
AIX 5.2 Performance Tools Update Training Course

1

Table of Contents

Table of Contents..1
About the Authors ..3
Introduction ...4
Tuning AIX: Situation before 5.2..5
Tuning AIX: Situation before 5.2 (continued) ...6
Tuning AIX: Situation before 5.2 (continued) ...7
Tuning AIX: 5.2 goals ...8
AIX 5.2 Tunable Files ..9
AIX 5.2 Tunable Files (continued)..10
AIX 5.2 Tunable Files (continued)..11
Tunable Parameter Types ..12
AIX 5.2 New Tuning Commands ..13
Example of New Tuning Commands ...14
Common Flags of the Tuning Commands ..15
SMITTY or Telnet Tuning..16
SMITTY Tuning: Global Manipulation of Tuning Parameters........................17
SMITTY vmo Panel..18
SMITTY vmo Panel (continued) ...19
Tuning AIX: WebSM VMM Table ..21
Migration and Compatibility...22
Recovery Procedure ...23
Compatibility Mode...24
Performance Tools ...25
/proc Tools ..26
Curt — CPU Usage Reporting Tool ...27
Curt: Usage ...28
Curt System Summary ...29
Curt—Report Sections ...30
Curt System Summary ...31
Curt—Report Sections (continued) ...32
Curt Application Summary Reports ..33
Kproc and Application Pthread Summary ..34
Curt System Calls Summary ..35
Curt Flih Summary..36
Curt Slih Summary..37
Curt Thread Summary ..38
Curt Process Summary ..39
Curt—Trace Hooks ...40
Collecting a Trace for Curt ...41
Collecting a Trace for Curt (continued) ..42
tprof Introduction..43
Tprof: introduction (continued) ...44
tprof: 5.2 version...45
Tprof: usage ..46

AIX 5.2 Performance Tools Update Training Course

2

Tprof: new syntax ...47
Tprof: profile output format ...48
Tprof: microprofile output format..49
Tprof: format changes ..50
tprof: modes of operation ..51
Truss Update ...52
Truss: tracing example...53
Truss: system call counting ..54
The –d option ..55
The –l option..56
The –f Option...57
Other Truss Flags ...58
Perfstat API: introduction ..59
Perfstat API: global interface example..60
Perfstat API: component interface example ...61
Perfstat API: AIX 5.2 ...62
Conclusion ..63
References ..64
Trademarks ...65

AIX 5.2 Performance Tools Update Training Course

3

About the Authors

Nam Keung
Senior programmer

Nam Keung is a senior programmer for IBM in Austin, Texas. He has worked in
the area of AIX ISDN communication, AIX SOM/DSOM development, AIX
Multimedia development, NT Clustering technology, and Java performance. His
current assignment involves helping ISVs in porting, deploying applications,
performance tuning, and education for the pSeries platform.

Luc Smolders
Senior software engineer

Luc Smolders is a senior software engineer currently working in the UNIX
Systems Development organization. He has worked with UNIX-based systems of
various sizes since 1982. In 1989, he joined the IBM AIX Technical support
organization in Belgium. In 1992, he moved to Austin, Texas, where he is still
located. He has been working in the AIX Performance department since 1993,
specializing in tools. He is currently the architect in charge of the performance
tools shipping with AIX, the Performance Toolbox LPP, and tools developed for
internal usage. In the past, his responsibilities also included the IA64 platform,
and for several years, Linux PPC. He regularly teaches AIX Performance
Analysis and Tuning classes. Luc holds a Master’s degree in Computer Science
Engineering from the Catholic University of Louvain in Belgium.

AIX 5.2 Performance Tools Update Training Course

4

Introduction
Hello and welcome to this “AIX 5.2 Performance Tools Update” online course.

The release of AIX® 5.2 is a major and exciting revamp of the AIX family of
performance tools. We have replaced some of the tuning commands and added
new commands. And now, all tuning commands use the same syntax and
provide consistent behavior.

During this course, you will learn the elements of the new AIX 5.2 tuning
framework and the detailed descriptions of each of the new or modified kernel
tuning commands.

Before we look at what is new in AIX 5.2, let’s review the earlier release and its
tuning limitations.

AIX 5.2 Performance Tools Update Training Course

5

Tuning AIX: Situation before 5.2
Prior to AIX 5.2, the performance tools commands were inconsistent and
presented inherent limitations. The ‘range’ and ‘parameter’ values were not
available, there was no validation checking for the new values, the command
parameters were inconsistent, and there was no clean way to make persistent
changes in files that are required to make changes in persistent boots. We will
talk about these points more on the next chart.

But first, let’s understand some fundamental tuning issues prior to 5.2.

The vmtune command is used to modify the Virtual Memory Management
(VMM) parameters that control the behavior of the memory-management
subsystem. The vmtune command resides in the “samples” directory because it
is VMM-implementation dependent. The vmtune code that accompanies each
release of the operating system is tailored specifically to the VMM in that release.
Running vmtune from one release on a server with a different VMM release can
result in an operating server failure.

The schedtune (Scheduler Tunable) command is used to modify CPU scheduler
and VMM processing parameters. The sample program provided for schedtune
was not consistent with vmtune.

The no command (which manages network tuning parameters) and the nfso
(Network File System Option tunable) command were somewhat consistent
between themselves; but were not consistent with vmtune and schedtune.

All of these inconsistencies could make tuning quite a challenge—and if some of
these are used incorrectly (for example, the no command), the server can be
rendered inoperable.

AIX 5.2 Performance Tools Update Training Course

6

• Commands limitations
•Not all commands allow parameter defaults to be reset

•Ranges & parameter units not available online

•Do not always check for valid new values
(may accept changes impossible to make & report bogus values); e.g.:

•no -o arptab_bsiz=value is accepted at any time
(only works before loading inet kernel extension; but it reports the new
value!)

•vmtune -y 1 (to set memory_affinity) is accepted unconditionally
(if bosboot is not called, vmtune does not change anything, but DOES
report the new value!)

•nfso -o nfs_v2_vm_bufs=value accepts any value in range
(sometimes seems not to work because it reports old value; but, in fact,
this parameter value cannot be decreased)

Tuning AIX: Situation before 5.2 (continued)
The earlier releases of AIX had commands limitations. Not all commands had
options to reset parameters back to their default values. And, the ranges and
parameter units were not available online.

Additionally, the earlier releases did not always check for the validity of new
parameter values. Worse, they would often indicate that changes were actually
made, when in fact, they were impossible to make. The result was that bogus
parameter values would occasionally be reported. Look briefly at the three
examples shown in red on this chart and the explanations for why they could be
troublesome.

AIX 5.2 Performance Tools Update Training Course

7

Tuning AIX: Situation before 5.2 (continued)
Making persistent changes in earlier releases was awkward, requiring “tricks”
that would ultimately produce those changes. The only real workaround, in fact,
was to modify the contents of the /etc/rc* files, which are installation-specific, and
which are used to perform normal startup initialization for the AIX server. That
limitation made it difficult to accurately predict settings after rebooting.

AIX 5.2 Performance Tools Update Training Course

8

Tuning AIX: 5.2 goals

•Main goals of 5.2 tuning framework

•Cleanly support "permanent" & "reboot" values

•Command consistency

•Many usability improvements

•New set of SMIT menus & WebSM to manipulate tunables

•Use only supported commands, via common syntax

•Set/reset ‘current’ or ‘after reboot’ value from SMIT, WebSM, or cmd line

•Parameter types, range, units & help are available

•Dependencies between parameters is listed & enforced

•Eliminates need to add calls to tune commands anywhere

•Reboot values applied automatically

•Watch for ‘Setting tunable parameters...complete’ during boot sequence

•If bosboot is needed, it is called automatically

The main goals of the AIX release 5.2 tuning framework have been
accomplished. The new release cleanly supports permanent and reboot values. It
also provides command consistency. Additionally, the new release offers many
usability improvements, including a new set of System Management Interface
Tool (SMIT) menus and a Web-based System Manager (WebSM) that supports
manipulation of tunables. [NOTE: SMIT is a graphical interface that must remote
into the AIX host or, alternatively, SMIT must be a terminal on the host. WebSM
is written in Java and is a graphical user interface.]

