
ibm.com/redbooks

Draft Document for Review July 31, 2004 4:38 am SG24-5768-00

IBM Eserver p5 Virtualization
Performance Considerations

Ben Gibbs
Frank Berres

Lancelot Castillo
Pedro Coelho

Cesar Diniz Maciel
Ravikiran Thirumalai

Simultaneous Multi-Threaded (SMT)
processor performance

Micro-partitioning performance

Virtual I/O performance

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Performance Considerations in a Shared Processor
LPAR Environment

July 2004

International Technical Support Organization

Draft Document for Review July 31, 2004 4:38 am 5768edno.fm

SG24-5768-00

5768edno.fm Draft Document for Review July 31, 2004 4:38 am

© Copyright International Business Machines Corporation 2004. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (July 2004)

This edition applies to the POWER5 architecture, the IBM eserver p5 systems and Version 5
Release 3, of the AIX operating system.

This document created or updated on July 31, 2004.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xiii.

Note: This book is based on a pre-GA version of a product and may not apply
when the product becomes generally available. We recommend that you
consult the product documentation or follow-on versions of this redbook for
more current information.

Draft Document for Review July 31, 2004 4:38 am 5768TOC.fm
Contents

Figures . vii

Tables . xi

Notices . xiii
Trademarks . xiv

Preface . xv
The team that wrote this redbook. xv
Become a published author . xix
Comments welcome. xix

Chapter 1. Introduction . 1
1.1 Performance overview. 2
1.2 Understanding server performance in general . 3
1.3 Traditional approach . 4
1.4 Micro-partitioning as a game changer . 5

Chapter 2. Hardware and software components . 7
2.1 POWER5. 8
2.2 POWER5 chip overview . 8

2.2.1 Chip organization . 10
2.2.2 Processor Core . 17

2.3 Enhanced SMT features . 22
2.3.1 Dynamic resource balancing (DRB) . 23
2.3.2 Adjustable thread priorities . 24

2.4 Dynamic power management . 27
2.5 Large POWER5 SMPs . 28
2.6 POWER Hypervisor. 35

2.6.1 POWER Hypervisor Support. 37
2.6.2 POWER Hypervisor Design . 46
2.6.3 Performance Considerations. 49

2.7 Partitioning on the IBM Eserver p5. 53
2.8 Micro-partitioning implementation . 54

2.8.1 Types of shared processor partitions . 57
2.8.2 Typical usage of shared processor partitions 60

2.9 AIX 5L Version 5.3 . 63
2.9.1 Introduction . 63
2.9.2 Simultaneous Multi-Threading (SMT) . 64
© Copyright IBM Corp. 2004. All rights reserved. iii

5768TOC.fm Draft Document for Review July 31, 2004 4:38 am
2.9.3 Performance tools . 66
2.9.4 Logical Volume Manager . 81
2.9.5 Partition Load Manager. 83

Chapter 3. Simultaneous Multi-Threading . 89
3.1 Idea behind SMT . 90
3.2 POWER5 SMT implementation. 93
3.3 Software considerations for SMT . 94

3.3.1 Snooze and snooze delay. 95
3.3.2 Process accounting. 95
3.3.3 CPU utilization. 96
3.3.4 SMT aware scheduling . 97
3.3.5 Interrupts . 97
3.3.6 Effective use of adjustable thread priorities 97

3.4 Cache effects due to SMT. 99
3.5 Performance benefits due to POWER5 SMT . 99
3.6 Conclusion. 100

Chapter 4. Virtualization . 101
4.1 Micro-partitioning considerations for performance 102

4.1.1 Micro-partitioning overhead. 102
4.1.2 Simultaneous Multithreading and micro-partitioning 102
4.1.3 Cache architecture and number of virtual processors. 104
4.1.4 SMP locking and number of virtual processors. 108
4.1.5 Memory affinity considerations . 109
4.1.6 Idle partition overhead. 110
4.1.7 Partition size and overhead. 111
4.1.8 Interactions between partitions with high processor usage. 112
4.1.9 Application considerations for shared processor partitions. 113
4.1.10 Guidelines for planning shared processor partitions 118

4.2 Virtualized Input/Output. 127
4.2.1 Introduction . 127
4.2.2 Virtualized I/O and the POWER Hypervisor 128
4.2.3 Virtualized I/O architectural infrastructure . 130
4.2.4 Types of Connections . 133
4.2.5 Shared Logical Resources . 135
4.2.6 The Virtual I/O-Server . 136

4.3 Virtual Ethernet . 137
4.3.1 Introduction . 137
4.3.2 Virtual Switch of the POWER5 Hypervisor 139
4.3.3 Performance Considerations and Measurements. 144
4.3.4 Virtual Ethernet implementation guidelines. 159

4.4 Shared Ethernet Adapter functionality. 160
iv Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768TOC.fm
4.4.1 Introduction . 160
4.4.2 Performance measurements. 162
4.4.3 Implementation guidelines . 168

4.5 Virtual SCSI. 169
4.5.1 Virtual SCSI Structure and Concepts . 170
4.5.2 Virtual SCSI Model Overview . 175
4.5.3 Performance Considerations. 181

Appendix A. Sample level 1 “a.” appendix heading (yHead0Appendix) 183
Sample level 2 heading (yHead1Appendix), new page 184
Sample level 2 heading (yHead2Appendix) . 184

Sample level 3 heading (yHead3Appendix) . 184

Appendix B. Additional material . 185
Locating the Web material . 185
Using the Web material . 185

System requirements for downloading the Web material 186
How to use the Web material . 186

Related publications . 187
IBM Redbooks . 187
Other publications . 187
Online resources . 187
How to get IBM Redbooks . 188
Help from IBM . 188

Index . 189
 Contents v

5768TOC.fm Draft Document for Review July 31, 2004 4:38 am
vi Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768LOF.fm
Figures

2-1 POWER5 processor chip . 9
2-2 High level structure of POWER5 . 10
2-3 L2 cache organization . 13
2-4 L3 Controller and MLD -- high level block diagram 14
2-5 L3 cache organization . 15
2-6 POWER4 (a) and POWER5 (b) system structures 16
2-7 POWER5 instruction pipeline. 17
2-8 POWER5 instruction and data flow . 19
2-9 Thread priority pairs vs. instructions executed per second 26
2-10 Photos taken with thermal sensitive camera while prototype POWER5 27
2-11 POWER5 DCM . 28
2-12 DCM interconnection for a 16 way SMP . 29
2-13 Picture of a POWER5 DCM . 30
2-14 Logical view of the POWER5 MCM . 31
2-15 POWER5 MCM . 32
2-16 POWER5 book. 33
2-17 MCMs interconnected to make a 64 way SMP 33
2-18 POWER Hypervisor . 36
2-19 POWER Hypervisor on AIX 5L and Linux . 37
2-20 lparstat -H command output. 41
2-21 Current memory available for partition usage using HMC 45
2-22 lparstat -h 1 16 command output . 50
2-23 lparstat -i command output . 51
2-24 A system with dedicated and shared processor partitions. 54
2-25 Dispatch wheel for allocating physical processor time to virtual processors
55
2-26 Dispatch wheel for SMT-enabled processors . 56
2-27 Capped partition. 58
2-28 Uncapped partition. 59
2-29 Uncapped partition with less virtual processors than physical processors
60
2-30 3dmon cpu monitoring tw. o LPARs78
2-31 trace GUI viewer - tgv -client . 80
2-32 PLM view using PTX . 84
2-33 PLM management using WebSM . 87
2-34 PLM cpu statistics using WebSM. 87
2-35 PLM memory statistics using WebSM . 88
3-1 Different multithreading models . 92
© Copyright IBM Corp. 2004. All rights reserved. vii

5768LOF.fm Draft Document for Review July 31, 2004 4:38 am
3-2 SMT gains for various workloads. 100
4-1 Effect of an SMT idle thread on shared processor partitions 104
4-2 Affinity relation between virtual and physical processors. 106
4-3 Impact on cache due to number of virtual processors 107
4-4 Measurements of cache effects in different partitions 108
4-5 The effect of multiple virtual processors in overall performance 109
4-6 Performance of an uncapped partition when adding multiple idle partitions
111
4-7 Effect of multiple partitions in a high system utilization 112
4-8 Dispatch latencies for virtual processors . 113
4-9 User distribution during the day in an ERP application server 115
4-10 Processor utilization by the ERP application server 116
4-11 Processor utilization between five partitions with different workloads . 117
4-12 Processing resource consumption for three different applications . . . 124
4-13 Sum of resource consumption for the three applications. 125
4-14 Virtual I/O provided by POWER Hypervisor. 127
4-15 Hypervisor simulated class . 128
4-16 Partition managed Class . 129
4-17 Virtual Ethernet . 137
4-18 Virtual and local adapters on one partition. 138
4-19 TCP/IP Suite of protocols. 138
4-20 Example of two VLANs in a Virtual Ethernet Environment 139
4-21 Flow chart of Virtual Ethernet. 141
4-22 Virtual LAN IO-Adress Structures . 143
4-23 Throughput at variable CPU entitlements and MTU sizes 146
4-24 Throughput with diff. CPU entitlements, MTU size=1500 147
4-25 Throughput with diff. CPU entitlements, MTU size=9000 147
4-26 Throughput with diff. CPU entitlements, MTU size=65394 148
4-27 Throughput moniced to 0.1 Entitlement . 149
4-28 Setup VLAN to VLAN performance, 1 dedicated CPU per LPAR 150
4-29 Setup GB Ethernet to GB Ethernet, 1 dedicated CPU per LPAR 151
4-30 Throughput of Virtual LAN and gigabit ethernet with TCP_STREAM . 152
4-31 CPU consumption with TCP_STREAM, simplex mode 153
4-32 CPU consumption with TCP_STREAM, duplex mode. 154
4-33 Transaction rate at different MTU sizes and 1/20 sessions 155
4-34 Latency at different MTU sizes and 1/20 sessions 156
4-35 Performance gain with SMT, TCP_STREAM 157
4-36 Performance gain with SMT, TCP_RR . 158
4-37 Example of a Virtual I/O-Server configuration for SEA 160
4-38 Sharing a (physical) Ethernet adapter on OSI-Layers 161
4-39 Setup for I/O-Server performance measurements 162
4-40 Throughput of the Virtual I/O-Server . 163
4-41 CPU utilization of the Virtual I/O-Server. 164
viii Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768LOF.fm
4-42 Transaction rates, TCP_RR, one session . 165
4-43 Transaction rates, TCP_RR, 20 sessions . 166
4-44 Latencies, TCP_RR, 1 session . 166
4-45 Latency, TCP_RR, 20 sessions . 167
4-46 AIX 5L Server and Client Partitions . 170
4-47 Reliable Command / Response Transport and LRDMA 171
4-48 Logical Remote Direct Memory Access . 173
4-49 Volume group on Virtual I/O Server . 178
4-50 Using LVM mirroring for virtual SCSI . 180
 Figures ix

5768LOF.fm Draft Document for Review July 31, 2004 4:38 am
x Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768LOT.fm
Tables

2-1 Cache characteristics of the POWER5 processor 11
2-2 POWER5 processor core Rename resources . 21
2-3 Software specified thread priority levels on the POWER5. 24
2-4 Effect of thread priorities on execution resource sharing. 25
2-5 vgtype limits . 81
2-6 ltg and strip valid sizes. 82
4-1 An example of an ERP system requirements 120
4-2 Implementation with separate servers . 120
4-3 Implementation with a partitioned POWER4-based pSeries 650 server121
4-4 Implementation with micro-partitioning . 121
4-5 . 125
4-6 Properties of the required attributes of the /vdevice Node. 131
4-7 Comparing TCE and RTCE . 134
© Copyright IBM Corp. 2004. All rights reserved. xi

5768LOT.fm Draft Document for Review July 31, 2004 4:38 am
xii Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768spec.fm
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2004. All rights reserved. xiii

5768spec.fm Draft Document for Review July 31, 2004 4:38 am
Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
AIX 5LTM

Eserver®
Eserver®
eServerTM

HiperSocketsTM

IBM®
ibm.com®

iSeriesTM

Micro-PartitioningTM

OS/400®
Perform
POWER4TM

POWER5TM

PowerPC®
PR/SMTM

pSeries®

Redbooks
Redbooks (logo) ™
RS/6000®
Tivoli®
TotalStorage®
Virtualization EngineTM

zSeries®

The following terms are trademarks of other companies:

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
xiv Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768pref.fm
Preface

This redbook provides an insight into the performance considerations of
Advanced Virtualization on the IBM eserver p5 platforms. It discusses the major
hardware, software, benchmarks, and various tools that are available.

This redbook is suitable for professionals who want to acquire a better
understanding of the POWER5 architecture and micro-partitioning that is
supported by the IBM eserver p5 platforms. It targets clients, sales and
marketing professionals, technical support professionals, and IBM Business
Partners.

Inside this redbook, you will find:

� A description of the POWER5 microprocessor architecture.
� A description of the POWER Hypervisor.
� An informative review and performance aspects of micro-partitioning.
� A discussion of AIX and Linux support.
� A review of changes to existing performance tools and a look at some new

tools.
� A description and performance aspects of Simultaneous Multi-Threading

(SMT).
� A description and performance issues related to virtualization of Ethernet and

SCSI.

This redbook is intended as an additional source of information that, together
with existing sources referenced throughout this document, enhances your
knowledge of IBM solutions for the UNIX marketplace. It does not replace the
latest marketing materials and tools.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Ben Gibbs is a Senior Consulting Engineer with Technonics, Inc.
(http://www.technonics.com) in Austin, Texas. He has over 20 years of
experience with UNIX-based operating systems. He started working with the AIX
operating sytem in November of 1989. His areas of expertise include
performance analysis and tuning, operating system internals, and device driver
© Copyright IBM Corp. 2004. All rights reserved. xv

http://www.technonics.com

5768pref.fm Draft Document for Review July 31, 2004 4:38 am
development for the AIX operating sytem. He was the project leader for this IBM
Redbook.

Frank Berres is a Senior Architect with SerCon GmbH in Germany. SerCon is an
IBM Company, that is assigned to IBM Business Consulting Services (BCS).
Frank has over 5 years of experience in IT consulting and support on AIX-based
systems. He holds a degree in Electrical Engineering from the University of
Applied Sciences, Bingen, Germany.

Lancelot Castillo is an IBM Certified Advanced Technical Expert – pSeries and
AIX 5L. He works as a pSeries Product Manager at Questronix Corporation, an
IBM Business Partner in Philippines. He has over six years of experience in AIX
and pSeries Servers. He holds a Bachelor’s degree in Electronics and
Communications Engineering from Mapua Institute of Technology. His areas of
expertise include AIX performance tuning and sizing, RS/6000 SP and HACMP.

Pedro Coelho is an IT Specialist with IBM Global Services in Portugal. He has
five years of experience in AIX and Linux in the area of post-sales support and
services. He holds a degree in Computer Science from COCITE, Lisbon,
Portugal. His areas of expertise include HACMP and performance analysis and
tuning. He is also working with IBM Learning Services teaching beginners and
advanced classes on AIX and Linux.

Cesar Diniz Maciel is a Certified IT Specialist with the pSeries division in IBM
Brazil. He has 9 years of experience on AIX and pSeries systems. He holds a
degree in Electrical Engineering from UFMG, Belo Horizonte. He works as a
pre-sales technical support in Brazil for pSeries, AIX and Linux on pSeries. He is
also a Regional Designated Specialist for Latin America for High End systems
and Linux on pSeries. He works for IBM since 1996.

Ravikiran Thirumalai is a Software Engineer at IBM India Software Labs. He
has been in the IT industry for over 6 years. He holds a Bachelor’s degree in
Electrical and Electronics engineering from Bangalore University and a MS in
Software Systems from BITS Pilani. He works for the IBM Linux Technology
Center as a kernel developer for the baseos team. His main areas of interest in
the kernel are SMP scalability, locking algorithms, lockfree techniques and the
VFS.
xvi Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768pref.fm
The team from left to right: Lance Castillo, Cesar Maciel, Pedro Coelho, Frank
Berres, Ravikiran Thirumalai, and Ben Gibbs

Thanks to the following people for their contributions to this project:

Dr. Joel Tendler
IBM Austin

Bret Olszewski
IBM Austin

David Chisholm
IBM Mount Laurel

Jorge D Rodriguez
IBM Austin
 Preface xvii

5768pref.fm Draft Document for Review July 31, 2004 4:38 am
Luc Smolders
IBM Austin

Luke Browning
IBM Austin

Octavian F. Herescu
IBM Austin

Kiet H. Lam|
IBM Austin

Herman D. Dierks
IBM Austin

Sergio Reyes
IBM Austin

Tommy Todd
IBM Atlanta

Stephen Nasypany
IBM Austin

Tony Ramirez
IBM Austin

Larry Brenner
IBM Austin

Sujatha Kashyap
IBM Austin

Bob Kovacz
IBM Austin

Mysore Srinivas
IBM Austin

Claudio Garrido
IBM Brasil

Leonardo Vidal
IBM Brasil
xviii Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768pref.fm
Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493
 Preface xix

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

5768pref.fm Draft Document for Review July 31, 2004 4:38 am
xx Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch01.fm
Chapter 1. Introduction

What is Virtualization? Virtualization is the pooling of information technology (IT)
resources in a way that shields the physical nature and boundaries of those
resources from users.

Why would this be important to me? There are several reasons and some of
those are:

� Reduce costs by increasing asset utilization.

� Re-deploy talent to manage your business, not the infrastructure.

� Rapidly provision new servers.

� Drive new levels of IT staff productivity.

� Simplify server management and operations.

� Communicate more securely with Virtual Ethernet.

The IBM eServer p5 family of servers include powerful new capabilities with
Virtualization Engine system technology such as partioning processors to 1/10th
of a CPU, share processor resources in a pool to drive up utilization, share
physical disk storage and communications adapters between partitions and take
advantage of corss partition workload management.

In the subsequent chapters you will find a indepth discussion about each
component that makes up the IBM Virtualization Engine and some performance

1

© Copyright IBM Corp. 2004. All rights reserved. 1

5768ch01.fm Draft Document for Review July 31, 2004 4:38 am
issues that one must take into consideration. Some of the terminology and topics
include:

POWER5 The POWER5 processor is IBMs latest 64-bit
implementation of the PowerPC AS architecture (Version
2.02). It is binary compatible with all PowerPC and
PowerPC AS application level code. The POWER5 has
been designed for very high frequency operations with
operating frequencies of up to 2.0 GHz.

POWER Hypervisor Supports partitioning and dynamic resource movement
across multiple operating system environments.

Micro-PartitioningTM Enables you to allocate the utilization of a physical
processor to the logical partition.

Virtual LAN Provide network virtualization capabilities that allow you
to prioritize traffic on shared networks.

Virtual I/O Provide the ability to dedicate I./O adapters and devices
to a virtual server, allowing the on-demand allocation and
management of I/O devices.

Capacity-On-DemandAllows system resources to increase overall resource
utilization by virtualizing multiple physical CPUs through
the use of multi-threading.

Simultaneous Multi-Threading (SMT)
Allows applications to increase overall resource utilization
by virtualizing multiple CPUs through the use of
mult-threading.

1.1 Performance overview
Performance tuning is not straight-forward and should be looked upon as a
complex task. It requires a great deal of discipline and exactness. Unless
appropriate tests are used to identify specific bottlenecks within the system it is
difficult to interpret any results. Occasionally performance tuning can be very
frustrating and tedious at times especially when after a great deal of analysis the
results are still inconclusive. Nevertheless, performance tuning can be very
rewarding and provide long term benefits.

An IBM eServer p5 system is subjected to various loads from the partitions. The
load can vary widely depending on the number of applications used and the type
of applications being run. Obviously the number of loads and the type of
applications being run will vary widely over the period of the server’s working life.
Consequently, changes have to be made to the server’s hardware and software
setup to accommodate these changing conditions.
2 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch01.fm
System administrators often refer to any degradation of service as a bottleneck in
the server system, but users who are less aware might simply consider the
server to be running slow or that something is wrong. Bottlenecks need to be
understood and compensated for, if the system administrators are to keep the
users satisfied with performance.

1.2 Understanding server performance in general
Within a server there are limited resources that can affect the performance of a
given system. Each of these resources work together hand-in-hand and they
each are capable of influencing the behavior of one another. If performance
modifications are not carefully administered then the overall effect could be a
deterioration of server performance.

These resources comprise the fundamental subsystems found within a server:

� Central Processing Unit(s) (CPUs)

� Memory

� Disk I/O

� LAN I/O

� Controlling software

Obviously the controlling software in this case is AIX Version 5.3. Efficiency of
the controlling software will maximize the hardware performance. As server
performance is distributed throughout each server component it is essential to
identify the most important factor(s), for example bottlenecks, that will affect the
performance for a particular activity.

Detecting the bottleneck within a server system depends on a range of factors
such as:

1. Server hardware configuration

2. Application software workload

3. Operating system configuration parameters

4. LAN Server software parameters

File servers need fast LAN adapters and fast disk subsystems. In contrast,
database server environments typically produce high CPU and disk utilization
requiring fast processors or multiple processors and fast disk subsystems. Both
file and database servers require large amounts of memory for operating system
caching.
 Chapter 1. Introduction 3

5768ch01.fm Draft Document for Review July 31, 2004 4:38 am
1.3 Traditional approach
Traditionally there was a simplified approach to performance tuning. If the
bottleneck is the processor then a faster processor or more processors could be
installed. An alternative to processor upgrade is to off-load processing
requirements by using workload management techniques. If the bottleneck is
memory then additional memory could be installed. Memory bottlenecks often
cause excessive disk I/O by the operating system. Memory bottlenecks can also
cause high disk utilization, if there is insufficient memory available or disk
caching algorithms are ineffective for a particular application workload. If the
bottleneck is the disk subsystem then either additional disks and/or disk adapters
can be installed, or a specialized high performance disk subsystem could be
used. If the bottleneck is the LAN adapter then a faster LAN interface could be
installed. Another optimization technique that can be employed is to utilize
multiple LAN adapters in the server increasing throughput onto one or multiple
segments.

Before any tuning is actually performed it is worth understanding the framework
within which performance testing is done. A set of simple guidelines needed only
be followed to assist in any type of performance analysis.

There are many trade-offs related to performance tuning that have to be
considered. In order to chose the best set of options it is vital to ensure that there
is a balance between them. The trade-offs are:

Cost vs Performance
There are situations where the only way performance can be improved is by
using more or faster hardware.

Conflicting Performance Requirements
When more than one application is used simultaneously, there may be conflicting
performance requirements.

Speed vs Functionality
Here, for example, resources may be increased to improve a particular section,
but serve as an overall detriment to the system. Using a methodical approach
you can obtain improved server performance, such as by:

� Understanding the factors which can affect server performance, for the
specific server functional requirements and for the characteristics of the
particular system

� Measuring the current performance of the server

� Identifying a performance bottleneck

� Upgrading the component which is causing the bottleneck
4 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch01.fm
� Measuring the new performance of the server to check for improvement

1.4 Micro-partitioning as a game changer
Micro-partioning changes the way we play the game. We still follow the same
rules as to identifying existing or potential bottlenecks, but the remedy can be
different. Virtualization is a flexible, resource model for the on-demand world. The
focus here is more on increasing resource utilization and to respond to changing
workloads. Resources are dynamically allocated, including fractional, on an as
needed basis. Capacity on demand allows the allocation of additional resources
as needed and Workload Management (WLM) allows the optimization of
resources to respond to changing workloads.

In the following chapters, we will look at each of the components that make up
Virtualization in detail. These components are:

� POWER5 architecture

� AIX 5L Version 5.3 support

� Simultaneous Multi-Threading

� Virtual I/O

� Virtual Ethernet

� Virtual SCSI
 Chapter 1. Introduction 5

5768ch01.fm Draft Document for Review July 31, 2004 4:38 am
6 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_01.fm
Chapter 2. Hardware and software
components

This chapter describes the components that constitute a Micro-partitioning
environment. We briefly discuss the hardware, firmware and software players
that make Micro-partitioning possible. The following major topics are discussed in
this chapter:

� POWER5 processor

� POWER Hypervisor™

� Operating systems

2

© Copyright IBM Corp. 2004. All rights reserved. 7

5768ch02_01.fm Draft Document for Review July 31, 2004 4:38 am
2.1 POWER5
The POWER5 processor is IBMs latest 64-bit implementation of the PowerPC AS
architecture (Version 2.02). It is binary compatible with all PowerPC and
PowerPC AS application level code. The POWER5 has been designed for very
high frequency operations with operating frequencies of up to 2.0 GHz. POWER5
boast of a deeply pipelined design with 16 stages for fixed-point register-register
operations, 18 stages for most load and store operations (with L1 data cache
hits), and 21 stages for most floating point operations. The processor exhibits a
speculative superscalar inner core organization with aggressive branch
prediction, out of order issues, register renaming, large number of instructions in
flight and fast selective flush of incorrect speculative instructions and results.
There has been a specific focus on storage latency management; the POWER5
can issue out of order and speculative load operations with support for up to
eight outstanding L1 data cache line misses, hardware or software initiated
instruction prefetching from L2, L3 and memory, hardware initiated data stream
prefetching, and software instruction prefetching based on branch prediction
hints. The POWER5 is built over the POWER4 base and maintains binary and
structural compatibility with POWER4. The identical pipeline structure lets
optimizations designed for POWER4 designs work equally well on POWER5
based systems.

2.2 POWER5 chip overview
The IBM POWER5 chip is a dual core multithreaded processor. It is fabricated
using silicon-on-insulator (SOI) devices and copper interconnect. SOI technology
is used to reduce the device capacitance and increase transistor performance.
Wire resistance is lower in copper interconnects -- resulting in reduced delays in
wire dominated chip timing paths. The chip is implemented using 130 nm
lithography; the chip uses eight metal levels and the die measures 389 mm2. The
chip is made up of 276 million transistors.
8 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_01.fm
Figure 2-1 POWER5 processor chip

List of abbreviations used in Figure on page 9

� FXU -- Fixed point Execution Unit

� ISU -- Instruction Sequencing Unit

� IDU -- Instruction Decoding Unit

� LSU -- Load Store Unit

� IFU -- Instruction Fetch Unit

� FPU -- Floating Point Unit

� MC -- Memory Controller
 Chapter 2. Hardware and software components 9

5768ch02_01.fm Draft Document for Review July 31, 2004 4:38 am
Picture taken from IEEE paper on power5.

2.2.1 Chip organization
A single POWER5 die (chip) contains two identical processor cores. The
POWER5 design implements two-way Simultaneous Multithreading (SMT) on
each of the two processor cores. Figure 2-2 shows the high level structure of
POWER5 based systems. Because of the dual core design, and two SMT
hardware threads per core, a single POWER5 chip appears as a four cpu SMP
system for the operating system.

Figure 2-2 High level structure of POWER5

SMT is a multithreading1 concept, which can greatly improve utilization of the
processor’s hardware resources, resulting in better software performance. While
superscalar processors can issue multiple instructions in a single cycle from a
single hardware thread, SMT processors can issue multiple instructions from
multiple hardware threads in a single cycle. POWER5 provides for two hardware

1 The terminilogy ‘multithreading’ used here refers to the hardware execution threads provided on a
processor core as used in the computer architecture community. It is not same as the software use of
the term.

Processor Processor

L2

Cache

Fabric
Controller

Memory
Controller

Memory

Processor Processor

L2

Cache

Fabric
Controller

Memory
Controller

Memory

L3

Cache

L3

Cache
10 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_01.fm
threads per processor core. Hence, multiple instructions from both the hardware
threads can be issued in a single processor cycle on the POWER5. POWER5
SMT will be discussed briefly later in this chapter.

L1 cache
Each processor core has separate 64 KB L1 instruction cache and a 32 KB L1
data cache. The L1 cache is shared by the two hardware threads of the
processor core. Both the processor cores in a chip share a 1.88 MB unified L2.
The processor chip houses a L3 cache controller which provides for a L3 cache
directory on the chip. However, The L3 cache itself is on a separate Merged
Logic DRAM (MLD) cache chip. The L3 is a 36 MB victim cache of the L2 cache.
The L3 cache is shared by both the processor cores of the POWER5 chip.
Needless to say, the L2 and L3 caches are shared by all the hardware threads of
both processor cores on the chip. Table 2-1 on page 11 lists the cache
characteristics of the POWER5 processor architecture.

Table 2-1 Cache characteristics of the POWER5 processor

Cache
characteristic

L1
Instruction
cache

L1
Data cache

L2
cache

L3
cache

Data type Instructions
only

Data only Instructions
and Data

Instructions
and Data

Size 64KB 32 KB 1.88MB 36MB

Associativity 2-way 4-way 10-way 12-way

Replacement
Policy

LRU LRU 14-bit LRU 15-bit LRU

Line size 128 B 128 B 128 B 256 B
(2 * 128 B --
sectored)

Index Effective
Address

Effective
Address

Physical
Address

Physical
Address

Tags Physical
Address

Physical
Address

Physical
Address

Physical
Address

Inclusivity N/A N/A Inclusive of L1
data cache an
instruction
cache

Not inclusive
of L2 cache
(victim cache
of L2)

Hardware
Coherency

Yes Yes Yes (separate
snoop ports)

Yes (separate
snoop ports)
 Chapter 2. Hardware and software components 11

5768ch02_01.fm Draft Document for Review July 31, 2004 4:38 am
The L1 instruction cache is 2-way set associative with LRU replacement policy.
L1 Instruction cache is also kept coherent with the L2 cache. The L1 instruction
cache is indexed using the effective address bits. The L1 data cache is 4-way set
associative with LRU replacement policy. Effective address is used to index into
the L1 data cache also. The L1 data cache is a store-through design.

L2 cache
The POWER5 L2 cache is accessed by both the cores of the chip. It maintains
full hardware coherence within the system and can supply intervention data to
cores on other POWER5 chips. L2 is an in-line cache. Unlike L1s which are
store-through, L2 is a store-in cache. It is fully inclusive of the two L1 data caches
and L1 instruction caches (one L1 data and instruction cache per core). The 1.88
MB L2 is physically implemented in 3 slices, each of 640 KB size. Hashing is
used to select one of the three slices for a given physical address. Each L2 slice
is again comprised of 512 associative sets called congruence classes. Each
congruence class contains 10 128 B cachelines. Real address bits 48-56 are
used in the 9 bit congruence class address. Physical tag comparison (real
address bits 14-47) are used to determine if the desired cacheline is resident in a
set. Each of these 3 slices have separate L2 cache controllers. Either processor
core of the chip can independently access each L2 controller.

Store policy N/A Store through.
No allocate on
store miss

Store back.
Allocate on
store miss

Store back

Cache
characteristic

L1
Instruction
cache

L1
Data cache

L2
cache

L3
cache
12 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_01.fm
Figure 2-3 L2 cache organization

L3 cache
L3 is a unified 36MB cache accessed by both cores on the POWER5 processor
chip. It maintains full hardware coherence with the system and can supply
intervention data to cores on other POWER5 processor chips. Actually, L3 is a
victim cache of the L2 -- that is, all valid cachelines evicted out of the L2 due to
associativity (victimized) will be cast out to L3. The L3 is not inclusive of L2; the
same line will never reside in both L2 and L3 at the same time. The L3 cache is
implemented off-chip as a separate MLD cache chip. However, the L3 cache
directory and control is on the POWER5 processor chip itself. Having the L3
directory on the processor chip itself helps the processor check the directory
after an L2 miss without experiencing off-chip delays.
 Chapter 2. Hardware and software components 13

5768ch02_01.fm Draft Document for Review July 31, 2004 4:38 am
Figure 2-4 L3 Controller and MLD -- high level block diagram

The 36 MB L3 is split into three identical 12 MB slices on the L3 MLD cache chip.
The same hashing algorithm used to select the L2 slices is used to select the L3
slices, for a given physical address. An L3 slice is comprised of 12-way
set-associative congruence classes (associative sets) . There are 4096
congruence classes which are 2-way sectored (which means the directory
manages two 128B cache lines per entry). Each of the 12 MB slices can be
accessed concurrently. Figure 2-5 on page 15 depicts the L3 cache organization
graphically.
14 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_01.fm
Figure 2-5 L3 cache organization

The L3 cache in POWER5 is on the processor side and not on the memory side
of the fabric as in POWER4. This is well depicted in Figure 2-6 on page 16. This
design lets the POWER5 satisfy L2 cache misses more frequently, with hits on
the off chip 36MB MLD L3, thus avoiding traffic on the interchip fabric.
References to data not on the on chip L2 cause the system to check the L3
cache before sending requests onto the interchip fabric. The L3 operates as a
back door with separate buses for reads and writes that operate at half the
processor speed. Because of higher transistor density of the POWER5
fabrication technology, the memory controller has now been moved on the chip,
eliminating the need for a separate memory controller chip as in POWER4
systems. These architectural changes to the POWER5 have the significant
benefits of reducing latency to the L3 and main memory as well as the number of
 Chapter 2. Hardware and software components 15

5768ch02_01.fm Draft Document for Review July 31, 2004 4:38 am
chips necessary to build a system. The result is higher level of SMP scaling.
Initial POWER5 systems support 64 physical processors.

Figure 2-6 POWER4 (a) and POWER5 (b) system structures

Address translation resources
The POWER5 chip supports a 65 bit virtual address and a 50 bit physical (real)
address. The PowerPC architecture specifies a translation lookaside buffer (TLB)
and a segment lookaside buffer (SLB) to translate the effective address (EA also
referred to as logical address) -- used by software to real address (physical
address) used by the hardware. The processor core contains a unified 1024
entry 4 way set associative LRU TLB (Translation Lookaside Buffer). The TLB is
a cache of recently looked up page table entries. The ERAT caches contain
translations derived from page tables and SLB (Segment Lookaside Buffer). Each
processor core has two 64 entry fully associative SLBs, one per each thread.
Although the ERATs are shared by both the hardware threads of the core, each
ERAT entry has a thread ID identifier since ERAT caches both SLB and TLB, and
SLBs are process specific entries. Each processor core includes a 128 entry,
fully associative, LRU Data Effective to Real Address Translation (D-ERAT)
cache for fast translation of data effective address to physical (real) addresses.
Each D-ERAT entry contains translation information for a 4 KB block of effective
storage (even if this section of storage is translated via a large page translation).
The POWER5 processor core includes a separate 128 entry fully associative
16 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_01.fm
Instruction Effective to Real Address Translation cache (I-ERAT) for fast
translation of instruction effective address to real (physical) address.

2.2.2 Processor Core
The POWER5 processor core is designed to support both SMT and ST (single
threaded) modes. Software (operating systems using hypervisor calls) can switch
the processor from SMT mode to ST mode. Figure on page 17 depicts the
POWER5 instruction pipeline. Each box in the diagram represents a pipeline
stage. The POWER5 pipeline structure is very similar to the POWER4 pipeline
structure. Even the pipeline latencies including penalties for mispredicted
branches, and load to use latencies for L1 data cache hits remain the same on
POWER5 and POWER4. This design lets the software optimizations designed
for POWER4 work equally well on POWER5.

