
Page 1 of 70 

Table of contents 
About the author...........................................................................................................................3 
Introduction...................................................................................................................................4 
Agenda.........................................................................................................................................5 
Where to start...............................................................................................................................6 
Things to know .............................................................................................................................7 
Introduction to i5/OS language support........................................................................................8 
Globalization in the iSeries Information Center ............................................................................9 
The System i platform delivers global systems ..........................................................................10 
Primary language .......................................................................................................................11 
i5/OS default language settings .................................................................................................12 
Language-related system values and default values .................................................................13 
Introduction to i5/OS application globalization ...........................................................................14 
Overall goals for a global application .........................................................................................15 
Recommended global application architecture ..........................................................................16 
Recommended naming conventions ..........................................................................................17 
Enhancing an existing RPG application .....................................................................................18 
Enhancing an existing RPG application (continued) ..................................................................19 
Enhancing an existing RPG application .....................................................................................20 
Enhancing an existing RPG application .....................................................................................21 
Key areas of enhancement to an existing RPG application .......................................................22 
Scenario: Typical application supporting one language .............................................................23 
Scenario: Key points ..................................................................................................................24 
Web emulator client interfaces ...................................................................................................25 
Example before and after Web-facing........................................................................................26 
IBM iSeries Access for Web client interface...............................................................................27 
Step 1: Convert the data to Unicode encoding...........................................................................28 
The Unicode Standard ...............................................................................................................29 
Unicode encoding or DBCS .......................................................................................................30 
Step 2: Change DDS and RPG to support Unicode encoding ...................................................31 
5250 device client interface........................................................................................................32 
Step 3: Translate the textual portion of application ....................................................................33 
Globalization development process ...........................................................................................34 
Analyzing....................................................................................................................................35 
Determining which data to globalize...........................................................................................36 
Example database evaluation ....................................................................................................37 
Implementing..............................................................................................................................38 
Converting character data in DB2 UDB for iSeries to Unicode encoding...................................39 
Example of converting a column to Unicode encoding ..............................................................40 
Best conversion practices for Unicode encoding .......................................................................41 
Performance considerations for Unicode columns.....................................................................42 
RPG code changes ....................................................................................................................43 
Unicode support in RPG.............................................................................................................44 
Examples of using Unicode encoding in RPG............................................................................45 
Avoid cultural assumptions.........................................................................................................46 
Formatting data in DDS..............................................................................................................47 
Formatting data in RPG..............................................................................................................48 
Coding tips .................................................................................................................................49 
DDS code changes ....................................................................................................................50 
Example of DDS using Unicode encoding .................................................................................51 
Tips for user interface and text...................................................................................................52 
Translation..................................................................................................................................53 
The translation process ..............................................................................................................54 



Page 2 of 70 

Machine translation ....................................................................................................................55 
Manual translation ......................................................................................................................56 
Selecting a translation service provider......................................................................................57 
Translation costs and duration ...................................................................................................58 
Translation tips ...........................................................................................................................59 
Textual expansion ......................................................................................................................60 
Example markup for translation of DDS files..............................................................................61 
Test ............................................................................................................................................62 
Testing........................................................................................................................................63 
Testing tips .................................................................................................................................64 
Getting started............................................................................................................................65 
Summary ....................................................................................................................................66 
Appendix A: Glossary.................................................................................................................67 
Appendix B: Resources..............................................................................................................68 
Trademarks and special notices.................................................................................................70 
 



Page 3 of 70 

About the author 
Beth L. Hoffman has worked as a software engineer for IBM in Rochester, Minnesota, for more 
than 15 years. For much of that time, she led the development of key middleware products on 
the IBM OS/400 and IBM i5/OS operating environment. Today, she is a technical consultant 
working with solution providers who are enhancing their applications with new technologies. 
You can e-mail Beth at bethvh@us.ibm.com. 
 
 



Page 4 of 70 

© 2006 IBM Corporation

International Technical Support Organization

ibm.com
the power of one

IBM Confidential until announced

International Technical Support Organization

IBM System i5
ITSO Technical Forum 2006

Enhancing RPG and Java 
applications to reach global markets

Beth L. Hoffman

AMP19

 

Introduction 
Most software in the world today only supports one language. In recent years, many countries 
have seen a sharp increase in the use of technology. These emerging markets offer a great 
opportunity for broadening software usage and increasing software sales. Software companies 
that want to seize these opportunities must prepare their solutions to support other countries 
and languages. This presentation provides you with a solid introduction to globalization, 
including such concepts and terminology as the Unicode™ Standard and double-byte character 
set (DBCS). This course will examine the process for making software applications global from 
the planning stages through translation and testing. Tips and techniques will provide important 
insight for user-interface design, data handling, and testing. Additionally, you will see an 
analysis of code examples for RPG and Java™. By the end of this presentation, you will have a 
better understanding of what is necessary to make your IBM® System i™ application support 
multiple languages. 
 
 
 



Page 5 of 70 

 

Agenda

▪ Introduction to i5/OS language support

▪ Introduction to i5/OS application globalization

▪ Application enhancement scenario

▪Globalization development process

▪ Translation

▪Other considerations and getting started

 

Agenda 
This presentation will take approximately 60 minutes, and will flow as shown here. First, the 
course will introduce you to the concepts of language support and globalization on your System 
i platform. Next, you will review an application enhancement scenario. Then, there will be a 
discussion of the globalization development process, including translation tasks and issues. 
Finally, you will read about important considerations when getting started down the path to 
globalization. Recommendations, tips, and examples appear throughout many sections. Be 
sure to browse the information in the appendix, which includes additional details, terminology 
definitions, and pointers to important resources. 



Page 6 of 70 

Do I need to get 
a new System i5 

system? Do I 
need a different 

keyboard?

Will my 
application user 
interface have to 

change?

Will my generated 
reports print 

okay?

Do I need to 
support DBCS? 
Or is Unicode 

encoding better?

Can’t I just use 
machine 

translation?

Do I need to 
hire 

someone 
who knows 

this 
language?

I would like to 
expand to China. 

What should I do?

Where to start

 

Where to start 
When application providers want to expand the use of their applications into other countries, 
they often do not know where to start. You might be in this same situation. This presentation will 
help answer many of the questions that arise, and it will provide you with a good foundation for 
starting your own application globalization project. 



Page 7 of 70 

Things to know

You need to be aware of the following things before beginning a 
globalization project:

▪Why you want to globalize an application

▪ How to do business in another country

▪ How to set up a System i5 platform to support multiple languages

▪What existing RPG application you want to globalize

▪ RPG and DDS

▪ The areas that are most important

 

Things to know 
Globalization is a large topic. There are many aspects to discuss. In order to narrow the scope 
for this presentation, there are some assumptions about what you already know and what you 
are willing to investigate after the presentation. To benefit the most from this course, you need 
to know the answers to all the questions shown on this chart. 
 
The main scope of this presentation will be on helping you understand how to enhance existing 
RPG applications. 



Page 8 of 70 

Introduction to i5/OS language support

 

Introduction to i5/OS language support 
This section describes the base language support in the IBM i5/OS® environment. 



Page 9 of 70 

Globalization in the iSeries Information Center

1. Programming

2. Globalization

 

Globalization in the iSeries Information Center 
The IBM iSeries™ Information Center is the primary place to find information about 
globalization support in the i5/OS environment. To access the information, click the 
Programming section, and then click Globalization. There are many sections that you will 
want to browse, including the sections titled Develop global applications, Handle data in a 
global environment, and References. 
 
Other sections in the Information Center provide additional globalization information. For 
example, the RPG language provides Unicode support in many of its built-in functions. The 
iSeries Programming Guide documents this information. To find this information, navigate as 
follows: Programming->Languages->RPG->ILE->Programming Guide. 



Page 10 of 70 

The System i platform delivers global systems

▪ The System i platform supports many 
languages.

▪ The language feature code controls the 
language version for the system 
environment. 

▪ You must specify the language feature code 
for the system’s primary language when you 
place an order.

▪ You can use more than one language on one 
system by installing one or more secondary 
languages.

 

The System i platform delivers global systems 
The System i platform is a great system for running global applications. This chart offers an 
overview of how the system supports multiple languages.  
 
The System i platform supports many languages, and it allows you to use the system in the 
language of your choice. The main system hardware unit is the same regardless of what 
languages you use on it. The system includes language feature code, which controls the 
language you will see when you log on and use your System i platform. When you order a 
system, you must specify the language feature code for the primary language the system will 
use. 
 
Generally, i5/OS software uses a common set of program code, regardless of the language you 
use, but it also includes a set of textual data that is language specific. 
 
The i5/OS operating system provides a national language version (NLV) that contains a 
predefined set of language-dependent values, such as date format, time format, and sort 
sequence. You can use more than one language on one system by installing one or more 
secondary languages, as long as there is adequate storage space. This enables users on the 
system to select the language each of them wants to use, and it allows the same application to 
run in different languages. Finally, you can set up separate partitions to run various languages. 
 
To use a DBCS language in releases prior to i5/OS Version 5 Release 3, you must install the 
operating system and specify the DBCS language as the primary language. 



Page 11 of 70 

Primary language

▪ The i5/OS operating system initializes all language-dependent or culture-
dependent system values from the primary language. 

▪Other system objects and functions assume attributes based on the primary 
language.

 

Primary language 
The i5/OS operating system derives all language-related system settings from the primary 
system language. If a user wants to run an environment in a secondary language, several 
options control which language to use. 
 
The primary language is the language from which all language-dependent or culture-dependent 
system values are initialized. Other system objects and functions assume attributes based on 
this language. For example, messages appearing in the history log always appear in the 
primary language. 
 
In order to use a secondary language for displaying i5/OS functions, choose one of the 
following options: 
 

• Place the desired language at the top of the library list. For example, to present the 
French version of textual data, put French information at the top of the library list with 
the i5/OS command: 
 CHGSYSLIBL LIB(QSYS2928) OPTION(*ADD) 
 

• Create a subsystem for the secondary language. Define the subsystem in the library list 
entry with the NLV library for that language. All jobs running in the subsystem use 
textual data from that language, and all jobs submitted as batch jobs have the NLV 
library as the first library on the system part of the library list. 
 