All supported commands now use a common syntax. You may set or reset any
“current” value, or “after reboot” value from SMIT, WebSM, or from the command
line. Parameter types, range, units, and help are also available, and
dependencies between parameters are listed and enforced.

You will also appreciate the convenience of having reboot values applied
automatically, thus removing the need to ever add calls to tuning commands.
You will see “Setting tunable parameters – complete” during the boot sequence,
which lets you know that the process of tuning a command has been successfully
accomplished. Furthermore, when a Base Operating System boot (bosboot) is
needed, it will be initiated automatically.

[NOTE: Another online course, entitled “IBM eServer pSeries Logical Partitioning:
Installation & Configuration,” explains the process of installing the WebSM client
in Windows. You can link to this alternate course from the “Hotlinks” section.]

AIX 5.2 Performance Tools Update Training Course

9

AIX 5.2 Tunable Files
In regard to AIX 5.2 tunable files, all tunable parameters are found in the
/etc/tunables/nextboot ASCII file. The nextboot file is automatically applied at
next reboot. The /etc/tunables/lastboot file contains all the tunable parameters
that were set at the last machine reboot, while the log file for any changes that
have been made is restored in /etc/tunables/lastboot.log.

You may now use System Management Interface Tool (SMIT) panels (SMITTY
tuning) or WebSM to manipulate current values and reboot values for all tuning
parameters.

AIX 5.2 Performance Tools Update Training Course

10

• 5 new commands to modify tunables files
– tunsave

– tunrestore

– tuncheck

– tundefault

– tunchange

AIX 5.2 Tunable Files (continued)
Beginning with AIX 5.2, you can make permanent kernel-tuning changes without
having to edit any rc files. This is achieved by centralizing the reboot values for
all tunable parameters in the /etc/tunables/nextboot stanza file. When a server
is rebooted, the values in the /etc/tunables/nextboot file are automatically
applied.

The following commands are used to manipulate the nextboot file and other files
containing a set of tunable parameter values:
• tunsave — Saves all current values to a file, which can include the nextboot

file
• tunrestore — Applies values from a file, either immediately, or at the next

reboot (through the use of the -r flag). When the –r flag is used, the tunrestore
file is validated and is then copied over the current nextboot file.

• tuncheck — Validates a tunables file that has been created manually.
• tundefault — Resets the tunable parameters to their default values.
• tunchange — Updates stanzas in the tunables files.

The preceding commands work on both current and reboot values.

AIX 5.2 Performance Tools Update Training Course

11

•Other files can be stored in /etc/tunables, but only nextboot file
will be applied at boot time

•Files can be copied from another machine, created & manipulated
from SMIT, WebSm, or vi.

AIX 5.2 Tunable Files (continued)
Note that other files can be stored in /etc/ tunables, but only the nextboot
file will be applied at boot time. Furthermore, files can be copied from another
server. Or, they can be created and manipulated from SMIT, WebSM, or with the
vi editor.

[NOTE: the vi editor is a full-screen editor that allows you to edit text on a screen-
by-screen basis.]

AIX 5.2 Performance Tools Update Training Course

12

•Classified in 7 categories of parameters:
•Dynamic: Can be changed at any time
•Static: Can never be changed (read-only parameter)
•Reboot: Can only be changed during reboot
•Bosboot: Can only be changed by running bosboot & then rebooting
•Connect: Changes only apply to future socket connections.

•Changing one or more parameters of this type automatically
restarts inetd.

•Mount: Are only effective for future file system or directory mounts
•Incremental: Can only be incremented (not decremented), except at
boot time

Tunable Parameter Types
The tunable parameters are classified into seven categories.

• The Dynamic parameter can be changed at any time.
• However, the Static parameter is a “read-only” parameter that can never

be changed.
• The Reboot parameter can only be changed during reboot.
• The Bosboot parameter can only be changed by running bosboot, and

must be followed with a server reboot.
• Changes to the Connect parameter only apply to future socket

connections. Changing one or more parameters of this type automatically
restarts inetd. [NOTE: The inetd daemon starts by default each time you
start your server and runs as a background process to provide Internet
service management functions for a network.]

• Mount parameters are only effective for future file system mounts or for
directory mounts.

• Incremental parameters can only be incremented. They can only be
decremented at boot time.

AIX 5.2 Performance Tools Update Training Course

13

•5 tuning commands manipulate tunable parameter values
 Pre-AIX 5.2 AIX 5.2
 no no
 vmtune vmo
 vmtune ioo
 schedtune schedo
 nfso nfso

•vmtune & schedtune
•Replaced by shell scripts calling vmo, ioo & schedo
•Accept all existing flags
•Flags changing Bosboot type parameters

•Can't be used in scripts because prompt to run bosboot was added

•User must call vmo directly

•Flags are accepted, but message is displayed indicating to use vmo directly

AIX 5.2 New Tuning Commands
Five tuning commands are available with AIX 5.2 to manipulate the tunable
parameter values. Some of these commands are new, while others have been
expanded to provide greater and more reliable tuning functionality.

The vmtune and schedtune commands have been replaced by shell scripts that
call the new vmo, ioo, and schedo commands which are now used to more easily
manage memory, I/O, and CPU.

• The vmo command, which specifically replaces part of the functionality of
vmtune, manages virtual memory manager tunable parameters.

• The ioo command, which also replaces parts of the previous function
provided by vmtune, manages the I/O tunable parameters.

• The schedo command manages the CPU scheduler tunable parameters.

These new commands accept all existing flags that have been set by vmtune and
schedtune, so there is no need to “retune” server dynamics that are already
working well. The exception to this is that any flags that change bosboot
parameter types are not supported by the new commands. This is because a
prompt to run bosboot was added to these new commands. Therefore, any flags
that change bosboot type parameters will trigger this prompt. Since this is not
desirable, if you wish to change a bosboot parameter, you must call the vmo
command directly. As a side note, the bosboot flags are technically “accepted” by
the vmo shell script, but you will be given a message indicating that you should
call vmo directly.

AIX 5.2 Performance Tools Update Training Course

14

Example of New Tuning Commands
To change tuning parameters, you must use the -r option. (Remember, the –r
option signifies that the parameter change is to apply to reboot values.)

Here are some examples of tuning parameters using the new commands.

To change parameters, use -r option.

Example of New Tuning Commands

AIX 5.2 Performance Tools Update Training Course

15

•vmo, ioo, schedo, nfso, & no commands have common flags & use same syntax
 command [-p|-r] -o parameter[=value]
 command [-p|-r] -d parameter
 command [-p|-r] -D
 command [-p|-r] -a
 command -h [parameter]
 command -L [parameter]
 command -x [parameter]

Common Flags of the Tuning Commands
All five tuning commands provided with AIX 5.2 (vmo, ioo, schedo, nfso, and no)
have common flags, and use the same syntax. They are available to directly
manipulate the tunable parameter values. This common syntax makes you more
productive as you come up-to-speed on these new commands.

Please review these commands. You will soon be comfortable using them.

• -a displays the values for all tunable parameters.
• -h displays command help or displays help about tunables parameters.
• -d resets tunable to its default value.
• -D resets all tunables parameters to their default values.
• -o sets a tunable parameter to a specific value. The format for doing this is

“Tunable = value.”
• -p makes changes apply to both current and reboot tunable parameter

values.
• -r makes changes apply to reboot values only. (We have mentioned this

earlier in this course.)
• -L displays the tunables parameter characteristics so you can examine them.
• -x displays the tunables parameter characteristics in spreadsheet format,

again, so that you can examine them, or document them for later reference.