Figure 2-7 POWER5 instruction pipeline.

List of abbreviations used in Figure on page 17

� IF -- instruction fetch

� IC -- instruction cache

� BP -- branch predict

� D0 - D3 -- decode stage zero to three

� Xfer -- transfer

� GD -- group dispatch

IFIF IC BP

IFD0 D1 D2 D3 Xfer GD

MP

MP

MP

MP

ISS

ISS

ISS

ISS

RF

RF

RF

RF

EX

EA

EX

DC

WB

WB

WB

WB

Xfer

Xfer

Xfer

Xfer

F6

Fmt

Xfer

CPCP

In-order-processing Out-of-Order-Processing
Branch Redirects

Instruction Fetch

Interrupts & Flushes

Group Formation and
Instruction Decode

BR
LD/ST

FX

FP
 Chapter 2. Hardware and software components 17

5768ch02_01.fm Draft Document for Review July 31, 2004 4:38 am
� MP -- mapping

� ISS -- instruction issue

� RF -- register file read

� EX -- execute

� EA -- compute address

� DC -- data caches

� F6 -- six stage floating point execution pipe

� FMT -- format data

� WB -- write back

� CP -- group commit

POWER5 processor pipeline
The microprocessor pipeline structure can be subdivided into a master pipeline
and several different execution pipelines. The master pipeline presents
speculative in-order instructions to the mapping, sequencing and dispatch
functions, and ensures an orderly completion of the real execution path. The
master pipeline (in-order-processing) throws away any potential speculative
results associated with mis-predicted branches. The execution pipelines allow
out of order issuing of speculative and non speculative operations. The execution
unit pipelines progress independently from the master pipeline, and one another.

Instruction Fetch stage
Figure 2-8 on page 19 depicts instruction flow on the POWER5. In SMT mode,
the POWER5 core uses two separate instruction fetch address registers (IFAR)
to store the program counter for the two threads. Instructions are fetched every
alternate cycle for each hardware thread (IF -- instruction fetch stage see Figure
on page 17). In ST mode, instructions are fetched from the active thread every
cycle, and the program counter corresponding to that hardware thread is used.
The POWER5 core can fetch a oct-word aligned block of eight instructions per
cycle. The two threads share the instruction cache and the instruction translation
facility (L1 i-cache and I-ERAT). POWER5 also provides for a 4 entry 128B
instruction prefetch queue above the i-cache, and hardware initiated prefetching.
The first two entries of the instruction prefetch queue are ear-marked for thread 0
and the other remaining two entries for thread 1, irrespective of whether the core
is running in SMT or ST mode. In a given cycle, instructions are fetched from the
same thread.
18 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_01.fm
Figure 2-8 POWER5 instruction and data flow

Branch predict stage
The POWER5 scans the eight fetched instructions for branches each cycle (BP
stage). If branch instructions are found, the branch direction is predicted using
three branch history tables (BHT). The BHTs are shared by the two threads, and
two of the BHTs use bimodal and path-correlated branch prediction mechanisms
to predict branches. The third BHT is used as a selector -- to predict which of
these prediction mechanisms is more likely to predict the right direction. The BP
stage can predict all the branches at the same time in the fetched instruction
group, if the instructions fetched contain multiple branches. The POWER5 has
the capability to track up to eight outstanding branches per thread in SMT mode,
and 16 outstanding branches in ST mode. The POWER5 also predicts the target
of a taken branch in the current cycle's eight instruction group. Target of most
branches are calculated from the instruction's address and offset value in the
PowerPC architecture. For predicting targets of subroutine returns, the processor
uses a per thread eight entry link stack (return stack). For predicting targets of
branch to CR (conditional register) instructions, a 32 entry target cache shared
by both the threads is used. If a branch is taken, the processor loads the program
counter with the branch's target address. Else, address of the next sequential
instruction to fetch from is loaded into the program counter.

Branch Prediction

Branch
History
Tables

Return
Stack

Target
CacheProgram

Counter

Instruction
Cache

Instruction
Translation

Instruction
Buffer 0

Instruction
Buffer 1

Alternate

Group Formation,
Instruction Decode,

Dispatch

...

LSU0

FXU0

LSU1

FXU1

FPU0

FPU1

BXU

... Group
Completion

Store
Queue

Data
Cache

L2
Cache

Data
Translation

Dynamic
Instruction
Selection

Shared Issue
Queues

Shared
Execution

Units

Write Shared
Register Files

Read Shared
Register Files

Shared
Register
Mappers

Thread
Priority

CRL

Shared by two threads Resource used by thread 0 Resource used by thread 1
 Chapter 2. Hardware and software components 19

5768ch02_01.fm Draft Document for Review July 31, 2004 4:38 am
Instruction decode and preprocessing
Instructions in the predicted path from BP stage are placed in per thread
instruction fetch buffers (IFBs, also know as instruction fetch queues). This
happens in the D0 stage (see Figure on page 17). POWER5 has two six entry
IFBs in the core -- one for each thread. Each IFB entry can hold 4 instructions.
Up to eight instructions can be placed in one of the two IFBs every cycle. Up to 5
instructions can be taken out from either of the two IFBs every cycle. Based on
the thread priorities, instructions from one of the IFBs are selected, split up into
internal instructions in some cases (instruction cracking) and a group formed.
This corresponds to the D1 to D3 stage. As instructions are later executed out of
order, it is necessary to remember the program order of all instructions in flight.
Instruction groups are formed in order to minimize the logic for tracking large
number of instructions in flight. Groups of these instructions are tracked instead.
Care is taken during group formation so that internal instructions resulting out of
cracking of an instruction do not end up in different groups. All instructions in a
group come from the same thread and are decoded in parallel. Each group can
have a maximum of five instructions.

Group dispatch
The process of moving the instructions belonging to a group formed in the D0 to
D3 into the issue queues is known as group dispatch (GD). Before a group can
be dispatched, the processor must ensure that resources required by the
instructions in the group are available -- each instruction in the group needs an
entry in an appropriate issue queue, each load and store instruction needs an
entry in the load reorder queue and store reorder queue respectively to be able
to detect out of order execution hazards, each dispatched group needs an entry
in the global completion table (GCT). The GCT is used to track the groups of five
instructions formed in the D0-D3 stage. POWER5 allocates GCT entries in
program order for each thread. When all the necessary resources are available
for the group, the group is dispatched (GD stage). Note that the instruction flow
from the IF stage to the GD stage happens in program order.

Register renaming
To facilitate out of order and parallel execution of instructions in a group, the
architected registers are renamed by utilizing a large physical register file
provided on the power5 core. Each register renamed by instructions in a group
need to have a corresponding physical register. The rename mapper serves this
purpose. This happens in the MP stage of the instruction pipeline. Table 2-2 on
page 21 summarizes the rename resources available to the POWER5 core. In
SMT mode, both the threads can dynamically share the physical register files
(rename resources). Instruction-level parallelism exploited for each thread is
limited by the physical registers available for each thread. Certain workloads
such as scientific applications exhibit high instruction level parallelism; To exploit
instruction level parallelism of such applications, the POWER5 makes all the
20 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_01.fm
physical registers available to a single thread in ST mode, allowing higher
instruction level parallelism.

Table 2-2 POWER5 processor core Rename resources

Instruction execution pipeline
After the MP stage, instructions enter the issue queues shared by the two
threads. These issue queues feed the execution pipelines. The POWER5 has:

� two fixed point execution pipelines2

– both capable of basic arithmetic, logical and shifting operations

– both capable of multiplies

– one capable of divides and the other capable of SPR operations

� two six stage load store execution pipelines

� two nine stage floating point execution pipeline (6-stage execution)

– Both capable of the full set of floating-point instructions

– All data formats supported in hardware

� one branch execution pipeline

� one condition register logical pipeline

Resource type Logical size per thread Physical size

GPRs 32 (36a)

a. The POWER5 architecture uses 4 extra scratch registers known as eGPRs and
one additional 4 bit CR field known as eCR, for instruction cracking and grouping.
These are not the architected registers and are not available for the programming
environment

120

FPRs 32 120

XERs 4 fieldsb

b. The XER is broken into four mappable fields and one non-mappable field per
thread

32

LR/CTRs 2 16

CRs 8 (9c) 4-bit fields

c. Eight CR fields plus one non-architected eCR field for instruction racking and
grouping

40

FPCRs 1 20

2 Figure on page 17 does not depict the number of execution units.
 Chapter 2. Hardware and software components 21

5768ch02_01.fm Draft Document for Review July 31, 2004 4:38 am
The following instruction queuing resources (issue queues) are built into the
POWER5 core:

� combined, two 18 entry issue queues to feed the fixed-point and load/store
execution pipelines

� two 12 entry issue queues to feed the floating point execution pipelines

� one 12 entry issue queue for branch execution pipeline

� on 10 entry issue queue for condition register logical execution pipeline

All in all, like the POWER4, the POWER5 has eight execution units, each of
which can issue out of order, with bias towards the oldest operations first. Each
execution unit can issue an instruction each cycle. Each execution unit can
remove an instruction every cycle.

Instructions in the issue queue become eligible for issue when all the input
operands for that instruction become available. The issue logic selects an eligible
instruction from the issue queue and issues it (ISS stage). The issue logic does
not differentiate between instructions from the two threads -- ready instructions
from either of the threads can be issued at any given time, simultaneously by
execution units, thus making the core truly SMT. Upon issue of an instruction, the
input physical registers for that instruction is read (RF stage), executed on the
proper execution unit (EX stage), and results written back to the output physical
register (WB stage). In each load store unit, an adder computes the effective
address to read from or write to (EA stage) and the data cache is subsequently
accessed (DC stage). For load instructions, when data is available, a formatter
selects the correct bytes from the cache line (FMT stage) and writes them to the
register (WB stage).

When all the instructions in a group have executed without generating an
exception, and the group is the oldest of a given thread, the group is committed
(CP stage). The POWER5 can commit two groups per cycle -- one from each
thread. The GCT entry allocated to the group during the GD stage is deallocated
once the group is committed. The POWER5 has a 20 entry GCT shared by the
two threads.

2.3 Enhanced SMT features
All the resources on the POWER5 have been tuned for optimum performance
within the area and power budget considerations. The optimal number of rename
resources such as number of physical GPRs to be put on the core etc., have
been arrived at by experimenting with workloads and varying number of GPRs
for maximum instructions executed per cycle during the course of chip design. To
22 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_01.fm
enhance SMT capabilities and better utilize processor resources, POWER5
feature dynamic resource balancing and adjustable thread priorities.

2.3.1 Dynamic resource balancing (DRB)
The purpose of this feature is to ensure smooth flow of both the threads through
the processor. If either of the hardware threads start hogging the processor
resources, depriving the other thread, the dynamic resource balancing logic
throttles down the thread hogging resources so that the other thread can flow
smoothly without stalling. For example, if one of the hardware threads
experiences multiple L2 data cache misses, dependant instructions can hog the
issue queue slots preventing the other thread from dispatching instructions (refer
to the processor pipeline discussion earlier in this section and Figure 2-8 on
page 19). To prevent such stalls, the DRB logic monitors the miss queues, and if
a particular thread reaches a threshold for L2 cache misses, throttles that thread
down, so that the other thread can progress smoothly. Similarly, one thread could
start using too many GCT entries, preventing the other thread from dispatching
instructions. DRB logic then detects this condition and throttles down the thread
hogging the GCT.

POWER5 DRB could throttle down a thread in three different ways. Choice of the
throttling mechanism is made depending on the situation. The throttling
mechanisms are

1. Reducing the thread’s priority

2. Holding the thread from decoding instructions until resource congestion is
cleared

3. Flushing all the (thread’s) instructions waiting for dispatch and holding the
thread’s decoding unit until congestion clears

Mechanism 1 on page 23 is used in situations where a thread has used more
than a predetermined number of GCT entries.

When number of L2 misses incurred by a thread reach a threshold, mechanism 2
on page 23 is used.

If a long executing instruction of a thread (such as memory ordering instructions
-- e.g., sync) causes hogging of issue queues by instructions of that thread,
mechanism 3 on page 23 is used.

Studies have shown that higher performance is realized when resources are
balanced across the threads using DRB.
 Chapter 2. Hardware and software components 23

5768ch02_01.fm Draft Document for Review July 31, 2004 4:38 am
2.3.2 Adjustable thread priorities
The dynamic resource balancing logic is built into the hardware to ensure
balanced resource utilization by the threads. There are scenarios when software
could know that a process running on a hardware thread might not be doing any
useful work -- such as spinning for a lock, executing the operating system’s idle
loop etc. Sometimes, software might also want to quickly execute a process --
such as a process holding a critical spinlock. For better utilization of processor
resources under such scenarios, the POWER5 features adjustable thread
priorities, where in software can specify if a hardware thread running the process
can have more or less execution resources.

The POWER5 supports eight levels of thread priorities -- 0-7. The thread's
priority is stored in a per-thread status register (TSR is actually a per thread 64
bit register. A three bit field is used to indicate thread priority). A thread priority of
0 indicates that a thread has actually been shut off. Table 2-3 on
page 24summarizes the thread priority numbers and their priorities. Upon power
on or system reset, the TSR thread priority field is reset to priority 4 -- which is
the ‘Normal’ priority. The thread priorities can be changed by either using the or
x,x,x noop or by writing to the thread's TSR using the mtspr instruction. The TSR
can be read using mfspr instruction. If the software running the or x,x,x noop or
mtspr instructions to modify a thread’s priority does not have the privilege level
required, then that instruction is treated as a noop by the processor.

Table 2-3 Software specified thread priority levels on the POWER5

TSR Thread
priority value

Priority Level Privilege level for
software to set
this prioritya

a. Certain fields in a thread control register (TCR) affect the privilege level. This
column assumes recommended setting and setups, which is usually the case with
well behaved software.

Equivalent noop
instruction

0 Thread shut off Hypervisorb -

1 Very low Supervisor or 31,31,31

2 low User or 1,1,1

3 Medium low User or 6,6,6

4 Normal User or 2,2,2

5 Medium high Supervisor or 5,5,5

6 high Supervisor or 3,3,3,

7 Extra high Hypervisor or 7,7,7
24 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_01.fm
Ratio of decode slots allocated to the threads depend on the two thread's priority
as in 1/ 2**(|x-y| + 1) of the decode slots is given to the lower priority thread,
where x and y are thread priorities, and x > 1 and y > 1. So if thread 0 has a
priority of 4 and thread 1 has a priority of 2, then thread 1 gets 1/8 of the total
decoding slots and thread 0 gets 7/8 of the decoding slots. Table 2-4 on page 25
summarizes decode unit division among threads under different thread priority
scenarios.

Table 2-4 Effect of thread priorities on execution resource sharing

Figure 2-9 on page 26 depicts the effects of thread priorities on instructions
executed per cycle. The x-axis entries with commas represent actual thread
priority pairs -- e.g. 0,7 implies thread 0 has been stopped and thread 1 has a
priority of 7). The numbers without commas represent the value of (x-y) where x
is the priority of thread0 and y is the priority of thread1. So a value of 5 on the
x-axis would mean (7,2) or (6,1) for x and y.

b. Hypervisor will be discussed later in subsequent sections. Hypervisor can be
considered highest privilege level followed by supervisor (usually the O/S) and
User applications.

Thread0 priority Thread1 priority Decode slots status

0 0 Stopped

0 1 1 /32 of decode slots given
to thread1 for power
savings. Thread0 is
stopped

0 >1 All of the decode slots go
to thread1

1 1 Both the threads are given
1/32 of the total decode
slots for power savings

1 >1 Thread1 gets all the
execution resources ad
thread0 gets the leftovers.

>1 >1 1 of 2** (|x-y|+1) decode
units for the lower priority
thread and the rest to the
other thread.
 Chapter 2. Hardware and software components 25

5768ch02_01.fm Draft Document for Review July 31, 2004 4:38 am
Figure 2-9 Thread priority pairs vs. instructions executed per second

Idea behind SMT is to increase overall throughput of the system by executing two
threads which may not utilize the processor execution resources to the desired
level, if run individually on the processor (in ST mode). SMT does not speed up
individual threads of execution, but the work done collectively, or overall
throughput goes up. If applications care about real time responses rather than
overall system performance, they are better off running in ST mode. Some
workloads are limited by the processor execution resources (such as technical
workloads that exhibit high instruction level parallelism and consume large
number of rename resources like FPRs), SMT will not help much. The POWER5
provides facilities for the operating systems to dynamically switch from SMT to
ST for such applications and workloads.
26 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_01.fm
2.4 Dynamic power management
Chip power is a very important and limiting factor in modern processor designs.
With SMT, the number of instructions executed per cycle goes up thus increasing
the chip's total switching power. To reduce switching power, POWER5 chips use
a fine grained dynamic clock-gating mechanism to gate off clocks to a local clock
buffer, if the dynamic power management logic knows that the set of latches
driven by that clock buffer will not be used in the next cycle. For example, if the
FPRs will not be read on the next cycle, the dynamic power management logic
detects it and turns off the clocks to the FPR read ports. A minimum amount of
logic implements the clock gating function. Special care has been taken to
ensure clock gating logic does not cause no performance loss and does not
create a critical timing path for the chip.

Figure 2-10 Photos taken with thermal sensitive camera while prototype POWER5
 Chapter 2. Hardware and software components 27

5768ch02_01.fm Draft Document for Review July 31, 2004 4:38 am
In addition to switching power, leakage power has become a performance limiter.
POWER5 uses transistors with low threshold voltage only in critical paths such
as FPR read path.

POWER5 also provides for the software to hint low power modes, when the
thread priorities run at 1 as shown in Table 2-4 on page 25, the POWER5
dispatches instruction utmost once in every 32 cycles saving on power.
Figure 2-10 on page 27 shows the photos taken with thermal sensitive cameras
with and without dynamic power management on prototype POWER5 chips.
From the picture, it is evident that dynamic power management reduces power
consumption below standard single threaded level without power management.

2.5 Large POWER5 SMPs
Somewhat like the POWER4, the POWER5 uses dual chip modules (DCM3s)
and multi chip modules (MCMs) as the basic building blocks for low/midrange
and high end servers respectively.

Figure 2-11 POWER5 DCM

3 DCM has one POWER5 chip and one L3 MLD cache chip, hence the name ‘dual’ chip module. The
DCM has only one POWER5 chip with two cores.
28 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_01.fm
Figure 2-11 on page 28 depicts a POWER5 DCM. This basic building block can
be put together to from a 16 way system as shown in Figure 2-12 on page 29.
The pink boxes represent the dual core POWER5 chip. The light blue boxes
represent the DCM module which houses the POWER5 chip and L3 (purple
box). The gray box represents a drawer. The DCMs can be interconnected to
form a two way, four way , eight way, tweleve way and sixteen way smps with
1,2,4,6 and 8 DCMs respectively. The dark blue boxes represent memory.

Figure 2-12 DCM interconnection for a 16 way SMP

Figure 2-13 on page 30 shows a picture of the POWER5 DCM. The chip to the
left of the reader is the L3 MLD cache chip, and te larger blue chip onto the right
is the POWER5 chip.
 Chapter 2. Hardware and software components 29

5768ch02_01.fm Draft Document for Review July 31, 2004 4:38 am
Figure 2-13 Picture of a POWER5 DCM

Like the POWER4, POWER5 exploits the enhanced distributed switch for
interconnects. All chip interconnects operate at half the processor frequency and
scale with processor frequency.
30 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_01.fm
Figure 2-14 Logical view of the POWER5 MCM

Figure 2-14 on page 31 depicts the logical view of a POWER5 MCM. MCMs are
used as basic building blocks on high end SMPs. MCMs have four POWER5
chips and four L3 cache chips each. Each MCM is a eight-way building block.
Figure 2-15 on page 32 shows a picture of a POWER5 MCM.
 Chapter 2. Hardware and software components 31

5768ch02_01.fm Draft Document for Review July 31, 2004 4:38 am
Figure 2-15 POWER5 MCM

Two POWER5 MCMs can be tightly coupled to form a book as shown in
Figure 2-16 on page 33. These books are interconnected together again to form
larger SMPs upto 64 ways as shown in Figure 2-17 on page 33. In the figure the
light blue box represents a MCM. The MCMs and books can be interconnected to
form a eight way, 16 way , 32 way, 48 way and 64 way smps with 1,2,4,6 and 8
MCMs respectively.
32 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_01.fm
Figure 2-16 POWER5 book

Figure 2-17 MCMs interconnected to make a 64 way SMP
 Chapter 2. Hardware and software components 33

5768ch02_01.fm Draft Document for Review July 31, 2004 4:38 am
34 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_02.fm
2.6 POWER Hypervisor
The technology behind the shared processor on the POWER5™ is provided by a
piece of firmware known as the POWER Hypervisor™. The enhanced layered
code structure of POWER Hypervisor resides in flash memory on the Service
Processor. This firmware performs the initialization and configuration of the
POWER5 processor, as well as the virtualization support required to run up to
254 partitions concurrently on the IBM ̂p5 and IBM ̂i5 servers

The POWER Hypervisor supports many advanced functions compare to the
previous hypervisor, these includes sharing of processors, virtual I/O, high-speed
communications between partitions using Virtual LAN, concurrent maintenance
and allows for multiple operating systems to run on the single system. AIX 5L™,
Linux and i5/OS™ are supported.

With support for dynamic resource movement across multiple environments,
customers can move processors, memory and I/O between partitions on the
system as they move workloads between the three environments.

POWER Hypervisor is the underlying control mechanism that resides below the
operating system itself but above the hardware level. The hypervisor owns all
system resources and creates partitions by allocating these resources and
sharing them.

The layers above the POWER Hypervisor are different for each supported
operating system. See Figure 2-18 on page 36.

For the AIX 5L and Linux operating systems, the layer above the POWER
Hypervisor are similar but the contents are characterized by each operating
system. The layers of code supporting AIX 5L and Linux consist of System
Firmware and Run-Time Abstraction Services (RTAS).
 35

5768ch02_02.fm Draft Document for Review July 31, 2004 4:38 am
Figure 2-18 POWER Hypervisor

System Firmware is composed of Low Level Firmware which is a code that
performs server unique input/output (I/O) configurations and the Open Firmware
which contains the boot time drivers, boot manager, and the device drivers
required to initialize the PCI adapters and attached devices. Run-Time
Abstraction Services consist of code that supplies platform dependent accesses
and can be called from the operating system. These calls are passed to the
POWER Hypervisor that handles all I/O interrupts.

The role of RTAS versus Open Firmware is very important to understand. Open
Firmware and RTAS are both platform-specific software, and both are tailored by
the platform developer to manipulate the specific platform hardware. However,
RTAS is intended to present to access platform hardware features on behalf of
the operating system, whereas Open Firmware need not be present when the
operating system, is running. This frees Open Firmware’s memory to be used by
applications. RTAS is small enough to painlessly coexist with the operating
system and applications.

POWER HYPERVISOR

64-bit RISC HARDWARE

SLICOF / RTAS OF / RTAS

TIMI

PROGRAMS
AIX 5L

PROGRAMS
LINUX

PROGRAMS
i5/OS

POWER HYPERVISOR

64-bit RISC HARDWARE

SLICOF / RTAS OF / RTAS

TIMI

PROGRAMS
AIX 5L

PROGRAMS
LINUX

PROGRAMS
i5/OS
36 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_02.fm
Figure 2-19 POWER Hypervisor on AIX 5L and Linux

For i5/OS, Technology Independent Machine Interface (TIMI) and the layers
above the POWER Hypervisor are still in place. System Licensed Internal Code
(SLIC), however, is changed and enabled for interfacing with the POWER
Hypervisor. The POWER Hypervisor code is based on the iSeries Partition
Licensed Internal Code (PLIC) code that is enhanced for use with the
IBM Eserver i5 hardware. The PLIC is now part of the POWER Hypervisor.

All POWER5-based servers require the use of the POWER Hypervisor. A
Customer can configure the system as a single, large LPAR “Full System
Partition mode” that includes all the resources on the system, but cannot run in
SMP mode without the hypervisor as they could with POWER4 systems. A
POWER5-based server is always in LPAR mode.

2.6.1 POWER Hypervisor Support
The POWER5 processor supports a special form of instructions. These
instructions are exclusively used by enhanced controlling firmware named
POWER Hypervisor. If an operating system instance in a partition requires
access to hardware, it first invokes hypervisor using hypervisor calls [hcall()].
Hypervisor allows privileged access to an operating system instance for
dedicated hardware facilities and includes protection for those facilities in the
processor and memory locations.

Architecturally, the POWER Hypervisor, a component of global firmware, owns
the partitioning model and the resource abstractions that are required to support

P O W E R H Y P E R V IS O R

64 -b it H A R D W A R E P L A T F O R M

SE
R

VI
C

E
PR

O
C

ES
SO

R G L O B A L O P E N
F IR M W A R E /
P AR T IT IO N
M A N A G E R

L O C A L O F R T A S

A IX 5L / L IN U X
H M C

P O W E R H Y P E R V IS O R

64 -b it H A R D W A R E P L A T F O R M

SE
R

VI
C

E
PR

O
C

ES
SO

R G L O B A L O P E N
F IR M W A R E /
P AR T IT IO N
M A N A G E R

L O C A L O F R T A S

A IX 5L / L IN U X
H M C
 37

5768ch02_02.fm Draft Document for Review July 31, 2004 4:38 am
that model. Each partition is presented with the resource abstraction for its
partition and other required information through the Open Firmware Device Tree,
which is created by firmware and copied into the partition before the operating
system is started, In this way, operating systems receive resource abstractions.
They also participate in the partitioning model by making hypervisor calls at key
points in their execution as defined by the model.

The introduction of shared processors didn’t fundamentally change this model.
New virtual processor objects and hypervisor calls have been added to support
shared processor partitions. Actually, the existing physical processor objects
have just been refined, so as not to include physical characteristics of the
processor, since there is not fixed relationship between a virtual processor and
the physical processor that actualizes it. These new hypervisor calls are intended
to support the scheduling heuristic of minimizing idle time.

The hypervisor is entered by the way of three interrupts:

System Reset Interrupt
Hypervisor code saves all processor state by saving the contents in register
(multiplexing the use of this resource with the operating system). The processor’s
stack and data are found by processing the Processor Identification Register
(PIR). The PIR is a read only register. During power-on reset, PID is set to a
unique value for each processor in a multi-processor system.

Machine Check Interrupt
Hypervisor code saves all processor state by saving the contents in register
(multiplexing the use of this resource with the operating system). The processor’s
stack and data are found by processing the Processor Identification Register.

The hypervisor investigates the cause of the machine check. The cause may
either be a recoverable event on the current processor or one of the other
processors in the logical partition. Also the hypervisor must determine if the
machine check have corrupted its own internal state (by looking at the footprints,
if any, that were left in the per processor data area of the errant processor).

System (Hypervisor) Call Interrupt
The hypervisor call [hcall()] interrupt is a special variety of the system call
instruction. The parameter to the hcall() are passed in registers using the
POWERPC Application Binary Interface (ABI) definitions. This ABI specifies an
interface for compiled application programs to system software. In contrast to the
PowerPC ABI, pass by reference parameters are avoided to or from hcall(). This
minimizes the address translation problem pointer parameters would cause.
Input parameters may be indexes. Output parameters may be passed in the
registers and require special in-line assembler code on the part of the caller. The
first parameter in the hypervisor call function table to hcall() is the function token.
38 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_02.fm
The assignment of function token is designed such that a single mask operation
can be used to validate the value to be within the range of a reasonable size
branch table. Entries within the branch table can handle unimplemented code
points. And some of the hcall() functions indicate if the system is in LPAR mode
and which are available, the Open Firmware property is provided in the /rtas
node of the partition’s device tree. The property is present if the system is in
LPAR mode while its value specifies which function sets are implemented by a
given implementation. If the system implements any hcall() of a function set it
implements the entire function set. Additionally, certain values of the Open
Firmware property indicate that the system supports a given architecture
extension to a standard hcall()

The hypervisor routines are optimized for execution speed. In some rare cases,
locks will have to be taken, and short wait loops will be required due to specific
hardware designs. However, if a needed resource is truly busy, or processing is
required by an agent, the hypervisor returns to the caller, either to have the
function retried or continued at a later. The performance class establishes
specific performance against specific hcall() function.

Hypervisor Call Functions
Page Frame Table
Page Frame Table (PFT) access is called using 64-bit linkage conventions. The
hypervisor PFT access functions carefully update a Page Table Entry (PTE) with
at least 64-bit store operations since an invalid update sequence could result in
machine check. The hypervisor protect from checkstop condition by allocating
certain PTE bits for PTE locks and reserved for operating system is to assume
that the PTE is in use.

For logical addressing, an additional level of virtual addresses translation is
managed by the hypervisor. The operating system is not allowed to use the
physical address for its memory this includes main storage, MMIO space,
NVRAM, etc. The operating system sees main storage as regions of contiguous
logical memory. Each logical region is mapped by the hypervisor into a
corresponding block of contiguous physical memory on a specific node. All
regions on a specific system are the same size though different systems with
different amount of memory may have different region sizes since they are the
quantum of memory allocation to partitions. That is, partitions are granted
memory in region size chunks and if a partition’s operating system gives up
memory, it is in units of a full region.

Translation Control Entry
Translation Control Entry (TCE) access hcall()s and take as a parameters in the
Logical I/O Bus Number (LIOBN) which is the logical bus number value derived
from the property that are associated with the particular I/O adapter. TCE is
 39

5768ch02_02.fm Draft Document for Review July 31, 2004 4:38 am
responsible for the I/O address to memory address translation in order to perform
direct memory access (DMA) transfers between memory and PCI adapters. The
TCE tables are allocated in the physical memory.

Processor Register Hypervisor Resource Access
Processor Register Hypervisor Resource Access provides controlled in the write
access services.

Debugger Support hcall()s
Debugger Support hcall()s provide the capability for the real mode debugger to
be able to get its async port and beyond the real mode limit register without
turning on virtual address translation.

Virtual Terminal Support
Hypervisor provides console access to every logical partition without a physical
device assigned. The console emulates a vt320 terminal that can be used to
access partition system using the Hardware Management Console. Some
functions are limited, and the performance cannot be guaranteed because of the
limited bandwidth of the connection between the HMC and the managed system.
A partition’s device tree that contains one or more nodes notifying that is has
been assigned to one or more virtual terminal client adapters. The unit address
of then node is used by the partition to map the virtual device(s) to the operating
system’s corresponding logical representations and notify the partition that the
virtual adapter is a Vterm client adapter. The node’s interrupts property specifies
the interrupt source number that has been assigned to the client Vterm I/O
adapter for receive data.

Dump Support hcall()s
This allow the operating system to dump hypervisor data areas in support of field
problem diagnostic the hcall-dump function set contains the
H_HYPERVISOR_DATA hcall()s. This hcall() is enabled or disabled (default
disabled) via the Hardware Management Console.

Memory Migration Support hcall()
Memory Migration Support hcall() was provided to assist the operating system in
memory migration process. It is the responsibility of the operating system not to
change the DMA mappings referenced by the translation buffer. failure of the
operating system to serialize relative to the logical bus numbers may result DMA
data corruption within the caller’s partition.

Performance Monitor Support hcall()s
The performance registers will be saved when a virtual processor yields or is
preempted. They will be restored when the state of the virtual processor is
restored on the hardware. A bit in one of the performance monitor registers will
40 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_02.fm
enable the partition to specify whether the performance monitor registers count
when a hypervisor call (except yield) is made (MSR[HV]=1). When a virtual
processor yields or s preempted, the performance monitor registers will not
count. This will allow a partition to query the hypervisor to appropriate
information regarding hypervisor code and data addresses.

The lparstat command in AIX 5L Version 5.3 with -H flag will display the partition
data with detailed breakdown of hypervisor time by hcall type. See example
below.

Figure 2-20 lparstat -H command output

H_REGISTER_VPA is a data area registered with POWER Hypervisor by the
operating system for each virtual processor. The VPA is the control area which
contains information used by hypervisor and the operating system in cooperation
with each other.
 41

5768ch02_02.fm Draft Document for Review July 31, 2004 4:38 am
H_CEDE this hcall() is to have the virtual processor, which has no useful work to
do, enter a wait state ceding its processor capacity to other virtual processor until
some useful work appears, signaled either through an interrupt or a prod hcall().

H_CONFER this hcall() allows a virtual processor to give its cycles to one or all
other virtual processors in its partition.

H_PROD this hcall() makes the specific virtual processor “runnable”.

H_ENTER this hcall() adds an entry into the page frame table. PTE high and low
order bytes of the page table contains the new entry.

H_PUT_TCE this hcall() enters mapping of a single 4096 byte page into the
specified TCE.

H_READ this hcall() returns the contents of a specific PTE in registers R4 and
R5.

H_REMOVE this hcall() is for invalidating an entry in the page table.

H_BULK_REMOVE this hcall() is for invalidating up to four entries in the page
table.

H_GET_PPP this hcall() returns the partition’s performance parameters.

H_SET_PPP this hcall() allows the partition to modify its entitled processor
capacity percentage and variable processor capacity weight within limits.

H_CLEAR_MODE this hcall() clears the modified bit in the specific PTE. The
second double word of the old PTE is returned in R4.

H_CLEAR_REF this hcall() clears the reference bit in the specific PTE from the
partition’s node Page Frame Table.

H_PROTECT this hcall() sets the page protects bits in the specific PTE.

H_EOI this hcall() incorporates the interrupt reset function when specifying an
interrupt source number associated with an interpartition logical LA IOA.

H_IPI this hcall() generates an interprocessor interrupt.

H_CPPR this hcall() sets the processor’s current interrupt priority.

H_MIGRATE_DMA this hcall() is extended to serialize the sending of a logical
LAN message to allow for migration of TCE mapped DMA pages.

H_PUT_RTCE this hcall() maps “count” number of contiguous TCEs in an RTCE
to the same number of contiguous IOA TCEs.
42 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_02.fm
H_PAGE_INIT this hcall() initializes pages in real mode either to zero or to the
copied contents of another page.

H_GET_TCE this standard hcall() s used to manage the interpartition logical
LAN IOA’s I/O translations.

H_COPY_RDMA this hcall() copies data from an RTCE table mapped buffer in
one partition to an RTCE table mapped buffer in another partition, with the length
of the transfer being specified by the transfer length parameter in the hcall().

H_SEND_CRQ this hcall() sends one 16 byte to the partner partition’s registered
Command / Response Queue (CRQ). The CRQ facility provides ordered delivery
of messages between authorized partitions.

H_SEND_LOGICAL_LAN this hcall() sends a logical LAN message.

