
IBM Software Group Page 1 of 14

®

IBM Software Group

© 2007 IBM Corporation

International Character Support

IBM WebSphere® Data Interchange V3.3

IBM Software Group Page 2 of 14

IBM Software Group

2

XML Basic Concepts © 2007 IBM Corporation

Agenda

Describe support for international character sets

�Overview

�How to specify source and target encodings

�Special considerations

�Importing and exporting data

�WebSphere MQ

�Other considerations

This presentation describes the WebSphere Data Interchange support for international character
sets. It starts with an overview of why international characters may be needed. Then it
describes how you can specify the encoding for your source and target data. Finally, it will
mention some special considerations, including import/export, use with WebSphere MQ, and
other considerations.

IBM Software Group Page 3 of 14

IBM Software Group

3

XML Basic Concepts © 2007 IBM Corporation

Overview

�Why are international character sets needed?

�Many companies today deal with trading partners in
multiple countries

�Data from other countries and languages may contain

characters that cannot be represented using system
default ASCII or EBCDIC code page

�Standards such as XML raise the expectation for support
of these characters

In today’s world, companies frequently deal with trading partners from multiple countries - and
not just ones where English is the predominate language. This means you may receive data
from your trading partners which contains characters that are not included in the default ASCII or
EBCDIC code page for your system. Even if much of the data is in English, there may still be
special characters in values such as names, addresses, and descriptions. This presentation will
refer to these characters as “international characters”.

Standards such as XML offer built-in support for international character sets as a core part of the
specification. The EDIFACT standard also allows users to specify character sets besides the
default ASCII or EBCDIC code pages. Since these capabilities are included in the standards, it
increases the expectation that the data – including characters from any language - can be
processed without losing the data. Even if your system cannot display these characters
correctly on the screen, you may still want to pass the data intact to other applications that can

process them.

IBM Software Group Page 4 of 14

IBM Software Group

4

XML Basic Concepts © 2007 IBM Corporation

Character sets

� Numerous character sets and encodings have been defined
to deal with characters from different languages

� These character sets sometimes called “code pages”

� Examples:

�ISO-8859-1 (English and Western European)

�ISO-8859-2 (Latin alphabet 2 – Eastern European)

�Shift-JIS (Japanese)

�Many others

� May also be used for different hardware platforms

�IBM-1047 (EBCDIC – US)

�Other EBCDIC character sets for other countries and languages

Although a complete discussion of character sets and encodings is far beyond the scope of this
presentation, a short discussion of character sets and Unicode may be helpful.

Many different character sets and encodings have been defined over the years to deal with
characters from different languages. These character sets are sometimes called “code pages”.
One example is ISO-8859-1, which includes most of the characters used by English and other
Western European languages. Another is ISO-8859-2, which covers more of the Eastern
European characters. Some languages like Japanese require more than 256 characters, so
special encodings such as Shift-JIS were created to handle these languages.

The use of a particular character set is sometimes based on the hardware platform, rather than

the language. For example IBM-1047 is an EBCDIC codepage, and is typically used on IBM

mainframe computers. Other EBCDIC character sets may be used on mainframe computers for
other countries and languages.

IBM Software Group Page 5 of 14

IBM Software Group

5

XML Basic Concepts © 2007 IBM Corporation

Unicode

�Unicode

�Unicode defines “code points” for every character in
nearly every modern language

� Code point is an unambiguous name and integer number for character

� Actual byte encoding may vary based on character encoding

�Also defines character encodings

� How bytes are encoded for a given code point

� Examples: UTF-8, UTF-16 (little endian or big endian)

�More information at:
http://www.unicode.org/

The Unicode standard is an attempt to reduce the confusion caused by all of the different
character sets and encodings.

Unicode defines “code points” for every character in nearly every modern language – and also
numerous special characters. The code point is an unambiguous name and an integer number
for the character.

These code points can be algorithmically converted to a byte encoding, depending on the

character encoding that is used. Examples of different character encodings include UTF-8 and
UTF-16. These different character encodings offer different advantages and disadvantages,
such as smaller total data size or fixed-length characters. UTF-16 may be encoded as either

“big-endian” or “little-endian”, which describes the order that the bytes appear. Little-endian may
be preferred for certain platforms such as Windows, while big-endian may be preferred for
others.

More information is available at the Unicode web site.