AIX 5.2 Performance Tools Update Training Course

16

SMITTY or Telnet Tuning
System Management Interface Tool (SMIT) panels and Web-based System
Manager are also available to manipulate current and reboot values for all tuning
parameters, as well as the files in the /etc/tunables directory.

To start the SMIT panels that manage AIX kernel tuning parameters, use the
SMIT fast path smitty tuning. This graph is a view of the tuning panel. Select
Save/Restore All Kernel & Network Parameters to manipulate all tuning
parameter values at the same time. To individually change tuning parameters
managed by one of the tuning commands, select any of the other lines.

AIX 5.2 Performance Tools Update Training Course

17

Save/Restore All Kernel Tuning Parameters
Move cursor to desired item and press Enter
 View Last Boot Parameters
 View Last Boot Log File
 Save All Current Parameters for Next Boot
 Save All Current Parameters
 Restore All Current Parameters from Last Boot Values
 Restore All Current Parameters from Saved Values
 Reset All Current Parameters To Default Value
 Save All Next Boot Parameters
 Restore All Next Boot Parameters from Last Boot Values
 Restore All Next Boot Parameters from Saved Values
 Reset All Next Boot Parameters To Default Value

SMITTY Tuning: Global Manipulation of Tuning
Parameters
The main panel to manipulate all tunable parameters by sets looks similar to the
chart shown here.

AIX 5.2 Performance Tools Update Training Course

18

•From the main tuning panel…

 Tuning Kernel & Network Parameters

Move cursor to desired item and press Enter

 Save/Restore All Kernel & Network Parameters
 Tuning Scheduler and Memory Load Control Parameters
 Tuning Virtual Memory Manager, File System and
 Logical Volume Manager Params
 Tuning Network Parameters
 Tuning NFS Parameters
 Tuning I/O Parameters

SMITTY vmo Panel
From the main tuning panel, let’s select Tuning Virtual Memory Manager, File
System and Logical Volume Manager Params. (All the panels for all five
commands behave the same way.)

AIX 5.2 Performance Tools Update Training Course

19

SMITTY vmo Panel (continued)
Here is the main panel used to manipulate parameters managed by the vmo
command. Let’s look at the interaction possibilities between parameter types and
the different SMIT sub-panels shown on this screen capture.

List all characteristics
of current parameters

Lists current, default, reboot, limit values, unit, type and
dependencies. This is the output of a tuning command called
with the vmo -L option.

Change/show current
parameters

Displays/changes current parameter value, except for
parameter types Static, bosboot, & Reboot, which are
displayed with no surrounding square brackets to indicate they
cannot be changed.

Change/show
parameters for next
boot

Displays values from and rewrites updated values to nextboot
file. If needed, bosboot is proposed. Only parameter type
Static cannot be changed (no brackets around their value).

Save current para-
meters for next boot

Writes current parameters in nextboot file. Bosboot will be
proposed if parameter of type bosboot were changed.

Reset current param’s
to default value

Resets current parameters to default values, unless they need
a bosboot plus reboot, or reboot (bosboot and reboot type).

Reset nextboot
parameters to default
value

Clears values in the nextboot file, and proposes bosboot if
any parameter of type bosboot was different from its default
value.

•From the “Tuning Virtual Memory Manager, File System and Logical
Volume Manager Params” panel…

 Tuning Virtual Memory Manager , File System and
Logical Volume Manager Params

Move cursor to desired item and press Enter

List All Characteristics of Current Parameters
Change / Show Current Parameters
Change / Show Parameters for Next Boot
Save Current Parameters for Next Boot
Reset Current Parameters to Default value
Reset Next Boot Parameters To Default Value

AIX 5.2 Performance Tools Update Training Course

20

Here are some additional smit subpanels…

Change reboot value When used in combination with -o, -d or -D, vmo –r makes

changes apply to reboot values, for example, turns on the
updating of the /etc/tunables/nextboot file. If any parameter of
type Bosboot is changed, the user will be prompted to run
bosboot. When used with -a or -o without specifying a new
value, next boot values for tunables are displayed instead of
current values.

Save tunable
parameters in a file

The tunsave command saves the current state of tunable
parameters in a file. The –F Filename flag specifies the name
of the file where the tunable parameters are saved (e.g.,
“nextboot”). The –a flag specifies that even tunable parameters
that are set to their default value are saved. The –t vmo option
specifies that the vmo command is to be used to update the
parameter(s).

Reset all tunable
parameter to their
default value

The tundefault command can be used to reset all AIX tunable
parameters to their default value, except for parameters of type
Bosboot and Reboot, and parameters of type Incremental
that are set at values bigger than their default value. The –t
vmo option specifies that the vmo command is to be used to
update the parameters. The -r flag specifies that the reset does
not occur until the next reboot.

AIX 5.2 Performance Tools Update Training Course

21

Editable columns

Tuning AIX: WebSM VMM Table
There is a tuning table that allows all the characteristics of the tunable
parameters to be viewed at a glance. The table has two editable columns,
Current Value and Next Boot Value. Each cell in these two columns is an
editable combobox, with only one predefined value of Default, for the capture of
“new value” for a parameter. Data entered in these columns is validated when
pressing ENTER.

AIX 5.2 Performance Tools Update Training Course

22

•When migrating to AIX 5.2 from previous AIX releases…
•Tuning commands are automatically set to run in Compatibility
mode.

•When a system is initially installed with AIX 5.2…
•It is automatically set to run in Tuning mode.

•Mode is controlled by ‘sys0’ attribute called ‘pre520tune’
•Set to run in Compatibility mode, or

•Disable to run in AIX 5.2 mode.

•To retrieve current ‘pre520tune’ attribute setting:
•lsattr -E -l sys0

•To change current ‘pre520tune’ attribute setting:
•chdev -l sys0 -a pre520tune=enable
•Or, use SMIT of WebSM to change current settings

Migration and Compatibility
Let’s take a look at some points to be considered in migrating from a prior
release of AIX performance tools to AIX 5.2.

• When servers are migrated to AIX 5.2 from previous releases, the tuning

commands are automatically set to run in Compatibility mode.
• When a server is initially installed with AIX 5.2, it is automatically set to run in

AIX 5.2 tuning mode.
• The mode is controlled by the ‘sys0’ attribute called ‘pre520tune,’ which can

be set to enable running in Compatibility mode, and can be disabled to run in
AIX 5.2 mode.

• To retrieve the current setting of the ‘pre520tune’ attribute, run the “List
Attribute Characteristics command shown in red on this chart. [NOTE: lsattr
displays attribute characteristics and possible values of attributes for devices
in the server, while the -l parameter specifies the device logical name.]

• To change the current setting of the ‘pre520tune’ attribute, run the “Change
Device characteristics” command shown in green on this chart. [NOTE: chdev
changes the characteristics of a device in the server, while the -l parameter
specifies the device logical name.]

• Or, you can use SMIT or Web-based System Manager to change the
current settings of the ‘pre520tune’ attribute.

AIX 5.2 Performance Tools Update Training Course

23

•If the system become unstable with a given nextboot file:

•Put server into maintenance mode.

•Make sure pre520tune ‘sys0’ attribute is set to ‘disable.’

•Delete nextboot file.

•Run Bosboot command.

•Move tunable line to be last in /etc/inittab file, & reboot.

•These actions will set server back to Default mode.

Recovery Procedure
The recovery procedure to reset to Default Mode is straightforward.

If the server becomes unstable with a given nextboot file, put it into Maintenance
mode, make sure the pre520tune “sys0” attribute is set to disable, delete the
nextboot file, run the Bosboot command, move the tunable line to be last in the
/etc/ inittab file, and reboot.

These actions should guarantee that all tunables are set back to Default mode.

