a recommended but

optional step. The Data Profile contains a Data Object Stereotype that identifies a

class as a provider of Data definitions, through its attributes and relationships.

You can also use the Service Profile in your model in order to identify the classes

that provide operations (business-level operations) in your system. Identifying the

service class now or in the later stage is used.

Figure 8 shows a simple model that uses the primitive types provided. This simple

model also shows stereotypes for attributes and classes.
 .

Creating the COBOL-dependent layer

Defining the launcher for the transformation: The first time you run a

transformation you must create a configuration where you will specify parameters

of the transformation and that you will therefore use to launch the transformation.

Figure 9 on page 10 shows how to create a transformation configuration. Do the

following:

1. In the modeling window, select File > New > Transformation Configuration.

Figure 8. Simple model applying the data profile

Chapter 2. The UML to COBOL Process 9

2. The New Transformation Configuration window opens. In this window, you

can select the transformation. Figure 10 shows the transformation configuration

window for selecting a COBOL transformation.

3. Under Forward transformation, highlight Abstract UML to COBOL-oriented

UML.

4. Select Finish.

Next, select the source and the target of the transformation. The source of the

transformation is the language-independent model (the file has an emx extension).

Since the transformation creates a new model, you should create a new target

Figure 9. Creating a transformation configuration

Figure 10. Selecting a COBOL transform

10 IBM Rational Developer for System z: Advanced COBOL Development Technical Preview

container (the file must also have an .emx extension). The wizard creates a .tc file.

You will use the .tc file to launch the transformation.

To select the source and target, do the following:

1. Using the context menu, highlight the .tc file and select Transform > COBOL

Transform. See Figure 11.

2. This creates the COBOL-dependent model. In the Project Explorer view under

the Models section of your project, you will find the new model produced by

the transformation.

The next step focuses on the transformed model.

Figure 11. Launching the transformation

Chapter 2. The UML to COBOL Process 11

Transformation to the COBOL-dependent layer

These sections describe the COBOL-dependent layer after transformation. The

COBOL-dependent layer is then enhanced in the next step of this process.

Result of the transformation

The transformation has created a new model, transformed classes and their

attributes, applied new stereotypes, and created a new diagram that contains the

transformed elements of your initial diagram.

For reference, Figure 12 shows the model before transformation.

Figure 13 on page 13 shows the result of the transformation.

Figure 12. Simple model with primitive types

12 IBM Rational Developer for System z: Advanced COBOL Development Technical Preview

Renaming

Each component name has been renamed applying COBOL naming restrictions.

The COBOL naming restrictions are the following:

v all names are uppercase.

v spaces are removed.

v forbidden characters (#, ? %, $) are translated to underscores.

Translation of the primitive types

New primitive types have been created to reflect the COBOL elementary definition

of the attribute. The calculation is performed based on the primitive type (either

UML default primitive types or the ones provided) and the extra characteristics of

the (optional) stereotype.

Table 1 shows the translated primitive types where stereotypes are not applied.

 Table 1. Mapping Primitive type to COBOL-dependent type

Primitive type COBOL-dependent type

Binary VARCHAR

Boolean X

Date DATE

Integer S9(18)

Currency S9(18)

Float S9(16)V9(2)

Email X(32)

String X(32)

Figure 13. Result of the transformation

Chapter 2. The UML to COBOL Process 13

Translation of the attribute stereotype

The following primitive types are set if a stereotype from the data profile has been

applied and some of its properties are set. In addition, the element stereotype from

the COBOL profile is set on the attributes of the class.

The property usage is calculated based on the types as shown in Table 2.