H_ADD_LOGICAL_LAN_BUF this hcall() adds receive buffers to the logical LAN
receive buffer pool.

H_PIC this hcall() returns the summation of the physical processor pool’s idle
cycles.

H_XIRR this hcall() is extended to report the virtual interrupt source number
associated with virtual interrupts associated with an interpartition logical LAN
IOA.

H_POLL_PENDING this hcall() provide the operating system to perform
background administrative functions task, and providing one time implementation
with indication of pending work so that it may more intelligently manage the use
of hardware resources.

H_PURR is a new resource provided for micro-partitioning and simultaneous
multi-threading (SMT), which provides an actual count of tics that the shared
resource is used (per virtual processor, or per SMT thread). In the case of
micro-partitioning, the virtual processor’s PURR tics when the virtual processor is
dispatched onto a physical processor. Therefore, comparisons of elapsed PURR
with elapsed Timebase provide an indication of how much of the physical
processor a virtual processor is getting. The PURR will also count hypervisor
calls made by the partition, with the exception of H_CEDE and H_CONFER. For
improved accuracy, the existing hcall() time stamping should be converted to use
PURR instead of timebase.

Micro-Partitioning Logical Partition Hypervisor Extensions
A new virtual processor is dispatched on a physical processor when one of the
following conditions happens:
 43

5768ch02_02.fm Draft Document for Review July 31, 2004 4:38 am
� The physical processor is idle and a virtual processor was made ready to run
(interrupt or prod).

� The old virtual processor exhausted its time slice (HDERC interrupt).

� The old virtual processor ceded / conferred its cycles.

When one of the above conditions occurs, the hypervisor, by default, records all
the virtual processor architected state including the Time Base and Decrementer
values and sets the hypervisor timer services to wake the virtual processor per
the setting of the decrementer. The virtual processor’s Processor Utilization
Register (PUR) value for this dispatch is computed. The Virtual Processor Area
(VPA) dispatch count is incremented (such that the result is odd). Then the
hypervisor selects a new virtual processor to dispatch on the physical processor
using an implemented dependent algorithm having the following characteristics
given in priority order:

1. The virtual processor is “ready to run” (has not ceded / conferred its cycles or
exhausted its time slice).

2. Ready to run virtual processors are dispatched prior to waiting in excess of
their maximum specified latency.

3. Of the non-latency critical virtual processors ready to run, select the virtual
processor that is most likely to have its working set in the physical processor’s
cache or for other reasons will run most efficiently on the physical processor.

If no virtual processor is “ready to run” at this time, start accumulating the Pool
Idle Count (PIC) of the total number of idle processor cycles in the physical
processor pool.

Virtualized Input / Output
Virtual I/O support is one of the advanced features of the new POWER
Hypervisor. Virtual I/O (VIO) provides a given partition the appearance of I/O
adapters (IOAs) that do not necessarily have direct correspondence with a
physical IOA. Virtual I/O is covered in detail in “Virtualized I/O and the POWER
Hypervisor” on page 128

Memory Considerations
POWER5 processors use memory to temporarily hold information. Memory
requirements for partitions depend on partition configuration, I/O resources
assigned, and applications used. Memory can be assigned in increments of
16MB.

Depending on the overall memory in your system and the maximum memory
values you choose for each partition, the server firmware mush have enough
memory to perform logical partition tasks. each partition has a Hardware Page
44 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_02.fm
Table (HPT). The size of the HPT is based on an HPT ratio and determined by
the maximum memory values you establish for each partition. The HPT ratio is
1/64.

When selecting the maximum memory values for each partition, consider the
following:

� Maximum values affect the HPT size for each partition.

� The logical memory map size of each partition.

Figure 2-21 Current memory available for partition usage using HMC

When you create a logical partition on your managed system, the managed
system reserved an amount of memory to manage the logical partition. Some of
this physical partition is used for hypervisor-page-table translation support. The
current memory available for partition usage in the HMC is the amount of
memory that is currently available to the logical partitions on the managed
system, see Figure 2-21 on page 45. This is the amount of active memory on
your managed system minus the estimated memory needed by the managed
system to manage the logical partitions currently defined on your system.
Therefore, the amount in this field decreases for each additional logical partition
you create.

When you are assessing changing performance conditions across system
reboots, it is important to know that memory allocations might change based on
the availability of the underlying resources. Memory is allocated by the system
 45

5768ch02_02.fm Draft Document for Review July 31, 2004 4:38 am
across the system. Applications in partitions cannot determine where memory
has been physically allocated.

2.6.2 POWER Hypervisor Design
POWER Hypervisor is primarily responsible for affinity in a micro-partitioning
system. The pools of shared physical processors are to be grouped within natural
hardware boundaries, such that all CPUs within the pool have the same affinity
characteristics, at least at some level. Then, the partition is guaranteed to only
execute on that pool of processors, barring events such as a CPU being
GARD’ed off due to predictive failures, and possibly replaced with a spare CPU
from another affinity domain.

The hypervisor will continue to provide affinity domain information in the device
tree for CPUs, which are actually virtual CPUs in a micro-partitioning
configuration. The side effect if micro-partitioning might be limits to the depth of
hierarchy of affinity domain information that can be provided, i.e., instead of
going down to the physical CPU it might stop at the lowest common layer of all
CPUs in the shared pool. POWER Hypervisor will do its best to re-dispatch a
partition to the same physical processor that ran on previously, in order to
maximize cache affinity. If a physical processor is available, the hypervisor will
dispatch a virtual processor to the last processor, the last MCM, etc..

Saved / Restored Registers
The hypervisor will save the following registers when a state is saved for a virtual
processor: GPRs, FPRs, CR, XER, LR, CTR, ACCR, SPRG0, SPRG1, SPRG2,
SPRG3, ASR, SLB state, DAR, DEC, DSISR, SRR0, SRR1, PMCs, MMCR0/1/A,
SDAR, DABR and SDR1.

The Instruction Match Cam (IMC) facility on the POWER4™ processors (in part
used for setting esoteric performance monitoring modes) is not a hypervisor
resource. It does not lend itself to easy virtualization as software cannot read
what was written to the IMC. Hypervisor call support would be required for proper
functioning in shared processor environment.

Preemption of a Virtual Processor
The POWER Hypervisor is responsible for time slicing and managing the
dispatching of the partitions across the physical processors. One of the features
of the POWER4+ and POWER5 which make this possible is the hypervisor
decrementer (HDECR). This is a clock interrupt source utilized by POWER
Hypervisor to preempt a dispatched partition and regain control of the physical
processors. This interrupt will occur even if external interrupts are disabled and
can not be masked by the partition. POWER Hypervisor utilizes this HDECR to
drive its partition dispatcher. So in reality, the hypervisor is managing the
46 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_02.fm
execution of multiple partition images across the same physical resources, just
as an operating system manages the execution of multiple processes / threads
within its partition instance.

The POWER4+ processor does not have a complete support for the hypervisor
decrementer. The SRR0 / SRR1 registers are used to present a HDECR
interrupt to the processor. To avoid loss of partition state, a pending HDECR
interrupt will be held off (by the hardware) for N (programmable hardware value)
cycles if MSR[R1]=0. N will be large enough to allow a partition to safely execute
sequences where SRR0/1 are live without taking HDECR interrupt (and suffering
the corresponding loss of state). this places the requirement that an operating
system use MSR[R1] property to avoid fatal failures that could occur because of
hypervisor preemption of a virtual processor.

POWER5-based server provides complete HDECR support that allow
preemption with a live SRR0/1.

The hypervisor will issue a SYNC instruction on the processor when it preempts
a virtual processor. This ensures that a storage access sequence (in particular
an Memory-Mapped I/O sequence) by the preempted virtual processor is seen
by the mechanisms on the system in the order it was intended. The hypervisor
will also do the equivalent of a dummy stwcx in yield and preemption sequences
to cancel a reservation that may be held by the yielding or preempted virtual
processor.

Cache Invalidations
The Segment Lookaside Buffer SLB (saved when the virtual processor yielded or
was preempted) will be restored on each dispatch of a virtual processor. There is
one SLB per thread (two per processor core). Information derived from the SLB
may also be cached in the instruction and / or data Effective to Real Address
Translation (ERAT) along with information from the Translation Lookaside Buffer
(TLB).

The TLB of a processor will be invalidated every time the partition ID of a virtual
processor switched in on a processor is different from the partition ID of the
virtual processor that last ran on it. The POWER4™ family of processors
provides an instruction to flush the TLB of a processor avoiding the need for a
broadcast of TLB invalidations.

Since the number of partitions exceeds the number of hardware partition IDs,
shared processor partitions may share a hardware partition ID. This can lead to
false invalidations of TLB entries. Since the TLB is flushed in many instances on
a dispatch of a virtual processor dispatch, the false invalidations are not a
concern.
 47

5768ch02_02.fm Draft Document for Review July 31, 2004 4:38 am
When a partition is IPLed in the shared pool, all processors in the pool flush their
Icache prior to switching in a virtual processor from the partition being IPLed.

Hypervisor Dispatching Algorithm
Each shared pool will have its own instantiation of the hypervisor dispatcher. The
hypervisor will use a fixed scheduling window size of T time unit (=10 msec) to
allocate processor cycles and guarantee that each virtual processor receives its
share of the entitlement in timely fashion. If a partition does not use its allocation
of cycles in a scheduling window, it will lose the unused cycles. The minimum
allocation of resource is 1 msec per processor; the hypervisor will calculates
number of msec using the capacity entitlement and the number of virtual
processors for each shared pool. Once capped shared processor has received
its capacity entitlement within a dispatch interval, it becomes not-runnable. An
uncapped partition may get more than its allocation of cycles in a scheduling
window. Virtual processors are time sliced through the use of the hardware
decrementor much like the operating system time slices threads. The hypervisor
decrementer and time base will be used by the hypervisor dispatcher for virtual
processor accounting.

The physical processor resource in a shared pool may become over committed
(with respect to uncapped partitions). A suitable variation of the TFHS (Time
Function History Scheduling) algorithm will be used for making dispatch
decisions when the pool is over committed. The algorithm need some notion of
priority when making scheduling decisions.

Dispatching and Interrupt Latencies
Virtual processors have dispatch latency, since they are scheduled. When a
virtual processor is made runnable, it is placed on a run queue by the Hypervisor,
where it sits until it is dispatched. The time between these two events is referred
to as dispatch latency.

The dispatch latency of a virtual processor is a function of the partition
entitlement and the number of virtual processors that are online in the partition.
Entitlement is equally divided amongst these online virtual processors, so the
number of online virtual processors impacts the length of each virtual processor's
dispatch. The smaller the dispatch cycle the greater the dispatch latency.

Timers have latency issues also. The hardware decrementor is virtualized by the
Hypervisor at the virtual processor level, so that timers will interrupt the initiating
virtual processor at the designated time. If a virtual processor is not running, then
the timer interrupt has to be queued with the virtual processor, since it is
delivered in the context of the running virtual processor.

External interrupts have latency issues also. External interrupts are routed
directly to a partition. When the operating system makes the
48 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_02.fm
accept-pending-interrupt Hypervisor call, the hypervisor, if necessary, dispatches
a virtual processor of the target partition to process the interrupt. The hypervisor
provides a mechanism for queuing up external interrupts that is also associated
with virtual processors. Whenever this queuing mechanism is used, latencies are
introduced.

These latency issues are not expected to cause functional problems, but they
may present performance problems for real time applications. To quantify
matters, the worst case virtual processor dispatch latency is 18 msec, since the
minimum dispatch cycle that is supported at the virtual processor level is 1 msec.
This figure is based on the hypervisor dispatch wheel. It can be easily visualized
by imagining that a virtual processor is scheduled in the first and last portions of
two 10 msec intervals. In general, if these latencies are too great, then clients
may increase entitlement, minimize the number of online virtual processors
without reducing entitlement, or use dedicated processor partitions.

2.6.3 Performance Considerations
The hypervisor does use a small percentage of the system CPU and memory
resources. These overhead in memory resources is associated with the virtual
memory management that will be used for the hypervisor dispatcher, virtual
processor data structures (including save areas for virtual processor) and for
queuing up of interrupts. This should be minor for most workloads, but the impact
increases with extensive amounts of page-mapping activity. Partitioning may
actually help performance in some cases for applications that do not scale well
on large SMP systems by enforcing strong separation between workloads
running in the separate partitions.

The other sources of the performance overhead in the hypervisor are the
following:

� Increase path length

� Dispatching overhead of virtual processors (i.e. saving and restoring state).

� TLB flush when a virtual processor is dispatched.

� Increased misses in a shared processors caches.

The performance overhead associated when using POWER Hypervisor is equal
or less than the fraction of time spent in the previous hypervisor. The overhead is
normally 1-5% compared to running without the hypervisor on POWER4
systems. The overhead is related primarily to rates of I/O and paging, more I/O or
more paging means more time in the hypervisor. From a performance point of
view, there is nothing that you need to fine-tune with the hypervisor. However, it is
important to understand it from a conceptual point of view. Operating system and
applications run inside the logical partition in the same way they run on a
 49

5768ch02_02.fm Draft Document for Review July 31, 2004 4:38 am
stand-alone server or cluster node, so it’s all transparent to the end users when
dealing with the hypervisor. POWER5-based servers cannot run without the
hypervisor, so all Benchmarks Published Results from POWER5 processor
already contain the hypervisor overhead.

The output of lparstat with -h flag will display the percentage spent in hypervisor
(%hypv) and the number of hcalls. Notice from the example below that the %hypv
in relation to entitlement capacity is only around 1% of the system resources.
This shows that the hypervisor consumes a small amount of CPU during this
sample.

Figure 2-22 lparstat -h 1 16 command output

To provide input to the capacity planning and quality of service tools, the
hypervisor reports to an operating system certain statistics, these include the
number of virtual processor that are online, minimum processor capacity that the
operating system can expect (the operating system may cede any unused
capacity back to the system), the maximum processor capacity that the partition
will grant to the operating system, the portion of spare capacity (up to the
maximum) that the operating system will be granted, variable capacity weight,
and the latency to a dispatch via an hcall(). The output of the lparstat with -i flag
command will report the logical partition related information.
50 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_02.fm
Figure 2-23 lparstat -i command output
 51

5768ch02_02.fm Draft Document for Review July 31, 2004 4:38 am
52 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_03.fm
2.7 Partitioning on the IBM Eserver p5
Micro-partitioning is a technology inspired on the zSeries heritage that allows a
partition in a system to have virtualized resources that it can use as the were real
resources. Physical processors and I/O devices have been virtualized enabling
these resources to be shared by multiple partitions.

Continuing the evolution of the partitioning technology on pSeries servers, the
IBM Eserver p5 extends its capabilities by further improving the flexibility in
using partitions. There are two types of partitions in the IBM Eserver p5.
Partitions can have processors dedicated to them, or they can have their
processors virtualized from a pool of shared physical processors. Both types of
partitions can coexist in the same system at a given time.

A dedicated processor partition is much like the partitions used on POWER4
processor based servers, where whole processors are assigned to partitions.
These processors are owned by the partition where they are running and are not
shared with other partitions. Also, the amount of processing capacity on the
partition is limited by the total processing capacity of the processors configured
in that partition, and it cannot go over this capacity (unless you add more
processors inside the partition using a dynamic LPAR operation).

By default, a powered-off logical partition using dedicated processors will have its
processors available to be used by other partitions in the system.

An important difference between dedicated partitions in POWER5 systems and
the partitions in POWER4 systems is the ability to use Virtual Ethernet and
Virtual Storage, although they can still have the physical resources if desired.
Both Virtual Ethernet and Virtual Storage are covered in <xref to VLAN and
VSCSI chapters>.

A shared processor partition differs itself in the sense that physical processors
are abstracted into virtual processors which are then assigned to partitions.
These virtual processor have capacities ranging from 10 percent of a physical
processor, up to a whole processor. A system can therefore have multiple
partitions sharing the same processors, and dividing the processing capacity
among themselves, as shown in Figure 2-24.
 53

5768ch02_03.fm Draft Document for Review July 31, 2004 4:38 am
Figure 2-24 A system with dedicated and shared processor partitions

The virtual processor abstraction is implemented in the hardware and the
POWER Hypervisor. From an operating system perspective, a virtual processor
is indistinguishable from a physical processor from the operating system
perspective. The key benefit of implementing partitioning in the
hardware/firmware is to allow any operating system to run on POWER5
technology with little or no changes. Optionally, for optimal performance, the
operating system can be enhanced to exploit micro-partitioning more in-depth,
for instance by voluntarily relinquishing processor cycles to the POWER
Hypervisor, when they are not needed. AIX 5L version 5.3, the first version of AIX
to support micro-partitioning, includes such optimizations.

There are several advantages associated with this technology including finer
grained resource allocations, more partitions and higher resource utilization.
Partitions running with a certain amount of processing capacity may give back to
the POWER Hypervisor.

2.8 Micro-partitioning implementation
The shared processor partitions are implemented on POWER5-based servers
using the POWER Hypervisor as the abstraction layer between the physical
processors and the virtual processors as seen by the partitions. These virtual
processor objects and hypervisor calls have been added to the existing
partitioning implementation to support shared processor partitions. Actually, the
existing physical processor objects have just been refined, so as not to include
physical characteristics of the processor, since there is not a fixed relationship
between a virtual processor and the physical processor that actualizes it. These

POWER Hypervisor

AI
X

5.
3

AI
X

5.
3

Li
nu

x
AI

X
5.

3
Li

nu
xAIX 5.2

2 CPUs

AIX 5.3

3 CPUs 8 CPUs

Linux

3 CPUs

POWER Hypervisor

AI
X

5.
3

AI
X

5.
3

Li
nu

x
AI

X
5.

3
Li

nu
xAIX 5.2

2 CPUs

AIX 5.3

3 CPUs 8 CPUs

Linux

3 CPUs
54 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_03.fm
new hypervisor calls are intended to support the scheduling heuristic of
minimizing idle time.

A virtual processor can have as little as 10% of the capacity of a physical
processor, and can have its capacity increased up to 100% of a physical
processor. This granularity is implemented by varying the time a virtual processor
is actually running in a physical processor. Each virtual processor gets
dispatched on a physical processor by the POWER Hypervisor for a time that
depends on the number of virtual processors in the system, and the entitled
processor capacity that has been assigned to that partition. The POWER
Hypervisor dispatches all virtual processors in a 10 ms interval, called a dispatch
wheel. Each physical processor has its own dispatch wheel assigned by the
hypervisor. Figure 2-25 illustrates the assignment of virtual processors to a
physical processor.

Figure 2-25 Dispatch wheel for allocating physical processor time to virtual processors

The dispatch wheel works the same way when SMT is turned on for a processor
or group of processors. The two logical processors (related to a single virtual
processor by SMT) are dispatched together whenever the POWER Hypervisor
schedules the virtual processor to run. The amount of time that each virtual
processor run is split between the two logical processors. Figure 2-26 shows a
diagram for a case when SMT is enabled.

virtual CPU 1

virtual CPU
splpar1

Dispatch
Wheel (10ms)

Dispatched

virtual timebase

virtual timebase

virtual timebase

virtual timebase

virtual CPU 2

virtual timebase

virtual CPU 4

virtual timebase

virtual CPU 3

virtual timebase

100 units
physical CPU

timebase
 55

5768ch02_03.fm Draft Document for Review July 31, 2004 4:38 am
Since the amount of time a virtual processor runs depends on the scheduling by
the POWER Hypervisor, the elapsed time as perceived by a processor does not
correspond to the real elapsed time.

The POWER5 processor architecture attempts to deal with these complex issues
by introducing a new processor register that is intended for measuring utilization.
This new register, called Processor Utilization Resource Register (PURR), is
used to approximate the time that a virtual processor is actually running on a
physical processor. The register advances automatically so that the operating
system can always get the current up to date value. The Hypervisor saves and
restores the register across virtual processor context switches to simulate a
monotonically increasing atomic clock at the virtual processor level.

Each hardware thread has a PURR. The hardware increments the PURRs based
on how each thread is using the resources of the processor including the
dispatch cycles that are allocated to each thread. For a cycle in which no
instructions are dispatched, the PURR of the thread that last dispatched an
instruction is incremented. By specifying a PURR per thread instead of a single
PURR per processor, the POWER Hypervisor can measure performance for
each hardware thread separately.

Figure 2-26 Dispatch wheel for SMT-enabled processors

Thread0

purr0

logical CPU5

virtual CPU
splpar1

Dispatch
Wheel (10ms)

Dispatched

virtual timebase

virtual timebase

virtual purr6

virtual timebase

virtual purr0

logical CPU7

virtual purr6

logical CPU1

Thread1

purr1

virtual purr9

logical CPU6

virtual purr6

logical CPU0

virtual CPU
splpar1

virtual timebasevirtual purr1

logical CPU1
virtual proc3

virtual proc3

logical CPU7

virtual purr7

virtual proc5

virtual purr10

logical CPU10

physical proc0
56 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_03.fm
Virtual processors are dispatched if there is a thread waiting to be executed by
that processor. Also, virtual processors on a same partition do not necessarily
get dispatched at the same time. The POWER Hypervisor dispatch mechanism
assures that every virtual processor are dispatched at each 10 ms interval. It
does not specify when in that interval the processors are dispatched, neither
assures that virtual processors in a given partition are dispatched together.

Also, virtual processors that are idle can give the cycles that are not being
needed back to the POWER Hypervisor, so that it can dispatch other virtual
processors and therefore increase the system utilization. In order to do this, the
operating system must be able to call the hypervisor system calls that control this
behavior, as described in <xref to hypervisor chapter and h_calls>

There are 4 logical states that a virtual processor could be in:

Running Currently dispatched onto a physical processor.

Runnable Currently not running, but ready to run. The queue of
runnable virtual processors represents a first-in, first out
(FIFO) queue for selecting the next virtual processor to
dispatch to a physical processor.

Not-Runnable The state of a virtual processor that has released its
cycles either by calling h_cede() or h_confer(). In the cede
case, either an interrupt or an h_prod() call from another
virtual processor makes this virtual processor runnable
again. In the confer case, an interrupt, h_prod() call, or
dispatch cycle granted to the confer targets will make the
virtual processor runnable again.

Entitlement Expired The state of all virtual processors who have received their
full entitlement for the current dispatch window.

2.8.1 Types of shared processor partitions
Shared processor partitions can be of two different types, depending on the
capacity they have of using idle processing resources available on the system.
Like commented before, if a processor donates unused cycles back to the shared
pool, or if the system has idle capacity (because there is not enough workload
running), the extra cycles may be used by some partitions, depending on their
type and configuration.

Capped partition
A capped partition is defined with a hard maximum limit of processing capacity.
That means that it cannot go over its defined maximum capacity in any situation,
unless you change the configuration for that partition (either by modifying the
 57

5768ch02_03.fm Draft Document for Review July 31, 2004 4:38 am
partition profile or by executing a DLPAR operation). Even if the system is idle,
the capped partition may reach a CPU utilization of 100%.

Figure 2-27 shows an example where a shared processor partition is capped at
an entitlement of 9.5 (up to the equivalent of 9.5 physical processors). In some
moments the CPU usage goes up to 100%, and while the machine presents
extra capacity not being used, by design the capped partition cannot use it.

Figure 2-27 Capped partition

Uncapped partition
An uncapped partition has the same definition of a capped partition, except that
the maximum limit of processing capacity limit is a soft limit. That means that an
uncapped partition may eventually receive more CPU cycles than its entitled
capacity.

In the case it is using 100% of the entitled capacity, and there are idle processors
in the shared processor pool, the POWER Hypervisor has the ability to dispatch
virtual processors from the uncapped partitions to use the extra capacity.

In the example we used for the capped partition, if we change the partition from
capped to uncapped, a possible chart for the capacity utilization is the one shown
in Figure 2-28. It still has the equivalent of 9.5 physical processors as its
entitlement, but it an use more resources if required.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time

0

2

4

6

8

10

12

14

16

U
se

d
ca

pa
ci

ty
58 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_03.fm
Figure 2-28 Uncapped partition

The number of virtual processors on an uncapped partition define the largest
capacity it can use from the shared pool. If the amount of virtual processors
configured inside the uncapped partition is equal or more than the number of
physical processors in the shared pool, than the uncapped partition can use the
entire pool for its processing. Otherwise, the uncapped partition is then limited to
a number of physical processors equal to the number of virtual processors.
Figure 2-29 shows a situation when an uncapped partition has 11 virtual
processors configured, and an entitlement of 9.5 physical processors. It is using
more than its entitled capacity, but is limited by the number of virtual processors
configured.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time

0

2

4

6

8

10

12

14

16

U
se

d
ca

pa
ci

ty
 59

5768ch02_03.fm Draft Document for Review July 31, 2004 4:38 am
Figure 2-29 Uncapped partition with less virtual processors than physical processors

Weight for uncapped partitions
You can determine how the POWER Hypervisor should distribute the extra
cycles between different uncapped partitions. When configuring an uncapped
partition on the HMC, you are presented with an option to set the variable
capacity weight. It is a number between 0 and 255 that represents the relative
share of extra capacity that the partition is eligible to receive. For any uncapped
partition, its eligible share is calculated by dividing its own variable capacity
weight by the sum of the variable capacity weights for all uncapped partitions.

2.8.2 Typical usage of shared processor partitions
With fractional processor allocations, more partitions can be created on a given
platform enabling customers to maximize the number of workloads that can be
supported simultaneously. Shared processor partitions enable both optimized
use of processing capacity while preserving the isolation between applications
provided by different operating system images.

There are several scenarios where the usage of micro-partitioning can bring
advantages such as optimal resource utilization, rapid deployment of new
servers and application isolation:

Server ConsolidationConsolidating several small systems onto a large and
robust server brings advantages in management and
performance, usually together with costs reduction. A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time

0

2

4

6

8

10

12

14

16

U
se

d
ca

pa
ci

ty
60 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_03.fm
shared processor system enables the consolidation from
small to large systems without the burden of dedicating
very powerful processors to a small partition. You can
divide the processor between several partitions with the
adequate processing capacity for each one.

Server provisioning With the capacity of sharing a processor and using virtual
devices, a new partition can be deployed rapidly, to
accommodate unplanned demands, or to be used as a
test environment.

Virtual server farms In environments where applications scale with the
addition of new servers, the ability to create several
partitions sharing processing resources is very useful and
contributes for a better use of processing resources by the
applications deployed on the server farm.

There are some considerations when implementing shared partitions, and a
careful planning should be made in order to satisfy the application resource
requirements, so that the system can be efficiently utilized with satisfactory
performance from the application point of view. Section 4.1, “Micro-partitioning
considerations for performance” on page 102 details some considerations when
using micro-partitioning, and provides some guidelines when configuring shared
processor partitions.
 61

5768ch02_03.fm Draft Document for Review July 31, 2004 4:38 am
62 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_04.fm
2.9 AIX 5L Version 5.3
The appropriate version of AIX for POWER5 is AIX 5L v5.3. This means that this
version has modifications to acknowledge the new functionalities of the POWER5
processor. AIX 5L v5.2 is also supported but versions prior to AIX 5L v5.2 are
not.

2.9.1 Introduction
The implementation of the virtual processor abstraction is in the hardware and in
the POWER Hypervisor. From an operating system perspective, a virtual
processor is indistinguishable from a physical processor, unless there is an
enhancement to the operating system to make it aware of the difference.

Optimizations
For the most part, AIX 5L should be able to run and function on a
Micro-Partitioning system with no changes. However, in order to optimize the OS
performance as well as the collective performance of all shared partitions, it is
important for the OS to add some specific Micro-Partitioning optimizations.
These optimizations involve giving up the CPU in the IDLE process so that
another virtual CPU within our partition might use it, or even so that another
partition could use it.

We can call two functions to control those optimizations:

H_CEDE Used to give CPU cycles to the pool.

H_PROD Used to restore CPU cycles to the CPU that has ceded
them.

Binary compatibility
As with every release of AIX, the maintenance of the binary compatibility is a
requirement. In a shared processor LPAR, things like bindprocessor continue to
work, albeit binding to the virtual CPU and not a physical CPU. This aspect could
possibly cause problems for an application or kernel extension, which is
dependent on executing on a specific physical CPU. For example, the AIX
Floating Point Diagnostic Test unit relied on the ability to bind itself to and
execute the FP test unit to completion on each physical CPU in the system.
Another example is the bindintcpu command, which allows an administrator to
bind bus interrupt levels to specific CPUs. In Micro-Partitioning, AIX 5L v5.3
supports it, and will bound interrupts to virtual CPUs, however it will have no
effect on the original intent of this command, which was to control the physical
distribution of interrupts. The impact will be no absolute control over the routing
of interrupts to physical CPUs when running in shared processor mode. We do
not expect to be a significant risk since that type of physical resource
 63

5768ch02_04.fm Draft Document for Review July 31, 2004 4:38 am
management does not make sense in a shared processor environment, and
workloads that require specific distribution of interrupts would probably not be
candidates for running in a Micro-Partitioning environment.

There should also be an impact on third party performance tools due to resulting
inconsistent or erroneous statistics unless those tools become SPLPAR aware.

2.9.2 Simultaneous Multi-Threading (SMT)
On AIX 5L v5.3 with SMT enabled, each hardware thread is supported as a
separate logical CPU.

Metrics Problems
A dedicated partition that is created with one real processor is configured by AIX
5L as a logical 2-way by default. This is independent of the partition type, so a
shared partition with two virtual processors is configured by AIX 5L as a logical
4-way by default. Logically, the only supported kernel in a SMT environment is
the MP.

In traditional CPU utilization, data collection is sample based. There are 100
samples per second sorted into four categories:

User Interrupted code outside AIX 5L kernel.

Sys Interrupted code inside AIX 5L kernel and currently
running thread is not waitproc.

Iowait Currently running thread is waitproc and there is an I/O
pending.

Idle Currently running thread is waitproc and there is no I/O
pending.

Each sample corresponds to a 10ms tic. These were documented and reported
in sysinfo (system-wide) and cpuinfo (per-cpu) structures and in order to
preserve binary compatibility, the mechanism should stay unchanged.

Regarding to performance tools like vmstat, iostat or sar, they would convert tic
counts from sysinfo into utilization percentages for machine/partition. Other tools
like sar -P ALL and the topas hot cpu section there would be a conversion of tic
counts from cpuinfo into utilization percentages for a processor/thread.

This, of course, affects greatly on the metrics. Traditional utilization metrics are
misleading because they think we have two physical processors when in fact we
only have one. As an example, one thread 100% busy and one thread idle would
result in 50% utilization but the physical processor is really 100% busy. This is
64 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_04.fm
similar to what happened with HMT and the same problem exists with
hyperthreading.

Processor Utilization Resource Register
In order to solve these problems there's a new register implemented by Power5,
the Processor Utilization Resource Register also know as PURR. Each thread
has its own PURR. The units are the same as the timebase register and the sum
of the PURR values for both threads is equal to timebase register.

The PURR increments measure instruction dispatch cycles. There is a different
way to collect the data. Each thread collects 100 utilization samples per second,
which will still be collected in per-logical processor cpuinfo structures (for binary
compatibility), but additional state-based PURR-based metrics will be collected
in new structures and sorted in the same four categories. This way at each cycle,
only one of the two PURRs gets incremented. The displayed %user, %sys,
%idle, %wait will now be calculated using the PURR-based metrics. Using the
previous example where one thread is 100% busy and the other is idle then
reported utilization would no longer be 50% but the correct 100%. This is
because one thread would receive (almost) all the PURR increments, the other
(practically) none, meaning 100% of PURR increments would go into the %user
and %sys buckets. This is a more reasonable indicator of the split of the work
between the two threads. Unfortunately, this hides the SMT gain.

New metrics
We now show the new metrics on AIX 5L v5.3 with SMT. We have two different
times to measure: the thread’s CPU time and the elapsed time. For the first, we
use thread's PURRs, which are now virtualized. To measure the elapsed time we
still use the Timebase.

For physical resource utilization metric for a logical processor we use

(delta PURR/delta TB)

Represents the fraction of the physical processor
consumed by a logical processor

(delta PURR/delta TB)*100 over an interval

Represents the percentage of dispatch cycles given to a
logical processor

Using PURR-based samples and entitlement, we calculate the “physical” CPU
utilization metrics. As an example we have

%sys = (delta PURR in system mode/entitled PURR)*100

 where entitled PURR = ENT*delta TB and ENT is entitlement in number of
processors (entitlement/100).
 65

5768ch02_04.fm Draft Document for Review July 31, 2004 4:38 am
When we need to know how much physical processor is being consumed (PPC)
we use sum(delta PURR/delta TB) for each logical processor in a partition. The
result is in decimal number of processors.

We also may need the percentage of entitlement consumed. For that we just take
(PPC/ENT)*100.

Another useful metric is the available pool of processors. Taking PIC as the Pool
Idle Count, which represents clock ticks where PHYP was idle, that is, all
partition entitlements are satisfied and there is no partition to dispatch, then we
have:

(delta PIC/delta TB)

This, also, results in decimal number of processors.

Logical Processor Utilization is useful to figure out if we should add more virtual
processors to a partition and we calculate it by summing the old 10ms-tic-based
%sys and %user

There are two other usages for the PURR. The first is the measurement of the
relative SMT split between threads and is just the ratio purr0/purr1. To know the
fraction of time partition1 ran on a physical processor, i.e. the relative amount of
processing units consumed use (purr0+purr1)/timebase0.

Priorities
Normally, AIX 5L maintains sibling threads at the same priority but will boost or
lower thread priorities in a few key places to optimize performance. AIX 5L lowers
thread priorities, when the thread is doing non-productive work spinning in the
idle loop or on a kernel lock. When a thread is holding a critical kernel lock, AIX
5L boosts the thread priorities. These priority adjustments do not persist into user
mode. AIX 5L does not consider a software thread is dispatching priority, when
choosing its hardware thread priority.

There where also made several scheduling enhancements to exploit SMT. For
example, work will be distributed across all primary threads before work is
dispatched to secondary threads. The reason for this enhancement is that the
performance of a thread is best when its sibling thread is idle. AIX 5L also
considers thread affinity in idle stealing and periodic run queue load balancing

2.9.3 Performance tools
Traditional utilization metrics are misleading which means that the old tools are
not useful anymore. They need to be changed.

We also need to be measure the new features.
66 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_04.fm
New text based tools
Some new text tools are useful for performance and tuning.

smtctl
This first tool serves the purpose of controlling SMT. To turn it off or on, whether
at boot time or immediately you can use:

smtctl [-m { off | on } [{ -boot | -now }]]

When you enter the command without any flags it returns information on the
status of SMT on your system.

Example 2-1 smtctl information

smtctl

This system is SMT capable.

SMT is currently enabled.

SMT boot mode is not set.