IBM Software Group Page 6 of 14

IBM Software Group

6

XML Basic Concepts © 2007 IBM Corporation

Character set/encoding example

Sample byte encodings for character Ą
(Latin capital letter A with ogonek)

x0401UTF-16 (little endian)

xC484UTF-8

<not represented>IBM-1047 (EBCDIC)

xA1ISO-8859-2

<not represented>Windows-1252

x0104UTF-16 (big endian)

Byte value(s)Character set/Encoding

This example shows how a particular character may be represented by a variety of different byte
values depending on which character set and encoding is used. In some character sets, it may
not even be possible to represent a given character. For the UTF-8 and UTF-16 Unicode
encodings, the code point assigned to the character is the same, x0104, but the byte encoding is
different from one encoding to the next.

IBM Software Group Page 7 of 14

IBM Software Group

7

XML Basic Concepts © 2007 IBM Corporation

Specifying source and target encodings

�WebSphere Data Interchange allows multiple ways
to specify the source and target encodings.

�PERFORM command keywords

�Data format definition

�Automatic detection (source encodings)

�Mapping properties (target encodings)

�Some of these only apply to certain data syntaxes

�Default is to use LOCALCP

�Default ASCII or EBCDIC code page for the system

WebSphere Data Interchange allows multiple ways to specify the source encoding for your input
data, and the target encoding for your output data. The source encoding tells how the input data
should be interpreted. The target encoding tells how the output data should be written.

•You can specify keywords on the PERFORM command

•You can define the encoding on a data format definition. This can only be used for data format
input and output.

•For certain types of input data, you can let WDI determine the source encoding as it parses the
data

•For output data, you can specify the target encoding as a map property

If no encoding information is provided, the default ASCII or EBCDIC codepage is generally used.

IBM Software Group Page 8 of 14

IBM Software Group

8

XML Basic Concepts © 2007 IBM Corporation

SOURCEENCODE command keyword

�SOURCEENCODE keyword

�Used on the TRANSFORM command

�Forces input data to be interpreted as specified encoding

�Overrides autodetection logic, data format definition

�Example:

PERFORM TRANSFORM WHERE INFILE(XMLFILE) OUTFILE(OUTFILE)

SYNTAX(X) SOURCEENCODE(UTF-8)

The SOURCEENCODE keyword can be specified on the TRANSFORM command to force the
input to data to be interpreted using a particular encoding. This will override the normal
autodetection logic or the code page specified in the data format definition. This can be useful if
you know that an application will always pass the data to WebSphere Data Interchange in a
particular encoding, for example if the data goes through some type of gateway or other
application that converts the data to UTF-8, but does not change the encoding value in the XML
declaration.

In this example, the XML input data will always be interpreted as UTF-8 data, regardless of what

encoding information is provided within the data.

IBM Software Group Page 9 of 14

IBM Software Group

9

XML Basic Concepts © 2007 IBM Corporation

ENCODETARGET command keyword

�ENCODETARGET keyword

�Used on the TRANSFORM command

�Forces output data to be written using specified encoding

�Overrides EncodeTarget property, data format definition

�Example:

PERFORM TRANSFORM WHERE INFILE(XMLFILE) OUTFILE(OUTFILE)

SYNTAX(X) ENCODETARGET(UTF-8)

The ENCODETARGET keyword can also be specified on the TRANSFORM command, but it
controls the encoding used to write the output data. This will override the the EncodeTarget
property if the property is set in the map, or the code page specified in the data format definition.
If you always want the output to use a particular encoding, this may be more convenient than
setting the property in the map.

In this example, the output data will always be written as UTF-8 data.

IBM Software Group Page 10 of 14

IBM Software Group

10

XML Basic Concepts © 2007 IBM Corporation

Data format definition

� Specify an encoding for data format definition

�Defined in the “Code Page” field on General tab

�Used as source encoding for data format input data

�Used as target encoding for data format output data

�Overridden by EncodeTarget property and
ENCODETARGET keyword

�Character Size field may also need to be changed

for some encodings.

You can specify a particular code page or encoding to be used for a particular data format. This
is defined in the “Code Page” field on the Data Format General tab.

If this is defined, it is used as the source encoding when that data format is used as input data,
and also as the target encoding when that data format is used as output data. You can override
this value using the ENCODETARGET keyword or the EncodeTarget property.

If you specify a double-byte (16-bit) encoding such as UTF-16, you should also change the

Character Size field. This allows WebSphere Data Interchange to correctly calculate fixed-
format record offsets and lengths in terms of characters. For example, if a field contains 10
UTF-16 characters, it would actually contain 20 bytes, since each character is encoded as two

bytes.