AIX 5.2 Performance Tools Update Training Course

24

•Compatibility issue:

•Can only set Reboot & Bosboot parameters with –r

•Including from rc.net

•Solution

•Pre-5.2 compatibility mode

•Set automatically when migrating from 5.1

•Controlled by new pre520tune sys0 attribute

•Retrieve current setting:

•lsattr -E -l sys0 | grep pre520tune

•Change setting:

•chdev -l sys0 -apre520tune=disable|enable

•Also available from smitty chgsys or WebSM

•Two modes

•pre520tune=disable : default mode for new 5.2 installation

•pre520tune=enable : default mode after migration to AIX 5.2

Compatibility Mode
The Reboot and Bosboot parameters can no longer be set without using –r
(which is the flag that refers to reboot values). This new stipulation is true even
when specifying parameters from the rc.net file.

Here is the detailed solution to overcoming the compatibility issue. The pre-AIX
5.2 compatibility mode is set automatically, when migrating from 5.1, and it is
controlled by the new ‘pre520tune sys0’ attribute.

To retrieve the current setting, use the ”List Attribute Characteristics” command,
as shown in red on this chart. To change setting, use the “Change Device
Characteristics” command, also shown in green on this chart. [NOTE: As
mentioned earlier in this course, you can also retrieve and make changes to
these settings via SMITTY chgsys or WebSM.]

Note that you have two modes in which to solve the compatibility issues. You can
disable the default mode for the new 5.2 installation, or you can enable the
default mode after migration to AIX 5.2.

AIX 5.2 Performance Tools Update Training Course

25

•For AIX 5.2
•lslpp - lI perfagent.tools bos.perf.proctools bos.perf.tools bos.perf.tune
bos.perf.diag_tool bos.perf.perfstat bos.sysmgt.trace

•For AIX 5.1
•lslpp -lI perfagent.tools bos.sysmgt.trace bos.acct bos.perf.tools bos.adt.samples

•Performance Reporting and Analysis Commands
•curt Reports CPU utilization for each kernel thread

•truss Trace a process's system calls

•tprof Shows CPU usage by every AIX process ID & name

Performance Tools
Performance tools for the system environment fall into two general categories:

• Those that tell you what is occurring.
• Those that let you do something about it.
• And, there are a few tools that do both.

The performance-related commands are packaged as part of the AIX 5.2
perfagent.tools, bos.perf.proctools, bos.perf.tools, bos.perf.tune,
bos.perf.diag_tool, bos.perf.perfstat, and bos.sysmgt.trace filesets that are
shipped with the Base Operating System. You can determine whether all the
performance tools have been installed by running one of the “List LPP” (lslpp)
commands shown in this chart.

Performance reporting and analysis commands give you information on the
performance of one or more aspects of the server, or on one or more of the
parameters that affect performance. Let’s talk about a few of these commands
you will certainly be using:

• curt reports CPU utilization for each kernel thread (starting with AIX 5.2).
• truss traces a server’s calls in one or more processes. [NOTE: In AIX 5.2,

all base system call parameter types are now recognized. In AIX 5.1, only
about 40 system calls were recognized.]

• tprof uses the trace facility to report the CPU consumption of kernel
services, library subroutines, application-program modules, and individual
lines of source code in the application program.

AIX 5.2 Performance Tools Update Training Course

26

•12 simple utilities in AIX
•Similar to tools provided on Solaris

•Useful for debugging & analyzing process behavior

•Display information on process using /proc data
•Data is all-binary, so not easily accessible

proctree procstack procmap
procldd procflags procsig
proccred procfiles procwdx
procstop procrun procwait

•/proc is also enhanced with fd subdirectory & cwd file

/proc Tools
There are 12 simple utilities, similar to tools provided on Sun™ Solaris™, that
are very useful for debugging and analyzing process behavior. The /proc file
system gives access to information about the current state of processes and
threads, but is provided in binary form—so it is not easily accessible. The /proc
tools commands provide ASCII reports based on some of the available
information, but in a much more readable format.

The /proc tools are utilities that exercise features of the /proc file system. The
/proc files contain data that presents the state of processes and threads in the
server, even as that state is constantly changing.
• proctree displays the process tree containing the specified process IDs or users.
• procstack displays the hexadecimal addresses and symbolic names for each

of the stack frames of the current thread in process.
• procmap displays a process address map.
• procldd displays a list of libraries loaded by a process.
• procflags displays process tracing flags, and pending and holding signals.
• procsig lists the signal actions for a process.
• proccred prints a process credentials.
• procfiles prints a list of open file descriptors.
• procwdx prints the current working directory for a process.
• procstop stops a process.
• procrun restarts a process.
• procwait waits for all of the specified processes to terminate.

The /proc files have been enhanced further in AIX 5.2 with the ability to access
the file descriptor (fd) subdirectory and Current Working Directory (cwd) file
information.

AIX 5.2 Performance Tools Update Training Course

27

•Curt provides detailed CPU usage information on system, processor,
processes, and kernel threads—based on a trace and a name file

•Report sections include:

•System-level and per-processor summary

•Time is sorted into application, system calls, kproc, flihs, slihs,
dispatch, and idle

•Thread, process, and program execution summary

•kproc execution summary

•System call summary

•flih & slih reports (count, total, min, max & average CPU time)

•process and thread detailed reports

•System call options

•Elapsed time

•Errors

Curt — CPU Usage Reporting Tool
CURT, a trace post-processing tool, summarizes system utilization. It provides
detailed CPU usage information on server, processor, processes, and kernel
threads based on a trace and a name file. Its input is a binary AIX 5 system trace
file. The output consists of CPU and elapsed-time reporting on processes and
threads, and time spent in first- and second-level interrupt handlers.

CURT is contained in the bos.perf.tools fileset. It allocates all the time for each
CPU in a trace to one of six states:
• Application — This state is for user space execution and includes kprocs

other than wait.
• Kernel — This state is for system call (SVC) execution events.
• Flih — This state involves first-level, interrupt-handler (flih) execution.
• Slih — This state includes second-level interrupt-handler (slih) execution.
• Dispatch — This state involves dispatch logic execution.
• Wait — This state includes waitproc execution.

AIX 5.2 Performance Tools Update Training Course

28

Syntax:
curt -i inputfile [-o outputfile] [-n gennamesfile] [-m trcnmfile]
[-a pidnamefile] [-f|-l timestamp] [-ehpst]

Flags:
-i inputfile Specify input AIXTrace file to be analyzed.
[-o outputfile] Specify output file (default is stdout).
[-n gennamesfile] Specify a names file produced by gennames.
[-m trcnmfile] Specify a names file produced by trcnm.
[-p] Output detailed process information.
[-t] Output detailed thread information.
[-P] Output detailed pthread information (52B and up)
[-e] Output elapsed time info. for system calls.
[-s] Output info. about errors returned by system calls.
[-f timestamp] Start processing trace at "timestamp" seconds.
[-l timestamp] Stop processing trace at "timestamp" seconds.
[-a pidnamefile] Specify a pid->process name mapping file.
[-h] Display usage text (this information).

Curt: Usage
The syntax for correctly using the curt command is shown in red on this chart.

As many as 13 different flags are available with the Curt command, providing a
great deal of flexibility in meeting your need to better understand exactly how
your server environment is behaving. The flags related to this command are
explained in this chart.

AIX 5.2 Performance Tools Update Training Course

29

Curt System Summary
The time and date when this particular curt command was run is shown here at
the top of this chart. It includes a display of the syntax of the curt command line
that produced the report.

The lower part of this chart shows a system summary. This section prints out the
times and percentage of total time the server (all CPUs) spent in various states.
The times are application (user) mode time, kernel (supervisor) mode time, time
spent in Flihs, time spent in Slihs, time spent running the dispatcher code, time
spent in the dispatcher while dispatching the idle process, total busy time, and
total idle (waitproc) time.