Processor 0 has 2 SMT threads
SMT thread 0 is bound with processor 0
SMT thread 1 is bound with processor 0

lparstat
lparstat is a tool that can show the configuration settings and the performance
settings at the partition level. Its usage is:

lparstat { -i | [-H | -h] [Interval [Count]] }

It has three modes of operation:

information (-i) For the configuration setting of the lpar

POWER Hypervisor (-H)

For detailed information on POWER Hypervisor calls

monitor which is the default

Example 2-2 lparstat information

lparstat -i
Node Name : p5_1test2
Partition Name : Test2_AIX_0425A
 67

5768ch02_04.fm Draft Document for Review July 31, 2004 4:38 am
Partition Number : 3
Type : Shared-SMT
Mode : Uncapped
Entitled Capacity : 30
Partition Group-ID : 32771
Shared Pool ID : 0
Online Virtual CPUs : 1
Maximum Virtual CPUs : 6
Minimum Virtual CPUs : 1
Online Memory : 512 MB
Maximum Memory : 1024 MB
Minimum Memory : 256 MB
Variable Capacity Weight : 128
Minimum Capacity : 10
Maximum Capacity : 60
Capacity Increment : 1
Maximum Dispatch Latency : 13999999
Maximum Physical CPUs in system : 6
Active Physical CPUs in system : 2
Active CPUs in Pool : -
Unallocated Capacity : 0
Physical CPU Percentage : 30.00%
Unallocated Weight : 0
Minimum Virtual Processor Required Capacity: 10

The next example shows the use of lparstat to show the POWER Hypervisor
calls.

Example 2-3 lparstat POWER Hypervisor

lparstat -H

System configuration: type=Shared mode=Uncapped smt=On lcpu=2 mem=512 psize=-
ent=0.30

 Detailed information on Hypervisor Calls

Hypervisor Number of %Total Time %Hypervisor Avg Call Max Call
 Call Calls Spent Time Spent Time(ns) Time(ns)

remove 2 0.0 5.3 497 512
read 0 0.0 0.0 1 0
nclear_mod 0 0.0 0.0 1 0
page_init 9 0.0 50.1 1040 2681
clear_ref 0 0.0 0.0 1 0
protect 0 0.0 0.0 1 0
put_tce 0 0.0 0.0 1 0
xirr 0 0.0 0.0 1 0
eoi 0 0.0 0.0 1 0
68 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_04.fm
ipi 0 0.0 0.0 1 0
cppr 0 0.0 0.0 1 0
asr 0 0.0 0.0 1 0
others 0 0.0 0.0 1 0
enter 11 0.0 28.8 489 541
cede 0 0.0 0.0 1 0
migrate_dma 0 0.0 0.0 1 0
put_rtce 0 0.0 0.0 1 0
confer 0 0.0 0.0 1 0
prod 0 0.0 0.0 1 0
get_ppp 1 0.0 13.2 2463 2463
set_ppp 0 0.0 0.0 1 0
purr 0 0.0 0.0 1 0
pic 1 0.0 2.6 492 492
bulk_remove 0 0.0 0.0 1 0
send_crq 0 0.0 0.0 1 0
copy_rdma 0 0.0 0.0 1 0
get_tce 0 0.0 0.0 1 0
send_logical_lan 0 0.0 0.0 1 0
add_logicl_lan_buf 0 0.0 0.0 1 0

In the monitor mode, lparsat shows the CPU utilization in the usual manner
(%user, %sys, %idle, %wait). Optionally, it also shows the percentage spent in
POWER Hypervisor (%hypv) and number of hcalls (hcalls). There are additional
shared mode only metrics like:

physc Physical Processor Consumed

%entc Percentage of Entitlement Consumed

%lbusy Logical CPU Utilization

app Available Pool Processors

vcsw Number of virtual context switches which are the virtual
processor hardware preemptions

phint Number of phantom interrupts that are the interrupts
received for other partitions

Example 2-4 lparstat monitoring

lparstat 2 5

System configuration: type=Shared mode=Uncapped smt=On lcpu=2 mem=512 psize=-
ent=0.30

%user %sys %wait %idle physc %entc lbusy app vcsw phint
----- ---- ----- ----- ----- ----- ------ --- ---- -----
 69

5768ch02_04.fm Draft Document for Review July 31, 2004 4:38 am
 3.0 11.5 1.8 83.6 0.05 16.7 5.0 - 586 8
 15.6 76.9 0.6 7.0 0.99 329.1 89.2 - 707 296
 15.6 77.2 0.0 7.2 1.00 333.2 90.8 - 715 285
 15.6 77.0 0.0 7.4 0.74 245.2 76.5 - 861 220
 0.0 0.3 0.0 99.7 0.00 0.8 0.0 - 574 0

mpstat
One other tool shows detailed logical processor information. This is the mpstat
tool. It can show up to 29 new metrics (when using -a option). The default mode
shows:

� Utilization metrics (%user, %sys, %idle, %wait)

� Major and minor page faults (with and without disk I/O)

� Number of syscalls and interrupts

� Dispatcher metrics namely the number of migrations, voluntary and
involuntary context switches, logical processor affinity (percentage of
redispatches inside MCM), and the run queue size

� Fraction of processor consumed (SMT or shared mode only)

� Percentage of entitlement consumed (shared mode only)

� Number of logical context switches (shared mode only) meaning the
hardware preemptions

Example 2-5 mpstat monitoring

mpstat 2 2

System configuration: lcpu=2 ent=0.3

cpu min maj mpc int cs ics rq mig lpa sysc us sy wa id pc %ec lcs
 0 0 0 0 58 82 38 1 0 100 57 26 29 0 45 0.00 0.6 288
 1 0 0 0 340 0 0 0 0 - 0 0 22 0 78 0.00 0.4 288
 U - - - - - - - - - - - - 0 99 0.30 99.0 -
ALL 0 0 0 398 82 38 1 0 100 57 0 0 0 100 0.00 1.0
288

-
 0 0 0 0 57 63 29 1 1 100 30 5 37 0 58 0.00 0.4 275
 1 0 0 0 335 2 1 0 1 100 0 0 27 0 73 0.00 0.3 278
 U - - - - - - - - - - - - 0 99 0.30 99.2 -
ALL 0 0 0 392 65 30 1 2 100 30 0 0 0 100 0.00 0.8
276
70 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_04.fm
The most important options we can use with mpstat are:

-d Shows detailed software and hardware dispatchers'
metrics.

-i Shows detailed interrupt metrics.

-s Shows SMT utilization.

Example 2-6 mpstat SMT utilization

mpstat -s 2 2

System configuration: lcpu=2 ent=0.3

 Proc0
 0.35%
 cpu0 cpu1
 0.21% 0.14%
--
 Proc0
 0.29%
 cpu0 cpu1

Modified text based tools
Due to SMT, Micro-Partitioning and the ability to dynamically change some
parameters it was necessary to make some changes to the old tools.

vmstat, iostat and sar automatically use new PURR-based data and formula for
%user, %sys, %wait and %idle if SMT is on or if you are in a shared processor
environment.

Example 2-7 vmstat monitoring

vmstat 2 3

System configuration: lcpu=2 mem=512MB ent=0.30

kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------------------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa pc ec
 0 0 59358 52711 0 0 0 0 0 0 1 30 132 0 0 99 0 0.00 1.5
 0 0 59358 52711 0 0 0 0 0 0 0 8 137 0 0 99 0 0.00 0.9
 0 0 59358 52711 0 0 0 0 0 0 0 13 133 0 1 99 0 0.00 1.6
 71

5768ch02_04.fm Draft Document for Review July 31, 2004 4:38 am
In addition, in this kind of environment it automatically adds two new columns:
Physical Processor Consumed (pc or physc) by the partition and Percentage of
Entitlement Consumed (pec or %entc) by the partition, which can go as high as
1000% for uncapped partitions.

Regarding iostat only, there is a new way to look at asynchronous I/O. You can
either check the statistics of “legacy” asynchronous I/O or Posix asynchronous
I/O. You can use several flags:

-A Shows CPU utilization and asynchronous I/O statistics.

-q Shows AIO individual queues and their request counts.

-Q Shows mounted filesystems and their associated AIO
queue and request counts.

-P Is similar to -A option, but for the POSIX AIO extension
data.

Example 2-8 iostat monitoring

iostat 2 2

System configuration: lcpu=2 drives=2 ent=0.20

tty: tin tout avg-cpu: % user % sys % idle % iowait
 physc % entc
 0.0 26.1 27.2 0.7 72.1 0.0
 0.00 31.6

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk1 0.0 0.0 0.0 0 0
cd0 0.0 0.0 0.0 0 0

tty: tin tout avg-cpu: % user % sys % idle % iowait
 physc % entc
 0.0 191.3 26.1 0.7 73.2 0.0
 0.00 30.2

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk1 0.0 0.0 0.0 0 0
cd0 0.0 0.0 0.0 0 0

When using -A or -P, new columns replace the tty columns:

avgc Average global non fastpath AIO request count per
second for the specified interval.
72 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_04.fm
avfc Average fastpath request count per second for the
specified interval.

maxg Maximum global non fastpath AIO request count since the
last time it fetched this value.

maxf Maximum fastpath request count since the last time it
fetched this value.

maxr Maximum AIO requests allowed on queue.

Example 2-9 iostat “legacy” AIO

iostat -A 2 3

System configuration: lcpu=2 drives=2 ent=0.30

aio: avgc avfc maxg maif maxr avg-cpu: %user %sys %idle %iow physc %entc
 0 0 0 0 0 0.0 0.4 99.6 0.0 0.0 1.0
hdisk1 0.0 0.0 0.0 0 0
cd0 0.0 0.0 0.0 0 0
 0 0 0 0 0 0.0 0.4 99.6 0.0 0.0 1.0
hdisk1 0.0 0.0 0.0 0 0
cd0 0.0 0.0 0.0 0 0

While the iostat command is running for Count of iterations and if there is a
change in system configuration that affects the output of iostat command, it prints
a warning message about the configuration change. It then continues the output
after printing the updated system configuration information and the header.

Some system resource is consumed in maintaining disk I/O history for the iostat
command. Use the sysconfig subroutine, or the System Management Interface
Tool (SMIT) to stop history accounting.

When looking at the -P ALL (logical processors view) option of the sar command
with SMT on or in shared mode, it shows a new column: Physical Processor
Fraction Consumed (physc) (delta PURR/delta TB). This column shows the
relative SMT split between processors, i. e., shows the measurement of fraction
of time a logical processor was getting physical processor cycles. When running
in shared mode, sar adds an additional new column automatically called the
Percentage of Entitlement Consumed (%entc) which is ((PPFC/ENT)*100). This
gives relative entitlement consumption for each logical processor and allows
system average utilization calculation from logical processor utilization. The
option -d makes avwait, avserv and avque columns become “real”. avque
changes from an instantaneous count of “in flight” requests to a real average of
the number of requests waiting to be sent to the adapter. avserv becomes the
average time a request took before coming back from the adapter and avwait is
the average time a request spent waiting to be sent to the adapter.
 73

5768ch02_04.fm Draft Document for Review July 31, 2004 4:38 am
Example 2-10 sar -P ALL

sar -P ALL 2 2

AIX sq1test1 3 5 00CDDEDC4C00 06/23/04

System configuration: lcpu=2 ent=0.30

11:55:18 cpu %usr %sys %wio %idle physc %entc
11:55:20 0 0 6 0 94 0.00 0.7
 1 16 60 0 25 0.00 0.9
 U - - 0 98 0.30 98.4
 - 0 1 0 99 0.00 1.6
11:55:22 0 0 7 0 93 0.00 0.4
 1 3 64 0 33 0.00 0.7
 U - - 0 99 0.30 98.9
 - 0 0 0 100 0.00 1.1

Average 0 0 6 0 94 0.00 0.6
 1 10 61 0 29 0.00 0.8
 U - - 0 99 0.30 98.6
 - 0 1 0 99 0.00 1.4

Regarding topas we have a modified screen, the main screen, and a new one
dedicated to LPAR. For the main screen we get the new metrics applied and so
CPU utilization is calculated using new PURR-based data and formula when
running in SMT or shared mode. Topas adds them automatically when running in
shared mode. The new cpu section metrics on physical processing resources
consumed are:

Physc The amount consumed in fractional number of processors

%Entc The amount consumed in percentage of entitlement
74 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_04.fm
Example 2-11 topas main screen

Topas Monitor for host: sq1test1 EVENTS/QUEUES FILE/TTY
Mon Jun 28 16:13:56 2004 Interval: 2 Cswitch 28623 Readch 165.2M
 Syscall 103.0K Writech 165.1M
Kernel 71.0 |#################### | Reads 50690 Rawin 0
User 4.7 |## | Writes 50637 Ttyout 208
Wait 16.1 |##### | Forks 7 Igets 0
Idle 8.2 |### | Execs 7 Namei 969
Physc = 0.30 %Entc= 100.0 Runqueue 2.0 Dirblk 0
 Waitqueue 1.5
Network KBPS I-Pack O-Pack KB-In KB-Out
en0 0.4 6.0 1.0 0.3 0.5 PAGING MEMORY
lo0 0.0 0.0 0.0 0.0 0.0 Faults 696 Real,MB 511
 Steals 136 % Comp 56.7
Disk Busy% KBPS TPS KB-Read KB-Writ PgspIn 0 % Noncomp 44.1
hdisk1 98.2 627.3 86.4 0.0 1264.0 PgspOut 5 % Client 46.5
hdisk0 85.3 341.4 72.5 504.0 184.0 PageIn 70
cd0 0.0 0.0 0.0 0.0 0.0 PageOut 112 PAGING SPACE
 Sios 183 Size,MB 512
Name PID CPU% PgSp Owner % Used 8.6
dd 581878 9.9 0.1 root NFS (calls/sec) % Free 91.3
dd 491566 2.3 0.1 root ServerV2 0
errdemon 147540 0.2 0.6 root ClientV2 0 Press:
backbynam 417962 0.1 0.2 root ServerV3 0 "h" for help
restbynam 458804 0.1 1.0 root ClientV3 0 "q" to quit

The new LPAR screen is accessible from -L or the L command. It splits the
screen in an upper section, showing a subset of lparstat metrics, and a lower
section that shows a sorted list of logical processor with mpstat columns. The
%hypv and hcalls give you the percentage of time in POWER Hypervisor and
number of calls made. The pc is the fraction of physical processor consumed by
a logical processor. When in shared mode there are additional metrics:

Poolsize Number of processors in LPAR pool this partition belongs

App Available pool processors

Physc Number of physical processor(s) consumed

%entc Percentage of entitlement consumed

%lbusy Logical CPU utilization

lcsw and vcsw Logical and virtual context switches

phint Number of phantom interrupts
 75

5768ch02_04.fm Draft Document for Review July 31, 2004 4:38 am
Example 2-12 topas -L

Interval: 2 Logical Partition: Test1_AIX_0425A Wed Jun 23 17:08:51 2004
Psize: 0 Shared SMT ON Online Memory: 512.0
Ent: 0.30 Mode: Capped Online Logical CPUs: 2
Partition CPU Utilization Online Virtual CPUs: 1
%usr %sys %wait %idle physc %entc %lbusy app vcsw phint %hypv hcalls
 4 10 0 86 0.2 69.3 14.25 0.00 8152 304 0.0 0
===
LCPU minpf majpf intr csw icsw runq lpa scalls usr sys _wt idl pc lcsw
Cpu0 0 0 1822 1 1 1 100 0 0 13 0 87 0.05 3457
Cpu1 0 0 2291 5697 2846 429 100 33471 23 48 0 29 0.16 4695

Another tool that needed modification was the trace/trcrpt. On a SMT
environment, trace can optionally collect PURR register values at each trace
hook and trcrpt can display elapsed purr. Trace has also new trace hook marks
phantom interrupts and new preemption hooks mark undispatched time to
support the shared processor environment. All trace based tools will adjust cpu
times using preemption hook. In addition, most hcalls are traceable. This means
they will appear in trcrpt output.

curt and splat can optionally use the PURR values to calculate cpu times on a
SMT environment. For splat the -p option specifies the use of the PURR
register. curt shows physical affinity and phantom interrupt statistics when in a
shared processor environment. It also shows the hcall summary reports similar
to system calls reports, the number of preemptions, and the number of H_CEDE
and H_CONFER hypervisor calls for each individual CPU. There are new NFS
reports in curt. It now adds new category in System and Processor Summary
reports, introduces new type of kproc (N), and marks all NFS kproc. In these
reports, curt also adds new NFS Calls Summary section with V2 and V3
sub-sections and adds similar sections in process and thread reports.

Example 2-13 curt preemptions, H_CEDE and H_CONFER

Total number of preemptions = 1022
Total number of H_CEDE = 0 with preeemption = 0
Total number of H_CONFER = 0 with preeemption = 0

The new environment variable GPROF controls the gprof's new mode that
supports multi-threaded applications.
76 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_04.fm
GPROF=[profile:{process|thread}][,][scale:<scaling_factor>][,][file:{one|multi|
multithread}]

Where:

profile Indicates whether it will do a thread or process level
profiling.

scaling_factor Represents the granularity of the profiling data collected.

file Indicates whether it will generate a single or multiple
gmon.out file(s).

multi Creates a file for each process (for each fork or exec)
gmon.out.<progname>.<pid>.

multithread Creates a file for each pthread
gmon.out.<progname>.<pid>.Pthread<ptid> which can be
used to look at one pthread at a time with gprof or
xprofiler.

The default values for gprof are process for the profile option, a scaling factor of
2 for process level and 8 for thread level (the thread level profiling consumes
considerably more memory) and one file for the output. Several flags allow to
optionally separate output into multiple files:

-g filename Writes the call graph information to the specified output
filename. It suppresses the profile information unless -p is
used.

-p filename Writes flat profile information to the specified output
filename. It suppresses the call graph information unless
-g is used.

-i filename Writes the routine index table to the specified output
filename. If this flag is not used, the index table goes
either at the end of the standard output, or at the bottom
of the filename(s) specified with -p and -g.

The format of data itself is unchanged but now it can be presented in multiple
sets in which the first set has cumulative data and the following sets have the
data per thread.

All of these tools have a new feature called dynamic configuration support. They
need it because we no longer work in a static environment with a fix number of
CPU's and memory. This way the tools start by a new pre-header with the
configuration but if the configuration changes then there is a warning. After it, the
tool prints the current iteration line, followed by summary line in sar case. The
tool shows a new configuration pre-header and the regular header for the tool
and continues. Obviously, each tool is monitoring a different set of configuration
 77

5768ch02_04.fm Draft Document for Review July 31, 2004 4:38 am
parameters but when running in a shared partition, they all monitor the
entitlement.

Graphical tools
As with text based tools, there were problems in the graphical tools regarding the
shared mode environment and SMT. They were modified.

PTX 3dmon
The most complete graphical tool, PTX, now monitors the full CEC. AIX 5L
supports this monitoring but Linux does not, although there are plans for it. This
means that if you have a Linux partition then the full CEC monitoring is not yet
available. When using this option it lists all hostnames from a physical machine
together. PTX has another option to show automatically all partitions in a physical
machine where the input is the hostname of one of the partitions. For
Micro-Partitioning PTX uses PURR-based utilization metrics and entitlement
utilization. It also does automatic scans for new partitions from the same CEC
every minute and adds the newly discovered partitions to display.

Figure 2-30 3dmon cpu monitoring two LPARs
78 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_04.fm
PTX jtopas
Shipping with PTX since May 2003, the graphical tool jtopas is a hot resource
monitoring tool, sibling of topas. jtopas starts with a pre-defined (no setup
needed) Swing GUI. In the main screen, it shows a set of system metrics and hot
resource summaries similar to topas, with access to more detailed information
for each area. This is a generalization of the P, W and L commands of topas,
which provide process, partition and WLM detail reports. jtopas works locally or
remotely and it is able to generate dynamic reports with up to 7 days playback. It
keeps data automatically for a week in 7 rotating daily files enabling jtopas to
generate reports by hour or by day. You can save these reports in html format or
in spreadsheet format. You can have a week by days report and a day by hours
report. jtopas is a Swing GUI enabled application which means you can
minimize or move each window and all resources are always available using
scrollbar. jtopas uses xmtrend daemon.

trace GUI viewer
Trace GUI viewer is a Client-server GUI version of trcrpt where the client does
the displaying and the server processes the trace file. Since this is a graphical
tool, there are several advantages over trcprt namely a slide bar and a
dynamically customizable output in which you can add, delete or move columns
around. The client works remotely on any platform supporting Java 1.3.1,
including on Windows. When navigating through trace file, you may bookmark a
specific entry and later seek to any bookmarked entries. You can also use
predefined bookmarks to facilitate quick navigation. When the trace GUI viewer
reads in a trace, it automatically generates these predefined bookmarks. Another
advantage over trcrpt is the use of filters. They use a fairly simple syntax for
example: ((Hookid = 0x11f) OR ((Pid = 11345) AND (Hookid = 0x104))). You can
combine multiple filters. Once you select them, you may apply the filter to one or
more subtraces. Each subtrace is a split of 10000 hooks of the original trace.
Paging down the trace file yields entries matching the filter until you select a new
filter by seeking to another bookmark.
 79

5768ch02_04.fm Draft Document for Review July 31, 2004 4:38 am
Figure 2-31 trace GUI viewer - tgv -client

PMAPI
With the new POWER5 processors, it was necessary to update the PMAPI.

There is a new API for POWER5 processor called pm_initialize, which you
must use instead of the old pm_init API. With the updated PMAPI, there is a
new way to return event status and characteristic. You can get it by bit array
instead of char and there is a new "shared" characteristic, for processors
supporting SMT. A shared event, is controlled by a signal not specific to a
particular thread's activity and sent simultaneously to both sets (one for each
thread) of hardware counters. There should be an average of counts across
sibling threads. The added processor features bit array in the pm_initialize has
two bits currently defined, the POWER Hypervisor mode and runlatch mode.
Moreover, pm_initialize can also retrieve event table for another processor
instead of the old way in which we could only retrieve the tables for the current
processor.
80 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_04.fm
The new PMAPI now supports M:N mode as opposed to the old 1:1 mode. There
is a new set of APIs for third party calls (debuggers) generically called
pm_*_thread which differs from the old pm_*_thread interfaces in an additional
argument to specify ptid. In 1:1 mode, there is no need to specify the ptid, but if
you specify it, the library will verify that the specified pthread runs on the
specified kernel thread. On the other hand, to use the M:N mode the ptid must
always be specified. if ptid is not specified then there is the assumption that the
pthread is currently undispatched. Regarding all other APIs, they are unchanged
but now work in M:N mode.

With this new API come some new commands, pmlist for example. The pmlist
is a utility to dump and search processors event and group tables. It currently
supports text and spreadsheet output formats.

2.9.4 Logical Volume Manager
There have been several improvements to the AIX 5L Logical Volume Manager
that concern performance. The first is the fact that we now have a new type of
volume group called Scalable Volume Group (SVG). The second is that there are
new ways to read and write metadata. AIX 5L v5.3 writes all metadata in parallel.
There is one thread for each disk in the vg. In addition, some commands that
would read data, utilize a small piece, then read again, utilize a small piece, etc.
now read the metadata once and keep the metadata accessible throughout the
life of the command.

The new SVG supports 1024 Disk VG. This expands the capacity of the volume
groups but needs a substantially larger VGDA space. Every VGDA update
operation (creating a logical volume, changing a logical volume, adding a
physical volume, and so on) might take considerably longer to run. In addition,
increasing max lvs or max pps/vg beyond the defaults towards the limits
increases the amount of metadata that must be read / written during lvm
operations. The larger SVG gets, the slower it gets. The limits for each type of
volume group are the following:

Table 2-5 vgtype limits

vgtype PVs LVs PPs/VG

oldvg 32 256 ~32 k (32*1016)

bigvg 128 512 ~128 k (128*1016)

svg 1024 4096 2048 k (2097152)
 81

5768ch02_04.fm Draft Document for Review July 31, 2004 4:38 am
Prior to AIX 5L v5.3 there was no good way to extend a striped lv if one of the
disks is full. We needed to backup the data, delete the striped lv, remake the lv
with a larger stripe width, and then restore the data. Now, we can extend a
striped logical volume even if one of the disks is full. We do this by modifying the
maximum number of physical volumes for the new allocation, the upperbound.
Prior to AIX 5L 5.3, the stripe width and upperbound were required to be equal.
In AIX 5L v5.3, the upperbound can be a multiple of stripe width, where you can
think of each stripe as a "column". You can use extendlv to extend a striped lv
into the next column. If you use extendlv -u then you can raise the upperbound
and extend the lv all in one operation (like an extendlv and a chlv -u all in one).

Ltg stands for logical track group. The LVM device driver breaks io down into ltg
size chunks before passing the io down to the device driver of the underlying
disks. The ltg size is an attribute of the vg. AIX 5L v5.3 allows the stripe size of
an lv to be larger than the ltg size of the vg, which didn't allow in previous
versions. In addition, AIX 5L now supports larger ltg sizes and stripe sizes.

Table 2-6 ltg and strip valid sizes

When it comes to pbuf, AIX 5L v5.2 and earlier versions had a systemwide pbuf
pool. Now, each vg gets its own pbuf pool. To manage pbuf we use the lvmo
command which displays and tunes several vg specific items:

pb_pbuf_count number of pbufs added when a pv is added to the vg
(tunable w/lvmo, takes effect at lvmo time)

total_vg_pbufs number of pbufs currently available for the vg (tunable
w/lvmo, takes effect at varyonvg time)

max_vg_pbuf_count maximum number of pbufs for this vg (tunable w/lvmo,
takes effect at varyonvg time)

pervg_blocked_io_count

number of io's that were blocked due to lack of free pbufs
for this vg. (displayed only, not tunable)

valid ltg sizes valid stripe sizes

AIX 5L v5.2 and previous 128 KB, 256 KB, 512 KB, 1
MB

4 KB, 8 KB, 16 KB, 32 KB,
64 KB, 128 KB, 256 KB,
512 KB, 1 MB

AIX 5L v5.3 adds support for 2 MB, 4
MB, 8 MB, 16 MB

adds support for 2 MB, 4
MB, 8 MB, 16 MB, 32 MB,
64 MB, 128 MB
82 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_04.fm
The lvmo also displays the following systemwide items:

global_pbuf_count min # of pbufs that are added when a pv is added to any
vg. (tunable w/ioo, not lvmo, because this is systemwide.
Takes effect at varyonvg time).

global_blocked_io_count

systemwide # of io's that were blocked due to lack of free
pbufs

2.9.5 Partition Load Manager
Partition Load Manager (PLM) for AIX 5L is a load manager that provides
automated CPU and memory resource management across DLPAR capable
logical partitions running AIX 5L v5.2 or AIX 5L v5.3. PLM allocates resources to
partitions on-demand, within the constraints of a user-defined policy. It assigns
resources from partitions with low usage to partitions with a higher demand,
improving the overall resource utilization of the system. PLM works with both
dedicated and shared processor environment partitions. The only restriction is
that all partitions in a group must be of the same type.

The PLM resource manager is the server part of this client-server model and it
runs on AIX 5L v5.2 and AIX 5L v5.3. When it starts, it registers several events
on every required LPAR node. In order for PLM to get system information and
dynamically reconfigure resources, it will require an SSH network connection
from the managed AIX 5L partitions to the HMC. The Resource Management
and Control (RMC) services are responsible to gather all the status information.
The RMC daemon exports system status attributes and processes the
reconfiguration requests from HMC. With this data and in conjunction with the
user-defined resource management policy, PLM decides what to do. Every time a
partition exceeds a threshold, PLM receives a RMC event. When a node
requests additional resources, PLM determines whether the node can accept
additional resources. If the node can accept additional resources, PLM conducts
a search for available resources. It then checks the policy file in order to see if a
partition is more or less deserving of the resources. Only then, PLM allocates the
resources requested.
 83

5768ch02_04.fm Draft Document for Review July 31, 2004 4:38 am
Figure 2-32 PLM view using PTX

PLM uses a Micro-Partitioning entitlement model with a guaranteed or entitled
amount of resource, a shares amount and an optional minimum and maximum
amounts. The guaranteed amount of resources is the amount allocated to a
partition that has a demand for it. It can get the resource from free pool if
available and group not over its maximum, take underutilized resource from other
partitions or take utilized resource from partitions over their guaranteed resource.
The allocated resource will vary between minimum and maximum values based
on demand. For a partition to allocate resources above the guaranteed amount, it
needs to know the shares amount. This amount has a unit less factor between 0
and 255 with a zero preventing the allocation of resources above guaranteed
amount. The formula to calculate the resource allocated to partitions is (shares) /
(sum of shares from competing partitions).

PLM has manages partitions in groups which means that all partitions must be a
member of a group. At least there must be one group defined in the PLM policy.
One PLM server can manage independent groups of partitions but it cannot
share resources between groups. It cannot take unused resources in one group
in order to satisfy a demand for resources by another group. The partitions
belonging to a group must be of the same type: either they are of the shared
84 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_04.fm
processor type or of the dedicated processor type. In spite of that, one group may
contain both capped and uncapped partitions. PLM manages the entitled CPU
capacity, memory, and number of virtual processors for both types.

System administrators must set up HMC partition definitions compatible with the
PLM policy. The XLPLM is not able to decrease a partition's minimum below the
HMCs minimum nor is the XLPLM able to increase a partition's maximum over
the HMCs maximum. PLM will use HMC partition definition minimum, desired,
and maximum partition resource values as PLM minimum, guaranteed, and
maximum values if not specified in the PLM policy.

Example 2-14 PLM policy file

#Example PLM policy file.

globals:
 hmc_host_name = p5hmc1
 hmc_user_name = hscroot
 hmc_cec_name = p5Server1

example:
 type = group
 cpu_type = shared
 cpu_maximum = 2
 mem_maximum = 0

p5_1test1:
 type = partition
 group = example
 cpu_guaranteed = 0.3
 cpu_maximum = 0.6
 cpu_minimum = 0.1
 cpu_shares = 2
 cpu_load_high = 0.3
 cpu_load_low = 0.2
 cpu_free_unused = yes

p5_1test3:
 type = partition
 group = example
 cpu_guaranteed = 0.3
 cpu_maximum = 0.5
 cpu_minimum = 0.1
 cpu_shares = 2
 85

5768ch02_04.fm Draft Document for Review July 31, 2004 4:38 am
To manage the PLM you can use two commands: xlpstat and xlplm. With these
two commands, you can monitor partition statistics and start, stop, modify,
reserve, and query a cross-logical PLM server.

Example 2-15 xlplm query

xlplm -Q default
PLM Instance: default

GROUP: example
 CUR MAX AVAIL RESVD MNGD
 CPU: 0.80 2.00 1.20 0.00 Yes
 MEM: 1536 0 0 0 No

 p5_1test1

 RESOURCES:
 CUR MIN GUAR MAX SHR
 CPU: 0.30 0.10 0.30 0.50 2
 MEM: 512 128 512 1024 1

 p5_1test3

 RESOURCES:
 CUR MIN GUAR MAX SHR
 CPU: 0.50 0.10 0.30 0.50 2
 MEM: 1024 512 1024 2048 1

You can also use Web System Management tool (WebSM) to manage PLM.
86 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch02_04.fm
Figure 2-33 PLM management using WebSM

With this tool you can view partitions cpu statistics and and memory statistics.

Figure 2-34 PLM cpu statistics using WebSM
 87

5768ch02_04.fm Draft Document for Review July 31, 2004 4:38 am
Figure 2-35 PLM memory statistics using WebSM
88 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch03.fm
Chapter 3. Simultaneous
Multi-Threading

SMT was briefly introduced in chapter 1. This chapter talks about the software
considerations and optimizations to effectively utilize SMT.

3

© Copyright IBM Corp. 2004. All rights reserved. 89

5768ch03.fm Draft Document for Review July 31, 2004 4:38 am
3.1 Idea behind SMT
As processor fabrication technologies evolve, transistor densities are on the rise,
which means chip designers can put in more resources into the chip. Processor
designers can now put larger on chip caches, integrate more functional units that
were carried out traditionally by separate chips (like memory controllers etc.).
Just having large amounts of cache and higher levels of systems integration
alone won't help improve the processor performance. Ultimately, the processor's
performance will be measured by the amount of instructions executed over a
period of time. Hence, it makes sense to have more execution resources on the
processors. Modern superscalar processors do just that. They provide for more
execution resources and can execute multiple instructions at the same time1 in
parallel. This means that more execution units are available on the chip, and if
the executing program (a sequence of instructions) can be split into instructions
that can be executed in parallel by these execution units, then the number of
instructions executed over a period of time increases, and hence processor
performance goes up. But, the processor cannot arbitrarily split a program into
parallel instructions -- the processor should take care as to not break the
sequential programming model assumed by the software, and honour instruction
dependencies. If a sequential program can be split up into parallel executable
instructions, such a program is termed to exhibit instruction level parallelism. The
degree of instruction level parallelism is program dependent, or rather, workload
dependent. Hence, putting in more execution resources will help better
performance, but it is limited by the instruction level parallelism of the workload.
This is a significant drawback in traditional superscalar processors, since all
workloads (and commercial workloads in particular) don't exhibit higher
instruction level parallelism, resulting in processor execution resources going
under utilized.

Now, what if, instead of one program executing on a processor at a time, if two or
more programs could run on the processor at the same time -- then execution
resources not utilized by one program could be utilized by another program
ready to run on the same processor. So by just providing for different 'threads' of
execution on the processor (hardware contexts), the superscalar is no longer
limited by the degree of instruction level parallelism on one thread. The
processor exploits thread level parallelism to compensate for the low instruction
level parallelism of individual threads of execution. A Hardware context just
provides the processor architected software model to programs. That is, the
architected processor registers are replicated to create more hardware contexts.
The technique of sharing resources on a single processor core among many
execution threads (contexts) is known as multithreading. Note that this is
different from the term multithreading used in software. Each hardware context is

1 By definition, a super scalar processor can issue a number of instructions each cycle. The
capability to issue n instructions per cycle is also termed as the issue width.
90 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch03.fm
seen by the software (operating system) as a separate processor (although it is
not a separate physical processor). These hardware execution contexts are
sometimes termed as logical processors or logical cpus.

There are different kinds of multithreading in computer architecture literature.
They can be broadly classified into coarse grained multi threading, fine grain
multi threading and simultaneous multi threading.

In coarse grain multithreading, one thread known as the active thread, executes
on the processor at one time while the other thread2 is dormant. If the active
thread experiences a long latency event such as a cache miss, the processor
puts the active thread into the dormant state and switches over to the dormant
thread. For such threading mechanisms to work efficiently, the thread switch time
(time taken to switch executing from the active thread to the dormant thread)
should be shorter than the latency of the event that caused the switch. But,
switching the thread effectively becomes difficult as the processor pipeline depth
increases.

In fine grain multithreading, processor issues multiple instructions per cycle from
one thread, alternating between threads every cycle. While fine grain threaded
processors tolerate long latency operations better and utilize execution units
better, not all issue slots of the execution units are always utilized. Thus,
Efficiency of fine grained multi threaded processors are also limited by the
instruction level parallelism of the executing thread.