• Change the library list for your job so the NLV library for that language is first.  



Page 12 of 70 

i5/OS default language settings
The i5/OS primary language feature 
code determines the default system 
environment, even when QCCSID is 
set to 65535.

CCSID represents the 
Encoding Scheme, Character 
Set, and Code Page.

The SBCS part of a mixed language 
is not the same as USA English.

1100=EBCDIC single-byte
1301=EBCDIC mixed-byte (single+double)  

i5/OS default language settings 
This table shows the default language settings on the i5/OS platform for a few languages. Along 
the left, you can see English as well as the four DBCS languages. The primary language 
feature code dictates the default system environment, even when the coded character set 
identifier (CCSID) system value is set to the default of 65535. Each language feature code has 
an associated default CCSID. A CCSID is a combination of the encoding scheme, character 
set, and code page shown in the next three columns. 
 
There are two major CCSIDs for the Japanese language. The majority of Japanese IBM 
customers use CCSID 5026 because it is the default. CCSID 5035 became another major 
Japanese CCSID because of its compatibility with the single-byte character set (SBCS) that the 
English environment uses. The DBCS part of both CCSIDs is the same. Using CCSID 5035 can 
ease the effort of enhancing SBCS English applications to support Japanese users. 
 
It is important to remember that the default CCSID is 65535, which means the system does no 
conversion. This allows for compatibility with the system. Most businesses that use only one 
language with their systems leave the default CCSID as 65535. Companies that run more than 
one language on their systems might find a need to change the default to something else, such 
as CCSID 500. 
 
The encoding scheme is a value that specifies whether the data is EBCDIC single-byte, 
EBCDIC double-byte, or both. (EBCDIC is the native data encoding method for the System i 
platform.) 
 
It is important to tag all data used by an application with its appropriate CCSID so that the 
programming language and database environments can handle the data appropriately.  



Page 13 of 70 

Language-related system values and default values

 

Language-related system values and default values 
This table shows the default system values, which are set based on the primary language 
feature code. Here are examples for the same five languages shown in the previous chart. 



Page 14 of 70 

Introduction to i5/OS application globalization

 

Introduction to i5/OS application globalization 
The following section introduces the concept of i5/OS application globalization. 
 



Page 15 of 70 

Overall goals for a global application
▪ From the application user perspective:

–To enter, store, process, retrieve, print, and 
display data in their language of choice 

–To see and enter data, commands, prompts, 
messages, and documentation in the language 
of choice, in formats that match cultural 
expectations

▪ From the programmer perspective:
–To produce only one set of running code 
–To minimize changes to the current application

Dienstag, 1. Februar 2000
Preis : 297,00 €

Tuesday, February 1, 2000
Price : US$150.00

 

Overall goals for a global application 
The primary reason to make an application global is to be able to sell copies of your application 
to buyers in other countries, regions, or cultures in order to increase your company’s revenue. 
However, it is wise to look at the main goals globalizing an application from different points of 
view. 
 
Global applications allow each user to work with that application and its related data in their 
language of choice. The user can expect the application format to honor cultural preferences in 
its user interfaces. You can see in the chart that four users are working with the same 
application on one System i machine, each being productive with their preferred environment. 
This is a truly global application.  
 
The goal for application providers is to deliver this capability with a minimum amount of work 
and in the shortest amount of time. This means having one set of core programming code and 
minimizing the number of changes to it. In this presentation, you will see a number of 
recommendations and tips that will help you create a better globalization project plan and 
implement the project with the least risk. 



Page 16 of 70 

Recommended global application architecture

One core set of programs 
contain most of the 
application source code,
used by all languages.

Textual data is 
separate from source 
code. Each language 
has a language-
specific version of all 
files in its own 
library. 

Users of all languages 
use one set of data. 

Logical files contain 
information for each 
language. Users access 
data through logical 
views.

Files contain 
culturally 
sensitive 
information.

Program modules 
contain language-
specific code. Minimize 
and convert to ILE RPG 
to allow module 
development.

 

Recommended global application architecture 
This chart illustrates the general recommendations for global application architecture.  
The goal is to have your core application logic independent of any language. You do this by 
removing all language-specific elements from the core application logic, such as textual strings, 
messages, and the description of the user interface. This allows for easier translation of textual 
information. Good software design requires you to keep the programming code implementing 
the user interface (UI) separate from the code implementing the underlying functionality. The 
description of the UI is also separate from the code implementing it. On the System i 
architecture, this means keeping text strings out of the RPG code and, instead, placing them in 
the data description specification (DDS) files and sometimes into message files (*MSGF). 
 
You can break down language-specific code into separate code modules if needed. An 
example of this is special code to calculate taxes for a certain country. 
 
Culturally sensitive information (CSI) refers to any special information that is configurable and 
language-specific. Storing this outside the program code is important.  
 
You can also push functions out of the code and into the database by using built-in database 
features and logical files. An example of this is removing sorting processes from the program 
logic and defining a sort sequence in a logical file to handle it. 



Page 17 of 70 

Recommended naming conventions

AAATTTLLL

AAA=Application ID
TTT=Type of object
LLL=Language code

Example object types:
TXD is textual data
PGM is program
CSI is culturally 
sensitive information
DTA is data 

Tag all language-specific
files and database
columns with a CCSID.

 

Recommended naming conventions 
This chart shows some recommended naming conventions as an example. It is beneficial for 
names of libraries and files to indicate what each contains. With large applications that contain 
many files, using consistent, useful naming conventions is important, especially if several 
programmers are working on the code. 
 
The names for the following items need to use invariant characters that are available in all 
language environments: 

 Libraries 
 Database files 
 Device files (display or printer) 
 Help panels 
 Message files 
 User commands 
 Programs 
 Record formats  
 Fields 

 
Supply each language with its own library. Designate the language in the library name. Be sure 
that each file name in the library includes the language as well. Tag all language-specific files 
and database columns with the language CCSID. Library lists can help you quickly find the 
correct files in the right library. 



Page 18 of 70 

Enhancing an existing RPG application

Four approaches for globalization:

1. Create a new application using modern technologies.

2. Create a new version of the application for each language.

3. Enhance the current application.

4. Create a new modern version of the existing application.

 

Enhancing an existing RPG application 
This chart shows some general approaches for making your application global. 
 
Approach 1: The first approach is to create a new application that uses modern technologies. 
This allows you to take advantage of all the built-in globalization functions in a modern 
language, such as Java. Rewriting an application, or creating a new one to replace an existing 
application, can be a huge investment; therefore, this approach is generally not feasible.  



Page 19 of 70 

Enhancing an existing RPG application (continued)

Four approaches for globalization:

1. Create a new application using modern technologies.

2. Create a new version of the application for each language.

3. Enhance the current application.

4. Create a new modern version of the existing application.

 

Enhancing an existing RPG application (continued) 
 
Approach 2: The second approach involves creating a separate version of the application for 
each language you want to support. This approach allows you to keep the current application 
intact, but it requires another application that you have modified to handle a specific language. 
With this approach, your current users can continue without disruption. It also enables support 
for new languages as requirements arise in a controlled, phased approach. Additionally, if the 
new language is similar to an existing supported language, there might be only a few code 
changes to make. The greatest drawback to this approach is the long-term application 
maintenance costs. Creating and maintaining multiple application versions will increase 
development, deployment, and support costs. Another concern with this approach is that the 
data stored by the application cannot be shared across application versions. This means 
character data fields will require duplicate data columns (one for each supported language). 
This results in a more complex database. 



Page 20 of 70 

Enhancing an existing RPG application (continued)

Four approaches for globalization:

1. Create a new application using modern technologies.

2. Create a new version of the application for each language.

3. Enhance the current application.

4. Create a new modern version of the existing application.

 

Enhancing an existing RPG application 
 
Approach 3: The third approach involves enhancing the current application. With this 
approach, you will continue to have just one application and one set of data. As new global 
requirements arise, you can modify the application as necessary. Over time, you can transform 
the existing application to be completely global. This approach has many benefits. First, you 
only have to maintain one application version and one database. Secondly, you can implement 
globalization changes gradually. This is a practical, recommended approach.  



Page 21 of 70 

Enhancing an existing RPG application (continued)

Four approaches for globalization:

1. Create a new application using modern technologies.

2. Create a new version of the application for each language.

3. Enhance the current application.

4. Create a new modern version of the existing application.

 

Enhancing an existing RPG application 
 
Approach 4: The final approach allows the existing application and data to remain mostly 
unchanged for current users, and at the same time, supports the creation of new applications or 
enhancements that are global. You can take advantage of the existing code base by creating 
modules that modern languages can call. You can invest your time in writing new code in a 
language such as Java. You can also add new data in the Unicode format. This encoding 
standard is one that most solution providers are beginning to use today. 



Page 22 of 70 

Key areas of enhancement to an existing RPG application

▪ Data

▪ Program logic

▪ User interface 

▪ Textual information

 

Key areas of enhancement to an existing RPG application 
Because many solution providers want to enhance their current RPG applications, here is an 
overview of the key technical areas on which you will need to focus. At a high level, there are 
three major focus areas of an application: the data, the core program logic, and the user 
interface (UI) and textual information. Each of these areas will require some changes to 
globalize the application. 
 
Because numbers are the same in different languages, the focus here is on character data. 
Applications must accept the data that a user stores and displays in different languages. 
Making the data truly global will require changing the CCSID specified for character (SBCS) 
and graphic (DBCS) data types. Logical views of the data will also need changes. You will see 
examples of how to do this in future charts. 
 
The core program logic will also require changes. Specifically, you will need to convert the 
character-related data types to graphic data types. Additionally, you must change every place in 
the code that references internal variables or strings that relate to the character and graphic 
database fields. You will see examples of this in future charts. 
 