The processing categories circled in red on the right of this chart will be
discussed on the next page.

AIX 5.2 Performance Tools Update Training Course

30

•System-level and per-processor summaries

• Processing categories in System and Processor Summary
sections

• Processor Summary sections

•application ●system calls

•kproc ●flihs

•slihs ●dispatch

•Idle ●Total

Curt—Report Sections
The possible execution modes or processing categories in the System and
Processor Summary section of the Curt report are interpreted as follows:

APPLICATION Sum of times spent by all processors in User (that is, non-

privileged) mode.
SYSCALL Sum of times spent by all processors doing System Calls. This is

the portion of time a processor spends executing in the kernel
code providing services directly requested by a user process.

KPROC Sum of times spent by all processors executing kernel
processes other than the IDLE process. This is the portion of
time that a processor spends executing specially created
dispatchable processes that only execute kernel code.

FLIH Sum of times spent by all processors executing FLIHs.
SLIH Sum of times spent by all processors executing SLIHs.
DISPATCH Sum of times spent by all processors executing the AIX dispatch

code. This sum includes the time spent dispatching all threads
(that is, it includes dispatches of the IDLE process).

IDLE
DISPATCH

Sum of times spent by all processors executing AIX dispatch
code where the dispatched process was IDLE. Because the
DISPATCH category includes the IDLE DISPATCH category's
time, the IDLE DISPATCH category's time is not separately
added to calculate CPU(s) busy time or TOTAL (see below).

CPU(s) busy
time

Sum of times spent by all processors executing in
APPLICATION, SYSCALL, KPROC, FLIH, SLIH, and
DISPATCH modes.

IDLE Sum of times spent by all processors executing IDLE process.
TOTAL Sum of CPU(s) busy time and IDLE.

AIX 5.2 Performance Tools Update Training Course

31

Curt System Summary
A per-processor summary follows the System Summary, and is essentially the
same information, but it is broken down on a processor-by-processor basis.

The processing categories circled in red on the right of this chart will be
discussed on the next page.

AIX 5.2 Performance Tools Update Training Course

32

•System-level and per-processor summaries (continued)

•Processing categories in System & Processor Application
Summary sections

•Pthread ●pdispatch

•Pidle ● application

•other

Curt—Report Sections (continued)
The possible execution modes or processing categories in System and
Processor Application Summary sections of the Curt report are interpreted as
follows:
PTHREAD Sum of times spent by all pthreads on all processors in traced

pthread library calls.
PDISPATCH Sum of times spent by all pthreads on all processors executing

the libpthreads dispatch code.
PIDLE Sum of times spent by all kernel threads on all processors

executing the libpthreads vp_sleep code.
OTHER Sum of times spent by all pthreads on all processors in non-

traced user mode.
APPLICATION Sum of times spent by all processors in User (that is, non-

privileged) mode.

AIX 5.2 Performance Tools Update Training Course

33

Curt Application Summary Reports
The curt command will generate information about the amount of CPU time spent
in application and system call (syscall) mode. This time is expressed both in
milliseconds and as a percentage of total CPU time—by thread, process, and
process type. Also included in these summary reports are the number of threads
per-process and per-process-type.

AIX 5.2 Performance Tools Update Training Course

34

Kproc
summary

Pthread
summary

Kproc and Application Pthread Summary
The Kproc Summary (by TID, or Thread ID) generates information about the
amount of CPU time spent executing each kernel process, including the idle
process. CPU time is expressed in both milliseconds and as a percentage of the
total CPU time. This summary also shows an output of all kernel process threads
(and their CPU consumption) that were running on the server during the time of
trace collection.

The Application Pthread Summary (by PID, or Process ID) shows an output
of all the multi-threaded processes that were running on the server during trace
collection and their CPU consumption, and that have spent time making pthread
calls. The process that consumed the most CPU time during the trace collection
is at the beginning of the list.

This information is also expressed in milliseconds and as a percentage of total
CPU time.

[NOTE: The total processing time is split into two categories, "operation" and
"kernel," which loosely correspond to "syscall" and "application" for a process
which always runs in kernel code. Each kproc thread is identified by name, PID,
TID, and type of kproc, if known.]

AIX 5.2 Performance Tools Update Training Course

35

Curt System Calls Summary
This report shows the completed system calls. It includes the name and address
of the system call, the number of times the system call was executed, and the
total CPU time (expressed in milliseconds and as a percentage). It also shows
the average, minimum, and maximum number of times the system call was
running.

You can also see the errors that were returned by the system calls and a
summary of the pending system calls.

AIX 5.2 Performance Tools Update Training Course

36

Curt Flih Summary
The First level interrupt handler (FLIH) summary lists all first-level interrupt
handlers that were called during the monitoring period, as seen in the example
shown here.

AIX 5.2 Performance Tools Update Training Course

37

Curt Slih Summary
The second level interrupt handler (Slih) summary lists all second-level interrupt
handlers that were called during the monitoring period, as shown in this chart.

AIX 5.2 Performance Tools Update Training Course

38

Curt Thread Summary
If you specify the –t flag in the CURT command, you will get a detailed report on
thread status. This report will include: the amount of time the thread was in
application and kernel mode, what system calls the thread made, processor
affinity, the number of times the thread was dispatched, and the CPU to which it
was dispatched.

AIX 5.2 Performance Tools Update Training Course

39

Curt Process Summary
If you specify the –p flag in the CURT command, you will be able to view detailed
process information. This report will include the count for the number of times the
process ran and the total amount of time (milliseconds and percentage) that was
utilized to run all the instances of that process. You will further be able to see the
average, minimum, and maximum time committed to running each instance of
the process. You can even see the server address space where the process was
executed.

AIX 5.2 Performance Tools Update Training Course

40

Trace Hooks

•trace hooks necessary
•100,101,102,103,104,106,10C,119,134,135,139,200,210,38F,465

•for kernel monitoring
•+605,609

•pthreads monitoring, also needLIBPATH=/usr/lib/cc/perf
•52B and up

•trace -J curt (trace hookids group) can also be used
•name mapping options

•trcnm output
•gennames output

Curt—Trace Hooks
A raw, or unformatted, system trace from AIX Version 4 or AIX Version 5 is read
by the curt command to produce summaries, as well as first- and second-level
interrupt handlers. This chart shows the minimum trace hooks required for the
curt command. Using only these trace hooks will limit the size of the trace file.
However, other events on the server may not be captured if you only use these
trace hooks. This is significant if you intend to analyze the trace in more detail. Of
particular interest here are trace hooks 119 and 135, which are used to report on
the time spent in the exit system call; and trace hooks 134, 139, 210, and 465,
which are used to keep track of TIDs, PIDs, and process names.

Trace hooks 605 and 609 are used to report on the time spent in the pthreads
library.

Trace -J curt (trace hookids group) can also be used.

You can collect the kernel names by using the trcnm command or the gennames
command. This is not required for the curt command to run successfully.
However, if you provide one or both of these files, the curt command will output
names for system calls and interrupt handlers instead of merely indicating their
addresses. The output of trcnm is typically much smaller than the output of
gennames since it maps only the kernel names and not the kernel extensions or
shared libraries. Curt does not use the extra information and will run somewhat
faster without it.

AIX 5.2 Performance Tools Update Training Course

41

Collecting a Trace for Curt
The trace daemon collects data for a curt report. The default report created by
the curt command is shown at the top of this chart in red. An example of how you
might collect a trace as input to the curt command is also shown here.

Let’s review the trace options you can invoke. The -a option runs the trace
daemon asynchronously. The -d option defers data collection until trcon is called.
The -f option causes data collection to stop when the in-memory buffer is filled. If
this is an SMP system, the -C all option creates trace buffers for every CPU.
Otherwise you risk overfilling a single set of trace buffers, or at least force the
CPUs to contend for access to the shared buffers. The -T and -L options override
the default trace buffer and trace log file sizes. By default, all trace events are
collected, which can quickly fill up the trace buffer (and trace log file) with data
that is not needed. Use the -J curt option to capture the events processed by
curt.