IBM Software Group Page 11 of 14

IBM Software Group

11

XML Basic Concepts © 2007 IBM Corporation

Example: Code page defined for data format

Code page to use Size of each character

Here is an example of a data format definition that uses UTF-16LE as it’s encoding. Since each
UTF-16LE character is two bytes long, the Character Size field also needed to be changed.

If you are using an encoding such as UTF-8 where the character size varies, you should
generally set the Character Size field to 1. Note that these types of encodings may be difficult to
use with fixed-format records, since the record and field sizes contain fixed byte lengths.

IBM Software Group Page 12 of 14

IBM Software Group

12

XML Basic Concepts © 2007 IBM Corporation

Autodection – XML

�Encoding for input XML data can be detected
automatically

�Determined by checking first few characters for valid
sequences, byte-order mark (BOM), and the encoding
declaration

�Based on XML Recommendation:
http://www.w3.org/TR/2004/REC-xml-20040204/#sec-guessing

�SOURCEENCODE keyword overrides

autodetection logic

For XML input data, WebSphere Data Interchange can automatically determine the encoding by
checking the first characters of data. It follows the rules described by the XML recommendation
to determine the encoding based on whether it finds a byte-order mark (BOM), certain other
valid sequences, and/or an encoding declaration. The details of this logic are described in the
XML Recommendation, Appendix F Autodetection of Character Encodings.

As mentioned earlier, if the SOURCEENCODE keyword is specified it will override this
autodetection logic.

IBM Software Group Page 13 of 14

IBM Software Group

13

XML Basic Concepts © 2007 IBM Corporation

Autodection – EDIFACT

� Encoding for EDIFACT data can be detected automatically

�EDIFACT - based on UNB0101 (Syntax ID) value

� SOURCEENCODE keyword overrides autodetection logic

�No autodetection logic for other EDI standards

� SOURCEENCODE keyword is only way to specify alternate source encoding

� EDIFACT autodetection logic:

�Read the Syntax Id (UNB0101) from the source document

�Look up the value in the EDISYNTX translation table

�If a matching “Source Value” is found in the table, then the “Target

Value” is used to interpret the data

The encoding for EDIFACT data, but not other EDI standards, can be determined from the data.

For EDIFACT data, the UNB0101 data element (Syntax Id) is used to determine the encoding.
As usual, the SOURCEENCODE keyword overrides the autodetection logic. For other EDI
standards, there is no autodetection capability, so the SOURCEENCODE keyword is the only
way to specify an alternate source encoding.

For EDIFACT data, the following logic is used to determine the source encoding:

•Read the Syntax Id (UNB0101) from the source document.

•Look up this value in the EDISYNTX translation table

•If a matching “Source Value” is found in the table, then the “Target Value” is used to interpret the data.

For example, if you wanted the source encoding to be “iso-8859-2” when the EDIFACT Syntax
Id is “UNOD”, you would create an entry in the EDISYNTX table that had “UNOD” as the
“Source Value”, and “iso-8859-2” as the target value.

If the EDISYNTX table is not defined, or if it does not contain a “Source Value” that matches the
Syntax id, then the default local code page is used.

IBM Software Group Page 14 of 14

IBM Software Group

14

XML Basic Concepts © 2007 IBM Corporation

ENCODETARGET mapping property

� ENCODETARGET property

�Set in a map

�Allows target encoding to be determined based on data

�Forces output data to be written using specified encoding

�Overridden by ENCODETARGET keyword

� Example:

The EncodeTarget property can be set within a Data Transformation map to control the
encoding used to write the output data. By specifying this in the map instead of using the
ENCODETARGET keyword, you can determine the encoding based on information within the
data. For example, you may want to encode output data for some trading partners using UTF-8
because they are based in other countries, but just use the default codepage for other
customers that are not able to process the UTF-8 data. In this example, the output data will be
written as UTF-8 if this command is executed.

If the ENCODETARGET keyword is specified, it will override the property that is set in the map.

IBM Software Group Page 15 of 14

IBM Software Group

15

XML Basic Concepts © 2007 IBM Corporation

Import/export considerations

� Map literals, codelists, translate tables, and other mapping
objects may contain international characters

� Client allows you to:
� Enter these when mapping, defining tables and other objects

�Import and export these objects

�Export from Client as UTF-8 format to maintain any international
characters

� Server import/export does not support international
characters
�Export from Client as ANSI if planning to use server import

� Some international characters may be lost or replaced by substitution characters

� To maintain international characters in these objects,
always use Client, UTF-8 format for both import and
export

You may wish to use international characters as part of map literals, codelists, translate tables, and other mapping

objects. For example, you may want to assign a value that contains special characters into an output field, or define

certain special characters as valid values for a field. WebSphere Data Interchange Client allows you to enter

international characters in these objects just like you would any other characters. However, you need to be careful

when exporting and importing these objects.