The UI and textual information must change to display the updated data types properly. 
Language versions of the DDS and other textual information will be created as part of the 
translation process.  
 
There are many changes to consider. To help you understand these changes, look at the 
following scenario that will demonstrate how to approach making these recommended changes. 



Page 23 of 70 

Scenario: Typical application supporting one language

5250 
Device

Web 
emulator Unicode

Code page:37

EBCDIC

English
CCSID 37

DDS RPG DB2
UDB

Logical file

Web or
Java

Modules

Unicode

EBCDIC EBCDIC

Client interfaces

Data type         CCSID
CHARACTER   37English

English

English

JD
B

C

EBCDIC

 

Scenario: Typical application supporting one language 
This diagram illustrates a typical RPG application that supports one language. It addresses 
three key areas of an application:  
• User interface (UI) (shown on the left),  
• Program logic (shown in the middle) 
• Database (shown on the right).  

 
All client interfaces see the application UI in English. The supported data contains characters in 
CCSID 37, which is the code page for English and a few other languages. DDS defines the data 
fields as CHARACTER data type with a CCSID of 37. The columns in IBM DB2 Universal 
Database™ (DB2® UDB) for iSeries are also defined as CHARACTER data type with CCSID 
37. You can code the RPG code and logical file to handle all data with EBCDIC encoding. 
 
IBM 5250 device: You must configure a 5250 device with a specific code page that dictates 
which language set of characters to show. Each user selects one code page. In this example, 
the user chose English code page of 37. The DDS data fields are also tagged with CCSID 37, 
so the application UI displays in English. When the RPG program receives the input from the 
UI, the data is in EBCDIC. It is very common to use a logical file or Structured Query Language 
(SQL) view to look at and update data in a database. Because the character data in the 
database is defined as CHARACTER with an English CCSID 37, there is no need for data 
conversions and no risk of data loss.  
 
Web emulator: This type of Web browser accesses the RPG application. You can create these 
browser interfaces with the IBM WebFacing Tool, IBM WebSphere® Host Access Transformation 
Services (HATS), or iSeries Access for Web.Browsers always handle Unicode data, so the user 
can enter this type of encoded data automatically. However, because DDS controls the data 
fields and expects to see the data encoded in CCSID 37, an error will occur after sending the 
browser page. The rest of this client scenario is the same for both Web emulator and 5250 device 
users. The data is handled in CCSID 37 and passed along to the database for storage. 
 
Web or Java: The data in a Java application (a Web application or rich client) always uses 
Unicode encoding. Java code can call RPG modules directly by using program call markup 
language (PCML) or stored procedures. In this case, the RPG modules need to handle Unicode 
data. These same applications can access the database directly through Java database 
connectivity (JDBC). The JDBC driver automatically converts data. When going from the Java 
client to the database, the Java client sends Unicode data; JDBC converts the data to the 
correct CCSID encoding, based on the database column definition where it will be stored.  



Page 24 of 70 

Scenario: Key points

▪ 5250 device client
– Can only receive data in one code page
– Depends on the workstation controller to manage mappings to CCSID 37

▪Web and Java clients always use Unicode encoding.

▪ JDBC
– Handles all data in Unicode encoding
– Converts data from the database column’s CCSID to Unicode encoding 

when receiving
– Converts data from Unicode encoding to the database column’s CCSID 

when writing

 

Scenario: Key points 
With 5250 devices, the user must specify and use data according to one code page encoding 
technique. The workstation controller manages this. Web and Java clients always use Unicode 
data. Therefore, they do not have limitations on the data. 
 
JDBC has built-in support to handle data conversions between the application and the actual 
database automatically as needed. 



Page 25 of 70 

Web emulator client interfaces
Integrate

HATS

IBM 
WebFacing 
Tool

Existing applications  (RPG, CL, COBOL)

DSPF DDS

Data structure5250 data 
stream

1

2

Data I/ODisplay I/O

 

Web emulator client interfaces 
This chart shows two types of Web emulation clients; a different IBM tool creates each one. 
Both provide a Web-based interface that is built from DDS display files. Because all Web 
browsers support the Unicode Standard, both products also support Unicode Standard.  
 
One of these products is the IBM WebFacing Tool. It works between the application and the 
output device by converting the interface information to a Web interface and changing the data 
to Unicode encoding. The IBM WebFacing Tool works off the same DDS code without requiring 
changes to the DDS. The IBM WebFacing Tool converts the DDS source presentation file 
(DSPF) to JavaServer™ Pages (JSPs™) and Java servlets during a compile step. This occurs 
before the 5250 data stream is created.  
 
Another type of Web emulator is Host Access Transformation Server (HATS). It converts the 
5250 data stream to HTML dynamically at run time. HATS provides a configuration option 
called Enable Unicode Data Stream that specifies it can accept Unicode data from the 
application. 



Page 26 of 70 

 

Example before and after Web-facing

 

Example before and after Web-facing 
These screen captures show a before-and-after Web-faced green screen. These screens are 
courtesy of APPCON, an IBM iSeries Business Partner. As you can see, the IBM WebFacing 
Tool converts 5250 interfaces to browser-based graphical user interfaces (GUIs). With little or 
no modification to your original iSeries applications, you can extend the use of your programs to 
the Internet or an intranet. Whether your applications are new or were written before the 
Internet became a viable platform for conducting business, with the IBM WebFacing Tool, your 
applications can be available anywhere that users have access to a browser. You can use the 
IBM WebFacing Tool with applications that invoke DDS source code to create 5250 display 
screens. The tool has wizards that facilitate selecting your original application's DDS source, 
converting the source, and deploying the new browser-based interface to your program as an 
application that works with the WebSphere Application Server.  
 
The conversion creates JavaServer Pages (JSPs) and JavaBeans™ that substitute for your 
DDS code and make Web access possible. After you convert the DDS code, you can access 
the application through a browser or continue to use 5250 displays. Having the interface to your 
applications based on JSPs allows for more flexibility in customizing their appearance. Before 
the tool converts your DDS code, you can use the Style properties pages to change the look 
and feel of the generated pages. Styles allow you to define attributes in your Web pages (such 
as graphics, fonts, colors, and layouts). You can use one of the supplied styles or create your 
own. To update the appearance of a previously converted project, simply run the IBM 
WebFacing Tool again and select a new style. 
 
Refer to the Resources section for more information about APPCON. 



Page 27 of 70 

IBM iSeries Access for Web client interface 

 

IBM iSeries Access for Web client interface  
The third type of Web emulator product from IBM is iSeries Access for Web. This client 
interface also runs in a Web browser and allows the user to initiate i5/OS applications from it. 
The iSeries Access for Web tool supports the Unicode Standard. Here is a simple example of a 
Web-rendered green screen that shows two output fields, each in a different language. 



Page 28 of 70 

Step 1: Convert the data to Unicode encoding

5250 
Device

Web 
emulator Unicode

Code page:37

EBCDIC

English
CCSID 37

DDS RPG DB2
UDB

Logical file
Web or
Java

Modules

EBCDIC Unicode

Client interfaces

Data type         CCSID
GRAPHIC     1200

English

English

English

Unicode

JD
B

C
Unicode

 

Step 1: Convert the data to Unicode encoding 
Now that you have a better idea of the different client interfaces in the typical RPG scenario, 
look at the first step in enhancing the RPG application to be global. It converts database data to 
Unicode encoding. The diagram elements in the gray background represent the areas that 
require change during this step.  
 
All character and graphic database columns are candidates for conversion to Unicode 
encoding. You can do this by changing their CCSID value to 1200, which is the Unicode UTF-
16 format. (UTF-16 is the default Unicode encoding format for the System i architecture). In 
order to specify the CCSID 1200, the data type must be GRAPHIC (or VARGRAPHIC); you 
must change this as well. You must change the logical files (that the application uses for 
accessing the database) to set the data type for these fields, as the data type is different 
coming in than going out. JDBC automatically handles conversions, so no changes are required 
there. Now that the data coming from the database and going to the Web or Java applications 
is all Unicode encoding, these applications require no conversions or enhancements. The next 
few charts discuss Unicode data in more detail. 
 
Everything else in the scenario remains the same; DDS and RPG programs remain unchanged. 
When this step is complete, you have a fully functioning, Unicode environment. This step is 
ideal for solution providers who have both Java and RPG applications accessing the same 
data.  



Page 29 of 70 

The Unicode Standard

It provides a means of doing the following:

▪ Sets the industry standard as a platform-independent way of handling data

▪ Contains a comprehensive set of characters from all written languages

▪ Enables a global set of users

▪ Allows for the exchange of multilingual data with other software or systems

▪ Simplifies software code

 

The Unicode Standard 
At this point, you have only changed the data to Unicode encoding. The next step will be to 
change the RPG and DDS code to support it as well.  
 
The Unicode Standard defines a comprehensive set of unique numbers that represent or map 
to particular characters from all well known, written languages. It also supports scripts, which 
are sets of characters such as those found in Latin, Greek, and Cyrillic. The Unicode Standard 
even supports Chinese, Japanese, and Korean ideographs. The unique numbers are the same, 
regardless of the user’s software platform or operating system. Because the Unicode Standard 
includes all language characters, one field can include characters from many languages. This is 
called multilingual support. 
 
Unicode encoding eliminates the risk of data corruption because the data does not need re-
encoding as other software or systems use it. Data corruption existed prior to the Unicode 
encoding when software mistakenly encoded data using the wrong encoding system. (You can 
see an example of this in Appendix A.) This is because the various encoding systems 
sometimes used the same number to represent different characters. Unicode encoding allows 
you to specify values for a given field and save it in a mix of languages. Unicode encoding also 
lets you transport data through many types of systems without corruption, because you no 
longer have to hardcode whether a value is of a specific language. 
 