You start and stop trace data collection using “trcon; program; trcoff.” The trcon
command starts the trace data collection; the program is run, after which the
trace data collection is stopped with trcoff. You always trace a single contiguous
time interval for curt.

AIX 5.2 Performance Tools Update Training Course

42

Collecting a Trace for Curt (continued)
You will collect kernel names with the trcnm command shown here in red. The
output of trcnm is typically much smaller than the output of gennames since it
maps only the kernel names and not the kernel extensions or shared libraries.
curt does not use the extra information and will run somewhat faster without it.

You can stop the trace with trcstop, and recombine the individual trace files (if the
-C all option has been used) with trcrpt.

AIX 5.2 Performance Tools Update Training Course

43

tprof Introduction
The tprof command is a standard UNIX® performance tool that also provides a
detailed profile of CPU usage by process ID and name. It further profiles at the
application level, routine level, and even to the source statement level. It delivers
both a global view and a detailed view. The tprof command can profile kernel
extensions, stripped executable programs, and stripped libraries. It will do
subroutine-level profiling for most executable programs on which the stripnm
command will produce a symbol table.

tprof profiles only CPU activity; it does not profile other system resources, such
as memory or disks. It uses the system trace facility. Only one user at a time can
execute the trace facility. Therefore, only one tprof command can be executing at
one time.

tprof can charge CPU time to object files, processes, threads, subroutines (user
mode, kernel mode, and shared library), and even to source lines of programs or
individual instructions. Charging CPU time to subroutines is called profiling, and
charging CPU time to source program lines is called microprofiling.

For subroutine-level profiling, the tprof command can be run without modifying
executable programs. (No recompilation with special compiler flags is
necessary). This is still true if the executables have been stripped, unless the
back tables have also been removed. However, recompilation is required to get a
microprofile, unless a listing file is already available.

AIX 5.2 Performance Tools Update Training Course

44

Tprof: introduction (continued)

As you can see, there were many usability issues with the AIX 5.1 version of this
tool. But instead of dwelling on these deficiencies, let’s look at what has changed
with the AIX 5.2 release.

AIX 5.2 Performance Tools Update Training Course

45

tprof: 5.2 version
The tprof command has been completely rewritten for AIX 5.2; it is much faster
and provides more function. This command is a useful tool for anyone with a
Java™, C, C++, or FORTRAN program that might be CPU-bound and who wants
to know which sections of the program are most heavily using the CPU.

Here’s a brief list of the enhancements with AIX 5.2:

• Support for multiple program profiling in one pass, including microprofiling.
• Full support for threads. Reports can include a list of threads, all threads

within one or more processes on the server.
• New optional listing file annotation (instruction-level annotation).
• New optional detailed profiling report (address-level report).
• New front-end options to collect trace and name mapping information.
• Fully functional re-postprocessing mode supporting online and offline data

collection modes transparently.
• New symbol mapping file format replaces gennames format.
• Increased speed of various other usability improvements.

AIX 5.2 Performance Tools Update Training Course

46

Tprof: usage

The text shown in red on this chart indicates the syntax for the tprof command.
The parameters for this command are shown on this chart, along with an
explanation of each of them.

A few additional points to remember are that all the list type inputs are separated
by commas except for pathlist. Pathlists are separated by a colon. Multi-CPU
profiling mode will be automatically disabled while running in realtime mode.
Microprofiling will be automatically disabled if multi-CPU profiling is turned on.
Specified Log Buffer size will be omitted while running in realtime mode. If the -x
option is specified without the -A option, then tprof runs in realtime mode.

[NOTE: If the -x option is specified with -A option, the tprof runs in Automated
offline mode. If the -x option is omitted, then tprof runs in post-processing mode
or manual offline mode.]

AIX 5.2 Performance Tools Update Training Course

47

Tprof: new syntax
The new tprof syntax uses the rootstring concept to name all input and output
files. Here are the possible files that will be created, each is always announced:

• rootstring.trc is a raw trace file.
• rootstring.syms is a symbol file.
• rootstring.prof is a profile report file.
• rootstring.sourcefilename.mprof is a microprofiling report file for the source

file name.
• rootstring.ctrc is the cooked trace file and is the equivalent to

binary __trc_rpt2.
• rootstring.csyms is a cooked symbol file that is an ASCII file which only

needs symbols.
• default rootstring is the program name file—when -x is used.

You specify search paths for object and source files (-S and –M, respectively).
The default search path is “both” and is represented by the $PATH parameter.

With this new syntax, you will notice more flexibility. For instance, if the -g flag is
specified, and neither the listing or source is available, tprof will still produce
annotations as a list of line numbers. If a listing is available, but the source is
lacking, tprof will annotate line numbers and instructions. If the -g or -qlst flag is
used and the source is available, tprof will annotate the source lines and
instructions.

AIX 5.2 Performance Tools Update Training Course

48

Tprof: profile output format

The output format for the results of the tprof command includes the file name—
which is rootstring.prof. Next, there is a global summary section, which is always
present. It contains a summary of CPU usage by process name and by threads
(tid).

Some optional global detailed report sections pertain to the execution of all
processes on the server. Each of these are listed on this chart.

Finally, there are also some optional process and threads report(s). Basically,
there is one report for each process or thread—each containing the same
subsections as in the global detailed report. Similarly, the printing of the
subsections is controlled by the same flags that are listed on this chart for the
global detailed report sections.

AIX 5.2 Performance Tools Update Training Course

49

Tprof: microprofile output format

The output format for microprofile starts with the file name, which as mentioned
two charts previously, rootstring.sourcefilename.mprof. The full path name of the
source file is provided, as is a hot lines list. The hot lines list is a sorted list of
source line numbers, along with samples. A percentage of time is associated with
each line. If process-level or thread-level detail was selected, additional lines will
be provided, along with a breakdown for each thread or process. These
additional lines will also include Pid and, optionally, Tid.

The microprofile output will show annotated source listings of functions. This
listing is ordered by relative hotness. Further, only those functions with samples
are listed. Two levels of annotations are provided. The first is source line
annotation—even if the source file is unavailable. Second, there is instruction line
annotation—if the listing file is available.

We’ll talk more about these annotations on the next chart…

AIX 5.2 Performance Tools Update Training Course

50

Tprof: format changes

The tprof output, as mentioned, is provided in a summary manner where tick
counts are replaced by percentages. This gives you a better perspective of the
CPU resource being used by a particular process. On routinely formatted reports,
what is no longer included are the “Ticks,” “Address,” and “Bytes” columns.
However, if you need this information, you can invoke the –z flag to return to the
old tprof reporting format.

Notice the first segment of tprof output shown here… it comes from the AIX 5.1
version of tprof. The gennames parameter was used, which includes a mix of
decimal and hexadecimal numbers. The second segment shown here was
produced by the AIX 5.2 tprof command using the gensyms parameter. It is
cleaner, all in hexadecimal—in fact, the format resembles nm.

One final note, the default AIX 5.2 stripnm format is the gensyms format. Again,
the –z flag is used to turn on the older gennames format.

AIX 5.2 Performance Tools Update Training Course

51

tprof: modes of operation
In AIX 5.2, tprof can run in the following four modes.

In realtime mode, tprof collects data while executing a program.
• tprof –x generates a program.prof file that contains only a summary section.
• tprof –uske –x generates the file program.prof with all sections (summary,

along with use, shared libraries, kernel, and extension).

In Manual offline mode, tprof is used for the post-processing trace and symbol
file. It reads already generated AIX trace data and produces tprof output.
• For tprof –r rootstring –juske, the input is rootstring.trc (from trace) and

rootstring.syms (from gensyms). The output is rootstring.prof with all sections.