In a simultaneous multi threaded processor, the processor can issue multiple
instructions per cycle from any of the hardware contexts on the processor. Since
instructions from any of the threads can be issued by the processor in a given
cycle, the processor is no longer limited by the instruction level parallelism of the
individual threads. Thus, SMT provides a threading model which can exploit
instruction level parallelism as well as thread level parallelism
(multiprogramming) in workloads. SMT is found to improve performance for a
variety of workloads. Thus, SMT combines the advantages of wide issue
superscalar processors and latency tolerant features of multi threaded
processors for enhanced performance. With SMT, since multiple programs share
the execution resources (in a multiprogramming environment), the overall
throughput of the system will be improved although the individual programs may
run slower than they would if they ran in a single threaded mode. The
performance benefit is in being able to execute more instructions from multiple
programs in a given amount of time.

2 Assuming two way multithreading. A processor is said to be n-way multi threaded if n-hardware
contexts are provided for the software.
 Chapter 3. Simultaneous Multi-Threading 91

5768ch03.fm Draft Document for Review July 31, 2004 4:38 am
Figure 3-1 Different multithreading models

Figure 3-1 on page 92 shows the processor execution resource utilization under
different threading environments every cycle. The rectangular blocks represent
issue slot utilization. Each row represents utilization of the issue slot of the
labelled execution unit every cycle. A column represents the utilization of issue
slots on the same cycle. An empty box (white) represents an unused slot. A
colored box means that the issue slot is being used.

Note that in the single threaded model, just two slots are utilized in the first cycle
(vertical column) and execution slot utilization is dependent on instruction level
parallelism exhibited by the workload. As can be seen, from the figure,
utilization levels are not high in the ST model with low ILP workloads. Utilization
levels are not high on the coarse and fine grain threading models either.
Utilization levels are much better in SMT model.

Cycles Cycles
92 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch03.fm
3.2 POWER5 SMT implementation
The POWER5 SMT implementation is a natural extension to the eight instruction
wide issue superscalar POWER4 design. POWER5 supports two way SMT by
providing two logical processors (hardware contexts) per processor core. Each
POWER5 processor core appears as a two cpu SMP for the operating system.
Instructions from either thread can use the eight instruction wide issue slots in a
given cycle. The POWER5 also features Dynamic resource balancing and
adjustable thread priorities for efficient resource utilization of the resources
shared by both the threads.

Dynamic resource balancing logic helps the two hardware contexts on the core
execute smoothly. If one of the threads starts hogging the shared execution
resources, such as GCT entries, issue queue slots etc., starving out the other
thread, the DRB logic kicks in and throttles down the thread hogging resources
by reducing the its priority or holding the thread from decoding instructions or
flushing all the instructions waiting for dispatch. The throttling method used is
dependent on the source of the stall -- if GCT entries were being hogged by one
thread, then the thread priority would have been reduced. DRB has been
discussed in detail on section xxx

Add reference to drb logic section in chapter 2 above

Adjustable thread priorities provides for the software to throttle down or throttle
up execution of either thread on the processor core. The POWER5 provides for
eight levels of thread priorities, 0-7. A thread priority of zero implies ST mode,
and the hardware does not allocate any architected registers to the thread.
Architected registers are maintained for all other priority levels in the hardware. A
thread priority of 7 is the highest. Software (phyp/operating system/applications)
can specify certain thread priorities based on their execution privilege level.
Refer to table xxx and section xxx for a detailed discussion of adjustable thread
priorities. Software can change the thread priorities by executing or x,x,x noops
or using mtspr instruction to write to the thread's TSR (thread status register).

Add cross reference to table showing thread priorities in chapter 2

The POWER5 provides for the software to dynamically switch from SMT mode to
ST mode and vice versa. There are instances when this could be useful, like for
real time applications where the program execution speed is more important than
overall throughput, or scientific applications which are limited by execution
resources (sharing of execution resources will then prove counterproductive), so
running in ST mode for such applications will prove useful. There might also be
instances when there are not enough programs ready to run on all the hardware
threads. In such cases, one thread of a processor core could be running the
operating system's idle loop while the other is running a useful application
process. Since, even a SMT thread executing the idle loop needs at least the
 Chapter 3. Simultaneous Multi-Threading 93

5768ch03.fm Draft Document for Review July 31, 2004 4:38 am
architected registers from the rename resource pool (GPRs, FPRs etc.), the
performance difference of a task when it is run in ST mode to when it is run in
SMT mode when the other hardware thread is running the OS idle loop could be
as significant as 10-15%. This is mainly due to the execution resources
consumed by the idle thread.

The threads on a POWER5 can be in just two states -- live or dead. Hardware
maintains the architected state of the thread for a live thread, and the execution
resources are shared as determined by the adjustable thread priority and DRB
mechanisms. For a dead thread, there is no architected state maintained by the
hardware. This means more rename resources (32 + 4 GPRs more etc.) for the
'other' thread. The switch from SMT to ST can be done by the software
(hypervisor or operating system). The operating system has to use the
appropriate hypervisor call for that. The power hypervisor in turn uses a special
mtctrl instruction to kill an active thread in the hardware. The operating system
could revive a dead thread (switch the core back to SMT from ST) by using a
hypervisor call which again uses the mtctrl instruction to do that. The service
processor can also switch a processor core to SMT. Decrementor interrupts and
external interrupts could also awaken threads, based on how the system is set
up (special register settings).

3.3 Software considerations for SMT
In the hardware, a smt hardware context (thread) could just have two states --
live and dead. But software could maintain states of dead hardware contexts -- if
the hardware context can be turned on at some point of time. Hence, the
software can have these three states -- Live, dead and dormant.

A thread is said to be live 'when' it is alive as seen by the hardware and the
software. The hardware still maintains the architected register states.

A thread is said to be dead in when the thread is dead both in the hardware and
software. The software does not maintain any per-processor structures/data and
the dead thread is set not to wake up on DECR or external interrupts. To revive a
dead thread, the sibling thread is expected to execute the mtctrl special
instruction (through the hypervisor call).

A thread is said to be dormant when the thread is dead in hardware but alive in
software. The architected register state is not maintained in the hardware, but the
software maintains knowledge of the virtual processor -- such as per-cpu data
etc. The 'software' here could be the operating system or the hypervisor. The
processor is setup so that the dormant thread can wake up on DECR or external
interrupts.
94 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch03.fm
3.3.1 Snooze and snooze delay
The process of putting a live thread into a dormant state is known as snoozing. If
there are not enough tasks to run on the threads, threads could be running the
operating system idle loop. It is better for the operating system to snooze the idle
thread and switch over to ST mode, so that the sibling thread gets all the
processor resources and gets to run faster. To snooze a thread, the operating
system will invoke the H_CEDE hypervisor call (refer to section xxx on chapter
2). The thread then goes to the dormant state. A snoozed thread is brought alive
when a Decrementor, external interrupt or a H_PROD is received for the thread
(refer hypervisor section xxx chapter2). If, when a hardware context is snoozed,
the operating system finds more tasks on its run queue and application
throughput will improve if smt is turned on, the processor must transition from ST
mode to SMT mode through any of the means mentioned earlier. This involves
the snoozed thread beginning life at its SRI (system reset interrupt) vector for the
thread, and having the power hypervisor restore the operating system state, and
then returning the original H_CEDE hypervisor call made by the thread to
snooze. This means several thousand cycles of thread startup latency. Hence, it
doesn't make sense to snooze a thread as soon as idle condition is detected --
there could be another task ready in the runqueue by the time you snooze
resulting in wasted cycles due to the thread start up latency. It is good for
performance if the operating system waits for a small amount of time for work to
come in before snoozing a thread. This short idle spinning time is known as smt
snooze delay. An operating system can optionally make this delay tunable.

Both AIX and Linux incorporate changes to snooze an idle thread.

3.3.2 Process accounting
With ST operation, a local timer tick (10 ms in AIX, 1ms in Linux with HZ=1000)
was charged to whichever process was preempted by the timer interrupt. If the
process was in kernel, the entire tick was charged to the process' system time.
Else the process' user time was charged with 1 tick. But with SMT, the thread
receiving the local timer interrupt most likely has not run for the entire tick
duration as it shares the physical cpu resources with its sibling. POWER5
provides for Processor Resource Utilization Register (PURR) to provide proper
process/system accounting. PURR for system accounting on AIX has been
discussed in section xxx (2.9.2 chapter2).

PURR is a new per thread register introduced in POWER5. It is an incrementing
64 bit counter just like the TB. It gets incremented once in eight processor cycles.
The thread which dispatches a group in a cycle will increment its PURR by 1/8 in
that cycle. If neither thread dispatches a group in a cycle, each thread
increments its PURR by 1/16. The sum of the two PURRS of a processor over a
 Chapter 3. Simultaneous Multi-Threading 95

5768ch03.fm Draft Document for Review July 31, 2004 4:38 am
period of time will be very close to the number of TB ticks over the same period
of time, but never more than the TB ticks.

Process accounting in SMT mode should be done using the PURR registers. AIX
uses PURR for process accounting. Instead of blindly charging the entire 10ms
tick to the interrupted process, processes are charged based on PURR delta for
the hardware thread since the last interval, which is an approximation of the
computing resource that the thread actually received. This accounts for a more
accurate accounting of CPU time in the SMT environment, since the sum of the
two PURRS is close to the TB ticks over the same period of time.

3.3.3 CPU utilization
There are different approaches to reporting CPU utilization in an
SMTenvironment.

One approach is to treat each hardware (SMT) thread (logical cpu) as a separate
processing engine. Under this approach, the CPU utilization metric represents
the proportion of time that work was dispatched on the logical cpu. The CPU
utilization reported using this approach does not necessarily reflect the logical
processing engine's utilization of the processor’s physical execution
resourcessince it does not account for factors such as the relative hardware
priorities of the two SMT threads etc.3

The second approach, used by AIX, is to report CPU utilization from the
perspective of the actual physical processor resource utilization. Under this
approach, the CPU utilization metric reflects the actual utilization of physical
processor resources by the SMT threads. The PURR registers are used to
determine each hardware thread's processor utilization.

The following example illustrates the difference between these two approaches.
Consider a physical processor with two SMT threads. The OS sees the two SMT
threads as two separate processing engines, and dispatches two separate tasks
(processes), one on each logical engine. Under the first approach, each logical
engine reports a utilization of 100%, representing the portion of time that the
logical engine was busy. Under the second (AIX) approach, each logical engine
reports a utilization of 50% , representing the proportion of physical processor
resources that it used (assuming equal distrubition of physical processor
resources to both the hardware threads).

3 Each hardware thread of a processor represents a logical processing capacity, which is a portion of
the physical processing capacity of the processor core. Each thread will have its own utilization of the
logical processing capacity presented to it
96 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch03.fm
3.3.4 SMT aware scheduling
Although a multi processor kernel can run on a POWER5 SMT based system
without any modifications, the kernel will just treat the logical processors as
separate processors -- if smt awareness is not built into the kernel. For example,
in a system with two physical cpus (four logical threads) and two runnable tasks,
the scheduler could schedule tasks on two sibling threads of the same cpu and
keep the other core (cpu) totally idle. Since the os is not SMT aware, there is no
way the scheduler can distinguish between threads on the same cpu and
different cpus. Obviously, this doesn't lead to efficient utilization of system
processing capacity. Given this background the most obvious optimization for
SMT is to make sure work is distributed to all the primary4 threads before work is
dispatched to secondary threads. Secondary threads can be snoozed or put at
very low priorities if they are idle.

Both AIX 5.3 and Linux 2.6 kernel have this optimization in place.

Another optimization is to consider the sibling threads of a core as one affinity
(aix) or scheduling (linux) domain -- so that the domain reflects sharing of
resources such as the TLB, L1 etc., between the two sibling threads. It might be
beneficial for software threads of the same process to run in the same domain so
that the shared processor caches (L1, TLB) are effectively utilized by the
software. It also makes sense to maintain the affinity of software tasks to
domains where they ran earlier -- so that they get a warmer cache.

These optimizations are present in both AIX 5.3 and Linux 2.6 kernel.

Above optimizations are meant to illustrate that smt awareness will help the
operating system perform better. There might be more such optimizations in the
operating system which are not mentioned here.

3.3.5 Interrupts
The operating system has no impact on interrupt processing due to SMT. Each
SMT thread has its own private decrementor as well as its own interrupt server.
Each hardware thread can asynchronously and simultaneously process its own
interrupts just as if they were individual cpus.

3.3.6 Effective use of adjustable thread priorities
POWER5 features Adjustable thread priorities for better processor resource
utilization. The feature has been explained in detail in section xxx 2.3.2 of

4 For ease of explanation, it can be considered that there is one primary thread per core and one
secondary thread per core in a two way smt system -- although both the smt threads enjoy equal
access to the execution resources with other factors like thread priorities being equal.
 Chapter 3. Simultaneous Multi-Threading 97

5768ch03.fm Draft Document for Review July 31, 2004 4:38 am
chapter 2. To summarize, POWER5 provides for eight levels of thread priorities
-- 0-7, Please refer to table xxx 2-3 for all the supported priorities. Ratio of
decode slots allocated to a hardware thread is dependent on the thread priorities
of the sibling threads. table xxx 2-4 depicts the effect of thread priorities on
execution resource sharing. The operating system can set priorities from 1 to 6,
which correspond to 'very low' to 'high' priorities. Application programs (user
space) can set thread priorities from 2 to 4, which correspond to 'low' to 'normal'
priorities.

By default, threads execute at 'normal' priority -- both in kernel mode and user
mode.

AIX
AIX will lower the thread priority for idle threads, so that the other working sibling
thread can execute faster -- or power savings is achieved at least. For AIX
instances in dedicated LPARs, AIX will lower priority to 'low' for the idle thread if
SMT is on and wait for smt snooze delay period before snoozing the idle thread
by means of a H_CEDE hypervisor call.

For AIX instances in a micropartitioning environment, AIX always invokes
H_CEDE hcall.

If a task in the kernel is waiting for a spinlock, AIX changes the thread priority of
the hardware context executing that task to '2' -- 'low' priority; so that the spinning
thread, which is not doing any useful work yields processor resources to it's
sibling. For instances of AIX running in micropartitioning environment, AIX waits
for a spin delay after lowering priority to 2 and then invokes H_CONFER hcall.
POWER hypervisor will control priority management and redispatch the physical
cpu if the sibling thread also cedes or confers.

AIX also boosts priority of threads which are executing tasks holding certain
critical and hot (contended) spinlocks. AIX will boost the priorities of the threads
executing these tasks to '5' -- 'medium high' so that lock holders execute faster
thus reducing lock hold time and paving way for increased application
throughput. The priority of the thread is restored to '4' -- 'normal' in the
corresponding unlock function. If a boosted thread is interrupted, the thread
priority will be boosted to '4' -- 'normal', if the current thread priority is less than
'4'. Otherwise, current thread priority is preserved. Hence, the priority boost for
these hot locks also boosts priorities of interrupts and exception handlers running
on the thread which was holding the hot lock.

Linux
Linux will lower the thread priority for idle threads too. For dedicated LPARs,
Linux will lower priority to 'low' for the idle thread and wait for smt snooze delay
period if SMT is on before snoozing the idle thread by means of a H_CEDE
98 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch03.fm
hypervisor call. For Linux instances in a micropartitioning environment, Linux
always invokes H_CEDE for idle threads.

Linux lowers priority of the thread executing the task waiting for a spinlock too.
The priority is lowered to '2' -- 'low' and restored back to '4' -- 'normal' during
unlock.

3.4 Cache effects due to SMT
Since, with SMT, thread level parallelism is used to compensate for low
instruction level parallelism, two possibly different tasks share the same
processor core, on chip and off chip caches. This means there could be more
associativity misses in the caches. To compensate for this, POWER5 has
increased associativity of the L1 icache and dcache to 2 way set associative and
4 way set associative from a zero way set associative and 2 way set associative
on the POWER4. The L2 on POWER5 is now 1.88 MB 10 way set associative as
against 1.5 MB 8 way set associative on POWER4. L3 on the POWER5 is now a
victim cache of L2, unlike an inline L3 in POWER4. L3 runs at 1/2 the processor
speed on POWER5 unlike 1/3 processor speed on POWER4. L3 being a victim
cache of L2 behaves like a large albeit a bit slower L2 extension. The L3 on the
POWER5 is 36 MB 12 way associative with 256 byte lines managed as two 128
byte sectors as against a 32 MB 8 way associative 512 byte lines managed as
four 128 byte sectors on the POWER4. These processor enhancements help
offset the cache effects due to SMT, resulting in overall improved application
performance.

3.5 Performance benefits due to POWER5 SMT
Performance measurements for various standard industrial benchmarks were
made with AIX 5.3L on 4way p-series ML4 POWER5 systems to validate gains
from SMT. The measurements were made with SMT turned on and SMT turned
off, and percentage throughput improvement calculated when SMT was turned
on as against SMT turned off.
 Chapter 3. Simultaneous Multi-Threading 99

5768ch03.fm Draft Document for Review July 31, 2004 4:38 am
Figure 3-2 SMT gains for various workloads

Figure 3-2 on page 100 illustrates SMT gains for various workloads for 4 way
ML4 POWER5 systems. As can be seen from the chart, throughput improvement
varies from 10% to 50% depending upon the workload.

3.6 Conclusion
To summarise, the POWER5 SMT implementation is more than just SMT. Unlike
other commercial SMT implementations, POWER5 SMT combines features such
as dynamic resource balancing, adjustable thread priorities and hardware
support for dynamic SMT switching which help the software get more out of the
silicon. It has found to be a good ROI for the extra silicon area -- that is,
performance gain out of SMT is greater than the area increase due to SMT.
There is a 24% area growth per core for SMT, but the performance gains due to
POWER5 SMT can vary from 10-50% or even more depending on the workload
and machine configurations.
100 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_01.fm
Chapter 4. Virtualization

In this chapter we discuss performance considerations when using
micro-partitioning, as well as the Virtual I/O Server, Virtual Ethernet and Virtual
SCSI. We discuss some effects that the partitions may have based on the
configuration, and suggest some guidelines when configuring a system with
these components.

4

© Copyright IBM Corp. 2004. All rights reserved. 101

5768ch04_01.fm Draft Document for Review July 31, 2004 4:38 am
4.1 Micro-partitioning considerations for performance
There are some considerations that must be noted when using shared processor
partitions in order to obtain a good performance and system utilization. There are
some options when configuring a partition that may affect performance, and
some guidelines that are recommended in order to get the maximum benefit from
the technology.

4.1.1 Micro-partitioning overhead
Micro-partitioning adds an additional layer of abstraction by virtualizing the
physical processor into a virtual processor. The virtualization of the processors
adds great flexibility in using the system and fractional processing power, but
may result in consumption of more cycles for every instruction completed.

There is an impact of running an application inside a shared processor partition,
but in most cases the impact is negligible.

In an NFS test, throughput was measured on 4 dedicated processor partitions,
each one with one physical processor. The result was then compared to the
throughput of 4 shared processor partitions with 1.0 entitlement per partition. The
throughput was the same in both cases. Processor usage was about 2% higher
in the case of shared processor partitions. The same overhead was observed in
another test conducted running a Java-based application server with Websphere
and DB2 in an uncapped partition.

Note that in both cases the partitions have been stressed up to 100% of their
capacity. Customer production systems generally do not run at 100% capacity,
and therefore can expect even less overhead.

These measurements are indicative of the minimum overheads associated with
the most simplistic micro-partitioning environment.

4.1.2 Simultaneous Multithreading and micro-partitioning
Simultaneous Multithreading (SMT) is a function implemented in the processor,
that the operating system must be aware of in order to exploit. Hardware threads
are seen by the operating system and applications as two distinct processors.
SMT behaves the same way either on dedicated processor partitions or shared
processor partitions, with a few differences explained here.

Dynamic switching between SMT and Single Threading
When working on a partiton with SMT enabled, work is dispatched to all primary
hardware threads before the secondary threads. This helps optimal performance
102 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_01.fm
in case of single threads running on a processor. Since the secondary threads of
not get work to be done, they get into a snooze state and the primary thread runs
on almost single thread performance.

In dedicated processor partitions, the POWER Hypervisor can dynamically
transition the processor from SMT to ST, depending on the workload running. In
case a thread running on a processor turns idle, the processor is changed to
Single Threading (ST) mode, and the running thread benefits of full singe thread
performance. When the other thread is runnable again, the processor returns to
SMT mode and run both threads.

This is not supported on shared processor partitions however, and these must be
explicitly changed by the smtclt command. On shared processor partitions, if a
hardware thread is idle, it waits on an idle spin, in a low priority. In that case, the
running thread gets a large part of the processing capacity to itself.

The effect of SMT on processor usage
As explained in <xref to SMT>, SMT enables two hardware threads to run
simultaneously. For a processor to cede its idle cycles to the POWER
Hypervisor, both hardware threads must be idle. If one thread is idle while the
other is running, some idle capacity remains in the partition and cannot be give
back to the POWER Hypervisor.

This behavior is more perceptible when partition usage is between 40% and 70%
of processing capacity. You can observe this effect by looking at the difference
between partition entitlement utilization (that is seen as processing capacity
consumed by the partition) and partition CPU utilization (that is seen as
processing capacity consumed by the threads inside the partition). Figure 4-1
illustrates this effect observed when running a Java-based application server with
Websphere and DB2.
 Chapter 4. Virtualization 103

5768ch04_01.fm Draft Document for Review July 31, 2004 4:38 am
Figure 4-1 Effect of an SMT idle thread on shared processor partitions

As partition utilization increases, this effect decreases (because the hardware
threads get more work to be done, therefore the idle time for each thread
decreases). Also, as expected, this effect is not present in partitions running in
ST mode.

4.1.3 Cache architecture and number of virtual processors
On POWER5 systems, two CPU cores on the same chip share the both the L2
and L3 caches.In a system running with dedicated partitions, if the cores are
each one on a different partition, the cache is still shared, but the two cores will
compete for cache capacity. Naturally each core can only access the cache lines
correspondent to its memory addresses. Therefore, the cache usage ratio
depends on the workloads on each partition, specifically on the memory access
patterns from the applications on each of the two partitions.

In shared processor partitions, the same situation occurs, with the additional
factor that during a given interval a physical processor may have executed code
from several different partitions. When a virtual processor is dispatched onto a
physical processor, all the memory addresses are relative to the partition where
the virtual processor belongs. In this sense, cache usage becomes dependant
on the memory access behavior of different applications running on different
partitions.

1 2 3 4 5 6
Workload units

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge

CPU

Entitlement

Difference
104 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_01.fm
The POWER Hypervisor is responsible for maintaining affinity between virtual
and physical resources in a shared processor partition environment. When
dispatching a virtual processor onto a physical processor, the POWER
Hypervisor tries to redispatch a partition to the same physical processor that it
ran on previously, in order to maximize cache affinity and reduce the need of
reloading data from main memory. Nevertheless, since in a shared processor
environment there is the potential of having several partitions sharing a
processor, there are several different memory contexts. Moreover, because of
dispatching requirements, a physical processor may not be available when a
virtual processor makes the transition from not-runnable to runnable.

When a virtual processor is ready to run, the POWER Hypervisor looks to see if
the physical processor that ran this virtual processor for the last time is idle. If it is
busy, then it starts looking in increasing levels of affinity scope for an idle
processor (other cores on same chip, other processors within same MCM, and
any other processor in the system) until one is found. If no processor is available,
the virtual processor is enqueued onto the runnable queue. Figure 4-2depicts the
flow of actions described.

Even in the case where the virtual processor is dispatched on the same physical
processor from its last run, data in cache may have been replaced by previous
virtual processors dispatched in the same physical processor. Depending on the
amount of data read from other applications running on the same processor, and
also the ratio of virtual processors to physical processors. If an application
running in a virtual processor does heavy memory access, data that was stored
in cache from other virtual processors running before is replaced, and cache is
refreshed when other virtual processors are later dispatched. Therefore, an
application whose performance depends on cache efficiency can be affected
when running in a shared processor partition along with other partitions that do
intensive memory access. High performance computing (HPC) applications are
more likely to have intense memory access behavior.
 Chapter 4. Virtualization 105

5768ch04_01.fm Draft Document for Review July 31, 2004 4:38 am
Figure 4-2 Affinity relation between virtual and physical processors

Number of virtual processors
In the case where the number of virtual processors is much larger than the
number of physical processors, the time slice given to a virtual processor gets
smaller as the number of virtual processors increase. This also contributes to
diminishing efficiency in cache, since for each virtual processor that is
dispatched, the memory context changes, and data must be reloaded from
memory.

When virtual processor capacity is small, the overhead of reading data from
memory is significantly high, due to the fact that the time to fetch data from
memory is constant, and the time slice is small for small capacity entitlements.
Therefore, the impact is more significant in virtual processors with small capacity.

Figure 4-3 shows a case where two partitions, each one with one virtual
processor and same processor capacity, are running on a system with one
physical processor. Partitions A and B use the physical processor 5 ms each.
Even if data is loaded from memory into the cache, it remains in the same

vp placed in
runnable queue

Check last
physical processor
used to run this vp

Idle? Run the vp on the
physical processor

Idle CPUs on
the chip?

Run on the other
core on the same

chip

N

Y

Y

N

Idle CPUs on
MCM?

Run in first idle
processor on the

MCM

Run in the first idle
processor foundIdle CPUs?

Y

N

Y

N

vp
runnable

Is it an MCM-
based system?

Y

N

106 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_01.fm
memory context for the duration of half of the dispatch wheel. Moreover, there is
just one other partition with other memory context running on this processor.

Partitions C, D, E, F and G are also running each with one virtual processor and
same processor capacity. In this case however, each partition only takes 2 ms of
the dispatch wheel. Not only the time to fetch data is more significant in this case
(relatively to the time slice), but there are now five partitions with different
memory context. It is much more likely that in this case the cache becomes
completely invalidated between the time a partition is dispatched twice.

.

Figure 4-3 Impact on cache due to number of virtual processors

Effects of cache-friendly and cache-unfriendly applications
The effect of the cache reload in the partition performance depends on the size
of the partition, number of virtual processors and type of application. A
worst-case scenario is a partition that uses the cache moderately running on the
same physical processor of another partition that uses memory and cache
intensely. This is represented on for a case where a benchmark application A
(composed by small but numerous tasks, involving process creation and
termination) sensible to cache efficiency is run on the same processor as other
partition running a benchmark application B that uses memory heavily for
reading and writing large blocks of data.

In all cases, each partition has 2 virtual processors, each with 0.1 processor
capacity. The partition running benchmark A is uncapped, while the partitions
running benchmark B are capped.

5ms

2ms

2ms

2ms

2ms

2ms

2ms

2ms

2ms

2ms

2ms

5ms

5ms

2ms

2ms

2ms

2ms

2ms

2ms

2ms

2ms

2ms

2ms

5ms

2 active 50%
partitions

A

5ms

5ms
B

C

D
E
F

G

5 active 20%
partitions

Cache startup of dispatching
Partition amortized over 5ms

Cache startup of dispatching
Partition amortized over 2ms

Cache context lost
 Chapter 4. Virtualization 107

5768ch04_01.fm Draft Document for Review July 31, 2004 4:38 am
Figure 4-4 Measurements of cache effects in different partitions

Case 1 shows the throughput for the reference benchmark when A runs without
other partitions running at the same time, and servers as the reference point.

Case 2 shows the throughput for the reference benchmark when A runs in one
partition, and one other partition runs benchmark B. Even with the effects of
benchmark B reducing cache efficiency, the application running benchmark A
does run well, with slightly more than 5% penalty for sharing the same physical
processor with benchmark B.

Case 3 shows the throughput for the reference benchmark when A runs on a
partition, and seven other partitions run benchmark B. This case is much more
aggressive to the cache, since there are seven different partitions running
memory intensive workloads, and also a large number of virtual processors. This
case shows more performance impact on benchmark A, due to reduction in
cache efficiency.

As commented before, this is an extreme case where the workloads were
selected so that the effect on cache usage would have the most impact in
performance. Most applications used on UNIX systems, including commercial
and technical workloads should have a smaller impact in performance.

4.1.4 SMP locking and number of virtual processors
In a shared processor partition, virtual processors are dispatched into physical
processors by the POWER Hypervisor. Ths dispatch wheel assures that every
virtual processor is dispatches in a 10 ms interval. It does not garantee, however,
that they are dispatched simultaneously in case you have more than one physical
processor. Because of this, additional locking contention is possible. SMP locks
need special handling in shared processor partitions, since a virtual processor
can be waiting for a lock release from another virtual processor. If the virtual
processor owning the lock is not running (because it has ceded its cycles, or

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Relative performance

Case 1
Case 2
Case 3
108 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_01.fm
have finished the entitled time slice), then the other virtual processor will spin
waiting for the lock. To effectively solve this situation without spending
unnecessary cycles, the virtual processor waiting for lock calls the h_confer()
hypervisor call to give its cycles to the virtual processor owning the lock, so that it
can continue processing and release the lock. It is worth noting that SMT makes
this mechanism relatively less effective. If there is heavy locking, running a
partition in ST mode may reduce the impact.

Figure 4-5 shows the relative performance of various configurations when
running an NFS benchmark. It shows both the SMP scaling effect and the
performance considerations when running several virtual processors. When the
configuration changes from a 4-way SMP partition to 4 1-way partitions,
aggregate throughput is increased by a small margin.

For the same amount of virtual processors, it is better to have more partitions
with less virtual processors inside, for aggregate throughput.

As we increase the number of virtual processors, the relative performance is
more impacted, because of the SMP scaling inside the partition, and also
because of the time used by the POWER Hypervisor to dispatch the multiple
virtual processors in the system.

Figure 4-5 The effect of multiple virtual processors in overall performance

For this reason, it is recommended to have as few virtual processors configured
as possible. It is better to have few processors with higher capacity than a large
amount of processors each with a small amount of processing power. If
necessary for expanding thee partition, you can add more virtual processors by
executing a dynamic LPAR operation.

4.1.5 Memory affinity considerations
In the POWER5-based servers, memory is attached to processor modules and it
has the same access characteristics for any processor within the module. This

0.7

0.8

0.9

1

1.1

R
el

at
iv

e
pe

rfo
rm

an
ce

4-way SMP (4 CPUs)
4 partitions dedicated (1 CPU each)
4 micro-partitions (2 CPUs each)
2 micro-partitions (4 CPUs each)
4 micro-partitions (4 CPUs each)
 Chapter 4. Virtualization 109

5768ch04_01.fm Draft Document for Review July 31, 2004 4:38 am
does not differ from the POWER4-based servers. Memory and processors
directly connected are said to fall within a single affinity domain. A processor can
access memory attached to its local memory domain faster (that is, lower
latency) than it can access memory attached to other memory domains. AIX 5L
has optional support for organizing its memory management strategies around
these affinity domains. With memory affinity support enabled, AIX attempts to
satisfy page faults from the memory closest to the processor that generated the
page fault. This is of benefit to the application because it is now accessing
memory that is local to the MCM rather than memory scattered among different
affinity domains. This is true for dedicated processor partitions.

When using shared processor partitions, however, virtual processors may be
dispatched on different physical processors during the time a partition is running.
Therefore, there is no way to implement affinity domains, and therefore memory
affinity has no meaning in a shared processor partition. Memory is allocated to
partitions in a round-robin fashion, and this tends to reduce processor time
consumption variability due to variation in memory allocation.

High-bandwidth applications are the type of applications that benefit from
memory affinity and should not typically be run in shared processor partitions.

4.1.6 Idle partition overhead
In a system running shared processor partitions, the POWER Hypervisor
manages virtual processor dispatching between different partitions so that each
partition gets the deserved processing entitlement. In the case of partitions
running in the system, but idle (no work being done), the unused processing
cycles are then dispatched to other partitions by the POWER Hypervisor,
therefore leading to a more efficient usage of the resources.

There are some activities that consume processor resources even when the
partition is idle. Clock interrupts, hardware interrupts, daemons polling for events
are some examples of such activities that use processing resources. Because of
this, an idle partition still present some load to the physical processor. Moreover,
the POWER Hypervisor also needs some processing resources to manage these
idle partitions and the virtual processors running on them.

Normally, a system is not expected to have a large number of idle virtual
processors (if there are many, you should analyze whether they are really
needed for t he work that has to be done). AIX version 5.3 implements some
timer-management functions to minimize resource consumption by the idle
partitions. This amount is less than 1%. Figure 4-6 shows the impact of adding
idle partitions to a system running a workload in one uncapped partition.
110 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_01.fm
Figure 4-6 Performance of an uncapped partition when adding multiple idle partitions

Since idle partitions are not doing any productive work, in order to reduce further
the overhead associated to having idle partitions in the system, AIX version 5.3
introduces the idea of slow ticks. Slow ticks is an operation mode for idle
processors where the timer ticks get reduced by an order of magnitude. In other
words, the busy processors run normally, taking 100 timer ticks per second, while
the idle processors go into slow tick mode, and take 10 ticks a second. Slow ticks
are enabled in partitions running independently as a function of load average on
each cpu of a system.

Note that daemons that run periodically for polling activities, or applications that
present similar behavior can prevent the operation mode to change to slow ticks
(since there are threads running periodically, and therefore the partition is not
technically idle).

4.1.7 Partition size and overhead
As described in the other sections there is an overhead associated with the
implementation of shared processor partitions. If a partition is defined with a
small capacity entitlement, the effect of the overhead becomes more significant.
While it is possible to configure partitions with entitlements of 0.1 physical
processors, they can experience a performance penalty when running in a
system with other active partitions, specially if the other partitions are with a
moderate to high processor usage. The impact on the small partition can be as
high as 40% of its processing capacity.

Larger partitions may be less sensitive to this effect, and should not perceive
significant overhead relative to their processing capacity. It is important to note
that if a partition is running less than 100% processor utilization, it is giving

1 uncapped

1 uncapped + 1 idle

1 uncapped + 7 idle

80 85 90 95 100
Relative performance
 Chapter 4. Virtualization 111

5768ch04_01.fm Draft Document for Review July 31, 2004 4:38 am
cycles back to the POWER Hypervisor. This means that there are more context
switches for virtual processors, for underutilized partitions.

4.1.8 Interactions between partitions with high processor usage
Partitioned systems running high performance applications tend to have the
partitions competing against each other for shared resources (like cache, system
buses, memory access, I/O). This is true for any partitioning mechanism utilized,
but care must be taken when running shared processor partitions, since even the
physical processors are shared by the partitions.

As stated in the previous sections, there are some factors that can affect the
performance of an application running in a shared partition.The behavior of the
application itself, partition size, number of virtual processors and system
utilization can all impact the performance. The impact varies based on the listed
factors.