 Table 2. Property usage calculated on types

Stereotype Property Primitive Type Result

Usage (Element

stereotype)

String maxLength X(maxLength) display

Integer digits, sign 9 (digits) or S9(digits) if digits < 18

X (digits) or X (digits + 1) if digits > 18

display

Float digits, sign, decimals S9(digits)V(decimals) or (digits)V(decimals) comp-3

Email displayName X (length of displayName) display

Currency digits, sign, decimals S9(digits)V(decimals) or (digits)V(decimals) display

Boolean display

Date display

Translation of the class stereotype

The classes stereotyped as Data Object from the data profile become, in the new

diagram, classes stereotyped with the Data Object of the COBOL profile. This Data

Object stereotype of the COBOL profile contains a toCopyBook property that

indicates whether a Copybook should be generated for data defined by the Data

Object. For example, as shown in Figure 12 on page 12 and Figure 13 on page 13,

classes stereotyped as "Service Specification" become in the new diagram classes

stereotyped as "COBOL program."

Enhancement to the COBOL-dependent layer

These sections describe strategies for enhancing the COBOL-dependent layer in

preparation for the next step in the process - generating source.

Working with the COBOL-dependent layer

COBOL-oriented UML artifacts are obtained from the transformation. There are

several ways to enhance these artifacts before generation. The class diagram is a

set of classes with relationships of various kind between these classes. COBOL data

structure are expressed through these classes. The classes that drive the generation

of data structure are the ones that are used as parameters of the program. See

“Describing the program resources and linkage data” on page 24.

Refining the data definition for attributes

If the default translation is not satisfactory, you can edit the type and create the

right one for an attribute. We recommend however that you change the available

properties of the stereotype on the language neutral layer first (for example to set

the length of a PIC X item) in order to capture more information on the top level

layers.

Using the element stereotype for attributes

The element contains three properties that drive the generation:

v editedPicture - contains the COBOL edited picture

v clause usage - defines the usage clause value

14 IBM Rational Developer for System z: Advanced COBOL Development Technical Preview

v value - defines the initialValue.

Refining the relationships

UML relationships are translated during generation in order to create appropriate

data definition. For some UML relationships, there are several strategies for

translation that make sense. In this case, we have selected one default strategy for

the UML relationship and introduced stereotyped relationships to express the other

possible strategies. The following sections are the strategies used for the

relationships.

Generalization (standard relationships): The COBOL data structure contains

several groups, one for the attributes contained by the class that drives the

generation and one for each of its ancestors. See Figure 14.

Figure 14. Standard relationships

Chapter 2. The UML to COBOL Process 15

Generalization with "Generalization" stereotype applied: The stereotype has a

property called ″type″ that can be set to one of these 3 values:

v GroupAll - corresponds to the behavior described for the standard relationship

v GroupParent - groups are created for the parent classes only. The properties of

all the classes that drive the generation are not embedded in a group.

v Flatten - no group is introduced. To avoid collision, data items are prefixed by

the name of the class they belong to.

Figure 15. Standard relationships shown as parent-child

16 IBM Rational Developer for System z: Advanced COBOL Development Technical Preview

The stereotype has type properties.

By default, if "group all" is selected it behaves as the standard relationship.

GroupAll

Figure 16. Applying the Generalization stereotype

Figure 17. Stereotype type properties

Chapter 2. The UML to COBOL Process 17

Group Parents

Flatten

Composition: The attributes of the class that are the target of a composition

group are generated in a COBOL group related to the class that is the source of the

composition link. The name of the group is the name of the target class.

Figure 18. Grouping by all

Figure 19. Grouping by parents

Figure 20. Flattening relationships

18 IBM Rational Developer for System z: Advanced COBOL Development Technical Preview

A composition relationship is established between two classes (Child and

Containment in Figure 21). A group is created in the generated COBOL for this

relationship (Figure 22).

Aggregation: A COBOL pointer is added to the COBOL group that is the source

of an aggregation link. The name of the pointer is the name of the target class.

Figure 21. Composition

Figure 22. Composing relationships

Chapter 2. The UML to COBOL Process 19

An aggregation is established between two classes (Containment and Ref in

Figure 23). The following COBOL (Figure 24) will be generated from the diagram.

