Table of contents

About the aUhOr ... e 3
[o] (e To 18 o3 (o] o F PRSP 4
o 1= o = PP EPPT U PUPPPPPN 5
WHEIE 10 STaIt ... 6
THINGS 10 KNOW ..t e e e et e e e e e e e e e e eaaa e e eaeeeeeanann e eeaeeeeeneeeeennnnnn 7
Introduction 10 i5/0S 1aNQUAGE SUPPOIT......cceiiiiiiiiiiiiie et e e e 8
Globalization in the iSeries Information Centero 9
The System i platform delivers global SyStemsccooooiiiiiiiiiiiii e, 10
T = 1Y = o U = T [S 11
i5/0S default [anguage SEHINGScooiiiiiiie e 12
Language-related system values and default valuesc 13
Introduction to i5/0S application globalizationc 14
Overall goals for a global appliCationcooiiiiiiiii e 15
Recommended global application architecture ... 16
Recommended naming CONVENTIONScooiiiiiii it e e e e e e e e e e e e e 17
Enhancing an existing RPG appliCationoouiiiiiiiiiiiee e 18
Enhancing an existing RPG application (continued)oeeiiiiiiiiiie e 19
Enhancing an existing RPG applicationccc 20
Enhancing an existing RPG applicationco o 21
Key areas of enhancement to an existing RPG application ... 22
Scenario: Typical application supporting one [aNQUagEuuvueuiiiiiiiiiiiccceeeceee e 23
SCENANIO: KEY POINES ..uviiiiiiiiiiii e annnnnes 24
Web emulator client interfaces ..., 25
Example before and after Web-facing..........cooouiiiiiiiiiii e 26
IBM iSeries Access for Web client interface..............oovviiiiiiiii e 27
Step 1: Convert the data to Unicode encoding.............uviiiiiiiiiiiiiiiiiie e 28
The Unicode Standard ... 29
Unicode encoding or DBCS ... 30
Step 2: Change DDS and RPG to support Unicode encodinguueeeeuememiienniinniiiiinnnens 31
5250 device ClIeNt INTEITACEuuiiiiiiiii e e e a e e a e ennnes 32
Step 3: Translate the textual portion of application ..., 33
Globalization developMENT PrOCESSooeiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeveeeeeeaeaessssesesssreerrarrrarrrarrranrrnne 34
F Y 4= 11774 T PP PPPRPPP 35
Determining which data to globalize..............oooiiiiiiiiii e 36
Example database evaluation ... 37
T g 0] =T 0 4 T=Y o1 (1 o PSR 38
Converting character data in DB2 UDB for iSeries to Unicode encoding............cccccvvviiiiiiieenen. 39
Example of converting a column to Unicode encoding ... 40
Best conversion practices for Unicode encoding ... 41
Performance considerations for Unicode COlUMNS..............coooiiiiiiiiii e, 42
RPG COAE ChANGES ...ttt e e e e e e e e e e e e e e e e e enaes 43
Unicode support iN RPG.... ..ottt e e e saas e e aasasseesaenarraees 44
Examples of using Unicode encoding in RPG...........cooiiiiiiiii e 45
Avoid cultural assumMpPLioNS.......cooo i 46
Formatting data in DSttt ee e e eeaeaeassae s saassrasasssasasaressaeeaaeeees 47
Formatting data in RPG.........oooiiiiiiiiiieeeeeeeeeeeeee ettt aee s e s s e e s s e s sasasbeseaesaeaeeees 48
(07070 [g o [] o1 PP PPPP T OPPPPPPRP 49
DDS COAE ChANGES ...ttt et e e e e e aaasaasssaassasasassssassessasssraeees 50
Example of DDS using Unicode encodingccoooiiiiiiiiiiii 51
Tips for user interface and text.........cooooi i, 52
TrANSIALON. .. 53
The translation PrOCESSuvuiii i e e e e e e e e e e e e e aaaa e e e e e e eeeaeennes 54

Page 1 of 70

Y =Yoo TSI (=T 1T F= 1 (o o TP 55

Manual transIatioNooiiiii et — . 56
Selecting a translation SErVICE PrOVIAETeiiiii i 57
Translation costs and dUrationcccoooioi oo, 58
B2 3 = 4T B 1] LS P 59
TeXtUAl EXPANSION ... 60
Example markup for translation of DDS files...........ooooiiiiii 61
TS e 62
QLIS (] o PSP UPPRPT PP 63
LI Lo R (] o TSP PPPPPPT R PPPP 64
LTt aTo =Y F= 14 (=T F SOOI 65
0] 0] 0= TR 66
APPENIX A GIOSSAIY ... 67
P o o1=T o [Q= A =TT U o= S 68
Trademarks and SPeCial NOLICES........c.uuuuiii i e e e e e e eeenenas 70

Page 2 of 70

About the author

Beth L. Hoffman has worked as a software engineer for IBM in Rochester, Minnesota, for more
than 15 years. For much of that time, she led the development of key middleware products on
the IBM OS/400 and IBM i5/0OS operating environment. Today, she is a technical consultant
working with solution providers who are enhancing their applications with new technologies.
You can e-mail Beth at bethvh@us.ibm.com.

Page 3 of 70

International Technical Support Organization

Enhancing RPG and Java
applications to reach global markets

AMP19

IBM System i5
ITSO Technical Forum 2006

ibm.com

the power of one

Beth L. Hoffman

Cad

Redbooks

International Technical Support Organization
Slmpllfy your IT. IBM Confidential until announced ©2006 IBM Corporation

Introduction

Most software in the world today only supports one language. In recent years, many countries
have seen a sharp increase in the use of technology. These emerging markets offer a great
opportunity for broadening software usage and increasing software sales. Software companies
that want to seize these opportunities must prepare their solutions to support other countries
and languages. This presentation provides you with a solid introduction to globalization,
including such concepts and terminology as the Unicode™ Standard and double-byte character
set (DBCS). This course will examine the process for making software applications global from
the planning stages through translation and testing. Tips and techniques will provide important
insight for user-interface design, data handling, and testing. Additionally, you will see an
analysis of code examples for RPG and Java™. By the end of this presentation, you will have a
better understanding of what is necessary to make your IBM® System i™ application support
multiple languages.

Page 4 of 70

Introduction to i5/0S language support
Introduction to i5/0S application globalization
Application enhancement scenario
Globalization development process
Translation

Other considerations and getting started

Agenda

This presentation will take approximately 60 minutes, and will flow as shown here. First, the
course will introduce you to the concepts of language support and globalization on your System
i platform. Next, you will review an application enhancement scenario. Then, there will be a
discussion of the globalization development process, including translation tasks and issues.
Finally, you will read about important considerations when getting started down the path to
globalization. Recommendations, tips, and examples appear throughout many sections. Be
sure to browse the information in the appendix, which includes additional details, terminology
definitions, and pointers to important resources.

Page 5 of 70

Where to start

Do | need to
hire

Do | need to get
anew System i5

Do | need to
support DBCS?

system? Do | someone : _
need a different who knows Or is Unicode
keyboard? this encoding better?
' language?

I would like to
expand to China.
What should 1 do?

Will my
application user
interface have to
change?

Will my generated
reports print
okay?

Can't | just use
machine
translation?

Where to start

When application providers want to expand the use of their applications into other countries,
they often do not know where to start. You might be in this same situation. This presentation will
help answer many of the questions that arise, and it will provide you with a good foundation for
starting your own application globalization project.

Page 6 of 70

You need to be aware of the following things before beginning a
globalization project:

Why you want to globalize an application

How to do business in another country

How to set up a System i5 platform to support multiple languages
What existing RPG application you want to globalize

RPG and DDS

The areas that are most important

Things to know

Globalization is a large topic. There are many aspects to discuss. In order to narrow the scope
for this presentation, there are some assumptions about what you already know and what you
are willing to investigate after the presentation. To benefit the most from this course, you need
to know the answers to all the questions shown on this chart.

The main scope of this presentation will be on helping you understand how to enhance existing
RPG applications.

Page 7 of 70

Introduction to i5/0S language support
This section describes the base language support in the IBM i5/0S® environment.

Page 8 of 70

&1 hitp://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp - Microsoft Internet Explorer (M=}
i Fle Edit Wew Favorites Iools Help o

Q= -) [¥] [F] @0 O seaen Flpravoits €3 e = 33

< | @] htto:/fpublib. boulder .ibm. com/infocenter fiseries/vsr3/findex. jsp v Beo
Tan

Services & solutions | Support & downloads | My account

Search: Search scope: Al topics
; Cu‘lltellt_s w2 B iSeries Information Center, Version 5 Release 3 L=, = ol & B8
1 Pro g ram m I n g > [Programming || Send feedback Rate this page ~
. = [APIs
m o
[Communica tions 0S/400 globalization
= (A pos
& [Development tools et (TM . 3 .
N . = I Device »The iSeries™ server is designed to support the culture and languages of many countries around
2 G| 0 b a| ization & CicioBaEstan the world. As companies integrate e-commerce on a global scale into their fundamental business
. 7 B Whats new for VSRS processes, their prospective customers, established . and active partners can take
B print this topic advantage of increased reveme and decreased expenses through software globalization.
= (3 Globalization overview

= [Set up ©5/400 with an NLV
= [Develop global applications
m [Goals and processes and geographical boundaries. the concept of doing business within a single country is quickly giving
& [1] Design global applications way to the need to compete in an international marketplace.«
& [programming considerations in |
B peliver globalized applications
[Handle data in global applications

Globalizing your e-business is no longer a luxury. it is a necessity. As the Internet transcends national

Globalized software gives you the following advantages:

= [Reference .
B NLV feature codes e Increased customer satisfaction that can increase sales
1 Country/region identifiers « Enhanced customer support communications.
&1 [Default system values e Enhanced global information dissemination

1 system values for languages wi' o A better return on Inf ion Technol investment:
w1 [Keyboards ¥ D

EI Code pages - .
[Character sets This information shows you how to:

& [H ccsIns

= [Locales « Create an application efficiently and at minimal expense.

1 [REX extension characters « Retrofit existing applications for globalization and create new applications designed for
liza globalization. Designing an application for globalization, however, is usnally less expensive

Va

than retrofitting an existing application.
< 5 « Ensure that the application design does not interfere with the current or planned design of
& % other internationalized applications. =

& 4 Internet

Globalization in the iSeries Information Center

The IBM iSeries™ Information Center is the primary place to find information about
globalization support in the i5/0S environment. To access the information, click the
Programming section, and then click Globalization. There are many sections that you will
want to browse, including the sections titled Develop global applications, Handle data in a
global environment, and References.