On a test running a Java-based application server with Websphere and DB2, the
performance of a single partition running in the system (consuming 20% of the
processor resources) was 25 units. When four additional partitions were added to
the system (consuming all the processor resources), performance measured in
one partition (but with all partitions running) was reduced by 20%. The aggregate
throughput of all partitions was also 20% below the theoretical linear scalability.
Figure 4-7 illustrates the test scenario.

Figure 4-7 Effect of multiple partitions in a high system utilization

As stated before, the overhead is dependant on the workload being run in the
partitions. On another test the CPU intensive applications running, the impact
was less significant when running the same configuration was less than 8%.

Busy

Idle

Idle

Idle

Idle

Busy

Busy

Busy

Busy

Busy

Throughput=25 Throughput=20

Throughput=20

Throughput=20

Throughput=20

Throughput=20

Assume system is capable of
5 x 25 = 125 throughput

Measure cumulative
performance
of system = 100 throughput
112 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_01.fm
When planning for several shared processor partitions running at high utilization,
it is recommended to consider the required capacity from 20% to 25% higher
than the actual (or measured) performance requirements. Upon deployment, you
can monitor the system and adjust the partition entitlements to the correct needs.
If the environment requires running a very large number of partitions, it may be
necessary to increase the allocation of entitlement further to accommodate
overhead.

4.1.9 Application considerations for shared processor partitions
Applications do not need to be aware of micro-partitioning, since it is completely
transparent from the application perspective. There are however some
considerations that should guide a decision on which applications are suitable for
shared processor partitions, and which are not.

Applications with response time requirements
The shared processor partition environment is a dynamic environment, specially
when capped and uncapped partitions are running on the same system.

As stated in Chapter 2.6.2, “POWER Hypervisor Design” on page 46, the
dispatch wheel assures that all virtual processors are dispatched in an interval of
10 ms. It does not guarantee, however, that the elapsed time between one
dispatch and the next one is fixed. Virtual processors can therefore been
dispatched anytime between immediately (smallest latency) and 18 ms (largest
latency) after the last dispatch, based on the virtual processor configured
capacity, and the number of virtual processors in the shared pool. Figure 4-8
illustrates the case for the smallest capacity (10% of a physical processor),
where the time slice is 1 ms.

Figure 4-8 Dispatch latencies for virtual processors

Applications that require a specific response time for transactions may also not
be good candidates for shared processor partitions. You can configure the
processing capacity inside a partition using different ways, and different number
of virtual processors, depending on the specific needs for the partition. If an

p1p1

p0p0

p1p1

p0p0

Dispatch Interval 1 Dispatch Interval 2Interrupt

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Time (ms)

Largest
latency

Smallest
latency
 Chapter 4. Virtualization 113

5768ch04_01.fm Draft Document for Review July 31, 2004 4:38 am
application depends on the individual processing capacity of a processor to run
efficiently, it may experience performance impact when running on a partition
with smaller (but more) virtual processors. Batch applications typically fall into
this category, and run as fast as the individual capacity of a processor. Therefore,
care must be taken when configuring a shared processor partitionto run similar
workloads, in order not to impact performance.

Therefore, applications where constant response time is a requirement, or real
time applications where the response time is on the same order of magnitude as
the dispatch latencies may not be optimal candidates for shared partitions. For
planning purposes, if you decide to deploy applications that must have
predictable response times, or applications that have transactions whose
individual performance is a performance factor, you should consider configuring
the partition with extra capacity, in order to compensate for these effects.

Applications that present polling behavior
Applications that rely on polling to execute their processing may not be suitable
for shared processor partitions. Since they need to periodically poll to detect if
the resource is available or condition is satisfied, they spend cycles that
otherwise would be available for other partitions (since they are not actually
doing work). If the application needs to periodically wake up a thread to do the
polling, that means that a virtual processor must be dispatched to run that
thread, and spend physical processor cycles, even if it is not producing work.

This behavior is the same regardless of the application being run on a partitioned
server or not. What makes a difference is that in the shared processor partition
environment you can use the spare cycles for other partitions, by having the
virtual processors calling the h_cede() system call. In other words, processor
cycles are being used without doing real work, and could be better used by other
partitions.

Applications with low average utilization and high peaks
Applications where average use of processor resources are low, but have peaks
of usage during a short period of time are good candidates for a shared
processor partition environment. More than one application can share the
processor resources and run with the required performance, exploiting the
benefits of sharing otherwise unused resources.

Applications that perform online transaction processing (OLTP) generally fit into
this category, since they are based on user input, and the number of users
accessing a system tend to follow a pattern based on the user day of work. This
way, it shows two distinct peaks of utilization, and an average use significantly
lower than the peaks. Examples of such applications are ERP systems, mail
servers, web-based applications and directory servers.
114 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_01.fm
Figure 4-9 shows the user distribution for an ERP system, during the day, on a
real customer scenario. You can clearly identify the peak times, and the periods
of few user counts.

Figure 4-9 User distribution during the day in an ERP application server

For OLTP applications, the processor usage usually follows a similar distribution,
as shown on Figure 4-10 for the same system.

0

100

200

300

400

500

600

700

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

Time Of Day

Nu
m

be
r o

f U
se

rs
 Chapter 4. Virtualization 115

5768ch04_01.fm Draft Document for Review July 31, 2004 4:38 am
Figure 4-10 Processor utilization by the ERP application server

The same behavior is seen on mail servers usually. An analysis of a Lotus
Domino server rendered a similar shape for number of users and processor
usage.

If you have several workloads that have peak activity on different times, you can
have each one running on a separate partition, and all partitions sharing the
same physical processors. By adjusting each partition entitlement, and the
partition mode (capped or uncapped), you can run the system at a higher
average utilization, while fulfilling the processing requirements for each
application.

Figure 4-11 illustrates a typical scenario where different applications are running
on shared processor partitions, with different peak times, and a mixed of capped
and uncapped partitions. The system is running with four physical processors,
virtualized into 20 virtual processors distributed between five partitions. Three
partitions run OLTP types of applications, and two partitions run batch
processing.

0
10
20
30
40
50
60
70
80
90

100

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00
Time Of Day
116 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_01.fm
Figure 4-11 Processor utilization between five partitions with different workloads

From this chart we can see that partitions 1 and 2 have peak utilization at
different times. Therefore, there is no need to duplicate the amount of resources
to satisfy both partitions at peak processing. Partition 3 is capped and at a low
utilization, so it remains constant during the time, and cedes the extra cycles not
needed to other partition. Partitions 4 and 5 also benefit from the shared
resources, receiving extra cycles whenever there are idle processors. And
because of the nature of the applications (online and batch), the partition weight
is a key factor to allocate the extra cycles to the uncapped partitions.

Application with a high processing capacity usage
If an application uses most of the processing capacity during its execution, it may
not be useful to put it into a shared processor pool. Since the requirements for
the application are high, and constant during execution, a dedicated processor
partition is a better choice for this application. In a dedicated processor partition it
received the processing capacity it needs, and it is less suitable of interference
from other workloads running in the system.

It may be useful to run these applications in an uncapped partition in case they
can use the extra cycles that may eventually be available. In this case, the
application can execute more work on a system that would otherwise be idle.
That would be the case when running online applications in a system during
daytime, and batch applications at night.

Typical applications falling in this scenario are decision support systems (DSS)
and High Performance Computing (HPC) applications.

P artition 1 (O LTP)
0 .5 e n title m e n t
U n cap pe d (w e ig th 1 0)

P artition 2 (O LTP)
0 .5 e n title m e n t
U n cap pe d (w e ig th 2 0)

P artition 3 (O LTP)
1 .5 e n title m e n t
C a pp e d

P artition 4 (B atch)
0 .5 e n title m e n t
U n cap pe d (w e ig th 1)

P artition 5 (B atch)
1 .0 e n title m e n t
U n cap pe d (w e ig th 2)
 Chapter 4. Virtualization 117

5768ch04_01.fm Draft Document for Review July 31, 2004 4:38 am
4.1.10 Guidelines for planning shared processor partitions
When planning partitions to run applications using micro-partitioning, it is
important to identify the application requirements and behavior, in order to proper
size the partitions and maximize the system performance.

Planning for future applications is normally a case where estimates are the only
information available. In these cases, the usage of shared processor partitions
can help greatly, since partitions can be adjusted for required capacities in a very
flexible way. On the other hand, an estimate can always be larger than the actual
requirements, or smaller. Because of this, you must always consider some buffer
in the system to accommodate extra requirements.

When the application environments are already in production or test, the task of
planning a shared processor partition becomes more close to reality. You can
measure the resource consumption by the application on the running system,
and use this as a base for a shared processor partition performance requirement.
Based on the detailed information you are able to get, you can plan the shared
processor partitions to make the most effective use of the physical resources.

When planning for micro-partitioning, there are three main strategies for defining
configurations:

Guaranteed CapacityBasic definition, based on the sum of capacities from all
servers being migrated, or based on sizing estimates
using any published performance unit. In general the
partitions are running in capped mode when using this
strategy.

Harvested Capacity Definition of partitions that have quality of service
requirements, and allowing other partitions to run on the
system with the resources eventually idle. You may have
some partitions running uncapped when you use this
approach so that they can use available resources in the
system.

Planned Over-commitCareful analysis of application resource usage and peak
processing requirements, in order to deploy applications
and substantially increase system utilization. You should
run most of the partitions in uncapped mode.

Each of these strategies apply to different situations, depending on the amount of
information you have for planning.

Guaranteed Capacity
This is the basic rule of capacity planning for shared processor partitions. When
you are planning a system for new applications, there is no performance data
118 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_01.fm
available on the resource consumption by the applications (since they are not
installed). Therefore, you should rely on application sizing and performance
requirements estimates in order to size the partitions, and add extra capacity in
case the application needs more than initially planned.

This is also the case where you have the applications running, but cannot identify
processing capacity consumption behavior (either because of insufficient
information, or because of random behavior).

For these situations, the best approach is to size a system based on the required
capacities, up to the peak capacity, and add an additional capacity for
contingency. This method offers the smallest risk and is fairly simple to estimate.
Moreover, since the system was planned based on the peak requirements for
each application, you do not need a great effort in performance management,
since there is installed capacity for all application needs.

The drawback of this strategy is that it does not optimize resource usage based
on application behavior, and therefore a large fraction of the processing
resources may be unused during hours of less activity, and also if applications
present complementary processing needs (one application has a peak and other
has a valley).

An application for this strategy is in case of new application deployment when a
sizing is provided. One such application is a three-tiered ERP system. Based on
the functional requirements from the customer, a sizing tool generates an
estimate for system requirements, based on peak requirements for each
component of the solution.

A typical ERP solution is based on several servers running different functions. In
general you have a database server, one or more application servers, one
development system and one test system. An hypothetical example of a new
system installation would be similar to the requirements listed in Table 4-1, where
the different functions are listed with the peak performance requirements, at
100% processor usage.

Note: rPerf is an estimate of commercial processing performance relative
between pSeries systems. It is derived from an IBM analytical model which
uses characteristics from IBM internal workloads and industry transaction
processing and web processing benchmarks. The rPerf model is not intended
to represent any specific public benchmark result. It is being used here as an
indication of the required performance in IBM systems for this specific
scenario.
 Chapter 4. Virtualization 119

5768ch04_01.fm Draft Document for Review July 31, 2004 4:38 am
Table 4-1 An example of an ERP system requirements

Since we do not know how is the behavior of each system, in order to
accommodate the requirements in a single system with shared processor
partitions, we sum the peak performance requirements for each function. We
also consider an additional capacity for the micro-partitioning operation and
activities. We consider 20% of the required capacity as an additional for
overhead.

If we were to use separate systems for each function, we would use five systems,
with an adequate capacity to provide system usage within the performance
requirements. Also, the DB Server usually requires room for growth, that
translates into using a server with scalability. In this example, we would have:

Table 4-2 Implementation with separate servers

The amount of rPerf required for the application is 15.3. The amount of rPerf
configured into the systems is 17.41, due to physical constraints (the number of
processors must be an integer number). And while extra capacity is being

Function Capacity in rPerf

DB Server 4.1

Application Server 1 3.5

Application Server 2 3.5

Development 1.5

Test 1.0

Function Capacity
requirement in
rPerf

Server Capacity
provided in rPerf

DB Server 4.4 p630 2-way 1.45
GHz

4.41

App Server 1 3.7 p615 2-way 1.2
GHz

4.0

App Server 2 3.7 p615 2-way 1.2
GHz

4.0

Development 2.0 p615 2-way 1.2
GHz

2.5

Test 1.5 p615 2-way 1.2
GHz

2.5
120 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_01.fm
configured, it cannot be allocated wherever it is needed, since these systems are
separate.

If we use a more sophisticated approach by configuring a partitioned server, we
will have more flexibility in moving extra resources among partitions, but still need
to provide extra capacity than can be underutilized. Table 4-3 shows the same
example using a partitioned 1.45 GHz pSeries 650 server:

Table 4-3 Implementation with a partitioned POWER4-based pSeries 650 server

Again in this case, if extra resources are needed in the DB Server, for example,
and the Development partition is using only 30% of its capacity, there is no way to
utilize the extra resources where they are required.

Now, if we consider using a server with micro-partitioning, we can accommodate
the different functions with more effective utilization. A single IBM Eserver p5
Model 550 can deliver up to 19.66 rPerf with four POWER5 processors running
at 1.65 GHz. For this workload, we would have the configuration as shown on
Appendix 4-4, “Implementation with micro-partitioning” on page 121:

Table 4-4 Implementation with micro-partitioning

Function Capacity
requirement in
rPerf

Number of
processors in the
partition

Capacity
provided in rPerf
(entire machine)

DB Server 4.4 2

18.67

App Server 1 3.7 2

App Server 2 3.7 2

Development 2.0 1

Test 1.5 1

Function Capacity
requirement in
rPerf

Recommended
capacity for
micro-partitionin
g

Percentage of
physical
processor
requirements

DB Server 4.4 5.28 1.07

App Server 1 3.7 4.44 0.90

App Server 2 3.7 4.44 0.90

Development 2.0 2.4 0.49

Test 1.5 1.8 0.37
 Chapter 4. Virtualization 121

5768ch04_01.fm Draft Document for Review July 31, 2004 4:38 am
The extra resources on the machine can then be allocated to any of the
partitions, whenever they require capacity. Moreover, once a partition is not using
its total capacity, the remaining of its entitlement is automatically available in the
shared processing pool. Also, once the applications are running, resource
allocation can be fine tuned and allocated according to the partition needs.

Harvested capacity
When you have a mix of partitions that have a response time requirement (such
as OLTP applications) and partitions that do not have response time
requirements (such as batch applications, or test partitions), and you have some
knowledge of the applications behavior, micro-partitioning gives you the ability of
running the workloads without provisioning capacity for the peak processing of
each partition. You can provision capacity for the partitions that have the
response time requirements, up to peak capacity. Since they do not normally run
in peak processing, the extra resources can be used by the partitions that do not
have response time requirements. For these partitions, instead of specifying a
peak capacity, you define a minimum capacity for them to run, and let them run
uncapped, using the resources available from the other partitions.

Using the previous example, the DB Server and Application Server partitions still
have their processing requirements guaranteed, and the Development and Test
partitions could be configured as uncapped partitions, and use any available
resources on the system.

Another good application of this strategy would be a case of a server farm
running an application that receives load from load balancers. Normally the load
will be balanced among the servers executing the application. In case one server
gets more workload than others, it can use more resources from the processor
pool, and return to normal behavior when the extra workload finishes.

Planned Over-commit
This is the strategy where you make the most efficient use of the processing
capacity in the system. On the other hand, it is the strategy that requires the most
accurate planning and detailed knowledge about the applications behavior. It
involves the utilization of different resource consumption from the applications,
on order to share an amount of resources and deliver quality of service. Instead
of planning for peak utilization for each application, you plan for the average and

Total 15.3 18.36 3.73

Function Capacity
requirement in
rPerf

Recommended
capacity for
micro-partitionin
g

Percentage of
physical
processor
requirements
122 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_01.fm
peak usage for one or a few partitions at at time. In other words, on average
processing, all partitions have their requirements fulfilled. If a few partitions
consumes resources up to the peak, the system still fulfill all partitions
requirements. If most or all of the application peaks at the same time, then the
system is over-committed and some performance degradation may occur.

By adequate planning, a system can be configured with applications that do not
overlap their peaks in processing, and therefore never over-commit the system.
Total system usage will be high, and quality of service maintained, with maximum
efficiency in resource usage.

Figure 4-12 shows the processor usage for 3 different applications during the
same period. From the charts you can see that the peaks in processing for each
application are not at the same time. In that case, if you consolidate these
application onto shared processor partitions, you can fulfill the processing
requirements with less than the sum of peak requirements.
 Chapter 4. Virtualization 123

5768ch04_01.fm Draft Document for Review July 31, 2004 4:38 am
Figure 4-12 Processing resource consumption for three different applications

If we consolidate these applications on a server with micro-partitioning, we can
benefit from their behavior to size a system with less capacity than the sum of all
peaks. Table 4-5 show the peak consumption for each partition, and the sum of
the peaks.

Applicat ion B

0
10
20
30

40
50
60
70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Applicat ion B

Applicat ion C

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15

Applicat ion C

Applicat ion A

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Applicat ion A
124 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_01.fm
Table 4-5

If we hypothetically consider 0.1 rPerf for each percent user by the applications,
in order to run the three applications with the peak performance requirements,
you would need a server with 19.7 rPerf.

If, instead of this, we use micro-partitioning, then what you do is sum the usage
for the three applications, at a given time. Figure 4-13 shows the result of this
sum, and we can see that the maximum peak processing for the sum is 96%.
Using the same consideration of 0.1 rPerf for each 1% consumption, we come to
a requirement of 9.6 rPerf for all three applications.

Figure 4-13 Sum of resource consumption for the three applications

By adding 20% extra capacity for micro-partitioning management activities, we
come to a requirement of 11.52 rPerf. This is about half the capacity we would
need if sizing for peak capacity of each application (and also including the 20%
extra capacity).

As commented before, this is the most efficient strategy for consolidating running
systems using micro-partitioning. It is important to notice that all partitions must
be uncapped, so that they can get the resources needed for peak processing. It

Application Peak processing (%)

A 77

B 65

C 55

TOTAL 197

0
10
20
30
40
50

60
70
80
90

100

1 3 5 7 9 11 13 15

Applic ation C
Applic ation B
Applic ation A
 Chapter 4. Virtualization 125

5768ch04_01.fm Draft Document for Review July 31, 2004 4:38 am
is also important to note that if by some reason the peaks in processing change,
the partition entitlements must be recalculated and a new planning should be
done. Otherwise, partitions may not be able to get the resources they need, and
application performance will be degraded.
126 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_02.fm
4.2 Virtualized Input/Output
This chapter gives after short introduction to virtualized I/O first, and after that a
deeper view to that and how the POWER5 Hypervisor handles the transactions
between the partitions.

4.2.1 Introduction
With the usage of virtual partitions in POWER5-based Servers, the number of
possible partitions on many systems can be greater than the number of I/O slots
in this systems. POWER5 processor-based servers support 254 LPARS (2004),
which is more than the supported number of I/O-Slots per CEC (Central
Electronic Complex). There are up to about 160 I/O Slots in 2004. Typically you
need one slot per Network Interface Connector and one slot per Host Bus
Adapter.

To be able to get a higher amount of devices, IBM introduced virtualized
Input/Output technology for POWER5-based servers. Virtualized I/O is an
optional feature and can be used on above hardware in conjunction with AIX 5L
v5.3. In addition, virtual devices are more convient and it’s a cost saving option if
logical partitions communicate with one another via Virtual Ethernet then via
dedicated adapters and network hardware.

Virtualized I/O as shown in Figure 4-14 is intended as a complement to
dedicated or local I/O. It can also be referred to as physical I/O.

Figure 4-14 Virtual I/O provided by POWER Hypervisor
 127

5768ch04_02.fm Draft Document for Review July 31, 2004 4:38 am
A partition can have any combination of local and virtualized I/O adapters.

Virtualized I/O includes Virtual SCSI, Virtual Ethernet and Virtual Serial. For
performance issues we will concentrate on Virtual SCSI and Virtual Ethernet. It is
also called interpartition communication and is handled by the POWER
Hypervisor..

4.2.2 Virtualized I/O and the POWER Hypervisor
The following topic provides detail on how the POWER Hypervisor handles the
inquiries from the virtualized I/O devices.

The POWER Hypervisor uses one of three techniques to realize virtualized I/O:

� Hypervisor simulated class. This class is shown in Example 4-15 and
illustrates how the POWER Hypervisor may totally simulate the adapter. For
example, this is used in the Virtual Ethernet support (see Chapter 4.3, “Virtual
Ethernet” on page 137). This technique is applicable to communications
between partitions that are created by a single hypervisor instance.

Figure 4-15 Hypervisor simulated class

� Partition managed class. This class is shown in Figure 4-16 on page 129 and
is a class where the server partition provides the services of one of its virtual
I/O adapters to a partner partition(s). A server partition provides support to
interpret I/O requests from the partner partition, perform those requests on
one or more of its devices, targeting the partner partition’s DMA buffer areas
using the Remote DMA (RDMA, see “Remote DMA” on page 134) facilities,
and passing I/O responses back to the partner partition. This type of class is
used by Virtual SCSI as decribed in Chapter 4.5, “Virtual SCSI” on page 169.

LPAR

LPAR

P
H
Y
P

LPAR

LPAR

P
H
Y
P

128 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_02.fm
Figure 4-16 Partition managed Class

� Hypervisor managed class. A class where the POWER Hypervisor may
provide low level hardware management (error and subchannel allocation) so
that partition level code may directly manage its assigned sub-channels. This
model is used with shared devices such as the InfiniBand Host Channel
Adapter (HCA). This is just mentioned for the sake of completeness and will
not be further handled in this chapter.

In addition to the above general classes, there are also two general
characteristics that can be associated with most Virtual I/O:

� Synchronous type virtualized I/O is where the communicating partitions are
under the control of the same hypervisor and within the same CEC (Central
Electronic Complex). Command/Response Queue (CRQ) operations (see
“Types of Connections” on page 133) and some memory to memory moves
between the partitions is via synchronous hcall() operations.

� Asynchronous type virtualized I/O is where the communicating partitions may
or may not be under the control of the same hypervisor and may or may not
be within the same CEC. CRQ operations and memory to memory moves
between the partitions is an asynchronous queued operation.

L P AR

L P AR

P
H
Y
P

L P AR

L P AR

P
H
Y
P

R D M A
 129

5768ch04_02.fm Draft Document for Review July 31, 2004 4:38 am
4.2.3 Virtualized I/O architectural infrastructure
Virtualized I/O is used in conjunction with the logical patitioning option. Now we
will have a look at the virtualized I/O infrastructure and will explain the most
common terms for virtualized I/O.

Client Virtual I/O model
This terminology is mainly used with the partition managed class of virtualized
I/O. The client or client partition is an entity which generally makes requests of a
server partition for access to I/O to which it does not have direct access. Unlike
the server, the client does not provide services to other partitions in order to
share the I/O which resides in their partition. However, it is possible to have the
same partition be both a server and client partition, but under different virtual I/O
adapters.

The Client Virtual I/O model is one where the client partition maps part of its local
memory into an RTCE table (see “Remote Translation Control Entry (RTCE)” on
page 134), so that the server partition can get access to that client’s local
memory. An example of this is the VSCSI client.

Server Virtual I/O model
This terminology is mainly used with the partition managed class of virtualized
I/O. The server, or server partition is an entity which provides a method of
sharing the resources under its direct control with another partition, virtualizing
those resources in the process. There are two versions of the Server Virtual I/O
model:

� The server is a server to a client. An example of this is the VSCSI client. In
this case, the server gets access to the client partition’s local memory via
what the client mapped into an RTCE table. This access is done through the
second widow pane of the server’s “ibm,my-dma-window” property, which is
linked to the first window pane of the client’s “ibm,my-dma-window” property.
Depending on whether asynchronous operation is required or not (as denoted
by the virtual I/O Adapter type), the server uses either LRDMA or ALRDMA
(see “Asynchronous Logical Remote DMA (ALRDMA) Option” and “Remote
Direct Memory Access is DMA transfer from the server to its client or from the
server to its partner partition. DMA refers to both physical I/O to and from
memory operations and to memory to memory move) operations.” on
page 134) operations to service the client.

� The server is in a peer relationship to another server. An example of this is
the Shared Memory Cluster (SMC) virtual IOA. In this case, the Server Virtual
I/O model is one where the server gets access to the other server (called the
partner partition) partition’s local memory via what the partner mapped into
an RTCE table (via the third pane of the “ibm,my-dma-window” property).
Depending on whether asynchronous operation is required or not (as denoted
130 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_02.fm
by the virtual IOA type), the server uses either ALRDMA operations for
asynchronous operations, or LRDMA operations for synchronous operations,
to communicate with its partner partition.

The /vdevice Open Firmware Tree Node
The platform defines for each of its partitions the number and type of Virtual I/O
Adapters with the associated interpartition communications paths (if any). These
definitions take the architectural form of Virtual I/O Adapters and are
communicated to the partitions as device nodes in their Open Firmware device
tree.

Depending upon the specific virtual device their device tree node may be found
as a child of / (the root node) or in the Virtual I/O sub-tree.

Most vital I/O adapters are represented in the Open Firmware device tree as
children of the /vdevice node (child of the root node). While the vdevice sub-tree
is the preferred architectural home for virtual I/O adapters, selected devices for
historical reasons, are housed outside of the vdevice sub-tree.

The platform’s /vdevice node must contain the properties as defined in Table 4-6.

Table 4-6 Properties of the required attributes of the /vdevice Node

Attention: Don’t mix up the Server Virtual I/O, which is a logical part of the
Virtual Client/Server model and the Virtual I/O Server, which is a product, as
described later.

Property Name Req? Definition

name Yes Standard property name per IEEE 1275
specifying the virtual device name, the
value shall be “vdevice”

device_type Yes Standard property name per IEEE 1275
specifying the virtual device type, the value
shall be “vdevice”

model N/A Property not present

compatible Yes Standard property name per IEEE 1275
specifying the virtual device programming
models, the value shall
include “IBM,vdevice”

used-by-rtas NA Property not present
 131

5768ch04_02.fm Draft Document for Review July 31, 2004 4:38 am
ibm,loc-code N/A The location code is meaningless unless
one is doing dynamic reconfiguration as in
the children of this node.

reg N/A Property not present

#size-cells Yes Standard property name per IEEE 1275,
the value shall be 0. No child of this node
takes space in the address map as seen by
the owning partition

#address-cells Yes Standard property name per IEEE 1275,
the value shall be 1

#interrupt-cells Yes Standard property name per IEEE 1275,
the value shall be 2. The first cell contains
the interrupt# as will
appear in the XIRR and is used as input to
interrupt RTAS calls the second cell
contains the value 0
indicating a positive edge sense

interrupt-map-mask N/A Property not present

interrupt-ranges Yes Standard property name that defines the
interrupt number(s) and range(s) handled
by this unit.

ranges ? These will probably be needed for IB virtual
adapters.

interrupt map N/A Property not present

interrupt-controller Yes The /vdevice node appears to contain an
interrupt controller.

ibm,drc-indexes for DR For Dynamic Reconfiguration (DR)
Refers to the DR slots -- the number
provided is the maximum number of slots
that can be configured which is limited by,
among other things, the RTCE tables
allocated by the POWER Hypervisor.

ibm,drc-power-domains for DR Value of -1 to indicate that no power
manipulation is possible or needed.

ibm,drc-types for DR Value of “SLOT”. Any virtual IOA can fit into
any virtual slot.

ibm,drc-names for DR The virtual location code

Property Name Req? Definition
132 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_02.fm
4.2.4 Types of Connections
The virtualized I/O infrastructure provides several primitives that are then used to
build connections between partitions for various purposes. These primitives
include (for further descriptions see below):

� A Command/Response Queue (CRQ) facility which provides a pipe between
partitions. A partition can enqueue an entry on its partner’s CRQ for
processing by that partner. The partition can set up the CRQ to receive an
interrupt when the queue goes from empty to non-empty, and hence this
facility provides a method for an inter-partition interrupt.

� An extended TCE (Translation Control Entry) table called the RTCE (Remote
DMA TCE) table which allows a partition to provide “windows” into the
memory of its partition to its partner partition, while maintaining addressing
and access control to its memory.

� Remote DMA services that allow a server partition to transfer data to a
partner partition’s memory via the RTCE table window panes. This allows a
device driver in a server partition to efficiently transfer data to and from a
partner, which is key in sharing of an virtualized I/O adapter in the server
partition with its partner partition.

The Command/Response Queue (CRQ)
The CRQ facility provides ordered delivery of messages between authorized
partitions. The facility is reliable in the sense that the messages are delivered in
sequence, that the sender of a message is notified if the transport facility is
unable to deliver the message to the receiver’s queue, and that a notification
message is delivered (providing that there is free space on the receive queue), or
if the partner partition either fails or deregisters its half of the transport
connection.

The CRQ facility does not police the contents of the payload portions (after the 1
byte header) of messages that are exchanged between the communicating pairs,
however, the architecture does provide means (via the Format Byte) for self
describing messages such that the definitions of the content and protocol
between using pairs may evolve over time without change to the CRQ
architecture, or its implementation.

The CRQ is used to hold received messages from the partner partition. The CRQ
owner may optionally choose to be notified via an interrupt when a message is
added to their queue.

Reliable Command/Response Transport (RCRQ) Option
For the synchronous infrastructure, the CRQ facility defined above is
implemented via the Reliable Command/Response Transport option. The
 133

5768ch04_02.fm Draft Document for Review July 31, 2004 4:38 am
synchronous nature of this infrastructure allows for the capability to immediately
(synchronously) notify the sender of the message whether the message was
delivered successfully or not.

Remote Translation Control Entry (RTCE)
TCE (Translation Control Entry) and RTCE tables are used to translate I/O DMA
operations and provide protection against improper operations.

The RTCE table for Remote DMA (RDMA) is analogous to the TCE Table for
dedicated I/O. The RTCE table does have a little more information in it (as placed
there by the POWER Hypervisor), so it can, among other things, allow the
POWER Hypervisor to create links to dedicated I/O Adapters TCEs, that were
created from the RTCE table TCEs. A TCE in an RTCE table is never accessed
directly by the partition’s software, only though hypervisor hcall()s.

Table 4-7 Comparing TCE and RTCE

Window pane (“ibm,my-dma-window” property)
The RTCE tables for virtualized I/O DMA are pointed to by the
“ibm,my-dma-window” property in the device tree for each virtual device. This
property can have one, two, or three triples, each consisting of a Logical I/O Bus
Number (LIOBN), phys which is 0, and size.

The LIOBN essentially points to a unique RTCE table (or a unique entry point
into a single table).

Remote DMA
Remote Direct Memory Access is DMA transfer from the server to its client or
from the server to its partner partition. DMA refers to both physical I/O to and
from memory operations and to memory to memory move) operations.

The following options are available for RDMA:

TCE (Translation Control Entry) RTCE (Remote TCE)

In POWER4 based pSeries Servers In POWER5 based pSeries Servers

Translation Table for logical to dedicated
I/O Bus Addresses

Necessary for Remote DMA

Managed by the Hypervisor Managed by the POWER Hypervisor

Addressed by the Operating System Never addressed directly by the Operating
System. Addressed only through
Hypervisor hcall()s
134 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_02.fm
Logical Remote Direct Memory Access (LRDMA) Option
The Logical Remote Direct Memory Access (LRDMA) option allows a server
partition to securely target memory pages within a partner partition for virtual I/O
operations. This option is defined for synchronous type Virtual I/O.

Asynchronous Logical Remote DMA (ALRDMA) Option
For the asynchronous infrastructure, the CRQ facility is implemented along with
the ALRDMA option. The asynchronous nature of this infrastructure does not
allow for the capability to immediately (synchronously) notify the sender of the
message whether the message was delivered successfully or not, and therefore
an asynchronous queueing structure is used to deliver entries to the CRQ.

Redirected RDMA
RDMA refers to when the TCE(s) for a dedicated I/O Adapter are set up through
the use of the RTCE table manipulation hcall()s such that the client or partner’s
partition’s RTCE table is used by the hypervisor during the processing of the
hcall() to setup the TCE(s) for the physical IOA, and then the physical IOA DMAs
directly to or from the client or partner partition’s memory.

Hypervisor calls hcall()
The calls, used by the POWER Hypervisor, are described in Chapter 2.6.2,
“POWER Hypervisor Design” on page 46

4.2.5 Shared Logical Resources
Owners of resources can grant, to one or more client partitions, access to any of
its resources. A client partition being defined as a partition with which the
resource owner is authorized to register a CRQ, as denoted via an Open
Firmware device tree virtual I/O node. Granting access is accomplished by
requesting that the hypervisor generate a specific cookie for that resource for a
specific sharing partition. The cookie value thus generated is unique only within
the context of the partition being granted the resource and is unusable for gaining
access to the resource by any other partition.

This unique cookie is then communicated via some inter partition
communications channel, most likely the authorized Command Response
Queue. The partner partition then accepts the logical resource (mapping it into
the accepting partition’s logical address space). The owning partition may grant
shared access of the same logical resource to several clients (by generating
separate cookies for each client). During the time the resource is shared, both
the owner and the sharer(s) have access to the logical resource, the software
running in these partitions use private protocols to synchronize control access.
Once the resource has been accepted into the client’s logical address space, the
 135

5768ch04_02.fm Draft Document for Review July 31, 2004 4:38 am
resource can be used by the client in any way it wishes, including granting it to
one of its own clients. When the client no longer needs access to the shared
logical resource, it destroys any virtual mappings it may have created for the
logical resource and returns the logical resource thus unmapping it from its
logical address space. The client program could, subsequently accept the logical
resource again (given that the cookie is still valid).

To complete the termination of sharing, the owner partition rescinds the cookie
describing the shared resource. Normally a rescind operation succeeds only if
the client has returned the resource, however, the owner can force the rescind in
cases where it suspects that the client is incapable of gracefully returning the
resource.

4.2.6 The Virtual I/O-Server
The IBM Virtual I/O-Server is the link between the virtual and the real world. It is
an AIX-based appliance and is supported on POWER5-based servers only.

Main purpose is to provide two functions:

� Server part for the Virtual SCSI devices (VSCI target)

� Functionality of shared Ethernet adapter for Virtual Ethernet.

The Virtual I/O Server will be shipped as a mksysb image. As described before, it
is AIX5L V5.3 based and not accessible as a standard partition. Administrative
access to the I/O-Server partition is only possible as user padmin and not as
root. After login, user pdamin gets a restricted shell which is not escapable. This
is called the I/O-Server Command Line Interface (IOCLI).