Notice the pointer in the Containment group.

Figure 23. Aggregation

Figure 24. Relationship aggregate

20 IBM Rational Developer for System z: Advanced COBOL Development Technical Preview

In Figure 25, we have replaced the aggregation relationship between Containment

and Ref by an association relationship. The result (Figure 26) is the same.

Association with the "Redefines" stereotype applied: The target of such an

association generates a COBOL group that redefines the contents of the source of

Figure 25. Association (between Containment and Ref classes)

Figure 26. Aggregation as parent-child

Chapter 2. The UML to COBOL Process 21

the relationship.

The Redefines association can be used at different places in the hierarchy of a class.

Figure 29 on page 23 is an example of the redefines association that is used in two

places of the hierarchy. Figure 30 on page 23 displays the result in COBOL.

Figure 27. Stereotyped Association - Redefines

Figure 28. Generated COBOL that translates the redefines relationship

22 IBM Rational Developer for System z: Advanced COBOL Development Technical Preview

Combination of these relationships (stereotyped or not) can be used in the class

diagram in order to describe the appropriate data structures.

Note: If you want to redefine the whole Data Object and its ancestor you should

use the ″flatten″ strategy for inheritance.

Figure 29. Redefining association

Figure 30. Redefining parent-child

Chapter 2. The UML to COBOL Process 23

Describing the program resources and linkage data

The operation of a program contains input and output parameters based on classes

defined in the model. These parameters are appropriate to identify the external

data manipulated by the program. The COBOL profile creates a Resource

Stereotype to identify resources manipulated by a program, such as a file, a

message queue, or a relational table. In order to define a resource, you need to

create a dedicated resource class that references a root Data Object to define the

data of the resource.

The relationship between the Resource class and the DataObject class shows that

the Resource’s contents is defined by the Data Object. This relationship is captured

by a Stereotype. Once the Resource class is defined and connected to the

appropriate DataObject, the input and output parameters can target this resource

class instead of the DataObject class. You can define the model to manipulate

resources through a parameter which type is a Resource stereotyped class. You can

define the model to manipulate linkage data through a parameter which type is a

DataObject stereotyped class. To set a program to manipulate the resource, do the

following:

1. Create a resource class that reference the DataObject that will be manipulated

by the resource

2. Reference the DataObject from the resource.

3. Apply the ResourceIsStructured stereotype to the relationship.

4. Change the operation parameter so that its type targets the Resource class and

not the DataObject class. If an operation has a parameter whose type is directly

on DataObject, the generation assumes that it is a data definition to be used in

the linkage section.

In order to automate this process, a RSA pattern is provided that does these steps

automatically.

To enhance the diagram, do the following.

1. From the Workbench, select Window > Show View > Other... and then select

the Pattern Explorer view. See Figure 31 on page 25.

24 IBM Rational Developer for System z: Advanced COBOL Development Technical Preview

2. The Pattern Explorer view opens.

3. Select the COBOL program pattern under UML to COBOL as shown in

Figure 32.

4. From the Pattern Explorer view, drag the COBOL program to the diagram and

drop.

Figure 33 on page 26 shows the diagram result of the drop and drag.

Figure 31. The Show View window

Figure 32. Pattern Explorer view

Chapter 2. The UML to COBOL Process 25

The first parameter of the pattern is the operation that you want to process. Drag

and drop the operation of the COBOL_Programs class that you want to transform

into a program. The pattern now automatically performs changes against the

parameters of the operation - all its parameters are modified and resources are

created. You can then specify which Data Object you want to use in this program

as linkage section in the second parameter. The changes are directly visible on the

operation parameters. To see the newly-created Resources in your diagram, drag

and drop the resource classes from the Project Explorer to the diagram.

Figure 34 on page 27 shows the result of applying the COBOL program pattern

and adding ResourceDescription.