The Client can export data in either UTF-8 format or in ANSI format. UTF-8 format is a Unicode encoding, so any

character can be represented using this format. If your objects contain international characters that cannot be

represented using the default system codepage, you should export the mapping objects in UTF-8 format to make

sure you do not lose these special characters.

ANSI format is the local default codepage for the Windows system where the Client is running. Files exported as

ANSI can be transferred to the Server (and translated to EBCDIC if the Server is running on z/OS) and used for a

PERFORM IMPORT command. WebSphere Data Interchange Server does not support import of UTF-8 import

files. The drawback to using ANSI format is that any international characters may not be transferred correctly.

Therefore, it is important that if you are using international characters in your maps and other related database

objects, you should always export and import these objects using the Client, and in UTF-8 format.

IBM Software Group Page 16 of 14

IBM Software Group

16

XML Basic Concepts © 2007 IBM Corporation

MQ considerations – outbound headers

� WebSphere MQ MQMD and RFH2 headers
include a coded character set (CCSID) field

� Identifies the character set or encoding for the data

� Needs to be consistent with the actual data encoding

� WebSphere Data Interchange sets this value

� If no target encoding is specified, or if the CCSID value
cannot be determined from encoding name, the CCSID
will default to MQCCSI_INHERIT

When sending the output data to a WebSphere MQ queue, WebSphere Data Interchange also
generates the MQMD header and optionally the RFH2 header along with the data. These
headers include a coded character set id, or CCSID, which is an integer value that identifies the
character set or encoding for the data. The value in this field should be consistent with the
character set or encoding actually used for the data, or the data may be interpreted incorrectly
by the application that receives the data.

WebSphere Data Interchange uses the target encoding to help determine what value it should
use to set the CCSID field. If no target encoding is specified, or the CCSID cannot be
determined from the target encoding name, the default value MQCCSI_INHERIT is used to
indicate that the data uses the same character set as the queue manager.

IBM Software Group Page 17 of 14

IBM Software Group

17

XML Basic Concepts © 2007 IBM Corporation

MQ considerations – outbound headers (cont)

� If a target encoding is specified:

�The encoding name is looked up in the ENC2CCS translate table.

� Example:

– EncodeTarget property is set to “UTF-8”

ENC2CCS Translate table entry has source value=“UTF-8”, target value=”1208”

– CCSID value will be set to 1208.

�Reverse lookup for the encoding in CCS2ENC translate table.

� Example:

– EncodeTarget property is set to “UTF-8”
CCS2ENC Translate table entry has source value=“1208”, target value=”UTF-8”

– CCSID value will be set to 1208.

�If encoding name is in the format “ibm-nnnn”, use “nnnn” value.

� Example:

– EncodeTarget property is set to “ibm-1208”

– CCSID value will be set to 1208.

If a target encoding is specified using either the EncodeTarget property or the
ENCODETARGET keyword, then the CCSID is determined as follows:

•First, the encoding name is looked up in the ENC2CCS translate table. If it is found, the
translated value is used as the CCSID.

•If the CCSID is not found in the first step, a reverse lookup will be done for the encoding in
CCS2ENC translate table. If this is found, the translated value, which is the source value in the
table entry, is used as the CCSID.

•If the CCSID is still not found, but the encoding name is in the format “ibm-nnnn”, the numeric
part of the value in the encoding name is used as the CCSID.

The examples on this slide help illustrate how each of these steps might be used. If none of
these steps are able to convert the target encoding name to a CCSID value, then the CCSID
value in the MQ headers are set to the default values.

IBM Software Group Page 18 of 14

IBM Software Group

18

XML Basic Concepts © 2007 IBM Corporation

MQ considerations – inbound headers

� CCSID from inbound MQMD and RFH2 headers
can also be used to set the source encoding

� Use special substitution value

� SOURCEENCODE(&MQCCSID)

� If RFH2 header exists, CCSID comes from RFH2

� If no RFH2 header, CCSID comes from MQMD

The CCSID in the MQMD or RFH2 header can also be used to determine the source encoding
when processing data that was received from a WebSphere MQ queue. To do this, the special
value &MQCCSID is used for the SOURCEENCODE keyword.