Other sections in the Information Center provide additional globalization information. For
example, the RPG language provides Unicode support in many of its built-in functions. The
iSeries Programming Guide documents this information. To find this information, navigate as
follows: Programming->Languages->RPG->ILE->Programming Guide.

Page 9 of 70

= The System i platform supports many
languages.

= The language feature code controls the
language version for the system
environment.

= You must specify the language feature code
for the system’s primary language when you
place an order.

* You can use more than one language on one
system by installing one or more secondary
languages.

The System i platform delivers global systems

The System i platform is a great system for running global applications. This chart offers an
overview of how the system supports multiple languages.

The System i platform supports many languages, and it allows you to use the system in the
language of your choice. The main system hardware unit is the same regardless of what
languages you use on it. The system includes language feature code, which controls the
language you will see when you log on and use your System i platform. When you order a
system, you must specify the language feature code for the primary language the system will
use.

Generally, i5/0S software uses a common set of program code, regardless of the language you
use, but it also includes a set of textual data that is language specific.

The i5/0S operating system provides a national language version (NLV) that contains a
predefined set of language-dependent values, such as date format, time format, and sort
sequence. You can use more than one language on one system by installing one or more
secondary languages, as long as there is adequate storage space. This enables users on the
system to select the language each of them wants to use, and it allows the same application to
run in different languages. Finally, you can set up separate partitions to run various languages.

To use a DBCS language in releases prior to i5/0OS Version 5 Release 3, you must install the
operating system and specify the DBCS language as the primary language.

Page 10 of 70

The i5/0S operating system initializes all language-dependent or culture-
dependent system values from the primary language.

Other system objects and functions assume attributes based on the primary
language.

Primary language

The i5/0S operating system derives all language-related system settings from the primary
system language. If a user wants to run an environment in a secondary language, several
options control which language to use.

The primary language is the language from which all language-dependent or culture-dependent
system values are initialized. Other system objects and functions assume attributes based on
this language. For example, messages appearing in the history log always appear in the
primary language.

In order to use a secondary language for displaying i5/0S functions, choose one of the
following options:

e Place the desired language at the top of the library list. For example, to present the
French version of textual data, put French information at the top of the library list with

the i5/0S command:
CHGSYSLI BL LI B(@QSYS2928) OPTI ON(* ADD)

e Create a subsystem for the secondary language. Define the subsystem in the library list
entry with the NLV library for that language. All jobs running in the subsystem use
textual data from that language, and all jobs submitted as batch jobs have the NLV
library as the first library on the system part of the library list.

e Change the library list for your job so the NLV library for that language is first.

Page 11 of 70

The i5/0S primary language feature CCSID represents the
code determines the default system Encoding Scheme, Character
environment, even when QCCSID is Set, and Code Page.
set to 65535. AL
r Y
Language | Language | Default ES CcS CcP Notes
Code CCSID
USA 2924 37 1100 697 37
English
Japanese 2962 5026 1301 1172 290 SBCS part of mixed CCSID 5026
370 300 DBCS part of mixed CCSID 5026
This is common with 5035
MNone 5035 1301 1172 1027 | SBCS part of mixed SID 5035
370 300 DBCS part of mixed CCSID 5035
This is common with 5026
Kaorean 2986 933 1301 1173 833 SBCS part of mixed CCSID 933.
934 834 DBCS part of mixed CCSID 933
Traditional 2987 937 1301 1175 37 SBCS part of mixed CCSID 937
Chinese 935 835 | DBCS part of mixed CCSID 937
Simplified 2989 935 1301 1174 836 SBCS part of mixed CCSID 935
Chinese 937 837 DBCS part of mixed CCSID 935
1100=EBCDIC single-byte T The SBCS part of a mixed language T
1301=EBCDIC mixed-byte (single+double) is not the same as USA English.

I5/0S default language settings

This table shows the default language settings on the i5/0OS platform for a few languages. Along
the left, you can see English as well as the four DBCS languages. The primary language
feature code dictates the default system environment, even when the coded character set
identifier (CCSID) system value is set to the default of 65535. Each language feature code has
an associated default CCSID. A CCSID is a combination of the encoding scheme, character
set, and code page shown in the next three columns.

There are two major CCSIDs for the Japanese language. The majority of Japanese IBM
customers use CCSID 5026 because it is the default. CCSID 5035 became another major
Japanese CCSID because of its compatibility with the single-byte character set (SBCS) that the
English environment uses. The DBCS part of both CCSIDs is the same. Using CCSID 5035 can
ease the effort of enhancing SBCS English applications to support Japanese users.

It is important to remember that the default CCSID is 65535, which means the system does no
conversion. This allows for compatibility with the system. Most businesses that use only one
language with their systems leave the default CCSID as 65535. Companies that run more than
one language on their systems might find a need to change the default to something else, such
as CCSID 500.

The encoding scheme is a value that specifies whether the data is EBCDIC single-byte,
EBCDIC double-byte, or both. (EBCDIC is the native data encoding method for the System i
platform.)

It is important to tag all data used by an application with its appropriate CCSID so that the
programming language and database environments can handle the data appropriately.

Page 12 of 70

Language

DBCA

UppE ?1 E:_I Sc: rr]ﬁer Japanese Korean T(r:ahc?:;[::S'::'l Sé';}ﬁléﬁseed
f,;fjsm 2984 2962 2986 2937 2989
QCHRID 01175 00037 01172 01027 01173 00833 01175 00037 01174 00836
QDECFMT Blank Blank Blank Blank Blank
QKBDTYPE TAB JKB KB TAB RCB
QCURSYM Dollar (5} Yen Sign WON Sign Dollar () Dollar (5}
QDATSER Slash /) Slash (/) Period () Slash (/) Period ()
QDATFMT MDY YD YD YD YD
QTIMSER Colon () Colon () Colon () Colon () Colon (2
QCCSID A 05035 00933 00937 00935
QCHTRYID U3 JP KR TW CM
QLAMGID EMU JPH KOR CHAT CHS

Language-related system values and default values

This table shows the default system values, which are set based on the primary language
feature code. Here are examples for the same five languages shown in the previous chart.

Page 13 of 70

Introduction to i5/0S application globalization
The following section introduces the concept of i5/0S application globalization.

Page 14 of 70

Overall goals for a global application

= From the application user perspective: = From the programmer perspective:
—To enter, store, process, retrieve, print, and —To produce only one set of running code

display data in their language of choice —To minimize changes to the current application

—To see and enter data, commands, prompts,
messages, and documentation in the language
of choice, in formats that match cultural
expectations

2000F 2 A1 EIE%H:
Eh ARG L2420

Dienstag, 1. Februar 2000
Preis : 297,00 €

EF Hi lzéﬁ 2 E 1 EI (j() Tuesday, February 1, 2000
il 57280 Price : US$150.00

Overall goals for a global application

The primary reason to make an application global is to be able to sell copies of your application
to buyers in other countries, regions, or cultures in order to increase your company’s revenue.
However, it is wise to look at the main goals globalizing an application from different points of
view.

Global applications allow each user to work with that application and its related data in their
language of choice. The user can expect the application format to honor cultural preferences in
its user interfaces. You can see in the chart that four users are working with the same
application on one System i machine, each being productive with their preferred environment.
This is a truly global application.

The goal for application providers is to deliver this capability with a minimum amount of work
and in the shortest amount of time. This means having one set of core programming code and
minimizing the number of changes to it. In this presentation, you will see a number of
recommendations and tips that will help you create a better globalization project plan and
implement the project with the least risk.

Page 15 of 70

Recommended global application architecture

/\
H | APPTXDzzz | APPPGMzzz —‘_l /AF'F'CSlZZZ . .
Textual data is [Arroxomy [Approyy = Files contain
separate from source APPTXDxcx *LIB APPPG Mt *LIB APPCS oo *LIB culturally
code. Each language M sssage flles National Culturs- sensitive
Display files language sensitive
haS a Ianguage‘ Fanel groups version information |nformat|on
: . User commands)

SpeC|ﬁC version Of a“ Data areas with J Dapendent \ Database files

. . . textual data program i essage files
files in its own EH A p

[—

library.

One core set of programs
Conta'n mOSt Of the (Globalization Independent)

application source code, ~— |
used by all languages. Forromm
[APPOTAVY
APPDTAXxx

APPPGM *LIB

Program library

)

*UB

Logical files with globalization
dependent text, formatting,
and sequencing

Logical files contain
information for each
language. Users access
data through logical
eyt I EWS .

Users of all languages

APPDTA
use one set of data.

Database library
(Phy sical files)

Recommended global application architecture

This chart illustrates the general recommendations for global application architecture.

The goal is to have your core application logic independent of any language. You do this by
removing all language-specific elements from the core application logic, such as textual strings,
messages, and the description of the user interface. This allows for easier translation of textual
information. Good software design requires you to keep the programming code implementing
the user interface (Ul) separate from the code implementing the underlying functionality. The
description of the Ul is also separate from the code implementing it. On the System i
architecture, this means keeping text strings out of the RPG code and, instead, placing them in
the data description specification (DDS) files and sometimes into message files (*MSGF).

You can break down language-specific code into separate code modules if needed. An
example of this is special code to calculate taxes for a certain country.

Culturally sensitive information (CSI) refers to any special information that is configurable and
language-specific. Storing this outside the program code is important.

You can also push functions out of the code and into the database by using built-in database

features and logical files. An example of this is removing sorting processes from the program
logic and defining a sort sequence in a logical file to handle it.

Page 16 of 70

AAATTTLLL [APPTXDzzz | APPPGMzzz [aPPCsIzzz

| AP PTXDyyy | APPPG Myyy | APPCSlyyy
APPTHDuxx *LIB APPPG Mxxx “LIB APPCShoo *LIB
AAA=Appllcat|On ID Mesfage files ™ nal yfure-

lay files nguage ensitive

TTT:Type Of ObJeCt P, ”?I groups version information
LLL=Language code ser commands

ata areas wit ;Enjl?np;gﬁwem aalahaserflles
essage files
textual da modul

Example object types: Arep€ e
TXD IS teXtUaI data /ﬁgl;:”;;iﬁéﬁTnuependem)
PGM is program /
CSil is culturally
g . . | APPDTAZZZ
sensitive information Rorvy
. APPDTAXXX *Uue
DTA IS data Logical files with globaliz ation .
dependent text, formatting, Tag all Ianguage—speCIfIC
and sEauencing files and database
‘ columns with a CCSID.
APPDTA *LIB

Database library
(Phy sical files)

RBAGSS060

Recommended naming conventions

This chart shows some recommended naming conventions as an example. It is beneficial for
names of libraries and files to indicate what each contains. With large applications that contain
many files, using consistent, useful naming conventions is important, especially if several
programmers are working on the code.