Figure 33. Drop and drag to the diagram

26 IBM Rational Developer for System z: Advanced COBOL Development Technical Preview

It is a good practice to create several diagrams that can display subsets of your

models; for example, a separate diagram dedicated to the program, one to its

resources, and one to the root definition.

Describing a basic control flow of a program

You can associate an activity diagram to an operation. Since the operation

represents the program (or an entry point of a program), this is how you describe

some elements of the logic of the program. Do the following:

1. In the Project Explorer view, use the context menu to highlight the operation

and select Add UML > Activity Method.

Figure 34. Results

Chapter 2. The UML to COBOL Process 27

2. To add the activity, first open the Apply Stereotypes window.

3. A few stereotypes for basic high level functions that a program can perform are

already provided. First add the COBOL procedure profile to your model.

Figure 36 on page 29 shows the provided stereotypes.

Figure 35. Associating an activity

28 IBM Rational Developer for System z: Advanced COBOL Development Technical Preview

4. Select Ok.

Figure 37 shows an activity diagram of a simple open-and-close operation.

Note: Refer to RSA documentation for general information about RSA modeling.

You can indicate which resource the activity manipulates through dedicated

properties of the stereotype. Figure 38 on page 30 shows the property window of

the selected node.

Figure 36. Apply Stereotypes for activity diagram

Figure 37. An example of a simple activity.

Chapter 2. The UML to COBOL Process 29

Limitations

There are some limitations in the tech preview during the generation of the activity

diagram. Some advanced scenarios are not supported yet:

v You cannot merge several nodes directly to an activity final node. You need to

merge them first in a node that you then connect to the final node.

v Branches and merge are supported to a certain extend only. Complex cases that

involve unbalanced branches and merge may fail.

v Loops are not correctly captured.

Generating COBOL Source

The final goal of the modeling transformations is to generate COBOL source code

that can be enhanced further within the development environment of Rational

Developer for System z.

At this part of the process, the system architect who has been modeling the

programs and data structures has been using the capabilities of Rational System

Architect, enhanced with profiles containing additional stereotypes and patterns.

The second modeling transformation generates the output that is used with RDz to

continue COBOL development for System z.

One COBOL source program is generated for each modeled operation in the

COBOL-specific model that has been used with the COBOL program pattern. In

addition, a Copybook is generated for each defined data structure that has the

DataObject stereotype applied, and the toCopybook attribute of the stereotype set

to true.

To set the toCopybook attribute, do the following:

1. Select the node in the diagram.

2. Open the Properties window view.

3. Under Stereotype Properties, select the DataObject property drop-down menu.

4. Set toCopybook to True.

Figure 38. Properties window of the selected node

30 IBM Rational Developer for System z: Advanced COBOL Development Technical Preview

If the toCopybook attribute is set to false, the data structure is declared in each

program as needed.

Generating from RSA

The second transformation, using the COBOL-specific model as the source,

produces an intermediate file, with an extension of .cobolumlmodel. The

transformation definition created earlier (in the .tc file) declares what file is the

transformation target.

This intermediate file contains an EMF representation of the data structures and

programs being modeled, and it can be shared (for example, by version control

system, email) with an RDz user who can use the file to generate COBOL source

(see “Generating from RDz”).

However, if the system architect using RSA to model the COBOL programs also

has RDz installed in the same package group as RSA, the COBOL source is

generated by the second transformation along with the target .cobolumlmodel file.

The COBOL source is placed into the same modeling project as the

language-independent and COBOL-specific models, and can then be moved into

any COBOL development project using the standard workbench tools.

Generating from RDz

If the system architect who modeled the COBOL programs does not also have RDz

installed, the final output of the modeling transformations is the intermediate file

with extension .cobolumlmodel . This file is then shared with a developer who has

RDz installed to complete the final transformation into COBOL source code. The

final transformation can be invoked in a couple of different ways. The following

sections describe some of these ways.