The operating system of the I/O-Server is hidden to simplify transitions to further
versions. Additionally, this product supports Linux and AIX 5L V5.3, but no
specific OS skill is required for administration the I/O-Server.

The performance considerations of the Virtual I/O-Server will be addressed in
later topics. For example, issues related to performance with the I/O-Server as a
Virtual SCSI target device see Chapter 4.5, “Virtual SCSI” on page 169.

A performance measurement of Virtual I/O using the Shared Ethernet Adapter
(SEA) functionality will be discussed in “Shared Ethernet Adapter functionality”
on page 160
136 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_02.fm
4.3 Virtual Ethernet
This chapter handles a short description and performance issues that come
along with the usage of the Virtual Ethernet and the POWER5 Hypervisor.

4.3.1 Introduction
Virtual Ethernet creates logical ethernet connections between one or more
partitions. There are no physical Adapter needed for implementing a Virtual
Ethernet. The POWER5 Hypervisor copies frames from and to the virtual
interfaces between the (maybe virtual) LPARs. It acts as a virtual switch between
the logical Interfaces. So, Virtual Ethernet is a memory based Interpartition LAN.
A virtual network may be “bridged” to an external network to permit partitions
without physical network adapters to communicate outside of the server and vice
versa. This functionality is given by the Virtual I/O Server, described in “Shared
Ethernet Adapter functionality” on page 160.

Figure 4-17 Virtual Ethernet

A virtual ethernet adapter can be configured like a standard ethernet adapter.

Attention: Virtual Ethernet is also called Virtual LAN or even VLAN, which
can be confusing, because these terms are also used in network topology
topics. But the Virtual Ethernet, which uses virtual devices has nothing to do
with the VLAN known from Network-Topology, which divides a LAN in further
Sub-LANs.

LPAR 1

Virtual
Ethernet
Adapter

LPAR 2

Virtual Switch
POWER Hypervisor

Virtual
Ethernet
Adapter
 137

5768ch04_02.fm Draft Document for Review July 31, 2004 4:38 am
In every partition virtual and dedicated network devices can be used for
communication as shown in Figure 4-18. Up to 256 adapters (sum of virtual and
local) are supported per LPAR.

Figure 4-18 Virtual and local adapters on one partition

IEEE Support
The Virtual Ethernet, shipped with AIX 5L V5.3 supports the IEEE (The Institute
of Electrical and Electronics Engineers, Inc.) 802.1Q standard. This standard
describes the “Virtual Bridged Local Area Networks”. IEEE needs a Virtual LAN
ID (VID). The LAN ID is optional in the above implementation. When this option is
selected while adding a new Virtual LAN interface at the HMC, a VID can be
chosen. Up to 4094 Virtual LANs are supported. Up to 18 VIDs can be
configured per Virtual LAN port. The following topic describes how the POWER5
Hypervisor handles this support.

Comparing physical and virtual ethernet
A virtual LAN adapter appears to the operating system in the same way as a
physical adapter. It also can be configured in the same manner. While the MAC
(Media Access Control) Adress of physical Ethernet is coded on the (hardware)
adapter, the MAC-Address of the virtual adapter is generated by the HMC.

Figure 4-19 TCP/IP Suite of protocols

Figure 4-19 shows the standard TCP/IP Suite of protocols. Every Layer adds a
additional header to the frame. After Frames passed Transport and Network
layer, they are received by the Network Interface layer. The Network Interface
layer adds the Ethernet header, and sends the datagram to the hardware.
Additionally, it handles segmentation and recalculates the header checksum of

lsdev -Cc adapter
ent0 Available Virtual I/O Ethernet Adapter (l-lan)
ent1 Available 01-08 2-Port 10/100/1000 Base-TX PCI-X Adapter (14108902)
ent2 Available 01-09 2-Port 10/100/1000 Base-TX PCI-X Adapter (14108902)
vsa0 Available LPAR Virtual Serial Adapter
vscsi0 Available Virtual SCSI Client Adapter General Concepts
138 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_02.fm
the outgoing IP-packets. In physical Ethernet, this is done by the Ethernet
adapter. In Virtual Ethernet, the POWER Hypervisor is responsible for that.

MTU Sizes
The Virtual Ethernet Adapter supports, as Gigabit (GB) Ethernet, Standard
MTU-Sizes of 1500 Byte and Jumbo frames with 9000 Byte. Additionally to
GB-Ethernet, the MTU-Size of 65280 Bytes is also supported in Virtual Ethernet.
So, the MTU of 65280 Bytes can be only used inside a Virtual Ethernet.

IPv6 Support
Virtual Ethernet supports multiple protocols, like IPv4 and IPv6.

Figure 4-20 Example of two VLANs in a Virtual Ethernet Environment

4.3.2 Virtual Switch of the POWER5 Hypervisor
The POWER Hypervisor Switch is consistent with IEEE 802.1 Q. It works on
OSI-Layer 2 and supports up to 4096 networks (4096 VIDs).

When a message arrives at a Logical LAN Switch port from a Logical LAN
adapter, the POWER Hypervisor caches the message’s source MAC address
(2nd 6 bytes) to use as a filter for future messages to the Adapter. Then the
POWER Hypervisor processes the message differently depending upon whether
the port is configured for IEEE VLAN headers, or not. If the port is configured for
VLAN headers, the VLAN header (bytes offsets 12 and 13 in the message) is
checked against the port’s allowable VLAN list. If the message specified VLAN is
not in the port’s configuration the message is dropped.
Once the message passes the VLAN header check, it passes onto destination
 139

5768ch04_02.fm Draft Document for Review July 31, 2004 4:38 am
MAC address processing below. If the port is NOT configured for VLAN headers,
the hypervisor (conceptually) inserts a two byte VLAN header (based upon the
port’s configured VLAN number) after byte offset 11 in the message.
Next, the destination MAC address (first 6 bytes of the message) is processed by
searching the table of cached MAC addresses (built from messages received at
Logical LAN Switch ports see above). If a match for the MAC address is not
found and if there is no Trunk Adapter defined for the specified VLAN number,
then the message is dropped, otherwise if a match for the MAC address is not
found and if there is a Trunk Adapter defined for the specified VLAN number, then
the message is passed on to the Trunk Adapter. If a MAC address match is
found, then the associated switch port’s configured, allowable VLAN number
table is scanned for a match to VLAN number contained in the message’s VLAN
header. If a match is not found, the message is dropped. Next the VLAN header
configuration of the destination switch port is check, if the port is configured for
VLAN headers the message is delivered to the destination Logical LAN adapters
including any inserted VLAN header. If the port is configured for no VLAN
headers the VLAN header is removed before being delivered to the destination
Logical LAN adapter
140 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_02.fm
Figure 4-21 Flow chart of Virtual Ethernet

Virtual
Ethernet IO

Adapter

Virt. VLAN
Switchport

PHYP
caches

source MAC

IEEE
VLAN

HEADER?

Insert 2-byte
VLAN

Header
Port

allowed?

Check
VLAN

Header

Drop
packet

Configure
assosiated
Switchport

Dest. MAC
in Table?

Trunk
Adapter
defined?

Match for
VLAN Nr.
In Table?

Pass to
Trunk

Adapter
Deliver

Y

N

N

Y

N

Y

N

Y

N

Y

N

 141

5768ch04_02.fm Draft Document for Review July 31, 2004 4:38 am
The Logical LAN adapters device tree entry includes Unit Address, and
“ibm,my-dma-window” properties. The “ibm,my-dma-window” property contains a
LIOBN field that represents the RTCE table used by the Logical adapter. The
Logical LAN hcall()s use the Unit Address field to imply the LIOBN and,
therefore, the RTCE table to reference. When the logical IOA is opened, the
device driver registers, with the hypervisor, as the “Buffer List”, a TCE mapped
page of partition I/O mapped memory that contains the receive buffer
descriptors. These receive buffers are mapped via a TCE mechanism from
partition memory into contiguous I/O DMA space. The first descriptor in the
buffer list page is that of the receive queue buffer. The rest of the descriptors are
for a number of buffer pools organized by increasing size of receive buffer. The
format of the descriptor is a 1 byte control field, 3 byte buffer length, followed by a
4 byte I/O address. The number of buffer pools is determined by the device driver
(up to an architected maximum of 254), the control field in all unused descriptors
is 0h00. The last 8 bytes is reserved for statistics.

When a new message is received by the logical adapter, the list of buffer pools is
scanned starting from the second descriptor in the buffer list looking for the first
available buffer that is equal to or greater than the received message. That buffer
is removed from the pool, filled with the incoming message, and an entry is
placed on the receive queue noting the buffer status, message length, starting
data offset, and the buffer correlator.

The sender of a logical LAN message uses an hcall() that takes as parameters
the Unit Address and a list of up to 6 buffer descriptors (length, starting I/O
address pairs). The sending hcall(), after verifying the sender owns the Unit
Address, correlates the Unit Address with its associated Logical LAN Switch port
and copies the message from the send buffer(s) into a receive buffer, as
described above, for each target logical LAN IOA that is a member of the
specified VLAN. If a given logical IOA does not have a suitable receive buffer, the
message is dropped for that logical IOA (a return code indicates that one or more
destinations did not receive a message allowing for a reliable datagram service).
142 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_02.fm
Figure 4-22 Virtual LAN IO-Adress Structures
 143

5768ch04_02.fm Draft Document for Review July 31, 2004 4:38 am
4.3.3 Performance Considerations and Measurements

General comments to the measurements
The Operating System running on all partitions is AIX 5L v5.3. The code of AIX
5L v5.3 was not yet announced at the time this book was written (pre GA code).
Because this also includes the drivers of the Gigabit Ethernet adapter and the
Virtual Lan adapter, the results of the measurements may vary if they will be
repeated at a later time.

The used hardware for all the test is, as not other mentioned, a 4 way POWER5
based server. This hardware, including the firmware is also not yet announced,
so the performance may also vary with a later version.

But because the results are in the range as expected from the developers, the
numbers in this chapter give quite a good feeling, what performance can be
expected in a Virtual LAN environment.

If not other mentioned, SMT (Simultaneous Multi Threading) is turned on on
POWER5 systems.

The settings of the Virtual LAN adapters and the gigabit ethernet adapter are at
default, which is specially for the gigabit adapter:

� tcp_segmentation_offload=enabled (also known as large_send)

� tcp_sendspace=131072

� tcp_receivespace=131072

� rcf1323=1, for all MTUs except 1500

� checksum offload =enabled

� interrupt coalesing =enabled

Description of the performance tests and tools
To measure the Virtual LAN performance, the used benchmark is netperf.

Netperf is a benchmark that can be used to measure various aspects of
networking performance. Currently, its focus is on bulk data transfer (streaming)
and request/response performance using either TCP, UDP, or the Berkeley
Sockets interface. While this benchmark is now part of the public domain, IBM
has developed a derivative tool which is more tightly integrated with the
capabilities of the AIX operating system.

TCP Stream performance: TCP_STREAM
This benchmark will perform data streaming test between the local system and
the remote system.
144 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_02.fm
TCP_STREAM will be used in simplex and duplex mode. On simplex mode, one
side will send and the other end will receive data, on duplex mode, both ends
send and receive at the same time. So the amount of data, transported via the
media will increase.

TCP request/response performance: TCP_RR
Netperf request/response performance is quoted as “transactions per second”.
for a given request and response site. A transaction is defined as the exchange
of a single request and a single response. From a transaction rate, one can infer
one way round-trip average latency.

The TCP_RR benchmarks are done with one and 20 sessions. The 20 sessions
test shows, in opposition to the one session test, how the response time and
latency is growing with more load.

Overview of the following benchmark measurements
First, there will be a measurements, that shows, how throughput is growing by
adding more entitlements to a virtual CPU.

Next benchmark test is comparing parameters as CPU consumption, transaction
rate and latency from dedicated ethernet (gigabit adapter) to Virtual Ethernet.

The last series of measurements is about changing performance with ST and
SMT mode of the POWER5 processor. This is again done with a gigabit ethernet
adapter and Virtual Ethernet.

Virtual LAN throughput at different CPU Entitlements
This measurement shows what throughput can be expected in a Virtual LAN.
Because of the throughput varies on CPU entitlements and MTU size, these
parameters are variable in the following measurement.
 145

5768ch04_02.fm Draft Document for Review July 31, 2004 4:38 am
Figure 4-23 Throughput at variable CPU entitlements and MTU sizes

Both LPARS have one Virtual LAN adapter and there are multiple sessions
running between both adapters. The benchmark used for this is netperf
TCP_STREAM as described before.

LPAR 1 (with varied cpu entitlements) is sending a simplex stream, LPAR 2 (2
way dedicated) receives it.

Because LPAR 2 is a dedicated two-way partition, there is no bottleneck on the
receiving side and the troughput of the Virtual LAN interface of LPAR 1 can be
determined.

LPAR 1
1 VLAN Adapter
1 VCPU (CPU)
0.1...1
Entitlements

V
L
A
N

LPAR 2
1 VLAN Adapter
2 dedicated CPUs

V
L
A
N

CPU

POWER Hypervisor

CPU
146 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_02.fm
The following figures show the summary of the measured datas.

Figure 4-24 Throughput with diff. CPU entitlements, MTU size=1500

Figure 4-24 to Figure 4-26 show the measured throughput at different CPU
entitlements and MTU sizes.

Figure 4-25 Throughput with diff. CPU entitlements, MTU size=9000

There is one chart for every MTU size: 1500, 9000 and 65394.

0
200
400
600
800

1000
1200
1400

Throughput
[Mb/s]

0.1 0.3 0.5 0.8 1

CPU entitlements

Throughput, MTU size=1500

0

1000

2000

3000

4000

5000

Throughput
[Mb/s]

0.1 0.3 0.5 0.8 1

CPU entitlements

Throughput, MTU size=9000
 147

5768ch04_02.fm Draft Document for Review July 31, 2004 4:38 am
Figure 4-26 Throughput with diff. CPU entitlements, MTU size=65394

Findings of the measurements Virtual Ethernet performance
� The throughput of the Virtual Ethernet scales nearly linear with the allocated

cpu entitlements. Because the interval of the CPU entitlements is not equal in
the charts above, Figure 4-27 on page 149 shows the linearity of the
throughput. For better comparison, all above measured data are normalized
to 0.1 CPU entitlement: ([Throughput x 0.1]/Entitlements)

� The linear scaling of Virtual Ethernet with CPU entitlements shows, that there
is no measurable overhead when using shared processors versus dedicated
processors for the throughput between Virtual LANs.

� Throughput is increasing, as expected, with growing MTU-Sizes. From
MTU-Size 1500 to 9000 with factor ca. >3 and from 1500 to 65394 with factor
>7.

0

2000

4000

6000

8000

10000

Throughput
[Mb/s]

0.1 0.3 0.5 0.8 1

CPU entitlements

Throughput, MTU size=65394
148 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_02.fm
Figure 4-27 Throughput moniced to 0.1 Entitlement

0
200
400
600
800

1000

Throughput/0.1
entitlement

[Mb/s]

0.1 0.3 0.5 0.8 1
1500

9000
65394

CPU entitlements

MTU
size

Throughput per 0.1 entitlement
 149

5768ch04_02.fm Draft Document for Review July 31, 2004 4:38 am
Virtual LAN versus Gigabit Ethernet
With the next benchmark test we’ll check performance of Virtual LAN versus
Gigabit Ethernet (GbEN). For that, the following setups are chosen:

Figure 4-28 Setup VLAN to VLAN performance, 1 dedicated CPU per LPAR

Both LPARS have one dedicated POWER5 CPU assigned.

This figures show the two different types of connection between the LPARs:
Virtual Ethernet via POWER Hypervisor and Gigabit ethernet via a Gigabit
Ethernet Switch.

LPAR 1
1 VLAN Adapter
1 dedicated CPU

V
L
A
N

LPAR 2
1 VLAN Adapter
1 dedicated CPU

V
L
A
N

POWER Hypervisor

CPU CPU
150 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_02.fm
Figure 4-29 Setup GB Ethernet to GB Ethernet, 1 dedicated CPU per LPAR

The following measurements have been done:

The benchmark TCP_STREAM was running in simplex and duplex mode at
different MTU sizes on both setups. During that, throughput and CPU
consumption was determined.

Results of the measurements
The following chart shows the results of the measurements. Because the Gigabit
ethernet adapter doesn’t support MTU size of 65394, there is only data for Virtual
ethernet for that.

LPAR 1
1 Gb Ethernet
 Adapter
1 dedicated CPU

G
b
E
N

LPAR 2
1 Gb Ethernet
 Adapter
1 dedicated CPU

G
b
E
N

Gb Ethernet Switch

CPU CPU
 151

5768ch04_02.fm Draft Document for Review July 31, 2004 4:38 am
Figure 4-30 Throughput of Virtual LAN and gigabit ethernet with TCP_STREAM

Findings of: Throughput Virtual LAN and gigabit ethernet
� The Virtual Ethernet adapter has higher raw throughput at all MTU sizes.

� On MTU 9000, the difference in throughput between is very large due to the
fact, that the in-memory copy, that Virtual Ethernet uses to transfer data is
more efficient at larger MTU.

0

2000

4000

6000

8000

10000

Throughput
[Mb/s]

1

Throughput, TCP_STREAM

VLAN
Gb Ethernet

MTU 1500 1500 9000 9000 65394 65394
Simpl./Dupl. S D S D S D
152 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_02.fm
Comparing CPU consumption of VLAN versus GB Ethernet

For this measurements, the same setups as shown in Figure 4-28 and
Figure 4-29 on page 151 are used. The used workload is TCP_STREAM again.
Now, the CPU consumption is recorded at different MTU sizes. This test is also
running in simplex and duplex mode.

Results of: Comparing CPU consumption
As shown in the measurement before, the throughput of the Virtual LAN is higher
than the throughput of Gb Ethernet. So, to compare the CPU consumption, this is
normalized to 1 Gb throughput for both, Virtual LAN and Gigabit ethernet.

Figure 4-31 CPU consumption with TCP_STREAM, simplex mode

The results are split to two charts. One is simplex and one duplex mode.

0

10

20

30

40

50

60

70

CPU
consumption

[%cpu/Gb]

1

CPU consumption per Gb throughput,
TCP_STREAM, simplex mode

VLAN
Gb Ethernet

MTU 1500 1500 9000 9000 65394 65394
Send/Receive S R S R S R
 153

5768ch04_02.fm Draft Document for Review July 31, 2004 4:38 am
Figure 4-32 CPU consumption with TCP_STREAM, duplex mode

Findings of comparing CPU consumption
� The difference in CPU consumption between the Virtual Ethernet and the

Gigabit Ethernet adapter when using MTU 1500 is the effect of having the
attributes large_send and checksum_offload enabled on the Gigabit adapter.

� Additionally, the Virtual Ethernet device driver must recalculate the header
checksum of the outgoing IP-packets and handle TCP segmentation. This
affects CPU consumption more on smaller MTU sizes.

Comparing transaction rate and latency
For this measurements, again the same setups as shown in Figure 4-28 and
Figure 4-29 on page 151 are used. The used workload is now TCP_RR to get a
value for number of transactions and latency. TCP_RR is used with two different
parameters for the number of sessions (1 and 20), which is a measure for
different workloads.

Results of transaction rate and latency
The results are presented in two charts. They show the transaction rate and
latency for MTU size of 1500 and 9000 and for 1 and 20 sessions.

0

10

20

30

40

50

60

CPU
consumption

[%cpu/Gb]

1

CPU Consumption per Gb throughput,
TCP_STREAM, duplex mode

VLAN
Gb Ethernet

MTU 1500 1500 9000 9000 65394 65394
Send/Receive S R S R S R
154 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_02.fm
Figure 4-33 Transaction rate at different MTU sizes and 1/20 sessions

0

20000

40000

60000

80000

Transaction
rate [1/s]

1

Transactions/sec, TCP_RR, duplex mode

VLAN
Gb Ehternet

MTU 1500 1500 9000 9000
Sessions 1 20 1 20
 155

5768ch04_02.fm Draft Document for Review July 31, 2004 4:38 am
Figure 4-34 Latency at different MTU sizes and 1/20 sessions

Findings of transactions and latency
� The Virtual Ethernet adapter has lower latency for light workloads than the

Gigabit ethernet adapter.

� The gigabit adapter has lower latency in heavy workloads due the coalesing
interrupt feature on the adapter.

0

50

100

150

200

250

300
Latency [µs]

1

Latency, TCP_RR, duplex mode

VLAN
Gb Ethernet

MTU 1500 1500 9000 9000
Sessions 1 20 1 20
156 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_02.fm
Performance of Virtual Ethernet in ST and SMT mode
A new feature of the POWER5 processor is Simultaneous Multi-Threading (SMT)
which presents the kernel with two logical CPUs per virtual or dedicated CPU as
described in XXXXXXXX. This measurement shows the performance gain of
SMT for Virtual Ethernet. The setups as shown in Figure 4-28 on page 150 can
be used again. For this comparison, both workloads TCP_STREAM and
TCP_RR are used.

Comparison of Virtual Ethernet performance with ST and SMT
Because the absolute SMT data was shown before (see Figure 4-30 on
page 152), the following charts show the gain of throughput in percent,
comparing SMT to Single Threaded (ST) mode.

Figure 4-35 Performance gain with SMT, TCP_STREAM

0

10

20

30

40

50

60

70Gain [%]

1

Performance Gain with SMT compared to ST
throughput, TCP_STREAM

VLAN

MTU 1500 1500 9000 9000 65394 65394
Simplex/Duplex S D S D S D
 157

5768ch04_02.fm Draft Document for Review July 31, 2004 4:38 am
Figure 4-36 Performance gain with SMT, TCP_RR

Findings of comparing performance of ST and SMT mode
� The Virtual Ethernet adapter benefits from SMT because it is not limited by

media speed and takes advantage of the extra available CPU cycles.

� The performance reduction of SMT with one session TCP_RR is because the
thread on the logical CPUs go sleep and have to be wake up at every
transaction.

-20

-10

0
10

20

30

40
50

60

70Gain [%]

1

Performance Gain with SMT compared to ST
transaction rate, TCP_RR

VLAN

MTU 1500 1500 9000 9000
TCP_RR Sessions 1 20 1 20
158 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_02.fm
4.3.4 Virtual Ethernet implementation guidelines
Because there was only a small amount of information available at the time for
the development of this book, we can only present some rules of thumb for
designing Virtual LANs.

1. Know your environment and the network traffic

2. Choose the MTU size as high as it makes sense for the network traffic in the
Virtual LAN

3. Use the MTU size 65394 if you expect a large amount of data to be copied
inside your Virtual LAN

4. Enable tcp_pmtu_discover and udp_pmtu_discover in conjunction with MTU
size 65394, if there is a communication to physical adapters.

5. Do not turn off SMT (Simultaneous Multi-Threading) unless your applications
demand it.

6. The throughput in Virtual LANs scale linear with CPU entitlements, so there is
no need for dedicated CPUs for partitions because of Virtual LAN
performance

Important: The following recommendations are no guarantee for good
performance.
 159

5768ch04_02.fm Draft Document for Review July 31, 2004 4:38 am
4.4 Shared Ethernet Adapter functionality

4.4.1 Introduction
For implementing a virtual LAN, no Virtual I/O-Server is necessarily needed.
Virtual ethernet adapters can communicate among themselves via the POWER5
Hypervisor without the functionality of the Virtual I/O-Server. The Virtual
I/O-Server is needed, if virtual Adapters should communicate with a physical
LAN. It can logically connect one ore more Virtual Ethernet adapters to one or
more physical ethernet adapters. This sharing of a physical adapter to multiple
(or just one) virtual Adapters is done by an internal implementation of a Layer2
Bridge.

Implementation of the bridge
The following example in Figure 4-37 should shows, how the bridge functionality
is implemented in the Virtual I/O-Server.

Figure 4-37 Example of a Virtual I/O-Server configuration for SEA

This I/O-Server bridges the virtual LAN with VID 100 to the Ent0 Adapter. The
Virtual LANs 200 and 300 are bridged to Ent1 Adapter. So the physical adapters
are shared by the Virtual LANs.

The bridge interconnects the logical and physical LAN segments at the network
interface layer level and forwards frames between them. The bridge performs the
function of a MAC relay (OSI-layer 2, see Figure 4-38 on page 161), and is
independent of any higher layer protocol.

The bridge is said to be transparent to IP. That is, when an IP host sends an IP
datagram to another host on a network connected by a bridge, it sends the
160 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_02.fm
datagram directly to the host and the datagram "crosses" the bridge without the
sending IP host being aware of it.

Figure 4-38 Sharing a (physical) Ethernet adapter on OSI-Layers

The I/O-Server offers broadcast and multicast support. ARP (Adress Resolution
Protocol) and NDP (Neighbor Discovery Protocol) are also working across a
shared ethernet adapter.

Device Driver

VLAN

IP

Device Driver

VLAN

IP

Device Driver

VLAN

IP

L2 Bridge (adapter sharing)

Virtual Adapter EthernetVirtual Adapter

To Hosted LPARs To External Ethernet

Hosting Partition
 161

5768ch04_02.fm Draft Document for Review July 31, 2004 4:38 am
4.4.2 Performance measurements
This topic shows some measurements that were obtained with the Virtual I/O
Server using the Shared Ethernet Adapter (SEA).

General comments about the measurements
The operating system running on all partitions is AIX 5L v5.3. Since this was a
pre-GA release of the operating system, the results of the measurements may
vary if repeated at a later time.

The system used for the test was a 4-way POWER5 based server.

Throughput and CPU utilization
Here is the description of the chosen measurement setup:

A single LPAR with a single dedicated CPU was connected through a Virtual LAN
adapter to the POWER Hypervisor and to the Virtual LAN adapter of the Virtual
I/O-Server. The Virtual I/O server “bridges” the Virtual Ethernet adapter to a
Gigabit Ethernet adapter that is connected via a gigabit ethernet switch to a
two-way Power4+ based server as shown in Figure 4-39.

The Virtual I/O-Server runs on a LPAR with a dedicated 1.65 GHz CPU. With a
higher clock speed, the throughput of the I/O-Server will grow.

First, the workload TCP_STREAM as described in “Description of the
performance tests and tools” on page 144 is used to examine the throughput.

Figure 4-39 Setup for I/O-Server performance measurements

LPAR 1
1 VLAN Adapter
1 dedicated CPU

V
L
A
N

Virtual
I/O-Server

1 VLAN Adapter
1 Gb Ethernet A.
1 dedicated CPU

V
L
A
N

POWER Hypervisor

G
b
E
N

SEA
Layer

2
Bridge

Server
2xPower4+

1 Gb Ethernet A.

Gb Ethernet Switch

G
b
E
N

CPU CPU

CPU

CPU
162 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_02.fm
Note: The measurements are not done with a gigabit ethernet switch as shown
on the figure above. A physical point to point connection was used instead. So
there is no falsification of the measurement because of the internal values of the
switch.

Performance results of the Virtual I/O-Server
The following charts show the results of the tests measured on the Virtual
I/O-Server.

Figure 4-40 Throughput of the Virtual I/O-Server

The chart above shows the throughput of the Virtual I/O-Server at MTU sizes of
1500 and 9000 in both modes, simplex and duplex.

Notice that this test is hitting the line speed of the gigabit ethernet and is limited
by the physical adapter.

Figure 4-41 on page 164 shows the utilization of the CPU in the Virtual
I/O-Server. It has the same MTU parameters as the throughput measurement.
Because of better comparison of the CPU utilization and throughput, the
utilization is normalized to 1Gb data throughput.

0

500

1000

1500

2000

1 2 3 4

Virtual I/O Server Throughput, TCP_STREAM
Throughput

[Mb/s]

MTU 1500 1500 9000 9000
Simplex/Duplex simplex duplex simplex duplex
 163

5768ch04_02.fm Draft Document for Review July 31, 2004 4:38 am
Figure 4-41 CPU utilization of the Virtual I/O-Server

Findings of Virtual I/O-Server performance
� The shared ethernet adapter allows the adapters to stream data at media

speed as long as it has enough CPU entitlements.

� CPU utilization per gigabit of throughput is higher with Shared Ethernet
adapter as it has to receive from one end and send it out the other end and
because of the bridging functionality in the Virtual I/O-Server

Request/response time and latency
In this test, the workload TCP_RR is used to determine the transaction rate and
the latency of the Shared Ethernet Adapter (SEA) and the gigabit ethernet
adapter of the POWER4+ server.

The setup is the same as before and is shown in Figure 4-39 on page 162.

The data for the I/O-server are taken from the Shared Ethernet Adapter (SEA),
the gigabit ethernet performance is measured at the two-way POWER4+
machine.

Results of Request/response time and latency
The next chart show the results of the TCP_RR benchmark.

0

20

40

60

80

100

1 2 3 4

Virtual I/O Server
normalized CPU utilisation, TCP_STREAM

CPU
Utilisation
[%cpu/Gb]

MTU 1500 1500 9000 9000
Simplex/Duplex simplex duplex simplex duplex
164 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_02.fm
Figure 4-42 Transaction rates, TCP_RR, one session

Figure 4-42 and Figure 4-43 show the number of transactions that where done
by Shared Ethernet Adapter and the Gigabit Ethernet for one session and also
for twenty sessions. Note that the values shown for one session are both limited
by the default setting of the gigabit ethernet adapters: INTR_RATE=10.000.

1
2

SEA
Gb Ethernet

0

1000

2000

3000

4000

5000

Transactions/sec, TCP_RR, 1 session

SEA
Gb Ethernet

MTU= 1500 9000

Transactions
[1/s]
 165

5768ch04_02.fm Draft Document for Review July 31, 2004 4:38 am
Figure 4-43 Transaction rates, TCP_RR, 20 sessions

Next is the examination of the latency in that environment. Latency is measured
with the same parameters as the transaction rate.

Figure 4-44 Latencies, TCP_RR, 1 session

1
2

SEA

Gb Ethernet
0

20000

40000

60000

80000

Transactions/sec, TCP_RR, 20 sessions

SEA

Gb Ethernet

MTU= 1500 9000

Transactions
[1/s]

1
2

SEA
Gb Ethernet

0

50

100

150

200

Latency, TCP_RR, 1 session

SEA
Gb Ethernet

MTU= 1500 9000

Latency
[µs]
166 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_02.fm
Figure 4-44 and Figure 4-45 show the differences between the Shared Ethernet
adapter and Gigabit Ethernet and the increasing latency, if the load grows
(20sessions).

Figure 4-45 Latency, TCP_RR, 20 sessions

1
2

SEA
Gb Ethernet

0

100

200

300

Latency, TCP_RR, 20 sessions

SEA
Gb Ethernet

MTU= 1500 9000

Latency
[µs]
 167

5768ch04_02.fm Draft Document for Review July 31, 2004 4:38 am
4.4.3 Implementation guidelines
Like Virtual LAN there is only a little experience with Virtual I/O Server and that
results may vary in the future. However, here are some rules of thumb for
designing a Virtual I/O-Server.

� Know your environment and the network traffic

� Don’t use the Shared Ethernet Adapter functionality of the Virtual I/O-Server if
you expect heavy network traffic between Virtual LANs and local networks.
Use a dedicated network adapter instead.

� If possible, use dedicated CPU’s for the Virtual I/O-Server (no shared
processors)

� Choose 9000 for MTU size, as this makes sense for your network traffic.

� Don’t use the Shared Ethernet Adapter functionality of the Virtual I/O-Server
for latency critical applications.

� With MTU size 1500, you need about one CPU per gigabit ethernet adapter
streaming at media speed. With MTU size 9000, two Gigabit Ethernet
adapters can stream at media speed per CPU.

Important: The following recommendations are no guarantee for good
performance.
168 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_03.fm
4.5 Virtual SCSI
Virtual I/O allows the POWER5 based systems to support more partitions than it
has slots for I/O devices by enabling the sharing of I/O adapters among
partitions. Virtual SCSI (VSCSI) will enable a partition to access block-level
storage that is not a physical resource of that partition. The VSCSI design is that
the virtual storage be backed by a logical volume on a portion of a disk rather
than an entire physical disk, these logical volumes appear to be the SCSI disks
on the client partition, which gives the system administrator maximum flexibility in
configuring partitions. VSCSI support is provided by a service running in a
hosting partition that uses two primitive functions Reliable Command / Response
Transport and Logical Remote DMA to service I/O requests for a client running in
a hosted partition, such that, the hosted partition appears to enjoy the services of
its own SCSI adapter. The terms hosting and hosted partitions refer to platform
partitions that are respectively servers and clients of requests, usually I/O
operations, using the hosting partition's I/O adapters. This allows a platform to
have more hosted partitions than it may have I/O adapters because the hosted
partitions share I/O adapters via the hosting partition.

Virtual I/O will provide a high performance I/O mechanism by minimizing the
number of times data is copied within the memory of the physical system. The
virtual I/O model described herein allows for either zero copy, if data is being
retrieved from a physical device and DMAed directly to the memory of the
partition using virtual I/O using the redirected DMA described in “Logical Remote
Direct Memory Access (LRDMA)” on page 172, or single copy of the data is first
moved to the memory space of the hosting partition before being DMAed to the
hosted partition.
 169

5768ch04_03.fm Draft Document for Review July 31, 2004 4:38 am
Figure 4-46 AIX 5L Server and Client Partitions

4.5.1 Virtual SCSI Structure and Concepts
The effort to implement virtual SCSI on AIX 5L can be organized into three
primary components: client driver, server driver, and interpartition
communication.

The client and server drivers operate as a pair, in a point-to-point configuration,
with the hypervisor providing the means of communication between the two. The
client emulates a physical SCSI adapter to the disk, tape, and cdrom peripheral
(or "head") drivers. The client driver accepts requests for storage services from
these peripheral drivers, converts those requests into SRP Information Units,
then uses interpartition communication facilities to transmit those requests to the
server driver. The server driver completes the requests using some combination
of software emulation and physical devices, then converts the results into SRP
Information Units and returns those results back to the client driver.

The target and initiator drivers are always connected in a point-to-point
configuration, with one initiator driver communicating with at most one target
driver. A target driver can provide storage services to multiple initiator drivers
serially. That is, when a target driver disconnects from an initiator driver, that
target driver is then available for use by another initiator driver on another
partition.

POWER HYPERVISOR

I/O SERVER I/O CLIENTI/O CLIENTI/O CLIENT

Physical Adapter

VSCSI Server Virtual Adapter

VSCSI Client Virtual Adapter

Internal or External
Storage

POWER HYPERVISOR

I/O SERVER I/O CLIENTI/O CLIENTI/O CLIENT

Physical Adapter

VSCSI Server Virtual Adapter

VSCSI Client Virtual Adapter

Internal or External
Storage
170 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_03.fm
A partition may have instances of both client and server drivers defined in it.
However, "cascaded" devices (virtual devices that are backed by virtual devices)
are not supported.

Virtual SCSI does not support "target mode". SRP does not define a method for
a target to send a request for service to the initiator.