Unicode encoding greatly simplifies the complexity and amount of code in a software 
application when you need to support more than one language, because it provides one 
encoding system. There is no need to hardcode the encodings for specific languages. Thus, 
enabling software to handle the Unicode Standard provides support for all languages. Prior to 
the establishment of the Unicode Standard, the implementation method for encoding systems 
did not allow support for enough characters. This resulted in the creation of hundreds of 
encoding systems. When software applications needed to support more than one encoding 
system, an application had to handle multiple code pages (one for each supported language) to 
properly handle values in different languages. 
 
With the Unicode Standard, there is also a lesser need for data processing because it is not 
necessary to encode and de-encode data to accept different languages properly. However, until 
all parts of the application handle Unicode encoding, some conversions are required. 



Page 30 of 70 

Unicode encoding or DBCS
▪ The strategic direction of the industry and IBM includes:

– All Web processing is based on the Unicode Standard.
– More recently developed applications are defined exclusively in Unicode encoding.

▪ The Chinese government requires software to use Unicode encoding.
▪ The Unicode Standard lets one application version support all languages.

 

Unicode encoding or DBCS 
Because the issue of multiple language support within software became so important and 
complex, the Unicode Consortium, an organization sponsored by many companies, created the 
Unicode Standard. Because the Unicode Standard has been developing over the last few 
years, the i5/OS platform has not always supported it. In recent releases, Unicode support has 
grown and is now very functional. IBM wants to ensure that the i5/OS environment is a key 
platform for running applications that support Unicode encoding in addition to EBCDIC 
encoding. You can run a mix of both types without either one affecting the other. IBM has 
enabled i5/OS and other key software for Unicode encoding, including middleware products 
such as WebSphere and IBM Lotus® Domino® software suites. DB2 UDB for iSeries supports 
a Unicode data type. The integrated file system (IFS) directory structure has always been 
based on the Unicode Standard. The data you store in IFS can be global because it is enabled 
for Unicode encoding. 
 
Aside from the industry direction for Unicode support, there are technical reasons for using this 
standard. In addition to simplifying developers’ coding efforts, the Unicode Standard allows one 
version of an application to support data in all supported languages. This is positive from the 
user perspective because they can enter data in their own language without worrying about 
which characters they can and cannot use. From a programmer’s perspective, enhancing a 
program to support Unicode encoding is about the same amount of work as supporting DBCS 
encoding. When DBCS-enabling your application, you are supporting only one additional 
language because you are merely tagging the data in the database with a specific language 
CCSID. This means that you will need multiple database columns to support multiple 
languages. Your database becomes more complex and your application code must know which 
database columns to use.  
 
Because the industry is moving toward the Unicode Standard, and because converting to 
Unicode encoding requires about the same amount of work as converting to DBCS, it makes 
more sense to support all languages in one field than to have language-specific fields. There is 
no reason to support DBCS now that Unicode support is fully available.  



Page 31 of 70 

Step 2: Change DDS and RPG to support Unicode encoding

5250 
Device

Web 
emulator Unicode

Code page:37

Unicode

English
CCSID 1200

DDS RPG DB2
UDB

Logical file

Web or
Java

Modules

Unicode Unicode

Client interfaces

Data type         CCSID
GRAPHIC  1200

English

English

English

Unicode

JD
B

C

Unicode

 

Step 2: Change DDS and RPG to support Unicode encoding 
This diagram shows the next typical area of change to support Unicode encoding. This stage 
focuses on making all the code changes. After these are complete, the environment will handle 
all character fields as multilingual because the application and interface now supports Unicode 
encoding. 
 
DDS: There are a couple of different changes to the DDS code. To match the database 
columns, you need to change each corresponding character field declaration in DDS from A (or 
blank) to G, and you need to add a CCSID 1200 value. The combination of G and CCSID 1200 
define the field as Unicode data in the UTF-16 format. The Unicode Standard requires two 
bytes to store every character rather than one byte in single-byte CCSIDs. Because the field 
lengths that the DDS generates to show to a user appear in bytes, these Unicode Standard 
data fields will now allow the user to enter twice as many bytes. The number of characters in 
the field is the same, but the 5250 device and Web emulators will now allow twice as many 
bytes. If needed, you can set a DDS keyword to stop the user from typing too many characters. 
It is important to update the DDS to support Unicode encoding before making a new language 
version of the file for translation purposes. 
 
RPG: RPG requires several kinds of code changes to support Unicode encoding. Change the 
fields that need to be altered from A (alphanumeric) to C. Next, identify places within the code 
that compare this Unicode data to EBCDIC. These are usually constant values or temporary 
internal EBCDIC variables. 
 
Logical file: The logical file no longer has to support the conversion of data from Unicode 
encoding to EBCDIC, so you can remove the settings made in Step1. 
 
In this scenario, all the data passes in Unicode encoding without requiring data conversion. The 
only remaining limitation is that, with the 5250 device, users might not see some Unicode 
characters.  



Page 32 of 70 

5250 device client interface
5250 devices:

▪ Are the traditional way to view System i5 data

▪ Do not support the full set of Unicode characters

▪ Can only display the characters for one code page

▪ Map Unicode fields to the correct values for the device with i5/OS workstation 
management code, prior to displaying them on the screen

▪ Convert new data to Unicode Standard and return it to the application

 

5250 device client interface 
Display devices that currently support the 5250 data stream do not support Unicode data. 
Therefore, conversions between the Unicode data and EBCDIC are necessary during input and 
output. On output, the Unicode data is converted to the CCSID of the device. On input, the data 
is converted from the device CCSID to the Unicode CCSID. The device CCSID, which the 
configuration specifies, determines what the Unicode data is converted to. The resulting data 
will appear differently, depending on the device. The device configuration documentation 
specifies what happens in cases where a Unicode character does not map directly to a code 
point in the device CCSID. In some cases, a replacement character is used. 
 

 



Page 33 of 70 

Step 3: Translate the textual portion of application

5250 
Device

Web 
emulator

Unicode

Code page:
37 or 300

Unicode

English
CCSID 1200

DDS RPG DB2
UDB

Web or
Java

Modules

Unicode Unicode

Client Interfaces

Data type         CCSID
GRAPHIC      1200

Japanese
CCSID 1200

English

English
Japanese

Japanese

English

Japanese

Unicode

JD
B

C Unicode

Logical file

 

Step 3: Translate the textual portion of application 
The final step focuses on translating the textual portion of the application so people who read 
another language can see the user interface in their own tongue. You first need to decide which 
additional languages to support. 
 
For 5250 devices, the library list controls which language version appears to the user. The code 
page controls what characters the data fields can contain. 
 
For Web emulators, the library list also controls which language version appears to the user. 
 
For Java applications, the Web browser encoding setting or the user’s locale setting controls 
which language version of the application interface appears to the user. 
 
For RPG, human interpreters translate the required DDS, message files, and other text objects 
into the target languages.  
 
For Java, the human interpreters also translate the contents of resource bundles. 
 
If the culture of the target languages demands the presentation of data in alternate sort orders, 
you can create logical files with each one defining its own sort sequence. At the completion of 
this stage, you have an application that not only supports multilingual data, but which is also 
available for use in more than one language. 



Page 34 of 70 

Globalization development process
1. Analyzing

2. Implementing

3. Translating

4. Testing

1 2 3 4

 

Globalization development process 
Now that you have seen how to enhance a typical RPG application to become global, here is a 
basic process for implementing application changes. Each step will give recommendations, tips, 
and examples. 



Page 35 of 70 

Analyzing
Determine which data to globalize.

Examine the code to understand pervasiveness of the changes.

Decide your implementation approach.
• Will new language users want to use green screen or modern UI?
• Do you want to invest in changing existing RPG and DDS?
• Do you want to start a new Java version?

• Modularize your RPG code and change modules to support Unicode encoding.
• Write new code in Java or in RPG modules.

1 2 3 4

 

Analyzing 
The first step is to determine everything that needs to change, including data and code 
changes. After you have a good idea of the scope, pervasiveness, and amount of changes 
necessary, you can decide on an implementation approach. This is the time to consider which 
user interfaces you want to support. 
 



Page 36 of 70 

Determining which data to globalize

Change only character and graphic type fields.
• SBCS: CHAR, VARCHAR
• DBCS: GRAPHIC, VARGRAPHIC

Query those database columns and print their CCSID value.
• SELECT column_name, data_type, ccsid, length, table_name FROM

qsys2/syscolumns WHERE data_type IN
(‘CHAR’,’VARCHAR’,’GRAPHIC’,’VARGRAPHIC’) ORDER BY table_name;

Examine each CCSID value.
• They probably all use the CCSID of your language.
• Use the CCSID table in the iSeries Information Center to determine the 

language.
• If any are using CCSID 1200, then those fields are Unicode encoded.

Create a list of all columns that need changing.
• Not all data needs converting.
• Example: Data that is used internally to the code and never exposed on the GUI

1 2 3 4

 

Determining which data to globalize 
When determining which data to globalize, you only need to look at the fields with a data type of 
VARCHAR, CHARACTER, VARGRAPHIC, and GRAPHIC. Accomplish this by running a query 
of the entire database, searching for columns with those data types, and printing out a list that 
shows the CCSID for each. (See the sample query on this chart, shown in red.) Look at the 
CCSID values. If any shows a value of 1200, then that data is already in Unicode format. Other 
CCSIDs are for specific languages. You can look in the CCSID table in the Globalization 
section of the iSeries Information Center to see which languages they represent. Start making a 
list of all the columns. For those columns where the RPG program code uses the data 
internally, no conversion is necessary. The resulting list will be the database columns you need 
to convert to the Unicode Standard. 
 
 



Page 37 of 70 

Example database evaluation

Look for data types:
CHARACTER, VARCHAR, 
GRAPHIC, VARGRAPHIC

Look at CCSIDs:
37 is English

1 2 3 4

 

Example database evaluation 
You can query the database columns through any SQL interface. In this example, the database 
view in iSeries Navigator is used. Access it by clicking System > Databases > Schemas > 
FLIGHT400C > Tables. Choose a table, and then right-click Definition to see the database 
definition for this table. In this example, FLIGHT400C is the database name and FLIGHTS is 
the table name. You can see that this particular table has many CHARACTER and VARCHAR 
fields that are candidates to convert to Unicode Standard. All of them support CCSID 37, which 
is English. At this point, look in the programming code of the application to determine if any of 
these columns do not need to be converted. For example, if the strings from a character-based 
data type column are only used internally in the program source code and are never shown on 
the user interface, this database column does not require conversion. 