The names for the following items need to use invariant characters that are available in all
language environments:

= Libraries

= Database files

= Device files (display or printer)

= Help panels

= Message files

= User commands

= Programs

= Record formats

= Fields

Supply each language with its own library. Designate the language in the library name. Be sure
that each file name in the library includes the language as well. Tag all language-specific files
and database columns with the language CCSID. Library lists can help you quickly find the
correct files in the right library.

Page 17 of 70

Four approaches for globalization:

Create a new application using modern technologies.

Enhancing an existing RPG application
This chart shows some general approaches for making your application global.

Approach 1: The first approach is to create a new application that uses modern technologies.
This allows you to take advantage of all the built-in globalization functions in a modern
language, such as Java. Rewriting an application, or creating a new one to replace an existing
application, can be a huge investment; therefore, this approach is generally not feasible.

Page 18 of 70

Four approaches for globalization:

Create a new version of the application for each language.

Enhancing an existing RPG application (continued)

Approach 2: The second approach involves creating a separate version of the application for
each language you want to support. This approach allows you to keep the current application
intact, but it requires another application that you have modified to handle a specific language.
With this approach, your current users can continue without disruption. It also enables support
for new languages as requirements arise in a controlled, phased approach. Additionally, if the
new language is similar to an existing supported language, there might be only a few code
changes to make. The greatest drawback to this approach is the long-term application
maintenance costs. Creating and maintaining multiple application versions will increase
development, deployment, and support costs. Another concern with this approach is that the
data stored by the application cannot be shared across application versions. This means
character data fields will require duplicate data columns (one for each supported language).
This results in a more complex database.

Page 19 of 70

Four approaches for globalization:

Enhance the current application.

Enhancing an existing RPG application

Approach 3: The third approach involves enhancing the current application. With this
approach, you will continue to have just one application and one set of data. As new global
requirements arise, you can modify the application as necessary. Over time, you can transform
the existing application to be completely global. This approach has many benefits. First, you
only have to maintain one application version and one database. Secondly, you can implement
globalization changes gradually. This is a practical, recommended approach.

Page 20 of 70

Four approaches for globalization:

Create a new modern version of the existing application.

Enhancing an existing RPG application

Approach 4: The final approach allows the existing application and data to remain mostly
unchanged for current users, and at the same time, supports the creation of new applications or
enhancements that are global. You can take advantage of the existing code base by creating
modules that modern languages can call. You can invest your time in writing new code in a
language such as Java. You can also add new data in the Unicode format. This encoding
standard is one that most solution providers are beginning to use today.

Page 21 of 70

Data

Program logic

User interface

Textual information

Key areas of enhancement to an existing RPG application

Because many solution providers want to enhance their current RPG applications, here is an
overview of the key technical areas on which you will need to focus. At a high level, there are
three major focus areas of an application: the data, the core program logic, and the user
interface (Ul) and textual information. Each of these areas will require some changes to
globalize the application.

Because numbers are the same in different languages, the focus here is on character data.
Applications must accept the data that a user stores and displays in different languages.
Making the data truly global will require changing the CCSID specified for character (SBCS)
and graphic (DBCS) data types. Logical views of the data will also need changes. You will see
examples of how to do this in future charts.

The core program logic will also require changes. Specifically, you will need to convert the
character-related data types to graphic data types. Additionally, you must change every place in
the code that references internal variables or strings that relate to the character and graphic
database fields. You will see examples of this in future charts.

The Ul and textual information must change to display the updated data types properly.
Language versions of the DDS and other textual information will be created as part of the
translation process.

There are many changes to consider. To help you understand these changes, look at the
following scenario that will demonstrate how to approach making these recommended changes.

Page 22 of 70

Client interfaces

|

5250 Code page:37
Device

English
DDS [escoic RPG EBCDIC
)

Web y 4

i -Modules
emulator [*"%
\ English J

T
Web or

Java
\ English J

EBCDIC

3|l [e21607

|

Data type CCsID
CHARACTER 37

|

Unicode

EBCDIC

o4adar

Scenario: Typical application supporting one language

This diagram illustrates a typical RPG application that supports one language. It addresses
three key areas of an application:

e User interface (Ul) (shown on the left),

e Program logic (shown in the middle)

e Database (shown on the right).

All client interfaces see the application Ul in English. The supported data contains characters in
CCSID 37, which is the code page for English and a few other languages. DDS defines the data
fields as CHARACTER data type with a CCSID of 37. The columns in IBM DB2 Universal
Database™ (DB2® UDB) for iSeries are also defined as CHARACTER data type with CCSID
37. You can code the RPG code and logical file to handle all data with EBCDIC encoding.

IBM 5250 device: You must configure a 5250 device with a specific code page that dictates
which language set of characters to show. Each user selects one code page. In this example,
the user chose English code page of 37. The DDS data fields are also tagged with CCSID 37,
so the application Ul displays in English. When the RPG program receives the input from the
Ul, the data is in EBCDIC. It is very common to use a logical file or Structured Query Language
(SQL) view to look at and update data in a database. Because the character data in the
database is defined as CHARACTER with an English CCSID 37, there is no need for data
conversions and no risk of data loss.

Web emulator: This type of Web browser accesses the RPG application. You can create these
browser interfaces with the IBM WebFacing Tool, IBM WebSphere® Host Access Transformation
Services (HATS), or iSeries Access for Web.Browsers always handle Unicode data, so the user
can enter this type of encoded data automatically. However, because DDS controls the data
fields and expects to see the data encoded in CCSID 37, an error will occur after sending the
browser page. The rest of this client scenario is the same for both Web emulator and 5250 device
users. The data is handled in CCSID 37 and passed along to the database for storage.

Web or Java: The data in a Java application (a Web application or rich client) always uses
Unicode encoding. Java code can call RPG modules directly by using program call markup
language (PCML) or stored procedures. In this case, the RPG modules need to handle Unicode
data. These same applications can access the database directly through Java database
connectivity (JDBC). The JDBC driver automatically converts data. When going from the Java
client to the database, the Java client sends Unicode data; JDBC converts the data to the
correct CCSID encoding, based on the database column definition where it will be stored.

Page 23 of 70

5250 device client
Can only receive data in one code page

Depends on the workstation controller to manage mappings to CCSID 37

Web and Java clients always use Unicode encoding.

JDBC
Handles all data in Unicode encoding

Converts data from the database column’s CCSID to Unicode encoding
when receiving

Converts data from Unicode encoding to the database column’s CCSID
when writing

Scenario: Key points

With 5250 devices, the user must specify and use data according to one code page encoding
technique. The workstation controller manages this. Web and Java clients always use Unicode
data. Therefore, they do not have limitations on the data.

JDBC has built-in support to handle data conversions between the application and the actual
database automatically as needed.

Page 24 of 70

Web emulator client interfaces
Integrate

5250 data
stream

IBM —— @)
WebFacing
Tool

Data structure
DSPF DDS

Existing applications (RPG, CL, COBOL)
Display I/O Data I/O

Web emulator client interfaces

This chart shows two types of Web emulation clients; a different IBM tool creates each one.
Both provide a Web-based interface that is built from DDS display files. Because all Web
browsers support the Unicode Standard, both products also support Unicode Standard.

One of these products is the IBM WebFacing Tool. It works between the application and the
output device by converting the interface information to a Web interface and changing the data
to Unicode encoding. The IBM WebFacing Tool works off the same DDS code without requiring
changes to the DDS. The IBM WebFacing Tool converts the DDS source presentation file
(DSPF) to JavaServer™ Pages (JSPs™) and Java servlets during a compile step. This occurs
before the 5250 data stream is created.

Another type of Web emulator is Host Access Transformation Server (HATS). It converts the
5250 data stream to HTML dynamically at run time. HATS provides a configuration option
called Enable Unicode Data Stream that specifies it can accept Unicode data from the
application.

Page 25 of 70

= ESession A - [24 x 80]
File Edt Transfer Appearance Communication Assist ‘Window Help

/3 AppSphere - Microsoft Internet Explorer : =[alx|

o | Ba |l Bl Edt vew Favertes Tock el ‘

Fecod] SIop || @upa + o - @[] 2} | @search [Favories Aoy | By S5 5 2

e ..
Links 48] 1BM Standard Software 4] 1BM Standard Software Installer &]1BM Business Transformation &]1EM Internal Help @] Customize Links

CIE NESTE)

Address [] http:/1206.96.12.34:6500 appsphere/servleticom, bm. as400ad webfacing. runtime hitpeontroller ContrallerservistPn=apPCon | &0

B ~0570075 Gost Model Maintenance... Header
.
— change

L rgg vP1998 1 ARG

6201.93.3000

E——
| Delete |
1111.44.1111 L

Type information. Then press Enter.

Approval date . . .

ARG

EE 2 = —
[Connected ta remote server/host 206,96, 12,34 using port 23
1111.11,1111
[= -
4 | »
[&]Dore i et A |

Example before and after Web-facing

These screen captures show a before-and-after Web-faced green screen. These screens are
courtesy of APPCON, an IBM iSeries Business Partner. As you can see, the IBM WebFacing
Tool converts 5250 interfaces to browser-based graphical user interfaces (GUIs). With little or
no modification to your original iSeries applications, you can extend the use of your programs to
the Internet or an intranet. Whether your applications are new or were written before the
Internet became a viable platform for conducting business, with the IBM WebFacing Tool, your
applications can be available anywhere that users have access to a browser. You can use the
IBM WebFacing Tool with applications that invoke DDS source code to create 5250 display
screens. The tool has wizards that facilitate selecting your original application's DDS source,
converting the source, and deploying the new browser-based interface to your program as an
application that works with the WebSphere Application Server.

The conversion creates JavaServer Pages (JSPs) and JavaBeans™ that substitute for your
DDS code and make Web access possible. After you convert the DDS code, you can access
the application through a browser or continue to use 5250 displays. Having the interface to your
applications based on JSPs allows for more flexibility in customizing their appearance. Before
the tool converts your DDS code, you can use the Style properties pages to change the look
and feel of the generated pages. Styles allow you to define attributes in your Web pages (such
as graphics, fonts, colors, and layouts). You can use one of the supplied styles or create your
own. To update the appearance of a previously converted project, simply run the IBM
WebFacing Tool again and select a new style.

Refer to the Resources section for more information about APPCON.