The relationships between the client driver, server driver, peripheral drivers, and
the hypervisor are shown in Figure 4-47 on page 171.

Interpartition Communication Overview
Interpartition communication involves a client device node in the Open Firmware
device tree of one partition, a server device node in the Open Firmware device
tree of another partition, an interpartition channel, and a protocol definition.
Interpartition communication requires the use of two primitive functions:

Figure 4-47 Reliable Command / Response Transport and LRDMA

POWER HYPERVISOR

SCSI-3 Adapter
Device Driver

Disk
Device Driver

Logical
Volume Manager

JFS

VSCSI
Device Driver

(target)
Device Mapping

VSCSI
Device Driver

(initiator)

Fibre Channel
Device Deriver

Disk
Device Driver

Logical
Volume Manager

Reliable Command / Response Transport
Logical Remote Direct Memory Access

AIX Hosted Partition AIX Hosting Partition

Virtual I/O Native I/O

POWER HYPERVISOR

SCSI-3 Adapter
Device Driver

Disk
Device Driver

Logical
Volume Manager

JFS

VSCSI
Device Driver

(target)
Device Mapping

VSCSI
Device Driver

(initiator)

Fibre Channel
Device Deriver

Disk
Device Driver

Logical
Volume Manager

Reliable Command / Response Transport
Logical Remote Direct Memory Access

AIX Hosted Partition AIX Hosting Partition

Virtual I/O Native I/O
 171

5768ch04_03.fm Draft Document for Review July 31, 2004 4:38 am
Reliable Command / Response Transport
The transport over which SRP runs is the Reliable Command/Response
Transport facility provided by POWER Hypervisor. The Reliable Command /
Response Transport facility provides ordered delivery of messages between
authorized partitions. In order to communicate, a client/server partition pair must
establish a Command/Response Queue (CRQ). For detailed description of CRQ,
refer to , “The Command/Response Queue (CRQ)” on page 133

A CRQ is established during configuration by a virtual SCSI driver, given the
presence in the Open Firmware device tree of a virtual SCSI device. The initiator
driver registers a response queue and the target driver registers a command
queue. Both use the h_reg_crq kernel service to call the hypervisor. The
hypervisor creates a connection between the two partitions through the queues.

Once the queues are established, the virtual SCSI drivers can use the
h_send_crq kernel service to put queue elements on each other's queues. The
initiator driver attempts to queue an element to the target driver's command
queue to initiate a transaction. If it is successful, the initiator driver returns,
waiting for the interrupt indicating that a response has been posted by the target
driver to the initiator driver's response queue.

The client partition only uses the Reliable Command / Response Transport it
does not use the Logical Remote DMA. Since the server partition's RTCE tables
are not authorized for access by the client partition, any attempt by the client
partition to modify server partition memory would be prevented by the hypervisor.
RTCE table access is granted on a connection by connection basis (client/server
virtual device pair); if a client partition happens to be serving some other logical
device then the partition is entitled to use Logical Remote DMA for the virtual
devices that are serving.

The target driver is notified via an interrupt that it has received a message on its
command queue. The target driver decodes the I/O request and routes it through
the server partition's file sub-system for processing. When the request
completes, the file sub-system calls the target driver and it packages a response
into a queue element that is then queued to the initiator driver's response queue.

Logical Remote Direct Memory Access (LRDMA)
Logical Remote Direct Memory Access (LRDMA) allows for a hosting partition to
securely target memory pages within a hosted partition for virtual I/O operations.
The hosting partition uses the hcall()s of the Logical Remote DMA facility to
manage the movement of commands and data associated with the client
requests. The server driver may use this service if it has a connection
established via a Command/Response Queue pair. Virtual SCSI defines two
modes of LRDMA:
172 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_03.fm
� Traditional Copy RDMA that involves the hosting partition's I/O adapters
targeting DMA buffers in the hosting partition's memory and having the
hypervisor copy data between that DMA buffer and the hosted partition's
memory.

� Redirected RDMA allows for a hosting partition to securely target its physical
I/O adapter's DMA operations directly at the memory pages of the hosted
partition.

The platform overhead of Copy RDMA is generally greater than Redirected
RDMA, but this overhead may be offset if the hosting partition's DMA buffer is
being used as a data cache for multiple virtual I/O operations.

Figure 4-48 Logical Remote Direct Memory Access

LRDMA defines an extended type of TCE table called a Remote DMA TCE table
(RTCE). An RTCE is used by the hypervisor to translate a server partition's
Logical Remote DMA hcalls()'s DMA addresses. RTCE tables have extra data to
help manage the use of its mappings by server partitions. Note that only the
target driver uses the Logical Remote DMA primitives, not the initiator driver. The
server partition's RTCE tables are not authorized for access by the client driver.

The use of Redirected RDMA is completely invisible to the hosted partition, and
has no impact on the VSCSI architecture defined in this document. It is left
entirely to the discretion of the hosting partition whether it first moves data from a
physical device into it's own memory before moving (DMAing) the data to the
hosted partition, or whether the hosting partition sets up the I/O request to the

POWER HYPERVISOR

VSCSI
Device Driver

(target)
Device Mapping

VSCSI
Device Driver

(initiator)

Reliable Command / Response Transport
Logical Remote Direct Memory Access

AIX Hosted Partition AIX Hosting Partition

Physical Adapter
Device Driver

Data Buffer

PCI Adapter

POWER HYPERVISOR

VSCSI
Device Driver

(target)
Device Mapping

VSCSI
Device Driver

(initiator)

Reliable Command / Response Transport
Logical Remote Direct Memory Access

AIX Hosted Partition AIX Hosting Partition

Physical Adapter
Device Driver

Data Buffer

PCI Adapter
 173

5768ch04_03.fm Draft Document for Review July 31, 2004 4:38 am
physical device in such a way that the physical device DMAs directly to the
memory of the hosted partition. The hosting partition uses the RDMA mode that
best suits its needs for a given virtual I/O operation.

The logical remote direct memory service allows the hosting driver to read and
write to a well defined part of the hosted partition's memory. This service is
unidirectional, i.e. the hosted driver cannot use the service to write to, or read
from, the hosting partition's memory.

SCSI Remote DMA Protocol (SRP)
SCSI Remote DMA Protocol (SRP) defines a method of encapsulating SCSI
Command Data Blocks (CDBs) and is the protocol used for interpartition
communication for Virtual SCSI on IBM Eserver p5 and IBM Eserver i5 logical
partition. Because virtual SCSI involves heterogeneous operating systems (AIX
5L, Linux, and i5/OS) it is important to implement a common industry standard
protocol for communicating I/O operations between partitions. SRP has defined
the message format and protocol using an RDMA communication service. The
SCSI RDMA Protocol defines the rules for exchanging SCSI information in an
environment where SCSI initiators and targets have the ability to directly transfer
information between their respective address spaces.

All SRP communication is accomplished via SRP Informational Units (IUs). An IU
is an organized collection of data specified by the SRP to be transferred as login
data, reject data or a message on an RDMA channel. Thus all SCSI commands,
and their associated data and status, are encapsulated in an SRP IU. Note that
the protocol used for interpartition communication has no bearing on the makeup
of the destination device. The SRP protocol works just as well if the target device
is a physical device or a logical device (logical volume).

SRP Memory Descriptor Mapping
The SRP architecture defines a “memory descriptor”, which is a 16-byte structure
that identifies a memory segment upon which DMA operations can be
performed.

The VSCSI architecture is defined such that DMA operations need never be
initiated from the hosted partition (from the initiator port.) Since the hosting
partition's RTCE tables are not authorized for access by the hosted partition, any
attempt by the hosted partition to modify hosting partition memory would be
prevented by the hypervisor. RTCE table access is granted on a connection by
connection basis (hosted/hosting virtual device pair), if a hosted partition
happens to be hosting some other logical device then the partition is entitled to
use Logical Remote DMA for the virtual devices that it is hosting.
174 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_03.fm
Memory descriptors sent in IUs defined in this architecture always reference
memory in the initiator, and are always used in DMA operations initiated by the
target.

SRP initiator ports and SRP target ports shall be determined by both their role
during RDMA channel establishment and by the adapter types on which the
messages are sent and received. VSCSI Message Formats

4.5.2 Virtual SCSI Model Overview

Server Partition
A server partition is a partition that has physically attached I/O devices and
exports one or more of these devices to other partitions. The virtual SCSI
adapter driver on the server partition (vscsi_targetdd) is a dynamically loadable
kernel extension and its entry points are contained in the devswitch table. It is the
SRP target. The primary function of the target driver is to convert SRP requests
from the initiator driver into I/O requests that are forwarded to the device via the
native stack, and then use LRDMA services to copy a response to the initiator's
memory.

The vscsi_targetdd driver receives command queue elements from the client
partition delivered by POWER Hypervisor. These elements contain DMA handles
that are used to read the SRP Information Units built by the client partition, and
extract the SCSI Command Descriptor Block (CDB). The SCSI CDB within the
SRP IU, and the nature of the target, determine whether a command is emulated,
passed to the native stack, or both. Once a command is completed,
vscsi_targetdd builds an SRP Response with the returned status and uses
LRDMA services to copy the response to the client's memory.

The vscsi_targetdd driver provides a buf struct interface to the LVM. And it
provides an SRP target interface to its partner initiator driver across the POWER
Hypervisor command/response queue (CRQ) connection.

Client Partition
A client partition is a partition that has a virtual client adapter node defined in its
Open Firmware device tree. The client partition relies on another partition (the
server partition) to provide access to one or more block interface devices. The
virtual client adapter device driver (vscsi_initdd) is a dynamically loadable kernel
extension and its entry points are contained in the devswitch table. It is the SRP
initiator. The primary function of the initiator driver is to convert I/O requests from
the head or media device drivers to SRP IUs, then make the SRP IU available to
the SRP target for LRDMA.
 175

5768ch04_03.fm Draft Document for Review July 31, 2004 4:38 am
The virtual adapter on the client partition is in many ways similar to a physical
SCSI adapter. While a typical SCSI adapter has a parallel bus or optical link
attached to it, the virtual adapter's link is POWER Hypervisor's Reliable
Command/Response Transport.

The vscsi_initdd driver provides a scsi_buf interface and SRP initiator interface to
its partner target driver across the POWER Hypervisor Command / Response
Queue (CRQ) connection.

Virtual SCSI Flow
An example of a typical interaction between the target and initiator device drivers
is a file read from a virtual DASD device. A virtual DASD is a virtual device on the
client partition, which is backed by a logical volume exported from a DASD
device that is physically attached to the server partition. The client stack
considers the initiator driver a SCSI-3 device with access to the virtual DASD.

A typical I/O request involves the following steps:

� (Client) The application program initiates a read() system call to the filesystem
(JFS).

� (Client) The filesystem requests a read from the LVM. LVM forms a buf struct
with DMA buffer addressing information, as well as DASD block information.

� (Client) The buf struct is passed to the disk device driver which creates a
scsi_buf and sends it to the vscsi_initdd driver.

� (Client) The initiator driver takes the information in the scsi_buf and creates
an SRP IU. If the I/O request includes data to be transferred, the initiator
driver maps the data buffers for DMA.

� (Client) The client builds a CRQ command element containing a pointer to the
SRP IU and sends the CRQ command element through the POWER
Hypervisor to vscsi_targetdd.

� (Server) The target driver receives an interrupt indicating that an element has
been queued to its command queue.

� (Server) The target driver uses the pointer to the SRP IU in the CRQ
command element and LRDMA services to copy the SRP IU from the client
partition to the server partition's memory.

� (Server) The target driver uses the information in the SRP IU to create a buf
struct.

� (Server) The target driver passes the buf struct to the LVM running in the
server partition. The request ultimately makes its way to the adapter device
driver. This driver calls the usual kernel DMA services, which have been
extended to map the buffers for DMA using LRDMA services.
176 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_03.fm
� (Server) When the transaction is complete, the target driver constructs an
appropriate SRP response and uses LRDMA services to copy the response
to the client's memory. It then builds a CRQ command element containing the
TAG or "correlator field" from the original SRP IU and sends the CRQ element
through the POWER Hypervisor to the initiator.

� (Client) The initiator driver receives an interrupt indicating that a CRQ element
has been queued to its response queue.

� (Client) The initiator driver uses the information in the SRP response to give
status back to its child head driver. The head driver passes the results back
up to LVM.

Virtual SCSI Adapters
The hypervisor architecture defines two distinct virtual adapters, one being a
Virtual SCSI initiator, and the other being a Virtual SCSI target which implement
the SCSI Initiator Port and SCSI Target Port in the SCSI Architecture Model. Both
the CRQ and SRP architectures are asymmetrical. This architecture requires that
protocol messages defined as being sent from an initiator to a target only be sent
from the initiator adapter to the target adapter.

Emulated DASD
Emulated Direct Access Storage Device (DASD) is a virtual disk device that is
mapped by the server device driver to a logical volume and presented to the
hosted partition as a physical direct access device. There can be many
emulated DASD devices mapped onto a single physical DASD. The system
administrator will create an emulated DASD device by choosing a logical volume
and binding it to a VSCSI hosting adapter. The command to add virtual devices
will create an ODM entry for the emulated DASD device.

It is expected that most of the SCSI commands targeting an emulated DASD
device will be either reads or writes. Reads and writes are serviced by the LVM.
The routine target_interrrupt calls the edasd_scheduler function, using the
scheduler function pointer, and passes a vadapter_lun pointer and a command
element. The buf structure fields relating to DMA addressing, including the cross
memory descriptor and DMA buffer addresses, are set by target_interrrupt. The
type field of the command element determines whether the scsi_req buffer
describes a SCSI CDB or a SCSI task. SCSI commands and SCSI task
management are discussed in separate subsections.

Figure 4-49 on page 178 shows the possible partitioning of a physical disk on the
hosting partition where there are two logical volumes that support two emulated
DASD devices, hdx and hdy. The DASD emulation code does addresses the
logical volume from block zero which overwrites the LVCB.
 177

5768ch04_03.fm Draft Document for Review July 31, 2004 4:38 am
Figure 4-49 Volume group on Virtual I/O Server

SCSI RESERVE and RELEASE
Since the physical storage for VSCSI is provided by a logical volume instead of a
physical device, the VSCSI virtual adapter driver will have to emulate the SCSI
RESERVE and RELEASE commands instead of passing them on to the device.
That emulation will be limited in scope to a single hosting partition. When one
hosted partition wins a reservation on a logical volume, the VSCSI virtual adapter
target driver will have to refuse access by other hosted partitions to the logical
volume. And when the hosted partition holding a reservation fails, the VSCSI
virtual adapter target driver will have to break the reservation on that logical
volume. This will enable configurations where one hosting partition provides
storage services for multiple hosted partitions. However, this will not provide an
adequate emulation of RESERVE and RELEASE for multi-path configurations,
where the same physical storage can be accessed by multiple adapters from
multiple partitions. This emulation will not prevent access by the native stack on
that hosting partition.

Command Tag Queuing
SCSI Command tag queuing refers to queuing commands to a SCSI device.
Command tag queuing requires the SCSI adapter, the SCSI device, the SCSI
device driver, and the SCSI adapter driver to support this capability. The VSCSI
architecture supports command tag queuing.

hdx

hdy

vi
rt

ua
ld

is
k_

vg

LVCB

LVCB

VGSA
VGDA
VGSA
VGDA

IPLREC

Volume Group Status Area
Volume Group Description Area

Redundant Copy of VGSA and VGDA

Logical Volume Control Block

Logical Volume Control Block

hdx

hdy

vi
rt

ua
ld

is
k_

vg

LVCB

LVCB

VGSA
VGDA
VGSA
VGDA

IPLREC

Volume Group Status Area
Volume Group Description Area

Redundant Copy of VGSA and VGDA

Logical Volume Control Block

Logical Volume Control Block
178 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_03.fm
Redundant Configurations
In order to minimize the adverse impacts that would result from the loss of server
partition or physical adapter, a system administrator can use two different ways
to create redundant configurations. Each of these techniques will allow a client
partition to continue to function while maintenance is being done on the server
partition.

LVM Mirroring
The recommended solution for VSCSI I/O redundancy is using LVM mirroring.
The Logical Volume Manager supports mirroring, for every write to a logical
volume, the LVM generates a write request for every mirror copy. The system
administrator can define two virtual DASD devices, either hosted by two distinct
hosting partitions or two devices on the same hosting partition, and mirror the
client partition’s data on the two devices. Mirroring makes no requirements on
either the client, or hosting drivers. It is cost effective and the system
configuration is readily understood.

From a performance point of view, LVM mirroring does not give you the best
performance. With the overhead on the hypervisor calls to perform I/O requests
plus the extra copies that you need to maintain (writing to two or three copies
takes longer than writing to one), these will have an effect on disk performance.

If mirroring is needed, set the scheduling policy to parallel and allocation policy to
strict. The parallel scheduling policy will enable reading from the disk that has the
least outstanding requests, and strict allocation policy allocates each copy on
separate physical volume(s). And locate intensive mirrored logical volumes on
the outer edge because, in that situation, the mirror write consistency cache must
be updated on a regular basis.
 179

5768ch04_03.fm Draft Document for Review July 31, 2004 4:38 am
Figure 4-50 Using LVM mirroring for virtual SCSI

Multi-path I/O
Multi-path I/O (MPIO) offers another possible solution to the redundancy
requirement. MPIO is a feature of AIX 5L that permits a volume accessed by
multiple physical paths to be seen as a single hdisk. It is therefore logically
similar to IBM Subsystem Device Driver (SDD), which allows a volume on the
TotalStorage® Enterprise Storage Subsystem™ (ESS) that is accessed through
multiple paths to be seen as a single vpath disk. However, the SDD logical
construct of a vpath disk is above the level of the hdisk, whereas MPIO combines
the paths underneath the level of the hdisk. MPIO is intended to support
additional disk subsystems besides ESS. These disk subsystems are
themselves capable of supporting multiple physical (parallel or fibre SCSI)
attachments.

MPIO has numerous possible configuration parameters. A detailed discussion of
them is beyond the scope of this redbook. However, to gain the benefits of high
availability and throughput that MPIO offers, it is recommended that it be
configured with a "round robin" algorithm, "health check" enabled, and a reserve
policy of "no reserve". This allows the best combination of throughput and
reliability, since all paths are used for data transfer, and failed paths are detected
and reacted to in a timely fashion.

POWER HYPERVISOR

Reliable Command / Response Transport
Logical Remote Direct Memory Access

VSCSI
Device Driver

(target)
Device Mapping

Fibre Channel
Device Deriver

Disk
Device Driver

Logical
Volume Manager

AIX Hosting Partition

LV1

VSCSI
Device Driver

(target)
Device Mapping

Fibre Channel
Device Deriver

Disk
Device Driver

Logical
Volume Manager

AIX Hosting Partition
AIX Hosted Partition

SCSI-3 Adapter
Device Driver

Disk
Device Driver

Logical
Volume Manager

JFS

VSCSI
Device Driver

(initiator)

VSCSI
Device Driver

(initiator)

LV2

POWER HYPERVISOR

Reliable Command / Response Transport
Logical Remote Direct Memory Access

VSCSI
Device Driver

(target)
Device Mapping

Fibre Channel
Device Deriver

Disk
Device Driver

Logical
Volume Manager

AIX Hosting Partition

VSCSI
Device Driver

(target)
Device Mapping

VSCSI
Device Driver

(target)
Device Mapping

Fibre Channel
Device Deriver

Disk
Device Driver

Logical
Volume Manager

Fibre Channel
Device Deriver

Disk
Device Driver

Logical
Volume Manager

AIX Hosting Partition

LV1

VSCSI
Device Driver

(target)
Device Mapping

Fibre Channel
Device Deriver

Disk
Device Driver

Logical
Volume Manager

Fibre Channel
Device Deriver

Disk
Device Driver

Logical
Volume Manager

AIX Hosting Partition
AIX Hosted Partition

SCSI-3 Adapter
Device Driver

Disk
Device Driver

Logical
Volume Manager

JFS

SCSI-3 Adapter
Device Driver

Disk
Device Driver

Logical
Volume Manager

JFS

VSCSI
Device Driver

(initiator)

VSCSI
Device Driver

(initiator)

VSCSI
Device Driver

(initiator)

VSCSI
Device Driver

(initiator)

LV2
180 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ch04_03.fm
4.5.3 Performance Considerations
Enabling VSCSI may not result in a performance benefit. This is because there is
an overhead associated with hypervisor calls and the several path involves for
the I/O requests from the initiator to target partition, VSCSI will use additional
CPU cycles when processing I/O requests. This will not give the same
performance from VSCSI devices as from the dedicated devices. Partition with
high performance and disk I/O requirements is not recommended to implement
VSCSI. Partitions with very low performance and disk I/O requirements can be
configured at minimum expense to use only a portion of a logical volume. Using a
logical volume for virtual storage means that the number of partitions is no longer
limited by hardware, but the trade-off is that some of the partitions will have less
than optimal storage performance. The suitable applications for VSCSI might be
the boot disks for the operating system or web servers which will typically cache
a lot of data.

The use of Virtual SCSI will roughly double the amount of CPU time to perform
I/O as compared when using directly attached storage. This CPU load is split
between the Virtual I/O Server and the Virtual SCSI Client. Performance is
expected to degrade when multiple partitions are sharing a physical disk, and
actual impact on overall system performance will vary by environment. The
base-case configuration is when one physical disk is dedicated to a partition.

Virtual storage can still be manipulate using Logical Volume Manager just like an
ordinary physical disk. Some performance considerations from dedicated
storage are still application when using virtual storage, such as spreading hot
logical volumes across multiple volumes on multiple virtual SCSI so that parallel
access is possible, the intra-disk policy (from the server’s point of view, a virtual
drive can be served using an entire drive, or an logical volume of a drive. If the
entire drive is served to the cleint, then the rules and procudures apply on the
client side, as if the drive were local. If the server partition provides the client,
with a partition of a drive, an logical volume, then the server decides the area of
the drive to serve to the client, when the logical volume was created), and setting
the inter-policy to maximum. This will spread each logical volume across as
many virtual storage as possible, allowing reads and writes to be shared among
several physical volumes.

The following are general performance considerations when using Virtual SCSI:

� Since VSCSI is a client/server model, the CPU utilization will always be higher
than doing local I/O. A reasonable expectation is a total of twice as many
cycles to do VSCSI as a locally attached disk I/O (more or less evenly
distributed on the client and server).

� If multiple partitions are competing for resources from a VSCSI server, care
must be taken to ensure enough server resources (CPU, memory, and disk)
are allocated to do the job.
 181

5768ch04_03.fm Draft Document for Review July 31, 2004 4:38 am
� If not constrained by CPU performance, dedicated partition throughput is
comparable to doing local I/O.

� There is no data caching in memory on the server partition. Thus, all I/O's
which it services are essentially synchronous disk I/O's. Because there is no
caching in memory on the server partition, it's memory requirements should
be modest.

The path of each virtual I/O request involves several sources of overhead that are
not present in a non-virtual I/O request. For a virtual disk backed by the LVM,
there is also the performance impact of going through the LVM and disk device
drivers twice. From a performance point of view, each I/O request to a virtual
device backed by the LVM involves the following:

� (Initiator) Conversion of scsi_buf to SRP IU and queue element

� (Initiator) H_SEND_CRQ hcall to put queue element on target driver's
command queue

� (Target) Interrupt when an I/O request is put on the command queue

� (Target) H_COPY_RDMA hcall to get the SRP IU from the client partition

� (Target) Conversion of queue element and SRP IU to buf struct

� (Target) Overhead from sending request to the LVM rather than a physical
disk

� (Target) Overhead from D_MAP_LIST and D_MAP_PAGE mapping remote
bus memory (kernel services using RTCEs rather than regular TCEs)

� (Target) Conversion of buf struct response to SRP IU and queue element

� (Target) H_SEND_CRQ hcall to put queue element on initiator driver's
response queue

� (Target) H_COPY_RDMA hcall to copy the SRP response to the initiator
driver

� (Initiator) Interrupt when a response is received on the response queue

� (Initiator) Conversion of queue element and SRP IU to scsi_buf

VSCSI virtual adapter initiator and target drivers will collect and report statistics
on throughput and errors to enable performance tuning and problem
determination. These statistics will be reported via the iostat() command or other
methods. See iostat command output in Example 2-8 on page 72
182 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768ax01.fm
Appendix A. Sample level 1 “a.” appendix
heading (yHead0Appendix)

This appendix provides/describes/discusses/contains ...

In this appendix we provide/describe/discuss ...

In this appendix:
In this appendix, the following are described:
This appendix provides/describes/discusses/contains the following:

� ...

� ...

� ...

� Sample level 2 appendix heading
(created by Special > Cross-Reference > Format: Head > Insert)

� Sample next level 2 appendix heading

A

Note to Author: Describe the appendix contents here using these or similar words.
Optionally add level 2 headings to a list using:
Special > Cross-Reference > Format: Head > Insert
© Copyright IBM Corp. 2004. All rights reserved. 183

5768ax01.fm Draft Document for Review July 31, 2004 4:38 am
Sample level 2 heading (yHead1Appendix), new page

Add text here (Body0).

Sample level 2 heading (yHead2Appendix)
Add text here (Body0).

Sample level 3 heading (yHead3Appendix)
Add text here (Body0).

Sample level 4 heading (yHead4Appendix)
Add text here (Body0).

Sample level 5 heading (yHead5Appendix)
Add text here (Body0).

Note to Author: The first level 2 heading in an appendix should be the
(yHead1Appendix) tag, skip to new page.
184 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768addm.fm
Appendix B. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG24????

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG24????.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
????????.zip ????Zipped Code Samples????

B

© Copyright IBM Corp. 2004. All rights reserved. 185

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

5768addm.fm Draft Document for Review July 31, 2004 4:38 am
????????.zip ????Zipped HTML Documents????
????????.zip ????Zipped Presentations????

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: ????MB minimum????
Operating System: ????Windows/Linux????
Processor: ???? or higher????
Memory: ????MB????

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.
186 Performance Considerations in a Shared Processor LPAR Environment

Draft Document for Review July 31, 2004 4:38 am 5768bibl.fm
Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 188. Note that some of the documents referenced here may be available
in softcopy only.

� ????full title???????, xxxx-xxxx

Other publications
These publications are also relevant as further information sources:

� IBM Power5 Chip: A Dual-Core Multithreaded processor -- Ron Kalla,
Balaram Sinharoy, Joel M. Tendler, IBM -- IEEE micro March/April 2004 (Vol.
24, No. 2) pp 40-47

� Performance workloads in a hardware multi threaded environment by Bret
Olszewski and Octavian F. Herescu
(http://www.hpcaconf.org/hpca8/sites/caecw-02/s3p2.pdf)

� IBM Eserver POWER4 System Microarchitecture -- J. M. Tendler, J. S.
Dodson, J. S. Fields, Jr., H. Le, and B. Sinharoy -- IBM Journal of Research
and Development Vol. 46, No. 1, 2002, pp 5-26

� Simultaneous Multithreading A Platform for Next-Generation Processors --
Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, Rebecca L.
Stamm, Dean M. Tullsen -- IEEE micro September/October 1997(Vol. 17, No.
5), pp12-19

� Advanced Microprocessors by Daniel Tabak

Online resources
These Web sites and URLs are also relevant as further information sources:

� Simultaneous Multithreading Project
© Copyright IBM Corp. 2004. All rights reserved. 187

5768bibl.fm Draft Document for Review July 31, 2004 4:38 am
http://www.cs.washington.edu/research/smt/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
188 Performance Considerations in a Shared Processor LPAR Environment

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Draft Document for Review July 31, 2004 4:38 am 5768IX.fm
Index

R
Redbooks Web site 188

Contact us xix
© Copyright IBM Corp. 2004. All rights reserved.
 189

5768IX.fm Draft Document for Review July 31, 2004 4:38 am
190 Performance Considerations in a Shared Processor LPAR Environment

To determ
ine the spine w

idth of a book, you divide the paper P
P

I into the num
ber of pages in the book. A

n exam
ple is a 250 page book using P

lainfield opaque 50#
sm

ooth w
hich has a P

P
I of 526. D

ivided 250 by 526 w
hich equals a spine w

idth of .4752". In this case, you w
ould use the .5” spine. N

ow
 select the S

pine w
idth for

the book and hide the others: S
p

ecial>C
o

n
d

itio
n

al Text>S
h

o
w

/H
id

e>S
p

in
eS

ize(-->H
id

e:)>S
et . M

ove the changed C
onditional text settings to all files in your

book by opening the book file w
ith the spine.fm

 still open and F
ile>Im

p
o

rt>F
o

rm
ats the C

onditional Text S
ettings (O

N
LY

!) to the book files.
D

raft D
ocum

ent for R
eview

 July 31, 2004 4:38 am
5768sp

in
e.fm

191

(0.1”spine)
0.1”<->

0.169”
53<->

89 pages

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

(0.5” spine)
0.475”<->

0.875”
250 <->

 459 pages

(1.0” spine)
0.875”<->

1.498”
460 <->

 788 pages

(1.5” spine)
1.5”<

->
 1.998”

789 <
->

1051 pages

Perform
ance Considerations in a Shared Processor LPAR

Perform
ance Considerations in

a Shared Processor LPAR

Perform
ance Considerations

in a Shared Processor LPAR
Environm

ent

Perform
ance Considerations in a Shared Processor LPAR

(2.0” spine)
2.0” <->

 2.498”
1052 <->

 1314 pages

(2.5” spine)
2.5”<->

nnn.n”
1315<

->
 nnnn pages

To determ
ine the spine w

idth of a book, you divide the paper P
P

I into the num
ber of pages in the book. A

n exam
ple is a 250 page book using P

lainfield opaque 50#
sm

ooth w
hich has a P

P
I of 526. D

ivided 250 by 526 w
hich equals a spine w

idth of .4752". In this case, you w
ould use the .5” spine. N

ow
 select the S

pine w
idth for

the book and hide the others: S
p

ecial>C
o

n
d

itio
n

al Text>S
h

o
w

/H
id

e>S
p

in
eS

ize(-->H
id

e:)>S
et . M

ove the changed C
onditional text settings to all files in your

book by opening the book file w
ith the spine.fm

 still open and F
ile>Im

p
o

rt>F
o

rm
ats the C

onditional Text S
ettings (O

N
LY

!) to the book files.
D

raft D
ocum

ent for R
eview

 July 31, 2004 4:38 am
5768sp

in
e.fm

192

Perform
ance

Considerations in a
Shared Processor LPAR

Perform
ance

Considerations in a
Shared Processor LPAR

®

SG24-5768-00 ISBN

Draft Document for Review July 31, 2004 4:38 am

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

IBM Eserver p5
Virtualization
Performance

Simultaneous
Multi-Threaded
(SMT) processor
performance

Micro-partitioning
performance

Virtual I/O
performance

To deal with the performance management aspects, we will
probably need
a fairly extensive Redbook to explain these changes. For
example a title of:
"Performance considerations in a micro-partitioning
environment"
might include the following chapters:
- Concepts and definitions <may be published separately as
a whitepaper>
- Operating system considerations
 - AIX
 - Linux
- Simultaneous MultiThreaded (SMT) processor performance
- Micro-partitioning performance
- Virtual LAN performance
- Virtual SCSI performance
- Bringing it all together - using micro-partitioning, SMT, VLAN
and VSCSI

This would likely be a large and complex Redbook. The
Performance
team would like to expand their role to participate in the
creation of this
Redbook as recognized authors. Hardware availability will
probably gate this

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Figures
	Tables
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Introduction
	1.1 Performance overview
	1.2 Understanding server performance in general
	1.3 Traditional approach
	1.4 Micro-partitioning as a game changer

	Chapter 2. Hardware and software components
	2.1 POWER5
	2.2 POWER5 chip overview
	2.2.1 Chip organization
	2.2.2 Processor Core

	2.3 Enhanced SMT features
	2.3.1 Dynamic resource balancing (DRB)
	2.3.2 Adjustable thread priorities

	2.4 Dynamic power management
	2.5 Large POWER5 SMPs
	2.6 POWER Hypervisor
	2.6.1 POWER Hypervisor Support
	2.6.2 POWER Hypervisor Design
	2.6.3 Performance Considerations

	2.7 Partitioning on the IBM Eserver p5
	2.8 Micro-partitioning implementation
	2.8.1 Types of shared processor partitions
	2.8.2 Typical usage of shared processor partitions

	2.9 AIX 5L Version 5.3
	2.9.1 Introduction
	2.9.2 Simultaneous Multi-Threading (SMT)
	2.9.3 Performance tools
	2.9.4 Logical Volume Manager
	2.9.5 Partition Load Manager

	Chapter 3. Simultaneous Multi-Threading
	3.1 Idea behind SMT
	3.2 POWER5 SMT implementation
	3.3 Software considerations for SMT
	3.3.1 Snooze and snooze delay
	3.3.2 Process accounting
	3.3.3 CPU utilization
	3.3.4 SMT aware scheduling
	3.3.5 Interrupts
	3.3.6 Effective use of adjustable thread priorities

	3.4 Cache effects due to SMT
	3.5 Performance benefits due to POWER5 SMT
	3.6 Conclusion

	Chapter 4. Virtualization
	4.1 Micro-partitioning considerations for performance
	4.1.1 Micro-partitioning overhead
	4.1.2 Simultaneous Multithreading and micro-partitioning
	4.1.3 Cache architecture and number of virtual processors
	4.1.4 SMP locking and number of virtual processors
	4.1.5 Memory affinity considerations
	4.1.6 Idle partition overhead
	4.1.7 Partition size and overhead
	4.1.8 Interactions between partitions with high processor usage
	4.1.9 Application considerations for shared processor partitions
	4.1.10 Guidelines for planning shared processor partitions

	4.2 Virtualized Input/Output
	4.2.1 Introduction
	4.2.2 Virtualized I/O and the POWER Hypervisor
	4.2.3 Virtualized I/O architectural infrastructure
	4.2.4 Types of Connections
	4.2.5 Shared Logical Resources
	4.2.6 The Virtual I/O-Server

	4.3 Virtual Ethernet
	4.3.1 Introduction
	4.3.2 Virtual Switch of the POWER5 Hypervisor
	4.3.3 Performance Considerations and Measurements
	4.3.4 Virtual Ethernet implementation guidelines

	4.4 Shared Ethernet Adapter functionality
	4.4.1 Introduction
	4.4.2 Performance measurements
	4.4.3 Implementation guidelines

	4.5 Virtual SCSI
	4.5.1 Virtual SCSI Structure and Concepts
	4.5.2 Virtual SCSI Model Overview
	4.5.3 Performance Considerations

	Appendix A. Sample level 1 “a.” appendix heading (yHead0Appendix)
	Sample level 2 heading (yHead1Appendix), new page
	Sample level 2 heading (yHead2Appendix)
	Sample level 3 heading (yHead3Appendix)

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