Page 38 of 70 

Implementing

Convert code to RPG IV.

Separate text from business logic.

Convert character data in DB2 UDB to Unicode encoding.

Make changes in RPG code to support Unicode encoding.

Make changes in DDS to support Unicode encoding.

Change install code.

1 2 3 4

 

Implementing 
In this step, you will implement all of the code changes. If you have a huge application, this step 
can take many months to complete. The best thing to do is to stage out how to make sets of 
changes at a time. You might want to support some fields in the Unicode Standard in one 
particular release of the application and leave other fields for another release. 
 
First, you need to convert your RPG code to RPG IV. This will require a recompile (described in 
the iSeries Information Center). RPG IV provides a lot of Unicode support, including functions 
for date and time formatting. Additionally, moving to the Integrated Language Environment for 
RPG IV (ILE RPG) allows you to create language-specific code modules. Next, ensure that all 
of your textual information is separate from the core program logic. If you find hard-coded 
strings that are part of the user interface, move these out of the code and into DDS or message 
files. 
 
You are now ready to convert your database columns to Unicode encoding and make the 
Unicode changes to the RPG and DDS code. If there are many changes, determine a plan of 
action, perhaps program-by-program. 
  
You will also need to look at whether your application’s installation code needs updating. When 
supporting an application in more than one language, you can create separate software CDs for 
each language, or you can build one installation CD and prompt the user who is installing the 
application to select which language version to implement. For a current user of your 
application, you will need to write code to convert the data in their existing DB2 UDB for iSeries 
database to Unicode encoding. This data conversion will likely run as part of an application 
upgrade. 



Page 39 of 70 

Converting character data in 
DB2 UDB for iSeries to Unicode encoding

Change the code that creates the database initially .

If using your own application, consider converting the test database.
– Conversion options

• SQL: Use ALTER TABLE command or iSeries Navigator
• DDS: Use CHGPF command

– Performance considerations
• It will take significant time to convert data to Unicode encoding.
• If you convert multiple columns, do them at the same time.
• Conditions that increase conversion time:

- Amount of data to convert
- Size of System i5 hardware
- Number of indexes

1 2 3 4

 

Converting character data in DB2 UDB for iSeries to Unicode 
encoding 
Here is some useful information about converting data to Unicode encoding. You must update 
any install code that creates a database to build those database columns in Unicode encoding. 
If your application code is operating in a test or production environment, you must convert those 
databases, too. Converting a database column from to a Unicode data type is similar to 
changing the length of a column. You can use the SQL ALTER TABLE command or the i5/OS 
CHGPF command. 
 
There are several performance items to consider. It will take quite some time to convert data to 
Unicode encoding. You can do a test against a typical installed database to estimate how long 
this will take for your customers. If you need to convert more than one column, it is more 
efficient to convert them all at once in one command. Three key factors will influence how much 
time it will take to convert the data: the amount of data to convert, the size of the System i 
hardware on which it is running, and the number of indexes that need rebuilding. 



Page 40 of 70 

Example of converting a column to Unicode encoding

1. Select column
2. Click Definition…
3. Change Data type to GRAPHIC
4. Change CCSID to 1200
5. Click OK.

The ALTER TABLE command is generated.

1 2 3 4

 

Example of converting a column to Unicode encoding 
You can use the SQL view in the iSeries Navigator to see how to accomplish the conversion. In 
the top screen shown here, highlight the database column name that requires conversion, and 
then click the Definition button. The small window at the bottom appears. Change the Data 
type to GRAPHIC and change the CCSID from 37 to 1200. Then, click OK to generate and run 
an SQL ALTER TABLE command. 



Page 41 of 70 

Best conversion practices for Unicode encoding

▪ Use sample data for testing:
– Create a test environment.
– Copy a subset of your database; put it in a separate location.

▪ Execute test conversion of data (using subset):
– Do an early test conversion during project planning.
– Time your database conversion (to understand length of final conversion).

▪Minimize down time of your application:
– Execute final conversions during system maintenance timeslots or weekends.
– Convert multiple columns in the same timeframe, if possible.

▪ Share information with the users who install your application:
– Automate data conversions for them, and tell them you are doing so.
– Share the estimated conversion time required during application upgrade.

1 2 3 4

 

Best conversion practices for Unicode encoding 
Some best practices and tips for creating data conversions to Unicode Standard include using 
sample data for testing your Unicode modifications. You will need to create a test environment 
in a separate location. Then, copy a subset of your database into this test environment. 
 
You need to test the conversion code you have written, using a subset of the data that is to be 
converted. It can be valuable to do an early test conversion during the project-planning phase. 
Be sure to time the conversions so that you can better understand the anticipated length of the 
final conversion efforts that your user will experience. 
 
It is important to minimize application downtime for all applications that are affected by the 
introduction of the Unicode encoding. It is probably best to execute final data conversions 
during system maintenance timeslots or weekends. Convert multiple columns in the same 
timeframe if possible. 
 
Be sure to keep the users who are installing the Unicode conversion programs aware of what is 
happening. Display messages about the estimated conversion time required during application 
upgrades, and automate all data conversions for them.   



Page 42 of 70 

Performance considerations for Unicode 
columns

▪ Accessing DB2 UDB for iSeries data with the SQL query engine does not support 
sort sequences. 

▪ If data access is primarily by Java applications, performance gains are possible 
when using Unicode character data types.

▪ If you convert data to Unicode encoding that is shared by both Java and RPG 
applications, the RPG applications will require more processing when accessing 
that data.

▪ Performance can be improved by explicitly converting character data on fetches:
SELECT VARGRAPHIC(mycol,10,1200)...  instead of SELECT mycol ...

1 2 3 4

 

Performance considerations for Unicode columns 
When applications use the SQL query engine to access DB2 UDB for iSeries data, there is no 
support for sort sequences. In fact, attempting to do this can appear as a performance problem. 
 
If more than one application accesses the same data, consider converting the data to Unicode 
encoding. However, realize that accessing the data from traditional enterprise (non-Java) 
applications will be slower because of the real-time data conversion. 
 
You can also improve the performance of data conversions by explicitly specifying that the 
query engine retrieve the data value in Unicode encoding. The example SQL SELECT 
statement (shown in red on this chart) illustrates how you do this. 



Page 43 of 70 

RPG code changes

Specify Unicode data as C data type to variable declarations.

Change code that compares constants with Unicode data.

Change code that moves Unicode data around by using internal temporary 
variables.

Find some required code changes by compiling the RPG code.

Remove cultural assumptions put into DDS where possible.

1 2 3 4

 

RPG code changes 
Several types of RPG code changes are necessary to use Unicode encoding. 
 
For variable declarations, you must specify Unicode data as a C data type. 
 
Be sure to change code that compares constants with Unicode data. 
 
Modify code that moves Unicode data around by using internal temporary variables.  
 
You can find some required code changes by compiling the RPG code and then looking at the 
resulting warnings. 
 
Take into consideration any cultural assumptions within the DDS code, and remove these 
where possible. 
 



Page 44 of 70 

Unicode support in RPG

Most RPG string functions support Unicode data.
– See the iSeries Information Center
– Programming->Languages->RPG->ILE->Reference->Chapter 22

▪ The built-in %UCS2 function allows for variables that are not Unicode 
encoded to be treated as Unicode data.

1 2 3 4

 

Unicode support in RPG 
Many string-related functions provide automatic detection and conversion support between 
EBCDIC and Unicode fields. Examples of these include the MOVE, MOVEL, and EVAL 
functions. You can see a complete list of these in Chapter 22 of the RPG Reference, which is 
online at the iSeries Information Center. (Follow the navigation shown in this chart.) An added 
built-in function allows you to convert a constant string or variable into Unicode format before 
using it with Unicode functions or comparisons. The function name is %USC2. 



Page 45 of 70 

Examples of using Unicode encoding in RPG
▪ You can use the C data type and the %ucs2 function to wrapper an compare an 

EBCDIC data field with a Unicode (UTF-16) field:

▪ The movel and trimr functions automatically detect the type of variable (EBCDIC or 
Unicode data) and handle automatic conversion as needed by the function:

1 2 3 4

H CCSID(*UCS2 : 1200)
* Initialize a Unicode variable fieldU to a valid Unicode value
D  fieldU         S 10C  INZ(%ucs2(‘abcdefghij’))
* Assign the EBCDIC value MyDataE to the Unicode variable MyDataU
C                   eval      MyDataU = %ucs2(MyDataE)
* Compare an EBCDIC value to a Unicode value
C                   if        MyDataU > %ucs2(MyDataE)

* Converts the constant ‘Winter’ to Unicode if MyDataU is defined as Unicode
C                   movel     'Winter'      MyDataU
* Trims blanks off the right side of the string. String length is properly
* determined to find the string end. Ex. EBCDIC length is 6, Unicode is 12
C                   eval      MyText = %trimr(MyText)

 

Examples of using Unicode encoding in RPG 
Here are two examples that illustrate how RPG programs support Unicode data.  
 
The top example shows how to define a Unicode field with the C data type. It also uses the 
%ucs2 function to wrapper an EBCDIC value data field so the value can be stored or compared 
with the Unicode field.  
 
You can use an H spec (Header specification, shown in red) to define the particular Unicode 
CCSID value for all %ucs2 invocations in the RPG program. Alternatively, the program can 
specify the Unicode CCSID value on each call to the %ucs2 function. For example: 

%ucs2(MyDataE : 1200) 
 

The second example shows two ways to support Unicode encoding. One method uses the 
MOVEL function, and the other method uses the %trimr function. 