Page 26 of 70

IBM iSeries Access for Web client interface
iSeries Access for Web

patg

B)y Folder

- AN7BOK 155

GLvd

Messages
Jobs
5250

Active sessions

Configured sessions
Start session

Database
Files
Download
Customize
Other

IBM iSeries Access for Web client interface

The third type of Web emulator product from IBM is iSeries Access for Web. This client

interface also runs in a Web browser and allows the user to initiate i5/0S applications from it.
The iSeries Access for Web tool supports the Unicode Standard. Here is a simple example of a
Web-rendered green screen that shows two output fields, each in a different language.

Page 27 of 70

Client interfaces

Code page:37

RPG

Modules

Unicode

'EBCDIC

DDS [Escoic]

Y
Web

emulator
. English J

Yo
Web or

Java
\ English J

9|1} [ea1bo

Unicode

Data type CCsID
GRAPHIC 1200

Unicode

. Unicode R 4

o4adar

Step 1. Convert the data to Unicode encoding

Now that you have a better idea of the different client interfaces in the typical RPG scenario,
look at the first step in enhancing the RPG application to be global. It converts database data to
Unicode encoding. The diagram elements in the gray background represent the areas that
require change during this step.

All character and graphic database columns are candidates for conversion to Unicode
encoding. You can do this by changing their CCSID value to 1200, which is the Unicode UTF-
16 format. (UTF-16 is the default Unicode encoding format for the System i architecture). In
order to specify the CCSID 1200, the data type must be GRAPHIC (or VARGRAPHIC); you
must change this as well. You must change the logical files (that the application uses for
accessing the database) to set the data type for these fields, as the data type is different
coming in than going out. JDBC automatically handles conversions, so no changes are required
there. Now that the data coming from the database and going to the Web or Java applications
is all Unicode encoding, these applications require no conversions or enhancements. The next
few charts discuss Unicode data in more detail.

Everything else in the scenario remains the same; DDS and RPG programs remain unchanged.
When this step is complete, you have a fully functioning, Unicode environment. This step is
ideal for solution providers who have both Java and RPG applications accessing the same
data.

Page 28 of 70

It provides a means of doing the following:
Sets the industry standard as a platform-independent way of handling data
Contains a comprehensive set of characters from all written languages
Enables a global set of users
Allows for the exchange of multilingual data with other software or systems

Simplifies software code

The Unicode Standard

At this point, you have only changed the data to Unicode encoding. The next step will be to
change the RPG and DDS code to support it as well.

The Unicode Standard defines a comprehensive set of unique numbers that represent or map
to particular characters from all well known, written languages. It also supports scripts, which
are sets of characters such as those found in Latin, Greek, and Cyrillic. The Unicode Standard
even supports Chinese, Japanese, and Korean ideographs. The unique numbers are the same,
regardless of the user’s software platform or operating system. Because the Unicode Standard
includes all language characters, one field can include characters from many languages. This is
called multilingual support.

Unicode encoding eliminates the risk of data corruption because the data does not need re-
encoding as other software or systems use it. Data corruption existed prior to the Unicode
encoding when software mistakenly encoded data using the wrong encoding system. (You can
see an example of this in Appendix A.) This is because the various encoding systems
sometimes used the same number to represent different characters. Unicode encoding allows
you to specify values for a given field and save it in a mix of languages. Unicode encoding also
lets you transport data through many types of systems without corruption, because you no
longer have to hardcode whether a value is of a specific language.

Unicode encoding greatly simplifies the complexity and amount of code in a software
application when you need to support more than one language, because it provides one
encoding system. There is no need to hardcode the encodings for specific languages. Thus,
enabling software to handle the Unicode Standard provides support for all languages. Prior to
the establishment of the Unicode Standard, the implementation method for encoding systems
did not allow support for enough characters. This resulted in the creation of hundreds of
encoding systems. When software applications needed to support more than one encoding
system, an application had to handle multiple code pages (one for each supported language) to
properly handle values in different languages.

With the Unicode Standard, there is also a lesser need for data processing because it is not

necessary to encode and de-encode data to accept different languages properly. However, until
all parts of the application handle Unicode encoding, some conversions are required.

Page 29 of 70

The strategic direction of the industry and IBM includes:

All Web processing is based on the Unicode Standard.

More recently developed applications are defined exclusively in Unicode encoding.
The Chinese government requires software to use Unicode encoding.
The Unicode Standard lets one application version support all languages.

Unicode encoding or DBCS

Because the issue of multiple language support within software became so important and
complex, the Unicode Consortium, an organization sponsored by many companies, created the
Unicode Standard. Because the Unicode Standard has been developing over the last few
years, the i5/0S platform has not always supported it. In recent releases, Unicode support has
grown and is now very functional. IBM wants to ensure that the i5/0S environment is a key
platform for running applications that support Unicode encoding in addition to EBCDIC
encoding. You can run a mix of both types without either one affecting the other. IBM has
enabled i5/0S and other key software for Unicode encoding, including middleware products
such as WebSphere and IBM Lotus® Domino® software suites. DB2 UDB for iSeries supports
a Unicode data type. The integrated file system (IFS) directory structure has always been
based on the Unicode Standard. The data you store in IFS can be global because it is enabled
for Unicode encoding.

Aside from the industry direction for Unicode support, there are technical reasons for using this
standard. In addition to simplifying developers’ coding efforts, the Unicode Standard allows one
version of an application to support data in all supported languages. This is positive from the
user perspective because they can enter data in their own language without worrying about
which characters they can and cannot use. From a programmer’s perspective, enhancing a
program to support Unicode encoding is about the same amount of work as supporting DBCS
encoding. When DBCS-enabling your application, you are supporting only one additional
language because you are merely tagging the data in the database with a specific language
CCSID. This means that you will need multiple database columns to support multiple
languages. Your database becomes more complex and your application code must know which
database columns to use.

Because the industry is moving toward the Unicode Standard, and because converting to
Unicode encoding requires about the same amount of work as converting to DBCS, it makes
more sense to support all languages in one field than to have language-specific fields. There is
no reason to support DBCS now that Unicode support is fully available.

Page 30 of 70

Client interfaces

5250 Code page:37

Device

DDS inicots RPG

Web

emulator
\ English /

Yo
Web or

Java
\ English J

Unicode

Unicodé

9|1} [ea1bo

Unicode Modules

Data type CCsID
GRAPHIC 1200

___Unicode

o4aar

Step 2: Change DDS and RPG to support Unicode encoding

This diagram shows the next typical area of change to support Unicode encoding. This stage
focuses on making all the code changes. After these are complete, the environment will handle
all character fields as multilingual because the application and interface now supports Unicode
encoding.

DDS: There are a couple of different changes to the DDS code. To match the database
columns, you need to change each corresponding character field declaration in DDS from A (or
blank) to G, and you need to add a CCSID 1200 value. The combination of G and CCSID 1200
define the field as Unicode data in the UTF-16 format. The Unicode Standard requires two
bytes to store every character rather than one byte in single-byte CCSIDs. Because the field
lengths that the DDS generates to show to a user appear in bytes, these Unicode Standard
data fields will now allow the user to enter twice as many bytes. The number of characters in
the field is the same, but the 5250 device and Web emulators will now allow twice as many
bytes. If needed, you can set a DDS keyword to stop the user from typing too many characters.
It is important to update the DDS to support Unicode encoding before making a new language
version of the file for translation purposes.

RPG: RPG requires several kinds of code changes to support Unicode encoding. Change the
fields that need to be altered from A (alphanumeric) to C. Next, identify places within the code
that compare this Unicode data to EBCDIC. These are usually constant values or temporary
internal EBCDIC variables.

Logical file: The logical file no longer has to support the conversion of data from Unicode
encoding to EBCDIC, so you can remove the settings made in Step1.

In this scenario, all the data passes in Unicode encoding without requiring data conversion. The

only remaining limitation is that, with the 5250 device, users might not see some Unicode
characters.

Page 31 of 70

5250 devices:

Are the traditional way to view System i5 data
Do not support the full set of Unicode characters
Can only display the characters for one code page

Map Unicode fields to the correct values for the device with i5/0S workstation
management code, prior to displaying them on the screen

Convert new data to Unicode Standard and return it to the application

5250 device client interface

Display devices that currently support the 5250 data stream do not support Unicode data.
Therefore, conversions between the Unicode data and EBCDIC are necessary during input and
output. On output, the Unicode data is converted to the CCSID of the device. On input, the data
is converted from the device CCSID to the Unicode CCSID. The device CCSID, which the
configuration specifies, determines what the Unicode data is converted to. The resulting data
will appear differently, depending on the device. The device configuration documentation
specifies what happens in cases where a Unicode character does not map directly to a code
point in the device CCSID. In some cases, a replacement character is used.

Page 32 of 70

Client Interfaces

5250 Sode page:

Device

English /

DDS _VUnicode RPG Unico£

_____J Modules

A

3|1} [ea1607 W

UHCOdel

Data type CCsIb
GRAPHIC 1200

Step 3: Translate the textual portion of application

The final step focuses on translating the textual portion of the application so people who read
another language can see the user interface in their own tongue. You first need to decide which
additional languages to support.

Unicode

Unicode

Unicode

(&

2

job)
o4adar

For 5250 devices, the library list controls which language version appears to the user. The code
page controls what characters the data fields can contain.

For Web emulators, the library list also controls which language version appears to the user.

For Java applications, the Web browser encoding setting or the user’s locale setting controls
which language version of the application interface appears to the user.

For RPG, human interpreters translate the required DDS, message files, and other text objects
into the target languages.

For Java, the human interpreters also translate the contents of resource bundles.
If the culture of the target languages demands the presentation of data in alternate sort orders,
you can create logical files with each one defining its own sort sequence. At the completion of

this stage, you have an application that not only supports multilingual data, but which is also
available for use in more than one language.

Page 33 of 70

1. Analyzing
2. Implementing
OROROR0

3. Translating

4. Testing

Globalization development process

Now that you have seen how to enhance a typical RPG application to become global, here is a
basic process for implementing application changes. Each step will give recommendations, tips,
and examples.

Page 34 of 70

U Determine which data to globalize.
L Examine the code to understand pervasiveness of the changes.

U Decide your implementation approach.
* Will new language users want to use green screen or modern Ul?
* Do you want to invest in changing existing RPG and DDS?
* Do you want to start a new Java version?

* Modularize your RPG code and change modules to support Unicode encoding.
* Write new code in Java or in RPG modules.

Analyzing

The first step is to determine everything that needs to change, including data and code
changes. After you have a good idea of the scope, pervasiveness, and amount of changes
necessary, you can decide on an implementation approach. This is the time to consider which
user interfaces you want to support.