If the data has an RFH2 header, the CCSID from the RFH2 is used to determine the source
encoding. If not, the CCSID from the MQMD header is used.

IBM Software Group Page 19 of 14

IBM Software Group

19

XML Basic Concepts © 2007 IBM Corporation

MQ considerations – inbound headers (cont)

� The CCSID is converted to an encoding name

� Look up the value in the translate table CCS2ENC.

� Example:

– RFH2 CCSID value = 1208

CCS2ENC translate table entry has source value=“1208”, target value=”UTF-8”

– Value “UTF-8” will be substituted for the SOURCEENCODE value

� The encoding name “ibm-nnnn” will be used, where
“nnnn” is the CCSID.

� Example:

– RFH2 CCSID value is 1208 and value “1208” is not in the CCS2ENC table

– Value “ibm-1208” will be substituted for the SOURCEENCODE value

Once the CCSID is read from the appropriate header, it is converted to an encoding name. The
encoding name is determined as follows:

•First, the CCSID value is looked up in the CCS2ENC translate table. If it is found, the
translated value is used as the encoding name.

•If the CCSID is was not found in the table, the encoding name is set to “ibm-nnnn”, where the
numeric CCSID value is used for the nnnn part of the name.

There are examples on this slide to help illustrate each of these steps.

The converted value will be used as the SOURCEENCODE value and an informational message

will be issued to indicate which encoding name was used.

IBM Software Group Page 20 of 14

IBM Software Group

20

XML Basic Concepts © 2007 IBM Corporation

MQ considerations – Advanced Adapter

� By default, data is converted to the default local code
page when received from MQ

� May result in loss of special characters

� Advanced Adapter defines properties to control this
� In wdi.properties file

� Convert – Controls whether data is converted or not
� yes – Use “get-with-convert” to receive data from MQ

� no – Do not use “get-with-convert” to receive data from MQ

� CCSID – Controls which CCSID to convert data to (if Convert=yes)

� These options may also be specified:
� On the Queue Definition (in the Trigger Data property)

� Process Definition (as User Data)

� Use parentheses when supplied on Queue or Process Definition
� For example: CCSID(1208)

By default the MQ Advanced Adapter receives messages from MQ using the “get -with-convert”
option. This converts the data to the CCSID defined for the queue manager. If the data is in a
different encoding and contains characters that cannot be represented in the default codepage,
then these characters may be lost. For example, if the data comes in as UTF-8 and contains
special characters, but the queue manager CCSID is for US-ASCII, then the special characters
may be lost.

The WDI Advanced Adapter allows you to control this data conversion through the
"wdi.properties" file. Two properties are used to control this:

· The “Convert” property determines if WebSphere MQ conversion tables should be used to
convert the data when it is received, and it is set to either "yes" or "no." The default is
"Convert=yes."

· The "CCSID" option controls which CCSID you want to the data to be converted to, and
overrides the typical conversion to the Queue Manager's Local Code Page. It has a numeric
argument that corresponds to the Coded Character Sets as defined by IBM.

In addition to their use in the wdi.properties file, these options may alternatively be specified:

•On the WebSphere MQ Queue definition in the Trigger Data property

•In the WebSphere MQ Process Definition as User Data.

When specified as part of the WebSphere MQ objects, the values should be in parenthesis

IBM Software Group Page 21 of 14

IBM Software Group

21

XML Basic Concepts © 2007 IBM Corporation

Other considerations - encoding names

�Windows and AIX server uses
International Components for Unicode (ICU)

�Encoding names that are supported by ICU

�Required ICU libraries included with installation

� z/OS server uses iconv() function

�Encoding names that are supported by iconv() function

�Conversions may need to be configured by system

programmer

On Windows and AIX, Websphere Data Interchange server uses International Components for
Unicode, often called ICU, to convert data from one encoding to another. This set of libraries
supports numerous different encodings. Encoding names supported by ICU are generally also
supported by WebSphere Data Interchange on Windows and AIX. The required ICU libraries
are installed as part of the WebSphere Data Interchange installation.

On z/OS, the iconv() function is used for most conversions. Encoding names recognized by the
iconv() function are generally supported by WebSphere Data Interchange on z/OS. Your system

programmer may need to configure some conversions in order for the iconv() function and the
z/OS operating system to recognize them.