Page 46 of 70 

Avoid cultural assumptions

▪ Design and implement code independent of cultural preferences.
– Use internal form of data until  you need to display it.
– Do not hardcode culture-specific formats.
– Do not assume data is of a particular language.

▪ Examples:
– Names, addresses, postal codes, telephone numbers
– Numbers and dates
– Measuring units and currency
– Alphabetical order of characters
– Date and time

1 2 3 4

 

Avoid cultural assumptions 
To globalize an application completely, you need to be aware of how you handle data that has 
cultural significance. You must store the data generically in the database and convert it to the 
right format just before displaying it. In the code, use the internal generic format until a user 
needs to see it. Avoid hard coding culture-specific data. However, because RPG does not 
provide ways to format all culturally significant data, this will be impossible to avoid completely. 
The list in this chart shows examples of data that requires different formats, depending on the 
user’s cultural preference. 
 



Page 47 of 70 

Formatting data in DDS

▪ Format data in DDS, if possible:
– Use the DATFMT keyword for the date format.
– For example, use the DATFMT(*JOB) keyword in DDS:

• Uses the job attribute, which is the setting from the user’s user profile
• Provides approximately 10 choices
• If the required format is not an option, then handle it in your code.

1 2 3 4

00010A
00020A    R RECORD
00030A      DATFLD1      L  B  5  2DATFMT(*JUL)
00040A      DATFLD2      L  B  5 22DATFMT(*EUR)
00050A      DATFLD3      L  B  5 42DATFMT(*JOB) 

February 1, 2006 equals:

DATFLD1   06/032
DATFLD2   01.02.2006
DATFLD3   02/01/06 

 

Formatting data in DDS 
Use built-in formatting keywords in DDS to format data. Each language version of DDS will 
specify its preferred format. Alternatively, you can use conditional statements in DDS to display 
one format instead of another.  
 
This chart provides an example of using the date formatting (DATFMT) keyword in DDS. The 
DDS file on the left shows the definition of three data fields, each specifying a different style 
format: Julian (*JUL), European (*EUR), and the format from the date format job attribute. Use 
the DDS DATFMT keyword to specify these. When these formats are applied against the same 
date of February 1, 2006, the outcome varies. You can see the different formatting results on 
the right side of this chart. 



Page 48 of 70 

Formatting data in RPG
▪ RPG does not support functions for formatting some cultural data.
▪ To find your own solution:

– Understand the rules for the countries and regions that use your application.
• Common Locale Data Repository (CLDR)
• http://www.unicode.org/cldr/

– Use flexible data types in the database to store these.
– Limit formatting in the main code; put it in a language-specific module.
– Use ICU formatting APIs.

▪ Example: Supporting global telephone numbers:
– Telephone numbers come in many formats.
– Store them as strings instead of numerics.
– Strings will allow users to enter dashes and spaces as desired.
– Increase the field length to accommodate telephone numbers in longer formats.

 

Formatting data in RPG 
DDS only supports a few data formats, which means you will have to handle the other culturally 
sensitive data formatting in the RPG code. However, RPG also does not provide built-in 
formatting functions. Thus, you will need to decide how to handle this in your code. First, start 
by understanding the rules for how the particular country or region formats the kind of data you 
are handling. You can find some of this information online in the Common Locale Data 
Repository. The easiest thing to do for flexibility is to use character data types for things such 
as telephone numbers. This allows flexibility for users to enter parentheses, dashes, and 
spaces where desired. You might also want to increase the field length to accommodate longer 
phone numbers. You might need to break language-specific formatting code into separate, 
callable modules to keep them out of the main language-independent code. You might also 
want to use the International Components for Unicode (ICU) application programming 
interfaces (APIs) to help you format data. You can find out more about these APIs at the IBM 
International Components for Unicode Web site listed in the Resources section of this course. 

http://www.unicode.org/cldr/


Page 49 of 70 

Coding tips

▪ Code needs to be independent of the language and CCSID.

▪ Use system-supplied APIs to handle characters.

▪ Use system-supplied APIs to determine field lengths.

1 2 3 4

 

Coding tips 
There are three key general coding tips you need to follow as you modify your applications to 
support Unicode data. 
  
You need to write the code to be independent of any particular language and CCSID. Also, you 
need to isolate different sets of culturally dependent and text-dependent code into modules. Do 
not write your code to depend on the specific job CCSID. These steps will reduce the risk of 
your application generating unpredictable results when running on differently configured 
systems. 
 
Be sure to use system-supplied APIs to handle character data and field lengths. Do not design 
your application to depend on specific character values. 
 
Use system-supplied APIs to determine field lengths. This is important because field lengths 
vary with different encoding schemes. For example, field lengths are the same for SBCS and 
DBCS; however, a DBCS character requires two bytes. 



Page 50 of 70 

DDS code changes

Change the data type of alphanumeric fields to Unicode encoding:
– Change to graphic (G) data type.
– Add CCSID value 1200 for that data type.

Calculate the required text expansion for text strings:
Adjust layout for each string within the screen to accommodate expansion.

1 2 3 4

 

DDS code changes 
There are two things to change in the DDS file. First, change the alphanumeric fields to 
Unicode encoding and specify the CCSID value of 1200. Together, these values define the data 
as Unicode encoding. Next, adjust the layout of the strings on the screen to accommodate the 
extra room needed when translating the strings into another language. Make the adjustments 
prior to having the DDS translated in order to maintain one master copy of the DDS. You will 
learn more about this during the translation step. 



Page 51 of 70 

Example of DDS using Unicode encoding

A          R RECORD
A            PARTNO         5  0
A            PARTNAME      20G         CCSID(1200)
A            PARTQTY        5  0       EDTWRD('  ,  0')
A            PARTPRICE      9  2       EDTWRD(' ,   ,  0.  ')
A          K PARTNO 

1. Change to G data type.
2. Add Unicode CCSID 1200.

1 2 3 4

 

Example of DDS using Unicode encoding 
Here is the Unicode version of the DDS source code. You can see the DDS changes to make 
PARTNAME a Unicode field. Simply add a G with a CCSID value of 1200. Together, these two 
elements define the field for Unicode encoding. 



Page 52 of 70 

Tips for user interface and text
▪ Put a copy of UI text in a file for translation purposes.
▪ Do not use program code that depends on any text in the UI.
▪ Do not construct words or sentences from word or sentence fragments.
▪ Avoid: 

– Humor, puns, slang, metaphor, special symbols
– Abbreviations and acronyms
– Cultural or language-specific graphics
– Text in icons
– Fixed color in icons
– Ambiguous pronouns
– Negatively phrased questions

1 2 3 4

 

Tips for user interface and text 
Here is a set of tips to remove any textual dependence in the code. This improves the quality of 
the user interface and allows the application to avoid having to handle text that is difficult to 
translate.  
 
First, consider putting a copy of UI text in a file to allow translation if it is stored in your 
database. However, be sure that the program code is not dependent on any text that the UI 
contains. It is best to avoid constructing individual words from word fragments, and similarly, try 
to avoid constructing a sentence from sentence fragments. 
 
Other things to avoid within text strings include humor, puns, slang, metaphors, and special 
symbols; these will usually not translate well into other languages. Abbreviations, acronyms, 
and specific cultural or language-related graphics also translate into other languages poorly, 
inappropriately, or not at all. 
 
Generally, other application coding techniques can also be challenging to deliver to an 
international audience. These include text or fixed colors in icons, as well as negatively phrased 
questions. 
 



Page 53 of 70 

Translation

1 2 3 4

 

Translation 
This section discusses the third step in the globalization process: translation. 



Page 54 of 70 

The translation process
▪ The translation process converts text written in one language into another 

language.

▪ There are several types of software-related textual information:
– User interface strings
– Messages, help text
– Menu and command text
– Installation interface (wizard)
– Documents

• Used by application users, installers, and administrators

▪ RPG UI text is in files in one library.

▪ Java is in ResourceBundle.

▪ There are ywo translation methods:
1. Machine translation
2. Manual translation

1 2 3 4

 

The translation process 
Translation is the process of converting text into another language. All textual pieces of the 
application need to undergo translation, from user interface to the documentation.  
 
The DDS and message files usually contain the UI data for RPG.  
 
For Java, the resources bundles contain the UI data.  
 
There are two methods of translating text: machine translation and manual translation. Machine 
translation interprets text on demand (dynamically) as the application runs. Manual translation 
involves human interpreters. Manual translation is the ideal approach, because current machine 
translation technologies are not yet accurate enough. 
 



Page 55 of 70 

Machine translation
▪ Disadvantages:

– Limited number of translation combinations 
– 50-95% correct
– Accuracy reduced by slang; eliminating slang improves translation results
– Run-time delay in user interface
– Focus usually on Web and Java

▪ Advantages:
– No development delays
– User interface can change often 
– Lower costs

▪ Example products:
– IBM WebSphere Machine Translation 

ibm.com/software/pervasive/ws_translation_server
– Internet search: “machine translation”

1 2 3 4

 

Machine translation 
There are a few advantages to machine translation, but the many disadvantages outweigh them 
by far. Because of this, there will be a discussion of the disadvantages first. 

 
Machine translation limits the number of translation combinations. The resulting translations are 
rarely even 95% correct, and can often be only 50% correct. The percentage of correct 
translation results will depend on the simplicity of the sentences. The best sentences will use 
short, present-tense, active-voice construction with no interjections or prepositional phrases in 
the middle of the statement. Similarly, quotes (around an emphasized word) and dashes for 
punctuation can result in poor machine translations. 
 
The use of slang words and colloquialisms, though perhaps clever in the native language, 
makes automatic translation difficult or impossible. Eliminating slang and simplifying your 
documentation will improve translation results. 
 
Because machine translation is dynamic, it can cause run-time delays in the user’s experience. 
Additionally, most machine-translation products focus on Web and Java interfaces, not on the 
more traditional user interfaces. 
 