Page 35 of 70

= Change only character and graphic type fields.
* SBCS: CHAR, VARCHAR
» DBCS: GRAPHIC, VARGRAPHIC
= Query those database columns and print their CCSID value.

» SELECT column_name, data_type, ccsid, length, table_name FROM
gsys2/syscolumns WHERE data_type IN
(‘CHAR’;'VARCHAR’,GRAPHIC’,'VARGRAPHIC’) ORDER BY table_name;

= Examine each CCSID value.
* They probably all use the CCSID of your language.

» Use the CCSID table in the iSeries Information Center to determine the
language.

* If any are using CCSID 1200, then those fields are Unicode encoded.
= Create a list of all columns that need changing.
* Not all data needs converting.

« Example: Data that is used internally to the code and never exposed on the GUI

Determining which data to globalize

When determining which data to globalize, you only need to look at the fields with a data type of
VARCHAR, CHARACTER, VARGRAPHIC, and GRAPHIC. Accomplish this by running a query
of the entire database, searching for columns with those data types, and printing out a list that
shows the CCSID for each. (See the sample query on this chart, shown in red.) Look at the
CCSID values. If any shows a value of 1200, then that data is already in Unicode format. Other
CCSIDs are for specific languages. You can look in the CCSID table in the Globalization
section of the iSeries Information Center to see which languages they represent. Start making a
list of all the columns. For those columns where the RPG program code uses the data
internally, no conversion is necessary. The resulting list will be the database columns you need

to convert to the Unicode Standard.

Page 36 of 70

Example database evaluation

L - |
[0 FLGHT400C.FLIGHTS - Se520b(S106ad9d) =Jo&d
Table C Hey Cons‘trair‘rts] Fareign Key Constraints] Check Constraints | Materialized Cuery] Partitionitg] =]
Colurnn Matne Shart Mame Data Type Length | Mullable | Default Value | Text CCSID | 1= Idet
FLIGHT _MUMEER: FLIGHT _fC INTEGER es | Mul FLISHT _MUMEER:
DEPARTURE_IMITIALS | DEPAR_INT CHARACTER 3 Yes | MNul DEPARTURE_IMITIALS 3r
DEP&ARTURE DEPARTURE | WARCHAR 16| ez |Mul DEFARTIIRE krl
DAY _OF _WWEEK DA _WEEK WARCHAR 16| ez |Mul DA _OF _WWEEK krl
ARRP AL _IMITIALS ARRN_IMT CHARACTER 3 ez | Mul ARRMNOL_IMITISLS krl
ARRIN AL ARRIN AL WARCHAR 16| “es | Mul ARRIN AL krj
DEPARTURE_TIME DEPAR_TIME | VARCHAR 32| Yes Ml DEPARTURE_TIME ir g
ARRIAL_TIME ARRN_TIME | VARCHAR 32| Yes Ml ARRINAL_TIME krj
ARLIMES ARLIMES CHARACTER 16| “es | Mul ARLIMES krj
SEATS_ANAILAELE SEATS_AMNL | INTEGER es | Mul SEATS_AMNAILAELE
TICKET_PRICE TICKET_PRC | VARCHAR 22| ez Ml TICKET_PRICE 37
MILEAGE MILEAGE INTEGER es | Mul MILEAGE A
-
: % | f
Look for data types:
yp Look at CCSIDs:

CHARACTER, VARCHAR,

GRAPHIC, VARGRAPHIC 37 is English

Example database evaluation

You can query the database columns through any SQL interface. In this example, the database
view in iSeries Navigator is used. Access it by clicking System > Databases > Schemas >
FLIGHT400C > Tables. Choose a table, and then right-click Definition to see the database
definition for this table. In this example, FLIGHT400C is the database name and FLIGHTS is
the table name. You can see that this particular table has many CHARACTER and VARCHAR
fields that are candidates to convert to Unicode Standard. All of them support CCSID 37, which
is English. At this point, look in the programming code of the application to determine if any of
these columns do not need to be converted. For example, if the strings from a character-based
data type column are only used internally in the program source code and are never shown on
the user interface, this database column does not require conversion.

Page 37 of 70

= Convert code to RPG IV.

= Separate text from business logic.

= Convert character data in DB2 UDB to Unicode encoding.
= Make changes in RPG code to support Unicode encoding.
= Make changes in DDS to support Unicode encoding.

® Change install code.

Implementing

In this step, you will implement all of the code changes. If you have a huge application, this step
can take many months to complete. The best thing to do is to stage out how to make sets of
changes at a time. You might want to support some fields in the Unicode Standard in one
particular release of the application and leave other fields for another release.

First, you need to convert your RPG code to RPG IV. This will require a recompile (described in
the iSeries Information Center). RPG IV provides a lot of Unicode support, including functions
for date and time formatting. Additionally, moving to the Integrated Language Environment for
RPG IV (ILE RPG) allows you to create language-specific code modules. Next, ensure that all
of your textual information is separate from the core program logic. If you find hard-coded
strings that are part of the user interface, move these out of the code and into DDS or message
files.

You are now ready to convert your database columns to Unicode encoding and make the
Unicode changes to the RPG and DDS code. If there are many changes, determine a plan of
action, perhaps program-by-program.

You will also need to look at whether your application’s installation code needs updating. When
supporting an application in more than one language, you can create separate software CDs for
each language, or you can build one installation CD and prompt the user who is installing the
application to select which language version to implement. For a current user of your
application, you will need to write code to convert the data in their existing DB2 UDB for iSeries
database to Unicode encoding. This data conversion will likely run as part of an application
upgrade.

Page 38 of 70

O RORO

= Change the code that creates the database initially .

= |f using your own application, consider converting the test database.
Conversion options

SQL: Use ALTER TABLE command or iSeries Navigator
DDS: Use CHGPF command

Performance considerations

It will take significant time to convert data to Unicode encoding.
If you convert multiple columns, do them at the same time.
Conditions that increase conversion time:

Amount of data to convert

Size of System i5 hardware

Number of indexes

Converting character data in DB2 UDB for iSeries to Unicode

encoding

Here is some useful information about converting data to Unicode encoding. You must update
any install code that creates a database to build those database columns in Unicode encoding.
If your application code is operating in a test or production environment, you must convert those
databases, too. Converting a database column from to a Unicode data type is similar to
changing the length of a column. You can use the SQL ALTER TABLE command or the i5/0S
CHGPF command.

There are several performance items to consider. It will take quite some time to convert data to
Unicode encoding. You can do a test against a typical installed database to estimate how long
this will take for your customers. If you need to convert more than one column, it is more
efficient to convert them all at once in one command. Three key factors will influence how much
time it will take to convert the data: the amount of data to convert, the size of the System i
hardware on which it is running, and the number of indexes that need rebuilding.

Page 39 of 70

Example of converting a column to Unicode encoding Q

[0 FLGHT400C.FLIGHTS - 5e520b(5106ad9d)
Table Columns] Key Constraints] Foreigh Key Constrairts | Check Constraints | Materislized Query'i Part'rtinning]
Caolurnr Marme Short Matne Dats Type Lencth | Mullsble | Default Yalue | Text CCSID | I= ldertity
FLIGHT_MUMBER FLIGHT_MC INTEGER Yes | Ml FLIGHT_MUMBER
DEPARTURE_IMITIALS | DEPAR_INT CHARACTER 3 Yes [Nl DEPARTURE_IMTIALS 37
DEPARTURE DEPARTURE | WARCHAR 16| Yes | bl DEPARTURE 37
D&Y _OF WEEK VWEEK WARCHAR 16| Yes | bl D2 _OF WWEEK 37
ARRIVAL_INITIALS ARRI T CHARACTER 3| Yes [Nl ARRMAL_IMTIALS 37
ARRIVAL ARRIW AL WARCHAR 16| ‘Yes | bl ARRINYAL 37
DEPARTURE _TIME DEPAR_TIME NARCHAR 32| Yes | bl DEPARTURE _TIME 37
ARRIVAL TIME ARRIY TIME | WA AR 321 Yes | bl ARRMAL_TIME 37
[Column Definition - kszob(mo&ﬂ?\ Jesi ||l s i
Yes Bl SEATS AWAILABLE
Colurn name: [DEPARTURE_INTIALS \

Honingine 1. PEPARTURE NS 3. Change Data type to GRAPHIC

e —————— 4. Change CCSID to 1200

5. Click OK.
peout vabi: il L The ALTER TABLE command is generated.

Shortname: [DEPAR_INT N
Data type: [GRAPHIC ﬂ‘\
Length. | 3
Encoding: [Use CCSID =] cesp: | 1200 | 1) SeIeCt COIumn
\2. Click Definition..!
Tet: |DEP ARTURE INTIALS

e

[al24 Cancel | Help

Example of converting a column to Unicode encoding

You can use the SQL view in the iSeries Navigator to see how to accomplish the conversion. In
the top screen shown here, highlight the database column name that requires conversion, and
then click the Definition button. The small window at the bottom appears. Change the Data
type to GRAPHIC and change the CCSID from 37 to 1200. Then, click OK to generate and run
an SQL ALTER TABLE command.

Page 40 of 70

Use sample data for testing:
Create a test environment.

Copy a subset of your database; put it in a separate location.

Execute test conversion of data (using subset):
Do an early test conversion during project planning.

Time your database conversion (to understand length of final conversion).

Minimize down time of your application:
Execute final conversions during system maintenance timeslots or weekends.

Convert multiple columns in the same timeframe, if possible.

Share information with the users who install your application:
Automate data conversions for them, and tell them you are doing so.

Share the estimated conversion time required during application upgrade.

Best conversion practices for Unicode encoding

Some best practices and tips for creating data conversions to Unicode Standard include using
sample data for testing your Unicode modifications. You will need to create a test environment
in a separate location. Then, copy a subset of your database into this test environment.

You need to test the conversion code you have written, using a subset of the data that is to be
converted. It can be valuable to do an early test conversion during the project-planning phase.
Be sure to time the conversions so that you can better understand the anticipated length of the
final conversion efforts that your user will experience.

It is important to minimize application downtime for all applications that are affected by the
introduction of the Unicode encoding. It is probably best to execute final data conversions
during system maintenance timeslots or weekends. Convert multiple columns in the same
timeframe if possible.

Be sure to keep the users who are installing the Unicode conversion programs aware of what is

happening. Display messages about the estimated conversion time required during application
upgrades, and automate all data conversions for them.

Page 41 of 70

Accessing DB2 UDB for iSeries data with the SQL query engine does not support
sort sequences.