Using the new COBOL Project wizard

The user can create a new COBOL project in their workspace that contains the

generated source code from the UML-to-COBOL transformation. Do the following:

Figure 39. Setting the toCopybook attribute

Chapter 2. The UML to COBOL Process 31

1. Select New > COBOL Project

2. Complete the new project name and location, and select whether you want to

use the Remote Synchronization feature, then select Next.

3. Select the UML-to-COBOL Generation application template, then select Next.

Figure 40. New project window opens

32 IBM Rational Developer for System z: Advanced COBOL Development Technical Preview

4. Enter or select the file name of the intermediate file to use to generate the code.

Any file location accessible by the workstation is accepted, the file does not

have to be first imported into the workspace.

The project is then created. The COBOL source code generated from the

intermediate file which is also copied into the new project. Selecting the Remote

Synchronization feature in the wizard in order to integrate with System z is

recommended. The generated source code can also be copied or moved into a

z/OS® Project for integrating with System z.

Using the context menu

An alternate way to generate COBOL based on a COBOL source model file that is

already in the workspace is to use the file’s context menu (right-click the mouse

over the file in the Project Explorer view).

Figure 41. Select UML-to-COBOL Generation

Figure 42. UML-to-COBOL Generation window

Chapter 2. The UML to COBOL Process 33

1. Select the Generate COBOL menu item from the file’s context menu.

2. Choose whether to create a new project or generate the COBOL to the same

project where the source mode file is located.

3. If selecting to create a new project, then enter the project name and location,

and select whether you want to use the Remote Synchronization feature (like

above when using the New COBOL Project wizard with the UML to COBOL

template), then select Finish.

Figure 43. UML-to-COBOL Wizard window

34 IBM Rational Developer for System z: Advanced COBOL Development Technical Preview

Chapter 3. Advanced COBOL Editor Features

The Advanced COBOL Development technology preview provides expanded

features and capability for the COBOL editor such as real-time syntactic and

semantic checks on the source, refactoring actions, and actions and views that help

navigate source code.

The Advanced COBOL Editor allows you to partially validate your code without

compilation. You can also move to the declaration of any data item in the program

file by using the Open Declaration context menu action. You can reliably change

the name of a data item in a single file with the preview's new refactoring

capabilities. The ability to automatically remove noise words from your program is

also available as is a new Perform Hierarchy action that displays your program's

perform paragraph calls in a tree view format.

Real Time Validation

A lightweight parser is dispatched when the source is changed in order to perform

syntactic checks on the COBOL source. As you edit, warning symbols appear in

the vertical ruler located along the left margin. Move your mouse over the warning

symbols to see text that explains the problem. An abstract syntax tree is

subsequently analyzed to resolve references to data items, paragraphs, and

sections. A warning symbol appears in the vertical ruler if a reference can not be

resolved. For example the statement ″PERFORM MYPARAGRAPH″ is flagged with

a warning if the paragraph ″MYPARAGRAPH″ does not exist.

Open Declaration

The Open Declaration action allows you to navigate from a reference to a

declaration. You can select this action from the context menu. It can also be

selected and mapped to a keybinding by selecting the Windows -> Preferences ->

LPEX Editor -> User Key Actions menu.

Using the mouse, the user first selects or highlights a reference to a data item,

paragraph, or section, then selects Open Declaration in the context menu (mouse

right-click). The action moves the text selection in the editor from the selected

reference to its corresponding declaration. The user can navigate between the

previous position using the navigation arrows on the toolbar or typing the

″Alt-Back Arrow″ keybinding (or ″Alt-Forward Arrow″).

Figure 44. Statement is flagged with a warning

© Copyright IBM Corp. 2008 35

Step1

Step2

Figure 45. Open Declaration step 1

Figure 46. Opening Declaration step 2

36 IBM Rational Developer for System z: Advanced COBOL Development Technical Preview

Refactor

This technology preview provides the following two refactor operations:

v Rename - renames any data item or paragraph.

v Remove Noise Words - removes selected unnecessary words from the COBOL

source.