In automated offline mode, tprof starts an AIX trace in the background and logs
data to a file. When completed, tprof uses the trace data to produce tprof output.
• tprof –A –x generates the output program.trc, program.syms, and

program.prof (with only the summary section). The program.syms file
contains name mapping information for all the loaded programs, libraries, and
kernel extension. The program.trc file is simply a trace output file.

In post-processing mode, tprof can post-process data already collected to
produce different reports, such as:
• Generate a new report from cooked files.
• Postprocess the cooked files into the AIX 5.1 old format
• Postprocess the cooked files with more details, including subsection details.

AIX 5.2 Performance Tools Update Training Course

52

Truss Update
AIX 5L™ supports the truss command, which allows you to trace system calls
executed by a process, as well as record the received signals and the
occurrence of server faults.

The application that is to be traced is either specified on the command line of the
truss command or truss can be attached to one or more already running
processes by using the -p flag with a list of process IDs.

With AIX 5.2, the truss command can now add timestamps on each output file. It
can also trace library calls. For each call, it prints parameters and returns code
values. A subset of libraries and/or routines can be selected or excluded from
tracing.

AIX 5.2 Performance Tools Update Training Course

53

Truss: tracing example
You can look at this sample trace that has been created with the truss command.
The –u flag indicates that the truss command should dynamically trace loaded
user-level function calls. Here, we want to trace the malloc() function call in the
libc.a library while running the List (ls) command.

Notice the output isolated in the red blocks on this graphic.

AIX 5.2 Performance Tools Update Training Course

54

Truss: system call counting
This sample truss command contains a –c flag, which indicates that the
command should count traced system calls, faults, and signals… rather than
displaying the trace results line by line. A summary report is produced after the
traced command terminates or when truss is interrupted.

[NOTE: If the –f flag has also been used, the counts would have included all
traced Syscalls, Faults, and Signals for child processes.]

AIX 5.2 Performance Tools Update Training Course

55

The -d option
truss -d ls

0.0028: execve("/usr/bin/ls", 0x2FF22980, 0x2FF22988) argc: 1
0.0388: sbrk(0x00000000) = 0x20000EC8
0.0399: sbrk(0x00000008) = 0x20000EC8
0.0410: sbrk(0x00010010) = 0x20000ED0
0.0421: getuidx(4) = 0
0.0429: getuidx(2) = 0
0.0437: getuidx(1) = 0
0.0445: getgidx(4) = 0
0.0454: getgidx(2) = 0
0.0462: getgidx(1) = 0
0.0472: __loadx(0x01000080, 0x2FF1E740, 0x00003E80, 0x2FF226D0,7130
0.0486: __loadx(0x01000180, 0x2FF1E730, 0x00003E80, 0xF0335458,1398
0.0516: __loadx(0x07080000, 0xF0335428, 0xFFFFFFFF, 0x20011398,2238
0.0523: __loadx(0x07080000, 0xF0335368, 0xFFFFFFFF, 0x20011398,2244
.....

The -d option specifies display of a timestamp in seconds relative with each line of truss output.

The –d option
Here is yet another sample truss command. The -d option shown here specifies
that a timestamp will be included with each line of output. The time displayed is in
seconds relative to the beginning of the trace. The first line of the trace output will
show the base time from which the individual time stamps are measured. By
default, timestamps are not displayed.

AIX 5.2 Performance Tools Update Training Course

56

The -l option
truss -l ls

22483: execve("/usr/bin/ls", 0x2FF22980, 0x2FF22988) argc: 1
22483: sbrk(0x00000000) = 0x20000EC8
22483: sbrk(0x00000008) = 0x20000EC8
22483: sbrk(0x00010010) = 0x20000ED0
22483: getuidx(4) = 0
22483: getuidx(2) = 0
22483: getuidx(1) = 0
22483: __loadx(0x01000080, 0x2FF1E740, 0x00003E80, 0x2FF226D0, 0x00000000) = 0xD0077130
22483: __loadx(0x01000180, 0x2FF1E730, 0x00003E80, 0xF0335458, 0xF0335388) = 0x20011398
22483: __loadx(0x07080000, 0xF0335428, 0xFFFFFFFF, 0x20011398, 0x00000000) = 0x20012238
22483: __loadx(0x07080000, 0xF0335368, 0xFFFFFFFF, 0x20011398, 0x00000000) = 0x20012244
22483: getuidx(4) = 0
22483: getuidx(2) = 0
.....

The -l option specifies that the thread ID for the responsible thread is to be included in the truss output for
each event reported.

The –l option
This sample truss command uses the –l (lowercase “L”) option. This option is
invoked in order to cause the display of the id (i.e., the thread id) of the
responsible Lightweight Processing (LWP) process along with the truss output.
By default, the LWP id is not displayed in the output.

[NOTE: The lightweight processes mentioned in truss are actually kernel
threads.]

AIX 5.2 Performance Tools Update Training Course

57

The -f option
truss -f ls

19854: execve("/usr/bin/ls", 0x2FF22980, 0x2FF22988) argc: 1
19854: sbrk(0x00000000) = 0x20000EC8
19854: sbrk(0x00000008) = 0x20000EC8
19854: sbrk(0x00010010) = 0x20000ED0
19854: getuidx(4) = 0
....
19854: kwrite(1, 0xF0377D18, 22) = 22
19854: kwrite(1, 0xF0377D18, 1) = 1
19854: kwrite(1, 0xF0377D18, 6) = 6
19854: kwrite(1, 0xF0377D18, 19) = 19
19854: kwrite(1, 0xF0377D18, 24) = 24
19854: kwrite(1, 0xF0377D18, 15) = 15
19854: kwrite(1, 0xF0377D18, 1) = 1
19854: kfcntl(1, F_GETFL, 0x00000001) = 2
19854: close(1) = 0
19854: kfcntl(2, F_GETFL, 0x00000000) = 67108865
.....

The -f option causes truss to follow all children of the specified process or command (including signal,
faults, and system calls). By default, truss only reports on actions of first level commands or processes.
The process id is included with each line of truss output to show which process executed the system call,
received the signal, or incurred the fault

The –f Option
This sample truss command includes the –f option. This option causes truss to
follow all children created by the fork system call and includes their signals,
faults, and system calls in the trace output. Normally, however, only the first-level
command or process is traced. When the -f flag is specified, the process id is
included with each line of trace output to show which process executed the
system call or received the signal.

AIX 5.2 Performance Tools Update Training Course

58

Other Truss Flags
-i Keeps interruptible sleeping system calls from being reported

-m Specifies the machine faults to include in or exclude from the report
 The default is -m all

-s Specifies signals to include or exclude from the report. The default is -s all.

-t Specifies system calls to include in or exclude from the report.
 The default is -t all

-x Selects raw(usually hexadecimal) display of parametic data from specified
system calls

Other Truss Flags
There are five other truss flags that provide valuable additional functionality.

The –i option keeps interruptible sleeping system calls from being displayed.
Certain system calls on terminal devices or pipes, such as open and kread, can
sleep for indefinite periods and are interruptible. Normally, truss reports on such
sleeping system calls if they remain asleep for more than one second. The
system call is then reported a second time when it completes. The -i flag causes
such system calls to be reported only once, upon completion.

The –m option traces the machine faults that occur in the process. The machine
faults that are to be traced must be separated from each other by a comma. If the
list begins with the "!" symbol, the specified faults are excluded from being traced
and are not displayed with the trace output. The default is: m all –m!fltpage

The –s option permits listing the signals that are to be traced or excluded. Those
signals specified in a list (separated by a comma) are traced. The trace output
reports the receipt of each specified signal, even if the signal is being ignored—
but not blocked—by the process. Blocked signals are not received until the
process releases them. If the list begins with the "!" symbol, the listed signals are
excluded from being displayed with the trace output. The default is: -s all.