If data access is primarily by Java applications, performance gains are possible
when using Unicode character data types.

If you convert data to Unicode encoding that is shared by both Java and RPG
applications, the RPG applications will require more processing when accessing
that data.

Performance can be improved by explicitly converting character data on fetches:
SELECT VARGRAPHIC(mycol,10,1200)... instead of SELECT mycol ...

Performance considerations for Unicode columns

When applications use the SQL query engine to access DB2 UDB for iSeries data, there is no
support for sort sequences. In fact, attempting to do this can appear as a performance problem.

If more than one application accesses the same data, consider converting the data to Unicode
encoding. However, realize that accessing the data from traditional enterprise (non-Java)
applications will be slower because of the real-time data conversion.

You can also improve the performance of data conversions by explicitly specifying that the

query engine retrieve the data value in Unicode encoding. The example SQL SELECT
statement (shown in red on this chart) illustrates how you do this.

Page 42 of 70

O RORO

Specify Unicode data as C data type to variable declarations.
Change code that compares constants with Unicode data.

Change code that moves Unicode data around by using internal temporary
variables.

Find some required code changes by compiling the RPG code.

Remove cultural assumptions put into DDS where possible.

RPG code changes

Several types of RPG code changes are necessary to use Unicode encoding.

For variable declarations, you must specify Unicode data as a C data type.

Be sure to change code that compares constants with Unicode data.

Modify code that moves Unicode data around by using internal temporary variables.

You can find some required code changes by compiling the RPG code and then looking at the
resulting warnings.

Take into consideration any cultural assumptions within the DDS code, and remove these
where possible.

Page 43 of 70

Most RPG string functions support Unicode data.
See the iSeries Information Center

Programming->Languages->RPG->ILE->Reference->Chapter 22

The built-in %0UCS2 function allows for variables that are not Unicode
encoded to be treated as Unicode data.

Unicode support in RPG

Many string-related functions provide automatic detection and conversion support between
EBCDIC and Unicode fields. Examples of these include the MOVE, MOVEL, and EVAL
functions. You can see a complete list of these in Chapter 22 of the RPG Reference, which is
online at the iSeries Information Center. (Follow the navigation shown in this chart.) An added
built-in function allows you to convert a constant string or variable into Unicode format before
using it with Unicode functions or comparisons. The function name is %USC2.

Page 44 of 70

You can use the C data type and the %ucs2 function to wrapper an compare an
EBCDIC data field with a Unicode (UTF-16) field:

H CCSI D(*UCS2 : 1200)

* Initialize a Unicode variable fieldU to a valid Unicode val ue

D fieldu S 10C I NZ(%ucs2(‘abcdefghij’))

* Assign the EBCDIC val ue MyDat aE to the Uni code vari able My/DataU
C eval MyDat aU = %ucs2(My/Dat aE)

* Conpare an EBCDIC value to a Uni code val ue

C i f MyDat aU > %ucs2(M/Dat aE)

The movel and trimr functions automatically detect the type of variable (EBCDIC or
Unicode data) and handle automatic conversion as needed by the function:

* Converts the constant ‘Wnter’ to Unicode if MyDataU is defined as Uni code
C nmovel "Wnter' MyDat aU

* Trinms blanks off the right side of the string. String length is properly
* determned to find the string end. Ex. EBCDIC length is 6, Unicode is 12
C eval M/Text = % rinr (M Text)

Examples of using Unicode encoding in RPG
Here are two examples that illustrate how RPG programs support Unicode data.

The top example shows how to define a Unicode field with the C data type. It also uses the
%ucs?2 function to wrapper an EBCDIC value data field so the value can be stored or compared

with the Unicode field.

You can use an H spec (Header specification, shown in red) to define the particular Unicode

CCSID value for all %ucs2 invocations in the RPG program. Alternatively, the program can

specify the Unicode CCSID value on each call to the %ucs?2 function. For example:
Yuuics2(MyDat aE : 1200)

The second example shows two ways to support Unicode encoding. One method uses the
MOVEL function, and the other method uses the %trimr function.

Page 45 of 70

On RORO

Design and implement code independent of cultural preferences.
Use internal form of data until you need to display it.

Do not hardcode culture-specific formats.
Do not assume data is of a particular language.

Examples:
Names, addresses, postal codes, telephone numbers
Numbers and dates
Measuring units and currency
Alphabetical order of characters
Date and time

Avoid cultural assumptions

To globalize an application completely, you need to be aware of how you handle data that has
cultural significance. You must store the data generically in the database and convert it to the
right format just before displaying it. In the code, use the internal generic format until a user
needs to see it. Avoid hard coding culture-specific data. However, because RPG does not
provide ways to format all culturally significant data, this will be impossible to avoid completely.
The list in this chart shows examples of data that requires different formats, depending on the
user’s cultural preference.

Page 46 of 70

Format data in DDS, if possible:
Use the DATFMT keyword for the date format.
For example, use the DATFMT(*JOB) keyword in DDS:

Uses the job attribute, which is the setting from the user’s user profile
Provides approximately 10 choices
If the required format is not an option, then handle it in your code.

00010A February 1, 2006 equal s:
00020A R RECORD
00030A DATFLD1 2DATFMI(*JUL) | DATFLD1L 06/ 032

L B 5
00040A DATFLD2 L B 5 22DATFMI(* EUR) DATFLD2 01. 02. 2006
00050A DATFLD3 L B 5 42DATFMI(*JOB) DATFLD3 02/ 01/ 06

Formatting data in DDS

Use built-in formatting keywords in DDS to format data. Each language version of DDS will
specify its preferred format. Alternatively, you can use conditional statements in DDS to display
one format instead of another.

This chart provides an example of using the date formatting (DATFMT) keyword in DDS. The
DDS file on the left shows the definition of three data fields, each specifying a different style
format: Julian (*JUL), European (*EUR), and the format from the date format job attribute. Use
the DDS DATFMT keyword to specify these. When these formats are applied against the same
date of February 1, 2006, the outcome varies. You can see the different formatting results on
the right side of this chart.

Page 47 of 70

RPG does not support functions for formatting some cultural data.
To find your own solution:
Understand the rules for the countries and regions that use your application.

Common Locale Data Repository (CLDR)
http://www.unicode.org/cldr/

Use flexible data types in the database to store these.
Limit formatting in the main code; put it in a language-specific module.

Use ICU formatting APIs.
Example: Supporting global telephone numbers:

Telephone numbers come in many formats.

Store them as strings instead of numerics.

Strings will allow users to enter dashes and spaces as desired.

Increase the field length to accommodate telephone numbers in longer formats.

Formatting data in RPG

DDS only supports a few data formats, which means you will have to handle the other culturally
sensitive data formatting in the RPG code. However, RPG also does not provide built-in
formatting functions. Thus, you will need to decide how to handle this in your code. First, start
by understanding the rules for how the particular country or region formats the kind of data you
are handling. You can find some of this information online in the Common Locale Data
Repository. The easiest thing to do for flexibility is to use character data types for things such
as telephone numbers. This allows flexibility for users to enter parentheses, dashes, and
spaces where desired. You might also want to increase the field length to accommodate longer
phone numbers. You might need to break language-specific formatting code into separate,
callable modules to keep them out of the main language-independent code. You might also
want to use the International Components for Unicode (ICU) application programming
interfaces (APIs) to help you format data. You can find out more about these APlIs at the IBM
International Components for Unicode Web site listed in the Resources section of this course.

Page 48 of 70

http://www.unicode.org/cldr/

Code needs to be independent of the language and CCSID.
Use system-supplied APIs to handle characters.

Use system-supplied APIs to determine field lengths.

Coding tips
There are three key general coding tips you need to follow as you modify your applications to
support Unicode data.

You need to write the code to be independent of any particular language and CCSID. Also, you
need to isolate different sets of culturally dependent and text-dependent code into modules. Do
not write your code to depend on the specific job CCSID. These steps will reduce the risk of
your application generating unpredictable results when running on differently configured
systems.

Be sure to use system-supplied APIs to handle character data and field lengths. Do not design
your application to depend on specific character values.

Use system-supplied APIs to determine field lengths. This is important because field lengths

vary with different encoding schemes. For example, field lengths are the same for SBCS and
DBCS; however, a DBCS character requires two bytes.

Page 49 of 70

Change the data type of alphanumeric fields to Unicode encoding:
Change to graphic (G) data type.
Add CCSID value 1200 for that data type.

Calculate the required text expansion for text strings:
Adjust layout for each string within the screen to accommodate expansion.

DDS code changes

There are two things to change in the DDS file. First, change the alphanumeric fields to
Unicode encoding and specify the CCSID value of 1200. Together, these values define the data
as Unicode encoding. Next, adjust the layout of the strings on the screen to accommodate the
extra room needed when translating the strings into another language. Make the adjustments
prior to having the DDS translated in order to maintain one master copy of the DDS. You will
learn more about this during the translation step.

Page 50 of 70

On RORO

A R RECORD
A PARTNO 5 0

A PARTNAVE 20G CCSI D(1200)]

A PARTQTY 5 0 EDTWRD(' , 0')

A PARTPRI CE 9 2 EDTWRD(' , , 0. ')
A K PARTNO

1. Change to G data type.
2. Add Unicode CCSID 1200.

Example of DDS using Unicode encoding

Here is the Unicode version of the DDS source code. You can see the DDS changes to make
PARTNAME a Unicode field. Simply add a G with a CCSID value of 1200. Together, these two
elements define the field for Unicode encoding.

Page 51 of 70

Put a copy of Ul text in a file for translation purposes.

Do not use program code that depends on any text in the Ul.

Do not construct words or sentences from word or sentence fragments.
Avoid:

Humor, puns, slang, metaphor, special symbols
Abbreviations and acronyms

Cultural or language-specific graphics

Text in icons

Fixed color in icons

Ambiguous pronouns

Negatively phrased questions

Tips for user interface and text

Here is a set of tips to remove any textual dependence in the code. This improves the quality of
the user interface and allows the application to avoid having to handle text that is difficult to
translate.

First, consider putting a copy of Ul text in a file to allow translation if it is stored in your
database. However, be sure that the program code is not dependent on any text that the Ul
contains. It is best to avoid constructing individual words from word fragments, and similarly, try
to avoid constructing a sentence from sentence fragments.

Other things to avoid within text strings include humor, puns, slang, metaphors, and special
symbols; these will usually not translate well into other languages. Abbreviations, acronyms,
and specific cultural or language-related graphics also translate into other languages poorly,
inappropriately, or not at all.