The Rename shows an information screen with the projected warnings if the

refactor is committed as well as how many data items are going to be changed.

Optionally, another page is shown with a preview of what the source will look like

once the refactor is accepted compared against the original source.

Perform Hierarchy

When a reference to a paragraph or section is selected, the user can select the

Open Perform Hierarchy action from the context menu. The Perform Hierarchy

view displays the paragraphs and line numbers for each statement in the hierarchy

and allows you to easily navigate among those statements. The Perform Hierarchy

view has two modes: the ″Performer Hierarchy″ and the ″Performee Hierarchy.″

The Performer Hierarchy displays the references to the selected paragraph. For

example, given the paragraph ″Copy-input-to-output,″ the Performer Hierarchy

displays all paragraphs and sections that can transfer control to that paragraph

with a statements such as ″Perform Copy-input-to-output.″ The Performee

Hierarchy displays the references to other paragraphs contained within the

selected paragraph. For example, given the ″Copy-input-to-output″ paragraph, the

Performee Hierarchy displays a statement that can transfer control outside of the

Figure 47. Preview page

Chapter 3. Advanced COBOL Editor Features 37

selection paragraph with statements such as ″Perform Read-next-input-data.″ Since

perform hierarchies can be nested arbitrarily, the Perform Hierarchy is a tree view

that allows you to traverse this nesting.

Figure 48. Example of Performee Hierarchy

38 IBM Rational Developer for System z: Advanced COBOL Development Technical Preview

Additional Information

A viewlet tutorial detailing current editing features is available on the Technology

Preview web site.

Limitations

The advanced COBOL Editor technology preview has the following limitations:

v The Editor does not parse CICS® and SQL in order to check for correct syntax.

The parser does not flag EXEC ... END-EXEC statements as errors but does not

attempt to parse the contents of these statements. Errors are not reported for

invalid CICS or SQL syntax and they are not processed during semantic

analyses.

v The Editor does not semantically process COPY statements. This means that

although the Editor correctly parses a COPY statement, it does not include the

contents of the copybook when performing semantic analyses such as reference

resolution. Errors are reported if you reference a data item declared in a

COPYBOOK.

v Refactor operations are not atomic and cannot be undone.

v The Perform Hierarchy will not be in sync if the source file is modified or

closed.

If the above limitations result in incorrect behavior, the user can optionally enable

or disable these features under the preference page at Window > Preferences >

COBOL > Tech-Preview. From the menu you can:

v Select Enable editor annotations and tooling to receive real-time syntax

checking of COBOL files via warning annotations in the editor.

Figure 49. Example of Performer Hierarchy

Chapter 3. Advanced COBOL Editor Features 39

v Select Enable tooling only to disable editor annotations but leave the

tech-preview actions in the context-menu enabled; for example Open

Declaration or Refactor.

v Select Disable editor annotations and tooling to disable both the editor

annotations and context-menu actions.

Figure 50. The Tech-Preview highlighted in the Preferences window

40 IBM Rational Developer for System z: Advanced COBOL Development Technical Preview

Chapter 4. The VSAM/QSAM Wizard

The Advanced COBOL Development technology preview provides new features

and capabilities for the VSAM/QSAM Wizard.

Generation

To open the wizard, select File > New > Project > COBOL Project. Enter the

COBOL Project name in the Wizard, and then select the Dataset Application

template. In the next window, you can select either the Program, Driver Program,

or Copybook. You can also indicate CICS or Batch, and whether or not the

program takes input, gives output, or both.

Figure 51. The dataset window

© Copyright IBM Corp. 2008 41

The CICS generated program allows only a VSAM dataset to be specified; only

KSDS, ESDS, and RRDS are supported. QSAM is not supported. The generated

CICS application allows both input and output against the specified data set.