IBM Software Group Page 22 of 14

IBM Software Group

22

XML Basic Concepts © 2007 IBM Corporation

Other considerations - restrictions

Some areas do not support international characters

�Batch Utility PERFORM commands and API
control blocks

�Do not use special characters for object names that may
be passed in these commands
� Examples: Trading partner profiles, map names

�Send maps and receive maps

�International characters are only supported for Data
Transformation maps and related processing

�DTDConvert utility does not support international
characters, since only used with send/receive maps

There are some areas of WebSphere Data Interchange that still read and write information using
the default local codepage. These are generally areas where reading and writing the data in a
Unicode format such as UTF-8 or UTF-16 would make the information difficult to use –
especially in a z/OS environment where most editors and viewers could not display the data. In
some cases such as send and receive map processing, the function is primarily for migration
from previous releases, and it was not considered practical to make the changes required to
handle other character encodings.

One area that does not support international characters is the Batch Utility PERFORM command
processing, and similarly the API control blocks that are used to call the translator using the API.
The information in the PERFORM commands and keywords values, and in the API control
blocks, is all specified in the default system code page. This means that any characters outside
this code page cannot be passed as parameters for the commands and API calls. Because of
this, it is a good practice not to use these characters for object names such as trading partner
profile names, map names, and so forth.

The international characters and different encodings are only supported for the Data
Transformation maps and related processing. Send map and receive map processing does not
support international characters. Similarly, since the DTDConvert utility is used only for doing
XML translation with send and receive maps, the DTDConvert utility does not support
international characters either.

IBM Software Group Page 23 of 14

IBM Software Group

23

XML Basic Concepts © 2007 IBM Corporation

Other considerations – restrictions (cont)

� Server reports, print file, event log output are written using
default code page

�Some international characters may be replaced by substitution

characters

�Does not affect the translation output

� XML split

�Special function to process a single XML document as separate

documents - one for each occurrence of an element

�Only encodings “similar” to default codepage allowed

� Most common characters must share the same byte encoding

� UTF-8 and iso-8859-2 would be “similar” to windows-1252

� UTF-16 or any form of EBCDIC would not be similar to windows-1252

Server reports, print file (PRTFILE) messages, and event log output are all written using the
default local codepage. If the data contains international characters that are inserted in these
reports or messages, but cannot be represented in the default code page, substitution
characters may appear in place of those characters. Note that this does not affect the output
image from the translation, but only the text of the reports or messages.

Finally, the “XML split” function has some restrictions on the character encodings that it can
handle. This function allows XML data to be split into multiple XML documents – one document

for each occurrence of a particular repeating element. When using this function, the data can
use a character encoding that is “similar” to the default code page. That is, most common
characters use the same byte encoding as the default code page. For example, encodings such

as UTF-8 and iso-8859-2 would be generally be similar to windows-1252, since they use the
same byte encoding for lowercase characters a-z, uppercase A-Z, digits 0-9, and most
punctuation. (If special characters in the upper range of windows-1252 were used in the

elements used to split the document, the encodings might no longer be considered similar.)

Encodings where the common characters do not share the same byte values would not be

considered similar. For example, UTF-16 or any for of EBCDIC would not be supported if the
default code page was windows-1252.

IBM Software Group Page 24 of 14

IBM Software Group

24

XML Basic Concepts © 2007 IBM Corporation

Summary

�Exchanging data with international trading partners
may require some special considerations

�Multiple ways to identify source, target encodings

� If maps and related objects include international
characters, import and export these in UTF-8
format using Client

�Special options to handle character encodings
when sending to or receiving from WebSphere MQ

�Other considerations and restrictions

In summary, there are some extra requirements you may need to consider when exchanging
data with trading partners in other countries – especially if their native language is not English.
Otherwise, some of the characters in their data may be lost or corrupted.

WebSphere Data Interchange allows multiple ways to identify the source and target encodings
for the data.

If maps and other related objects such as code lists and translation tables contain international

characters, these should be imported and exported in UTF-8 format using the Client. Server
import/export does not support characters outside of the default code page.

There are also some special options that you can use to handle different characters encodings
when sending data to or receiving data from WebSphere MQ.

Finally, there are a few other miscellaneous considerations and restrictions that you should be
aware of when processing different character encodings with WebSphere Data Interchange.

IBM Software Group Page 25 of 14

25

IBM Software Group

© 2007 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS WMQ Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2006. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

Template Revision: 04/25/2006 11:09 AM

XML Basic Concepts