Generally, other application coding techniques can also be challenging to deliver to an

international audience. These include text or fixed colors in icons, as well as negatively phrased
questions.

Page 52 of 70

Translation
This section discusses the third step in the globalization process: translation.

Page 53 of 70

The translation process converts text written in one language into another
language.

There are several types of software-related textual information:
User interface strings

Messages, help text
Menu and command text
Installation interface (wizard)

Documents
Used by application users, installers, and administrators

RPG Ul text is in files in one library.
Java is in ResourceBundle.

There are ywo translation methods:
Machine translation

Manual translation

The translation process

Translation is the process of converting text into another language. All textual pieces of the
application need to undergo translation, from user interface to the documentation.

The DDS and message files usually contain the Ul data for RPG.

For Java, the resources bundles contain the Ul data.

There are two methods of translating text: machine translation and manual translation. Machine
translation interprets text on demand (dynamically) as the application runs. Manual translation

involves human interpreters. Manual translation is the ideal approach, because current machine
translation technologies are not yet accurate enough.

Page 54 of 70

Disadvantages:
Limited number of translation combinations
50-95% correct
Accuracy reduced by slang; eliminating slang improves translation results
Run-time delay in user interface
Focus usually on Web and Java
Advantages:
No development delays
User interface can change often

Lower costs

Example products:
IBM WebSphere Machine Translation
ibm.com/software/pervasive/ws_translation_server

Internet search: “machine translation”

Machine translation

There are a few advantages to machine translation, but the many disadvantages outweigh them
by far. Because of this, there will be a discussion of the disadvantages first.

Machine translation limits the number of translation combinations. The resulting translations are
rarely even 95% correct, and can often be only 50% correct. The percentage of correct
translation results will depend on the simplicity of the sentences. The best sentences will use
short, present-tense, active-voice construction with no interjections or prepositional phrases in
the middle of the statement. Similarly, quotes (around an emphasized word) and dashes for
punctuation can result in poor machine translations.

The use of slang words and colloquialisms, though perhaps clever in the native language,
makes automatic translation difficult or impossible. Eliminating slang and simplifying your
documentation will improve translation results.

Because machine translation is dynamic, it can cause run-time delays in the user’s experience.
Additionally, most machine-translation products focus on Web and Java interfaces, not on the
more traditional user interfaces.

However, there are a few advantages to using machine translation. There is no delay during
development while waiting for the manual translation to be completed. It is possible to change
the user interface often, without going through a manual retranslation process. Lastly, machine
translation offers a lower cost solution. The solution provider merely needs to make a one-time
product purchase and then can use the machine-translation tool for the life of application.

You can read about the WebSphere machine translation tool to get an idea of what a typical
translation product offers by going to the Web site listed in the Resources section.

Page 55 of 70

Manual (human) translation requires a language expert.

Translation services often include:
Translating your strings to a new language
Testing your application using the new strings
Integrating new screenshots into translated documentation
Managing the translation project

Manual translation

Manual translation is the best solution for translating textual data and messages. This is the
method that IBM uses to translate the text for its software products.

This chart shows the typical kinds of services that translation companies offer.

Page 56 of 70

Decide what services you need.
Find out who other solution providers use.
Contact the translation companies that provide the services you need.
Ensure the service provider has highly skilled translators:
Technical computer skills:
Examples: Basic understanding of XML formatted files, technical terminology they will translate
Skills related to your application focus area:
Example: Medical terminology, government terminology
Ask for references.
Ask the file types they can accept and how they are returned.
Understand the cost structure and future support:

Are translation costs per word, per phrase, or per page?
What are testing and other costs per hour?
Are translation memories saved for future use?
Ask how long the translation process takes:
Do they use advanced tools to streamline translation?

Does one person translate the entire set for consistency?
Get estimates.

Selecting a translation service provider

Here are tips to help you select the best translation service provider, based on your needs. It is
always best to get referrals from other solution providers who have used translation services.
IBM offers translation services at cost to IBM solution providers.

Page 57 of 70

General cost guidelines
Ul, messages, reports, help files: inexpensive to translate
Technical documents: expensive

Typical costs per word
Between $0.15 and $2.00 US$ per word

Cost varies by language
Translation and testing time frames range from 4-to-20 weeks.

Translation costs and duration

The user interface is generally inexpensive to translate. Thick, technical documents cost the

most. Translation companies often charge a per-word rate for translation that can range from
$0.15 to $2.00 (US $) per word, depending on the language and the service provider. Other

services usually have an hourly rate.

Translation and testing time frames can range anywhere fro 4 to 20 weeks.

Page 58 of 70

Provide textual data to translators as early as possible.

Ensure accurate translation:
Provide translation guidelines, instructions, and file markup rules.

Use terminology based on definitions in standard, widely available dictionaries.

Avoid using abbreviations and acronyms in your application.
Store text strings in message files, not in DDS, to make translation easier.

Make copies of all text files; name them using your language-naming
convention.

Minimize translation costs before translating large technical documents:
Improve the text (succinct, grammatically correct, no misspellings).

Avoid long sentences.

Translation tips

Here are some translation tips to help you reduce costs and obtain results that are more
efficient.

Make textual data available to translators as early as possible. Provide them with translation
guidelines and instructions to ensure correct translation. You might also need to provide file
markup rules if they have not worked with your types of source files.

To ensure accurate translation, use terminology that is based on definitions that can be found in
standard, widely available dictionaries. Additionally, provide a glossary of nonstandard terms to
the translators. Avoid using abbreviations and acronyms in your application, as they can be
impossible to translate. If you must use them, define them in the glossary.

Store text strings in message files, rather than in DDS, to make translation easier. Make a copy
of all text files, and name them using your language naming convention. Provide this set to the
translators.

Consider improving the text to minimize translation costs before translating large technical
documents. Text must be succinct, grammatically correct, and free of misspellings. Avoid long
sentences; use similar terms consistently to maximize reuse. Remove sections of text that are
duplicates of the help text.

Page 59 of 70

Example: The string in DDS Part description is 17 characters long. After translation to
another language, between 14 and 17 characters of extra space are necessary for the
translated string (a total of 31 to 34 characters).

Number of characters Additional space required
*including spaces and punctuation

marks within the string

Up to 10 100% to 200%

11to 20 80% to 100%

211030 60% to 80%

31to 50 40% to 60%

51t0 70 31% to 40%

71 or more 30%

Textual expansion

You need to adjust DDS screen layouts to allow for expansion of the text volume. This chart
shows some estimated expansion amounts that depend on the length of the string that requires
translation.

Page 60 of 70

i

'

i

w
I

w
W
0
g
=]
i
j=}
ot
[}
o
w
of
n
=]
m
H
ot

Change Event'
2"Type choices, press Enter. -

COLOR (BLU)

4'Type of item "

[I I T I S S R I R S I S)
*

.

i

&

%]

I

3"1=Event (single calendar) -
Only text coded for these keywords '
iS translatable: & 43'"2=Meeting (mumltiple calendars) -

«Static text for display or printer files. 7 43'3=Reminder -
*CHOICE() for display files. '

*COLHDG() for physical or logical files. ¥ 4374mdeb -
*DFT() for display or printer files. 9 43'5=Procedure (5/36) ~
*HLPTITLE() for display files. ' '

.MNUBARCHC() for disp|ay files. 12 2'F3=Exit F9=5ix month calendar -
*TEXT() for physical or logical files. ECESFQ:C‘”‘CEL Fleshisplay mess-

CCLOR (BLT)

Example markup for translation of DDS files

Translators typically have tools that allow them to view a file requiring translation. Usually, the
tool is designed to understand the contents of the file and to highlight which portions require
translation. You can see here (in blue) which items require translation.

Page 61 of 70

Test

This section discusses testing, the final important step.

Page 62 of 70

OROROn |

Test a global application in three phases:
Test with the original language.
Verify the new language version of textual data (translation verification test).

Test in the new language (functional verification test).

Testing

There are three beneficial phases for testing a newly global application.

Test the global application with the original language to ensure that current users will not
experience problems. Ensure that culturally sensitive data still appears correctly. Additionally,
you will need to process global data to make sure that it appears correctly.

You will also need to verify the new language version of textual data (translation verification
test). Test the textual data using the global application. Confirm that the appropriate translation
exists, appears correctly, and makes sense in the Ul instance. Translators must lead this
testing; programmers need to assist.

Test the global application in the new language. Be sure to verify all functions. Specifically,

make sure that the application functions properly, any culturally sensitive data appears
correctly, and global data is processed and appears accurately.

Page 63 of 70

Test environments:
Match typical customer environments.

Configure a test partition for each language.

Configure a primary language and a secondary language.
Test data:
Use typical customer data for your new language.

Ask a new language customer for sample data to test.
Buy sample data.

Ensure test data covers the extremes (variant characters).
Ask new language customers to beta test.

Hire a native-speaking consultant to assist.

Testing tips

Here are a few testing tips to help you achieve results that are more accurate.

Use test environments that match typical customer environments. Configure a separate
partition for each language version to test. Configure the system with a primary language and a
secondary language. Ask new language customers to perform a beta test.

When testing data, use typical customer data for your newly supported language. Ask a new
language customer for sample data to prime your test database, or buy sample data. Ensure
test data covers the extremes (variant characters). Hire a native-speaking consultant to assist
with testing the new language version.

Page 64 of 70

Learn about globalization

Create your globalization project plan
Educate development team

Use IBM resources

Getting started

Sometimes, the biggest obstacle to accomplishing a globalization effort is figuring out where to
begin. Here are some tips on getting started with a globalization project.

Learn about globalization. Review the iSeries roadmap. Take the self-study courses that IBM
offers. Visit the Web sites provided in the Resources section of this course.

Create your globalization project plan. Analyze the language and cultural requirements of your
particular users. Examine your application’s database, RPG, and DDS code. Define the scope
of your globalization tasks and plan how to stage the changes.

Educate your development team. Learn about Unicode support on the System i platform, and
decide how to divide the various efforts of changing the code.

Use the full scope of IBM resources at your disposal. Obtain free consulting from the IBM ISV

Business Strategy and Enablement group. Additionally, consider IBM Globalization Services for
translation and language testing.

Page 65 of 70

Breton

Werce Gracias
Spanish
nan NTn

P& ZEApEiLC)
Korean
Arabic
Hebrew

Traditional Swedish
Chinese

o g0 nadil maith agar
Tak

Danish

Gase Daskon it

HUNESIETNELE

Chinese German
Japanese

Dok o VOURD

Vhant You wm@uc Detowseme Vam

Czech
Tamil

Summary

To stay competitive in the modern business world, globalization is no longer simply a good idea;
it is a necessity. This course discussed in detail the basic concepts involved with the
globalization process. You examined four major steps: analysis, implementation, translation,
and testing. Example scenarios offered real-world evidence of the best approach at determining
a plan of action for your globalization project. In addition, you learned about various tips and
suggestions for globalization. There is also an extensive Resources list to explore globalization
further.