However, there are a few advantages to using machine translation. There is no delay during 
development while waiting for the manual translation to be completed. It is possible to change 
the user interface often, without going through a manual retranslation process. Lastly, machine 
translation offers a lower cost solution. The solution provider merely needs to make a one-time 
product purchase and then can use the machine-translation tool for the life of application. 
 
You can read about the WebSphere machine translation tool to get an idea of what a typical 
translation product offers by going to the Web site listed in the Resources section. 



Page 56 of 70 

Manual translation

▪Manual (human) translation requires a language expert. 

▪ Translation services often include:
– Translating your strings to a new language
– Testing your application using the new strings
– Integrating new screenshots into translated documentation
– Managing the translation project

1 2 3 4

 

Manual translation 
Manual translation is the best solution for translating textual data and messages. This is the 
method that IBM uses to translate the text for its software products.  
 
This chart shows the typical kinds of services that translation companies offer. 
 



Page 57 of 70 

Selecting a translation service provider
▪ Decide what services you need.
▪ Find out who other solution providers use.
▪ Contact the translation companies that provide the services you need.
▪ Ensure the service provider has highly skilled translators:

– Technical computer skills:
• Examples: Basic understanding of XML formatted files, technical terminology they will translate

– Skills related to your application focus area:
• Example: Medical terminology, government terminology

▪ Ask for references.
▪ Ask the file types they can accept and how they are returned.
▪ Understand the cost structure and future support:

– Are translation costs per word, per phrase, or per page?
– What are testing and other costs per hour?
– Are translation memories saved for future use?

▪ Ask how long the translation process takes:
– Do they use advanced tools to streamline translation?
– Does one person translate the entire set for consistency?

▪ Get estimates.

1 2 3 4

 

Selecting a translation service provider 
Here are tips to help you select the best translation service provider, based on your needs. It is 
always best to get referrals from other solution providers who have used translation services. 
IBM offers translation services at cost to IBM solution providers.  
 
 



Page 58 of 70 

Translation costs and duration
▪ General cost guidelines

– UI, messages, reports, help files: inexpensive to translate
– Technical documents: expensive

▪ Typical costs per word
– Between $0.15 and $2.00 US$ per word
– Cost varies by language

▪ Translation and testing time frames range from 4-to-20 weeks.

1 2 3 4

 

Translation costs and duration 
The user interface is generally inexpensive to translate. Thick, technical documents cost the 
most. Translation companies often charge a per-word rate for translation that can range from 
$0.15 to $2.00 (US $) per word, depending on the language and the service provider. Other 
services usually have an hourly rate.  
 
Translation and testing time frames can range anywhere fro 4 to 20 weeks. 
 



Page 59 of 70 

Translation tips

▪ Provide textual data to translators as early as possible.

▪ Ensure accurate translation:
– Provide translation guidelines, instructions, and file markup rules.
– Use terminology based on definitions in standard, widely available dictionaries.

▪ Avoid using abbreviations and acronyms in your application.

▪ Store text strings in message files, not in DDS, to make translation easier.

▪Make copies of all text files; name them using your language-naming 
convention.

▪Minimize translation costs before translating large technical documents:
– Improve the text (succinct, grammatically correct, no misspellings).
– Avoid long sentences.

1 2 3 4

 

Translation tips 
Here are some translation tips to help you reduce costs and obtain results that are more 
efficient.  
 
Make textual data available to translators as early as possible. Provide them with translation 
guidelines and instructions to ensure correct translation. You might also need to provide file 
markup rules if they have not worked with your types of source files. 
 
To ensure accurate translation, use terminology that is based on definitions that can be found in 
standard, widely available dictionaries. Additionally, provide a glossary of nonstandard terms to 
the translators. Avoid using abbreviations and acronyms in your application, as they can be 
impossible to translate. If you must use them, define them in the glossary. 
  
Store text strings in message files, rather than in DDS, to make translation easier. Make a copy 
of all text files, and name them using your language naming convention. Provide this set to the 
translators. 
 
Consider improving the text to minimize translation costs before translating large technical 
documents. Text must be succinct, grammatically correct, and free of misspellings. Avoid long 
sentences; use similar terms consistently to maximize reuse. Remove sections of text that are 
duplicates of the help text.



Page 60 of 70 

Example: The string in DDS Part description is 17 characters long. After translation to 
another language, between 14 and 17 characters of extra space are necessary for the 
translated string (a total of 31 to 34 characters).

Textual expansion 

31% to 40%51 to 70

40% to 60%31 to 50

60% to 80%21 to 30

30%

80% to 100%

100% to 200%

Additional space required

71 or more

11 to 20

Up to 10

Number of characters
*including spaces and punctuation 
marks within the string

1 2 3 4

 

Textual expansion  
You need to adjust DDS screen layouts to allow for expansion of the text volume. This chart 
shows some estimated expansion amounts that depend on the length of the string that requires 
translation.  



Page 61 of 70 

Example markup for translation of DDS files

Only text coded for these keywords
is translatable: 
•Static text for display or printer files. 
•CHOICE() for display files. 
•COLHDG() for physical or logical files. 
•DFT() for display or printer files. 
•HLPTITLE() for display files. 
•MNUBARCHC() for display files. 
•TEXT() for physical or logical files.

1 2 3 4

 

Example markup for translation of DDS files 
Translators typically have tools that allow them to view a file requiring translation. Usually, the 
tool is designed to understand the contents of the file and to highlight which portions require 
translation. You can see here (in blue) which items require translation. 



Page 62 of 70 

Test

1 2 3 4

 

Test 
This section discusses testing, the final important step. 
 



Page 63 of 70 

Testing

Test a global application in three phases:

1. Test with the original language.

2. Verify the new language version of textual data (translation verification test).

3. Test in the new language (functional verification test).

1 2 3 4

 

Testing 
There are three beneficial phases for testing a newly global application. 

 
Test the global application with the original language to ensure that current users will not 
experience problems. Ensure that culturally sensitive data still appears correctly. Additionally, 
you will need to process global data to make sure that it appears correctly. 
 
You will also need to verify the new language version of textual data (translation verification 
test). Test the textual data using the global application. Confirm that the appropriate translation 
exists, appears correctly, and makes sense in the UI instance. Translators must lead this 
testing; programmers need to assist. 
 
Test the global application in the new language. Be sure to verify all functions. Specifically, 
make sure that the application functions properly, any culturally sensitive data appears 
correctly, and global data is processed and appears accurately. 
 



Page 64 of 70 

Testing tips
▪ Test environments:

– Match typical customer environments.
– Configure a test partition for each language.
– Configure a primary language and a secondary language.

▪ Test data:
– Use typical customer data for your new language.
– Ask a new language customer for sample data to test.
– Buy sample data.
– Ensure test data covers the extremes (variant characters).
– Ask new language customers to beta test.
– Hire a native-speaking consultant to assist.

1 2 3 4

 

Testing tips 
Here are a few testing tips to help you achieve results that are more accurate. 
 
Use test environments that match typical customer environments. Configure a separate 
partition for each language version to test. Configure the system with a primary language and a 
secondary language. Ask new language customers to perform a beta test. 
 
When testing data, use typical customer data for your newly supported language. Ask a new 
language customer for sample data to prime your test database, or buy sample data. Ensure 
test data covers the extremes (variant characters). Hire a native-speaking consultant to assist 
with testing the new language version. 
 
 



Page 65 of 70 

Getting started
▪ Learn about globalization

▪ Create your globalization project plan

▪ Educate development team

▪ Use IBM resources

 

Getting started 
Sometimes, the biggest obstacle to accomplishing a globalization effort is figuring out where to 
begin. Here are some tips on getting started with a globalization project. 
 
Learn about globalization. Review the iSeries roadmap. Take the self-study courses that IBM 
offers. Visit the Web sites provided in the Resources section of this course. 
 
Create your globalization project plan. Analyze the language and cultural requirements of your 
particular users. Examine your application’s database, RPG, and DDS code. Define the scope 
of your globalization tasks and plan how to stage the changes. 
 
Educate your development team. Learn about Unicode support on the System i platform, and 
decide how to divide the various efforts of changing the code. 
 
Use the full scope of IBM resources at your disposal. Obtain free consulting from the IBM ISV 
Business Strategy and Enablement group. Additionally, consider IBM Globalization Services for 
translation and language testing. 



Page 66 of 70 

Japanese

Hebrew

Thank You
English

Merci
French

Danke
German

Grazie
Italian

Gracias
Spanish

Obrigado
Brazilian 

Portuguese

Arabic

Simplified 
Chinese

Traditional 
Chinese

Korean

Thai

Hindi

Tamil

go raibh maith agat
Gaelic Tak

Danish

Trugarez
Breton

Dutch
Dank u

Czech

Dekujeme Vam

Dankon
Esperanto

Tack så mycket
Swedish

 

 

Summary 
To stay competitive in the modern business world, globalization is no longer simply a good idea; 
it is a necessity. This course discussed in detail the basic concepts involved with the 
globalization process. You examined four major steps: analysis, implementation, translation, 
and testing. Example scenarios offered real-world evidence of the best approach at determining 
a plan of action for your globalization project. In addition, you learned about various tips and 
suggestions for globalization. There is also an extensive Resources list to explore globalization 
further. 



Page 67 of 70 

Appendix A: Glossary 
This appendix provides you with a glossary of terms used throughout this paper. 

Character Data 
Representation 
Architecture (CDRA) 

Defined by IBM to realize consistent representation, processing, and interchange of coded 
characters; implemented as CCSIDs in the i5/OS environment. 

Character Set A defined set of characters. Specific collections of characters represent textual information. 
Generally supports more than one language.  
Example: Latin-1 character set supports most Western European languages. 

Coded Character Set 
Identification (CCSID) 

Integrated concept of encoding scheme, character set, and code page. 

Code Page A set of assignments of characters to code points.  
Code Point A unique bit pattern that represents a character within a code page. 

Culturally-sensitive Data or information defined or represented specific to a culture.  
Double Byte Character 
Set (DBCS) 

A set of characters from languages that have more than 128 unique characters where it takes 
2 bytes to store each character.  
Languages: Simplified Chinese, traditional Chinese, Korean, and Japanese. 