When generating a program for batch, you can choose to have the program read

input, write output, or both. You may also choose a different type of record for

input or output. The options are KSDS, ESDS, RRDS, or QSAM. Table 3 shows how

the types are accessed. See the Enterprise COBOL Language Reference for more

information.

 Table 3. Options for input and output

QSAM KSDS ESDS RRDS

Input Organization is

SEQUENTIAL;

Access mode is

SEQUENTIAL.

Organization is

INDEXED;

Access mode is

DYNAMIC.

Organization is

SEQUENTIAL;

Access mode is

SEQUENTIAL.

Organization is

RELATIVE;

Access mode is

DYNAMIC.

Output Organization is

SEQUENTIAL;

Access mode is

SEQUENTIAL.

Organization is

INDEXED;

Access mode is

RANDOM.

Organization is

SEQUENTIAL;

Access mode is

SEQUENTIAL.

Organization is

RELATIVE;

Access mode is

DYNAMIC.

Usage

The generated programs provide a good basis for developing applications that

access VSAM and QSAM data sets; in nearly all cases some modification is

necessary.

The generated batch applications have methods to open and close the data sets,

read input, and write output. The application also accepts parameters. There is a

driver program which calls the application with a parameter to copy the input data

to the output dataset. When some settings are made, the driver is not created.

The CICS generation also creates an application and a sample driver program. The

CICS program is designed to take parameters from an EXEC call. The program can

also be modified to perform actions independently.

Limitations

The CICS project generated is not available from the z/OS Projects View. You can

also use the Navigator view by selecting Window > Show View > Navigator from

the menu bar.

42 IBM Rational Developer for System z: Advanced COBOL Development Technical Preview

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM® might not offer the products, services, or features discussed in this document

in other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service might be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right

might be used instead. However, it is the user’s responsibility to evaluate and

verify the operation of any non-IBM product, program, or service.

IBM might have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement might not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM might make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM might use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2008 43

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

TL3B/062

3039 Cornwallis Road

RTP, NC 27709-2195

U.S.A.

Such information might be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You might

copy, modify, and distribute these sample programs in any form without payment

to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs. You

might copy, modify, and distribute these sample programs in any form without

payment to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color

illustrations might not appear.

Trademarks

The following are trademarks of International Business Machines Corporation in

the United States, other countries or both:

v IBM

v developerWorks

v Passport Advantage

v Rational

v Redbooks

v WebSphere

44 IBM Rational Developer for System z: Advanced COBOL Development Technical Preview

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United

States, other countries, or both.

Other company, product, or service names might be trademarks or service marks

of others.

Appendix. Notices 45

46 IBM Rational Developer for System z: Advanced COBOL Development Technical Preview

����

Printed in USA

	Contents
	Chapter 1. Introduction to Processes and Components
	The UML to COBOL Process
	The Advanced COBOL Editor
	The VSAM/QSAM Wizard

	Chapter 2. The UML to COBOL Process
	Developing a model using RSA
	Modeling the language-neutral layer
	Using the provided primitive types and stereotypes for class attributes
	Creating the COBOL-dependent layer

	Transformation to the COBOL-dependent layer
	Result of the transformation
	Renaming
	Translation of the primitive types
	Translation of the attribute stereotype
	Translation of the class stereotype

	Enhancement to the COBOL-dependent layer
	Working with the COBOL-dependent layer
	Refining the data definition for attributes
	Using the element stereotype for attributes
	Refining the relationships
	Describing the program resources and linkage data

	Describing a basic control flow of a program
	Limitations

	Generating COBOL Source
	Generating from RSA
	Generating from RDz
	Using the new COBOL Project wizard
	Using the context menu

	Chapter 3. Advanced COBOL Editor Features
	Real Time Validation
	Open Declaration
	Refactor
	Perform Hierarchy

	Additional Information
	Limitations

	Chapter 4. The VSAM/QSAM Wizard
	Generation
	Usage
	Limitations

	Appendix. Notices
	Trademarks