Page 66 of 70

Appendix A: Glossary

This appendix provides you with a glossary of terms used throughout this paper.

Character Data
Representation
IArchitecture (CDRA)

Defined by IBM to realize consistent representation, processing, and interchange of coded
characters; implemented as CCSIDs in the i5/0S environment.

Character Set

A defined set of characters. Specific collections of characters represent textual information.
Generally supports more than one language.
Example: Latin-1 character set supports most Western European languages.

Coded Character Set
Identification (CCSID)

Integrated concept of encoding scheme, character set, and code page.

Code Page

A set of assignments of characters to code points.

Code Point

A unique bit pattern that represents a character within a code page.

Culturally-sensitive

Data or information defined or represented specific to a culture.

Double Byte Character
Set (DBCS)

A set of characters from languages that have more than 128 unique characters where it takes
2 bytes to store each character.
Languages: Simplified Chinese, traditional Chinese, Korean, and Japanese.

Encoding Scheme

A set of rules that is substituted during character conversion for any characters in the source
coding representation that do not have a match in the target coding representation. EBCDIC is
the i5/0S encoding scheme. ASCII is the encoding scheme on PCs, UNIX®, and the Internet.

Endian (Big or Little)

Format for storing Unicode characters. Non-Intel machines store characters in Big Endian
format. Intel machines store characters in Little Endian format. A byte order mark (BOM)
indicates the format for a given set of Unicode characters.

Globalization

The proper design and execution of systems, software, services, and procedures so that one
instance of software, executing on a single server or end-user machine, can process
multilingual data, and present data culturally correctly in a multicultural environment.

Internationalization

The process of producing a product that is independent of language, script, culture, and coded
character set. An Internationalized product is not usable unless localized to a specific region.

Internationalization
Components for Unicode

IAn open source development project that includes a set of APIs for processing Unicode data.
ICU APIs were ported to the System i platform to support C applications. RPG code typically

(ICU) does not use them.

Locale A set of values that defines a user’s language, country and any special variant preferences
that the user wants to see in the Ul. The System i platform supports locales for C applications.
RPG code typically does not use them.

Localization The process of adapting an internationalized product to a specific language, script, culture,

and coded character set. Translations are done at this point.

Machine Translation

Automatic translation of language text by computers at run time.

Multilingual

Supports simultaneous use of characters from various languages.

National Language
Version (NLV)

A version of the i5/0S operating system that contains a predefined set of language-dependent
values (such as: date and time format, sort sequence, and so forth). When ordering System i
hardware, you specify which NLV is the primary language. You can install additional NLVs as
secondary languages.

Single Byte Character
Set (SBCS)

Refers to languages that have less than 128 unique characters in their scripts. Requires 1 byte
to store each character.

Sort Sequence

Controls the sorting of data prior to showing it to an application user. A sort sequence can be
defined using logical files or SQL views.

UCS-2

A subset of UTF-16 that does not support all defined Unicode characters.
(UTF-16 also supports combined characters and surrogates.)

Unicode Standard

An industry-defined universal encoding scheme for written characters and text that enables
the exchange of data internationally. It allows one field value to be multilingual.

Unicode Transformation
Format (UTF)

IAn algorithm that maps every unique Unicode value to a unique byte sequence. You can
choose from three formats: UCS-2, UTF-8, UTF-16, and UTF-32. The default on the System i

platform is UTF-16 (Big Endian). RPG uses USC-2.

Page 67 of 70

Appendix B: Resources

These Web sites provide references to supplement the information contained in this document.
o |IBM eServer iSeries Information Center
http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp

e |BM eServer p5 Information Center
http://publib.boulder.ibm.com/infocenter/pseries/index.jsp

¢ IBM Publications Center
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US

¢ IBM Redbooks®
http//www.ibm.com/redbooks
0 e-business Globalization Solution Design Guide: Getting Started (SG246851)

DB2 UDB for iSeries References
e |BM iSeries Information Center
http//publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp
Note: Click Database. Then, see data types, SQL sort sequences, and CCSIDs.

o DB2 UDB for iSeries Web site
http//ibm.com/servers/eserver/iseries/db2/
Note: This site includes the latest information on DB2 UDB product, tips, and concepts.

Printing references
o DDS Reference: Printer Files — Appendix B. Unicode Considerations for printer files
http//publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp
Note: Select Programming > DDS > Printer files

o AFP Architecture: Using OpenType Fonts in an AFP System (G544-5876-02):
http://www.ibm.com/support/docview.wss?uid=pub1g544587602

IBM globalization
o IBM globalization Web site
http://www.ibm.com/software/globalization

e [Series globalization Web site
http://www.ibm.com/servers/eserver/iseries/software/globalization

Globalization and Unicode self-study education
e Globalization: An Overview
http://www.ibm.com/servers/enables/site/education/abstracts/88ca_abs.html

o Making Enterprise Applications Globally Available in the Modern Business Setting
http://www.ibm.com/servers/enable/site/education/ibp/9dce/index.html

e |BM home page for International Components of Unicode (ICU)
http://www.ibm.com/software/globalization/icu/index.jsp

e Introduction to Unicode for i5/0OS on IBM eServer iSeries
http://www.ibm.com/servers/enable/site/education/abstracts/8fce_abs.html

¢ Enabling Unicode in RPG Applications that Run on the IBM iSeries Systems
http://www.ibm.com/servers/enable/site/ education/abstracts/9dc2_abs.html

o JD Edwards Unicode white paper
http://www.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256¢71006d2e0a/
61aa3e92d01b8a6586256ebd00450415/$FILE/iSeries%20Unicode%20Upgrade%20-%202.pdf

e Unicode Web site
http://unicode.org

Page 68 of 70

http://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp
http://publib.boulder.ibm.com/infocenter/pseries/index.jsp
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US
http://www.ibm.com/support/docview.wss?uid=pub1g544587602
http://www.ibm.com/software/globalization
http://www.ibm.com/servers/eserver/iseries/software/globalization
http://www.ibm.com/servers/enables/site/education/abstracts/88ca_abs.html
http://www.ibm.com/servers/enable/site/education/ibp/9dce/index.html
http://www.ibm.com/software/globalization/icu/index.jsp
http://www.ibm.com/servers/enable/site/education/abstracts/8fce_abs.html
http://www.ibm.com/servers/enable/site/
http://www.ibm.com/support/techdocs/atsmastr.nsf/5cb5ed706d254a8186256c71006d2e0a/
http://unicode.org

IBM Globalization guidelines

Overview
http://www.ibm.com/software/globalization/guidelines/index.jsp

Quick reference
http://www.ibm.com/software/globalization/guidelines/outline.jsp

Java internationalization

Course: Internationalization with Java: Introduction to Terminology and Architecture

http://www.ibm.com/servers/enable/site/education/abstracts/9912_abs.html

Sun Java Internationalization

http://java.sun.com/j2se/corejavalintl/index.jsp

Java Internationalization: An Overview

http://java.sun.com/developer/technicalArticles/Intl/Intlintro/
Abstract: Exploring the types, structure, creation, and usage of Java resource bundles, this article
shows you how to create a localizable program.

Tutorial
http://java.sun.com/docs/books/tutorial/i18n/

Trail: Internationalization, by Dale Green

http://java.sun.com/docs/books/tutorial/i18n/
Abstract: These lessons show how to internationalize Java applications. Internationalized
applications are easy to tailor to the customs and languages of end users around the world.

Java Internationalization by Andrew Deitsch and David Czarnecki
http://www.javainternationalization.com/blog/

Java Internationalization; O'Reilly book by Andy Deitsch, David Czarnecki
Abstract: This book shows how to write truly multilingual software, using the Unicode Standard.

Frequently asked Q&A
http://java.sun.com/j2se/corejavalintl/reference/fags/index.html

Additional information

IBM International Components for Unicode
http://www.ibm.com/software/globalization/icu/index.jsp

IBM WebSphere Machine Translation
http://www.ibm.com /software/pervasive/ws_translation_server

APPCON
http://appcon4.com

Page 69 of 70

http://www.ibm.com/software/globalization/guidelines/index.jsp
http://www.ibm.com/software/globalization/guidelines/outline.jsp
http://www.ibm.com/servers/enable/site/education/abstracts/9912_abs.html
http://java.sun.com/j2se/corejava/intl/index.jsp
http://java.sun.com/developer/technicalArticles/Intl/IntlIntro/
http://java.sun.com/docs/books/tutorial/i18n/
http://java.sun.com/docs/books/tutorial/i18n/
http://www.javainternationalization.com/blog/
http://java.sun.com/j2se/corejava/intl/reference/faqs/index.html
http://www.ibm.com/software/globalization/icu/index.jsp
http://www.ibm.com
http://appcon4.com

Trademarks and special notices
© IBM Corporation 1994-2006. All rights reserved.

References in this document to IBM products or services do not imply that IBM intends to make
them available in every country.

The following terms are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both:

IBM eServer i5/0S DB2
ibm.com iSeries WebSphere DB2 Universal Database
the IBM logo Redbooks System i5 iSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
Information is provided "AS I1S" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have
used IBM products and the results they may have achieved. Actual environmental costs and
performance characteristics may vary by customer.

Information concerning non-IBM products was obtained from a supplier of these products,
published announcement material, or other publicly available sources and does not constitute
an endorsement of such products by IBM. Sources for non-IBM list prices and performance
numbers are taken from publicly available information, including vendor announcements and
vendor worldwide homepages. IBM has not tested these products and cannot confirm the
accuracy of performance, capability, or any other claims related to non-IBM products.
Questions on the capability of non-IBM products should be addressed to the supplier of those
products.

All statements regarding IBM future direction and intent are subject to change or withdrawal
without notice, and represent goals and objectives only. Contact your local IBM office or IBM
authorized reseller for the full text of the specific Statement of Direction.

Some information addresses anticipated future capabilities. Such information is not intended as
a definitive statement of a commitment to specific levels of performance, function, or delivery
schedules with respect to any future products. Such commitments are only made in IBM
product announcements. The information is presented here to communicate IBM's current
investment and development activities as a good faith effort to help with our customers' future
planning.

Photographs shown are of engineering prototypes. Changes may be incorporated in production
models.

Page 70 of 70