Encoding Scheme A set of rules that is substituted during character conversion for any characters in the source 
coding representation that do not have a match in the target coding representation. EBCDIC is 
the i5/OS encoding scheme. ASCII is the encoding scheme on PCs, UNIX®, and the Internet. 

Endian (Big or Little) Format for storing Unicode characters. Non-Intel machines store characters in Big Endian 
format. Intel machines store characters in Little Endian format. A byte order mark (BOM) 
indicates the format for a given set of Unicode characters.  

Globalization The proper design and execution of systems, software, services, and procedures so that one 
instance of software, executing on a single server or end-user machine, can process 
multilingual data, and present data culturally correctly in a multicultural environment. 

Internationalization The process of producing a product that is independent of language, script, culture, and coded 
character set. An Internationalized product is not usable unless localized to a specific region. 

Internationalization 
Components for Unicode 
(ICU) 

An open source development project that includes a set of APIs for processing Unicode data. 
ICU APIs were ported to the System i platform to support C applications. RPG code typically 
does not use them. 

Locale A set of values that defines a user’s language, country and any special variant preferences 
that the user wants to see in the UI. The System i platform supports locales for C applications. 
RPG code typically does not use them. 

Localization The process of adapting an internationalized product to a specific language, script, culture, 
and coded character set. Translations are done at this point. 

Machine Translation Automatic translation of language text by computers at run time. 
Multilingual Supports simultaneous use of characters from various languages. 
National Language 
Version (NLV) 

A version of the i5/OS operating system that contains a predefined set of language-dependent 
values (such as: date and time format, sort sequence, and so forth). When ordering System i 
hardware, you specify which NLV is the primary language. You can install additional NLVs as 
secondary languages. 

Single Byte Character 
Set (SBCS) 

Refers to languages that have less than 128 unique characters in their scripts. Requires 1 byte 
to store each character. 

Sort Sequence Controls the sorting of data prior to showing it to an application user. A sort sequence can be 
defined using logical files or SQL views. 

UCS-2 A subset of UTF-16 that does not support all defined Unicode characters.  
(UTF-16 also supports combined characters and surrogates.)  

Unicode Standard An industry-defined universal encoding scheme for written characters and text that enables 
the exchange of data internationally. It allows one field value to be multilingual. 

Unicode Transformation 
Format (UTF) 

An algorithm that maps every unique Unicode value to a unique byte sequence. You can 
choose from three formats: UCS-2, UTF-8, UTF-16, and UTF-32. The default on the System i 
platform is UTF-16 (Big Endian). RPG uses USC-2. 



Page 68 of 70 

Appendix B: Resources 
These Web sites provide references to supplement the information contained in this document. 
• IBM eServer iSeries Information Center 

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp 

• IBM eServer p5 Information Center 
http://publib.boulder.ibm.com/infocenter/pseries/index.jsp 

• IBM Publications Center 
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US 

• IBM Redbooks® 
http//www.ibm.com/redbooks 
o e-business Globalization Solution Design Guide: Getting Started (SG246851) 

DB2 UDB for iSeries References 
• IBM iSeries Information Center 

http//publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp 
Note: Click Database. Then, see data types, SQL sort sequences, and CCSIDs. 

• DB2 UDB for iSeries Web site 
http//ibm.com/servers/eserver/iseries/db2/ 

Note: This site includes the latest information on DB2 UDB product, tips, and concepts. 

Printing references 
• DDS Reference: Printer Files – Appendix B. Unicode Considerations for printer files 

http//publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp 
Note: Select Programming > DDS > Printer files 

• AFP Architecture: Using OpenType Fonts in an AFP System (G544-5876-02): 
http://www.ibm.com/support/docview.wss?uid=pub1g544587602 

IBM globalization 
• IBM globalization Web site 

http://www.ibm.com/software/globalization 

• iSeries globalization Web site 
http://www.ibm.com/servers/eserver/iseries/software/globalization 

Globalization and Unicode self-study education 
• Globalization: An Overview 

http://www.ibm.com/servers/enables/site/education/abstracts/88ca_abs.html 

• Making Enterprise Applications Globally Available in the Modern Business Setting 
http://www.ibm.com/servers/enable/site/education/ibp/9dce/index.html 

• IBM home page for International Components of Unicode (ICU) 
http://www.ibm.com/software/globalization/icu/index.jsp 

• Introduction to Unicode for i5/OS on IBM eServer iSeries 
http://www.ibm.com/servers/enable/site/education/abstracts/8fce_abs.html 

• Enabling Unicode in RPG Applications that Run on the IBM iSeries Systems 
http://www.ibm.com/servers/enable/site/ education/abstracts/9dc2_abs.html 

• JD Edwards Unicode white paper 
http://www.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/ 
61aa3e92d01b8a6586256ebd00450415/$FILE/iSeries%20Unicode%20Upgrade%20-%202.pdf 

• Unicode Web site 
http://unicode.org 

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp
http://publib.boulder.ibm.com/infocenter/pseries/index.jsp
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US
http://www.ibm.com/support/docview.wss?uid=pub1g544587602
http://www.ibm.com/software/globalization
http://www.ibm.com/servers/eserver/iseries/software/globalization
http://www.ibm.com/servers/enables/site/education/abstracts/88ca_abs.html
http://www.ibm.com/servers/enable/site/education/ibp/9dce/index.html
http://www.ibm.com/software/globalization/icu/index.jsp
http://www.ibm.com/servers/enable/site/education/abstracts/8fce_abs.html
http://www.ibm.com/servers/enable/site/
http://www.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/
http://unicode.org


Page 69 of 70 

IBM Globalization guidelines 
• Overview 

http://www.ibm.com/software/globalization/guidelines/index.jsp 

• Quick reference 
 http://www.ibm.com/software/globalization/guidelines/outline.jsp 

Java internationalization 
• Course: Internationalization with Java: Introduction to Terminology and Architecture 

http://www.ibm.com/servers/enable/site/education/abstracts/9912_abs.html 
• Sun Java Internationalization 

http://java.sun.com/j2se/corejava/intl/index.jsp 
• Java Internationalization: An Overview 

http://java.sun.com/developer/technicalArticles/Intl/IntlIntro/ 
Abstract: Exploring the types, structure, creation, and usage of Java resource bundles, this article 
shows you how to create a localizable program.  

• Tutorial 
http://java.sun.com/docs/books/tutorial/i18n/ 

• Trail: Internationalization, by Dale Green 
http://java.sun.com/docs/books/tutorial/i18n/ 

Abstract: These lessons show how to internationalize Java applications. Internationalized 
applications are easy to tailor to the customs and languages of end users around the world.  

• Java Internationalization by Andrew Deitsch and David Czarnecki 
http://www.javainternationalization.com/blog/ 

• Java Internationalization; O'Reilly book by Andy Deitsch, David Czarnecki 
Abstract: This book shows how to write truly multilingual software, using the Unicode Standard. 

• Frequently asked Q&A 
http://java.sun.com/j2se/corejava/intl/reference/faqs/index.html 

Additional information 
• IBM International Components for Unicode 

http://www.ibm.com/software/globalization/icu/index.jsp 

• IBM WebSphere Machine Translation 
http://www.ibm.com /software/pervasive/ws_translation_server 

• APPCON 
http://appcon4.com 

http://www.ibm.com/software/globalization/guidelines/index.jsp
http://www.ibm.com/software/globalization/guidelines/outline.jsp
http://www.ibm.com/servers/enable/site/education/abstracts/9912_abs.html
http://java.sun.com/j2se/corejava/intl/index.jsp
http://java.sun.com/developer/technicalArticles/Intl/IntlIntro/
http://java.sun.com/docs/books/tutorial/i18n/
http://java.sun.com/docs/books/tutorial/i18n/
http://www.javainternationalization.com/blog/
http://java.sun.com/j2se/corejava/intl/reference/faqs/index.html
http://www.ibm.com/software/globalization/icu/index.jsp
http://www.ibm.com
http://appcon4.com


Page 70 of 70 

Trademarks and special notices 
© IBM Corporation 1994-2006. All rights reserved. 
 
References in this document to IBM products or services do not imply that IBM intends to make 
them available in every country. 
 
The following terms are trademarks or registered trademarks of International Business 
Machines Corporation in the United States, other countries, or both:  

IBM eServer i5/OS DB2 
ibm.com iSeries WebSphere DB2 Universal Database 
the IBM logo Redbooks System i5 iSeries 

 
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United 
States, other countries, or both. 

UNIX is a registered trademark of The Open Group in the United States and other countries. 

Other company, product, or service names may be trademarks or service marks of others.  
 
Information is provided "AS IS" without warranty of any kind. 
 
All customer examples described are presented as illustrations of how those customers have 
used IBM products and the results they may have achieved. Actual environmental costs and 
performance characteristics may vary by customer. 
 
Information concerning non-IBM products was obtained from a supplier of these products, 
published announcement material, or other publicly available sources and does not constitute 
an endorsement of such products by IBM. Sources for non-IBM list prices and performance 
numbers are taken from publicly available information, including vendor announcements and 
vendor worldwide homepages. IBM has not tested these products and cannot confirm the 
accuracy of performance, capability, or any other claims related to non-IBM products. 
Questions on the capability of non-IBM products should be addressed to the supplier of those 
products. 
 
All statements regarding IBM future direction and intent are subject to change or withdrawal 
without notice, and represent goals and objectives only. Contact your local IBM office or IBM 
authorized reseller for the full text of the specific Statement of Direction. 
 
Some information addresses anticipated future capabilities. Such information is not intended as 
a definitive statement of a commitment to specific levels of performance, function, or delivery 
schedules with respect to any future products. Such commitments are only made in IBM 
product announcements. The information is presented here to communicate IBM's current 
investment and development activities as a good faith effort to help with our customers' future 
planning.  
 
Photographs shown are of engineering prototypes. Changes may be incorporated in production 
models. 
 
 