The –t option includes or excludes system calls from the trace process. System
calls that are to be traced must be specified in a list and separated by commas. If
the list begins with an "!" symbol, the specified system calls are excluded from
the trace output. The default is: -tall.

The –x option displays data from the specified parameters of traced system calls
in raw format, usually hexadecimal, rather than symbolically. The default is: x!all.

AIX 5.2 Performance Tools Update Training Course

59

Perfstat API: introduction

The perfstat application programming interface (API) is a collection of C
programming language subroutines that execute in user space and that use the
perfstat kernel extension to extract various AIX performance metrics. System
component information is also retrieved from the Object Data Manager (ODM)
and returned with the performance metrics.

The perfstat API is both a 32-bit and a 64-bit API, is thread-safe, and does not
require root authority. This API also supports extensions so binary compatibility is
maintained across all releases of AIX.

Two types of APIs are available. Global types return global metrics related to a
set of components, while individual types return metrics related to individual
components. Both types of interfaces have similar signatures, but slightly
different behavior.

All the interfaces (of both types) return raw data; that is, values of running
counters. Multiple calls must be made at regular intervals to calculate rates.
Several interfaces return data retrieved from the ODM (object data manager)
database.

AIX 5.2 Performance Tools Update Training Course

60

Perfstat API: global interface example

As just mentioned, there are global API types. These interfaces return global
metrics related to a set of components on a server (such as processors, disks, or
memory).

All the following AIX 5.2 interfaces use the naming convention
perfstat_subsystem_total, and use a common signature:

perfstat_cpu_total Retrieves global CPU usage metrics
perfstat_memory_total Retrieves global memory usage metrics
perfstat_disk_total Retrieves global disk usage metrics
perfstat_netinterface_total Retrieves global network interfaces metrics

Thus, the example you are looking at here is retrieving global memory usage
metrics.

AIX 5.2 Performance Tools Update Training Course

61

Perfstat API: component interface example

Component-specific interfaces report metrics related to individual components on
a server (such as a processor, disk, network interface, or paging space). All of
the following AIX interfaces use the naming convention perfstat_subsystem,
and use a common signature:

perfstat_cpu Retrieves individual CPU usage metrics
perfstat_disk Retrieves individual disk usage metrics
perfstat_diskpath Retrieves individual disk path metrics New in

AIX 5.2
perfstat_diskadapter Retrieves individual disk adapter metrics
perfstat_netinterface Retrieves individual network interfaces metrics
perfstat_protocol Retrieves individual network protocol-related

metrics
New in
AIX 5.2

perfstat_netbuffer Retrieves individual network buffer allocation
metrics

perfstat_pagingspace Retrieves individual paging space metrics

Thus, the example you see here is retrieving individual CPU usage metrics.

AIX 5.2 Performance Tools Update Training Course

62

Perfstat API: AIX 5.2

Perfstat has been enhanced in AIX 5.2 to deliver new processor metrics that now
include all cpuinfo and sysinfo fields.

There are new interfaces, too, as is listed on this graphic.

The perfstat API subroutines reside in the libperfstat.a library, where you can
also find the interface declarations and type definitions of the data structures to
use when calling the interfaces. Detailed information for the individual interfaces
and the data structures used can be found in the libperfstat.h file in the AIX 5L
Version 5.2 Files Reference manual.

AIX 5.2 Performance Tools Update Training Course

63

Conclusion

Before the release of AIX Version 5.2, IBM® eServer® pSeries™ systems
administrators and developers did not have an easy job of tuning the server for
optimal performance. The performance commands were limited in functionality,
they were inconsistent in their syntax, or were even non-existent.

During the development of the latest AIX release, however, a strong commitment
was made toward providing pSeries devotees with much more useful and
powerful tuning mechanisms. This course has spent all of its focus on helping
you better understand the new wealth of performance tuning devices at your
fingertips.

There is greater consistency in both the use of command parameters and their
effects. There is also a significant increase in the high-level functionality of the
performance tools. And, importantly, the tunable parameters you set can be
specified as permanent reboot values… so you do not have to retune the server
after each restart.

There is a great deal of additional information that is available on the IBM Web
site regarding everything discussed in this course. Please look at the references
section of this course for a jump-start on where you can gain an even greater
understanding of the new power and flexibility you have to tune your pSeries
server. Optimal performance may be just a few “commands” away.

AIX 5.2 Performance Tools Update Training Course

64

References

• pSeries Information Center
 publib16.boulder.ibm.com/pseries/en_US/infocenter/base/

o AIX 5L Version 5.2 Performance Tools Guide and Reference
o AIX 5L Version 5.2 Performance Management Guide
o AIX 5L Version 5.2 Commands Reference, Volume 1-6

• AIX 5.2 Performance Tools Update, part 1
ibm.com/developerworks/eserver/articles/Keung_AIXPerf.html

• AIX 5.2 Performance Tools Update, part 2

 ibm.com/developerworks/eserver/articles/AIX5.2PerfTools.html

• AIX 5.2 Performance Tools Update, part 3
ibm.com/developerworks/eserver/articles/AIX5.2_performance
toolsupdatepart3.html

• An online course, entitled “IBM eServer pSeries Logical Partitioning:

Installation & Configuration,“ explains the process of installing the WebSM
client in Windows
ibm.com/servers/enable/site/peducation/abstracts/abs_1a8a.html

AIX 5.2 Performance Tools Update Training Course

65

Trademarks

IBM, eServer, AIX, pSeries, and AIX5L are registered trademarks of IBM
Corporation in the United States, other countries, or both.

Java, Sun, Solaris, and all Java-based trademarks are trademarks or service
marks of Sun Microsystems in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

IBM makes no commitment to make available any products referred to herein.

All other registered trademarks and trademarks are properties of their respective
owners.

References in this publication to IBM products or services do not imply that IBM
intends to make them available in every country in which IBM operates.

	Table of Contents
	About the Authors
	Introduction
	Tuning AIX: Situation before 5.2
	Tuning AIX: Situation before 5.2 (continued)
	Tuning AIX: Situation before 5.2 (continued)
	Tuning AIX: 5.2 goals
	AIX 5.2 Tunable Files
	AIX 5.2 Tunable Files (continued)
	AIX 5.2 Tunable Files (continued)
	Tunable Parameter Types
	AIX 5.2 New Tuning Commands
	Example of New Tuning Commands
	Common Flags of the Tuning Commands
	SMITTY or Telnet Tuning
	SMITTY Tuning: Global Manipulation of Tuning Parameters
	SMITTY vmo Panel
	SMITTY vmo Panel (continued)
	Tuning AIX: WebSM VMM Table
	Migration and Compatibility
	Recovery Procedure
	Compatibility Mode
	Performance Tools
	/proc Tools
	Curt — CPU Usage Reporting Tool
	Curt: Usage
	Curt System Summary
	Curt—Report Sections
	Curt System Summary
	Curt—Report Sections (continued)
	Curt Application Summary Reports
	Kproc and Application Pthread Summary
	Curt System Calls Summary
	Curt Flih Summary
	Curt Slih Summary
	Curt Thread Summary
	Curt Process Summary
	Curt—Trace Hooks
	Collecting a Trace for Curt
	Collecting a Trace for Curt (continued)
	tprof Introduction
	Tprof: introduction (continued)
	tprof: 5.2 version
	Tprof: usage
	Tprof: new syntax
	Tprof: profile output format
	Tprof: microprofile output format
	Tprof: format changes
	tprof: modes of operation
	Truss Update
	Truss: tracing example
	Truss: system call counting
	The –d option
	The –l option
	The –f Option
	Other Truss Flags
	Perfstat API: introduction
	Perfstat API: global interface example
	Perfstat API: component interface example
	Perfstat API: AIX 5.2
	Conclusion
	References
	AIX 5.2 Performance Tools Update, part 1�ibm.com/developerwo
	Trademarks

